
Polyspace® Bug Finder™
Reference

R2021b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ Reference
© COPYRIGHT 2013–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2013 Online Only New for Version 1.0 (Release 2013b)
March 2014 Online Only Revised for Version 1.1 (Release 2014a)
October 2014 Online Only Revised for Version 1.2 (Release 2014b)
March 2015 Online Only Revised for Version 1.3 (Release 2015a)
September 2015 Online Only Revised for Version 2.0 (Release 2015b)
October 2015 Online Only Rereleased for Version 1.3.1 (Release 2015aSP1)
March 2016 Online Only Revised for Version 2.1 (Release 2016a)
September 2016 Online Only Revised for Version 2.2 (Release 2016b)
March 2017 Online Only Revised for Version 2.3 (Release 2017a)
September 2017 Online Only Revised for Version 2.4 (Release 2017b)
March 2018 Online Only Revised for Version 2.5 (Release 2018a)
September 2018 Online Only Revised for Version 2.6 (Release 2018b)
March 2019 Online Only Revised for Version 3.0 (Release 2019a)
September 2019 Online Only Revised for Version 3.1 (Release 2019b)
March 2020 Online Only Revised for Version 3.2 (Release 2020a)
September 2020 Online Only Revised for Version 3.3 (Release 2020b)
March 2021 Online Only Revised for Version 3.4 (Release 2021a)
September 2021 Online Only Revised for Polyspace Bug Finder Version 3.5,

Polyspace Bug Finder Server Version 3.5, and
Polyspace Bug Finder Access Version 3.1 (Release
2021b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Introduction
1

About This Reference . 1-2

iii

Contents

Polyspace Analysis Options

Analysis Options
2

Analysis Options, Command-Line Only
3

Polyspace DOS/UNIX Commands

Polyspace DOS/Unix Commands
4

MATLAB and Simulink Functions, Classes, and Methods

Functions, Properties, Classes, and Apps
5

Configuration Parameters
6

Settings from (C) . 6-2
Settings . 6-2
Dependency . 6-2
Command-Line Information . 6-2

Settings from (C++) . 6-4
Settings . 6-4
Dependency . 6-4
Command-Line Information . 6-4

Use custom project file . 6-6
Settings . 6-6
Dependency . 6-6

iv Contents

Command-Line Information . 6-6

Project configuration . 6-7
Settings . 6-7
Dependency . 6-7
Command-Line Information . 6-7

Enable additional file list . 6-8
Settings . 6-8
Command-Line Information . 6-8

Stub lookup tables . 6-9
Settings . 6-9
Tips . 6-9
Command-Line Information . 6-9

Input . 6-11
Settings . 6-11
Command-Line Information . 6-11

Tunable parameters . 6-12
Settings . 6-12
Command-Line Information . 6-12

Output . 6-13
Settings . 6-13
Command-Line Information . 6-13

Model reference verification depth . 6-14
Settings . 6-14
Command-Line Information . 6-14

Model by model verification . 6-15
Settings . 6-15
Command-Line Information . 6-15

Output folder . 6-16
Settings . 6-16
Command-Line Information . 6-16

Make output folder name unique by adding a suffix 6-17
Settings . 6-17
Command-Line Information . 6-17

Add results to current Simulink project . 6-18
Settings . 6-18
Dependencies . 6-18
Command-Line Information . 6-18

Open results automatically after verification 6-19
Settings . 6-19
Command-Line Information . 6-19

Check configuration before verification . 6-20
Settings . 6-20

v

Command-Line Information . 6-20

Verify all S-function occurrences . 6-21
Settings . 6-21
Command-Line Information . 6-21

vi Contents

Polyspace Results: Defect Checkers

Numerical Defects
7

Static Memory Defects
8

Dynamic Memory Defects
9

C++ Exception Defects
10

Programming Defects
11

Data Flow Defects
12

Security Defects
13

Cryptography Defects
14

Tainted Data Defects

vii

15

Concurrency Defects
16

Object Oriented Defects
17

Performance Defects
18

Resource Management Defects
19

Good Practice Defects
20

Polyspace Results: Coding Standards

MISRA C 2012
21

MISRA C++: 2008
22

CERT C Rules and Recommendations
23

viii Contents

Acknowledgement . 23-2

CERT C++ Rules
24

Acknowledgement . 24-2

AUTOSAR C++14 Rules
25

ISO/IEC TS 17961
26

Acknowledgment . 26-2

Guidelines
27

Software Complexity . 27-2

Custom Coding Rules
28

Group 1: Files . 28-2

Group 2: Preprocessing . 28-3

Group 3: Type definitions . 28-4

Group 4: Structures . 28-5

Group 5: Classes (C++) . 28-6

Group 6: Enumerations . 28-7

Group 7: Functions . 28-8

Group 8: Constants . 28-9

ix

Group 9: Variables . 28-10

Group 10: Name spaces (C++) . 28-11

Group 11: Class templates (C++) . 28-12

Group 12: Function templates (C++) . 28-13

Group 20: Style . 28-14

Polyspace Results: Code Metrics

Code Metrics
29

Polyspace Reports Components

Report Components
30

Polyspace Bug Finder Assumptions

Approximations Used During Bug Finder Analysis
31

Inputs in Polyspace Bug Finder . 31-2

Global Variables in Polyspace Bug Finder . 31-3

Volatile Variables in Polyspace Bug Finder . 31-4

x Contents

Introduction

1

About This Reference
This Reference covers all Polyspace Bug Finder products:

• Polyspace Bug Finder
• Polyspace Bug Finder Server™
• Polyspace Bug Finder Access™

Depending on how you set up a Bug Finder run, you might be:

• Running an analysis and reviewing the results on your desktop.

In this case, you use Polyspace Bug Finder. More specifically, you use the Polyspace user interface
or the polyspace-bug-finder command to run an analysis.

• Running an analysis on a server, or reviewing the results from a server run on a web browser.

In this case, you use:

• Polyspace Bug Finder Server, more specifically, the polyspace-bug-finder-server
command, to run the analysis.

• Polyspace Bug Finder Access to host the analysis results (for review on a web browser).
• Running an analysis on the current file in your Integration Development Environment (IDE).

In this case, you use Polyspace as You Code in your IDEs (or the polyspace-bug-finder-
access command). Polyspace as You Code is a feature available with Polyspace Bug Finder
Access.

Whatever your platform, the Bug Finder analysis engine underlies all Bug Finder products. In
particular, most analysis options, commands and result types are common to all three platforms.

1 Introduction

1-2

Polyspace Analysis Options

3

Analysis Options

2

Source code language (-lang)
Specify language of source files

Description
Specify the language of your source files. Before specifying other configuration options, choose this
option because other options change depending on your language selection.

If you add files during project setup, the language selection can change from the default.

Files Added Source Code Language
Only files with extension .c C
Only files with extension .cpp or .cc CPP
Files with extension .c, .cpp, and .cc C-CPP

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node. See “Dependencies” on page 2-2 for ways in which the source code language can
be automatically determined.

Command line and options file: Use the option -lang. See “Command-Line Information” on page
2-3.

Settings
Default: Based on file extensions.

C
If your project contains only C files, choose this setting. This value restricts the verification to C
language conventions. All files are interpreted as C files, regardless of their file extension.

CPP
If your project contains only C++ files, choose this setting. This value restricts the verification to
C++ language conventions. All files are interpreted as C++ files, regardless of their file
extension.

C-CPP
If your project contains C and C++ source files, choose this setting. This value allows for C and C
++ language conventions. .c files are interpreted as C files. Other file extensions are interpreted
as C++ files.

Dependencies
• The language option allows and disallows many options and option values. Some options change

depending on your language selection. For more information, see the individual analysis option
pages.

2 Analysis Options

2-2

• If you create a Polyspace project or options file from your build system using the polyspace-
configure command or polyspaceConfigure function, the value of this option is determined
by the file extensions.

For a project with both .c and .cpp files, the language option C-CPP is used. During the analysis,
each file is compiled based on the language standard determined by the file extensions. After the
compilation, Polyspace verifies such mixed projects as C++ projects.

Command-Line Information
Parameter: -lang
Value: c | cpp| c-cpp
Default: Based on file extensions
Example (Bug Finder): polyspace-bug-finder -lang c-cpp -sources
"file1.c,file2.cpp"
Example (Code Prover): polyspace-code-prover -lang cpp -sources
"file1.cpp,file2.cpp"
Example (Bug Finder Server): polyspace-bug-finder-server -lang c-cpp -sources
"file1.c,file2.cpp"
Example (Code Prover Server): polyspace-code-prover-server -lang cpp -sources
"file1.cpp,file2.cpp"
Example (Bug Finder): polyspace-bug-finder -lang c -sources "file1.c,file2.c"
Example (Code Prover): polyspace-code-prover -lang c -sources "file1.c,file2.c"
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
"file1.c,file2.c"
Example (Code Prover Server): polyspace-code-prover-server -lang c -sources
"file1.c,file2.c"

See Also
C standard version (-c-version) | C++ standard version (-cpp-version)

 Source code language (-lang)

2-3

C standard version (-c-version)
Specify C language standard followed in source code

Description
Specify the C language standard that you follow in your source code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node. See “Dependencies” on page 2-5 for other options that you must enable.

Command line and options file: Use the option -c-version. See “Command-Line Information” on
page 2-5.

Why Use This Option

Use this option so that Polyspace can allow features specific to a C standard version during
compilation. For instance, if you compile with GCC using the flag -ansi or -std=c90, specify c90
for this option. If you are not sure of the language standard, specify defined-by-compiler.

For instance, suppose you use the boolean data type _Bool in your code. This type is defined in the
C99 standard but unknown in prior standards such as C90. If the Polyspace compilation follows the
C90 standard, you can see compilation errors.

Some MISRA C® rules are different based on whether you use the C90 or C99 standard. For instance,
MISRA C C:2012 Rule 5.2 requires that identifiers in the same scope and name space shall be
distinct. If you use the C90 standard, different identifiers that have the same first 31 characters
violate this rule. If you use the C99 standard, the number of characters increase to 63.

Settings
Default: defined-by-compiler

defined-by-compiler
The analysis uses a standard based on your specification for Compiler (-compiler).

See “C/C++ Language Standard Used in Polyspace Analysis”.

c90
The analysis uses the C90 Standard (ISO®/IEC 9899:1990).

c99
The analysis uses the C99 Standard (ISO/IEC 9899:1999).

c11
The analysis uses the C11 Standard (ISO/IEC 9899:2011).

See also “C11 Language Elements Supported in Polyspace”.

2 Analysis Options

2-4

c17
The analysis uses the C17 Standard (ISO/IEC 9899:2018).

This version addresses defects in C11 Standard but does not introduce new language features.
The value of the __STDC_VERSION__ macro is increased to 201710L.

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-CPP.
• If you create a project or options file from your build system using the polyspace-configure

command or polyspaceConfigure function, the value of this option is automatically determined
from your build system.

If the build system uses different standards for different files, the subsequent Polyspace analysis
can emulate your build system and use different standards for compiling those files. If you open
such a project in the Polyspace user interface, the option value is shown as defined-by-
compiler. However, instead of one standard, Polyspace uses the hidden option -options-for-
sources to associate different standards with different files.

Command-Line Information
Parameter: -c-version
Value: defined-by-compiler | c90 | c99 | c11 | c17
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -lang c -sources "file1.c,file2.c" -
c-version c90
Example (Code Prover): polyspace-code-prover -lang c -sources "file1.c,file2.c"
-c-version c90
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
"file1.c,file2.c" -c-version c90
Example (Code Prover Server): polyspace-code-prover-server -lang c -sources
"file1.c,file2.c" -c-version c90

See Also
Source code language (-lang) | C++ standard version (-cpp-version)

Topics
“Specify Polyspace Analysis Options”
“C/C++ Language Standard Used in Polyspace Analysis”
“C11 Language Elements Supported in Polyspace”

 C standard version (-c-version)

2-5

C++ standard version (-cpp-version)
Specify C++ language standard followed in source code

Description
Specify the C++ language standard that you follow in your source code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node. See “Dependencies” on page 2-7 for other options that you must enable.

Command line and options file: Use the option -cpp-version. See “Command-Line Information”
on page 2-7.

Why Use This Option

Use this option so that Polyspace can allow features from a specific version of the C++ language
standard during compilation. For instance, if you compile with GCC using the flag -std=c++11 or -
std=gnu++11, specify cpp11 for this option. If you are not sure of the language standard, specify
defined-by-compiler.

For instance, suppose you use range-based for loops. This type of for loop is defined in the C++11
standard but unrecognized in prior standards such as C++03. If the Polyspace compilation uses the C
++03 standard, you can see compilation errors.

To check if your compiler allows features specific to a standard, compile code with macros specific to
the standard using compiler settings that you typically use. For instance, to check for C++11-specific
features, compile this code. The code contains a C++11-specific keyword nullptr. If the macro
__cplusplus is not 201103L (indicating C++11), this keyword is used and causes a compilation
error.

#if defined(__cplusplus) && __cplusplus >= 201103L
 /* C++11 compiler */
#else
 void* ptr = nullptr;
#endif

If the code compiles, use cpp11 for this option.

Settings
Default: defined-by-compiler

defined-by-compiler
The analysis uses a standard based on your specification for Compiler (-compiler).

See “C/C++ Language Standard Used in Polyspace Analysis”.

cpp03
The analysis uses the C++03 Standard (ISO/IEC 14882:2003).

2 Analysis Options

2-6

cpp11
The analysis uses the C++11 Standard (ISO/IEC 14882:2011).

See also “C++11 Language Elements Supported in Polyspace”.

cpp14
The analysis uses the C++14 Standard (ISO/IEC 14882:2014).

See also “C++14 Language Elements Supported in Polyspace”.

cpp17
The analysis uses the C++17 Standard (ISO/IEC 14882:2017).

See also “C++17 Language Elements Supported in Polyspace”.

Dependencies
• This option is available only if you set Source code language (-lang) to CPP or C-CPP.
• If you create a project or options file from your build system using the polyspace-configure

command or polyspaceConfigure function, the value of this option is automatically determined
from your build system.

If the build system uses different standards for different files, the subsequent Polyspace analysis
can emulate your build system and use different standards for compiling those files. If you open
such a project in the Polyspace user interface, the option value is shown as defined-by-
compiler. However, instead of one standard, Polyspace uses multiple standards for compiling the
files. The analysis uses the hidden option -options-for-sources to associate different
standards with different files.

Command-Line Information
Parameter: -cpp-version
Value: defined-by-compiler | cpp03 | cpp11 | cpp14 | cpp17
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -lang c -sources "file1.c,file2.c" -
cpp-version cpp11
Example (Code Prover): polyspace-code-prover -lang c -sources "file1.c,file2.c"
-cpp-version cpp11
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
"file1.c,file2.c" -cpp-version cpp11
Example (Code Prover Server): polyspace-code-prover-server -lang c -sources
"file1.c,file2.c" -cpp-version cpp11

See Also
Source code language (-lang) | C standard version (-c-version)

Topics
“Specify Polyspace Analysis Options”
“C/C++ Language Standard Used in Polyspace Analysis”
“C++11 Language Elements Supported in Polyspace”
“C++14 Language Elements Supported in Polyspace”

 C++ standard version (-cpp-version)

2-7

“C++17 Language Elements Supported in Polyspace”

2 Analysis Options

2-8

Compiler (-compiler)
Specify the compiler that you use to build your source code

Description
Specify the compiler that you use to build your source code.

Polyspace fully supports the most common compilers used to develop embedded applications. See the
list below. For these compilers, you can run analysis simply by specifying your compiler and target
processor. For other compilers, specify generic as compiler name. If you face compilation errors,
explicitly define compiler-specific extensions to work around the errors.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line and options file: Use the option -compiler. See “Command-Line Information” on
page 2-16.

Why Use This Option

Polyspace uses this information to interpret syntax that is not part of the C/C++ Standard, but comes
from language extensions.

For example, the option allows additional language keywords, such as sfr, sbit, and bit. If you do
not specify your compiler, these additional keywords can cause compilation errors during Polyspace
analysis.

Polyspace does not actually invoke your compiler for compilation. In particular:

• You cannot specify compiler flags directly in the Polyspace analysis. To emulate your compiler
flags, trace your build command or manually specify equivalent Polyspace analysis options. See
“Specify Target Environment and Compiler Behavior”.

• Code Prover has a linking policy that is stricter than regular compilers. For instance, if your
compiler allows declaration mismatches with specific compiler options, you cannot emulate this
linking policy in Code Prover. See “Troubleshoot Compilation and Linking Errors” (Polyspace Code
Prover).

Settings
Default: generic

generic
Analysis allows only standard syntax.

The language standard is determined by your choice for the following options:

• C standard version (-c-version)

 Compiler (-compiler)

2-9

• C++ standard version (-cpp-version)

If you do not specify a standard explicitly, the standard depends on your choice of compiler.
gnu3.4

Analysis allows GCC 3.4 syntax.
gnu4.6

Analysis allows GCC 4.6 syntax.
gnu4.7

Analysis allows GCC 4.7 syntax.

For unsupported GCC extensions, see “Limitations” on page 2-14.
gnu4.8

Analysis allows GCC 4.8 syntax.

For unsupported GCC extensions, see “Limitations” on page 2-14.
gnu4.9

Analysis allows GCC 4.9 syntax.

For unsupported GCC extensions, see “Limitations” on page 2-14.
gnu5.x

Analysis allows GCC 5.x syntax. For a list of available GCC 5.x releases, see GCC releases.

If you select gnu5.x, the option Target processor type (-target) shows only a subset of
targets that are allowed for a GCC based compiler. For other targets, use the option Generic
target options.

For unsupported GCC extensions, see “Limitations” on page 2-14.
gnu6.x

Analysis allows GCC 6.x syntax. For a list of available GCC 6.x releases, see GCC releases.

If you select gnu6.x, the option Target processor type (-target) shows only a subset of
targets that are allowed for a GCC based compiler. For other targets, use the option Generic
target options.

For unsupported GCC extensions, see “Limitations” on page 2-14.
gnu7.x

Analysis allows GCC 7.x syntax. For a list of available GCC 7.x releases, see GCC releases.

If you select gnu7.x, the option Target processor type (-target) shows only a subset of
targets that are allowed for a GCC based compiler. For other targets, use the option Generic
target options.

For unsupported GCC extensions, see “Limitations” on page 2-14.
gnu8.x

Analysis allows GCC 8.x syntax. For a list of available GCC 8.x releases, see GCC releases.

If you select gnu8.x, the option Target processor type (-target) shows only a subset of
targets that are allowed for a GCC based compiler. For other targets, use the option Generic
target options.

2 Analysis Options

2-10

https://gcc.gnu.org/releases.html
https://gcc.gnu.org/releases.html
https://gcc.gnu.org/releases.html
https://gcc.gnu.org/releases.html

For unsupported GCC extensions, see “Limitations” on page 2-14.
gnu9.x

Analysis allows GCC 9.x syntax. For a list of available GCC 9.x releases, see GCC releases.

If you select gnu9.x, the option Target processor type (-target) shows only a subset of
targets that are allowed for a GCC based compiler. For other targets, use the option Generic
target options.

For unsupported GCC extensions, see “Limitations” on page 2-14.
gnu10.x

Analysis allows GCC 10.x syntax. For a list of available GCC 10.x releases, see GCC releases.

If you select gnu10.x, the option Target processor type (-target) shows only a subset of
targets that are allowed for a GCC based compiler. For other targets, use the option Generic
target options.

For unsupported GCC extensions, see “Limitations” on page 2-14.
clang3.x

Analysis allows Clang 3.5, 3.6, 3.7, 3.8, and 3.9 syntax.
clang4.x

Analysis allows Clang 4.0.0, and 4.0.1 syntax.
clang5.x

Analysis allows Clang 5.0.0, 5.0.1, and 5.0.2 syntax.
visual9.0

Analysis allows Microsoft® Visual C++® 2008 syntax.
visual10.0

Analysis allows Microsoft Visual C++ 2010 syntax.

This option implicitly enables the option -no-stl-stubs.
visual11.0

Analysis allows Microsoft Visual C++ 2012 syntax.

This option implicitly enables the option -no-stl-stubs.
visual12.0

Analysis allows Microsoft Visual C++ 2013 syntax.

This option implicitly enables the option -no-stl-stubs.
visual14.0

Analysis allows Microsoft Visual C++ 2015 syntax (supports Microsoft Visual Studio® update 2).

This option implicitly enables the option -no-stl-stubs.
visual15.x

Analysis allows Microsoft Visual C++ 2017 syntax. For a list of available Microsoft Visual Studio
2017 versions, see Visual Studio 2017 Release Notes History.

This option implicitly enables the option -no-stl-stubs.

 Compiler (-compiler)

2-11

https://gcc.gnu.org/releases.html
https://gcc.gnu.org/releases.html
https://docs.microsoft.com/en-us/visualstudio/releasenotes/vs2017-relnotes-history

visual16.x
Analysis allows Microsoft Visual C++ 2019 syntax. For a list of available Microsoft Visual Studio
2019 versions, see Visual Studio 2019 Release Notes History.

This option implicitly enables the option -no-stl-stubs.
keil

Analysis allows non-ANSI® C syntax and semantics associated with the Keil products from ARM
(www.keil.com).

iar
Analysis allows non-ANSI C syntax and semantics associated with the compilers from IAR
Systems (www.iar.com).

armcc
Analysis allows non-ANSI C syntax and semantics associated with the ARM® v5 compiler.

If you select armcc, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the ARM v5 compiler.

See ARM v5 Compiler (-compiler armcc).
armclang

Analysis allows non-ANSI C syntax and semantics associated with the ARM v6 compiler.

If you select armclang, in the user interface of the Polyspace desktop products, the option
Target processor type (-target) shows only the targets that are allowed for the ARM v6
compiler.

See ARM v6 Compiler (-compiler armclang).
codewarrior

Analysis allows non-ANSI C syntax and semantics associated with the NXP CodeWarrior®

compiler.

If you select codewarrior, in the user interface of the Polyspace desktop products, the option
Target processor type (-target) shows only the targets that are allowed for the NXP
CodeWarrior compiler.

See NXP CodeWarrior Compiler (-compiler codewarrior).
cosmic

Analysis allows non-ANSI C syntax and semantics associated with the Cosmic compiler.

If you select cosmic, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the Comic compiler.

See Cosmic Compiler (-compiler cosmic).
diab

Analysis allows non-ANSI C syntax and semantics associated with the Wind River® Diab compiler.

If you select diab, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the NXP CodeWarrior
compiler.

2 Analysis Options

2-12

https://docs.microsoft.com/en-us/visualstudio/releases/2019/release-notes-history
https://www.keil.com/
https://www.iar.com/

See Diab Compiler (-compiler diab).
greenhills

Analysis allows non-ANSI C syntax and semantics associated with a Green Hills® compiler.

If you select greenhills, in the user interface of the Polyspace desktop products, the option
Target processor type (-target) shows only the targets that are allowed for a Green Hills
compiler.

See Green Hills Compiler (-compiler greenhills).
iar-ew

Analysis allows non-ANSI C syntax and semantics associated with the IAR Embedded Workbench
compiler.

If you select iar-ew, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the IAR Embedded
Workbench compiler.

See IAR Embedded Workbench Compiler (-compiler iar-ew).
microchip

Analysis allows non-ANSI C syntax and semantics associated with the MPLAB XC8 C compiler.

If you select microchip, in the user interface of the Polyspace desktop products, the option
Target processor type (-target) shows only the targets that are allowed for the MPLAB
XC8 C compiler.

See MPLAB XC8 C Compiler (-compiler microchip).
renesas

Analysis allows non-ANSI C syntax and semantics associated with the Renesas® compiler.

If you select renesas, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the Renesas compiler.

See Renesas Compiler (-compiler renesas).
tasking

Analysis allows non-ANSI C syntax and semantics associated with the TASKING compiler.

If you select tasking,in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the TASKING
compiler.

See TASKING Compiler (-compiler tasking).
ti

Analysis allows non-ANSI C syntax and semantics associated with the Texas
Instruments™compiler.

If you select ti, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the Texas Instruments
compiler.

See Texas Instruments Compiler (-compiler ti).

 Compiler (-compiler)

2-13

cosmic
Analysis allows non-ANSI C syntax and semantics associated with the compiler used in the
Cosmic software development tools.

If you select cosmic, in the user interface of the Polyspace desktop products, the option Target
processor type (-target) shows only the targets that are allowed for the Cosmic compiler.

See Cosmic Compiler (-compiler cosmic).

Tips
• Your compiler specification determines the values of many compiler-specific macros. In case you

want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-
info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

• If you use a Visual Studio compiler, you must use a Target processor type (-target)
option that sets long long to 64 bits. Compatible targets include: i386, sparc, m68k, powerpc,
tms320c3x, sharc21x61, mpc5xx, x86_64, or mcpu with long long set to 64 (-long-long-
is-64bits at the command line).

• If you use the option Check JSF AV C++ rules (-jsf-coding-rules), select the compiler
generic. If you use another compiler, Polyspace cannot check the JSF® coding rules that require
conforming to the ISO standard. For example, AV Rule 8: “All code shall conform to ISO/IEC
14882:2002(E) standard C++.”

Limitations
GNU Compilers

Polyspace does not support certain features of GNU compilers:

• GNU® compilers versions 4.7 and later:

• Nested functions.

For instance, the function bar is nested in function foo:

int foo (int a, int b)
{
 int bar (int c) { return c * c; }

 return bar (a) + bar (b);
}

• Binary operations with vector types where one operand uses the shorthand notation for
uniform vectors.

For instance, in the addition operation, 2+a, 2 is used as a shorthand notation for {2,2,2,2}.

typedef int v4si __attribute__ ((vector_size (16)));
v4si res, a = {1,2,3,4};

res = 2 + a; /* means {2,2,2,2} + a */

2 Analysis Options

2-14

• Forward declaration of function parameters.

For instance, the parameter len is forward declared:

void func (int len; char data[len][len], int len)
{
 /* … */
}

• Complex integer data types.

However, complex floating point data types are supported.
• Initialization of structures with flexible array members using an initialization list.

For instance, the structure S has a flexible array member tab. A variable of type S is directly
initialized with an initialization list.

struct S {
 int x;
 int tab[]; /* flexible array member - not supported */
};
struct S s = { 0, 1, 2} ;

You see a warning during analysis and a red check in the results when you dereference, for
instance, s.tab[1].

• 128-bit variables.

Polyspace cannot analyze this data type semantically. Bug Finder allows use of 128-bit data
types, but Code Prover shows a compilation error if you use such a data type, for instance, the
GCC extension __float128.

• GNU compilers version 7.x:

• Type names _FloatN and _FloatNx are not semantically supported. The analysis treats them
as type float, double, or long double.

• Constants of type _FloatN or _FloatNx with suffixes fN, FN, or fNx, such as 1.2f123 or
2.3F64x are not supported.

Visual Studio Compilers

Polyspace does not support certain features of Visual Studio compilers:

• C++ Accelerated Massive Parallelism (AMP).

C++ AMP is a Visual Studio feature that accelerates your C++ code execution for certain types of
data-parallel hardware on specific targets. You typically use the restrict keyword to enable this
feature.

void Buffer() restrict(amp)
{
 ...
}

• __assume statements.

You typically use __assume with a condition that is false. The statement indicates that the
optimizer must assume the condition to be henceforth true. Code Prover cannot reconcile this
contradiction. You get the error:

 Compiler (-compiler)

2-15

Asked for compulsory presence of absent entity : assert
• Managed Extensions for C++ (required for the .NET Framework), or its successor, C++/CLI (C++
modified for Common Language Infrastructure)

• __declspec keyword with attributes other than noreturn, nothrow, selectany or thread.

Polyspace System Headers

If you do not specify the path to your compiler headers, Polyspace uses its own system headers and
your project might not compile even if your code compiles with your compiler.

To make sure that Polyspace uses your compiler header files, run polyspace-configure or specify
the paths to your compiler header files manually. See “Provide Standard Library Headers for
Polyspace Analysis”.

Command-Line Information
Parameter: -compiler
Value: armcc | armclang | clang3.x | clang4.x | clang5.x | codewarrior | cosmic
| diab | generic | gnu3.4 | gnu4.6 | gnu4.7 | gnu4.8 | gnu4.9 | gnu5.x |
gnu6.x | gnu7.x | gnu8.x | gnu9.x | gnu10.x | greenhills | iar | iar-ew |
keil | microchip | renesas | tasking | ti | visual10.0 | visual11.0 |
visual12.0 | visual14.0 | visual15.x | visual16.x | visual9.0
Default: generic
Example 1 (Bug Finder): polyspace-bug-finder -lang c -sources "file1.c,file2.c"
-compiler gnu4.6
Example 2 (Bug Finder): polyspace-bug-finder -lang cpp -sources
"file1.cpp,file2.cpp" -compiler visual9.0
Example 1 (Code Prover): polyspace-code-prover -lang c -sources
"file1.c,file2.c" -lang c -compiler gnu4.6
Example 2 (Code Prover): polyspace-code-prover -lang cpp -sources
"file1.cpp,file2.cpp" -compiler visual9.0
Example 1 (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
"file1.c,file2.c" -compiler gnu4.6
Example 2 (Bug Finder Server): polyspace-bug-finder-server -lang cpp -sources
"file1.cpp,file2.cpp" -compiler visual9.0
Example 1 (Code Prover Server): polyspace-code-prover-server -lang c -sources
"file1.c,file2.c" -lang c -compiler gnu4.6
Example 2 (Code Prover Server): polyspace-code-prover-server -lang cpp -sources
"file1.cpp,file2.cpp" -compiler visual9.0

See Also
Target processor type (-target) | C standard version (-c-version) | C++ standard
version (-cpp-version)

Topics
“Specify Polyspace Analysis Options”
“Troubleshoot Compilation Errors”
“Specify Target Environment and Compiler Behavior”
“Supported Keil or IAR Language Extensions”

2 Analysis Options

2-16

Target processor type (-target)
Specify size of data types and endianness by selecting a predefined target processor

Description
Specify the processor on which you deploy your code.

The target processor determines the sizes of fundamental data types and the endianness of the target
machine. You can analyze code intended for an unlisted processor type by using one of the other
processor types, if they share common data properties.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node. To see the sizes of types, click the Edit button to the right of the Target processor
type drop-down list.

For some compilers, in the user interface, you see only the processors allowed for that compiler. For
these compilers, you also cannot see the data type sizes in the user interface. See the links in the
table below for the data type sizes.

Command line and options file: Use the option -target. See “Command-Line Information” on
page 2-19.

Why Use This Option

You specify a target processor so that some of the Polyspace run-time checks are tailored to the data
type sizes and other properties of that processor.

For instance, a variable can overflow for smaller values on a 32-bit processor such as i386 compared
to a 64-bit processor such as x86_64. If you select x86_64 for your Polyspace analysis, but deploy your
code to the i386 processor, your Polyspace results are not always applicable.

Once you select a target processor, you can specify if the default sign of char is signed or unsigned.
To determine which signedness to specify, compile this code using the compiler settings that you
typically use:

#include <limits.h>
int array[(char)UCHAR_MAX]; /* If char is signed, the array size is -1

If the code compiles, the default sign of char is unsigned. For instance, on a GCC compiler, the code
compiles with the -fsigned-char flag and fails to compile with the -funsigned-char flag.

Settings
Default: i386

This table shows the size of each fundamental data type that Polyspace considers. For some targets,
you can modify the default size by clicking the Edit button to the right of the Target processor type
drop-down list. The optional values for those targets are shown in [brackets] in the table.

 Target processor type (-target)

2-17

Target cha
r

short int lon
g

long
long

floa
t

double long
doublea

ptr Default
sign of
char

endian Align
ment

i386 8 16 32 32 64 32 64 96 32 signed Little 32
sparc 8 16 32 32 64 32 64 128 32 signed Big 64
m68kb 8 16 32 32 64 32 64 96 32 signed Big 64
powerpc 8 16 32 32 64 32 64 128 32 unsigned Big 64
c-167 8 16 16 32 32 32 64 64 16 signed Little 64
tms320c3x 32 32 32 32 64 32 32 64 32 signed Little 32
sharc21x61 32 32 32 32 64 32 32 [64] 32 [64] 32 signed Little 32
necv850 8 16 32 32 32 32 32 64 32 signed Little 32

[16, 8]
hc08c 8 16 16

[32]
32 32 32 32 [64] 32 [64] 16d unsigned Big 32

[16]
hc12 8 16 16

[32]
32 32 32 32 [64] 32 [64] 326 signed Big 32

[16]
mpc5xx 8 16 32 32 64 32 32 [64] 32 [64] 32 signed Big 32

[16]
c18 8 16 16 32

[24]
e

32 32 32 32 16
[24]

signed Little 8

x86_64 8 16 32 64
[32]f

64 32 64 128 64 signed Little 64
[32]

mcpu...
(Advanced)g

8
[16]

8 [16] 16
[32]

32 32
[64]

32 32 [64] 32 [64] 16
[32]

signed Little 32
[16, 8]

Targets for
ARM v5
compiler

See ARM v5 Compiler (-compiler armcc).

Targets for
ARM v6
compiler

See ARM v6 Compiler (-compiler armclang).

Targets for
NPX
CodeWarrior
compiler

See NXP CodeWarrior Compiler (-compiler codewarrior).

Targets for
Cosmic
compiler

See Cosmic Compiler (-compiler cosmic).

Targets for
Diab compiler

See Diab Compiler (-compiler diab).

Targets for
Green Hills
compiler

See Green Hills Compiler (-compiler greenhills).

2 Analysis Options

2-18

Target cha
r

short int lon
g

long
long

floa
t

double long
doublea

ptr Default
sign of
char

endian Align
ment

Targets for IAR
Embedded
Workbench
compiler

See IAR Embedded Workbench Compiler (-compiler iar-ew).

Targets for
MPLAB XC8 C
compiler

See MPLAB XC8 C Compiler (-compiler microchip)

Targets for
Renesas
compiler

See Renesas Compiler (-compiler renesas).

Targets for
TASKING
compiler

See TASKING Compiler (-compiler tasking).

Targets for
Texas
Instruments
compiler

See Texas Instruments Compiler (-compiler ti).

a. For targets where the size of long double is greater than 64 bits, the size used for computations is not always the same as the size
listed in this table. The exceptions are:

• For targets i386, x86_64 and m68k, 80 bits are used for computations, following the practice in common compilers.
• For the target tms320c3x, 40 bits are used for computation, following the TMS320C3x specifications.
• If you use a Visual compiler, the size of long double used for computations is the same as size of double, following the
specification of Visual C++ compilers.

b. The M68k family (68000, 68020, and so on) includes the “ColdFire” processor
c. Non-ANSI C specified keywords and compiler implementation-dependent pragmas and interrupt facilities are not taken into account

by this support
d. All kinds of pointers (near or far pointer) have 2 bytes (hc08) or 4 bytes (hc12) of width physically.
e. The c18 target supports the type short long as 24 bits in size.
f. Use option -long-is-32bits to support Microsoft C/C++ Win64 target.
g. mcpu is a reconfigurable Micro Controller/Processor Unit target. You can use this type to configure one or more generic targets. For

more information, see Generic target options.

Tips
• If your processor is not listed, use a similar processor that shares the same characteristics, or

create an mcpu generic target processor. See Generic target options.
• You can also create a custom target by explicitly stating sizes of fundamental types and so on with

the option -custom-target.
• If your configuration uses both -custom-target and -target to specify targets, the analysis

uses the target that you specify with -custom-target.

Command-Line Information
Parameter: -target
Value: i386 | sparc | m68k | powerpc | c-167 | tms320c3x | sharc21x61 | necv850
| hc08 | hc12 | mpc5xx | c18 | x86_64 | mcpu
Default: i386

 Target processor type (-target)

2-19

Example (Bug Finder): polyspace-bug-finder -target m68k
Example (Code Prover): polyspace-code-prover -target m68k
Example (Bug Finder Server): polyspace-bug-finder-server -target m68k
Example (Code Prover Server): polyspace-code-prover-server -target m68k

You can override the default values for some targets by using specific command-line options. See the
section Command-Line Options in Generic target options.

See Also
Polyspace Analysis Options
-custom-target

Polyspace Results
Lower Estimate of Size of Local Variables | Higher Estimate of Size of Local
Variables

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

2 Analysis Options

2-20

ARM v5 Compiler (-compiler armcc)
Specify ARM v5 compiler

Description
Specify armcc for the Compiler (-compiler) option if you compile your code with a ARM v5
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select armcc for Compiler, in the user interface of
the Polyspace desktop products, you see only the processors allowed for a ARM v5 compiler. Your
choice of target processor determines the size of fundamental data types, the endianness of the
target machine, and certain keyword definitions.

If you specify the armcc compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Command-Line Information
Parameter: -compiler armcc -target
Value: arm
Default: arm
Example (Bug Finder): polyspace-bug-finder -compiler armcc -target arm
Example (Code Prover): polyspace-code-prover -compiler armcc -target arm
Example (Bug Finder Server): polyspace-bug-finder-server -compiler armcc -target
arm
Example (Code Prover Server): polyspace-code-prover-server -compiler armcc -
target arm

Tips
If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

See Also
Compiler (-compiler) | Target processor type (-target)

 ARM v5 Compiler (-compiler armcc)

2-21

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2019a

2 Analysis Options

2-22

ARM v6 Compiler (-compiler armclang)
Specify ARM v6 compiler

Description
Specify armclang for the Compiler (-compiler) option if you compile your code with a ARM v6
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select armclang for Compiler, in the user interface
of the Polyspace desktop products, you see only the processors allowed for a ARM v6 compiler. Your
choice of target processor determines the size of fundamental data types, the endianness of the
target machine, and certain keyword definitions.

If you specify the armclang compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Command-Line Information
Parameter: -compiler armclang -target
Value: arm | arm64
Default: arm
Example (Bug Finder): polyspace-bug-finder -compiler armclang -target arm64
Example (Code Prover): polyspace-code-prover -compiler armclang -target arm64
Example (Bug Finder Server): polyspace-bug-finder-server -compiler armclang -
target arm64
Example (Code Prover Server): polyspace-code-prover-server -compiler armclang -
target arm64

Tips
If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

See Also
Compiler (-compiler) | Target processor type (-target)

 ARM v6 Compiler (-compiler armclang)

2-23

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2019a

2 Analysis Options

2-24

NXP CodeWarrior Compiler (-compiler
codewarrior)
Specify NXP CodeWarrior compiler

Description
Specify codewarrior for Compiler (-compiler) if you compile your code using a NXP
CodeWarrior compiler. By specifying your compiler, you can avoid compilation errors from syntax that
is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select codewarrior for Compiler, in the user
interface of the Polyspace desktop products, you see only the processors allowed for a NXP
CodeWarrior compiler. Your choice of target processor determines the size of fundamental data types,
the endianness of the target machine and certain keyword definitions.

If you specify the codewarrior compiler, you must specify the path to your compiler header files.
See “Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Command-Line Information
Parameter: -compiler codewarrior -target
Value: s12z | powerpc
Default: s12z
Example (Bug Finder): polyspace-bug-finder -compiler codewarrior -target powerpc
Example (Code Prover): polyspace-code-prover -compiler codewarrior -target
powerpc
Example (Bug Finder Server): polyspace-bug-finder-server -compiler codewarrior -
target powerpc
Example (Code Prover Server): polyspace-code-prover-server -compiler codewarrior
-target powerpc

Tips
If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

 NXP CodeWarrior Compiler (-compiler codewarrior)

2-25

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2018a

2 Analysis Options

2-26

Cosmic Compiler (-compiler cosmic)
Specify Cosmic compiler

Description
Specify cosmic for the Compiler (-compiler) option if you compile your code with a Cosmic
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select cosmic for Compiler, in the user interface,
you see only the processors allowed for a Cosmic compiler. Your choice of target processor
determines the size of fundamental data types, the endianness of the target machine, and certain
keyword definitions.

If you specify the cosmic compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the target uses, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Command-Line Information
Parameter: -compiler cosmic -target
Value: s12z
Default: s12z
Example (Bug Finder): polyspace-bug-finder -compiler cosmic -target s12z
Example (Code Prover): polyspace-code-prover -compiler cosmic -target s12z
Example (Bug Finder Server): polyspace-bug-finder-server -compiler cosmic -target
s12z
Example (Code Prover Server): polyspace-code-prover-server -compiler cosmic -
target s12z

Tips
If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

See Also
Compiler (-compiler) | Target processor type (-target)

 Cosmic Compiler (-compiler cosmic)

2-27

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2019b

2 Analysis Options

2-28

Diab Compiler (-compiler diab)
Specify the Wind River Diab compiler

Description
Specify diab for Compiler (-compiler) if you compile your code using the Wind River Diab
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select diab for Compiler, in the user interface of the
Polyspace desktop products, you see only the processors allowed for the Diab compiler. Your choice of
target processor determines the size of fundamental data types, the endianness of the target machine
and certain keyword definitions.

If you specify the diab compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Tips
• Polyspace does not support these Diab compiler features:

• The preprocessor directives #assert and #unassert. Your code compiles but the software
does not interpret these directives semantically.

• Single-character constants in #if directives having the same value as the same character
constant in the execution character set. Your code compiles but Polyspace does not consider
that the character constants have the same value.

• The extended sizeof() syntax using two arguments. For example, sizeof(char, 2). Your
code does not compile with Polyspace when you use this feature.

• Statement expressions. For example, ({int y; y=foo(); y;}). Your code does not compile
with Polyspace when you use this feature.

• The use of regular expressions with the defined preprocessor operator. For example #if
defined ("BSP_HW*"). Your code does not compile with Polyspace when you use this
feature.

• If you encounter errors during Polyspace analysis, see “Fix Polyspace Compilation Errors Related
to Diab Compiler”.

• If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file.
See options file.

 Diab Compiler (-compiler diab)

2-29

Command-Line Information
Parameter: -compiler diab -target
Value: i386 | powerpc | arm | coldfire | mips | mcore | rh850 | superh |
tricore
Default: powerpc
Example (Bug Finder): polyspace-bug-finder -compiler diab -target tricore
Example (Code Prover): polyspace-code-prover -compiler diab -target tricore
Example (Bug Finder Server): polyspace-bug-finder-server -compiler diab -target
tricore
Example (Code Prover Server): polyspace-code-prover-server -compiler diab -target
tricore

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2016b

2 Analysis Options

2-30

Green Hills Compiler (-compiler greenhills)
Specify Green Hills compiler

Description
Specify greenhills for Compiler (-compiler) if you compile your code using a Green Hills
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select greenhills for Compiler, in the user
interface of the Polyspace desktop products, you see only the processors allowed for a Green Hills
compiler. Your choice of target processor determines the size of fundamental data types, the
endianness of the target machine and certain keyword definitions.

If you specify the greenhills compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Tips
• If you encounter errors during a Polyspace analysis, see “Fix Polyspace Compilation Errors

Related to Green Hills Compiler”
• Polyspace supports the embedded configuration for the i386 target. If your x86 Green Hills

compiler is configured for native Windows® development, you can see compilation errors or
incorrect analysis results with Code Prover. Contact Technical Support.

For instance, Green Hills compilers consider a size of 12 bytes for long double for embedded
targets, but 8 bytes for native Windows. Polyspace considers 12 bytes by default.

• If you create a Polyspace project from a build command that uses a Green Hills compiler, the
compiler options -filetype and -os_dir are not implemented in the project. To emulate the -
os_dir option, you can explicitly add the path argument of the option as an include folder to your
Polyspace project.

• If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file.
See options file.

Command-Line Information
Parameter: -compiler greenhills -target

 Green Hills Compiler (-compiler greenhills)

2-31

Value: powerpc | powerpc64 | arm | arm64 | tricore | rh850 | arm | i386 |
x86_64
Default: powerpc
Example (Bug Finder): polyspace-bug-finder -compiler greenhills -target arm
Example (Code Prover): polyspace-code-prover -compiler greenhills -target arm
Example (Bug Finder Server): polyspace-bug-finder-server -compiler greenhills -
target arm
Example (Code Prover Server): polyspace-code-prover-server -compiler greenhills -
target arm

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2017b

2 Analysis Options

2-32

IAR Embedded Workbench Compiler (-compiler
iar-ew)
Specify IAR Embedded Workbench compiler

Description
Specify iar-ew for Compiler (-compiler) if you compile your code using a IAR Embedded
Workbench compiler. By specifying your compiler, you can avoid compilation errors from syntax that
is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select iar-ew for Compiler, in the user interface of
the Polyspace desktop products, you see only the processors allowed for a IAR Embedded Workbench
compiler. Your choice of target processor determines the size of fundamental data types, the
endianness of the target machine and certain keyword definitions.

If you specify the iar-ew compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Tips
• Polyspace does not support the use of $Super$$ and $Sub$$ to patch symbol definitions. For

instance, the following code compiles correctly, but Polyspace considers that main() calls the
extern func ($Super$$func) instead of the function func defined in this code (Sub
$func):
/* void func() declared in another file */
extern void $Super$$func(int i);

int setup = 0;

void setup_func(int i) {
 setup = i;
}

/* this function should be called instead of the original extern func() */
void $Sub$$func(int i) {
 setup_foo(i);
 /* does some extra setup work */
 /* ... */
}

int main() {
 assert(setup = 0);
 func(1); // Should call $Sub$$func instead of $Super$$func

 IAR Embedded Workbench Compiler (-compiler iar-ew)

2-33

 assert(setup = 1);
 return 0;
}

To make sure that Polyspace calls the correct function when analyzing your code, replace all
instance of $Sub$$ with an empty string in all your files after preprocessing. See Command/
script to apply to preprocessed files (-post-preprocessing-command).

• Polyspace does not support some constructs specific to the IAR compiler.

For the list of unsupported constructs, see codeprover_limitations.pdf in polyspaceroot
\polyspace\verifier\code_prover_desktop. Here, polyspaceroot is the MATLAB®

installation folder, for instance, C:\Program Files\Polyspace\R2019a.
• If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file.

See options file.

Command-Line Information
Parameter: -compiler iar-ew -target
Value: arm | avr | msp430 | rh850 | riscv | rl78
Default: arm
Example (Bug Finder): polyspace-bug-finder -compiler iar-ew -target rl78
Example (Code Prover): polyspace-code-prover -compiler iar-ew -target rl78
Example (Bug Finder Server): polyspace-bug-finder-server -compiler iar-ew -target
rl78
Example (Code Prover Server): polyspace-code-prover-server -compiler iar-ew -
target rl78

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2018a

2 Analysis Options

2-34

MPLAB XC8 C Compiler (-compiler microchip)
Specify MPLAB XC8 C compiler

Description
Specify microchip for the Compiler (-compiler) option if you compile your code with a MPLAB
XC8 C compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not
part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select microchip for Compiler, in the user
interface, you see only the processors allowed for a MPLAB XC8 C compiler. Your choice of target
processor determines the size of fundamental data types, the endianness of the target machine, and
certain keyword definitions.

If you specify the microchip compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the target uses, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Tip
• Polyspace does not support the Atmel families of processors, such as AVR, TinyAVR, MegaAVR,

XMEGA, and SAM32.
• Polyspace does not support the CPP/P1 or C18 Microchip front-end. This front-end is activated by

the compiler when you compile your code with the C90 version of the Standard.
• If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file.

See options file.

Command-Line Information
Parameter: -compiler microchip -target
Value: pic
Default: pic
Example (Bug Finder): polyspace-bug-finder -compiler microchip -target pic
Example (Code Prover): polyspace-code-prover -compiler microchip -target pic
Example (Bug Finder Server): polyspace-bug-finder-server -compiler microchip -
target pic
Example (Code Prover Server): polyspace-code-prover-server -compiler microchip -
target pic

 MPLAB XC8 C Compiler (-compiler microchip)

2-35

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2020a

2 Analysis Options

2-36

Renesas Compiler (-compiler renesas)
Specify Renesas compiler

Description
Specify renesas for the Compiler (-compiler) option if you compile your code with a Renesas
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select renesas for Compiler, in the user interface of
the Polyspace desktop products, you see only the processors allowed for a Renesas compiler. Your
choice of target processor determines the size of fundamental data types, the endianness of the
target machine, and certain keyword definitions.

If you specify the renesas compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Command-Line Information
Parameter: -compiler renesas -target
Value: rl78 | rh850 | rx | sh
Default: rl78
Example (Bug Finder): polyspace-bug-finder -compiler renesas -target rx
Example (Code Prover): polyspace-code-prover -compiler renesas -target rx
Example (Bug Finder Server): polyspace-bug-finder-server -compiler renesas -
target rx
Example (Code Prover Server): polyspace-code-prover-server -compiler renesas -
target rx

Tips
If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

See Also
Compiler (-compiler) | Target processor type (-target)

 Renesas Compiler (-compiler renesas)

2-37

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2018b

2 Analysis Options

2-38

TASKING Compiler (-compiler tasking)
Specify the Altium TASKING compiler

Description
Specify tasking for Compiler (-compiler) if you compile your code using the Altium® TASKING
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select tasking for Compiler, in the user interface of
the Polyspace desktop products, you see only the processors allowed for the TASKING compiler. Your
choice of target processor determines the size of fundamental data types, the endianness of the
target machine and certain keyword definitions.

If you specify the tasking compiler, you must specify the path to your compiler header files. See
“Provide Standard Library Headers for Polyspace Analysis”.

The software supports different versions of the TASKING compiler, depending on the target:

• TriCore: 6.x and older versions
• C166: 4.x and older versions
• ARM: 5.x and older versions
• RH850: 2.x and older versions

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Tips
• Polyspace does not support some constructs specific to the TASKING compiler.

For the list of unsupported constructs, see codeprover_limitations.pdf in polyspaceroot
\polyspace\verifier\code_prover_desktop. Here, polyspaceroot is the Polyspace
installation folder, for instance, C:\Program Files\Polyspace\R2019a.

• The CPU used is TC1793. If you use a different CPU, set the following analysis options in your
project:

• Disabled preprocessor definitions (-U): Undefine the macro __CPU_TC1793B__.
• Preprocessor definitions (-D): Define the macro __CPU__. Enter __CPU__=xxx,

where xxx is the name of your CPU.

 TASKING Compiler (-compiler tasking)

2-39

Additionally, define the equivalent of the macro __CPU_TC1793B__ for your CPU. For instance,
enter __CPU_TC1793A__.

Instead of manually specifying your compiler, if you trace your build command (makefile),
Polyspace can detect your CPU and add the required definitions in your project.

• For some errors related to TASKING compiler-specific constructs, see solutions in “Fix Polyspace
Compilation Errors Related to TASKING Compiler”.

• If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file.
See options file.

Command-Line Information
Parameter: -compiler tasking -target
Value: tricore | c166 | rh850 | arm
Default: tricore
Example (Bug Finder): polyspace-bug-finder -compiler tasking -target tricore
Example (Code Prover): polyspace-code-prover -compiler tasking -target tricore
Example (Bug Finder Server): polyspace-bug-finder-server -compiler tasking -
target tricore
Example (Code Prover Server): polyspace-code-prover-server -compiler tasking -
target tricore

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Introduced in R2017a

2 Analysis Options

2-40

Texas Instruments Compiler (-compiler ti)
Specify Texas Instruments compiler

Description
Specify ti for Compiler (-compiler) if you compile your code using a Texas Instruments
compiler. By specifying your compiler, you can avoid compilation errors from syntax that is not part of
the Standard but comes from language extensions.

Then, specify your target processor type. If you select ti for Compiler, in the user interface of the
Polyspace desktop products, you see only the processors allowed for a Texas Instruments compiler.
Your choice of target processor determines the size of fundamental data types, the endianness of the
target machine and certain keyword definitions.

If you specify the ti compiler, you must specify the path to your compiler header files. See “Provide
Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the online
documentation.

Your compiler specification also determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

• To override the macro definition, use the option Preprocessor definitions (-D).
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Tips
Polyspace does not support some constructs specific to the Texas Instruments compiler.

For the list of unsupported constructs, see codeprover_limitations.pdf in polyspaceroot
\polyspace\verifier\code_prover_desktop. Here, polyspaceroot is the Polyspace
installation folder, for instance, C:\Program Files\Polyspace\R2019a.

If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

Command-Line Information
Parameter: -compiler ti -target
Value: c28x | c6000 | arm | msp430
Default: c28x
Example (Bug Finder): polyspace-bug-finder -compiler ti -target msp430
Example (Code Prover): polyspace-code-prover -compiler ti -target msp430
Example (Bug Finder Server): polyspace-bug-finder-server -compiler ti -target
msp430

 Texas Instruments Compiler (-compiler ti)

2-41

Example (Code Prover Server): polyspace-code-prover-server -compiler ti -target
msp430

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”
“Fix Polyspace Compilation Errors Related to Texas Instruments Compilers”

Introduced in R2018a

2 Analysis Options

2-42

Generic target options
Specify size of data types and endianness by creating your own target processor

Description
If a target processor is not directly supported by Polyspace, you can create your own target. You
specify the target mcpu representing a generic "Micro Controller/Processor Unit" and then explicitly
specify sizes of fundamental data types, endianness and other characteristics.

Settings
In the user interface of the Polyspace desktop products, the Generic target options dialog box
opens when you set the Target processor type to mcpu. The Target processor type option is
available on the Target & Compiler node in the Configuration pane.

Use the dialog box to specify the name of a new mcpu target, for example My_target. That new
target is added to the Target processor type option list.

Default characteristics of a new target: listed as type [size]

• char [8]
• short [16]
• int [16]
• long [32]

 Generic target options

2-43

• long long [32]
• float [32]
• double [32]
• long double [32]
• pointer [16]
• alignment [32]
• char is signed
• endianness is little-endian

Dependency
A custom target can only be created when Target processor type (-target) is set to mcpu.

A custom target is not available when Compiler (-compiler) is set to one of the visual* options.

Command-Line Options
When using the command line, use -target mcpu along with these target specification options.

Option Description Available
With

Example

-little-endian Little-endian
architectures are Less
Significant byte First
(LSF). For example:
i386.

Specifies that the less
significant byte of a
short integer (e.g.
0x00FF) is stored at
the first byte (0xFF)
and the most
significant byte (0x00)
at the second byte.

mcpu polyspace-bug-finder -target
mcpu -little-endian

2 Analysis Options

2-44

Option Description Available
With

Example

-big-endian Big-endian
architectures are Most
Significant byte First
(MSF). For example:
SPARC, m68k.

Specifies that the most
significant byte of a
short integer (e.g.
0x00FF) is stored at
the first byte (0x00)
and the less significant
byte (0xFF) at the
second byte.

mcpu polyspace-bug-finder -target
mcpu -big-endian

-default-sign-of-char
[signed | unsigned]

Specify default sign of
char.

signed: Specifies that
char is signed,
overriding target’s
default.

unsigned: Specifies
that char is unsigned,
overriding target’s
default.

All targets polyspace-bug-finder -
default-sign-of-char unsigned
-target mcpu

-char-is-16bits char defined as 16 bits
and all objects have a
minimum alignment of
16 bits

Incompatible with -
short-is-8bits and
-align 8

mcpu polyspace-bug-finder -target
mcpu -char-is-16bits

-short-is-8bits Define short as 8 bits,
regardless of sign

mcpu polyspace-bug-finder -target
mcpu -short-is-8bits

-int-is-32bits Define int as 32 bits,
regardless of sign.
Alignment is also set to
32 bits.

mcpu, hc08,
hc12, mpc5xx

polyspace-bug-finder -target
mcpu -int-is-32bits

-long-is-32bits Define long as 32 bits,
regardless of sign.
Alignment is also set to
32 bits.

If your project sets int
to 64 bits, you cannot
use this option.

All targets polyspace-bug-finder -target
mcpu -long-is-32bits

 Generic target options

2-45

Option Description Available
With

Example

-long-long-is-64bits Define long long as
64 bits, regardless of
sign. Alignment is also
set to 64 bits.

mcpu polyspace-bug-finder -target
mcpu -long-long-is-64bits

-double-is-64bits Define double and
long double as 64
bits, regardless of sign.

mcpu,
sharc21x61,
hc08, hc12,
mpc5xx

polyspace-bug-finder -target
mcpu -double-is-64bits

-pointer-is-24bits Define pointer as 24
bits, regardless of sign.

c18 polyspace-bug-finder -target
c18 -pointer-is-24bits

-pointer-is-32bits Define pointer as 32
bits, regardless of sign.

mcpu polyspace-bug-finder -target
mcpu -pointer-is-32bits

-align [64|32|16|8] Specifies the largest
alignment of struct or
array objects to the 64,
32, 16, or 8 bit
boundaries.

Consequently, the array
or struct storage is
strictly determined by
the size of the
individual data objects
without member and
end padding.

All targets polyspace-bug-finder -target
mcpu -align 16

See also:

• Management of wchar_t (-wchar-t-type-is)
• Management of size_t (-size-t-type-is)
• Enum type definition (-enum-type-definition)

You can also use the option -custom-target to specify sizes in bytes of fundamental data types,
signedness of plain char, alignment of structures and underlying types of standard typedef-s such
as size_t, wchar_t and ptrdiff_t.

Examples
GCC Toolchains

If you use any of these GCC toolchains for your software development, you can setup your Polyspace
analysis so that your code will compile with Polyspace:

• ARM Ltd's GNU Arm Embedded Toolchain
• HighTec EDV-Systeme
• Linaro® GNU cross-toolchain
• MENTOR® Embedded Sourcery CodeBench

2 Analysis Options

2-46

• QNX® Software Development Platform
• Rowley Associates' CrossWorks
• STMicroelectronics® TrueSTUDIO® for STM32
• Texas Instruments Code Composer Studio™
• Wind River GNU Compiler

Use polyspace-configure to trace your build system and extract information about your compiler
configuration. The command creates a Polyspace project. To generate an options file that you then
pass to Polyspace at the command line, run polyspace-configure with -output-options-file.

Alternatively, if you prefer to set the details of your compiler configuration manually:

• Select the gnu#.x compiler that corresponds to your compiler version for Compiler (-
compiler).

• Specify your target by using the “Command-Line Options” on page 2-44. For an example of targets
you can specify, see “Targets for GCC Based Compilers” on page 2-47.

• Specify your compiler macro definitions with Preprocessor definitions (-D).

Targets for GCC Based Compilers

If you select one of the gnu#.x compilers for Compiler (-compiler), you can specify one of the
supported target processor types. See Target processor type (-target). If a target processor
type is not directly listed as supported, you can create the target by using this option.

For instance, you can create these targets:

• Tricore: Use these options:

-target mcpu
-int-is-32bits
-long-long-is-64bits
-double-is-64bits
-pointer-is-32bits
-enum-type-definition auto-signed-first
-wchar-t-type-is signed-int

• PowerPC: Use these options:

-target mcpu
-int-is-32bits
-long-long-is-64bits
-double-is-64bits
-pointer-is-32bits
-wchar-t-type-is signed-int

• ARM: Use these options:

-target mcpu
-int-is-32bits
-long-long-is-64bits
-double-is-64bits
-pointer-is-32bits
-enum-type-definition auto-signed-first
-wchar-t-type-is unsigned-int

• MSP430: Use these options:

 Generic target options

2-47

-target mcpu
-long-long-is-64bits
-double-is-64bits
-wchar-t-type-is signed-long
-align 16

Emulate Microchip MPLAB XC16 and XC32 Compilers

If you build your source code using Microchip MPLAB XC16 or XC32 compilers, you can set up your
Polyspace analysis so that your code will compile with Polyspace. Enter these options at the command
line or specify them in the Configuration pane of the Polyspace desktop user interface.

Compile
r

Target
Processor
Families

Options

MPLAB
XC16

PIC24

dsPIC

-compiler gnu4.6
-D__XC__
-D__XC16__
-target=mcpu
-wchar-t-type-is unsigned-int
-align 16
-long-long-is-64bits

MPLAB
XC32

PIC32 -compiler gnu4.8
-custom-target true,8,2,4,-1,4,8,4,4,8,4,8,1,
 big,unsigned_long,long,int
-D__PIC32M
-D__PIC32MX
-D__PIC32MX__
-D__XC32
-D__XC32__
-D__XC
-D__XC__
-D__mips=32
-D__mips__
-D_mips

The set of macros specified with the option Preprocessor definitions (-D) is a minimal set.
Specify additional macros as needed to ensure your code compiles with Polyspace.

Tips
If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

See Also
Target processor type (-target)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

2 Analysis Options

2-48

Sfr type support (-sfr-types)
Specify sizes of sfr types for code developed with Keil or IAR compilers

Description
Specify sizes of sfr types (types that define special function registers).

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node. See “Dependency” on page 2-49 for other options you must also enable.

Command line and options file: Use the option -sfr-types. See “Command-Line Information” on
page 2-49.

Why Use This Option

Use this option if you have statements such as sfr addr = 0x80; in your code. sfr types are not
standard C types. Therefore, you must specify their sizes explicitly for the Polyspace analysis.

Settings
No Default

List each sfr name and its size in bits.

Dependency
This option is available only when Compiler (-compiler) is set to keil or iar.

Command-Line Information
Syntax: -sfr-types sfr_name=size_in_bits,...
No Default
Name Value: an sfr name such as sfr16.
Size Value: 8 | 16 | 32
Example (Bug Finder): polyspace-bug-finder -lang c -compiler iar -sfr-types
sfr=8,sfr16=16 ...
Example (Code Prover): polyspace-code-prover -lang c -compiler iar -sfr-types
sfr=8,sfr16=16 ...
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -compiler iar -
sfr-types sfr=8,sfr16=16 ...
Example (Code Prover Server): polyspace-code-prover-server -lang c -compiler iar
-sfr-types sfr=8,sfr16=16 ...

See Also
Topics
“Specify Polyspace Analysis Options”

 Sfr type support (-sfr-types)

2-49

“Specify Target Environment and Compiler Behavior”
“Supported Keil or IAR Language Extensions”

2 Analysis Options

2-50

Division round down (-div-round-down)
Round down quotients from division or modulus of negative numbers instead of rounding up

Description
Specify whether quotients from division and modulus of negative numbers are rounded up or down.

Note a = (a / b) * b + a % b is always true.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line and options file: Use the option -div-round-down. See “Command-Line
Information” on page 2-52.

Why Use This Option

Use this option to emulate your compiler.

The option is relevant only for compilers following C90 standard (ISO/IEC 9899:1990). The standard
stipulates that "if either operand of / or % is negative, whether the result of the / operator, is the
largest integer less or equal than the algebraic quotient or the smallest integer greater or equal than
the quotient, is implementation defined, same for the sign of the % operator". The standard allows
compilers to choose their own implementation.

For compilers following the C99 standard ((ISO/IEC 9899:1999), this option is not required. The
standard enforces division with rounding towards zero (section 6.5.5).

Settings
 On

If either operand / or % is negative, the result of the / operator is the largest integer less than or
equal to the algebraic quotient. The result of the % operator is deduced from a % b = a - (a /
b) * b.

Example: assert(-5/3 == -2 && -5%3 == 1); is true.

 Off (default)
If either operand of / or % is negative, the result of the / operator is the smallest integer greater
than or equal to the algebraic quotient. The result of the % operator is deduced from a % b = a
- (a / b) * b.

This behavior is also known as rounding towards zero.

Example: assert(-5/3 == -1 && -5%3 == -2); is true.

 Division round down (-div-round-down)

2-51

Command-Line Information
Parameter: -div-round-down
Default: Off
Example (Bug Finder): polyspace-bug-finder -div-round-down
Example (Code Prover): polyspace-code-prover -div-round-down
Example (Bug Finder Server): polyspace-bug-finder-server -div-round-down
Example (Code Prover Server): polyspace-code-prover-server -div-round-down

See Also
Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

2 Analysis Options

2-52

Enum type definition (-enum-type-definition)
Specify how to represent an enum with a base type

Description
Allow the analysis to use different base types to represent an enumerated type, depending on the
enumerator values and the selected definition. When using this option, each enum type is represented
by the smallest integral type that can hold its enumeration values.

This option is available on the Target & Compiler node in the Configuration pane.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line and options file: Use the option -enum-type-definition. See “Command-Line
Information” on page 2-54.

Why Use This Option

Your compiler represents enum variables as constants of a base integer type. Use this option so that
you can emulate your compiler.

To check your compiler settings:

1 Compile this code using the compiler settings that you typically use:

enum { MAXSIGNEDBYTE=127 } mysmallenum_t;

int dummy[(int)sizeof(mysmallenum_t) - (int)sizeof(int)];

If compilation fails, you have to use one of auto-signed-first or auto-unsigned-first.
2 Compile this code using the compiler settings that you typically use:

#include <limits.h>

enum { MYINTMAX = INT_MAX } myintenum_t;

int dummy[(MYINTMAX + 1) < 0 ? -1:1];

If compilation fails, use auto-signed-first for this option, otherwise use auto-unsigned-
first.

Settings
Default: defined-by-compiler

defined-by-compiler
Uses the signed integer type for all compilers except gnu, clang and tasking.

 Enum type definition (-enum-type-definition)

2-53

For the gnu and clang compilers, it uses the first type that can hold all of the enumerator values
from this list: unsigned int, signed int, unsigned long, signed long, unsigned long
long and signed long long.

For the tasking compiler, it uses the first type that can hold all of the enumerator values from this
list: char, unsigned char, short, unsigned short, int, and unsigned int.

auto-signed-first
Uses the first type that can hold all of the enumerator values from this list: signed char,
unsigned char, signed short, unsigned short, signed int, unsigned int, signed
long, unsigned long, signed long long, and unsigned long long.

auto-unsigned-first
Uses the first type that can hold all of the enumerator values from these lists:

• If enumerator values are positive: unsigned char, unsigned short, unsigned int,
unsigned long, and unsigned long long.

• If one or more enumerator values are negative: signed char, signed short, signed int,
signed long, and signed long long.

Command-Line Information
Parameter: -enum-type-definition
Value: defined-by-compiler | auto-signed-first | auto-unsigned-first
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -enum-type-definition auto-signed-
first
Example (Code Prover): polyspace-code-prover -enum-type-definition auto-signed-
first
Example (Bug Finder Server): polyspace-bug-finder-server -enum-type-definition
auto-signed-first
Example (Code Prover Server): polyspace-code-prover-server -enum-type-definition
auto-signed-first

See Also
Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

2 Analysis Options

2-54

Signed right shift (-logical-signed-right-
shift)
Specify how to treat the sign bit for logical right shifts on signed variables

Description
Choose between arithmetic and logical shift for right shift operations on negative values.

This option does not modify compile-time expressions. For more details, see “Limitation” on page 2-
55.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line and options file: Use the option -logical-signed-right-shift. See
“Command-Line Information” on page 2-56.

Why Use This Option

The C99 Standard (sec 6.5.7) states that for a right-shift operation x1>>x2, if x1 is signed and has
negative values, the behavior is implementation-defined. Different compilers choose between
arithmetic and logical shift. Use this option to emulate your compiler.

Settings
Default: Arithmetical

Arithmetical
The sign bit remains:

(-4) >> 1 = -2
(-7) >> 1 = -4
 7 >> 1 = 3

Logical
0 replaces the sign bit:

(-4) >> 1 = (-4U) >> 1 = 2147483646
(-7) >> 1 = (-7U) >> 1 = 2147483644
 7 >> 1 = 3

Limitation
In compile-time expressions, this Polyspace option does not change the standard behavior for right
shifts.

For example, consider this right shift expression:

 Signed right shift (-logical-signed-right-shift)

2-55

int arr[((-4) >> 20)];

The compiler computes array sizes, so the expression (-4) >> 20 is evaluated at compilation time.
Logically, this expression is equivalent to 4095. However, arithmetically, the result is -1. This
statement causes a compilation error (arrays cannot have negative size) because the standard right-
shift behavior for signed integers is arithmetic.

Command-Line Information
When using the command line, arithmetic is the default computation mode. When this option is set,
logical computation is performed.
Parameter: -logical-signed-right-shift
Default: Arithmetic signed right shifts
Example (Bug Finder): polyspace-bug-finder -logical-signed-right-shift
Example (Code Prover): polyspace-code-prover -logical-signed-right-shift
Example (Bug Finder Server): polyspace-bug-finder-server -logical-signed-right-
shift
Example (Code Prover Server): polyspace-code-prover-server -logical-signed-right-
shift

See Also
Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

2 Analysis Options

2-56

Block char16/32_t types (-no-uliterals)
Disable Polyspace definitions for char16_t or char32_t

Description
Specify that the analysis must not define char16_t or char32_t types.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node. See “Dependencies” on page 2-57 for other options you must also enable.

Command line and options file: Use the option -no-uliterals. See “Command-Line
Information” on page 2-57.

Why Use This Option

If your compiler defines char16_t and/or char32_t through a typedef statement or by using
includes, use this option to turn off the standard Polyspace definition of char16_t and char32_t.

To check if your compiler defines these types, compile this code using the compiler settings that you
typically use:

typedef unsigned short char16_t;
typedef unsigned long char32_t;

If the file compiles, it means that your compiler has already defined char16_t and char32_t.
Enable this Polyspace option.

Settings
 On

The analysis does not allow char16_t and char32_t types.
 Off (default)

The analysis allows char16_t and char32_t types.

Dependencies
You can select this option only when these conditions are true:

• Source code language (-lang) is set to CPP or C-CPP.
• Compiler (-compiler) is set to generic or a gnu version.

Command-Line Information
Parameter: -no-uliterals
Default: off
Example (Bug Finder): polyspace-bug-finder -lang cpp -compiler gnu4.7 -cpp-
version cpp11 -no-uliterals

 Block char16/32_t types (-no-uliterals)

2-57

Example (Code Prover): polyspace-code-prover -compiler gnu4.7 -lang cpp -cpp-
version cpp11 -no-uliterals
Example (Bug Finder Server): polyspace-bug-finder-server -lang cpp -compiler
gnu4.7 -cpp-version cpp11 -no-uliterals
Example (Code Prover Server): polyspace-code-prover-server -compiler gnu4.7 -lang
cpp -cpp-version cpp11 -no-uliterals

See Also
Compiler (-compiler)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

2 Analysis Options

2-58

Pack alignment value (-pack-alignment-value)
Specify default structure packing alignment for code developed in Visual C++

Description
Specify the default packing alignment (in bytes) for structures, unions, and class members.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line and options file: Use the option -pack-alignment-value. See “Command-Line
Information” on page 2-59.

Why Use This Option

If you use compiler options to specify how members of a structure are packed into memory, use this
option to emulate your compiler.

For instance, if you use the Visual Studio option /Zp to specify an alignment, use this option for your
Polyspace analysis.

If you use #pragma pack directives in your code to specify alignment, and also specify this option
for analysis, the #pragma pack directives take precedence.

Settings
Default: 8

You can enter one of these values:

• 1
• 2
• 4
• 8
• 16

Command-Line Information
Parameter: -pack-alignment-value
Value: 1 | 2 | 4 | 8 | 16
Default: 8
Example (Bug Finder): polyspace-bug-finder -compiler visual10 -pack-alignment-
value 4
Example (Code Prover): polyspace-code-prover -compiler visual10 -pack-alignment-
value 4
Example (Bug Finder Server): polyspace-bug-finder-server -compiler visual10 -
pack-alignment-value 4

 Pack alignment value (-pack-alignment-value)

2-59

https://msdn.microsoft.com/en-us/library/xh3e3fd0.aspx

Example (Code Prover Server): polyspace-code-prover-server -compiler visual10 -
pack-alignment-value 4

See Also
Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”
“Assumptions About #pragma Directives” (Polyspace Code Prover)

2 Analysis Options

2-60

Ignore pragma pack directives (-ignore-pragma-
pack)
Ignore #pragma pack directives

Description
Specify that the analysis must ignore #pragma pack directives in the code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line and options file: Use the option -ignore-pragma-pack. See “Command-Line
Information” on page 2-61.

Why Use This Option

Use this option if #pragma pack directives in your code cause linking errors.

For instance, you have two structures with the same name in your code, but one declaration follows a
#pragma pack(2) statement. Because the default alignment is 8 bytes, the different packing for the
two structures causes a linking error. Use this option to avoid such errors.

Settings
 On

The analysis ignores the #pragma directives.

 Off (default)
The analysis takes into account specifications in the #pragma directives.

Command-Line Information
Parameter: -ignore-pragma-pack
Default: Off
Example (Bug Finder): polyspace-bug-finder -ignore-pragma-pack
Example (Code Prover): polyspace-code-prover -ignore-pragma-pack
Example (Bug Finder Server): polyspace-bug-finder-server -ignore-pragma-pack
Example (Code Prover Server): polyspace-code-prover-server -ignore-pragma-pack

See Also
Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”
“Assumptions About #pragma Directives” (Polyspace Code Prover)

 Ignore pragma pack directives (-ignore-pragma-pack)

2-61

Management of size_t (-size-t-type-is)
Specify the underlying data type of size_t

Description
Specify the underlying data type of size_t explicitly: unsigned char, unsigned short,
unsigned int, unsigned long or unsigned long long. If you do not specify this option, your
choice of compiler determines the underlying type.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line and options file: Use the option -size-t-type-is. See “Command-Line
Information” on page 2-63.

Why Use This Option

The analysis associates a data type with size_t when you specify your compiler using the option
Compiler (-compiler). In most cases, you do not have to explicitly use this option and specify an
underlying type for size_t.

In some situations, when building your code, you might be using a compiler option that changed the
compiler's default definition of size_t. In these cases, emulate your compiler option by using this
Polyspace analysis option. Otherwise, you might see an error message related to size_t during
Polyspace analysis. If you see such an error message, to probe further and determine the underlying
type of size_t, compile this code with your compiler using the options that you typically use:

/* Header defines malloc as void* malloc (size_t size)
#include <stlib.h>

void* malloc (unsigned int size);

If the file does not compile, your compiler (along with compiler options) defines size_t using a type
different from unsigned int. Replace unsigned int with another type such as unsigned long
and try again till you determine the underlying type of size_t.

Settings
Default: defined-by-compiler

defined-by-compiler
Your specification for Compiler (-compiler) determines the underlying type of size_t.

unsigned-int
The analysis considers unsigned int as the underlying type of size_t.

unsigned-long
The analysis considers unsigned long as the underlying type of size_t.

2 Analysis Options

2-62

unsigned-long-long
The analysis considers unsigned long long as the underlying type of size_t.

unsigned-char
The analysis considers unsigned char as the underlying type of size_t.

unsigned-short
The analysis considers unsigned short as the underlying type of size_t.

Tips
Compilation errors from incorrect definition of size_t can appear in unexpected ways. For instance,
you might see an error like this:

first parameter of allocation function must be of type "size_t"

on a declaration of an allocation function such as:

void * operator new(size_t size);

This error appears because Polyspace internally declares the allocation function with the size_t
definition from your Polyspace analysis configuration, but your declaration might be using a different
size_t definition from a compiler header. The mismatch in the size_t definitions leads to a
mismatch in the declarations of the allocation functions and shows up as an error message about the
allocation functions.

Command-Line Information
Parameter: -size-t-type-is
Value: defined-by-compiler | unsigned-char | unsigned-int | unsigned-short |
unsigned-long | unsigned-long-long
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -size-t-type-is unsigned-long
Example (Code Prover): polyspace-code-prover -size-t-type-is unsigned-long
Example (Bug Finder Server): polyspace-bug-finder-server -size-t-type-is
unsigned-long
Example (Code Prover Server): polyspace-code-prover-server -size-t-type-is
unsigned-long

See Also
-custom-target

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

 Management of size_t (-size-t-type-is)

2-63

Management of wchar_t (-wchar-t-type-is)
Specify the underlying data type of wchar_t

Description
Specify the underlying data type of wchar_t explicitly. If you do not specify this option, your choice
of compiler determines the underlying type.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Target &
Compiler node.

Command line and options file: Use the option -wchar-t-type-is. See “Command-Line
Information” on page 2-64.

Why Use This Option

The analysis associates a data type with wchar_t when you specify your compiler. If you use a
compiler option that changes this default type, emulate your compiler option by using this analysis
option.

Settings
Default: defined-by-compiler

defined-by-compiler
Your specification for Compiler (-compiler) determines the underlying type of wchar_t.

signed-short
The analysis considers signed short as the underlying type of wchar_t.

unsigned-short
The analysis considers unsigned short as the underlying type of wchar_t.

signed-int
The analysis considers signed int as the underlying type of wchar_t.

unsigned-int
The analysis considers unsigned int as the underlying type of wchar_t.

signed-long
The analysis considers signed long as the underlying type of wchar_t.

unsigned-long
The analysis considers unsigned long as the underlying type of wchar_t.

Command-Line Information
Parameter: -wchar-t-type-is

2 Analysis Options

2-64

Value: defined-by-compiler | signed-short | unsigned-short | signed-int |
unsigned-int | signed-long | unsigned-long
Default: defined-by-compiler
Example (Bug Finder): polyspace-bug-finder -wchar-t-type-is signed-int
Example (Code Prover): polyspace-code-prover -wchar-t-type-is signed-int
Example (Bug Finder Server): polyspace-bug-finder-server -wchar-t-type-is signed-
int
Example (Code Prover Server): polyspace-code-prover-server -wchar-t-type-is
signed-int

See Also
Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

 Management of wchar_t (-wchar-t-type-is)

2-65

Ignore link errors (-no-extern-c)
Ignore certain linking errors

Description
Specify that the analysis must ignore certain linking errors.

Set Option

User interface (desktop products only): In your project configuration, the option is on the
Environment Settings node. See “Dependency” on page 2-66 for other options that you must also
enable.

Command line and options file: Use the option -no-extern-C. See “Command-Line Information”
on page 2-66.

Why Use This Option

Some functions may be declared inside an extern "C" { } block in some files and not in others.
Then, their linkage is not the same and it causes a link error according to the ANSI standard.

Applying this option will cause Polyspace to ignore this error. This permissive option may not resolve
all the extern C linkage errors.

Settings
 On

Ignore linking errors if possible.

 Off (default)
Stop analysis for linkage errors.

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-CPP.

Command-Line Information
Parameter: -no-extern-C
Default: off
Example (Bug Finder): polyspace-bug-finder -lang cpp -no-extern-C
Example (Code Prover): polyspace-code-prover -lang cpp -no-extern-C
Example (Bug Finder Server): polyspace-bug-finder-server -lang cpp -no-extern-C
Example (Code Prover Server): polyspace-code-prover-server -lang cpp -no-extern-C

2 Analysis Options

2-66

See Also
Topics
“Specify Polyspace Analysis Options”

 Ignore link errors (-no-extern-c)

2-67

Preprocessor definitions (-D)
Replace macros in preprocessed code

Description
Replace macros with their definitions in preprocessed code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Macros
node.

Command line and options file: Use the option -D. See “Command-Line Information” on page 2-
69.

Why Use This Option

Use this option to emulate your compiler behavior. For instance, if your compiler considers a macro
_WIN32 as defined when you build your code, it executes code in a #ifdef _WIN32 statement. If
Polyspace does not consider that macro as defined, you must use this option to replace the macro
with 1.

Depending on your settings for Compiler (-compiler), some macros are defined by default. Use
this option to define macros that are not implicitly defined.

Typically, you recognize from compilation errors that a certain macro is not defined. For instance, the
following code does not compile if the macro _WIN32 is not defined.

#ifdef _WIN32
 int env_var;
#endif

void set() {
 env_var=1;
}

The error message states that env_var is undefined. However, the definition of env_var is in the
#ifdef _WIN32 statement. The underlying cause for the error is that the macro _WIN32 is not
defined. You must define _WIN32.

Settings
No Default

Using the button, add a row for the macro you want to define. The definition must be in the
format Macro=Value. If you want Polyspace to ignore the macro, leave the Value blank.

For example:

• name1=name2 replaces all instances of name1 by name2.

2 Analysis Options

2-68

• name= instructs the software to ignore name.
• name with no equals sign or value replaces all instances of name by 1. To define a macro to

execute code in a #ifdef macro_name statement, use this syntax.

Tips
• If Polyspace does not support a non-ANSI keyword and shows a compilation error, use this option

to replace all occurrences of the keyword with a blank string in preprocessed code. The
replacement occurs only for the purposes of the analysis. Your original source code remains intact.

For instance, if your compiler supports the __far keyword, to avoid compilation errors:

• In the user interface (desktop products only), enter __far=.
• On the command line, use the flag -D __far=.

The software replaces the __far keyword with a blank string during preprocessing. For example:

int __far* pValue;

is converted to:

int * pValue;

• Polyspace recognizes keywords such as restrict and does not allow their use as identifiers. If
you use those keywords as identifiers (because your compiler does not recognize them as
keywords), replace the disallowed name with another name using this option. The replacement
occurs only for the purposes of the analysis. Your original source code remains intact.

For instance, to allow use of restrict as identifier:

• In the user interface, enter restrict=my_restrict.
• On the command line, use the flag -D restrict=my_restrict.

• Your compiler specification determines the values of many compiler-specific macros. In case you
want to know how Polyspace defines a specific macro, use the option -dump-preprocessing-
info.

• To override the macro definition coming from a compiler specification, use this option.
• To undefine a macro, use the option Disabled preprocessor definitions (-U).

Command-Line Information
You can specify only one flag with each -D option. However, you can specify the option multiple times.
Parameter: -D
No Default
Value: flag=value
Example (Bug Finder): polyspace-bug-finder -D HAVE_MYLIB -D int32_t=int
Example (Code Prover): polyspace-code-prover -D HAVE_MYLIB -D int32_t=int
Example (Bug Finder Server): polyspace-bug-finder-server -D HAVE_MYLIB -D
int32_t=int
Example (Code Prover Server): polyspace-code-prover-server -D HAVE_MYLIB -D
int32_t=int

 Preprocessor definitions (-D)

2-69

See Also
Disabled preprocessor definitions (-U)

Topics
“Specify Polyspace Analysis Options”

2 Analysis Options

2-70

Disabled preprocessor definitions (-U)
Undefine macros in preprocessed code

Description
Undefine macros in preprocessed code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Macros
node.

Command line and options file: Use the option -U. See “Command-Line Information” on page 2-
72.

Why Use This Option

Use this option to emulate your compiler behavior. For instance, if your compiler considers a macro
_WIN32 as undefined when you build your code, it executes code in a #ifndef _WIN32 statement. If
Polyspace considers that macro as defined, you must explicitly undefine the macro.

Some settings for Compiler (-compiler) enable certain macros by default. This option allows you
undefine the macros.

Typically, you recognize from compilation errors that a certain macro must be undefined. For
instance, the following code does not compile if the macro _WIN32 is defined.

#ifndef _WIN32
 int env_var;
#endif

void set() {
 env_var=1;
}

The error message states that env_var is undefined. However, the definition of env_var is in the
#ifndef _WIN32 statement. The underlying cause for the error is that the macro _WIN32 is defined.
You must undefine _WIN32.

Settings
No Default

Using the button, add a new row for each macro being undefined.

Tips
Your compiler specification determines the values of many compiler-specific macros. In case you want
to know how Polyspace defines a specific macro, use the option -dump-preprocessing-info.

 Disabled preprocessor definitions (-U)

2-71

• To override a macro definition coming from a compiler specification, use the option
Preprocessor definitions (-D).

• To undefine the macro, use this option.

Command-Line Information
You can specify only one flag with each -U option. However, you can specify the option multiple times.
Parameter: -U
No Default
Value: macro
Example (Bug Finder): polyspace-bug-finder -U HAVE_MYLIB -U USE_COM1
Example (Code Prover): polyspace-code-prover -U HAVE_MYLIB -U USE_COM1
Example (Bug Finder Server): polyspace-bug-finder-server -U HAVE_MYLIB -U
USE_COM1
Example (Code Prover Server): polyspace-code-prover-server -U HAVE_MYLIB -U
USE_COM1

See Also
Preprocessor definitions (-D)

Topics
“Specify Polyspace Analysis Options”

2 Analysis Options

2-72

Source code encoding (-sources-encoding)
Specify the encoding of source files

Description
Specify the encoding of the source files that you analyze with Polyspace.

Use this option only if you see compilation errors or display issues from non-ASCII characters in your
source files. The option forces an internal conversion of your source files from the specified encoding
to an UTF-8 encoding and might help resolve the issue.

Set Option

User interface (desktop products only): In your project configuration, the option is on the
Environment Settings node.

Command line and options file: Use the option -sources-encoding. See “Command-Line
Information” on page 2-74.

Why Use This Option

The analysis uses the default encoding of your operating system as the source code encoding. In most
cases, if your source code contains non-ASCII characters, for instance, Japanese or Korean
characters, the Polyspace analysis can interpret the characters and later display the source code
correctly.

If you still have compilation errors or display issues from non-ASCII characters, you might be using
an encoding that is different from the default encoding. You can then specify your source code
encoding explicitly using this option.

Settings
Default: system

system
The analysis uses the default encoding of the operating system.

shift-jis
The analysis uses the Shift JIS (Shift Japanese Industrial Standards) encoding, a character
encoding for the Japanese language.

iso-8859-1
The analysis uses the ISO/IEC 8859-1:1998 encoding, a character encoding that encodes what it
refers to as "Latin alphabet no.1", consisting of 191 characters from the Latin script.

windows-1252
The analysis uses the Windows-1252 encoding, a single-byte character encoding of the Latin
alphabet, used by default in the legacy components of Windows for English and some other
Western languages.

 Source code encoding (-sources-encoding)

2-73

UTF-8
The analysis uses the UTF-8 encoding, a variable width character encoding capable of encoding
all valid code points in Unicode.

Polyspace supports many more encodings. To specify an encoding that is not in the above list in the
Polyspace user interface, enter -sources-encoding encodingname in the Other field. In
particular, if your source files contain a mix of different encodings, you can use -sources-encoding
auto. In this mode, the analysis uses internal heuristics to determine the encoding of your source
files from their contents.

For the full list of supported encodings, at the command line, enter:

-list-all-values -sources-encoding

with the polyspace-bug-finder, polyspace-code-prover, polyspace-bug-finder-server
or polyspace-code-prover-server command. Pipe the output to a file and search the file for the
encoding that you are using.

Command-Line Information
Parameter: -sources-encoding
Default: system
Value: auto | system | shift-jis | iso-8859-1 | windows-1252 | UTF-8
Example (Bug Finder): polyspace-bug-finder -sources-encoding windows-1252
Example (Code Prover): polyspace-code-prover -sources-encoding windows-1252
Example (Bug Finder Server): polyspace-bug-finder-server -sources-encoding
windows-1252
Example (Code Prover Server): polyspace-code-prover-server -sources-encoding
windows-1252

Polyspace supports many more encodings besides the above list. For the full list of supported
encodings, at the command line, enter:

-list-all-values -sources-encoding

with the polyspace-bug-finder, polyspace-code-prover, polyspace-bug-finder-server
or polyspace-code-prover-server command. Pipe the output to a file and search the file for the
encoding that you are using.

See Also
Topics
“Specify Polyspace Analysis Options”

2 Analysis Options

2-74

Code from DOS or Windows file system (-dos)
Consider that file paths are in MS-DOS style

Description
Specify that DOS or Windows files are provided for analysis.

Set Option

User interface (desktop products only): In your project configuration, the option is on the
Environment Settings node.

Command line and options file: Use the option -dos. See “Command-Line Information” on page 2-
75.

Why Use This Option

Use this option if the contents of the Include or Source folder come from a DOS or Windows file
system. The option helps you resolve case sensitivity and control character issues.

Settings
 On (default)

Analysis understands file names and include paths for Windows/DOS files

For example, with this option,

#include "..\mY_TEst.h"^M

#include "..\mY_other_FILE.H"^M

resolves to:

#include "../my_test.h"

#include "../my_other_file.h"

In this mode, you see an error if your include folder has header files whose names differ only in
case.

 Off
Characters are not controlled for files names or paths.

Command-Line Information
Parameter: -dos
Default: Off
Example (Bug Finder): polyspace-bug-finder -dos -I ./my_copied_include_dir -D
test=1

 Code from DOS or Windows file system (-dos)

2-75

Example (Code Prover): polyspace-code-prover -dos -I ./my_copied_include_dir -D
test=1
Example (Bug Finder Server): polyspace-bug-finder-server -dos -I ./
my_copied_include_dir -D test=1
Example (Code Prover Server): polyspace-code-prover-server -dos -I ./
my_copied_include_dir -D test=1

See Also
Topics
“Specify Polyspace Analysis Options”

2 Analysis Options

2-76

Stop analysis if a file does not compile (-stop-if-
compile-error)
Specify that a compilation error must stop the analysis

Description
Specify that even a single compilation error must stop the analysis.

Set Option

User interface (desktop products only): In the Configuration pane, the option is on the
Environment Settings node.

Command line and options file: Use the option -stop-if-compile-error. See “Command-Line
Information” on page 2-78.

Why Use This Option

Use this option to first resolve all compilation errors and then perform the Polyspace analysis. This
sequence ensures that all files are analyzed.

Otherwise, only files without compilation errors are fully analyzed. The analysis might return some
results for files that do not compile. If a file with compilation errors contains a function definition, the
analysis considers the function undefined. This assumption can sometimes make the analysis less
precise.

The option is more useful for a Code Prover analysis because the Code Prover run-time checks rely
more heavily on range propagation across functions.

Settings
 On

The analysis stops even if a single compilation error occurs.

In the user interface of the Polyspace desktop products, you see the compilation errors on the
Output Summary pane.

For information on how to resolve the errors, see “Troubleshoot Compilation Errors”.

 Stop analysis if a file does not compile (-stop-if-compile-error)

2-77

You can also see the errors in the analysis log, a text file generated during the analysis. The log is
named Polyspace_R20##n_ProjectName_date-time.log and contains lines starting with
Error: indicating compilation errors. To view the log from the analysis results:

• In the user interface of the Polyspace desktop products, select Window > Show/Hide View >
Run Log.

• In the Polyspace Access web interface, open the Review tab. Select Window > Run Log.

Despite compilation errors, you can see some analysis results, for instance, coding rule violations.
 Off (default)

The analysis does not stop because of compilation errors, but only files without compilation errors
are analyzed. The analysis does not consider files that do not compile. If a file with compilation
errors contains a function definition, the analysis considers the function undefined. If the analysis
needs the definition of such a function, it makes broad assumptions about the function.

• The function return value can take any value in the range allowed by its data type.
• The function can modify arguments passed by reference so that they can take any value in the

range allowed by their data types.

If the assumptions are too broad, the analysis can be less precise. For instance, a run-time check
can flag an operation in orange even though it does not fail in practice.

If compilation errors occur, in the user interface of the Polyspace desktop products, the
Dashboard pane has a link, which shows that some files failed to compile. You can click the link
and see the compilation errors on the Output Summary pane.

You can also see the errors in the analysis log, a text file generated during the analysis. The log is
named Polyspace_R20##n_ProjectName_date-time.log and contains lines starting with
Error: indicating compilation errors. To view the log from the analysis results:

• In the user interface of the Polyspace desktop products, select Window > Show/Hide View >
Run Log.

• In the Polyspace Access web interface, open the Review tab. Select Window > Run Log.

Command-Line Information
Parameter:-stop-if-compile-error
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources filename -stop-if-compile-
error
Example (Code Prover): polyspace-code-prover -sources filename -stop-if-compile-
error
Example (Bug Finder Server): polyspace-bug-finder-server -sources filename -stop-
if-compile-error
Example (Code Prover Server): polyspace-code-prover-server -sources filename -
stop-if-compile-error

See Also
File does not compile

Topics
“Specify Polyspace Analysis Options”

2 Analysis Options

2-78

Introduced in R2017a

 Stop analysis if a file does not compile (-stop-if-compile-error)

2-79

Command/script to apply to preprocessed files (-
post-preprocessing-command)
Specify command or script to run on source files after preprocessing phase of analysis

Description
Specify a command or script to run on each source file after preprocessing.

Set Option

User interface (desktop products only): In your project configuration, the option is on the
Environment Settings node.

Command line and options file: Use the option -post-preprocessing-command. See
“Command-Line Information” on page 2-82.

Why Use This Option

You can run scripts on preprocessed files to work around compilation errors or imprecisions of the
analysis while keeping your original source files untouched. For instance, suppose Polyspace does not
recognize a compiler-specific keyword. If you are certain that the keyword is not relevant for the
analysis, you can run a Perl script to remove all instances of the keyword. When you use this option,
the software removes the keyword from your preprocessed code but keeps your original code
untouched.

Use a script only if the existing analysis options do not meet your requirements. For instance:

• For direct replacement of one keyword with another, use the option Preprocessor
definitions (-D).

However, the option does not allow search and replacement involving regular expressions. For
regular expressions, use a script.

• For mapping your library function to a standard library function, use the option -code-
behavior-specifications.

However, the option supports mapping to only a subset of standard library functions. To map to an
unsupported function, use a script.

If you are unsure about removing or replacing an unsupported construct, do not use this option.
Contact MathWorks® Support for guidance.

Settings
No Default

Enter full path to the command or script or click to navigate to the location of the command or
script. This script is executed before verification.

2 Analysis Options

2-80

Tips
• Your script must be designed to process the standard output from preprocessing and produce its

results in accordance with that standard output.
• Your script must preserve the number of lines in the preprocessed file. In other words, it must not

add or remove entire lines to or from the file.

Adding a line or removing one can potentially result in some unpredictable behavior on the
location of checks and macros in the Polyspace user interface.

• For a Perl script, in Windows, specify the full path to the Perl executable followed by the full path
to the script.

For example:

• To specify a Perl command that replaces all instances of the far keyword, enter
polyspaceroot\sys\perl\win32\bin\perl.exe -p -e "s/far//g".

• To specify a Perl script replace_keyword.pl that replaces all instances of a keyword, enter
polyspaceroot\sys\perl\win32\bin\perl.exe absolute_path
\replace_keyword.pl.

Here, polyspaceroot is the location of the current Polyspace installation such as C:\Program
Files\Polyspace\R2019a\ and absolute_path is the location of the Perl script. If the paths
contain spaces, use quotes to enclose the full path names.

• Use this Perl script as template. The script removes all instances of the far keyword.

#!/usr/bin/perl

binmode STDOUT;

Process every line from STDIN until EOF
while ($line = <STDIN>)
{

 # Remove far keyword
 $line =~ s/far//g;

 # Print the current processed line to STDOUT
 print $line;
}

You can use Perl regular expressions to perform substitutions. For instance, you can use the
following expressions.

Expression Meaning
. Matches any single character except newline
[a-z0-9] Matches any single letter in the set a-z, or digit in the set 0-9
[^a-e] Matches any single letter not in the set a-e
\d Matches any single digit
\w Matches any single alphanumeric character or _
x? Matches 0 or 1 occurrence of x

 Command/script to apply to preprocessed files (-post-preprocessing-command)

2-81

Expression Meaning
x* Matches 0 or more occurrences of x
x+ Matches 1 or more occurrences of x

For complete list of regular expressions, see Perl documentation.

Command-Line Information
Parameter: -post-preprocessing-command
Value: Path to executable file or command in quotes
No Default
Example in Linux® (Bug Finder): polyspace-bug-finder -sources file_name -post-
preprocessing-command `pwd`/replace_keyword.pl
Example in Linux (Code Prover): polyspace-code-prover -sources file_name -post-
preprocessing-command `pwd`/replace_keyword.pl
Example in Linux (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -post-preprocessing-command `pwd`/replace_keyword.pl
Example in Linux (Code Prover Server): polyspace-code-prover-server -sources
file_name -post-preprocessing-command `pwd`/replace_keyword.pl
Example in Windows: polyspace-bug-finder -sources file_name -post-
preprocessing-command "C:\Program Files\MATLAB\R2015b\sys\perl\win32\bin
\perl.exe" "C:\My_Scripts\replace_keyword.pl"

Note that in Windows, you use the full path to the Perl executable.

See Also
Command/script to apply after the end of the code verification (-post-
analysis-command) | -regex-replace-rgx -regex-replace-fmt

Topics
“Specify Polyspace Analysis Options”
“Remove or Replace Keywords Before Compilation”

2 Analysis Options

2-82

https://perldoc.perl.org/perlre#Regular-Expressions

Include (-include)
Specify files to be #include-ed by each C file in analysis

Description
Specify files to be #include-ed by each C file involved in the analysis. The software enters the
#include statements in the preprocessed code used for analysis, but does not modify the original
source code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the
Environment Settings node.

Command line and options file: Use the option -include. See “Command-Line Information” on
page 2-83.

Why Use This Option

There can be many reasons why you want to #include a file in all your source files.

For instance, you can collect in one header file all workarounds for compilation errors. Use this
option to provide the header file for analysis. Suppose you have compilation issues because Polyspace
does not recognize certain compiler-specific keywords. To work around the issues, #define the
keywords in a header file and provide the header file with this option.

Settings
No Default

Specify the file name to be included in every file involved in the analysis.

Polyspace still acts on other directives such as #include <include_file.h>.

Command-Line Information
Parameter: -include
Default: None
Value: file (Use -include multiple times for multiple files)
Example (Bug Finder): polyspace-bug-finder -include `pwd`/sources/a_file.h -
include /inc/inc_file.h
Example (Code Prover): polyspace-code-prover -include `pwd`/sources/a_file.h -
include /inc/inc_file.h
Example (Bug Finder Server): polyspace-bug-finder-server -include `pwd`/sources/
a_file.h -include /inc/inc_file.h
Example (Code Prover Server): polyspace-code-prover-server -include `pwd`/
sources/a_file.h -include /inc/inc_file.h

 Include (-include)

2-83

See Also
Topics
“Specify Polyspace Analysis Options”
“Gather Compilation Options Efficiently”

2 Analysis Options

2-84

Include folders (-I)
View include folders used for analysis

Description
This option is relevant only for the user interface of the Polyspace desktop products.

View the include folders used for analysis.

Set Option

This is not an option that you set in your project configuration. You can only view the include folders
in the configuration associated with a result. For instance, in the user interface:

• To add include folders, on the Project Browser, right-click your project. Select Add Source.
• To view the include folders that you used, with your results open, select Window > Show/Hide

View > Configuration. Under the node Environment Settings, you see the folders listed under
Include folders.

Settings
This is a read-only option available only when viewing results in the user interface of the Polyspace
desktop products. Unlike other options, you do not specify include folders on the Configuration
pane. Instead, you add your include folders on the Project Browser pane.

See Also
Include (-include) | -I

 Include folders (-I)

2-85

Constraint setup (-data-range-specifications)
Constrain global variables, function inputs and return values of stubbed functions

Description
This option applies primarily to a Code Prover analysis. In Bug Finder, you can only specify external
constraints on global variables.

Specify constraints (also known as data range specifications or DRS) for global variables, function
inputs and return values of stubbed functions using a Constraint Specification template file. The
template file is an XML file that you can generate in the Polyspace user interface.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node.

Command line and options file: Use the option -data-range-specifications. See “Command-
Line Information” on page 2-87.

Why Use This Option

Use this option for specifying constraints outside your code.

Polyspace uses the code that you provide to make assumptions about items such as variable ranges
and allowed buffer size for pointers. Sometimes the assumptions are broader than what you expect
because:

• You have not provided the complete code. For example, you did not provide some of the function
definitions.

• Some of the information about variables is available only at run time. For example, some variables
in your code obtain values from the user at run time.

Because of these broad assumptions:

• Code Prover can consider more execution paths than those paths that occur at run time. If an
operation fails along one of the execution paths, Polyspace places an orange check on the
operation. If that execution path does not occur at run time, the orange check indicates a false
positive.

• Bug Finder can sometimes produce false positives.

To reduce the number of such false positives, you can specify additional constraints on global
variables, function inputs, and return values of stubbed functions.

After you specify your constraints, you can save them as an XML file to use them for subsequent
analyses. If your source code changes, you can update the previous constraints. You do not have to
create a new constraint template.

Settings
No Default

2 Analysis Options

2-86

Enter full path to the template file. Alternately, click to open a Constraint Specification
wizard. This wizard allows you to generate a template file or navigate to an existing template file.

For more information, see “Specify External Constraints”.

Command-Line Information
Parameter: -data-range-specifications
Value: file
No Default
Example (Bug Finder): polyspace-bug-finder -sources file_name -data-range-
specifications "C:\DRS\range.xml"
Example (Code Prover): polyspace-code-prover -sources file_name -data-range-
specifications "C:\DRS\range.xml"
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
data-range-specifications "C:\DRS\range.xml"
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
data-range-specifications "C:\DRS\range.xml"

See Also
Functions to stub (-functions-to-stub) | Ignore default initialization of
global variables (-no-def-init-glob)

Topics
“Specify Polyspace Analysis Options”
“Specify External Constraints”

 Constraint setup (-data-range-specifications)

2-87

Ignore default initialization of global variables (-
no-def-init-glob)
Consider global variables as uninitialized unless explicitly initialized in code

Description
This option applies to Code Prover only. It does not affect a Bug Finder analysis.

Specify that Polyspace must not consider global and static variables as initialized unless they are
explicitly initialized in the code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node.

Command line and options file: Use the option -no-def-init-glob. See “Command-Line
Information” on page 2-89.

Why Use This Option

The C99 Standard specifies that global variables are implicitly initialized. The default analysis follows
the Standard and considers this implicit initialization.

If you want to initialize specific global variables explicitly, use this option to find the instances where
global variables are not explicitly initialized.

Settings
 On

Polyspace ignores implicit initialization of global and static variables. The verification generates a
red Non-initialized variable error if your code reads a global or static variable before writing to
it.

If you enable this option, global variables are considered uninitialized unless you explicitly
initialize them in the code. Note that this option overrides the option Variables to
initialize (-main-generator-writes-variables). Even if you initialize variables with
the generated main, this option forces the analysis to ignore the initialization.

 Off (default)
Polyspace considers global variables and static variables to be initialized according to C99 or ISO
C++ standards. For instance, the default values are:

• 0 for int
• 0 for char
• 0.0 for float

2 Analysis Options

2-88

Tips
Static local variables have the same lifetime as global variables even though their visibility is limited
to the function where they are defined. Therefore, the option applies to static local variables.

Command-Line Information
Parameter: -no-def-init-glob
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -no-def-init-
glob
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
no-def-init-glob

See Also
Non-initialized variable

Topics
“Specify Polyspace Analysis Options”

 Ignore default initialization of global variables (-no-def-init-glob)

2-89

No STL stubs (-no-stl-stubs)
Do not use Polyspace implementations of functions in the Standard Template Library

Description
Specify that the verification must not use Polyspace implementations of the Standard Template
Library.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node. See “Dependency” on page 2-90 for other options that you must also enable.

Command line and options file: Use the option -no-stl-stubs. See “Command-Line
Information” on page 2-90.

Why Use This Option

When you use a class template from the Standard Template Library (STL), the Polyspace analysis,
instead of verifying a full implementation of the STL template, uses stubs to improve performance
and precision.

However, it might happen that your compiler redefines an STL template with an implementation that
conflicts with the Polyspace implementation. If a conflict occurs, you see errors because your code
uses your compiler implementation of the STL template. To avoid the errors, use this option and
prevent Polyspace from using its implementations of STL templates. You must also explicitly provide
the path to your compiler includes. See “Fix Polyspace Linking Errors Related to C++ Standard
Template Library Stubbing” (Polyspace Code Prover)

Settings
 On

The verification does not use Polyspace implementations of the Standard Template Library.

 Off (default)
The verification uses efficient Polyspace implementations of the Standard Template Library.

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-CPP.

Command-Line Information
Parameter: -no-stl-stubs
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -no-stl-stubs
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
no-stl-stubs

2 Analysis Options

2-90

See Also
Topics
“Specify Polyspace Analysis Options”

 No STL stubs (-no-stl-stubs)

2-91

Functions to stub (-functions-to-stub)
Specify functions to stub during analysis

Description
Specify functions to stub during analysis.

For specified functions, Polyspace :

• Ignores the function definition even if it exists.
• Assumes that the function inputs and outputs have full range of values allowed by their type.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node.

Command line and options file: Use the option -functions-to-stub. See “Command-Line
Information” on page 2-94.

Why Use This Option

If you want the analysis to ignore the code in a function body, you can stub the function.

For instance:

• Suppose you have not completed writing the function and do not want the analysis to consider the
function body. You can use this option to stub the function and then specify constraints on its
return value and modifiable arguments.

• Suppose the analysis of a function body is imprecise. The analysis assumes that the function
returns all possible values that the function return type allows. You can use this option to stub the
function and then specify constraints on its return value.

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

When entering function names, use either the basic syntax or, to differentiate overloaded functions,
the argument syntax. For the argument syntax, separate function arguments with semicolons. See the
following code and table for examples.

//simple function

void test(int a, int b);

2 Analysis Options

2-92

//C++ template function

Template <class myType>
myType test(myType a, myType b);

//C++ class method

class A {
 public:
 int test(int var1, int var2);
};

//C++ template class method

template <class myType> class A
{
 public:
 myType test(myType var1, myType var2);
};

Function Type Basic Syntax Argument Syntax
Simple function test test(int; int)
C++ template function test test(myType; myType)
C++ class method A::test A::test(int;int)
C++ template class
method

A<myType>::test A<myType>::test(myType;myTyp
e)

Tips
• Code Prover makes assumptions about the arguments and return values of stubbed functions. For

example, Polyspace assumes that the return values of stubbed functions are full range. These
assumptions can affect checks in other sections of the code. See “Assumptions About Stubbed
Functions” (Polyspace Code Prover).

• If you stub a function, you can constrain the range of function arguments and return value. To
specify constraints, use the analysis option Constraint setup (-data-range-
specifications).

• When you use this option, you might see a change in file-level code complexity metrics such as
number of lines and comment density because one or more function bodies are no longer
analyzed.

• For C functions, these special characters are allowed:() < > ; _

For C++ functions, these special characters are allowed : () < > ; _ * & []

Space characters are allowed for C++, but are not allowed for C functions.
• You cannot use this option to stub the following C++ functions:

• constexpr functions
• Function-try-blocks that associate a catch clause with an entire function body, for instance:

Class()
 try : Class(0.0) //delegate constructor

 Functions to stub (-functions-to-stub)

2-93

 {
 // ...
 }
 catch (...)
 {
 // exception occurred on initialization
 }

• Template functions with a parameter pack, for instance:

template <class T, class... T2>
 X(T n, T n2, T2... rest): X(rest...) {
 v.insert(v.begin(), n);
 v.insert(v.begin(), n2);
 }

• Functions with auto return type, for instance:

template <typename F, typename... Args>
inline decltype(auto) invoke(F&& func, Args&&... args)
{
 return invoke_impl(eastl::forward<F>(func), eastl::forward<Args>(args)...);
}

Command-Line Information
Parameter: -functions-to-stub
No Default
Value: function1[,function2[,...]]
Example (Code Prover): polyspace-code-prover -sources file_name -functions-to-
stub function_1,function_2
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
functions-to-stub function_1,function_2

See Also
Constraint setup (-data-range-specifications)

Topics
“Specify Polyspace Analysis Options”

2 Analysis Options

2-94

Libraries used (-library)
Specify libraries that you use in your program

Description
Specify libraries that you use in your program.

The analysis uses smart stubs for functions from those libraries instead of generic stubs and does not
attempt to check the function implementations. Using this option enables faster analysis without
losing precision and triggers library-specific checks on function calls.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node.

Command line and options file: Use the option -library. See “Command-Line Information” on
page 2-96.

Why Use This Option

For faster and library-aware analysis, use this option. Unless you use this option, the analysis either
attempts to check the library implementation or if the implementation is not available, uses generic
stubs for library functions. Checking the function bodies can increase analysis time significantly while
using generic stubs can lead to loss of precision.

The option also triggers library-specific checks on function arguments. For instance, if you select the
option value autosar, a Bug Finder or Code Prover analysis checks arguments to functions from the
AUTOSAR RTE API for compliance with the AUTOSAR Standard.

Settings
Default: none

none
The analysis uses smart stubs only for functions from the C or C++ Standard Library (if their
implementations cannot be found).

autosar
In addition to the stubbing of C or C++ Standard Library functions with missing
implementations, the analysis uses smart stubs for AUTOSAR RTE API functions (even if their
implementations are available).

The option also triggers AUTOSAR-specific checks on function arguments. For more information,
see the corresponding checkers:

• Bug Finder: Non-compliance with AUTOSAR specification

Besides setting the option, you must also explicitly enable the above checker (or enable all
checkers).

 Libraries used (-library)

2-95

• Code Prover: Non-compliance with AUTOSAR specification

Setting the option is sufficient to enable the checker.

Command-Line Information
Parameter: -library
No Default
Value: autosar
Example (Bug Finder): polyspace-bug-finder -sources file_name -library autosar -
checkers autosar_lib_non_compliance
Example (Code Prover): polyspace-code-prover -sources file_name -library autosar
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
library autosar -checkers autosar_lib_non_compliance
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
library autosar

See Also
Topics
“Specify Polyspace Analysis Options”

Introduced in R2021a

2 Analysis Options

2-96

Generate stubs for Embedded Coder lookup tables
(-stub-embedded-coder-lookup-table-
functions)
Stub autogenerated functions that use lookup tables and model them more precisely

Description
This option is available only for model-generated code. The option is relevant only if you generate
code from a Simulink® model that uses Lookup Table blocks using MathWorks code generation
products.

Specify that the verification must stub autogenerated functions that use certain kinds of lookup tables
in their body. The lookup tables in these functions use linear interpolation and do not allow
extrapolation. That is, the result of using the lookup table always lies between the lower and upper
bounds of the table.

Set Option

If you are running verification from Simulink, use the option “Stub lookup tables” (Polyspace Code
Prover) in Simulink Configuration Parameters, which performs the same task.

User interface (desktop products only): In your Polyspace project configuration, the option is on the
Inputs & Stubbing node.

Command line and options file: Use the option -stub-embedded-coder-lookup-table-
functions. See “Command-Line Information” on page 2-98.

Why Use This Option

If you use this option, the verification is more precise and has fewer orange checks. The verification
of lookup table functions is usually imprecise. The software has to make certain assumptions about
these functions. To avoid missing a run-time error, the verification assumes that the result of using
the lookup table is within the full range allowed by the result data type. This assumption can cause
many unproven results (orange checks) when a lookup table function is called. By using this option,
you narrow down the assumption. For functions that use lookup tables with linear interpolation and
no extrapolation, the result is at least within the bounds of the table.

The option is relevant only if your model has Lookup Table blocks. In the generated code, the
functions corresponding to Lookup Table blocks also use lookup tables. The function names follow
specific conventions. The verification uses the naming conventions to identify if the lookup tables in
the functions use linear interpolation and no extrapolation. The verification then replaces such
functions with stubs for more precise verification.

Settings
 On (default)

For autogenerated functions that use lookup tables with linear interpolation and no extrapolation,
the verification:

 Generate stubs for Embedded Coder lookup tables (-stub-embedded-coder-lookup-table-functions)

2-97

• Does not check for run-time errors in the function body.
• Calls a function stub instead of the actual function at the function call sites. The stub ensures

that the result of using the lookup table is within the bounds of the table.

To identify if the lookup table in the function uses linear interpolation and no extrapolation, the
verification uses the function name. In your analysis results, you see that the function is not
analyzed. If you place your cursor on the function name, you see the following message:

 Function has been recognized as an Embedded Coder Lookup-Table function.
 It was stubbed by Polyspace to increase precision.
 Unset the -stub-embedded-coder-lookup-table-functions option to analyze
 the code below.

 Off
The verification does not stub autogenerated functions that use lookup tables.

Tips
• The option applies to only autogenerated functions. If you integrate your own C/C++ S-Function

using lookup tables with the model, these functions do not follow the naming conventions for
autogenerated functions. The option does not cause them to be stubbed. If you want the same
behavior for your handwritten lookup table functions as the autogenerated functions, use the
option -code-behavior-specifications and map your function to the
__ps_lookup_table_clip function.

• If you run verification from Simulink, the option is on by default. For certification purposes, if you
want your verification tool to be independent of the code generation tool, turn off the option.

Command-Line Information
Parameter: -stub-embedded-coder-lookup-table-functions
Default: On
Example (Code Prover): polyspace-code-prover -sources file_name -stub-embedded-
coder-lookup-table-functions
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
stub-embedded-coder-lookup-table-functions

See Also
Topics
“Specify Polyspace Analysis Options”

Introduced in R2016b

2 Analysis Options

2-98

Generate results for sources and (-generate-
results-for)
Specify files on which you want analysis results

Description
Specify files on which you want analysis results.

By default, results appear on source files and header files in the same folder as the source files. You
can use this option to see results in other header files. If you use the option Do not generate
results for (-do-not-generate-results-for) to suppress entire folders, you can use this
option to unsuppress some subfolders or files in those folders.

The option applies only to coding rule violations and code metrics. You cannot suppress Code Prover
run-time checks from select source and header files.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node.

Command line and options file: Use the option -generate-results-for. See “Command-Line
Information” on page 2-100.

Why Use This Option

Use this option to see results in header files that are most relevant to you.

For instance, by default, results are generated on header files that are located in the same folder as
the source files. Often, other header files belong to a third-party library. Though these header files are
required for a precise analysis, you are not interested in reviewing findings in those headers.
Therefore, by default, results are not generated for those headers. If you are interested in certain
headers from third-party libraries, change the default value of this option.

Note that in Polyspace as You Code, you cannot see results in headers #include-d through a source
file at all. The default behavior is to consider the headers in the same folder as the source file (or
subfolders) for analysis but suppress results found in the headers. You can use this option only to
expand the scope of which headers are considered during analysis. See also “Analysis Scope of
Polyspace as You Code”.

Settings
Default: source-headers

source-headers
Results appear on source files and header files in the same folder as the source files or in
subfolders of source file folders.

The source files are the files that you add to the Source folder of your Polyspace project (or use
with the argument -sources at the command line).

 Generate results for sources and (-generate-results-for)

2-99

all-headers
Results appear on source files and all header files. The header files can be in the same folder as
source files, in subfolders of source file folders or in include folders.

The source files are the files that you add to the Source folder of your Polyspace project (or use
with the argument -sources at the command line).

The include folders are the folders that you add to the Include folder of your Polyspace project
(or use with the argument -I at the command line).

custom
Results appear on source files and the files that you specify. If you enter a folder name, results
appear on header files in that folder (and its subfolders).

Click to add a field. Enter a file or folder name.

Tips
1 Use this option in combination with appropriate values for the option Do not generate

results for (-do-not-generate-results-for).

If you choose custom and the values for the two options conflict, the more specific value
determines the display of results. For instance, in the following examples, the value for the option
Generate results for sources and is more specific.

Generate results for
sources and

Do not generate results
for

Final Result

custom:

C:\Includes
\Custom_Library\

custom:

C:\Includes

Results are displayed on
header files in C:\Includes
\Custom_Library\ and its
subfolders but not generated
for other header files in
C:\Includes.

custom:

C:\Includes
\my_header.h

custom:

C:\Includes\

Results are displayed on the
header file my_header.h in
C:\Includes\ but not
generated for other header
files in C:\Includes\ and
its subfolders.

Using these two options together, you can suppress results from all files in a certain folder but
unsuppress select files in those folders.

2 If you choose all-headers for this option, results are displayed on all header files irrespective
of what you specify for the option Do not generate results for.

Command-Line Information
Parameter: -generate-results-for
Value: source-headers | all-headers | custom=file1[,file2[,...]] |
custom=folder1[,folder2[,...]]

2 Analysis Options

2-100

Example (Bug Finder): polyspace-bug-finder -lang c -sources file_name -misra2
required-rules -generate-results-for custom="C:\usr\include"
Example (Code Prover): polyspace-code-prover -lang c -sources file_name -misra2
required-rules -generate-results-for custom="C:\usr\include"
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
file_name -misra2 required-rules -generate-results-for custom="C:\usr
\include"
Example (Code Prover Server): polyspace-code-prover-server -lang c -sources
file_name -misra2 required-rules -generate-results-for custom="C:\usr
\include"

See Also
Topics
“Specify Polyspace Analysis Options”

Introduced in R2016a

 Generate results for sources and (-generate-results-for)

2-101

Do not generate results for (-do-not-generate-
results-for)
Specify files on which you do not want analysis results

Description
Specify files on which you do not want analysis results.

By default, results do not appear on header files (unless they are in the same folder as the source
files). You can use this option to suppress results from some source files too (or from header files in
the same folders as source files). If you use the option Generate results for sources and (-
generate-results-for) to show results on some include folders, you can use this option to
suppress results from some subfolders or files in those include folders.

The option applies only to coding rule violations, code metrics and unused global variables. You
cannot suppress Code Prover run-time checks from source and header files.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Inputs &
Stubbing node.

Command line and options file: Use the option -do-not-generate-results-for. See
“Command-Line Information” on page 2-105.

Why Use This Option

Use this option to see results in header files that are most relevant to you.

For instance, by default, results are generated on header files that are located in the same folder as
the source files. If you are not interested in reviewing the findings in those headers, change the
default value of this option.

Note that in Polyspace as You Code, the default behavior is to not even analyze the headers in non-
source folders. You can use this option to expand the scope of not analyzed files to all headers or a
different subset of headers. See also “Analysis Scope of Polyspace as You Code”.

Settings
Default: include-folders

include-folders
Results are not generated for header files in include folders (and their subfolders).

The include folders are the folders that you add to the Include folder of your Polyspace project
(or use with the argument -I at the command line).

If an include folder is a subfolder of a source folder, results are generated for files in that include
folder even if you specify the option value include-folders. In this situation, use the option
value custom and explicitly specify the include folders to ignore.

2 Analysis Options

2-102

all-headers
Results are not generated for all header files. The header files can be in the same folder as source
files, in subfolders of source file folders or in include folders.

The source files are the files that you add to the Source folder of your Polyspace project (or use
with the argument -sources at the command line).

The include folders are the folders that you add to the Include folder of your Polyspace project
(or use with the argument -I at the command line).

custom
Results are not generated for the files that you specify. If you enter a folder name, results are
suppressed from files in that folder (and its subfolders).

Click to add a field. Enter a file or folder name.

Tips
1 Use this option appropriately in combination with appropriate values for the option Generate

results for sources and (-generate-results-for).

If you choose custom and the values for the two options conflict, the more specific value
determines the display of results. For instance, in the following examples, the value for the option
Generate results for sources and is more specific.

Generate results for
sources and

Do not generate results
for

Final Result

custom:

C:\Includes
\Custom_Library\

custom:

C:\Includes

Results are displayed on
header files in C:\Includes
\Custom_Library\ and its
subfolders but not generated
for other header files in
C:\Includes.

custom:

C:\Includes
\my_header.h

custom:

C:\Includes\

Results are displayed on the
header file my_header.h in
C:\Includes\ but not
generated for other header
files in C:\Includes\ and
its subfolders.

Using these two options together, you can suppress results from all files in a certain folder but
unsuppress select files in those folders.

2 If you choose all-headers for this option, results are suppressed from all header files
irrespective of what you specify for the option Generate results for sources and.

3 If a defect or coding rule violation involves two files and you do not generate results for one of
the files, the defect or rule violation still appears. For instance, if you define two variables with
similar-looking names in files myFile.cpp and myFile.h, you get a violation of the MISRA® C+
+ rule 2-10-1, even if you do not generate results for myFile.h. MISRA C++ rule 2-10-1 states
that different identifiers must be typographically unambiguous.

The following results can involve more than one file:

 Do not generate results for (-do-not-generate-results-for)

2-103

MISRA C: 2004 Rules

• MISRA C: 2004 Rule 5.1 — Identifiers (internal and external) shall not rely on the significance
of more than 31 characters.

• MISRA C: 2004 Rule 5.2 — Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

• MISRA C: 2004 Rule 8.8 — An external object or function shall be declared in one file and
only one file.

• MISRA C: 2004 Rule 8.9 — An identifier with external linkage shall have exactly one external
definition.

MISRA C: 2012 Directives and Rules

• MISRA C: 2012 Directive 4.5 — Identifiers in the same name space with overlapping visibility
should be typographically unambiguous.

• MISRA C: 2012 Rule 5.2 — Identifiers declared in the same scope and name space shall be
distinct.

• MISRA C: 2012 Rule 5.3 — An identifier declared in an inner scope shall not hide an identifier
declared in an outer scope.

• MISRA C: 2012 Rule 5.4 — Macro identifiers shall be distinct.
• MISRA C: 2012 Rule 5.5 — Identifiers shall be distinct from macro names.
• MISRA C: 2012 Rule 8.5 — An external object or function shall be declared once in one and

only one file.
• MISRA C: 2012 Rule 8.6 — An identifier with external linkage shall have exactly one external
definition.

MISRA C++ Rules

• MISRA C++ Rule 2-10-1 — Different identifiers shall be typographically unambiguous.
• MISRA C++ Rule 2-10-2 — Identifiers declared in an inner scope shall not hide an identifier

declared in an outer scope.
• MISRA C++ Rule 3-2-2 — The One Definition Rule shall not be violated.
• MISRA C++ Rule 3-2-3 — A type, object or function that is used in multiple translation units

shall be declared in one and only one file.
• MISRA C++ Rule 3-2-4 — An identifier with external linkage shall have exactly one definition.
• MISRA C++ Rule 7-5-4 — Functions should not call themselves, either directly or indirectly.
• MISRA C++ Rule 15-4-1 — If a function is declared with an exception-specification, then all

declarations of the same function (in other translation units) shall be declared with the same
set of type-ids.

JSF C++ Rules

• JSF C++ Rule 46 — User-specified identifiers (internal and external) will not rely on
significance of more than 64 characters.

• JSF C++ Rule 48 — Identifiers will not differ by only a mixture of case, the presence/absence
of the underscore character, the interchange of the letter O with the number 0 or the letter D,
the interchange of the letter I with the number 1 or the letter l, the interchange of the letter
S with the number 5, the interchange of the letter Z with the number 2 and the interchange of
the letter n with the letter h.

2 Analysis Options

2-104

• JSF C++ Rule 137 — All declarations at file scope should be static where possible.
• JSF C++ Rule 139 — External objects will not be declared in more than one file.

Polyspace Bug Finder Defects

• Variable shadowing — Variable hides another variable of same name with nested scope.
• Declaration mismatch — Mismatch occurs between function or variable declarations.

4 If a global variable is never used after declaration, it appears in Code Prover results as an unused
global variable. However, if it is declared in a file for which you do not want results, you do not
see the unused variable in your verification results.

5 If a result (coding rule violation or Bug Finder defect) is inside a macro, Polyspace typically
shows the result on the macro definition instead of the macro occurrences so that you review the
result only once. Even if the macro is used in a suppressed file, the result is still shown on the
macro definition, if the definition occurs in an unsuppressed file.

Command-Line Information
Parameter: -do-not-generate-results-for
Value: all-headers | include-folders | custom=file1[,file2[,...]] |
custom=folder1[,folder2[,...]]
Example (Bug Finder): polyspace-bug-finder -lang c -sources file_name -misra2
required-rules -do-not-generate-results-for custom="C:\usr\include"
Example (Code Prover): polyspace-code-prover -lang c -sources file_name -misra2
required-rules -do-not-generate-results-for custom="C:\usr\include"
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
file_name -misra2 required-rules -do-not-generate-results-for custom="C:\usr
\include"
Example (Code Prover Server): polyspace-code-prover-server -lang c -sources
file_name -misra2 required-rules -do-not-generate-results-for custom="C:\usr
\include"

See Also
Generate results for sources and (-generate-results-for)

Topics
“Specify Polyspace Analysis Options”

Introduced in R2016a

 Do not generate results for (-do-not-generate-results-for)

2-105

External multitasking configuration
Enable setup of multitasking configuration from external file definitions

Description
This option is not available for code generated from MATLAB code or Simulink models.

Specify whether you want to use definitions from external files to set up the multitasking
configuration of your Polyspace project. The supported external file formats are:

• ARXML files for AUTOSAR projects
• OIL files for OSEK projects

Set Option

User interface: In the Configuration pane, the option is available on the Multitasking node.

Command line and options file: See “Command-Line Information” on page 2-106.

Why Use This Option

If your AUTOSAR project includes ARXML files with ECU configuration parameters, or if your OSEK
project includes OIL files, Polyspace can parse these files. The software sets up tasks, interrupts,
cyclical tasks, and critical sections. You do not have to set them up manually.

Settings
 On

Polyspace parses the external files that you provide in the format that you specify to set up the
multitasking configuration of your project.

osek
Look for and parse OIL files to extract multitasking description.

autosar
Look for and parse AUTOSAR XML files to extract multitasking description.

 Off (default)
Polyspace does not set up the multitasking configuration of your project.

Command-Line Information
There is no single command-line option to turn on external multitasking configuration. By using the -
osek-multitasking option or the -autosar-multitasking option, you enable external
multitasking configuration.

See Also
ARXML files selection (-autosar-multitasking) | OIL files selection (-osek-
multitasking)

2 Analysis Options

2-106

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”

Introduced in R2018a

 External multitasking configuration

2-107

OIL files selection (-osek-multitasking)
Set up multitasking configuration from OIL file definition

Description
This option is not available for code generated from MATLAB code or Simulink models.

Specify the OIL files that Polyspace parses to set up the multitasking configuration of your OSEK
project.

Set Option

User interface: In the Configuration pane, the option is available on the Multitasking node. See
Dependencies on page 2-112 for other options you must also enable.

Command line: and options file Use the option -osek-multitasking. See “Command-Line
Information” on page 2-112.

Why Use This Option

If your project includes OIL files, Polyspace can parse these files to set up tasks, interrupts, cyclical
tasks, and critical sections. You do not have to set them up manually.

Settings
 On

Polyspace looks for and parses OIL files to set up your multitasking configuration.
auto

Look for OIL files in your project source and include folders, but not in their subfolders.
custom

Look for OIL files on the specified path and the path subfolders. You can specify a path to the OIL
files or to the folder containing the files.

When you select this option, in your source code, Polyspace supports these OSEK multitasking
keywords:

• TASK
• DeclareTask
• ActivateTask
• DeclareResource
• GetResource
• ReleaseResource
• ISR
• DeclareEvent
• DeclareAlarm

2 Analysis Options

2-108

Polyspace parses the OIL files that you provide for TASK, ISR, RESOURCE, and ALARM definitions. The
analysis uses these definitions and the supported multitasking keywords to configure tasks,
interrupts, cyclical tasks, and critical sections.

Example: Analyze Your OSEK Multitasking Project

This example shows how to set up the multitasking configuration of an OSEK project and run an
analysis on this project. To try the steps in this example, use the demo files in the folder
polyspaceroot/help/toolbox/bugfinder/examples/External_multitasking/OSEK or
polyspaceroot/help/toolbox/codeprover/examples/External_multitasking/OSEK.
polyspaceroot is the Polyspace installation folder. The analysis results apply to this example code.

 OIL files selection (-osek-multitasking)

2-109

#include <assert.h>
#include "include/example_osek_multi.h"

int var1;
int var2;
int var3;

DeclareAlarm(Cyclic_task_activate);
DeclareResource(res1);
DeclareTask(init);
TASK(afterinit1);

TASK(init) // task
{

 var2++;
 ActivateTask(afterinit1);
 var3++;
 GetResource(res1); // critical section begins
 var1++;
 ReleaseResource(res1); // critical section ends
}

TASK(afterinit1) // task
{
 var3++;
 var2++;
 GetResource(res1); // critical section begins
 var1++;
 ReleaseResource(res1); // critical section ends

}
int var4;
void func()
{
 var4++;
}

TASK(Cyclic_task) // cyclic task
{
 func();
}

void main()
{}

To set up your multitasking configuration and analyze the code:

1 Copy the contents of polyspaceroot/help/toolbox/bugfinder/examples/
External_multitasking/OSEK or polyspaceroot/help/toolbox/codeprover/
examples/External_multitasking/OSEK to your machine, for instance in
C:\Polyspace_worskpace\OSEK.

2 Run an analysis on your OSEK project by using the command:

• Bug Finder:

2 Analysis Options

2-110

polyspace-bug-finder -sources ^
C:\Polyspace_workspace\OSEK\example_osek_multitasking.c ^
-osek-multitasking auto

• Code Prover:

polyspace-code-prover -sources ^
C:\Polyspace_workspace\OSEK\example_osek_multitasking.c ^
-osek-multitasking auto

• Bug Finder Server:

polyspace-bug-finder-server -sources ^
C:\Polyspace_workspace\OSEK\example_osek_multitasking.c ^
-osek-multitasking auto

• Code Prover Server:

polyspace-code-prover-server -sources ^
C:\Polyspace_workspace\OSEK\example_osek_multitasking.c ^
-osek-multitasking auto

Bug Finder detects a data race on variable var3 because of multiple read and write operation from
tasks init and afterinit1. See Data race.

#include <assert.h>
#include "include/example_osek_multi.h"

int var1;
int var2;
int var3;

There is no defect on var2 since afterinit1 goes to an active state (ActivateTask()) after init
increments var2. Similarly, there is no defect on var1 because it is protected by the
GetResource() and ReleaseResource() calls.

Code Prover detects that var3 is a potentially unprotected global variable because it is used in tasks
init and afterinit1 with no protection from interruption during the read and write operations.
The analysis also shows that the cyclic task operation on var4 can potentially cause an overflow. See
Potentially unprotected variable and Overflow.

#include <assert.h>
#include "include/example_osek_multi.h"

int var1;
int var2;
int var3;

...
void func()
{
 var4++;
}

Variable var2 is not shared because afterinit1 goes to an active state (ActivateTask()) after
init increments var2. Variable var1 is a protected variable (Polyspace Code Prover) through the
critical sections from the GetResource() and ReleaseResource() calls.

 OIL files selection (-osek-multitasking)

2-111

To see how Polyspace models the TASK, ISR, and RESOURCE definitions from your OIL files, open the
Concurrency window from the Dashboard pane.

 Off (default)
Polyspace does not set up a multitasking configuration for your OSEK project.

Additional Considerations

• Make sure that you declare all tasks by using the DeclareTask or TASK keywords before you
pass those tasks as parameters to functions or macros that expect a task. For example , if you pass
task foo to ActivateTask without using DeclareTask(foo); first, Polyspace considers task
foo undefined which results in a compilation error.

• The analysis ignores TerminateTask() declarations in your source code and considers that
subsequent code is executed.

• Polyspace ignores syntax elements of your OIL files that do not follow the syntax defined here.

Dependencies
To enable this option in the user interface of the desktop products, first select the option External
multitasking configuration.

Command-Line Information
Parameter: -osek-multitasking
Value: auto | custom='file1 [,file2, dir1,...]'
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources source_path -I include_path
-osek-multitasking custom='path\to\file1.oil, path\to\dir'
Example (Code Prover): polyspace-code-prover -sources source_path -I
include_path -osek-multitasking custom='path\to\file1.oil, path\to\dir'
Example (Bug Finder Server): polyspace-bug-finder-server -sources source_path -I
include_path -osek-multitasking custom='path\to\file1.oil, path\to\dir'
Example (Code Prover Server): polyspace-code-prover-server -sources source_path -
I include_path -osek-multitasking custom='path\to\file1.oil, path\to\dir'

See Also
Show global variable sharing and usage only (-shared-variables-mode)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”

Introduced in R2017b

2 Analysis Options

2-112

https://www.irisa.fr/alf/downloads/puaut/TPNXT/images/oil25.pdf

ARXML files selection (-autosar-multitasking)
Set up multitasking configuration from ARXML file definitions

Description
To detect data races in large AUTOSAR applications, use this option with Polyspace Bug Finder.

This option is not available for code generated from MATLAB code or Simulink models.

Specify the ARXML files that Polyspace parses to set up the multitasking configuration of your
AUTOSAR project.

Set Option

User interface: In the Configuration pane, the option is available on the Multitasking node. See
Dependencies on page 2-114 for other options you must also enable.

Command line: and options file Use the option -autosar-multitasking. See “Command-Line
Information” on page 2-112.

Why Use This Option

If your project includes ARXML files with <ECUC-CONTAINER-VALUE> elements, Polyspace can parse
these files to set up tasks, interrupts, cyclical tasks, and critical sections. You do not have to set them
up manually.

Settings
 On

Polyspace looks for and parses ARXML files to set up your multitasking configuration.

When you select this option, the software assumes that you use the OSEK multitasking API in your
source code to declare and define tasks and interrupts. Polyspace supports these OSEK multitasking
keywords:

• TASK
• DeclareTask
• ActivateTask
• DeclareResource
• GetResource
• ReleaseResource
• ISR
• DeclareEvent
• DeclareAlarm

Polyspace parses the ARXML files that you provide for OsTask, OsIsr, OsResource, OsAlarm, and
OsEvent definitions. The analysis uses these definitions and the supported multitasking keywords to
configure tasks, interrupts, cyclical tasks, and critical sections.

 ARXML files selection (-autosar-multitasking)

2-113

To see how Polyspace models the OsTask, OsIsr, and OsResource definitions from your ARXML
files, open the Concurrency window from the Dashboard pane. In that window, under the Entry
points column, the names of the elements are extracted from their <SHORT-NAME> values in the
ARXML files.

 Off (default)
Polyspace does not set up a multitasking configuration for your AUTOSAR project.

Additional Considerations

• The analysis ignores TerminateTask() declarations in your source code and considers that
subsequent code is executed.

• Polyspace supports multitasking configuration only from ARXML files for AUTOSAR specification
version 4.0 and later.

Dependencies
To enable this option in the user interface of the desktop products, first select the option External
multitasking configuration.

Command-Line Information
Parameter: -autosar-multitasking
Value: file1 [,file2, dir1,...]
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources source_path -I include_path
-autosar-multitasking C:\Polyspace_Workspace\AUTOSAR\myFile.arxml
Example (Bug Finder Server): polyspace-bug-finder-server -sources source_path -I
include_path -autosar-multitasking C:\Polyspace_Workspace\AUTOSAR
\myFile.arxml

See Also
External multitasking configuration | OIL files selection (-osek-multitasking) |
Enable automatic concurrency detection for Code Prover (-enable-concurrency-
detection) | Show global variable sharing and usage only (-shared-variables-
mode)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”

Introduced in R2018a

2 Analysis Options

2-114

Configure multitasking manually
Consider that code is intended for multitasking

Description
This option is not available for code generated from MATLAB code or Simulink models.

Specify whether your code is a multitasking application. This option allows you to manually configure
the multitasking structure for Polyspace.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node.

Command line and options file: See “Command-Line Information” on page 2-116.

Why Use This Option

By default, Bug Finder determines your multitasking model from your use of multithreading
functions. In Code Prover, you have to enable automatic concurrency detection with the option
Enable automatic concurrency detection for Code Prover (-enable-concurrency-
detection). However, in some cases, using automatic concurrency detection can slow down the
Code Prover analysis.

In cases where automatic concurrency detection is not supported, you can explicitly specify your
multitasking model by using this option. Once you select this option, you can explicitly specify your
entry point functions, cyclic tasks, interrupts and protection mechanisms for shared variables, such
as critical section details.

A Code Prover verification uses your specifications to determine:

• Whether a global variable is shared.

See “Global Variables” (Polyspace Code Prover).
• Whether a run-time error can occur.

For instance, if the operation var++ occurs in the body of a cyclic task and you do not impose a
limit on var, the operation can overflow. The analysis detects the possible overflow.

A Bug Finder analysis uses your specifications to look for concurrency defects. For more information,
see “Concurrency Defects”.

Settings
 On

The code is intended for a multitasking application.

You have to explicitly specify your multitasking configuration using other Polyspace options. See
“Configuring Polyspace Multitasking Analysis Manually”.

 Configure multitasking manually

2-115

 Off (default)
The code is not intended for a multitasking application.

Disabling the option has this additional effect in Code Prover:

• If a main exists, Code Prover verifies only those functions that are called by the main.
• If a main does not exist, Polyspace verifies the functions that you specify. To verify the

functions, Polyspace generates a main function and calls functions from the generated main
in a sequence that you specify. For more information, see Verify module or library (-
main-generator).

Tips
If you run a file by file verification in Code Prover, your multitasking options are ignored. See Verify
files independently (-unit-by-unit).

Command-Line Information
There is no single command-line option to turn on multitasking analysis. By using any of the options
Tasks (-entry-points), Cyclic tasks (-cyclic-tasks) or Interrupts (-interrupts),
you turn on multitasking analysis.

See Also
-preemptable-interrupts | -non-preemptable-tasks | Tasks (-entry-points) | Cyclic
tasks (-cyclic-tasks) | Critical section details (-critical-section-begin -
critical-section-end) | Temporally exclusive tasks (-temporal-exclusions-file)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”

2 Analysis Options

2-116

Enable automatic concurrency detection for Code
Prover (-enable-concurrency-detection)
Automatically detect certain families of multithreading functions

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify whether the analysis must automatically detect POSIX®, VxWorks®, Windows, μC/OS II and
other multithreading functions.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” (Polyspace Code Prover) for other options that you must
enable or disable.

Command line and options file: Use the option -enable-concurrency-detection. See
“Command-Line Information” on page 2-118.

Why Use This Option

If you use this option, Polyspace determines your multitasking model from your use of multithreading
functions. In Bug Finder, automatic concurrency detection is enabled by default. In Code Prover, you
have to explicitly enable automatic concurrency detection.

In some cases, using automatic concurrency detection can slow down the Code Prover analysis. In
those cases, you can choose to not enable this option and explicitly specify your multitasking model.
See “Configuring Polyspace Multitasking Analysis Manually”.

Settings
 On

If you use one of the supported functions for multitasking, the analysis automatically detects your
multitasking model from your code.

For a list of supported multitasking functions and limitations in auto-detection of threads, see
“Auto-Detection of Thread Creation and Critical Section in Polyspace”.

 Off (default)
The analysis does not attempt to detect the multitasking model from your code.

If you want to manually configure your multitasking model, see “Configuring Polyspace
Multitasking Analysis Manually”.

 Enable automatic concurrency detection for Code Prover (-enable-concurrency-detection)

2-117

Dependencies
If you enable this option, your code must contain a main function. You cannot use the Code Prover
options to generate a main.

Command-Line Information
Parameter: -enable-concurrency-detection
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -enable-
concurrency-detection
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
enable-concurrency-detection

See Also
Show global variable sharing and usage only (-shared-variables-mode)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Auto-Detection of Thread Creation and Critical Section in Polyspace”

2 Analysis Options

2-118

Tasks (-entry-points)
Specify functions that serve as tasks to your multitasking application

Description
This option is not available for code generated from MATLAB code or Simulink models.

Specify functions that serve as tasks to your code. If the function does not exist, the verification
warns you and continues the verification.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 2-120 for other options you must also enable.

Command line and options file: Use the option -entry-points. See “Command-Line
Information” on page 2-120.

Why Use This Option

Use this option when your code is intended for multitasking.

To specify cyclic tasks and interrupts, use the options Cyclic tasks (-cyclic-tasks) and
Interrupts (-interrupts). Use this option to specify other tasks.

A Code Prover analysis uses your specifications to determine:

• Whether a global variable is shared.

See “Global Variables” (Polyspace Code Prover).
• Whether a run-time error can occur.

For instance, if the operation var++ occurs in the body of a cyclic task and you do not impose a
limit on var, the operation can overflow. The analysis detects the possible overflow.

A Bug Finder analysis uses your specifications to look for concurrency defects. For more information,
see “Concurrency Defects”.

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

 Tasks (-entry-points)

2-119

Dependencies
To enable this option in the user interface of the desktop products, first select the option Configure
multitasking manually.

Tips
• In Code Prover, the functions representing entry points must have the form

void functionName (void)
• If a function func takes arguments or returns a value, you cannot use it directly as an entry point.

To use func as an entry point:, call func from a wrapper void-void function and specify the
wrapper as an entry point. See “Configuring Polyspace Multitasking Analysis Manually”.

• If you specify a function as a task, you must provide its definition. Otherwise, a Code Prover
verification stops with the error message:

task func_name must be a userdef function without parameters

A Bug Finder analysis continues but does not consider the function as an entry point.
• If you run a file by file verification in Code Prover, your multitasking options are ignored. See

Verify files independently (-unit-by-unit).
• The Polyspace multitasking analysis assumes that a task cannot interrupt itself.

Command-Line Information
Parameter: -entry-points
No Default
Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -entry-points
func_1,func_2
Example (Code Prover): polyspace-code-prover -sources file_name -entry-points
func_1,func_2
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
entry-points func_1,func_2
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
entry-points func_1,func_2

See Also
Cyclic tasks (-cyclic-tasks) | Interrupts (-interrupts) | -preemptable-
interrupts | -non-preemptable-tasks | Show global variable sharing and usage
only (-shared-variables-mode)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”

2 Analysis Options

2-120

Cyclic tasks (-cyclic-tasks)
Specify functions that represent cyclic tasks

Description
This option affects a Bug Finder analysis only. The option is not available for code generated from
MATLAB code or Simulink models.

Specify functions that represent cyclic tasks. The analysis assumes that operations in the function
body:

• Can execute any number of times.
• Can be interrupted by noncyclic tasks, other cyclic tasks and interrupts. Noncyclic tasks are
specified with the option Tasks (-entry-points) and interrupts are specified with the option
Interrupts (-interrupts).

To model a cyclic task that cannot be interrupted by other cyclic tasks, specify the task as
nonpreemptable. See -non-preemptable-tasks. For examples, see “Define Preemptable
Interrupts and Nonpreemptable Tasks”.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 2-122 for other options you must also enable.

Command line and options file: Use the option -cyclic-tasks. See “Command-Line
Information” on page 2-122.

Why Use This Option

Use this option to specify cyclic tasks in your multitasking code. The functions that you specify must
have the prototype:

void function_name(void);

A Code Prover verification uses your specifications to determine:

• Whether a global variable is shared.

See “Global Variables” (Polyspace Code Prover).
• Whether a run-time error can occur.

For instance, if the operation var++ occurs in the body of a cyclic task and you do not impose a
limit on var, the operation can overflow. The analysis detects the possible overflow.

A Bug Finder analysis uses your specifications to look for concurrency defects. For the Data race
defect, the software establishes the following relations between preemptable tasks and other tasks.

• Data race between two preemptable tasks:

Unless protected, two operations in different preemptable tasks can interfere with each other. If
the operations use the same shared variable without protection, a data race can occur.

 Cyclic tasks (-cyclic-tasks)

2-121

If both operations are atomic, to see the defect, you have to enable the checker Data race
including atomic operations.

• Data race between a preemptable task and a nonpreemptable task or interrupt:

• An atomic operation in a preemptable task cannot interfere with an operation in a
nonpreemptable task or an interrupt. Even if the operations use the same shared variable
without protection, a data race cannot occur.

• A nonatomic operation in a preemptable task also cannot interfere with an operation in a
nonpreemptable task or an interrupt. However, the latter operation can interrupt the former.
Therefore, if the operations use the same shared variable without protection, a data race can
occur.

For more information, see “Concurrency Defects”.

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option in the user interface of the desktop products, first select the option Configure
multitasking manually.

Tips
• In Code Prover, the functions representing cyclic tasks must have the form

void functionName (void)

• If a function func takes arguments or returns a value, you cannot use it directly as a cyclic task.
To use func as a cyclic task:, call func from a wrapper void-void function and specify the
wrapper as a cyclic task. See “Configuring Polyspace Multitasking Analysis Manually”.

• If you specify a function as a cyclic task, you must provide its definition. Otherwise, a Code Prover
verification stops with the error message:

task func_name must be a userdef function without parameters

A Bug Finder analysis continues but does not consider the function as a cyclic task.
• If you run a file by file verification in Code Prover, your multitasking options are ignored. See

Verify files independently (-unit-by-unit).
• The Polyspace multitasking analysis assumes that a task cannot interrupt itself.

Command-Line Information
Parameter: -cyclic-tasks

2 Analysis Options

2-122

No Default
Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -cyclic-tasks
func_1,func_2
Example (Code Prover): polyspace-code-prover -sources file_name -cyclic-tasks
func_1,func_2
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
cyclic-tasks func_1,func_2
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
cyclic-tasks func_1,func_2

See Also
-preemptable-interrupts | -non-preemptable-tasks | Interrupts (-interrupts) |
Tasks (-entry-points) | Show global variable sharing and usage only (-shared-
variables-mode)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Preemptable Interrupts and Nonpreemptable Tasks”

Introduced in R2016b

 Cyclic tasks (-cyclic-tasks)

2-123

Interrupts (-interrupts)
Specify functions that represent nonpreemptable interrupts

Description
This option affects a Bug Finder analysis only. The option is not available for code generated from
MATLAB code or Simulink models.

Specify functions that represent nonpreemptable interrupts. The analysis assumes that operations in
the function body:

• Can execute any number of times.
• Cannot be interrupted by noncyclic tasks, cyclic tasks or other interrupts. Noncyclic tasks are
specified with the option Tasks (-entry-points) and cyclic tasks are specified with the option
Cyclic tasks (-cyclic-tasks).

To model an interrupt that can be interrupted by other interrupts, specify the interrupt as
preemptable. See -preemptable-interrupts. For examples, see “Define Preemptable
Interrupts and Nonpreemptable Tasks”.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 2-125 for other options you must also enable.

Command line and options file: Use the option -interrupts. See “Command-Line Information”
on page 2-125.

Why Use This Option

Use this option to specify interrupts in your multitasking code. The functions that you specify must
have the prototype:

void function_name(void);

A Code Prover verification uses your specifications to determine:

• Whether a global variable is shared.

See “Global Variables” (Polyspace Code Prover).
• Whether a run-time error can occur.

For instance, if the operation var=INT_MAX; occurs in an interrupt and var++ occurs in the body
of a task, an overflow can occur if the interrupt excepts before the operation in the task. The
analysis detects the possible overflow.

A Bug Finder analysis uses your specifications to look for concurrency defects. For the Data race
defect, the analysis establishes the following relations between interrupts and other tasks:

• Data race between two interrupts:

2 Analysis Options

2-124

Two operations in different interrupts cannot interfere with each other (unless one of the
interrupts is preemptable). Even if the operations use the same shared variable without
protection, a data race cannot occur.

• Data race between an interrupt and another task:

• An operation in an interrupt cannot interfere with an atomic operation in any other task. Even
if the operations use the same shared variable without protection, a data race cannot occur.

• An operation in an interrupt can interfere with a nonatomic operation in any other task unless
the other task is also a nonpreemptable interrupt. Therefore, if the operations use the same
shared variable without protection, a data race can occur.

See “Concurrency Defects”.

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option in the user interface of the desktop products, first select the option Configure
multitasking manually.

Tips
• In Code Prover, the functions representing interrupts must have the form

void functionName (void)

• If a function func takes arguments or returns a value, you cannot use it directly as an interrupt.
To use func as an interrupt, call func from a wrapper void-void function and specify the
wrapper as an interrupt. See “Configuring Polyspace Multitasking Analysis Manually”.

• If you specify a function as an interrupt, you must provide its definition. Otherwise, a Code Prover
verification stops with the error message:

task func_name must be a userdef function without parameters

A Bug Finder analysis continues but does not consider the function as an interrupt.
• If you run a file by file verification in Code Prover, your multitasking options are ignored. See

Verify files independently (-unit-by-unit).
• The Polyspace multitasking analysis assumes that an interrupt cannot interrupt itself.

Command-Line Information
Parameter: -interrupts
No Default

 Interrupts (-interrupts)

2-125

Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -interrupts
func_1,func_2
Example (Code Prover): polyspace-code-prover -sources file_name -interrupts
func_1,func_2
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
interrupts func_1,func_2
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
interrupts func_1,func_2

See Also
-preemptable-interrupts | -non-preemptable-tasks | Tasks (-entry-points) | Cyclic
tasks (-cyclic-tasks) | Show global variable sharing and usage only (-shared-
variables-mode)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Preemptable Interrupts and Nonpreemptable Tasks”

Introduced in R2016b

2 Analysis Options

2-126

Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts)
Specify routines that disable and reenable interrupts.

Description
This option affects a Bug Finder analysis only. The option is not available for code generated from
MATLAB code or Simulink models.

Specify a routine that disables all interrupts and a routine that reenables all interrupts.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 2-128 for other options you must also enable.

Command line and options file: Use the option -routine-disable-interrupts and -
routine-enable-interrupts. See “Command-Line Information” on page 2-129.

Why Use This Option

A Bug Finder analysis uses the information when looking for data race defects. For instance, in the
following code, the function disable_all_interrupts disables all interrupts until the function
enable_all_interrupts is called. Even if task, isr1 and isr2 run concurrently, the operations
x=0 or x=1 cannot interrupt the operation x++. There are no data race defects.

int x;

void isr1() {
 x = 0;
}

void isr2() {
 x = 1;
}

void task() {
 disable_all_interrupts();
 x++;
 enable_all_interrupts();
}

Settings
No Default

• In Disabling routine, enter the routine that disables all interrupts.
• In Enabling routine, enter the routine that reenables all interrupts.

Enter function names or choose from a list.

 Disabling all interrupts (-routine-disable-interrupts -routine-enable-interrupts)

2-127

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option in the user interface of the desktop products, first select the option Configure
multitasking manually.

Tips
• The routine that you specify for the option disables preemption by all:

• Non-cyclic tasks.

See Tasks (-entry-points).
• Cyclic tasks.

See Cyclic tasks (-cyclic-tasks).
• Interrupts.

See Interrupts (-interrupts).

In other words, the analysis considers that the body of operations between the disabling routine
and the enabling routine is atomic and not interruptible at all.

• Protection via disabling interrupts is conceptually different from protection via critical sections.

In the Polyspace multitasking model, to protect two sections of code from each other via critical
sections, you have to embed them in the same critical section. In other words, you have to place
the two sections between calls to the same lock and unlock function.

For instance, suppose you use critical sections as follows:

void isr1() {
 begin_critical_section();
 x = 0;
 end_critical_section();
}

void isr2() {
 x = 1;
}

void task() {
 begin_critical_section();
 x++;
 end_critical_section();
}

Here, the operation x++ is protected from the operation x=0 in isr1, but not from the operation
x=1 in isr2. If the function begin_critical_section disabled all interrupts, calling it before
x++ would have been sufficient to protect it.

2 Analysis Options

2-128

Typically, you use one pair of routines in your code to disable and reenable interrupts, but you can
have many pairs of lock and unlock functions that implement critical sections.

• The routines that disable and enable interrupts must be functions. For instance, if you define a
function-like macro:

#define disable_interrupt() interrupt_flag=0

You cannot use the macro disable_interrupt() as routine disabling interrupts.

Command-Line Information
Parameter: -routine-disable-interrupts | -routine-enable-interrupts
No Default
Value: function_name
Example (Bug Finder): polyspace-bug-finder -sources file_name -routine-disable-
interrupts atomic_section_begins -routine-enable-interrupts
atomic_section_ends
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
routine-disable-interrupts atomic_section_begins -routine-enable-interrupts
atomic_section_ends

See Also
Tasks (-entry-points) | Cyclic tasks (-cyclic-tasks) | Interrupts (-interrupts) |
Critical section details (-critical-section-begin -critical-section-end) |
Temporally exclusive tasks (-temporal-exclusions-file) | -non-preemptable-tasks
| -preemptable-interrupts

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Atomic Operations in Multitasking Code”
“Concurrency Defects”

Introduced in R2017a

 Disabling all interrupts (-routine-disable-interrupts -routine-enable-interrupts)

2-129

Critical section details (-critical-section-begin
-critical-section-end)
Specify functions that begin and end critical sections

Description
This option is not available for code generated from MATLAB code or Simulink models.

When verifying multitasking code, Polyspace considers that a critical section lies between calls to a
lock function and an unlock function.

lock();
/* Critical section code */
unlock();

Specify the lock and unlock function names for your critical sections (for instance, lock() and
unlock() in above example).

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 2-131 for other options you must also enable.

Command line and options file: Use the option -critical-section-begin and -critical-
section-end. See “Command-Line Information” on page 2-132.

Why Use This Option

When a task my_task calls a lock function my_lock, other tasks calling my_lock must wait till
my_task calls the corresponding unlock function. Therefore, critical section operations in the other
tasks cannot interrupt critical section operations in my_task.

For instance, the operation var++ in my_task1 and my_task2 cannot interrupt each other.

int var;

void my_task1() {
 my_lock();
 var++;
 my_unlock();
}

void my_task2() {
 my_lock();
 var++;
 my_unlock();
}

Using your specifications, a Code Prover verification checks if your placement of lock and unlock
functions protects all shared variables from concurrent access. When determining values of those
variables, the verification accounts for the fact that critical sections in different tasks do not interrupt
each other.

2 Analysis Options

2-130

A Bug Finder analysis uses the critical section information to look for concurrency defects such as
data race and deadlock.

Settings
No Default

Click to add a field.

• In Starting routine, enter name of lock function.
• In Ending routine, enter name of unlock function.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option in the user interface of the desktop products, first select the option Configure
multitasking manually.

Tips
• You can also use primitives such as the POSIX functions pthread_mutex_lock and

pthread_mutex_unlock to begin and end critical sections. For a list of primitives that Polyspace
can detect automatically, see “Auto-Detection of Thread Creation and Critical Section in
Polyspace”.

• For function calls that begin and end critical sections, Polyspace ignores the function arguments.

For instance, Polyspace treats the two code sections below as the same critical section.

Starting routine: my_lock
Ending routine: my_unlock
void my_task1() {
 my_lock(1);
 /* Critical section code */
 my_unlock(1);
}

void my_task2() {
 my_lock(2);
 /* Critical section code */
 my_unlock(2);
}

To work around the limitation, see “Define Critical Sections with Functions That Take Arguments”.
• The functions that begin and end critical sections must be functions. For instance, if you define a

function-like macro:

#define init() num_locks++

You cannot use the macro init() to begin or end a critical section.
• When you use multiple critical sections, you can run into issues such as:

 Critical section details (-critical-section-begin -critical-section-end)

2-131

• Deadlock: A sequence of calls to lock functions causes two tasks to block each other.
• Double lock: A lock function is called twice in a task without an intermediate call to an unlock

function.

Use Polyspace Bug Finder to detect such issues. See “Concurrency Defects”.

Then, use Polyspace Code Prover™ to detect if your placement of lock and unlock functions
actually protects all shared variables from concurrent access. See “Global Variables” (Polyspace
Code Prover).

• When considering possible values of shared variables, a Code Prover verification takes into
account your specifications for critical sections.

However, if the shared variable is a pointer or array, the software uses the specifications only to
determine if the variable is a shared protected global variable. For run-time error checking, the
software does not take your specifications into account and considers that the variable can be
concurrently accessed.

Command-Line Information
Parameter: -critical-section-begin | -critical-section-end
No Default
Value: function1:cs1[,function2:cs2[,...]]
Example (Bug Finder): polyspace-bug_finder -sources file_name -critical-section-
begin func_begin:cs1 -critical-section-end func_end:cs1
Example (Code Prover): polyspace-code-prover -sources file_name -critical-
section-begin func_begin:cs1 -critical-section-end func_end:cs1
Example (Bug Finder Server): polyspace-bug_finder-server -sources file_name -
critical-section-begin func_begin:cs1 -critical-section-end func_end:cs1
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
critical-section-begin func_begin:cs1 -critical-section-end func_end:cs1

See Also
Tasks (-entry-points) | Cyclic tasks (-cyclic-tasks) | Interrupts (-interrupts) |
Temporally exclusive tasks (-temporal-exclusions-file) | -non-preemptable-tasks
| -preemptable-interrupts

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Atomic Operations in Multitasking Code”
“Define Critical Sections with Functions That Take Arguments”
“Concurrency Defects”
“Global Variables” (Polyspace Code Prover)

2 Analysis Options

2-132

Temporally exclusive tasks (-temporal-
exclusions-file)
Specify entry point functions that cannot execute concurrently

Description
This option is not available for code generated from MATLAB code or Simulink models.

Specify entry point functions that cannot execute concurrently. The execution of the functions cannot
overlap with each other.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 2-133 for other options you must also enable.

Command line and options file: Use the option -temporal-exclusions-file. See “Command-
Line Information” on page 2-134.

Why Use This Option

Use this option to implement temporal exclusion in multitasking code.

A Code Prover verification checks if specifying certain tasks as temporally exclusive protects all
shared variables from concurrent access. When determining possible values of those shared
variables, the verification accounts for the fact that temporally exclusive tasks do not interrupt each
other. See “Global Variables” (Polyspace Code Prover).

A Bug Finder analysis uses the temporal exclusion information to look for concurrency defects such
as data race. See “Concurrency Defects”.

Settings
No Default

Click to add a field. In each field, enter a space-separated list of functions. Polyspace considers
that the functions in the list cannot execute concurrently.

Enter the function names manually or choose from a list.

•
Click to add a field and enter the function names.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option in the user interface of the desktop products, first select the option Configure
multitasking manually.

 Temporally exclusive tasks (-temporal-exclusions-file)

2-133

Tips
When considering possible values of shared variables, a Code Prover verification takes into account
your specifications for temporally exclusive tasks.

However, if the shared variable is a pointer or array, the software uses the specifications only to
determine if the variable is a shared protected global variable. For run-time error checking in Code
Prover, the software does not take your specifications into account and considers that the variable
can be concurrently accessed.

Command-Line Information
For the command-line option, create a temporal exclusions file in the following format:

• On each line, enter one group of temporally excluded tasks.
• Within a line, the tasks are separated by spaces.

To enter comments, begin with #. For an example, see the file polyspaceroot\polyspace
\examples\cxx\Code_Prover_Example\sources\temporal_exclusions.txt. Here,
polyspaceroot is the Polyspace installation folder, for example C:\Program Files\Polyspace
\R2019a.
Parameter: -temporal-exclusions-file
No Default
Value: Name of temporal exclusions file
Example (Bug Finder): polyspace-bug-finder -sources file_name -temporal-
exclusions-file "C:\exclusions_file.txt"
Example (Code Prover): polyspace-code-prover -sources file_name -temporal-
exclusions-file "C:\exclusions_file.txt"
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
temporal-exclusions-file "C:\exclusions_file.txt"
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
temporal-exclusions-file "C:\exclusions_file.txt"

See Also
Tasks (-entry-points) | Cyclic tasks (-cyclic-tasks) | Interrupts (-interrupts) |
Critical section details (-critical-section-begin -critical-section-end) | -
non-preemptable-tasks | -preemptable-interrupts

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Atomic Operations in Multitasking Code”
“Concurrency Defects”
“Global Variables” (Polyspace Code Prover)

2 Analysis Options

2-134

Set checkers by file (-checkers-selection-file)
Define a custom set of coding standards checks for your analysis

Description
Specify the full path of a configuration XML file where you define custom selections of coding
standards checkers. In the same XML file, you can specify a custom selection of checkers for each of
these coding standards:

• MISRA C:2004
• MISRA C:2012
• MISRA C++
• JSF AV C++
• AUTOSAR C++14 (Bug Finder only)
• CERT® C (Bug Finder only)
• CERT C++ (Bug Finder only)
• ISO/IEC TS 17961 (Bug Finder only)
• Polyspace Guidelines (Bug Finder only)

You can also define custom rules to match identifiers in your code to text patterns you specify.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node.

Command line and options file: Use the option -checkers-selection-file. See “Command-
Line Information” on page 2-138.

When you enable this option, set the coding standards that you select to from-file to use the
specified configuration file.

Why Use This Option

Use this option to define a selection of coding standard checkers specific to your organization. The
configuration of different coding standards is consolidated in a single XML file that you can reuse
across projects to enforce common coding standards.

Settings
 On

Polyspace checks your code against the selection of coding standard checkers, or the custom
rules, defined in the configuration file that you specify.

To create a configuration file by using the Polyspace Desktop, in the Configuration, select
Coding Standards & Code Metrics. To open the Checkers selection interface, click the folder

 Set checkers by file (-checkers-selection-file)

2-135

() on the right pane. Choose the coding standards that you want to configure in the left pane,
and then select the rules that you want to activate in the right pane.

To create a configuration file by using Polyspace As you Code IDE plugins, refer to the
documentation of your specific plugin.

To use or update an existing file, enter the full path to the file in the in the Select file field of the
Checkers selection dialog box. Alternatively, click Browse in the Findings selection window
and browse to the existing file.

2 Analysis Options

2-136

 Off (default)
Polyspace does not check your code against the selection of coding standard checkers, or the
custom rules, defined in the configuration file you specify.

 Set checkers by file (-checkers-selection-file)

2-137

Tips
• For the Polyspace desktop products, specify the coding standard configuration in the Polyspace

User Interface. When you save the configuration, an XML file is created for use in the current and
other projects.

• For the Polyspace Server products, you have to create a coding standard XML. Depending on the
standard that you want to enable, make a writeable copy of one of the files in
polyspaceserverroot\help\toolbox\bugfinder\examples\coding_standards_XML.
Turn off rules by using entries in the XML file (all rules from a standard are enabled in the
template). Here, polyspaceserverroot is the root installation folder for the Polyspace Server
products, for instance, C:\Program Files\Polyspace Server\R2019a.

For instance, to turn off MISRA C:2012 rule 8.1, in the file misra_c_2012_rules.xml, use this
entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="off">
 </check>
 ...
 </section>
 ...
</standard>

For a full list of rule IDs and section names, see:

• “AUTOSAR C++14 Rules”
• “CERT C Rules and Recommendations”
• “CERT C++ Rules”
• “ISO/IEC TS 17961 Rules”
• “Custom Coding Rules”
• “JSF C++ Rules”
• “MISRA C:2004 Rules”
• “MISRA C:2012 Directives and Rules”
• “MISRA C++:2008 Rules”
• “Guidelines”

Note The XML format of the checker configuration file might change in future releases.

Command-Line Information
Parameter: -checkers-selection-file
Value: Full path of XML configuration file
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -checkers-
selection-file "C:\Standards\custom_config.xml" -misra3 from-file
Example (Code Prover): polyspace-code-prover -sources file_name -checkers-
selection-file "C:\Standards\custom_config.xml" -misra3 from-file

2 Analysis Options

2-138

Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
checkers-selection-file "C:\Standards\custom_config.xml" -misra3 from-file
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
checkers-selection-file "C:\Standards\custom_config.xml" -misra3 from-file

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”

 Set checkers by file (-checkers-selection-file)

2-139

Check MISRA C:2004 (-misra2)
Check for violation of MISRA C:2004 rules

Description
Specify whether to check for violation of MISRA C:2004 rules. Each value of the option corresponds
to a subset of rules to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 2-141 for other options that you
must also enable.

Command line and options file: Use the option -misra2. See “Command-Line Information” on
page 2-141.

Why Use This Option

Use this option to specify the subset of MISRA C:2004 rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding rule violation, Polyspace assigns a symbol to the keyword or identifier relevant to the
violation.

Settings
Default: required-rules

required-rules
Check required coding rules.

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are checked in the
compilation phase of the analysis.

system-decidable-rules
Check rules in the single-unit-rules subset and some rules that apply to the collective set of
program files. The additional rules are the less complex rules that apply at the integration level.
These rules can be checked only at the integration level because the rules involve more than one
translation unit. These rules are checked in the compilation and linking phases of the analysis.

all-rules
Check required and advisory coding rules.

SQO-subset1
Check only a subset of MISRA C rules. In Polyspace Code Prover, observing these rules can
reduce the number of unproven results. For more information, see “Software Quality Objective
Subsets (C:2004)”.

2 Analysis Options

2-140

SQO-subset2
Check a subset of rules including SQO-subset1 and some additional rules. In Polyspace Code
Prover, observing these rules can further reduce the number of unproven results. For more
information, see “Software Quality Objective Subsets (C:2004)”.

from-file
Specify an XML file where you configure a custom selection of checkers for this coding standard.

To create a configuration file, click , then select the rules and recommendations you want
to check for this coding standard from the right pane of the Findings selection window. Save
the file.

To use or update an existing configuration file, in the Findings selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-CPP.

For projects with mixed C and C++ code, the MISRA C:2004 checker analyzes only .c files.
• If you set Source code language (-lang) to C-CPP, you can activate a C coding rule checker

and a C++ coding rule checker. When you have both C and C++ coding rule checkers active, to
avoid duplicate results, Polyspace does not produce the C coding rules found in the linking phase
(such as MISRA C:2012 Rule 8.3).

Tips
• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the violations and
rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the violations and
rerun verification.

• If you select the option single-unit-rules or system-decidable-rules and choose to
detect coding rule violations only, the analysis can complete quicker than checking other rules.
For more information, see “Coding Rule Subsets Checked Early in Analysis”.

Command-Line Information
Parameter: -misra2
Value: required-rules | all-rules | SQO-subset1 | SQO-subset2 | single-unit-rules |
system-decidable-rules | from-file
Example (Bug Finder): polyspace-bug-finder -sources file_name -misra2 all-rules
Example (Code Prover): polyspace-code-prover -sources file_name -misra2 all-
rules
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
misra2 all-rules

 Check MISRA C:2004 (-misra2)

2-141

Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
misra2 all-rules

Compatibility Considerations
Polyspace no longer supports text format for coding rules file (only XML format supported)
Errors starting in R2021b

Since R2019a, the file where you define a custom selection of coding standard checkers uses the XML
format. You can save custom selections for all the coding standards that Polyspace supports in the
same file.

In previous releases, you saved your custom selection for each coding standard in separate text files.
Polyspace no longer supports custom coding standard files in text format.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format, Polyspace
automatically updates and consolidates those files into a single XML file. If your project has
conflicting configurations that refer to the same custom selection file, the software saves the
consolidated coding standard selection for each configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code Metrics

node of the Configuration pane, click . In the Checkers selection window, select the files then
click Save Changes. Polyspace consolidates the files into a single XML files, and saves this file as
filename.xml, where filename is the name of the first selected file alphabetically. For instance, if
you select foo.conf and bar.conf, they are saved as bar.conf.xml.

Command-line/ IDEs:

In the command-line or in the IDE extensions, using text files as input to -misra2 results in an error.
To select a custom selection of MISRA C:2004 rules, use an XML file.

Use the file misra_c_2004_rules.xml as a template to create the XML file where you define a
custom selection of coding standard checkers. This template file is in polyspaceroot\help
\toolbox\bugfinder\examples\coding_standards_XML . Here, polyspaceroot is the root
installation folder for the Polyspace products, for instance, C:\Program Files\Polyspace
\R2021b. To update your script, see this table

Option Use Instead
-misra2 "custom_standard.conf" -checkers-selection-file

misra_c_2004_rules.xml -misra2 from-
file

See:

• “Configure Coding Rules Checking”
• “Setting Checkers in Polyspace as You Code”

Note The XML format of the checker configuration file can change in future releases.

2 Analysis Options

2-142

Example of Configuration File in XML Format

To turn on MISRA C:2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For a full list of rule IDs and section names, see:

• “AUTOSAR C++14 Rules”
• “CERT C Rules and Recommendations”
• “CERT C++ Rules”
• “ISO/IEC TS 17961 Rules”
• “Custom Coding Rules”
• “JSF C++ Rules”
• “MISRA C:2004 Rules”
• “MISRA C:2012 Directives and Rules”
• “MISRA C++:2008 Rules”
• “Guidelines”

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“MISRA C:2004 Rules”

 Check MISRA C:2004 (-misra2)

2-143

Check MISRA AC AGC (-misra-ac-agc)
Check for violation of MISRA AC AGC rules

Description
Specify whether to check for violation of rules specified by MISRA AC AGC Guidelines for the
Application of MISRA-C:2004 in the Context of Automatic Code Generation. Each value of the option
corresponds to a subset of rules to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 2-145 for other options that you
must also enable.

Command line and options file: Use the option -misra-ac-agc. See “Command-Line
Information” on page 2-145.

Why Use This Option

Use this option to specify the subset of MISRA C:2004 AC AGC rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding rule violation, Polyspace assigns a symbol to the keyword or identifier relevant to the
violation.

Settings
Default: OBL-rules

OBL-rules
Check required coding rules.

OBL-REC-rules
Check required and recommended rules.

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are checked in the
compilation phase of the analysis.

system-decidable-rules
Check rules in the single-unit-rules subset and some rules that apply to the collective set of
program files. The additional rules are the less complex rules that apply at the integration level.
These rules can be checked only at the integration level because the rules involve more than one
translation unit. These rules are checked in the compilation and linking phases of the analysis.

all-rules
Check required, recommended and readability-related rules.

SQO-subset1
Check a subset of rules. In Polyspace Code Prover, observing these rules can reduce the number
of unproven results. For more information, see “Software Quality Objective Subsets (AC AGC)”.

2 Analysis Options

2-144

SQO-subset2
Check a subset of rules including SQO-subset1 and some additional rules. In Polyspace Code
Prover, observing these rules can further reduce the number of unproven results. For more
information, see “Software Quality Objective Subsets (AC AGC)”.

from-file
Specify an XML file where you configure a custom selection of checkers for this coding standard.

To create a configuration file, click , then select the rules and recommendations you want
to check for this coding standard from the right pane of the Findings selection window. Save
the file.

To use or update an existing configuration file, in the Findings selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-CPP.

For projects with mixed C and C++ code, the MISRA AC AGC checker analyzes only .c files.
• If you set Source code language (-lang) to C-CPP, you can activate a C coding rule checker

and a C++ coding rule checker. When you have both C and C++ coding rule checkers active, to
avoid duplicate results, Polyspace does not produce the C coding rules found in the linking phase
(such as MISRA C:2012 Rule 8.3).

Tips
• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the violations and
rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the violations and
rerun verification.

• If you select the option single-unit-rules or system-decidable-rules and choose to
detect coding rule violations only, the analysis can complete quicker than checking other rules.
For more information, see “Coding Rule Subsets Checked Early in Analysis”.

Command-Line Information
Parameter: -misra-ac-agc
Value: OBL-rules | OBL-REC-rules | single-unit-rules | system-decidable-rules | all-
rules | SQO-subset1 | SQO-subset2 | from-file
Example (Bug Finder): polyspace-bug-finder -sources file_name -misra-ac-agc all-
rules
Example (Code Prover): polyspace-code-prover -sources file_name -misra-ac-agc
all-rules
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
misra-ac-agc all-rules

 Check MISRA AC AGC (-misra-ac-agc)

2-145

Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
misra-ac-agc all-rules

Compatibility Considerations
Polyspace no longer supports text format for coding rules file (only XML format supported)
Errors starting in R2021b

Since R2019a, the file where you define a custom selection of coding standard checkers uses the XML
format. You can save custom selections for all the coding standards that Polyspace supports in the
same file.

In previous releases, you saved your custom selection for each coding standard in separate text files.
Polyspace no longer supports custom coding standard files in text format.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format, Polyspace
automatically updates and consolidates those files into a single XML file. If your project has
conflicting configurations that refer to the same custom selection file, the software saves the
consolidated coding standard selection for each configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code Metrics

node of the Configuration pane, click . In the Checkers selection window, select the files then
click Save Changes. Polyspace consolidates the files into a single XML files, and saves this file as
filename.xml, where filename is the name of the first selected file alphabetically. For instance, if
you select foo.conf and bar.conf, they are saved as bar.conf.xml.

Command-line/ IDEs:

In the command-line or in the IDE extensions, using text files as input to -misra-ac-agc results in
an error. To select a custom selection of MISRA AC AGC rules, use an XML file.

Use the file misra_ac_agc_rules.xml as a template to create the XML file where you define a
custom selection of coding standard checkers. This template file is in polyspaceroot\help
\toolbox\bugfinder\examples\coding_standards_XML. Here, polyspaceroot is the root
installation folder for the Polyspace products, for instance, C:\Program Files\Polyspace
\R2021b. To update your script, see this table

Option Use Instead
-misra-ac-agc "custom_standard.conf" -checkers-selection-file

misra_ac_agc_rules.xml -misra-ac-agc
from-file

See:

• “Configure Coding Rules Checking”
• “Setting Checkers in Polyspace as You Code”

Note The XML format of the checker configuration file can change in future releases.

2 Analysis Options

2-146

Example of Configuration File in XML Format

To turn on MISRA C:2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For a full list of rule IDs and section names, see:

• “AUTOSAR C++14 Rules”
• “CERT C Rules and Recommendations”
• “CERT C++ Rules”
• “ISO/IEC TS 17961 Rules”
• “Custom Coding Rules”
• “JSF C++ Rules”
• “MISRA C:2004 Rules”
• “MISRA C:2012 Directives and Rules”
• “MISRA C++:2008 Rules”
• “Guidelines”

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“MISRA C:2004 Rules”

 Check MISRA AC AGC (-misra-ac-agc)

2-147

Check MISRA C:2012 (-misra3)
Check for violations of MISRA C:2012 rules and directives

Description
Specify whether to check for violations of MISRA C:2012 guidelines. Each value of the option
corresponds to a subset of guidelines to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 2-149 for other options that you
must also enable.

Command line and options file: Use the option -misra3. See “Command-Line Information” on
page 2-150.

Why Use This Option

Use this option to specify the subset of MISRA C:2012 rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding rule violation, Polyspace assigns a symbol to the keyword or identifier relevant to the
violation.

Settings
Default: mandatory-required

mandatory
Check for mandatory guidelines.

mandatory-required
Check for mandatory and required guidelines.

• Mandatory guidelines: Your code must comply with these guidelines.
• Required guidelines: You may deviate from these guidelines. However, you must complete a

formal deviation record, and your deviation must be authorized.

See Section 5.4 of the MISRA C:2012 guidelines. For an example of a deviation record, see
Appendix I of the MISRA C:2012 guidelines.

Note To turn off some required guidelines, instead of mandatory-required select custom. To

clear specific guidelines, click . In the Comment column, enter your rationale for
disabling a guideline. For instance, you can enter the Deviation ID that refers to a deviation
record for the guideline. The rationale appears in your generated report.

2 Analysis Options

2-148

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are checked in the
compilation phase of the analysis.

system-decidable-rules
Check rules in the single-unit-rules subset and some rules that apply to the collective set of
program files. The additional rules are the less complex rules that apply at the integration level.
These rules can be checked only at the integration level because the rules involve more than one
translation unit. These rules are checked in the compilation and linking phases of the analysis.

all
Check for mandatory, required, and advisory guidelines.

SQO-subset1
Check for only a subset of guidelines. In Polyspace Code Prover, observing these rules can reduce
the number of unproven results. For more information, see “Software Quality Objective Subsets
(C:2012)”.

SQO-subset2
Check for the subset SQO-subset1, plus some additional rules. In Polyspace Code Prover,
observing these rules can further reduce the number of unproven results. For more information,
see “Software Quality Objective Subsets (C:2012)”.

from-file
Specify an XML file where you configure a custom selection of checkers for this coding standard.

To create a configuration file, click , then select the rules and recommendations you want
to check for this coding standard from the right pane of the Findings selection window. Save
the file.

To use or update an existing configuration file, in the Findings selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-CPP.

For projects with mixed C and C++ code, the MISRA C:2012 checker analyzes only .c files.
• If you set Source code language (-lang) to C-CPP, you can activate a C coding rule checker

and a C++ coding rule checker. When you have both C and C++ coding rule checkers active, to
avoid duplicate results, Polyspace does not produce the C coding rules found in the linking phase
(such as MISRA C:2012 Rule 8.3).

Tips
• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the violations and
rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the violations and
rerun verification.

 Check MISRA C:2012 (-misra3)

2-149

• If you select the option single-unit-rules or system-decidable-rules and choose to
detect coding rule violations only, the analysis can complete quicker than checking other rules.
For more information, see “Coding Rule Subsets Checked Early in Analysis”.

• Polyspace Code Prover does not support checking of the following:

• MISRA C:2012 Directive 4.13 and 4.14
• MISRA C:2012 Rule 21.13, 21.14, and 21.17 - 21.20
• MISRA C:2012 Rule 22.1 - 22.4 and 22.6 - 22.10

For support of all MISRA C:2012 rules including the security guidelines in Amendment 1, use
Polyspace Bug Finder.

• In code generated by using Embedded Coder®, there are known deviations from MISRA C:2012.
See “Deviations Rationale for MISRA C:2012 Compliance” (Embedded Coder).

Command-Line Information
Parameter: -misra3
Value: mandatory | mandatory-required | single-unit-rules | system-decidable-rules |
all | SQO-subset1 | SQO-subset2 | from-file
Example (Bug Finder): polyspace-bug-finder -lang c -sources file_name -misra3
mandatory-required
Example (Code Prover): polyspace-code-prover -lang c -sources file_name -misra3
mandatory-required
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
file_name -misra3 mandatory-required
Example (Code Prover Server): polyspace-code-prover-server -lang c -sources
file_name -misra3 mandatory-required

Compatibility Considerations
Polyspace no longer supports text format for coding rules file (only XML format supported)
Errors starting in R2021b

Since R2019a, the file where you define a custom selection of coding standard checkers uses the XML
format. You can save custom selections for all the coding standards that Polyspace supports in the
same file.

In previous releases, you saved your custom selection for each coding standard in separate text files.
Polyspace no longer supports custom coding standard files in text format.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format, Polyspace
automatically updates and consolidates those files into a single XML file. If your project has
conflicting configurations that refer to the same custom selection file, the software saves the
consolidated coding standard selection for each configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code Metrics

node of the Configuration pane, click . In the Checkers selection window, select the files then
click Save Changes. Polyspace consolidates the files into a single XML files, and saves this file as
filename.xml, where filename is the name of the first selected file alphabetically. For instance, if
you select foo.conf and bar.conf, they are saved as bar.conf.xml.

2 Analysis Options

2-150

Command-line/ IDEs:

In the command-line or in the IDE extensions, using text files as input to -misra3 results in an error.
To select a custom selection of MISRA C:2012 rules and directives, use an XML file.

Use the file misra_c_2012_rules.xml as a template to create the XML file where you define the
custom selection. This template file is located in polyspaceroot\help\toolbox\bugfinder
\examples\coding_standards_XML. Here, polyspaceroot is the root installation folder for the
Polyspace products, for instance, C:\Program Files\Polyspace\R2021b. To update your script,
see this table

Option Use Instead
-misra3 "custom_standard.conf" -checkers-selection-file

misra_c_2012_rules.xml -misra3 from-
file

See:

• “Configure Coding Rules Checking”
• “Setting Checkers in Polyspace as You Code”

Note The XML format of the checker configuration file can change in future releases.

Example of Configuration File in XML Format

To turn on MISRA C:2012 rule 8.1, use this entry in the XML file:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For a full list of rule IDs and section names, see:

• “AUTOSAR C++14 Rules”
• “CERT C Rules and Recommendations”
• “CERT C++ Rules”
• “ISO/IEC TS 17961 Rules”
• “Custom Coding Rules”
• “JSF C++ Rules”
• “MISRA C:2004 Rules”
• “MISRA C:2012 Directives and Rules”
• “MISRA C++:2008 Rules”

 Check MISRA C:2012 (-misra3)

2-151

• “Guidelines”

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“MISRA C:2012 Directives and Rules”

2 Analysis Options

2-152

Use generated code requirements (-misra3-agc-
mode)
Check for violations of MISRA C:2012 rules and directives that apply to generated code

Description
Specify whether to use the MISRA C:2012 categories for automatically generated code. This option
changes which rules are mandatory, required, or advisory.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependency” on page 2-154 for other options that you must
also enable.

Command line and options file: Use the option -misra3-agc-mode. See “Command-Line
Information” on page 2-154.

Why Use This Option

Use this option to specify that you are checking for MISRA C:2012 rules in generated code. The
option modifies the MISRA C:2012 subsets so that they are tailored for generated code.

Settings
 Off (default)

Use the normal categories (mandatory, required, advisory) for MISRA C:2012 coding guideline
checking.

 On (default for analyses from Simulink)
Use the generated code categories (mandatory, required, advisory, readability) for MISRA C:2012
coding guideline checking.

For analyses started from the Simulink plug-in, this option is the default value.

Category changed to Advisory

These rules are changed to advisory:

• 5.3
• 7.1
• 8.4, 8.5, 8.14
• 10.1, 10.2, 10.3, 10.4, 10.6, 10.7, 10.8
• 14.1, 14.4
• 15.2, 15.3
• 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7

 Use generated code requirements (-misra3-agc-mode)

2-153

• 20.8

Category changed to Readability

These guidelines are changed to readability:

• Dir 4.5
• 2.3, 2.4, 2.5, 2.6, 2.7
• 5.9
• 7.2, 7.3
• 9.2, 9.3, 9.5
• 11.9
• 13.3
• 14.2
• 15.7
• 17.5, 17.7, 17.8
• 18.5
• 20.5

Dependency
To use this option, activate at least one MISRA C:2012 rule. To activate MISRA C:2012 rules, use
either of these:

• Use the option Check MISRA C:2012 (-misra3) to activate a preselected subset of the rules.
• Use the option Set checkers by file (-checkers-selection-file) alongside Check

MISRA C:2012 (-misra3) to activate a custom selection that is specified in an XML file.

When using an XML file to specify a custom selection, select at least one MISRA C:2012 rule in the
file.

Command-Line Information
Parameter: -misra3-agc-mode
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -misra3 all -
misra3-agc-mode
Example (Code Prover): polyspace-code-prover -sources file_name -misra3 all -
misra3-agc-mode
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
misra3 all -misra3-agc-mode
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
misra3 all -misra3-agc-mode

See Also
Do not generate results for (-do-not-generate-results-for) | Check MISRA C:2012
(-misra3)

2 Analysis Options

2-154

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“MISRA C:2012 Directives and Rules”

 Use generated code requirements (-misra3-agc-mode)

2-155

Effective boolean types (-boolean-types)
Specify data types that coding rule checker must treat as effectively Boolean

Description
Specify data types that the coding rule checker must treat as effectively Boolean. You can specify a
data type as effectively Boolean only if you have defined it through an enum or typedef statement in
your source code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 2-157 for other options that you
must also enable.

Command line and options file: Use the option -boolean-types. See “Command-Line
Information” on page 2-157.

Why Use This Option

Use this option to allow Polyspace to check the following coding rules:

• MISRA C: 2004 and MISRA AC AGC

Rule
Number

Rule Statement

12.6 Operands of logical operators, &&, ||, and !, should be effectively Boolean.
Expressions that are effectively Boolean should not be used as operands to other
operators.

13.2 Tests of a value against zero should be made explicit, unless the operand is
effectively Boolean.

15.4 A switch expression should not represent a value that is effectively Boolean.

• MISRA C: 2012

Rule
Number

Rule Statement

10.1 Operands shall not be of an inappropriate essential type
10.3 The value of an expression shall not be assigned to an object with a narrower

essential type or of a different essential type category
10.5 The value of an expression should not be cast to an inappropriate essential type
14.4 The controlling expression of an if statement and the controlling expression of an

iteration-statement shall have essentially Boolean type.
16.7 A switch-expression shall not have essentially Boolean type.

For example, in the following code, unless you specify myBool as effectively Boolean, Polyspace
detects a violation of MISRA C: 2012 rule 14.4.

2 Analysis Options

2-156

typedef int myBool;

void func1(void);
void func2(void);

void func(myBool flag) {
 if(flag)
 func1();
 else
 func2();
}

Settings
No Default

Click to add a field. Enter a type name that you want Polyspace to treat as Boolean.

Dependencies
This option is enabled only if you select one of these options:

• Check MISRA C:2004 (-misra2)
• Check MISRA AC AGC (-misra-ac-agc).
• Check MISRA C:2012 (-misra3)

Command-Line Information
Parameter: -boolean-types
Value: type1[,type2[,...]]
No Default
Example (Bug Finder): polyspace-bug-finder -sources filename -misra2 required-
rules -boolean-types boolean1_t,boolean2_t
Example (Code Prover): polyspace-code-prover -sources filename -misra2 required-
rules -boolean-types boolean1_t,boolean2_t
Example (Bug Finder Server): polyspace-bug-finder-server -sources filename -
misra2 required-rules -boolean-types boolean1_t,boolean2_t
Example (Code Prover Server): polyspace-code-prover-server -sources filename -
misra2 required-rules -boolean-types boolean1_t,boolean2_t

See Also
Check MISRA C:2004 (-misra2) | Check MISRA AC AGC (-misra-ac-agc) | Check MISRA
C:2012 (-misra3)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“MISRA C:2004 Rules”
“MISRA C:2012 Directives and Rules”

 Effective boolean types (-boolean-types)

2-157

Allowed pragmas (-allowed-pragmas)
Specify pragma directives that are documented

Description
Specify pragma directives that must not be flagged by MISRA C:2004 rule 3.4 or MISRA C++ rule
16-6-1. These rules require that you document all pragma directives.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 2-158 for other options that you
must also enable.

Command line and options file: Use the option -allowed-pragmas. See “Command-Line
Information” on page 2-159.

Why Use This Option

MISRA C:2004/MISRA AC AGC rule 3.4 and MISRA C++ rule 16-6-1 require that all pragma
directives are documented within the documentation of the compiler. If you list a pragma as
documented using this analysis option, Polyspace does not flag use of the pragma as a violation of
these rules.

Settings
No Default

Click to add a field. Enter the pragma name that you want Polyspace to ignore during coding rule
checking .

Dependencies
This option is enabled only if you select one of these options:

• Check MISRA C:2004 (-misra2)
• Check MISRA AC AGC (-misra-ac-agc).
• Check MISRA C++:2008 (-misra-cpp)

Tips
Enter the name of the pragma only excluding any argument. For instance, if you use the pragma
pack:

#pragma pack(n)

Enter only the name pack for this option.

2 Analysis Options

2-158

Command-Line Information
Parameter: -allowed-pragmas
Value: pragma1[,pragma2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources filename -misra-cpp
required-rules -allowed-pragmas pragma_01,pragma_02
Example (Code Prover): polyspace-code-prover -sources filename -misra-cpp
required-rules -allowed-pragmas pragma_01,pragma_02
Example (Bug Finder Server): polyspace-bug-finder-server -sources filename -
misra-cpp required-rules -allowed-pragmas pragma_01,pragma_02
Example (Code Prover Server): polyspace-code-prover-server -sources filename -
misra-cpp required-rules -allowed-pragmas pragma_01,pragma_02

See Also
Check MISRA C:2004 (-misra2) | Check MISRA AC AGC (-misra-ac-agc) | Check MISRA
C++:2008 (-misra-cpp)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“MISRA C:2004 Rules”
“MISRA C++:2008 Rules”

 Allowed pragmas (-allowed-pragmas)

2-159

Check custom rules (-custom-rules)
Follow naming conventions for identifiers

Description
Define naming conventions for identifiers and check your code against them.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node.

Command line and options file: Use the option -custom-rules. See “Command-Line
Information” on page 2-162.

Why Use This Option

Use this option to impose naming conventions on identifiers. Using a naming convention allows you to
easily determine the nature of an identifier from its name. For instance, if you define a naming
convention for structures, you can easily tell whether an identifier represents a structured variable or
not.

After analysis, the Results List pane lists violations of the naming conventions. On the Source pane,
for every violation, Polyspace assigns a symbol to the keyword or identifier relevant to the
violation.

For the full list of types on which you can apply naming conventions, see “Custom Coding Rules”.

Settings
 On

Polyspace matches identifiers in your code against text patterns you define. Define the text
patterns in a custom coding rules file. To create a coding rules file,

• Use the custom rules wizard:

1
Click . A Findings selection window opens.

2 The Custom node in the left pane is highlighted. Expand the nodes in the right pane to
select custom rule you want to check.

3 For every custom rule you want to check:

a Select On .
b In the Convention column, enter the error message you want to display if the rule is

violated.

For example, for rule 4.3, All struct fields must follow the specified pattern, you
can enter All struct fields must begin with s_. This message appears on
the Result Details pane if:

2 Analysis Options

2-160

• You specify the Pattern as s_[A-Za-z0-9_]+.
• A structure field in your code does not begin with s_.

c In the Pattern column, enter the text pattern.

For example, for rule 4.3, All struct fields must follow the specified pattern, you
can enter s_[A-Za-z0-9_]+. Polyspace reports violation of rule 4.3 if a structure
field does not begin with s_.

You can use Perl regular expressions to define patterns. For instance, you can use the
following expressions.

Expression Meaning
. Matches any single character except newline
[a-z0-9] Matches any single letter in the set a-z, or digit in

the set 0-9
[^a-e] Matches any single letter not in the set a-e
\d Matches any single digit
\w Matches any single alphanumeric character or _
x? Matches 0 or 1 occurrence of x
x* Matches 0 or more occurrences of x
x+ Matches 1 or more occurrences of x

For frequent patterns, you can use the following regular expressions:

• (?!__)[a-z0-9_]+(?!__), matches a text pattern that does not start and end
with two underscores.

int __text; //Does not match
int _text_; //Matches

• [a-z0-9_]+_(u8|u16|u32|s8|s16|s32) , matches a text pattern that ends
with a specific suffix.

int _text_; //Does not match
int _text_s16; //Matches
int _text_s33; // Does not match

• [a-z0-9_]+_(u8|u16|u32|s8|s16|s32)(_b3|_b8)? , matches a text pattern
that ends with a specific suffix and an optional second suffix.

int _text_s16; //Matches
int _text_s16_b8; //Matches

For a complete list of regular expressions, see Perl documentation.

To use or update an existing coding rules file, click to open the Findings selection
window then do one of the following:

• Enter the full path to the file in the field provided
• Click Browse and navigate to the file location.

 Check custom rules (-custom-rules)

2-161

https://perldoc.perl.org/perlre#Regular-Expressions

 Off (default)
Polyspace does not check your code against custom naming conventions.

Command-Line Information
Parameter: -custom-rules
Value: from-file, specify the file using Set checkers by file (-checkers-selection-
file)
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -custom-rules
from-file -checkers-selection-file "C:\Standards\custom_config.xml"
Example (Code Prover): polyspace-code-prover -sources file_name -custom-rules
from-file -checkers-selection-file "C:\Standards\custom_config.xml"
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
custom-rules from-file -checkers-selection-file "C:\Standards
\custom_config.xml"
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
custom-rules from-file -checkers-selection-file "C:\Standards
\custom_config.xml"

Compatibility Considerations
Polyspace will no longer support text format for coding rules file (only XML format
supported)
Errors starting in R2021b

Since R2019a, the file where you define custom coding rules uses the XML format. You can save
selections for custom coding rules and all the coding standards that Polyspace supports in the same
file.

In previous releases, you saved your selection for each coding standard and custom coding rules in
separate text files. Polyspace will stop supporting custom coding rule files in text format in a future
release.

Desktop user interface:

If you have a project that contains custom coding rules and coding standard selection files in text
format, Polyspace automatically updates and consolidates those files into a single XML file. If your
project has conflicting configurations that refer to the same custom selection file, the software saves
the consolidated coding standard selection for each configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code Metrics

node of the Configuration pane, click . In the Checkers selection window, select the files then
click Save Changes. Polyspace consolidates the files into a single XML files, and saves this file as
filename.xml, where filename is the name of the first selected file alphabetically. For instance, if
you select foo.conf and bar.conf, they are saved as bar.conf.xml.

Command-line:

In the command-line or in the IDE extensions, using text files as input to -custom-rules results in
an error. To select a custom selection of custom rules, use an XML file.

2 Analysis Options

2-162

Use the file custom_rules.xml as a template to create the XML file where you define a custom
selection of coding standard checkers. This template file is in polyspaceroot\help\toolbox
\bugfinder\examples\coding_standards_XML. Here, polyspaceroot is the root installation
folder for the Polyspace products, for instance, C:\Program Files\Polyspace\R2021b. To update
your script, replace reference to the old file format with the new XML file format .

Example of Configuration File in XML Format

To turn on and define custom coding rule 8.1, use this entry:

<standard name="CUSTOM RULES">
 ...
 <section name="8 Constants">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For a full list of rule IDs and section names, see:

• “AUTOSAR C++14 Rules”
• “CERT C Rules and Recommendations”
• “CERT C++ Rules”
• “ISO/IEC TS 17961 Rules”
• “Custom Coding Rules”
• “JSF C++ Rules”
• “MISRA C:2004 Rules”
• “MISRA C:2012 Directives and Rules”
• “MISRA C++:2008 Rules”
• “Guidelines”

See Also
Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“Create Custom Coding Rules”
“Custom Coding Rules”

 Check custom rules (-custom-rules)

2-163

Check MISRA C++:2008 (-misra-cpp)
Check for violations of MISRA C++ rules

Description
Specify whether to check for violation of MISRA C++ rules. Each value of the option corresponds to a
subset of rules to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependency” on page 2-165 for other options that you must
also enable.

Command line and options file: Use the option -misra-cpp. See “Command-Line Information” on
page 2-165.

Why Use This Option

Use this option to specify the subset of MISRA C++ rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding rule violation, Polyspace assigns a symbol to the keyword or identifier relevant to the
violation.

Settings
Default: required-rules

required-rules
Check required coding rules.

all-rules
Check required and advisory coding rules.

SQO-subset1
Check only a subset of MISRA C++ rules. In Polyspace Code Prover, observing these rules can
reduce the number of unproven results. For more information, see “Software Quality Objective
Subsets (C++)”.

SQO-subset2
Check a subset of rules including SQO-subset1 and some additional rules. In Polyspace Code
Prover, observing these rules can further reduce the number of unproven results. For more
information, see “Software Quality Objective Subsets (C++)”

from-file
Specify an XML file where you configure a custom selection of checkers for this coding standard.

To create a configuration file, click , then select the rules and recommendations you want
to check for this coding standard from the right pane of the Findings selection window. Save
the file.

2 Analysis Options

2-164

To use or update an existing configuration file, in the Findings selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-CPP.

For projects with mixed C and C++ code, the MISRA C++ checker analyzes only .cpp files.

Command-Line Information
Parameter: -misra-cpp
Value: required-rules | all-rules | SQO-subset1 | SQO-subset2 | from-file
Example (Bug Finder): polyspace-bug-finder -sources file_name -misra-cpp all-
rules
Example (Code Prover): polyspace-code-prover -sources file_name -misra-cpp all-
rules
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
misra-cpp all-rules
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
misra-cpp all-rules

Compatibility Considerations
Polyspace will no longer support text format for coding rules file (only XML format
supported)
Errors starting in R2021b

Since R2019a, the file where you define a custom selection of coding standard checkers uses the XML
format. You can save custom selections for all the coding standards that Polyspace supports in the
same file.

In previous releases, you saved your custom selection for each coding standard in separate text files.
Polyspace will stop supporting custom coding standard files in text format in a future release.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format, Polyspace
automatically updates and consolidates those files into a single XML file. If your project has
conflicting configurations that refer to the same custom selection file, the software saves the
consolidated coding standard selection for each configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code Metrics

node of the Configuration pane, click . In the Checkers selection window, select the files then
click Save Changes. Polyspace consolidates the files into a single XML files, and saves this file as
filename.xml, where filename is the name of the first selected file alphabetically. For instance, if
you select foo.conf and bar.conf, they are saved as bar.conf.xml.

Command-line:

 Check MISRA C++:2008 (-misra-cpp)

2-165

In the command-line or in the IDE extensions, using text files as input to -misra-cpp results in an
error. To select a custom selection of MISRA C++:2008 rules, use an XML file.

Use the file misra_cpp_2008_rules.xml as a template to create the XML file where you define a
custom selection of coding standard checkers. This template file is in polyspaceroot\help
\toolbox\bugfinder\examples\coding_standards_XML. Here, polyspaceroot is the root
installation folder for the Polyspace products, for instance, C:\Program Files\Polyspace
\R2021b. To update your script, see this table

Option Use Instead
-misra-cpp "custom_standard.conf" -checkers-selection-file

misra_cpp_2008_rules.xml -misra-cpp
from-file

.

Note The XML format of the checker configuration file can change in future releases.

Example of Configuration File in XML Format

To turn on MISRA C: 2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For a full list of rule IDs and section names, see:

• “AUTOSAR C++14 Rules”
• “CERT C Rules and Recommendations”
• “CERT C++ Rules”
• “ISO/IEC TS 17961 Rules”
• “Custom Coding Rules”
• “JSF C++ Rules”
• “MISRA C:2004 Rules”
• “MISRA C:2012 Directives and Rules”
• “MISRA C++:2008 Rules”
• “Guidelines”

See Also
Do not generate results for (-do-not-generate-results-for)

2 Analysis Options

2-166

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“MISRA C++:2008 Rules”

 Check MISRA C++:2008 (-misra-cpp)

2-167

Check JSF AV C++ rules (-jsf-coding-rules)
Check for violations of JSF C++ rules

Description
Specify whether to check for violation of JSF AV C++ rules (JSF++:2005). Each value of the option
corresponds to a subset of rules to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependency” on page 2-169 for other options that you must
also enable.

Command line and options file: Use the option -jsf-coding-rules. See “Command-Line
Information” on page 2-169.

Why Use This Option

Use this option to specify the subset of JSF C++ rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding rule violation, Polyspace assigns a symbol to the keyword or identifier relevant to the
violation.

Settings
Default: shall-rules

shall-rules
Check all Shall rules. Shall rules are mandatory requirements and require verification.

shall-will-rules
Check all Shall and Will rules. Will rules are intended to be mandatory requirements but do not
require verification.

all-rules
Check all Shall, Will, and Should rules. Should rules are advisory rules.

from-file
Specify an XML file where you configure a custom selection of checkers for this coding standard.

To create a configuration file, click , then select the rules and recommendations you want
to check for this coding standard from the right pane of the Findings selection window. Save
the file.

To use or update an existing configuration file, in the Findings selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

2 Analysis Options

2-168

Tips
• If your project uses a setting other than generic for Compiler (-compiler), some rules might

not be completely checked. For example, AV Rule 8: “All code shall conform to ISO/IEC
14882:2002(E) standard C++.”

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-CPP.

For projects with mixed C and C++ code, the JSF C++ checker analyzes only .cpp files.

Command-Line Information
Parameter: -jsf-coding-rules
Value: shall-rules | shall-will-rules | all-rules | from-file
Example (Bug Finder): polyspace-bug-finder -sources file_name -jsf-coding-rules
all-rules
Example (Code Prover): polyspace-code-prover -sources file_name -jsf-coding-
rules all-rules
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -jsf-
coding-rules all-rules
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
jsf-coding-rules all-rules

Compatibility Considerations
Polyspace no longer supports text format for coding rules file (only XML format supported)
Errors starting in R2021b

Since R2019a, the file where you define a custom selection of coding standard checkers uses the XML
format. You can save custom selections for all the coding standards that Polyspace supports in the
same file.

In previous releases, you saved your custom selection for each coding standard in separate text files.
Polyspace no longer supports custom coding standard files in text format.

Desktop interface:

If you have a project that contains custom coding standard selection files in text format, Polyspace
automatically updates and consolidates those files into a single XML file. If your project has
conflicting configurations that refer to the same custom selection file, the software saves the
consolidated coding standard selection for each configuration to separate XML files.

To update your text files to the XML format manually, in the Coding Standards & Code Metrics

node of the Configuration pane, click . In the Checkers selection window, select the files then
click Save Changes. Polyspace consolidates the files into a single XML files, and saves this file as
filename.xml, where filename is the name of the first selected file alphabetically. For instance, if
you select foo.conf and bar.conf, they are saved as bar.conf.xml.

Command-line/ IDEs:

 Check JSF AV C++ rules (-jsf-coding-rules)

2-169

In the command-line or in the IDE extensions, using text files as input to -jsf-coding-rules
results in an error. To select a custom selection of JSF C++ rules, use an XML file.

Use the file jsf_av_cpp.xml as a template to create the XML file where you define a custom
selection of coding standard checkers. This template file is in polyspaceroot\help\toolbox
\bugfinder\examples\coding_standards_XML. Here, polyspaceserverroot is the root
installation folder for the Polyspace products, for instance, C:\Program Files\Polyspace
\R2021b. To update your script, see this table

Option Use Instead
-jsf-coding-rules
"custom_standard.conf"

-checkers-selection-file
"custom_standard.conf.xml" -jsf-
coding-rules from-file

See:

• “Configure Coding Rules Checking”
• “Setting Checkers in Polyspace as You Code”

Example of Configuration File in XML Format

To turn on MISRA C: 2012 rule 8.1, use this entry:

<standard name="MISRA C:2012">
 ...
 <section name="8 Declarations and definitions">
 ...
 <check id="8.1" state="on">
 </check>
 ...
 </section>
 ...
</standard>

For a full list of rule IDs and section names, see:

• “AUTOSAR C++14 Rules”
• “CERT C Rules and Recommendations”
• “CERT C++ Rules”
• “ISO/IEC TS 17961 Rules”
• “Custom Coding Rules”
• “JSF C++ Rules”
• “MISRA C:2004 Rules”
• “MISRA C:2012 Directives and Rules”
• “MISRA C++:2008 Rules”
• “Guidelines”

See Also
Do not generate results for (-do-not-generate-results-for)

2 Analysis Options

2-170

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“JSF C++ Rules”

 Check JSF AV C++ rules (-jsf-coding-rules)

2-171

Check AUTOSAR C++ 14 (-autosar-cpp14)
Check for violations of AUTOSAR C++ 14 rules

Description
This option affects Bug Finder only.

Specify whether to check for violations of AUTOSAR C++ 14. Each value of the option corresponds to
a subset of guidelines to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 2-173 for other options that you
must also enable.

Command line and options file: Use the option -autosar-cpp14. See “Command-Line
Information” on page 2-173.

Why Use This Option

Use this option to specify the subset of AUTOSAR C++ 14 rules to check for1.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding standard violation, Polyspace assigns a symbol to the keyword or identifier relevant
to the violation.

Settings
Default: all

all
Check for violations of all AUTOSAR C++ 14 rules supported by Polyspace.

See “AUTOSAR C++14 Rules”.
required

Check for violations of required rules.

These rules are mandatory requirements placed on your code. This categorization of rules comes
from the AUTOSAR C++14 guidelines.

automated
Check for violations of automated rules.

You can automatically enforce these rules by means of static analysis. This categorization of rules
comes from the AUTOSAR C++14 guidelines.

1. The Polyspace checkers for AUTOSAR C++14 rules supports AUTOSAR C++14 release 18-10 (October 2018). Out of
397 rules from the standard, 308 rules are supported.

2 Analysis Options

2-172

Note that all rules in the required category might not be present in the automated category.
For rules that AUTOSAR C++14 considers as non-automated, Bug Finder shows only a subset of
actual rule violations.

from-file
Specify an XML file where you configure a custom selection of checkers for this coding standard.

To create a configuration file, click , then select the rules you want to check for this
coding standard from the right pane of the Findings selection window. Save the file.

To use or update an existing configuration file, in the Findings selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
• This option is available only if you set Source code language (-lang) to CPP or C-CPP.

Command-Line Information
Parameter: -autosar-cpp14
Value: all | required | automated | from-file
Example (Bug Finder): polyspace-bug-finder -lang cpp -sources file_name -
autosar-cpp14 required
Example (Bug Finder Server): polyspace-bug-finder-server -lang cpp -sources
file_name -autosar-cpp14 required

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“AUTOSAR C++14 Rules”

 Check AUTOSAR C++ 14 (-autosar-cpp14)

2-173

Check SEI CERT-C (-cert-c)
Check for violations of CERT C rules and recommendations

Description
This option affects Bug Finder only.

Specify whether to check for violations of CERT C rules and recommendations. Each value of the
option corresponds to a subset of the coding standard to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 2-181 for other options that you
must also enable.

Command line and options file: Use the option -cert-c. See “Command-Line Information” on
page 2-181.

Why Use This Option

Use this option to specify the subset of CERT C rules and recommendations to check in your code.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding standard violation, Polyspace assigns a symbol to the keyword or identifier relevant
to the violation.

Settings
Default: all

all-rules
Check for violations of CERT C rules only.

See the CERT C website for an explanation of the difference between rules and recommendations.

List of CERT-C rules that Polyspace checks when you use all-rules

CERT C: Rule ARR30-C
CERT C: Rule ARR32-C
CERT C: Rule ARR36-C
CERT C: Rule ARR37-C
CERT C: Rule ARR38-C
CERT C: Rule ARR39-C
CERT C: Rule CON30-C
CERT C: Rule CON31-C

2 Analysis Options

2-174

https://wiki.sei.cmu.edu/confluence/display/c/Rules+versus+Recommendations

CERT C: Rule CON32-C
CERT C: Rule CON33-C
CERT C: Rule CON35-C
CERT C: Rule CON36-C
CERT C: Rule CON37-C
CERT C: Rule CON40-C
CERT C: Rule CON41-C
CERT C: Rule CON43-C
CERT C: Rule DCL30-C
CERT C: Rule DCL31-C
CERT C: Rule DCL36-C
CERT C: Rule DCL37-C
CERT C: Rule DCL38-C
CERT C: Rule DCL39-C
CERT C: Rule DCL40-C
CERT C: Rule DCL41-C
CERT C: Rule ENV30-C
CERT C: Rule ENV31-C
CERT C: Rule ENV32-C
CERT C: Rule ENV33-C
CERT C: Rule ENV34-C
CERT C: Rule ERR30-C
CERT C: Rule ERR32-C
CERT C: Rule ERR33-C
CERT C: Rule ERR34-C
CERT C: Rule EXP30-C
CERT C: Rule EXP32-C
CERT C: Rule EXP33-C
CERT C: Rule EXP34-C
CERT C: Rule EXP35-C
CERT C: Rule EXP36-C
CERT C: Rule EXP37-C
CERT C: Rule EXP39-C
CERT C: Rule EXP40-C
CERT C: Rule EXP42-C
CERT C: Rule EXP43-C
CERT C: Rule EXP44-C

 Check SEI CERT-C (-cert-c)

2-175

CERT C: Rule EXP45-C
CERT C: Rule EXP46-C
CERT C: Rule EXP47-C
CERT C: Rule FIO30-C
CERT C: Rule FIO32-C
CERT C: Rule FIO34-C
CERT C: Rule FIO37-C
CERT C: Rule FIO38-C
CERT C: Rule FIO39-C
CERT C: Rule FIO40-C
CERT C: Rule FIO41-C
CERT C: Rule FIO42-C
CERT C: Rule FIO44-C
CERT C: Rule FIO45-C
CERT C: Rule FIO46-C
CERT C: Rule FIO47-C
CERT C: Rule FLP30-C
CERT C: Rule FLP32-C
CERT C: Rule FLP34-C
CERT C: Rule FLP36-C
CERT C: Rule FLP37-C
CERT C: Rule INT30-C
CERT C: Rule INT31-C
CERT C: Rule INT32-C
CERT C: Rule INT33-C
CERT C: Rule INT34-C
CERT C: Rule INT35-C
CERT C: Rule INT36-C
CERT C: Rule MEM30-C
CERT C: Rule MEM31-C
CERT C: Rule MEM33-C
CERT C: Rule MEM34-C
CERT C: Rule MEM35-C
CERT C: Rule MEM36-C
CERT C: Rule MSC30-C
CERT C: Rule MSC32-C
CERT C: Rule MSC33-C

2 Analysis Options

2-176

CERT C: Rule MSC37-C
CERT C: Rule MSC38-C
CERT C: Rule MSC39-C
CERT C: Rule MSC40-C
CERT C: Rule POS30-C
CERT C: Rule POS33-C (deprecated)
CERT C: Rule POS34-C
CERT C: Rule POS35-C
CERT C: Rule POS36-C
CERT C: Rule POS37-C
CERT C: Rule POS38-C
CERT C: Rule POS39-C
CERT C: Rule POS44-C
CERT C: Rule POS48-C
CERT C: Rule POS49-C
CERT C: Rule POS51-C
CERT C: Rule POS52-C
CERT C: Rule POS54-C
CERT C: Rule PRE30-C
CERT C: Rule PRE31-C
CERT C: Rule PRE32-C
CERT C: Rule SIG30-C
CERT C: Rule SIG31-C
CERT C: Rule SIG34-C
CERT C: Rule SIG35-C
CERT C: Rule STR30-C
CERT C: Rule STR31-C
CERT C: Rule STR32-C
CERT C: Rule STR34-C
CERT C: Rule STR37-C
CERT C: Rule STR38-C
CERT C: Rule WIN30-C

publish-2016
Check for violations of CERT C rules only, as defined in the 2016 edition of the SEI CERT C
Coding Standard.

See the CERT C website for an explanation of the difference between rules and recommendations.

 Check SEI CERT-C (-cert-c)

2-177

https://wiki.sei.cmu.edu/confluence/display/c/Rules+versus+Recommendations

List of CERT-C rules that Polyspace checks when you use publish-2016

CERT C: Rule ARR30-C
CERT C: Rule ARR32-C
CERT C: Rule ARR36-C
CERT C: Rule ARR37-C
CERT C: Rule ARR38-C
CERT C: Rule ARR39-C
CERT C: Rule CON30-C
CERT C: Rule CON31-C
CERT C: Rule CON32-C
CERT C: Rule CON33-C
CERT C: Rule CON35-C
CERT C: Rule CON36-C
CERT C: Rule CON37-C
CERT C: Rule CON40-C
CERT C: Rule CON41-C
CERT C: Rule DCL30-C
CERT C: Rule DCL31-C
CERT C: Rule DCL36-C
CERT C: Rule DCL37-C
CERT C: Rule DCL38-C
CERT C: Rule DCL39-C
CERT C: Rule DCL40-C
CERT C: Rule DCL41-C
CERT C: Rule ENV30-C
CERT C: Rule ENV31-C
CERT C: Rule ENV32-C
CERT C: Rule ENV33-C
CERT C: Rule ENV34-C
CERT C: Rule ERR30-C
CERT C: Rule ERR32-C
CERT C: Rule ERR33-C
CERT C: Rule EXP30-C
CERT C: Rule EXP32-C
CERT C: Rule EXP33-C
CERT C: Rule EXP34-C
CERT C: Rule EXP35-C

2 Analysis Options

2-178

CERT C: Rule EXP36-C
CERT C: Rule EXP37-C
CERT C: Rule EXP39-C
CERT C: Rule EXP40-C
CERT C: Rule EXP42-C
CERT C: Rule EXP43-C
CERT C: Rule EXP44-C
CERT C: Rule EXP45-C
CERT C: Rule EXP46-C
CERT C: Rule FIO30-C
CERT C: Rule FIO32-C
CERT C: Rule FIO34-C
CERT C: Rule FIO37-C
CERT C: Rule FIO38-C
CERT C: Rule FIO39-C
CERT C: Rule FIO40-C
CERT C: Rule FIO41-C
CERT C: Rule FIO42-C
CERT C: Rule FIO44-C
CERT C: Rule FIO45-C
CERT C: Rule FIO46-C
CERT C: Rule FIO47-C
CERT C: Rule FLP30-C
CERT C: Rule FLP32-C
CERT C: Rule FLP34-C
CERT C: Rule FLP36-C
CERT C: Rule FLP37-C
CERT C: Rule INT30-C
CERT C: Rule INT31-C
CERT C: Rule INT32-C
CERT C: Rule INT33-C
CERT C: Rule INT34-C
CERT C: Rule INT35-C
CERT C: Rule INT36-C
CERT C: Rule MEM30-C
CERT C: Rule MEM31-C
CERT C: Rule MEM33-C

 Check SEI CERT-C (-cert-c)

2-179

CERT C: Rule MEM34-C
CERT C: Rule MEM35-C
CERT C: Rule MEM36-C
CERT C: Rule MSC30-C
CERT C: Rule MSC32-C
CERT C: Rule MSC33-C
CERT C: Rule MSC37-C
CERT C: Rule MSC38-C
CERT C: Rule MSC39-C
CERT C: Rule MSC40-C
CERT C: Rule PRE30-C
CERT C: Rule PRE31-C
CERT C: Rule PRE32-C
CERT C: Rule SIG30-C
CERT C: Rule SIG31-C
CERT C: Rule SIG34-C
CERT C: Rule SIG35-C
CERT C: Rule STR30-C
CERT C: Rule STR31-C
CERT C: Rule STR32-C
CERT C: Rule STR34-C
CERT C: Rule STR37-C
CERT C: Rule STR38-C

all
Check for violations of all CERT C rules and recommendations supported by Polyspace.

See “CERT C Rules and Recommendations”.
from-file

Specify an XML file where you configure a custom selection of checkers for this coding standard.

To create a configuration file, click , then select the rules and recommendations you want
to check for this coding standard from the right pane of the Findings selection window. Save
the file.

To use or update an existing configuration file, in the Findings selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

2 Analysis Options

2-180

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-CPP.

For projects with mixed C and C++ code, the SEI CERT-C checker analyzes only .c files.

Command-Line Information
Parameter: -cert-c
Value: all-rules | publish-2016 | all | from-file
Example (Bug Finder): polyspace-bug-finder -lang c -sources file_name -cert-c
all-rules
Example (Bug Finder Server): polyspace-bug-finder-server -lang c -sources
file_name -cert-c all-rules

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“CERT C Rules and Recommendations”

 Check SEI CERT-C (-cert-c)

2-181

Check SEI CERT-C++ (-cert-cpp)
Check for violations of CERT C++ rules

Description
This option affects Bug Finder only.

Specify whether to check for violations of CERT C++ rules.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 2-182 for other options that you
must also enable.

Command line and options file: Use the option -cert-cpp. See “Command-Line Information” on
page 2-183.

Why Use This Option

Use this option to specify the subset of CERT C++ rules to check in your code.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding standard violation, Polyspace assigns a symbol to the keyword or identifier relevant
to the violation.

Settings
Default: all

all
Check for violations of all CERT C++ rules supported by Polyspace.

See “CERT C++ Rules”.
from-file

Specify an XML file where you configure a custom selection of checkers for this coding standard.

To create a configuration file, click , then select the rules you want to check for this
coding standard from the right pane of the Findings selection window. Save the file.

To use or update an existing configuration file, in the Findings selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

Dependencies
• This option is available only if you set to CPP or C-CPP.

2 Analysis Options

2-182

For projects with mixed C and C++ code, the SEI CERT-C++ checker analyzes only .cpp files.

Command-Line Information
Parameter: -cert-cpp
Value: all | from-file |
Example (Bug Finder): polyspace-bug-finder -lang cpp -sources file_name -cert-
cpp all
Example (Bug Finder Server): polyspace-bug-finder-server -lang cpp -sources
file_name -cert-cpp all

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“CERT C++ Rules”

 Check SEI CERT-C++ (-cert-cpp)

2-183

Check ISO/IEC TS 17961 (-iso-17961)
Check for violations of ISO/IEC TS 17961 rules

Description
This option affects Bug Finder only.

Specify whether to check for violations of ISO/IEC TS 17961 rules.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node. See “Dependencies” on page 2-185 for other options that you
must also enable.

Command line and options file: Use the option -iso-17961. See “Command-Line Information” on
page 2-185.

Why Use This Option

Use this option to specify the subset of ISO/IEC TS 17961 rules to check for.

After analysis, the Results List pane lists the coding standard violations. On the Source pane, for
every coding standard violation, Polyspace assigns a symbol to the keyword or identifier relevant
to the violation.

Settings
Default: all

decidable
Check for violations of decidable rules. Violations of these rules depend only on compile-time
static properties, for instance object type or scope of identifiers.

all
Check for violations of all ISO/IEC TS 17961 rules Polyspace supports.

See “ISO/IEC TS 17961 Rules”.
from-file

Specify an XML file where you configure a custom selection of checkers for this coding standard.

To create a configuration file, click , then select the rules and recommendations you want
to check for this coding standard from the right pane of the Findings selection window. Save
the file.

To use or update an existing configuration file, in the Findings selection window, enter the full
path to the file in the field provided or click Browse.

If you set the option to from-file, enable Set checkers by file (-checkers-
selection-file).

2 Analysis Options

2-184

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-CPP.

Command-Line Information
Parameter: -iso-17961
Value:decidable | all | from-file
Example (Bug Finder): polyspace-bug-finder -lang c -sources file_name -iso-17961
decidable
Example: polyspace-bug-finder-server -lang c -sources file_name -iso-17961
decidable
Example: polyspace-code-prover-server -lang c -sources file_name -iso-17961
decidable

See Also
Do not generate results for (-do-not-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“ISO/IEC TS 17961 Rules”

 Check ISO/IEC TS 17961 (-iso-17961)

2-185

Check guidelines (-guidelines)
Check for violations of Guidelines

Description
This option affects Bug Finder only.

Specify whether to check for violations of Guidelines. Each option value corresponds to a subset of
guidelines to check.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node.

Command line and options file: Use the option -guidelines. See “Command-Line Information”
on page 2-187.

Why Use This Option

Guidelines are customizable checkers that check for violation of coding best practices. You can use
this option to specify the subset of Guidelines rules that matches your requirements.

After analysis, the Results List pane lists the violations. On the Source pane, for every violation,
Polyspace assigns a symbol to the keyword or identifier relevant to the violation.

Settings
all

Check for violations of all Guidelines rules.

See “Guidelines”.
his

Check for violations of software complexity metrics standards specified in the Hersteller Initiative
Software (HIS) standard. See “HIS Code Complexity Metrics”.

The HIS standard recommends specific thresholds for a subset of the software complexity
checkers. When you use the input his, Polyspace activates this subset of software complexity
checkers and uses their HIS recommended threshold. Polyspace raises a violation if a software
complexity metric exceeds the HIS recommended threshold.

from-file
Specify an XML file where you configure a custom selection of Guidelines checkers that have
specific thresholds. When running an analysis on Polyspace Desktop, create or edit an XML file
that contains your checker configuration by using the Desktop User Interface. When running an
analysis on Polyspace Server, edit an existing checker selection file. When running an analysis on
Polyspace as You Code, create or edit an XML file that contains your checker configuration by
using the Checkers Selection User interface.

2 Analysis Options

2-186

When using the value from-file, use the option Set checkers by file (-checkers-
selection-file) to specify the checker selection XML file.

Tips
• When using an options file, you can activate the guideline checkers and specify a checkers

selection file to modify their thresholds. For instance, in an options file, input:

-guidelines from-file
-checkers-selection-file selection_xml

You can also use the preceding options together in the command line.
• Alternatively, you can specify a checkers activation file by using the command -checkers-

activation-file. You do not need to specify the specific options for defects and coding
standards. For instance, in the command line or in an options file, input:

-checkers-activation-file activation_xml

where the file activation_xml is a checkers activation file that is created by using the
Checkers Selection User Interface. Specifying the option -guidelines is not needed if the
Guidelines checkers are activated in the file activation_xml.

Command-Line Information
Parameter: -guidelines
Value: all | his | from-file
Example (Bug Finder): polyspace-bug-finder -sources file_name -guidelines his
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
guidelines from-file -checkers-selection-file path_to_xml

See Also
Set checkers by file (-checkers-selection-file)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Standard Violations”
“Guidelines”
“Reduce Software Complexity by Using Polyspace Checkers”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2021a

 Check guidelines (-guidelines)

2-187

Calculate code metrics (-code-metrics)
Compute and display code complexity metrics

Description
Specify that Polyspace must compute and display code complexity metrics for your source code. The
metrics include file metrics such as number of lines and function metrics such as cyclomatic
complexity and estimated size of local variables.

For more information, see “Compute Code Complexity Metrics”.

To maintain an acceptable level of software complexity during the development cycle, use the
software complexity checkers. See “Reduce Software Complexity by Using Polyspace Checkers”.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Coding
Standards & Code Metrics node.

Command line and options file: Use the option -code-metrics. See “Command-Line
Information” on page 2-189.

Why Use This Option

By default, Polyspace does not calculate code complexity metrics. If you want these metrics in your
analysis results, before running analysis, set this option.

High values of code complexity metrics can lead to obscure code and increase chances of coding
errors. Additionally, if you run a Code Prover verification on your source code, you might benefit from
checking your code complexity metrics first. If a function is too complex, attempts to verify the
function can lead to a lot of unproven code. For information on how to cap your code complexity
metrics, see “Compute Code Complexity Metrics”.

Settings
 On

Polyspace computes and displays code complexity metrics on the Results List pane.

 Off (default)
Polyspace does not compute complexity metrics.

Tips
If you want to compute only the code complexity metrics for your code:

• In Bug Finder, disable checking of defects. See Find defects (-checkers).
• In Code Prover, run verification up to the Source Compliance Checking phase. See

Verification level (-to).

2 Analysis Options

2-188

A Code Prover analysis computes the stack usage metrics after the source compliance checking
phase. If you stop a Code Prover verification before source compliance checking, the stack usage
metrics are not reported.

Command-Line Information
Parameter: -code-metrics
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -code-metrics
Example (Code Prover): polyspace-code-prover -sources file_name -code-metrics
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
code-metrics
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
code-metrics

See Also
Topics
“Compute Code Complexity Metrics”
“Code Metrics”

 Calculate code metrics (-code-metrics)

2-189

Find defects (-checkers)
Enable or disable defect checkers

Description
This option affects a Bug Finder analysis only.

Enable checkers for bugs/coding defects.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Bug
Finder Analysis node.

Command line and options file: Use the option -checkers. See “Command-Line Information” on
page 2-191.

Why Use This Option

The default set of checkers is designed to find the most meaningful bugs in most software
development situations. If you have specific needs, enable or disable individual defect checkers. For
instance, if you want to follow a specific security standard, choose a different subset of checkers.

Settings
Default: default

default
A subset of defects defined by the software.

See “Polyspace Bug Finder Defects Checkers Enabled by Default”.
all

All defects.

For a list of all defects checkers, see Bug Finder Defects.
CWE

A subset of defects that correspond to CWE™ IDs.

See “CWE Coding Standard and Polyspace Results”.
custom

Choose the defects you want to find by selecting categories of checkers or specific defects.

Tips
You can use a spreadsheet to keep track of the defect checkers that you enable and add notes
explaining why you do not enable the other checkers. A spreadsheet of checkers is provided in
polyspaceroot\polyspace\resources. Here, polyspaceroot is the Polyspace installation
folder, such as C:\Program Files\Polyspace\R2019a.

2 Analysis Options

2-190

Command-Line Information
Regardless of order, the shell script processes the -checkers option, and then -disable-
checkers option.

For the command-line parameters values, see “Short Names of Bug Finder Defect Checkers”.
Parameter: -checkers
Value: default | all | none | CWE | defect group | defect parameters
Default: default
Parameter: -disable-checkers
Value: defect group |defect parameters
Example 1 (Bug Finder): polyspace-bug-finder -sources filename -checkers
numerical,data_flow -disable-checkers FLOAT_ZERO_DIV
Example 2 (Bug Finder): polyspace-bug-finder -sources filename -checkers default
-disable-checkers concurrency,dead_code
Example 1 (Bug Finder Server): polyspace-bug-finder-server -sources filename -
checkers numerical,data_flow -disable-checkers FLOAT_ZERO_DIV
Example 2 (Bug Finder Server): polyspace-bug-finder-server -sources filename -
checkers default -disable-checkers concurrency,dead_code

See Also
“Defects”

Topics
“Specify Polyspace Analysis Options”
“Short Names of Bug Finder Defect Checkers”
“Bug Finder Defect Groups”

 Find defects (-checkers)

2-191

Run stricter checks considering all values of
system inputs (-checks-using-system-input-
values)
Enable stricter checks and provide examples of values that lead to detected defect

Description
This option affects a Bug Finder analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Enable a stricter static analysis for a subset of numerical and static memory defect checkers.
Polyspace considers all possible values of system inputs and provides examples of values that can
lead to detected defects. For each function foo that you specify with Consider inputs to these
functions (-system-inputs-from), these are the system inputs.

• Each argument of foo.
• Each read of a global variable by foo or one of its callees.

For the main() function, the analysis assumes that the global variables are initialized with value
0.

• Each read of a volatile variable by foo or one of its callees.
• Each return of a stubbed function. a Bug Finder analysis stubs a function if you do not provide the

body of the function in your source code.

The stricter checks are enabled for this subset of defect checkers.

Defect checkers subset

• Array access out of bounds
• Bitwise operation on negative value
• Float conversion overflow
• Float overflow
• Float division by zero
• Integer conversion overflow
• Integer division by zero
• Integer overflow
• Invalid use of standard library floating point routine
• Invalid use of standard library integer routine
• Null pointer
• Shift of a negative value
• Shift operation overflow
• Sign change integer conversion overflow

2 Analysis Options

2-192

• Unsigned integer conversion overflow
• Unsigned integer overflow

You can view examples of values that lead to the detected defects in the Events column of the
Results Details pane on the desktop interface or the Polyspace Access web interface.

Set Option

User interface (desktop products only): In the Configuration pane, the option is on the Bug Finder
Analysis node. See “Dependencies” on page 2-193 for other options that you must also enable.

Command line and options file: Use the option -checks-using-system-input-values. See
“Command-Line Information” on page 2-194.

Why Use This Option

The default Bug Finder analysis does not flag defects that are caused by specific values of unknown
inputs. Since the inputs might be bounded or initialized in a source file that you are not analyzing, or
the specific value causing a defect might not occur in practice, the default analysis behavior helps to
minimize false positives.

Enable this option to run a stricter analysis on a function whose system inputs might cause sporadic
run-time errors during execution. Using this option might result in a longer analysis time.

Settings
 On

Polyspace considers all possible values of system inputs for a subset of numerical and static
memory defect checkers and provides examples of values that lead to detected defects.

 Off (default)
Polyspace considers possible values of a system input only if the input is bounded by constraints
in your code such as assert or if. The analysis provides no examples of values that lead to
detected defects.

Dependencies
• In the desktop interface, this option is enabled only if you enable Find defects (-checkers).
• This option is ignored if you enable Use fast analysis mode for Bug Finder (-fast-

analysis).

Tips
• If you set external constraints on global variables, the analysis shows examples of global variable

values causing defects only within these constraints. See Constraint setup (-data-range-
specifications).

• If the input is a pointer p, the analysis assumes that the pointer is not null and can be safely
dereferenced. The example value of the input causing a defect is the value of *p. This value is
represented as an array in the Results Details pane. For instance, in this code snippet:

void func(int* x){
 int tmp= *(x+3);

 Run stricter checks considering all values of system inputs (-checks-using-system-input-values)

2-193

 if(1/(tmp-4))
 return;
}

The example value of the input causing a defect is {0,0,0,4}, where the array represents *x, *(x
+1), *(x+2), and *(x+3). The value *(x+3)=4 causes a division by zero.

• The analysis treats these standard library functions that read values from external sources as
stubbed functions.

• getchar
• getc
• fgetc
• scanf

• The stricter analysis considers all possible values of system inputs but it is not an exhaustive
analysis. If Bug Finder cannot determine whether a particular input causes a defect, no defect is
shown. For more on exhaustive analysis, see “Choose Between Polyspace Bug Finder and
Polyspace Code Prover”.

Command-Line Information
Parameter: -checks-using-system-input-values
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -checkers
numerical,static_memory -checks-using-system-input-values
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
checkers numerical,static_memory -checks-using-system-input-values

See Also
Consider inputs to these functions (-system-inputs-from) | Unsigned integer
overflow | Unsigned integer conversion overflow | Sign change integer conversion
overflow | Shift operation overflow | Shift of a negative value | Null pointer |
Invalid use of standard library integer routine | Invalid use of standard
library floating point routine | Integer overflow | Integer division by zero |
Integer conversion overflow | Float division by zero | Float overflow | Float
conversion overflow | Bitwise operation on negative value | Array access out of
bounds

Topics
“Specify Polyspace Analysis Options”
“Extend Bug Finder Checkers to Find Defects from Specific System Input Values”

Introduced in R2020a

2 Analysis Options

2-194

Consider inputs to these functions (-system-
inputs-from)
Specify functions for which the analysis considers all possible input values

Description
This option affects a Bug Finder analysis only.

Specify the functions in your code for which Polyspace considers all possible input values. For each
function that you specify with this option, the analysis considers all possible values of these inputs:

• Each argument of the function.
• Each read of a global variable by the function or one of its callees.

For the main() function, the analysis assumes that the global variables are initialized with value
0.

• Each read of a volatile variable by the function or one of its callees.
• Each return of a stubbed function. a Bug Finder analysis stubs a function if you do not provide the

body of the function in your source code.

Set Option

User interface (desktop products only): In the Configuration pane, the option is on the Bug Finder
Analysis node. See “Dependencies” on page 2-196 for other options that you must also enable.

Command line and options file: Use the option -system-inputs-from. See “Command-Line
Information” on page 2-196.

Why Use This Option

By default, Polyspace considers all possible input values for the main() function and tasks, if any, or
uncalled functions with at least one callee if your code has no main(). Depending on the issue that
you are investigating by running the stricter checks, specify a different subset of functions to analyze.

Settings
Default: auto

auto
Consider all possible values for inputs to main() function and tasks, if any. You specify tasks with
these options.

• Cyclic tasks (-cyclic-tasks)
• Tasks (-entry-points)
• Interrupts (-interrupts)

When the analyzed code has no main(), the analysis considers all possible values for inputs to
uncalled functions with at least one callee.

 Consider inputs to these functions (-system-inputs-from)

2-195

uncalled
Consider all possible values for inputs to all uncalled functions.

all
Consider all possible values for inputs to all functions.

custom
Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
This option is enabled only if you enable Run stricter checks considering all values of
system inputs (-checks-using-system-input-values).

Tips
• The analysis treats these standard library functions that read values from external sources as

stubbed functions.

• getchar
• getc
• fgetc
• scanf

Command-Line Information
Parameter: -system-inputs-from
Value: auto | uncalled | all | custom
Default: auto
Example (Bug Finder): polyspace-bug-finder -sources file_name -checks-using-
system-input-values -system-inputs-from custom=func1,func2
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
checks-using-system-input-values -system-inputs-from custom=func1,func2

See Also
Run stricter checks considering all values of system inputs (-checks-using-
system-input-values)

Topics
“Specify Polyspace Analysis Options”
“Extend Bug Finder Checkers to Find Defects from Specific System Input Values”

Introduced in R2020a

2 Analysis Options

2-196

Class (-class-analyzer)
Specify classes that you want to verify

Description
This option affects a Code Prover analysis only.

Specify classes that Polyspace uses to generate a main.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-197 for other options that you must also
enable.

Command line and options file: Use the option -class-analyzer. See “Command-Line
Information” on page 2-198.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one does not exist.
If a main exists, the analysis uses the existing main.

Use this option and the option Functions to call within the specified classes (-
class-analyzer-calls) to specify the class methods that the generated main must call. Unless a
class method is called directly or indirectly from main, the software does not analyze the method.

Settings
Default: all

all
To generate a main function, Polyspace uses all classes that have at least one method defined
outside a header file. The generated main calls methods that you specify using the option
Functions to call within the specified classes (-class-analyzer-calls).

none
The generated main cannot call any class method.

custom
To generate a main function, Polyspace uses classes that you specify. The generated main calls
methods from classes that you specify using the option Functions to call within the
specified classes (-class-analyzer-calls).

Dependencies
You can use this option only if all of the following are true:

• Your code does not contain a main function.

 Class (-class-analyzer)

2-197

• Source code language (-lang) is set to CPP or C-CPP.
• Verify module or library (-main-generator) is selected.

Tips
• If you select none for this option, Polyspace will not verify class methods that you do not call

explicitly in your code.
• Polyspace does not verify templates that are not instantiated. To verify a class template, explicitly

instantiate a class using the template. See “Template Classes” (Polyspace Code Prover).

Command-Line Information
Parameter: -class-analyzer
Value: all | none | custom=class1[,class2,...]
Default: all
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-class-analyzer custom=myClass1,myClass2
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -class-analyzer custom=myClass1,myClass2

See Also
Verify module or library (-main-generator) | Functions to call within the
specified classes (-class-analyzer-calls) | Analyze class contents only (-
class-only) | Skip member initialization check (-no-constructors-init-check)

Topics
“Specify Polyspace Analysis Options”
“Verify C++ Classes” (Polyspace Code Prover)

2 Analysis Options

2-198

Functions to call within the specified classes (-
class-analyzer-calls)
Specify class methods that you want to verify

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify class methods that Polyspace uses to generate a main. The generated main can call static,
public and protected methods in classes that you specify using the Class option.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-200 for other options that you must also
enable.

Command line and options file: Use the option -class-analyzer-calls. See “Command-Line
Information” on page 2-200.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one does not exist.
If a main exists, the analysis uses the existing main.

Use this option and the option Class (-class-analyzer) to specify the class methods that the
generated main must call. Unless a class method is called directly or indirectly from main, the
software does not analyze the method.

Settings
Default: unused

all
The generated main calls all public and protected methods. It does not call methods inherited
from a parent class.

all-public
The generated main calls all public methods. It does not call methods inherited from a parent
class.

inherited-all
The generated main calls all public and protected methods including those inherited from a
parent class.

inherited-all-public
The generated main calls all public methods including those inherited from a parent class.

 Functions to call within the specified classes (-class-analyzer-calls)

2-199

unused
The generated main calls public and protected methods that are not called in the code.

unused-public
The generated main calls public methods that are not called in the code. It does not call methods
inherited from a parent class.

inherited-unused
The generated main calls public and protected methods that are not called in the code including
those inherited from a parent class.

inherited-unused-public
The generated main calls public methods that are not called in the code including those inherited
from a parent class.

custom
The generated main calls the methods that you specify.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

If you use the scope resolution operator to specify the function from a particular namespace,
enter the fully qualified name, for instance, myClass::myMethod(int). If the function does not
have a parameter, use an empty parenthesis, for instance, myClass::myMethod().

Dependencies
You can use this option only if:

• Source code language (-lang) is set to CPP or C-CPP.
• Verify module or library (-main-generator) is selected.

Command-Line Information
Parameter: -class-analyzer-calls
Value: all | all-public | inherited-all | inherited-all-public | unused | unused-
public | inherited-unused | inherited-unused-public | custom=method1[,method2,...]
Default: unused
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-class-analyzer custom=myClass1,myClass2 -class-analyzer-calls unused-public
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -class-analyzer custom=myClass1,myClass2 -class-analyzer-calls
unused-public

See Also
Verify module or library (-main-generator) | Class (-class-analyzer)

Topics
“Specify Polyspace Analysis Options”

2 Analysis Options

2-200

“Verify C++ Classes” (Polyspace Code Prover)

 Functions to call within the specified classes (-class-analyzer-calls)

2-201

Analyze class contents only (-class-only)
Do not analyze code other than class methods

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify that Polyspace must verify only methods of classes that you specify using the option Class
(-class-analyzer).

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-202 for other options that you must also
enable.

Command line and options file: Use the option -class-only. See “Command-Line Information”
on page 2-203.

Why Use This Option

Use this option to restrict the analysis to certain class methods only.

You specify these methods through the options:

• Class (-class-analyzer)
• Functions to call within the specified classes (-class-analyzer-calls)

When you analyze a module or library, Code Prover generates a main function if one does not exist.
The main function calls class methods using these two options and functions that are not class
methods using other options. Code Prover analyzes these methods and functions for robustness to all
inputs. If you use this option, Code Prover analyzes the methods only.

Settings
 On

Polyspace verifies the class methods only. It stubs functions out of class scope even if the
functions are defined in your code.

 Off (default)
Polyspace verifies functions out of class scope in addition to class methods.

Dependencies
You can use this option only if all of the following are true:

• Your code does not contain a main function.

2 Analysis Options

2-202

• Source code language (-lang) is set to CPP or C-CPP.
• Verify module or library (-main-generator) is selected.

If you select this option, you must specify the classes using the Class (-class-analyzer) option.

Tips
Use this option:

• For robustness verification of class methods. Unless you use this option, Polyspace verifies
methods that you call in your code only for your input combinations.

• In case of scaling.

Command-Line Information
Parameter: -class-only
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-class-analyzer custom=myClass1,myClass2 -class-analyzer-calls unused-public
-class-only
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -class-analyzer custom=myClass1,myClass2 -class-analyzer-calls
unused-public -class-only

See Also
Verify module or library (-main-generator) | Class (-class-analyzer) | Functions
to call within the specified classes (-class-analyzer-calls)

Topics
“Specify Polyspace Analysis Options”
“Verify C++ Classes” (Polyspace Code Prover)

 Analyze class contents only (-class-only)

2-203

Initialization functions (-functions-called-
before-main)
Specify functions that you want the generated main to call ahead of other functions

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify functions that you want the generated main to call ahead of other functions.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-205 for other options that you must also
enable.

Command line and options file: Use the option -functions-called-before-main. See
“Command-Line Information” on page 2-205.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one does not exist.
If a main exists, the analysis uses the existing main.

Use this option along with the option Functions to call (-main-generator-calls) to specify
which functions the generated main must call. Unless a function is called directly or indirectly from
main, the software does not analyze the function.

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

If the function or method is not overloaded, specify the function name. Otherwise, specify the
function prototype with arguments. For instance, in the following code, you must specify the
prototypes func(int) and func(double).

int func(int x) {
 return(x * 2);
}
double func(double x) {
 return(x * 2);
}

2 Analysis Options

2-204

For C++, if the function is:

• A class method: The generated main calls the class constructor before calling this function.
• Not a class method: The generated main calls this function before calling class methods.

If you use the scope resolution operator to specify the function from a particular namespace, enter
the fully qualified name, for instance, myClass::init(int). If the function does not have a
parameter, use an empty parenthesis, for instance, myClass::init().

Dependencies
This option is enabled only if you select Verify module or library under Code Prover Verification
and your code does not contain a main function.

Tips
Although these functions are called ahead of other functions, they can be called in arbitrary order. If
you want to call your initialization functions in a specific order, manually write a main function to call
them.

Command-Line Information
Parameter: -functions-called-before-main
Value: function1[,function2[,...]]
No Default
Example 1 (Code Prover): polyspace-code-prover -sources file_name -main-
generator -functions-called-before-main myfunc
Example 2 (Code Prover): polyspace-code-prover -sources file_name -main-
generator -functions-called-before-main myClass::init(int)
Example 1 (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -functions-called-before-main myfunc
Example 2 (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -functions-called-before-main myClass::init(int)

See Also
Verify module or library (-main-generator) | Variables to initialize (-main-
generator-writes-variables) | Functions to call (-main-generator-calls) | Class
(-class-analyzer) | Functions to call within the specified classes (-class-
analyzer-calls)

Topics
“Specify Polyspace Analysis Options”
“Verify C Application Without main Function” (Polyspace Code Prover)
“Verify C++ Classes” (Polyspace Code Prover)

 Initialization functions (-functions-called-before-main)

2-205

Verify initialization section of code only (-init-
only-mode)
Check initialization code alone for run-time errors and other issues

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must check only the section of code marked as initialization code for run-time
errors and other issues.

To indicate the end of initialization code, you enter the line

#pragma polyspace_end_of_init

in the main function (only once). The initialization code starts from the beginning of main and
continues up to this pragma.

Since compilers ignore unrecognized pragmas, the presence of this pragma does not affect program
execution.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node.

Command line and options file: Use the option -init-only-mode. See “Command-Line
Information” on page 2-208.

Why Use This Option

Often, issues in the initialization code can invalidate the analysis of the remaining code. You can use
this option to check the initialization code alone and fix the issues, and then disable this option to
verify the remaining program.

For instance, in this example:

#include <limits.h>

int aVar;
const int aConst = INT_MAX;
int anotherVar;

int main() {
 aVar = aConst + 1;
#pragma polyspace_end_of_init
 anotherVar = aVar - 1;
 return 0;
}

the overflow in the line aVar = aConst+1 must be fixed first before the value of aVar is used in
subsequent code.

2 Analysis Options

2-206

Settings
 On

Polyspace checks the code from the beginning of main and continues up to the pragma
polyspace_end_of_init.

 Off (default)
Polyspace checks the complete application beginning from the main function.

Dependencies
You can use this option and designate a section of code as initialization code only if:

• Your program contains a main function and you use the option Verify whole application
(implicitly set by default at command line).

• You set Source code language (-lang) to C.

Note that the pragma must appear only once in the main function. The pragma can appear before or
after variable declarations but must appear after type definitions (typedef-s).

You cannot use this option with the following options:

• Verify files independently (-unit-by-unit)
• Show global variable sharing and usage only (-shared-variables-mode)

Tips
• Use this option along with the option Check that global variables are initialized

after warm reboot (-check-globals-init) to thoroughly check the initialization code
before checking the remaining program. If you use both options, the verification checks for the
following:

• Definite or possible run-time errors in the initialization code.
• Whether all non-const global variables are initialized along all execution paths through the

initialization code.
• Multitasking options are disabled if you check initialization code only because the initialization of

global variables is expected to happen before the tasks (threads) begin. As a result, task bodies
are not verified.

See also “Multitasking” (Polyspace Code Prover).
• If you check initialization code only, the analysis truncates execution paths containing the pragma

at the location of the pragma but continues to check other execution paths.

For instance, in this example, the pragma appears in an if block. A red non-initialized variable
check appears on the line int a = var because the path containing the initialization stops at the
location of the pragma. On the only other remaining path that bypasses the if block, the variable
var is not initialized.

int var;

int func();

 Verify initialization section of code only (-init-only-mode)

2-207

int main() {
 int err = func();
 if(err) {
 var = 0;
 #pragma polyspace_end_of_init
 }
 int a = var;
 return 0;
}

To avoid these situations, try to place the pragma outside a block. See other suggestions for
placement of the pragma in the reference for Check that global variables are
initialized after warm reboot (-check-globals-init).

• To determine the initialization of a structure, a regular Code Prover analysis only considers fields
that are used.

If you check initialization code only using this option, the analysis covers only a portion of the
code and cannot determine if a variable is used beyond this portion. Therefore, the checks for
initialization consider all structure fields, whether used or not.

Command-Line Information
Parameter: -init-only-mode
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -init-only-mode
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
init-only-mode

See Also
Check that global variables are initialized after warm reboot (-check-
globals-init) | Global variable not assigned a value in initialization code

Topics
“Specify Polyspace Analysis Options”
“Assumptions About Global Variable Initialization” (Polyspace Code Prover)

Introduced in R2020a

2 Analysis Options

2-208

Verify whole application
Stop verification if sources files are incomplete and do not contain a main function

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify that Polyspace verification must stop if a main function is not present in the source files.

If you select a Visual C++ setting for Compiler (-compiler), you can specify which function must
be considered as main. See Main entry point (-main).

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node.

Command line and options file: There is no corresponding command-line option. See “Command-
Line Information” on page 2-209.

Settings
 On

Polyspace verification stops if it does not find a main function in the source files.
 Off (default)

Polyspace continues verification even when a main function is not present in the source files. If a
main is not present, it generates a file __polyspace_main.c that contains a main function.

Tips
If you use this option, your code must contain a main function. Otherwise you see the error:

Error: required main procedure not found

If your code does not contain a main function, use the option Verify module or library (-
main-generator) to generate a main function.

Command-Line Information
Unlike the user interface, by default, a verification from the command line stops if it does not find a
main function in the source files. If you specify the option -main-generator, Polyspace generates a
main if it cannot find one in the source files.

See Also
Verify module or library (-main-generator) | Show global variable sharing and
usage only (-shared-variables-mode)

 Verify whole application

2-209

Topics
“Specify Polyspace Analysis Options”
“Verify C Application Without main Function” (Polyspace Code Prover)
“Verify C++ Classes” (Polyspace Code Prover)

2 Analysis Options

2-210

Show global variable sharing and usage only (-
shared-variables-mode)
Compute global variable sharing and usage without running full analysis

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify this option to run a less extensive analysis that computes the global variable sharing and
usage in your entire application. The analysis does not verify your code for run-time errors. The
analysis results also include coding standards violations if you enable coding standards checking, and
code metrics if you enable code metrics computation.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node.

Command line and options file: Use the option -shared-variables-mode. See “Command-Line
Information” on page 2-212.

Why Use This Option

You can see global variable sharing and usage without running a full analysis on your entire
application that includes run-time error detection. Run-time error detection on an entire application
can take a long time.

Settings
 On

Polyspace computes global variable sharing and usage but does not verify your code for run-time
errors.

 Off (default)
Polyspace runs a full analysis on your code, including run-time error detection.

Dependencies
• You can use this option only if your program contains a main function and you enable the option

Verify whole application (implicitly set by default at command line).
• When you enable this option, you must also enable at least one of these options.

• Enable automatic concurrency detection for Code Prover (-enable-
concurrency-detection)

• Tasks (-entry-points)

 Show global variable sharing and usage only (-shared-variables-mode)

2-211

• Cyclic tasks (-cyclic-tasks)
• Interrupts (-interrupts)
• ARXML files selection (-autosar-multitasking)
• OIL files selection (-osek-multitasking)

Tips
• After you analyze your complete application to see global variable sharing and usage, run a

component-by-component Code Prover analysis to detect run-time errors.
• In the desktop product, you can see all read and write operations on global variables in the

“Variable Access in Polyspace Desktop User Interface” (Polyspace Code Prover) pane.
• In this less extensive analysis mode, the analysis checks for most but not all coding standards

violations, and computes most but not all code metrics.

Command-Line Information
Parameter: -shared-variables-mode
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -shared-
variables-mode -enable-concurrency-detection
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
shared-variables-mode -enable-concurrency-detection

See Also
Topics
“Specify Polyspace Analysis Options”

Introduced in R2019b

2 Analysis Options

2-212

Main entry point (-main)
Specify a Microsoft Visual C++ extensions of main

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify the function that you want to use as main. If the function does not exist, the verification stops
with an error message. Use this option to specify Microsoft Visual C++ extensions of main.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-213 for other options that you must also
enable.

Command line and options file: Use the option -main. See “Command-Line Information” on page
2-214.

Settings
Default: _tmain

_tmain
Use _tmain as entry point to your code.

wmain
Use wmain as entry point to your code.

_tWinMain
Use _tWinMain as entry point to your code.

wWinMain
Use wWinMain as entry point to your code.

WinMain
Use WinMain as entry point to your code.

DllMain
Use DllMain as entry point to your code.

Dependencies
This option is enabled only if you:

• Set Source code language (-lang) to CPP.
• Select Verify whole application.

 Main entry point (-main)

2-213

Command-Line Information
Parameter: -main
Value: _tmain | wmain | _tWinMain | wWinMain | WinMain | DllMain
Example (Code Prover): polyspace-code-prover -sources file_name -compiler
visual14.0 -main _tmain
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
compiler visual14.0 -main _tmain

See Also
Verify whole application | Verify module or library (-main-generator)

Topics
“Specify Polyspace Analysis Options”
“Verify C Application Without main Function” (Polyspace Code Prover)
“Verify C++ Classes” (Polyspace Code Prover)

2 Analysis Options

2-214

Functions to call (-main-generator-calls)
Specify functions that you want the generated main to call after the initialization functions

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify functions that you want the generated main to call. The main calls these functions after the
ones you specify through the option Initialization functions (-functions-called-
before-main).

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-216 for other options that you must also
enable.

Command line and options file: Use the option -main-generator-calls. See “Command-Line
Information” on page 2-216.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one does not exist.
If a main exists, the analysis uses the existing main.

Use this option along with the option Initialization functions (-functions-called-
before-main) to specify which functions the generated main must call. Unless a function is called
directly or indirectly from main, the software does not analyze the function.

Settings
Default: unused

none
The generated main does not call any function.

unused
The generated main calls only those functions that are not called in the source code. It does not
call inlined functions.

all
The generated main calls all functions except inlined ones.

custom
The generated main calls functions that you specify.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

 Functions to call (-main-generator-calls)

2-215

• Click to list functions in your code. Choose functions from the list.

If you use the scope resolution operator to specify the function from a particular namespace,
enter the fully qualified name, for instance, myClass::myMethod(int). If the function does not
have a parameter, use an empty parenthesis, for instance, myClass::myMethod().

Dependencies
This option is available only if you select Verify module or library (-main-generator).

Tips
• Select unused when you use Code Prover Verification > Verify files independently.
• If you want the generated main to call an inlined function, select custom and specify the name of

the function.
• To verify a multitasking application without a main, select none.
• The generated main can call the functions in arbitrary order. If you want to call your functions in a
specific order, manually write a main function to call them.

• To specify instantiations of templates as arguments, run analysis once with the option argument
all. Search for the template name in the analysis log and use the template name as it appears in
the analysis log for the option argument.

For instance, to specify this template function instantiation as option argument:

template <class T>
T GetMax (T a, T b) {
 T result;
 result = (a>b)? a : b;
 return (result);
}
template int GetMax<int>(int, int); // explicit instantiation

Run an analysis with the option -main-generator-calls all. Search for getMax in the
analysis log. You see the function format:

T1 getMax<int>(T1, T1)

To call only this template instantiation, remove the space between the arguments and use the
option:

-main-generator-calls custom="T1 getMax<int>(T1,T1)"

Command-Line Information
Parameter: -main-generator-calls
Value: none | unused | all | custom=function1[,function2[,...]]
Default: unused
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-main-generator-calls all
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -main-generator-calls all

2 Analysis Options

2-216

See Also
Verify module or library (-main-generator) | Initialization functions (-
functions-called-before-main) | Class (-class-analyzer) | Functions to call
within the specified classes (-class-analyzer-calls)

Topics
“Specify Polyspace Analysis Options”
“Verify C Application Without main Function” (Polyspace Code Prover)

 Functions to call (-main-generator-calls)

2-217

Variables to initialize (-main-generator-writes-
variables)
Specify global variables that you want the generated main to initialize

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify global variables that you want the generated main to initialize. Polyspace considers these
variables to have any value allowed by their type.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-219 for other options that you must also
enable.

Command line and options file: Use the option -main-generator-writes-variables. See
“Command-Line Information” on page 2-219.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one does not exist.
If a main exists, the analysis uses the existing main.

A Code Prover analysis of a module without a main function makes some default assumptions about
global variable initialization. The analysis assumes that global variables that are not explicitly
initialized can have the full range of values allowed by their data types upon each entry into an
uncalled function. For instance, in the example below, which does not have a main function, the
variable glob is assumed to have all possible int values both in foo and bar (despite the
modification in foo). The assumption is a conservative one since the call context of foo and bar,
including which function gets called earlier, is not known.

int glob;

int foo() {
 int locFoo = glob;
 glob++;
 return locFoo;
}

int bar() {
 int locBar = glob;
 return locBar;
}

To implement this assumption, the generation main initializes such global variables to full-range
values before calling each otherwise uncalled function. Use this option to modify this default
assumption and implement a different initialization strategy for global variables.

2 Analysis Options

2-218

Settings
Default:

• C code — public
• C++ Code — uninit

uninit
C++ Only

The generated main only initializes global variables that you have not initialized during
declaration.

none
The generated main does not initialize global variables.

Global variables are initialized according to the C/C+ standard. For instance, int or char
variables are initialized to 0, float variables to 0.0, and so on.

public
The generated main initializes all global variables except those declared with keywords static
and const.

all
The generated main initializes all global variables except those declared with keyword const.

custom

The generated main only initializes global variables that you specify. Click to add a field.
Enter a global variable name.

Dependencies
You can use this option only if the following are true:

• Your code does not contain a main function.
• Verify module or library (-main-generator) is selected.

The option is disabled if you enable the option Ignore default initialization of global
variables (-no-def-init-glob). Global variables are considered as uninitialized until you
explicitly initialize them in the code.

Tips
This option only affects global variables that are defined in the project. If a global variable is declared
as extern, the analysis considers that the variable can have any value allowed by its data type,
irrespective of the value of this option.

Command-Line Information
Parameter: -main-generator-writes-variables
Value: uninit | none | public | all | custom=variable1[,variable2[,...]]
Default: (C) public | (C++) uninit

 Variables to initialize (-main-generator-writes-variables)

2-219

Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-main-generator-writes-variables all
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -main-generator-writes-variables all

See Also
Verify module or library (-main-generator)

Topics
“Specify Polyspace Analysis Options”
“Verify C Application Without main Function” (Polyspace Code Prover)

2 Analysis Options

2-220

Skip member initialization check (-no-
constructors-init-check)
Do not check if class constructor initializes class members

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must not check whether each class constructor initializes all class members.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-221 for other options that you must also
enable.

Command line and options file: Use the option -no-constructors-init-check. See
“Command-Line Information” on page 2-222.

Why Use This Option

Use this option to disable checks for initialization of class members in constructors.

Settings
 On

Polyspace does not check whether each class constructor initializes all class members.

 Off (default)
Polyspace checks whether each class constructor initializes all class members. It uses the
functions check_NIV() and check_NIP() in the generated main to perform these checks. It
checks for initialization of:

• Integer types such as int, char and enum, both signed or unsigned.
• Floating-point types such as float and double.
• Pointers.

Dependencies
You can use this option only if all of the following are true:

• Your code does not contain a main function.
• Source code language (-lang) is set to CPP or C-CPP.
• Verify module or library (-main-generator) is selected.

If you select this option, you must specify the classes using theClass (-class-analyzer) option.

 Skip member initialization check (-no-constructors-init-check)

2-221

Command-Line Information
Parameter: -no-constructors-init-check
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-class-analyzer custom=myClass1,myClass2 -class-analyzer-calls unused-public
-no-constructors-init-check
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -class-analyzer custom=myClass1,myClass2 -class-analyzer-calls
unused-public -no-constructors-init-check

See Also
Verify module or library (-main-generator) | Class (-class-analyzer)

Topics
“Specify Polyspace Analysis Options”
“Verify C++ Classes” (Polyspace Code Prover)

2 Analysis Options

2-222

Verify files independently (-unit-by-unit)
Verify each source file independently of other source files

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify that each source file must be verified independently of other source files. Each file is verified
individually, independent of other files in the module. Verification results can be viewed for the entire
project or for individual files.

After you open the verification result for one file, in the user interface of the Polyspace desktop
products, you can see a summary of results for all files on the Dashboard pane. You can open the
results for each file directly from this summary table.

Each result file (with name ps_results.pscp) is saved in a subfolder of the results folder. The
subfolder has the same name as the source file being analyzed.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-223 for other options that you must also
enable.

Command line and options file: Use the option -unit-by-unit. See “Command-Line
Information” on page 2-224.

Why Use This Option

There are many reasons you might want to verify each source file independently of other files.

For instance, if verification of a project takes very long, you can perform a file by file verification to
identify which file is slowing the verification.

Settings
 On

Polyspace creates a separate verification job for each source file.

 Off (default)
Polyspace creates a single verification job for all source files in a module.

Dependencies
This option is enabled only if you select Verify module or library (-main-generator).

 Verify files independently (-unit-by-unit)

2-223

Tips
• Code Prover requires a main function as the starting point of verification. In the file-by-file mode,

because most files do not have a main, Code Prover generates a main function when required. By
default, the generated main calls uncalled functions (uncalled non-private methods and out-of-
class functions in C++). For more information, see:

• “Verify C Application Without main Function” (Polyspace Code Prover)
• “Verify C++ Classes” (Polyspace Code Prover)

• If you perform a file by file verification, you cannot specify multitasking options.
• If your verification for the entire project takes very long, perform a file by file verification. After

the verification is complete for a file, you can view the results while other files are still being
verified.

• You can generate a report of the verification results for each file or for all the files together. To
generate a single report for all files, perform the report generation after verification (and not
along with verification using analysis options).

To generate a single report for all the files in the Polyspace user interface (desktop product only):

1 Open the results for one file.
2 Select Reporting > Run Report. Before generating the report, select the option Generate a

single report including all unit results.

If you use the product Polyspace Code Prover Server to run a verification, to generate a single
report for all files:

• Upload the results for all files to the Polyspace Access server.
• Use the polyspace-report-generator command with option -all-units to generate a

single report for all the files.
• When you perform a file-by-file verification, you can see many instances of unused variables. Some

of these variables might be used in other files but show as unused in a file-by-file verification.

If you want to ignore these results, use a review scope (named set of filters) that filters out unused
variables. See “Filter and Group Results in Polyspace Desktop User Interface” (Polyspace Code
Prover).

Command-Line Information
Parameter: -unit-by-unit
Default: Off
Example (Code Prover): polyspace-code-prover -sources file1,file2,... -unit-by-
unit
Example (Code Prover Server): polyspace-code-prover-server -sources
file1,file2,... -unit-by-unit

See Also
Common source files (-unit-by-unit-common-source)

Topics
“Specify Polyspace Analysis Options”

2 Analysis Options

2-224

Common source files (-unit-by-unit-common-
source)
Specify files that you want to include with each source file during a file by file verification

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

For a file by file verification, specify files that you want to include with each source file verification.
These files are compiled once, and then linked to each verification.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node. See “Dependencies” on page 2-225 for other options that you must also
enable.

Command line and options file: Use the option -unit-by-unit-common-source. See
“Command-Line Information” on page 2-226.

Why Use This Option

There are many reasons you might want to verify each source file independently of other files. For
instance, if verification of a project takes very long, you can perform a file by file verification to
identify which file is slowing the verification.

If you perform a file by file verification, some of your files might be missing information present in the
other files. Place the missing information in a common file and use this option to specify the file for
verification. For instance, if multiple source files call the same function, use this option to specify a
file that contains the function definition or a function stub. Otherwise, Polyspace uses its own stubs
for functions that are called but not defined in the source files. The assumptions behind the Polyspace
stubs can be broader than what you want, leading to orange checks.

Settings
No Default

Click to add a field. Enter the full path to a file. Otherwise, use the button to navigate to the
file location.

Dependencies
This option is enabled only if you select Verify files independently (-unit-by-unit).

 Common source files (-unit-by-unit-common-source)

2-225

Command-Line Information
Parameter: -unit-by-unit-common-source
Value: file1[,file2[,...]]
No Default
Example (Code Prover): polyspace-code-prover -sources file_name -unit-by-unit -
unit-by-unit-common-source definitions.c
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
unit-by-unit -unit-by-unit-common-source definitions.c

See Also
Verify files independently (-unit-by-unit)

Topics
“Specify Polyspace Analysis Options”

2 Analysis Options

2-226

Verify model generated code (-main-generator)
Specify that a main function must be generated if it is not present in source files

Description
In Bug Finder, use this option only for code generated from MATLAB code or Simulink models.

Specify that Polyspace must generate a main function if it does not find one in the source files.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node.

Command line and options file: Use the option -main-generator. See “Command-Line
Information” on page 2-227.

Settings
This option is always enabled for code generated from models.

Polyspace generates a main function for the analysis. The generated main contains cyclic code that
executes in a loop. The loop can run an unspecified number of times.

The main performs the following functions before the loop begins:

• Initializes variables specified by Parameters (-variables-written-before-loop).
• Calls the functions specified by Initialization functions (-functions-called-before-

loop).

The main then performs the following functions in the loop:

• Calls the functions specified by Step functions (-functions-called-in-loop).
• Writes to variables specified by Inputs (-variables-written-in-loop).

Finally, the main calls the functions specified by Termination functions (-functions-
called-after-loop).

Command-Line Information
Parameter: -main-generator
Default: On
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-
generator ...
Example (Code Prover): polyspace-code-prover -sources file_name -main-
generator ...
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
main-generator ...
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator ...

 Verify model generated code (-main-generator)

2-227

See Also
Verify model generated code (-main-generator) | Parameters (-variables-written-
before-loop) | Initialization functions (-functions-called-before-loop) | Step
functions (-functions-called-in-loop) | Inputs (-variables-written-in-loop) |
Termination functions (-functions-called-after-loop)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

2 Analysis Options

2-228

Initialization functions (-functions-called-
before-loop)
Specify functions that the generated main must call before the cyclic code loop

Description
Use this option only for code generated from MATLAB code or Simulink models.

Specify functions that the generated main must call before the cyclic code begins.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Code Prover Verification node. You see this option only if you open a project configuration from
Simulink.

Command line and options file: Use the option -functions-called-before-loop. See
“Command-Line Information” on page 2-229.

Settings
No Default

Click to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular namespace, enter
the fully qualified name, for instance, myClass::init(int). If the function does not have a
parameter, use an empty parenthesis, for instance, myClass::init().

Tips
• If you specify a function for the option Termination functions (-functions-called-

after-loop), you cannot specify it for this option.

Command-Line Information
Parameter: -functions-called-before-loop
No Default
Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-generator -
functions-called-before-loop myfunc
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-functions-called-before-loop myfunc
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
main-generator -functions-called-before-loop myfunc
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -functions-called-before-loop myfunc

 Initialization functions (-functions-called-before-loop)

2-229

See Also
Verify model generated code (-main-generator) | Step functions (-functions-
called-in-loop) | Termination functions (-functions-called-after-loop)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

2 Analysis Options

2-230

Step functions (-functions-called-in-loop)
Specify functions that the generated main must call in the cyclic code loop

Description
Use this option only for code generated from MATLAB code or Simulink models.

Specify functions that the generated main must call in each cycle of the cyclic code.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Code Prover Verification node. You see this option only if you open a project configuration from
Simulink.

Command line and options file: Use the option -functions-called-in-loop. See “Command-
Line Information” on page 2-231.

Settings
Default: none

none
The generated main does not call functions in the cyclic code.

all
The generated main calls all functions except inlined ones. If you specify certain functions for the
options Initialization functions or Termination functions, the generated main does not call
those functions in the cyclic code.

custom

The generated main calls functions that you specify. Click to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular namespace,
enter the fully qualified name, for instance, myClass::myMethod(int). If the function does not
have a parameter, use an empty parenthesis, for instance, myClass::myMethod().

Tips
If you have specified a function for the option Initialization functions (-functions-
called-before-loop) or Termination functions (-functions-called-after-loop), to
call it inside the cyclic code, use custom and specify the function name.

Command-Line Information
Parameter: -functions-called-in-loop
Value: none | all | custom=function1[,function2[,...]]
Default: none

 Step functions (-functions-called-in-loop)

2-231

Example (Bug Finder): polyspace-bug-finder -sources file_name -main-generator -
functions-called-in-loop all
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-functions-called-in-loop all
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
main-generator -functions-called-in-loop all
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -functions-called-in-loop all

See Also
Verify model generated code (-main-generator) | Initialization functions (-
functions-called-before-loop) | Termination functions (-functions-called-after-
loop)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

2 Analysis Options

2-232

Termination functions (-functions-called-
after-loop)
Specify functions that the generated main must call after the cyclic code loop

Description
Use this option only for code generated from MATLAB code or Simulink models.

Specify functions that the generated main must call after the cyclic code ends.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Code Prover Verification node. You see this option only if you open a project configuration from
Simulink.

Command line and options file: Use the option -functions-called-after-loop. See
“Command-Line Information” on page 2-233.

Settings
No Default

Click to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular namespace, enter
the fully qualified name, for instance, myClass::myMethod(int). If the function does not have a
parameter, use an empty parenthesis, for instance, myClass::myMethod().

Tips
• If you specify a function for the option Initialization functions (-functions-called-

before-loop), you cannot specify it for this option.

Command-Line Information
Parameter: -functions-called-after-loop
No Default
Value: function1[,function2[,...]]
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-generator -
functions-called-after-loop myfunc
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-functions-called-after-loop myfunc
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
main-generator -functions-called-after-loop myfunc
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -functions-called-after-loop myfunc

 Termination functions (-functions-called-after-loop)

2-233

See Also
Verify model generated code (-main-generator) | Initialization functions (-
functions-called-before-loop) | Step functions (-functions-called-in-loop)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

2 Analysis Options

2-234

Parameters (-variables-written-before-loop)
Specify variables that the generated main must initialize before the cyclic code loop

Description
Use this option only for code generated from MATLAB code or Simulink models.

Specify variables that the generated main must initialize before the cyclic code loop begins. Before
the loop begins, Polyspace considers these variables to have any value allowed by their type.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Code Prover Verification node. You see this option only if you open a project configuration from
Simulink.

Command line and options file: Use the option -variables-written-before-loop. See
“Command-Line Information” on page 2-235.

Settings
Default: none

none
The generated main does not initialize variables.

all
The generated main initializes all variables except those declared with keyword const.

custom

The generated main only initializes variables that you specify. Click to add a field. Enter
variable name. For C++ class members, use the syntax className::variableName.

Command-Line Information
Parameter: -variables-written-before-loop
Value: none | all | custom=variable1[,variable2[,...]]
Default: none
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-generator -
variables-written-before-loop all
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-variables-written-before-loop all
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
main-generator -variables-written-before-loop all
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -variables-written-before-loop all

See Also
Verify model generated code (-main-generator) | Inputs (-variables-written-in-
loop)

 Parameters (-variables-written-before-loop)

2-235

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

2 Analysis Options

2-236

Inputs (-variables-written-in-loop)
Specify variables that the generated main must initialize in the cyclic code loop

Description
Use this option only for code generated from MATLAB code or Simulink models.

Specify variables that the generated main must initialize at the beginning of every iteration of the
cyclic code loop. At the beginning of every loop iteration, Polyspace considers these variables to have
any value allowed by their type.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Code Prover Verification node. You see this option only if you open a project configuration from
Simulink.

Command line and options file: Use the option -variables-written-in-loop. See “Command-
Line Information” on page 2-237.

Settings
Default: none

none
The generated main does not initialize variables.

all
The generated main initializes all variables except those declared with keyword const.

custom

The generated main only initializes variables that you specify. Click to add a field. Enter
variable name. For C++ class members, use the syntax className::variableName.

Command-Line Information
Parameter: -variables-written-in-loop
Value: none | all | custom=variable1[,variable2[,...]]
Default: none
Example (Bug Finder): polyspace-bug-finder -sources file_name -main-generator -
variables-written-in-loop all
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
-variables-written-in-loop all
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
main-generator -variables-written-in-loop all
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator -variables-written-in-loop all

 Inputs (-variables-written-in-loop)

2-237

See Also
Verify model generated code (-main-generator) | Parameters (-variables-written-
before-loop)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

2 Analysis Options

2-238

Verify module or library (-main-generator)
Generate a main function if source files are modules or libraries that do not contain a main

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must generate a main function if it does not find one in the source files.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Code
Prover Verification node.

Command line and options file: Use the option -main-generator. See “Command-Line
Information” on page 2-240.

For the analogous option for model generated code, see Verify model generated code (-
main-generator).

Why Use This Option

Use this option if you are verifying a module or library. A Code Prover analysis requires a main
function. When verifying a module or library, your code might not have a main.

When you use this option, Code Prover generates a main function if one does not exist. If a main
exists, the analysis uses the existing main.

Settings
 On (default)

Polyspace generates a main function if it does not find one in the source files. The generated
main:

1 Initializes variables specified by Variables to initialize (-main-generator-
writes-variables).

2 Before calling other functions, calls the functions specified by Initialization functions
(-functions-called-before-main).

3 In all possible orders, calls the functions specified by Functions to call (-main-
generator-calls).

4 (C++ only) Calls class methods specified by Class (-class-analyzer) and Functions
to call within the specified classes (-class-analyzer-calls).

If you do not specify the function and variable options above, the generated main:

• Initializes all global variables except those declared with keywords const and static.
• In all possible orders, calls all functions that are not called anywhere in the source files.

Polyspace considers that global variables can be written between two consecutive function
calls. Therefore, in each called function, global variables initially have the full range of values
allowed by their type.

 Verify module or library (-main-generator)

2-239

 Off
Polyspace stops if a main function is not present in the source files.

Tips
• If a main function is present in your source files, the verification uses that main function,

irrespective of whether you enable or disable this option.

The option is relevant only if a main function is not present in your source files.
• If you use the option Verify whole application (default on the command line), your code

must contain a main function. Otherwise you see the error:

Error: required main procedure not found

If your code does not contain a main function, use this option to generate a main function.
• If you specify multitasking options, the verification ignores your specifications for main

generation. Instead, the verification introduces an empty main function.

For more information on the multitasking options, see “Configuring Polyspace Multitasking
Analysis Manually”.

Command-Line Information
Parameter: -main-generator
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -main-generator
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
main-generator

See Also
Verify whole application | Variables to initialize (-main-generator-writes-
variables) | Initialization functions (-functions-called-before-main) |
Functions to call (-main-generator-calls) | Class (-class-analyzer) | Functions
to call within the specified classes (-class-analyzer-calls)

Topics
“Specify Polyspace Analysis Options”
“Verify C Application Without main Function” (Polyspace Code Prover)
“Verify C++ Classes” (Polyspace Code Prover)

2 Analysis Options

2-240

Consider volatile qualifier on fields (-consider-
volatile-qualifier-on-fields)
Assume that volatile qualified structure fields can have all possible values at any point in code

Description
This option affects a Code Prover analysis only.

Specify that the verification must take into account the volatile qualifier on fields of a structure.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Verification Assumptions node.

Command line and options file: Use the option -consider-volatile-qualifier-on-fields.
See “Command-Line Information” on page 2-243.

Why Use This Option

The volatile qualifier on a variable indicates that the variable value can change between
successive operations even if you do not explicitly change it in your code. For instance, if var is a
volatile variable, the consecutive operations res = var; res =var; can result in two different
values of var being read into res.

Use this option so that the verification emulates the volatile qualifier for structure fields. If you
select this option, the software assumes that a volatile structure field has a full range of values at
any point in the code. The range is determined only by the data type of the structure field.

Settings
 On

The verification considers the volatile qualifier on fields of a structure.

In the following example, the verification considers that the field val1 can have all values
allowed for the int type at any point in the code.

struct myStruct {
 volatile int val1;
 int val2;
};

Even if you write a specific value to val1 and read the variable in the next operation, the variable
read results in any possible value.

struct myStruct myStructInstance;
myStructInstance.val1 = 1;
assert (myStructInstance.val1 == 1); // Assertion can fail

 Consider volatile qualifier on fields (-consider-volatile-qualifier-on-fields)

2-241

 Off (default)
The verification ignores the volatile qualifier on fields of a structure.

In the following example, the verification ignores the qualifier on field val1.

struct myStruct {
 volatile int val1;
 int val2;
};

If you write a specific value to val1 and read the variable in the next operation, the variable read
results in that specific value.

struct myStruct myStructInstance;
myStructInstance.val1 = 1;
assert (myStructInstance.val1 == 1); // Assertion passes

Tips
• If your volatile fields do not represent values read from hardware and you do not expect their

values to change between successive operations, disable this option. You are using the volatile
qualifier for some other reason and the verification does not need to consider full range for the
field values.

• If you enable this option, the number of red, gray, and green checks in your code can decrease.
The number of orange checks can increase.

In the following example, a red or green check changes to orange or a gray check goes away when
the option is used. Considering the volatile qualifier changes the check color. These examples
use the following structure definition:

struct myStruct {
 volatile int field1;
 int field2;
};

Color
Without
Option

Result Without Option Result With Option

Green void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 == 1);
}

void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 ==1);
}

Red void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 != 1);
}

void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 !=1);
}

2 Analysis Options

2-242

Color
Without
Option

Result Without Option Result With Option

Gray void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 if (structVal.field1 != 1)
 {
 /* Perform operation */
 }
}

void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 if (structVal.field1 != 1)
 {
 /* Perform operation */
 }
}

• In C++ code, the option also applies to class members.

Command-Line Information
Parameter: -consider-volatile-qualifier-on-fields
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -consider-
volatile-qualifier-on-fields
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
consider-volatile-qualifier-on-fields

See Also
Topics
“Specify Polyspace Analysis Options”

Introduced in R2016b

 Consider volatile qualifier on fields (-consider-volatile-qualifier-on-fields)

2-243

Float rounding mode (-float-rounding-mode)
Specify rounding modes to consider when determining the results of floating point arithmetic

Description
This option affects a Code Prover analysis only.

Specify the rounding modes to consider when determining the results of floating-point arithmetic.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Verification Assumptions node.

Command line and options file: Use the option -float-rounding-mode. See “Command-Line
Information” on page 2-246.

Why Use This Option

The default verification uses the round-to-nearest mode.

Use the rounding mode all if your code contains routines such as fesetround to specify a rounding
mode other than round-to-nearest. Although the verification ignores the fesetround specification, it
considers all rounding modes including the rounding mode that you specified. Alternatively, for
targets that can use extended precision (for instance, using the flag -mfpmath=387), use the
rounding mode all. However, for your Polyspace analysis results to agree with run-time behavior,
you must prevent use of extended precision through a flag such as -ffloat-store.

Otherwise, continue to use the default rounding mode to-nearest. Because all rounding modes are
considered when you specify all, you can have many orange Overflow checks resulting from
overapproximation.

Settings
Default: to-nearest

to-nearest
The verification assumes the round-to-nearest mode.

all
The verification assumes all rounding modes for each operation involving floating-point variables.
The following rounding modes are considered: round-to-nearest, round-towards-zero, round-
towards-positive-infinity, and round-towards-negative-infinity.

Tips
• The Polyspace analysis uses floating-point arithmetic that conforms to the IEEE® 754 standard.

For instance, the arithmetic uses floating point instructions present in the SSE instruction set. The
GNU C flag -mfpmath=sse enforces use of this instruction set. If you use the GNU C compiler

2 Analysis Options

2-244

https://www.cplusplus.com/reference/cfenv/fesetround/

with this flag to compile your code, your Polyspace analysis results agree with your run-time
behavior.

However, if your code uses extended precision, for instance using the GNU C flag -mfpmath=387,
your Polyspace analysis results might not agree with your run-time behavior in some corner cases.
See some examples of these corner cases in codeprover_limitations.pdf in polyspaceroot
\polyspace\verifier\code_prover_desktop. Here, polyspaceroot is the Polyspace
installation folder, for instance, C:\Program Files\Polyspace\R2019a.

To prevent use of extended precision, on targets without SSE support, you can use a flag such as -
ffloat-store. For your Polyspace analysis, use all for rounding mode to account for double
rounding.

• The Overflow check uses the rounding modes that you specify. For instance, the following table
shows the difference in the result of the check when you change your rounding modes.

 Float rounding mode (-float-rounding-mode)

2-245

Rounding mode: to-nearest Rounding mode: all
If results of floating-point operations are
rounded to nearest values:

• In the first addition operation, eps1 is just
large enough that the value nearest to
FLT_MAX + eps1 is greater than
FLT_MAX. The Overflow check is red.

• In the second addition operation, eps2 is
just small enough that the value nearest to
FLT_MAX + eps2 is FLT_MAX. The
Overflow check is green.

#include <float.h>
#define eps1 0x1p103
#define eps2 0x0.FFFFFFp103

float func(int ch) {
 float left_op = FLT_MAX;
 float right_op_1 = eps1, \
right_op_2 = eps2;
 switch(ch) {
 case 1:
 return (left_op +\
right_op_1);
 case 2:
 return (left_op +\
right_op_2);
 default:
 return 0;
 }
}

Besides to-nearest mode, the Overflow check
also considers other rounding modes.

• In the first addition operation, in to-nearest
mode, the value nearest to FLT_MAX +
eps1 is greater than FLT_MAX, so the
addition overflows. But if rounded towards
negative infinity, the result is FLT_MAX, so
the addition does not overflow. Combining
these two rounding modes, the Overflow
check is orange.

• In the second addition operation, in to-
nearest mode, the value nearest to
FLT_MAX + eps2 is FLT_MAX, so the
addition does not overflow. But if rounded
towards positive infinity, the result is
greater than FLT_MAX, so the addition
overflows. Combining these two rounding
modes, the Overflow check is orange.

#include <float.h>
#define eps1 0x1p103
#define eps2 0x0.FFFFFFp103

float func(int ch) {
 float left_op = FLT_MAX;
 float right_op_1 = eps1, \
 right_op_2 = eps2;
 switch(ch) {
 case 1:
 return (left_op +\
right_op_1);
 case 2:
 return (left_op +\
right_op_2);
 default:
 return 0;
 }
}

If you set the rounding mode to all and obtain an orange Overflow check, to determine how the
overflow can occur, consider all rounding modes.

Command-Line Information
Parameter: -float-rounding-mode
Value: to-nearest | all
Default: to-nearest
Example (Code Prover): polyspace-code-prover -sources file_name -float-rounding-
mode all

2 Analysis Options

2-246

Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
float-rounding-mode all

See Also
Overflow

Topics
“Specify Polyspace Analysis Options”

Introduced in R2016a

 Float rounding mode (-float-rounding-mode)

2-247

Respect types in fields (-respect-types-in-
fields)
Do not cast nonpointer fields of a structure to pointers

Description
This option affects a Code Prover analysis only.

Specify that structure fields not declared initially as pointers will not be cast to pointers later.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Verification Assumptions node.

Command line and options file: Use the option -respect-types-in-fields. See “Command-
Line Information” on page 2-249.

Why Use This Option

Use this option to identify and forbid casts from nonpointer structure fields to pointers.

Settings
 On

The verification assumes that structure fields not declared initially as pointers will not be cast to
pointers later.

Code with option off Code with option on
struct {
 unsigned int x1;
 unsigned int x2;
} S;

void funct(void) {
 int var, *tmp;
 S.x1 = &var;
 tmp = (int*)S.x1;
 *tmp = 1;
 assert(var==1);
}

In this example, the fields of S are declared
as integers but S.x1 is cast to a pointer. With
the option turned off, Polyspace allows the
cast.

struct {
 unsigned int x1;
 unsigned int x2;
} S;

void funct(void) {
 int var, *tmp;
 S.x1 = &var;
 tmp = (int*)S.x1;
 *tmp = 1;
 assert(var==1);
}

In this example, the fields of S are declared
as integers but S.x1 is cast to a pointer. With
the option turned on, Polyspace ignores the
cast. Therefore, it ignores the initialization of
var through the pointer (int*)S.x1 and
produces a red Non-initialized local
variable error when var is read.

2 Analysis Options

2-248

 Off (default)
The verification assumes that structure fields can be cast to pointers even when they are not
declared as pointers.

Command-Line Information
Parameter: -respect-types-in-fields
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -respect-types-
in-fields
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
respect-types-in-fields

See Also
Respect types in global variables (-respect-types-in-globals) | Non-initialized
local variable

Topics
“Specify Polyspace Analysis Options”

 Respect types in fields (-respect-types-in-fields)

2-249

Respect types in global variables (-respect-
types-in-globals)
Do not cast nonpointer global variables to pointers

Description
This option affects a Code Prover analysis only.

Specify that global variables not declared initially as pointers will not be cast to pointers later.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Verification Assumptions node.

Command line and options file: Use the option -respect-types-in-globals. See “Command-
Line Information” on page 2-251.

Why Use This Option

Use this option to identify and forbid casts from nonpointer global variables to pointers.

Settings
 On

The verification assumes that global variables not declared initially as pointers will not be cast to
pointers later.

 Off (default)
The verification assumes that global variables can be cast to pointers even when they are not
declared as pointers.

Tips
If you select this option, the number of checks in your code can change. You can use this option and
the change in results to identify cases where you cast nonpointer variables to pointers.

For instance, in the following example, when you select the option, the results have one less orange
check and one more red check.

2 Analysis Options

2-250

Code with option off Code with option on
int global;
void main(void) {
 int local;
 global = (int)&local;
 (int)global = 5;
 assert(local==5);
}

In this example, global is declared as an int
variable but cast to a pointer. With the option
turned off, Polyspace allows the cast.

int global;
void main(void) {
 int local;
 global = (int)&local;
 (int)global = 5;
 assert(local==5);
}

In this example, global is declared as an int
variable but cast to a pointer. With the option
turned on, Polyspace ignores the cast. Therefore,
it ignores the initialization of local through the
pointer (int*)global and produces a red Non-
initialized local variable error when local is
read.

Command-Line Information
Parameter: -respect-types-in-globals
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -respect-types-
in-globals
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
respect-types-in-globals

See Also
Respect types in fields (-respect-types-in-fields) | Non-initialized local
variable

Topics
“Specify Polyspace Analysis Options”

 Respect types in global variables (-respect-types-in-globals)

2-251

Consider environment pointers as unsafe (-
stubbed-pointers-are-unsafe)
Specify that environment pointers can be unsafe to dereference unless constrained otherwise

Description
This option affects a Code Prover analysis only.

This option is not available for code generated from MATLAB code or Simulink models.

Specify that the verification must consider environment pointers as unsafe unless otherwise
constrained. Environment pointers are pointers that can be assigned values outside your code.

Environment pointers include:

• Global or extern pointers.
• Pointers returned from stubbed functions.

A function is stubbed if your code does not contain the function definition or you override a
function definition by using the option Functions to stub (-functions-to-stub).

• Pointer parameters of functions whose calls are generated by the software.

A function call is generated if you verify a module or library and the module or library does not
have an explicit call to the function. You can also force a function call to be generated with the
option Functions to call (-main-generator-calls).

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Verification Assumptions node.

Command line and options file: Use the option -stubbed-pointers-are-unsafe. See
“Command-Line Information” on page 2-254.

Why Use This Option

Use this option so that the verification makes more conservative assumptions about pointers from
external sources.

If you specify this option, the verification considers that environment pointers can have a NULL value.
If you read an environment pointer without checking for NULL, the Illegally dereferenced pointer
check shows a potential error in orange. The message associated with the orange check shows the
pointer can be NULL.

Settings
 On

The verification considers that environment pointers can have a NULL value.

2 Analysis Options

2-252

 Off (default)
The verification considers that environment pointers:

• Cannot have a NULL value.
• Points within allowed bounds.

Tips
• Enable this option during the integration phase. In this phase, you provide complete code for
verification. Even if an orange check originates from external sources, you are likely to place
protections against unsafe pointers from such sources. For instance, if you obtain a pointer from
an unknown source, you check the pointer for NULL value.

Disable this option during the unit testing phase. In this phase, you focus on errors originating
from your unit.

• If you are verifying code implementation of AUTOSAR runnables, Code Prover assumes that
pointer arguments to runnables and pointers returned from Rte_ functions are not NULL. You
cannot use this option to change the assumption. See “Run Polyspace on AUTOSAR Code with
Conservative Assumptions” (Polyspace Code Prover).

• If you enable this option, the number of orange checks in your code might increase.

Environment Pointers Safe Environment Pointers Unsafe
The Illegally dereferenced pointer check is
green. The verification assumes that env_ptr
is not NULL and any dereference is within
allowed bounds. The verification assumes that
the result of the dereference is full range. For
instance, in this case, the return value has the
full range of type int.

 int func (int *env_ptr) {
 return *env_ptr;
 }

The Illegally dereferenced pointer check is
orange. The verification assumes that
env_ptr can be NULL.

 int func (int *env_ptr) {
 return *env_ptr;
 }

If you enable this option, the number of gray checks might decrease.

Environment Pointers Safe Environment Pointers Unsafe
The verification assumes that env_ptr is not
NULL. The if condition is always true and the
else block is unreachable.

 #include <stdlib.h>
 int func (int *env_ptr) {
 if(env_ptr!=NULL)
 return *env_ptr;
 else
 return 0;
 }

The verification assumes that env_ptr can be
NULL. The if condition is not always true and
the else block can be reachable.

 #include <stdlib.h>
 int func (int *env_ptr) {
 if(env_ptr!=NULL)
 return *env_ptr;
 else
 return 0;
 }

• Instead of considering all environment pointers as safe or unsafe, you can individually constrain
some of the environment pointers. See the description of Initialize Pointer in “External
Constraints for Polyspace Analysis”.

 Consider environment pointers as unsafe (-stubbed-pointers-are-unsafe)

2-253

When you individually constrain a pointer, you first specify an Init Mode, and then specify
through the Initialize Pointer option whether the pointer is Null, Not Null, or Maybe Null.
Depending on the Init Mode, you can either override the global specification for all environment
pointers or not.

• If you set the Init Mode of the pointer to INIT or PERMANENT, your selection for Initialize
Pointer overrides your specification for this option. For instance, if you specify Not NULL for
an environment pointer ptr, the verification assumes that ptr is not NULL even if you specify
that environment pointers must be considered unsafe.

• If you set the Init Mode to MAIN GENERATOR, the verification uses your specification for this
option.

For pointers returned from stubbed functions, the option MAIN GENERATOR is not available. If
you override the global specification for such a pointer through the Initialize Pointer option
in constraints, you cannot toggle back to the global specification without changing the
Initialize Pointer option too.

• If you disable this option, the verification considers that dereferences at all pointer depths are
valid.

For instance, all the dereferences are considered valid in this code:

int*** stub(void);

void func2() {
 int ***ptr = stub();
 int **ptr2 = *ptr;
 int *ptr3 = *ptr2;
}

Command-Line Information
Parameter: -stubbed-pointers-are-unsafe
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -stubbed-
pointers-are-unsafe
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
stubbed-pointers-are-unsafe

See Also
Constraint setup (-data-range-specifications)

Topics
“Specify Polyspace Analysis Options”
“Specify External Constraints”
“External Constraints for Polyspace Analysis”

Introduced in R2016b

2 Analysis Options

2-254

Allow negative operand for left shifts (-allow-
negative-operand-in-shift)
Allow left shift operations on a negative number

Description
This option affects a Code Prover analysis only.

Specify that the verification must allow left shift operations on a negative number.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line and options file: Use the option -allow-negative-operand-in-shift. See
“Command-Line Information” on page 2-255.

Why Use This Option

According to the C99 standard (sec 6.5.7), the result of a left shift operation on a negative number is
undefined. Following the standard, the verification produces a red check on left shifts of negative
numbers.

If your compiler has a well-defined behavior for left shifts of negative numbers, set this option. Note
that allowing left shifts of negative numbers can reduce the cross-compiler portability of your code.

Settings
 On

The verification allows shift operations on a negative number, for instance, -2 << 2.
 Off (default)

If a shift operation is performed on a negative number, the verification generates an error.

Command-Line Information
Parameter: -allow-negative-operand-in-shift
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -allow-negative-
operand-in-shift
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
allow-negative-operand-in-shift

See Also
Invalid shift operations

Topics
“Specify Polyspace Analysis Options”

 Allow negative operand for left shifts (-allow-negative-operand-in-shift)

2-255

“Modify or Disable Code Prover Run-Time Checks” (Polyspace Code Prover)

2 Analysis Options

2-256

Consider non finite floats (-allow-non-finite-
floats)
Enable an analysis mode that incorporates infinities and NaNs

Description
Enable an analysis mode that incorporates infinities and NaNs for floating point operations.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line and options file: Use the option -allow-non-finite-floats. See “Command-
Line Information” on page 2-259.

Why Use This Option
Code Prover

By default, the analysis does not incorporate infinities and NaNs. For instance, the analysis
terminates the execution thread where a division by zero occurs and does not consider that the result
could be infinite.

If you use functions such as isinf or isnan and account for infinities and NaNs in your code, set
this option. When you set this option and a division by zero occurs for instance, the execution thread
continues with infinity as the result of the division.

Set this option alone if you are sure that you have accounted for infinities and NaNs in your code.
Using the option alone effectively disables many numerical checks on floating point operations. If you
have generally accounted for infinities and NaNs, but you are not sure that you have considered all
situations, set these additional options:

• Infinities (-check-infinite): Use warn-first.
• NaNs (-check-nan): Use warn-first.

Bug Finder

If the analysis flags comparisons using isinf or isnan as dead code, use this option. By default, a
Bug Finder analysis does not incorporate infinities and NaNs.

Settings
 On

The analysis allows infinities and NaNs. For instance, in this mode:

• The analysis assumes that floating-point operations can produce results such as infinities and
NaNs.

 Consider non finite floats (-allow-non-finite-floats)

2-257

By using options Infinities (-check-infinite) and NaNs (-check-nan), you can
choose to highlight operations that produce nonfinite results and stop the execution threads
where the nonfinite results occur. These options are not available for a Bug Finder analysis.

• The analysis assumes that floating-point variables with unknown values can have any value
allowed by their type, including infinite or NaN. Floating-point variables with unknown values
include volatile variables and return values of stubbed functions.

 Off (default)
The analysis does not allow infinities and NaNs. For instance, in this mode:

• The Code Prover analysis produces a red check on a floating-point operation that produces an
infinity or a NaN as the only possible result on all execution paths. The verification produces
an orange check on a floating-point operation that can potentially produce an infinity or NaN.

• The Code Prover analysis assumes that floating-point variables with unknown values are full-
range but finite.

• The Bug Finder analysis shows comparisons with infinity using isinf as dead code.

Tips
• The IEEE 754 Standard allows special quantities such as infinities and NaN so that you can handle

certain numerical exceptions without aborting the code. Some implementations of the C standard
support infinities and NaN.

• If your compiler supports infinities and NaNs and you account for them explicitly in your code,
use this option so that the verification also allows them.

For instance, if a division results in infinity, in your code, you specify an alternative action.
Therefore, you do not want the verification to highlight division operations that result in
infinity.

• If your compiler supports infinities and NaNs but you are not sure if you account for them
explicitly in your code, use this option so that the verification incorporates infinities and NaNs.
Use the options -check-nan and -check-infinite with argument warn so that the
verification highlights operations that result in infinities and NaNs, but does not stop the
execution thread. These options are not available for a Bug Finder analysis.

• If you run a Code Prover analysis and use this option, checkers for overflow, division by zero and
other numerical run-time errors are disabled. See “Numerical Checks” (Polyspace Code Prover).

If you run a Bug Finder analysis and use this option:

• The checkers for overflow and division by zero are disabled. See “Numerical Defects”.
• The checker Floating point comparison with equality operators can show false

positives.
• If you select this option, the number and type of Code Prover checks in your code can change.

For instance, in the following example, when you select the option, the results have one less red
check and three more green checks.

2 Analysis Options

2-258

Infinities and NaNs Not Allowed Infinities and NaNs Allowed
Code Prover produces a Division by zero
error and stops verification.

double func(void) {
 double x=1.0/0.0;
 double y=1.0/x;
 double z=x-x;
 return z;
}

If you select this option, Code Prover does not
check for a Division by zero error.

double func(void) {
 double x=1.0/0.0;
 double y=1.0/x;
 double z=x-x;
 return z;
}

The analysis assumes that dividing by zero
results in:

• Value of x equal to Inf
• Value of y equal to 0.0
• Value of z equal to NaN

In your analysis results in the Polyspace user
interface, if you place your cursor on y and z,
you can see the nonfinite values Inf and NaN
respectively in the tooltip.

Command-Line Information
Parameter: -allow-non-finite-floats
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources file_name -allow-non-finite-
floats
Example (Code Prover): polyspace-code-prover -sources file_name -allow-non-
finite-floats
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
allow-non-finite-floats
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
allow-non-finite-floats

See Also
Infinities (-check-infinite) | NaNs (-check-nan) | “Numerical Defects” | “Numerical
Checks” (Polyspace Code Prover)

Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks” (Polyspace Code Prover)

Introduced in R2016a

 Consider non finite floats (-allow-non-finite-floats)

2-259

Infinities (-check-infinite)
Specify how to handle floating-point operations that result in infinity

Description
This option affects a Code Prover analysis only.

Specify how the analysis must handle floating-point operations that result in infinities.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node. See “Dependencies” on page 2-261 for other options you must also enable.

Command line and options file: Use the option -check-infinite. See “Command-Line
Information” on page 2-261.

Why Use This Option

Use this option to enable detection of floating-point operations that result in infinities.

If you specify that the analysis must consider nonfinite floats, by default, the analysis does not flag
these operations. Use this option to detect these operations while still incorporating nonfinite floats.

Settings
Default: allow

allow
The verification does not produce a check on the operation.

For instance, in the following code, there is no Overflow check.

double func(void) {
 double x=1.0/0.0;
 return x;
}

warn-first
The verification produces a check on the operation. The check determines if the result of the
operation is infinite when the operands themselves are not infinite. The verification does not
terminate the execution thread that produces infinity.

If the verification detects an operation that produces infinity as the only possible result on all
execution paths and the operands themselves are never infinite, the check is red. If the operation
can potentially result in infinity, the check is orange.

For instance, in the following code, there is a nonblocking Overflow check for infinity.

double func(void) {
 double x=1.0/0.0;

2 Analysis Options

2-260

 return x;
}

Even though the Overflow check on the / operation is red, the verification continues. For
instance, a green Non-initialized local variable check appears on x in the return statement.

forbid
The verification produces a check on the operation and terminates the execution thread that
produces infinity.

If the check is red, the verification does not continue for the remaining code in the same scope as
the check. If the check is orange, the verification continues but removes from consideration the
variable values that produced infinity.

For instance, in the following code, there is a blocking Overflow check for infinity.

double func(void) {
 double x=1.0/0.0;
 return x;
}

The verification stops because the Overflow check on the / operation is red. For instance, a Non-
initialized local variable check does not appear on x in the return statement.

Dependencies
To use this option, you must enable the verification mode that incorporates infinities and NaNs. See
Consider non finite floats (-allow-non-finite-floats).

Command-Line Information
Parameter: -check-infinite
Value: allow | warn-first | forbid
Default: allow
Example (Code Prover): polyspace-code-prover -sources file_name -check-infinite
forbid
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
check-infinite forbid

See Also
Polyspace Analysis Options
Consider non finite floats (-allow-non-finite-floats) | NaNs (-check-nan)

Polyspace Results
Overflow

Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks” (Polyspace Code Prover)

Introduced in R2016a

 Infinities (-check-infinite)

2-261

Check that global variables are initialized after
warm reboot (-check-globals-init)
Check that global variables are assigned values in designed initialization code

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must check whether all non-const global variables (and local static variables)
are explicitly initialized at declaration or within a section of code marked as initialization code.

To indicate the end of initialization code, you enter the line

#pragma polyspace_end_of_init

in the main function (only once). The initialization code starts from the beginning of main and
continues up to this pragma.

Since compilers ignore unrecognized pragmas, the presence of this pragma does not affect program
execution.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line and options file: Use the option -check-globals-init. See “Command-Line
Information” on page 2-265.

Why Use This Option

In a warm reboot, to save time, the bss segment of a program, which might hold variable values from
a previous state, is not loaded. Instead, the program is supposed to explicitly initialize all non-const
variables without default values before execution. You can use this option to delimit the initialization
code and verify that all non-const global variables are indeed initialized in a warm reboot.

For instance, in this simple example, the global variable aVar is initialized in the initialization code
section but the variable anotherVar is not.

int aVar;
const int aConst = -1;
int anotherVar;

int main() {
 aVar = aConst;
#pragma polyspace_end_of_init
 return 0;
}

2 Analysis Options

2-262

Settings
 On

Polyspace checks whether all global variables are initialized in the designated initialization code.
The initialization code starts from the beginning from main and continues up to the pragma
polyspace_end_of_init.

The results are reported using the check .
 Off (default)

Polyspace does not check for initialization of global variables in a designated code section.

However, the verification continues to check if a variable is initialized at the time of use. The
results are reported using the check Non-initialized variable.

Dependencies
You can use this option and designate a section of code as initialization code only if:

• Your program contains a main function and you use the option Verify whole application
(implicitly set by default at command line).

• You set Source code language (-lang) to C.

Note that the pragma must appear only once in the main function. The pragma can appear before or
after variable declarations but must appear after type definitions (typedef-s).

You cannot use this option with the following options:

• Disable checks for non-initialization (-disable-initialization-checks)
• Verify files independently (-unit-by-unit)
• Show global variable sharing and usage only (-shared-variables-mode)

Tips
• You can use this option along with the option Verify initialization section of code

only (-init-only-mode) to check the initialization code before checking the remaining
program.

This approach has the following benefits compared to checking the entire code in one run:

• Run-time errors in the initialization code can invalidate analysis of the remaining code. You can
run a comparatively quicker check on the initialization code before checking the remaining
program.

• You can review results of the checker Global variable not assigned a value in
initialization code relatively easily.

Consider this example. There is an orange check on var because var might remain
uninitialized when the if and else if statements are skipped.

int var;

int checkSomething(void);

 Check that global variables are initialized after warm reboot (-check-globals-init)

2-263

int checkSomethingElse(void);

int main() {
 int local_var;
 if(checkSomething())
 {
 var=0;
 }
 else if(checkSomethingElse()) {
 var=1;
 }
 #pragma polyspace_end_of_init
 var=2;
 local_var = var;
 return 0;
}

To review this check and understand when x might be non-initialized, you have to browse
through all instances of x on the Variable Access pane. If you check the initialization code
alone, only the code in bold gets checked and you have to browse through only the instances in
the initialization code.

• The check is only as good as your placement of the pragma polyspace_end_of_init. For
instance:

• Place the pragma only after initialization code ends.

Otherwise, a variable might appear falsely uninitialized.
• Try to place the pragma directly in the main function, that is, outside a block. If you place the

pragma in a block, the check considers only those paths that end in the block.

All paths that end in the block might have a variable initialized but paths that skip the block
might let the variable go uninitialized. If you do place the pragma in a block, make sure that it
is okay if a variable stays uninitialized outside the block.

For instance, in this example, the variable var is initialized on all paths that end at the location
of the pragma. The check is green despite the fact that the if block might be skipped, letting
the variable go uninitialized.

int var;

int func();

int main() {
 int err = func();
 if(err) {
 var = 0;
 #pragma polyspace_end_of_init
 }
 int a = var;
 return 0;
}

The issue is detected by the checker if you place the pragma after the if block ends.
• Do not place the pragma in a loop.

2 Analysis Options

2-264

If you place the pragma in a loop, you can see results that are difficult to interpret. For
instance, in this example, both aVar and anotherVar are initialized in one iteration of the
loop. However, the pragma only considers the first iteration of the loop when it shows a green
check for initialization. If a variable is initialized on a later iteration, the check is orange.

int aVar;
int anotherVar;

void main() {
 for(int i=0; i<=1; i++) {
 if(i == 0)
 aVar = 0;
 else
 anotherVar = 0;
 #pragma polyspace_end_of_init
 }
}

The check is red if you verify initialization code alone and do not initialize a variable in the first
loop iteration. To avoid these incorrect red or orange checks, do not place the pragma in a
loop.

• To determine the initialization of a structure, a regular Code Prover analysis only considers
fields that are used.

If you check initialization code only using the option Verify initialization section of
code only (-init-only-mode), the analysis covers only a portion of the code and cannot
determine if a variable is used beyond this portion. Therefore, the checks for initialization
consider all structure fields, whether used or not.

Command-Line Information
Parameter: -check-globals-init
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -check-globals-
init
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
check-globals-init

See Also
Verify initialization section of code only (-init-only-mode) | Global variable
not assigned a value in initialization code

Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks” (Polyspace Code Prover)
“Assumptions About Global Variable Initialization” (Polyspace Code Prover)

Introduced in R2020a

 Check that global variables are initialized after warm reboot (-check-globals-init)

2-265

NaNs (-check-nan)
Specify how to handle floating-point operations that result in NaN

Description
This option affects a Code Prover analysis only.

Specify how the analysis must handle floating-point operations that result in NaN.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node. See “Dependencies” on page 2-267 for other options you must also enable.

Command line and options file: Use the option -check-nan. See “Command-Line Information” on
page 2-267.

Why Use This Option

Use this option to enable detection of floating-point operations that result in NaN-s.

If you specify that the analysis must consider nonfinite floats, by default, the analysis does not flag
these operations. Use this option to detect these operations while still incorporating nonfinite floats.

Settings
Default: allow

allow
The verification does not produce a check on the operation.

For instance, in the following code, there is no Invalid operation on floats check.

double func(void) {
 double x=1.0/0.0;
 double y=x-x;
 return y;
}

warn-first
The verification produces a check on the operation. The check determines if the result of the
operation is NaN when the operands themselves are not NaN. For instance, the check flags the
operation val1 + val2 only if the result can be NaN when both val1 and val2 are not NaN.
The verification does not terminate the execution thread that produces NaN.

If the verification detects an operation that produces NaN as the only possible result on all
execution paths and the operands themselves are never NaN, the check is red. If the operation
can potentially result in NaN, the check is orange.

For instance, in the following code, there is a nonblocking Invalid operation on floats check for
NaN.

2 Analysis Options

2-266

double func(void) {
 double x=1.0/0.0;
 double y=x-x;
 return y;
}

Even though the Invalid operation on floats check on the - operation is red, the verification
continues. For instance, a green Non-initialized local variable check appears on y in the
return statement.

forbid
The verification produces a check on the operation and terminates the execution thread that
produces NaN.

If the check is red, the verification does not continue for the remaining code in the same scope as
the check. If the check is orange, the verification continues but removes from consideration the
variable values that produced a NaN.

For instance, in the following code, there is a blocking Invalid operation on floats check for
NaN.

double func(void) {
 double x=1.0/0.0;
 double y=x-x;
 return y;
}

The verification stops because the Invalid operation on floats check on the - operation is red.
For instance, a Non-initialized local variable check does not appear on y in the return
statement.

The Invalid operation on floats check for NaN also appears on the / operation and is green.

Dependencies
To use this option, you must enable the verification mode that incorporates infinities and NaNs. See
Consider non finite floats (-allow-non-finite-floats).

Command-Line Information
Parameter: -check-nan
Value: allow | warn-first | forbid
Default: allow
Example (Code Prover): polyspace-code-prover -sources file_name -check-nan
forbid
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
check-nan forbid

See Also
Polyspace Analysis Options
Consider non finite floats (-allow-non-finite-floats) | Infinities (-check-
infinite)

 NaNs (-check-nan)

2-267

Polyspace Results
Invalid operation on floats

Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks” (Polyspace Code Prover)

Introduced in R2016a

2 Analysis Options

2-268

Enable pointer arithmetic across fields (-allow-
ptr-arith-on-struct)
Allow arithmetic on pointer to a structure field so that it points to another field

Description
This option affects a Code Prover analysis only.

Specify that a pointer assigned to a structure field can point outside its bounds as long as it points
within the structure.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node. See “Dependency” on page 2-270 for other options you must also enable.

Command line and options file: Use the option -allow-ptr-arith-on-struct. See “Command-
Line Information” on page 2-270.

Why Use This Option

Use this option to relax the check for illegally dereferenced pointers. Once you assign a pointer to a
structure field, you can perform pointer arithmetic and use the result to access another structure
field.

Settings
 On

A pointer assigned to a structure field can point outside the bounds imposed by the field as long
as it points within the structure. For instance, in the following code, unless you use this option,
the verification will produce a red Illegally dereferenced pointer check:

void main(void) {
struct S {char a; char b; int c;} x;
char *ptr = &x.b;
ptr ++;
*ptr = 1; // Red on the dereference, because ptr points outside x.b
}

 Off (default)
A pointer assigned to a structure field can point only within the bounds imposed by the field.

Tips
• The verification does not allow a pointer with negative offset values. This behavior occurs

irrespective of whether you choose the option Enable pointer arithmetic across fields.
• Using this option can slightly increase the number of orange checks. The option relaxes the

constraint that a pointer to a structure field cannot point to other fields of the structure. In

 Enable pointer arithmetic across fields (-allow-ptr-arith-on-struct)

2-269

exchange for relaxing this constraint, the verification loses precision on the boundary of fields
within a structure and treats the structure as a whole. Pointer dereferences that were previously
green can now turn orange.

Use this option if you follow a policy of reviewing red checks only and you need to work around
red checks from pointer arithmetic within a structure.

• Before using this option, consider the costs of using pointer arithmetic across different fields of a
structure.

Unlike an array, members of a structure can have different data types. For efficient storage,
structures use padding to accommodate this difference. When you increment a pointer pointing to
a structure member, you might not point to the next member. When you dereference this pointer,
you cannot rely on what you are reading or writing to.

Dependency
This option is available only if you set Source code language (-lang) to C.

Command-Line Information
Parameter: -allow-ptr-arith-on-struct
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -allow-ptr-
arith-on-struct
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
allow-ptr-arith-on-struct

See Also
Allow incomplete or partial allocation of structures (-size-in-bytes) |
Illegally dereferenced pointer

Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks” (Polyspace Code Prover)

2 Analysis Options

2-270

Detect stack pointer dereference outside scope (-
detect-pointer-escape)
Find cases where a function returns a pointer to one of its local variables

Description
This option affects a Code Prover analysis only.

Specify that the verification must detect cases where you access a variable outside its scope via
dangling pointers. Such an access can happen, for example, when a function returns a pointer to a
local variable and you dereference the pointer outside the function. The dereference causes
undefined behavior because the local variable that the pointer points to does not live outside the
function.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line and options file: Use the option -detect-pointer-escape. See “Command-Line
Information” on page 2-272.

Why Use This Option

Use this option to enable detection of pointer escape.

Settings
 On

The Illegally dereferenced pointer check performs an additional task, besides its usual
specifications. When you dereference a pointer, the check also determines if you are accessing a
variable outside its scope through the pointer. The check is:

• Red, if all the variables that the pointer points to are accessed outside their scope.

For instance, you dereference a pointer ptr in a function func that is called twice in your
code. In both calls, when you perform the dereference *ptr, ptr is pointing to variables
outside their scope. Therefore, the Illegally dereferenced pointer check is red.

• Orange, if only some of the variables that the pointer points to are accessed outside their
scope.

• Green, if none of the variables that the pointer points to are accessed outside their scope, and
other requirements of the check are also satisfied.

In the following code, if you enable this option, Polyspace Code Prover produces a red Illegally
dereferenced pointer check on *ptr. Otherwise, the Illegally dereferenced pointer check on
*ptr is green.

void func2(int *ptr) {
 *ptr = 0;

 Detect stack pointer dereference outside scope (-detect-pointer-escape)

2-271

}

int* func1(void) {
 int ret = 0;
 return &ret ;
}
void main(void) {
 int* ptr = func1() ;
 func2(ptr) ;
}

The Result Details pane displays a message indicating that ret is accessed outside its scope.

 Off (default)
When you dereference a pointer, the Illegally dereferenced pointer check does not check for
whether you are accessing a variable outside its scope. The check is green even if the pointer
dereference is outside the variable scope, as long as it satisfies these requirements:

• The pointer is not NULL.
• The pointer points within the memory buffer.

Tips
The detection of stack pointer deference outside scope does not apply to certain types of pointers. For
specific limitations, see “Limitations of Polyspace Verification” (Polyspace Code Prover).

Command-Line Information
Parameter: -detect-pointer-escape
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -detect-pointer-
escape
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
detect-pointer-escape

See Also
Illegally dereferenced pointer

Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks” (Polyspace Code Prover)

Introduced in R2015a

2 Analysis Options

2-272

Disable checks for non-initialization (-disable-
initialization-checks)
Disable checks for non-initialized variables and pointers

Description
This option affects a Code Prover analysis only.

Specify that Polyspace Code Prover must not check for non-initialization in your code.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line and options file: Use the option -disable-initialization-checks. See
“Command-Line Information” on page 2-274.

Why Use This Option

Use this option if you do not want to detect instances of non-initialized variables.

Settings
 On

Polyspace Code Prover does not perform the following checks:

• Non-initialized local variable: Local variable is not initialized before being read.
• Non-initialized variable: Variable other than local variable is not initialized before

being read.
• Non-initialized pointer: Pointer is not initialized before being read.
• Return value not initialized: C function does not return value when expected.

Polyspace assumes that, at declaration:

• Variables have full-range of values allowed by their type.
• Pointers can be NULL-valued or point to a memory block at an unknown offset.

 Off (default)
Polyspace Code Prover checks for non-initialization in your code. The software displays red
checks if, for instance, a variable is not initialized and orange checks if a variable is initialized
only on some execution paths.

Tips
• If you select this option, the software does not report most violations of MISRA C:2004 rule 9.1,

and MISRA C:2012 Rule 9.1.

 Disable checks for non-initialization (-disable-initialization-checks)

2-273

• If you select this option, the number and type of orange checks in your code can change.

For instance, the following table shows an additional orange check with the option enabled.

Checks for Non-initialization Enabled Checks for Non-initialization Disabled
void func(int flag) {
 int var1,var2;
 if(flag==0) {
 var1=var2;
 }
 else {
 var1=0;
 }
 var2=var1 + 1;
}

In this example, the software produces:

• A red Non-initialized local variable
check on var2 in the if branch. The
verification continues as if only the else
branch of the if statement exists.

• A green Non-initialized local variable
check on var1 in the last statement. var1
has the assigned value 0.

• A green Overflow check on the +
operation.

void func(int flag) {
 int var1,var2;
 if(flag==0) {
 var1=var2;
 }
 else {
 var1=0;
 }
 var2=var1 + 1;
}

In this example, the software:

• Does not produce Non-initialized local
variable checks. At initialization, the
software assumes that var2 has full range
of int values. Following the if statement,
because the software considers both if
branches, it assumes that var1 also has
full range of int values.

• Produces an orange Overflow check on the
+ operation. For instance, if var1 has the
maximum int value, adding 1 to it can
cause an overflow.

Command-Line Information
Parameter: -disable-initialization-checks
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -disable-
initialization-checks
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
disable-initialization-checks

See Also
Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks” (Polyspace Code Prover)

2 Analysis Options

2-274

Permissive function pointer calls (-permissive-
function-pointer)
Allow type mismatch between function pointers and the functions they point to

Description
This option affects a Code Prover analysis only.

Specify that the verification must allow function pointer calls where the type of the function pointer
does not match the type of the function.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node. See “Dependency” on page 2-277 for other options you must also enable.

Command line and options file: Use the option -permissive-function-pointer. See
“Command-Line Information” on page 2-277.

Why Use This Option

By default, Code Prover does not recognize calls through function pointers when a type mismatch
occurs. Fix the type mismatch whenever possible.

Use this option if:

• You cannot fix the type mismatch, and
• The analysis does not cover a significant portion of your code because calls via function pointers

are not recognized.

Settings
 On

The verification must allow function pointer calls where the type of the function pointer does not
match the type of the function. For instance, a function declared as int f(int*) can be called
by a function pointer declared as int (*fptr)(void*).

Only type mismatches between pointer types are allowed. Type mismatches between nonpointer
types cause compilation errors. For instance, a function declared as int f(int) cannot be
called by a function pointer declared as int (*fptr)(double).

 Off (default)
The verification must require that the argument and return types of a function pointer and the
function it calls are identical.

Type mismatches are detected with the check Correctness condition.

 Permissive function pointer calls (-permissive-function-pointer)

2-275

Tips
• With sources that use function pointers extensively, enabling this option can cause loss in

performance. This loss occurs because the verification has to consider more execution paths.
• Using this option can increase the number of orange checks. Some of these orange checks can

reveal a real issue with the code.

Consider these examples where a type mismatch occurs between the function pointer type and the
function that it points to:

• In this example, the function pointer obj_fptr has an argument that is a pointer to a three-
element array. However, it points to a function whose corresponding argument is a pointer to a
four-element array. In the body of foo, four array elements are read and incremented. The
fourth element does not exist and the ++ operation reads a meaningless value.

typedef int array_three_elements[3];
typedef void (*fptr)(array_three_elements*);

typedef int array_four_elements[4];
void foo(array_four_elements*);

void main() {
 array_three_elements arr[3] = {0,0,0};
 array_three_elements *ptr;
 fptr obj_fptr;

 ptr = &arr;
 obj_fptr = &foo;

 //Call via function pointer
 obj_fptr(&ptr);
}

void foo(array_four_elements* x) {
 int i = 0;
 int *current_pos;

 for(i = 0; i< 4; i++) {
 current_pos = (*x) + i;
 (*current_pos)++;
 }
}

Without this option, an orange Correctness condition check appears on the call
obj_fptr(&ptr) and the function foo is not verified. If you use this option, the body of foo
contains several orange checks. Review the checks carefully and make sure that the type
mismatch does not cause issues.

• In this example, the function pointer has an argument that is a pointer to a structure with
three float members. However, the corresponding function argument is a pointer to an
unrelated structure with one array member. In the function body, the strlen function is used
assuming the array member. Instead the strlen call reads the float members and can read
meaningless values, for instance, values stored in the structure padding.

2 Analysis Options

2-276

#include <string.h>
struct point {
 float x;
 float y;
 float z;
};
struct message {
 char msg[10] ;
};
void foo(struct message*);

void main() {
 struct point pt = {3.14, 2048.0, -1.0} ;
 void (*obj_fptr)(struct point *) ;

 obj_fptr = &foo;

 //Call via function pointer
 obj_fptr(&pt);
}

void foo(struct message* x) {
 int y = strlen(x->msg) ;
}

Without this option, an orange check appears on the call obj_fptr(&pt) and the function
foo is not verified. If you use this option, the function contains an orange check on the strlen
call. Review the check carefully and make sure that the type mismatch does not cause issues.

Dependency
This option is available only if you set Source code language (-lang) to C.

Command-Line Information
Parameter: -permissive-function-pointer
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -lang c -
permissive-function-pointer
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
lang c -permissive-function-pointer

See Also
Correctness condition

Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks” (Polyspace Code Prover)

 Permissive function pointer calls (-permissive-function-pointer)

2-277

Overflow mode for signed integer (-signed-
integer-overflows)
Specify whether result of overflow is wrapped around or truncated

Description
This option affects a Code Prover analysis only.

Specify whether Polyspace flags signed integer overflows and whether the analysis wraps the result
of an overflow or restricts it to its extremum value.

Set Option

User interface (desktop products only): In the Configuration pane, the option is on the Check
Behavior node under Code Prover Verification.

Command line and options file: Use the option -signed-integer-overflows. See “Command-
Line Information” (Polyspace Code Prover).

Why Use This Option

Use this option to specify whether to check for signed integer overflows and to specify the
assumptions the analysis makes following an overflow.

Settings
Default: forbid

forbid
Polyspace flags signed integer overflows. If the Overflow check on an operation is:

• Red, Polyspace does not analyze the remaining code in the current scope.
• Orange, Polyspace analyzes the remaining code in the current scope. Polyspace considers

that:

• After a positive Overflow, the result of the operation has an upper bound. This upper
bound is the maximum value allowed by the type of the result.

• After a negative Overflow, the result of the operation has a lower bound. This lower bound
is the minimum value allowed by the type of the result.

This behavior conforms to the ANSI C (ISO C++) standard.

In the following code, j has values in the range [1..231-1] before the orange overflow.
Polyspace considers that j has even values in the range [2 .. 2147483646] after the overflow.
Polyspace does not analyze the printf() statement after the red overflow.

2 Analysis Options

2-278

#include<stdio.h>

int getVal();

void func1()
{
 int i = 1;
 i = i << 30;
 // Result of * operation overflows
 i = i * 2;
 // Remaing code in current scope not analyzed
 printf("%d", i);
}
void func2()
{

 int j = getVal();
 if (j > 0) {
 // Range of j: [1..231-1]
 // Result of * operation may overflow
 j = j * 2;
 // Range of j: even values in [2 .. 2147483646]
 printf("%d", j);
 }
}

Note that tooltips on operations with signed integers show (result is truncated) to indicate
the analysis mode. The message appears even if the Overflow check is green.

allow
Polyspace does not flag signed integer overflows. If an operation results in an overflow, Polyspace
analyzes the remaining code but wraps the result of the overflow.

In this code, the analysis does not flag any overflow in the code. However, the range of j wraps
around to even values in the range [-231..2] or [2..231-2] and the value of i wraps around
to -231.

 Overflow mode for signed integer (-signed-integer-overflows)

2-279

#include<stdio.h>

int getVal();

void func1()
{
 int i = 1;
 i = i << 30;
 // i = 230
 i = i * 2;
 // i = -231
 printf("%d", i);
}
void func2()
{

 int j = getVal();
 if (j > 0) {
 // Range of j: [1..231-1]
 j = j * 2;
 // Range of j: even values in [-231..2] or [2..231-2]
 printf("%d", j);
 }
}

Note that tooltips on operations with signed integers show (result is wrapped) to indicate
the analysis mode. The message appears even if the analysis in this mode does not flag signed
integer overflows.

warn-with-wrap-around
Polyspace flags signed integer overflows. If an operation results in an overflow, Polyspace
analyzes the remaining code but wraps the result of the overflow.

In the following code, j has values in the range [1..231-1] before the orange overflow.
Polyspace considers that j has even values in the range [-231..2] or [2..231-2] after the
overflow.

Similarly, i has value 230 before the red overflow and value -231 after it .

2 Analysis Options

2-280

#include<stdio.h>

int getVal();

void func1()
{
 int i = 1;
 i = i << 30;
 // i = 230
 // Result of * operation overflows
 i = i * 2;
 // i = -231
 printf("%d", i);
}
void func2()
{

 int j = getVal();
 if (j > 0) {
 // Range of j: [1..231-1]
 // Result of * operation may overflow
 j = j * 2;
 // Range of j: even values in [-231..2] or [2..231-2]
 printf("%d", j);
 }
}

Note that tooltips on operations with signed integers show (result is wrapped) to indicate
the analysis mode. The message appears even if the Overflow check is green.

In wrap-around mode, an overflowing value propagates and can lead to a similar overflow several
lines later. By default, Code Prover shows only the first of similar overflows. To see all overflows,
use the option -show-similar-overflows.

Tips
• To check for overflows on conversions from unsigned to signed integers of the same size, set
Overflow mode for unsigned integer to forbid or warn-with-wrap-around. If you allow
unsigned integer overflows, Polyspace does not flag overflows on conversions and wraps the result
of an overflow, even if you check for signed integer overflows.

• In Polyspace Code Prover, overflowing signed constants are wrapped around. This behavior
cannot be changed by using the options. If you want to detect overflows with signed constants,
use the Polyspace Bug Finder checker Integer constant overflow.

Command-Line Information
Parameter: -signed-integer-overflows
Value: forbid | allow | warn-with-wrap-around
Default: forbid
Example (Code Prover): polyspace-code-prover -sources file_name -signed-integer-
overflows allow
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
signed-integer-overflows allow

 Overflow mode for signed integer (-signed-integer-overflows)

2-281

See Also
Overflow mode for unsigned integer (-unsigned-integer-overflows) | -show-
similar-overflows | Overflow

Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks” (Polyspace Code Prover)

Introduced in R2018b

2 Analysis Options

2-282

Overflow mode for unsigned integer (-unsigned-
integer-overflows)
Specify whether result of overflow is wrapped around or truncated

Description
This option affects a Code Prover analysis only.

Specify whether Polyspace flags unsigned integer overflows and whether the analysis wraps the
result of an overflow or restricts it to its extremum value.

Set Option

User interface (desktop products only): In the Configuration pane, the option is on the Check
Behavior node under Code Prover Verification.

Command line and options file: Use the option -unsigned-integer-overflows. See
“Command-Line Information” (Polyspace Code Prover).

Why Use This Option

Use this option to specify whether to check for unsigned integer overflows and to specify the
assumptions the analysis makes following an overflow.

Settings
Default: allow

forbid
Polyspace flags unsigned integer overflows. If the Overflow check on an operation is:

• Red, Polyspace does not analyze the remaining code in the current scope.
• Orange, Polyspace analyzes the remaining code in the current scope. Polyspace considers

that:

• After a positive Overflow, the result of the operation has an upper bound. This upper
bound is the maximum value allowed by the type of the result.

• After a negative Overflow, the result of the operation has a lower bound. This lower bound
is the minimum value allowed by the type of the result.

In the following code, j has values in the range [1..232-1] before the orange overflow.
Polyspace considers that j has even values in the range [2 .. 4294967294] after the overflow.
Polyspace does not analyze the printf() statement after the red overflow.

 Overflow mode for unsigned integer (-unsigned-integer-overflows)

2-283

#include<stdio.h>

unsigned int getVal();

void func1()
{
 unsigned int i = 1;
 i = i << 31;
 // Result of * operation overflows
 i = i * 2;
 // Remaing code in current scope not analyzed
 printf("%u", i);
}
void func2()
{

 unsigned int j = getVal();
 if (j > 0) {
 // Range of j: [1..232-1]
 // Result of * operation may overflow
 j = j * 2;
 // Range of j: even values in [2 .. 4294967294]
 printf("%u", j);
 }
}

Note that tooltips on operations with unsigned integers show (result is truncated) to
indicate the analysis mode. The message appears even if the Overflow check is green.

allow
Polyspace does not flag unsigned integer overflows. If an operation results in an overflow,
Polyspace analyzes the remaining code but wraps the result of the overflow. For instance,
MAX_INT + 1 wraps to MIN_INT. This behavior conforms to the ANSI C (ISO C++) standard.

In this code, the analysis does not flag any overflow in the code. However, the range of j wraps
around to even values in the range [0..232-2]] and the value of i wraps around to 0.

2 Analysis Options

2-284

#include<stdio.h>

unsigned int getVal();

void func1()
{
 unsigned int i = 1;
 i = i << 31;
 // i = 231
 i = i * 2;
 // i = 0
 printf("%u", i);
}
void func2()
{

 unsigned int j = getVal();
 if (j > 0) {
 // Range of j: [1..232-1]
 j = j * 2;
 // Range of j: even values in [0 .. 4294967294]
 printf("%u", j);
 }
}

Note that tooltips on operations with unsigned integers show (result is wrapped) to indicate
the analysis mode. The message appears even if the analysis does not flag unsigned integer
overflows.

warn-with-wrap-around
Polyspace flags unsigned integer overflows. If an operation results in an overflow, Polyspace
analyzes the remaining code but wraps the result of the overflow. For instance, INT_MAX + 1
wraps to 0.

In the following code, j has values in the range [1..232-1] before the orange overflow.
Polyspace considers that j has even values in the range [0 .. 4294967294] after the overflow.

Similarly, i has value 231 before the red overflow and value 0 after it.

 Overflow mode for unsigned integer (-unsigned-integer-overflows)

2-285

#include<stdio.h>

unsigned int getVal();

void func1()
{
 unsigned int i = 1;
 i = i << 31;
 // i = 231
 i = i * 2;
 // i = 0
 printf("%u", i);
}
void func2()
{

 unsigned int j = getVal();
 if (j > 0) {
 // Range of j: [1..232-1]
 j = j * 2;
 // Range of j: even values in [0 .. 4294967294]
 printf("%u", j);
 }
}

Note that tooltips on operations with unsigned integers show (result is wrapped) to indicate
the analysis mode. The message appears even if the Overflow check is green.

In wrap-around mode, an overflowing value propagates and can lead to a similar overflow several
lines later. By default, Code Prover shows only the first of similar overflows. To see all overflows,
use the option -show-similar-overflows.

Tips
• To check for overflows on conversions from unsigned to signed integers of the same size, set
Overflow mode for unsigned integer to forbid or warn-with-wrap-around. If you allow
unsigned integer overflows, Polyspace does not flag overflows on conversions and wraps the result
of an overflow, even if you check for signed integer overflows.

• In Polyspace Code Prover, overflowing unsigned constants are wrapped around. This behavior
cannot be changed by using the options. If you want to detect overflows with unsigned constants,
use the Polyspace Bug Finder checker Unsigned integer constant overflow.

• Code Prover does not show an overflow on bitwise operations on unsigned variables, for instance,
in this example:

volatile unsigned char Y;
Y = ~Y;

The verification considers that such bitwise operations are deliberate on your part and you intend
an automatic wrap-around in case the result of the operation overflows.

Command-Line Information
Parameter: -unsigned-integer-overflows
Value: forbid | allow | warn-with-wrap-around

2 Analysis Options

2-286

Default: allow
Example (Code Prover): polyspace-code-prover -sources file_name -unsigned-
integer-overflows allow
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
unsigned-integer-overflows allow

See Also
Overflow mode for signed integer (-signed-integer-overflows) | -show-similar-
overflows | Overflow

Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks” (Polyspace Code Prover)

Introduced in R2018b

 Overflow mode for unsigned integer (-unsigned-integer-overflows)

2-287

Allow incomplete or partial allocation of structures
(-size-in-bytes)
Allow a pointer with insufficient memory buffer to point to a structure

Description
This option affects a Code Prover analysis only.

Specify that the verification must allow dereferencing a pointer that points to a structure but has a
sufficient buffer for only some of the structure’s fields.

This type of pointer results when a pointer to a smaller structure is cast to a pointer to a larger
structure. The pointer resulting from the cast has sufficient buffer for only some fields of the larger
structure.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line and options file: Use the option -size-in-bytes. See “Command-Line
Information” on page 2-289.

Why Use This Option

Use this option to relax the check for illegally dereferenced pointers. You can point to a structure
even when the buffer allowed for the pointer is not sufficient for all the structure fields.

Settings
 On

When a pointer with insufficient buffer is dereferenced, Polyspace does not produce an Illegally
dereferenced pointer error, as long as the dereference occurs within allowed buffer.

For instance, in the following code, the pointer p has sufficient buffer for the first two fields of the
structure BIG. Therefore, with the option on, Polyspace considers that the first two dereferences
are valid. The third dereference takes p outside its allowed buffer. Therefore, Polyspace produces
an Illegally dereferenced pointer error on the third dereference.

#include <stdlib.h>

typedef struct _little { int a; int b; } LITTLE;
typedef struct _big { int a; int b; int c; } BIG;

void main(void) {
 BIG *p = malloc(sizeof(LITTLE));

 if (p!= ((void *) 0)) {
 p->a = 0 ;
 p->b = 0 ;

2 Analysis Options

2-288

 p->c = 0 ; // Red IDP check
 }
}

 Off (default)
Polyspace does not allow dereferencing a pointer to a structure if the pointer does not have
sufficient buffer for all fields of the structure. It produces an Illegally dereferenced pointer
error the first time you dereference the pointer.

For instance, in the following code, even though the pointer p has sufficient buffer for the first
two fields of the structure BIG, Polyspace considers that dereferencing p is invalid.

#include <stdlib.h>

typedef struct _little { int a; int b; } LITTLE;
typedef struct _big { int a; int b; int c; } BIG;

void main(void) {
 BIG *p = malloc(sizeof(LITTLE));

 if (p!= ((void *) 0)) {
 p->a = 0 ; // Red IDP check
 p->b = 0 ;
 p->c = 0 ;
 }
}

Tips
• If you do not turn on this option, you cannot point to the field of a partially allocated structure.

For instance, in the preceding example, if you do not turn on the option and perform the
assignment

int *ptr = &(p->a);

Polyspace considers that the assignment is invalid. If you dereference ptr, it produces an
Illegally dereferenced pointer error.

• Using this option can slightly increase the number of orange checks.

Command-Line Information
Parameter: -size-in-bytes
Default: Off
Example (Code Prover): polyspace-code-prover -sources file_name -size-in-bytes
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
size-in-bytes

See Also
Enable pointer arithmetic across fields (-allow-ptr-arith-on-struct) |
Illegally dereferenced pointer

Topics
“Specify Polyspace Analysis Options”

 Allow incomplete or partial allocation of structures (-size-in-bytes)

2-289

“Modify or Disable Code Prover Run-Time Checks” (Polyspace Code Prover)

2 Analysis Options

2-290

Subnormal detection mode (-check-subnormal)
Detect operations that result in subnormal floating-point values

Description
This option affects a Code Prover analysis only.

Specify that the verification must check floating-point operations for subnormal results.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line and options file: Use the option -check-subnormal. See “Command-Line
Information” on page 2-293.

Why Use This Option

Use this option to detect floating-point operations that result in subnormal values.

Subnormal numbers have magnitudes less than the smallest floating-point number that can be
represented without leading zeros in the significand. The presence of subnormal numbers indicates
loss of significant digits. This loss can accumulate over subsequent operations and eventually result
in unexpected values. Subnormal numbers can also slow down the execution on targets without
hardware support.

Settings
Default: allow

allow
The verification does not check operations for subnormal results.

forbid
The verification checks for subnormal results.

The verification stops the execution path with the subnormal result and prevents subnormal
values from propagating further. Therefore, in practice, you see only the first occurrence of the
subnormal value.

warn-all
The verification checks for subnormal results and highlights all occurrences of subnormal values.
Even if a subnormal result comes from previous subnormal values, the result is highlighted.

The verification continues even if the check is red.
warn-first

The verification checks for subnormal results but only highlights first occurrences of subnormal
values. If a subnormal value propagates to further subnormal results, those subsequent results
are not highlighted.

 Subnormal detection mode (-check-subnormal)

2-291

The verification continues even if the check is red.

For details of the result colors in each mode, see Subnormal float.

Tips
• If you want to see only those operations where a subnormal value originates from non-subnormal

operands, use the warn-first mode.

For instance, in the following code, arg1 and arg2 are unknown. The verification assumes that
they can take all values allowed for the type double. This assumption can lead to subnormal
results from certain operations. If you use the warn-first mode, the first operation causing the
subnormal result is highlighted.

warn-all warn-first
void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, all four operations can have
subnormal results. The four checks for
subnormal results are orange.

void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, difference1 and
difference2 can be subnormal if arg1 and
arg2 are sufficiently close. The first two
checks for subnormal results are orange.
val1 and val2 cannot be subnormal unless
difference1 and difference2 are
subnormal. The last two checks for subnormal
results are green.

Through red/orange checks, you see only the
first instance where a subnormal value
appears. You do not see red/orange checks
from those subnormal values propagating to
subsequent operations.

• If you want to see where a subnormal value originates and do not want to see subnormal results
arising from the same cause more than once, use the forbid mode.

For instance, in the following code, arg1 and arg2 are unknown. The verification assumes that
they can take all values allowed for the type double. This assumption can lead to subnormal
results for arg1-arg2. If you use the forbid mode and perform the operation arg1-arg2 twice
in succession, only the first operation is highlighted. The second operation is not highlighted
because the subnormal result for the second operation arises from the same cause as the first
operation.

2 Analysis Options

2-292

warn-all forbid
void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, all four operations can have
subnormal results. The four checks for
subnormal results are orange.

void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, difference1 can be
subnormal if arg1 and arg2 are sufficiently
close. The first check for subnormal results is
orange. Following this check, the verification
excludes from consideration:

• The close values of arg1 and arg2 that led
to the subnormal value of difference1.

In the subsequent operation arg1 -
arg2, the check is green and
difference2 is not subnormal. The result
of the check on difference2 * 2 is
green for the same reason.

• The subnormal value of difference1.

In the subsequent operation difference1
* 2, the check is green.

Command-Line Information
Parameter: -check-subnormal
Value: allow | warn-first | warn-all | forbid
Default: allow
Example (Code Prover): polyspace-code-prover -sources file_name -check-subnormal
forbid
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
check-subnormal forbid

See Also
Polyspace Results
Subnormal float

Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks” (Polyspace Code Prover)

Introduced in R2016b

 Subnormal detection mode (-check-subnormal)

2-293

Detect uncalled functions (-uncalled-function-
checks)
Detect functions that are not called directly or indirectly from main or another entry point function

Description
This option affects a Code Prover analysis only.

Detect functions that are not called directly or indirectly from main or another entry point function
during run-time.

A function can be uncalled because of several reasons including the following:

• The function is actually not called.
• The call site occurs in dead code.
• The call site follows a red check. See “Code Prover Analysis Following Red and Orange Checks”

(Polyspace Code Prover).
• The call occurs via a function pointer and Polyspace is unable to determine which function it

points to.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Check
Behavior node.

Command line and options file: Use the option -uncalled-function-checks. See “Command-
Line Information” on page 2-295.

Why Use This Option

Typically, after verification, the Dashboard pane in the Polyspace user interface shows functions that
are not called during verification and therefore not analyzed. However, you do not see them in your
analysis results or reports. You cannot comment on them or justify them.

If you want to see these uncalled functions in your analysis results and reports, use this option.

Settings
Default: none

none
The Code Prover analysis excludes checks for uncalled functions.

never-called
The Code Prover analysis checks for functions that are defined but not called.

called-from-unreachable
The Code Prover analysis checks for functions that are defined and called from an unreachable
part of the code.

2 Analysis Options

2-294

all
The Code Prover analysis checks for functions that are:

• Defined but not called
• Defined and called from an unreachable part of the code.

Command-Line Information
Parameter: -uncalled-function-checks
Value: none | never-called | called-from-unreachable | all
Default: none
Example (Code Prover): polyspace-code-prover -sources file_name -uncalled-
function-checks all
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
uncalled-function-checks all

See Also
Function not called | Function not reachable

Topics
“Specify Polyspace Analysis Options”
“Modify or Disable Code Prover Run-Time Checks” (Polyspace Code Prover)

 Detect uncalled functions (-uncalled-function-checks)

2-295

Sensitivity context (-context-sensitivity)
Store call context information to identify function call that caused errors

Description
This option affects a Code Prover analysis only.

Specify the functions for which the verification must store call context information. If the function is
called multiple times, using this option helps you to distinguish between the different calls.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Precision node.

Command line and options file: Use the option -context-sensitivity. See “Command-Line
Information” (Polyspace Code Prover).

Why Use This Option

Suppose a function is called twice in your code. The check color on each operation in the function
body is a combined result of both calls. If you want to distinguish between the colors in the two calls,
use this option.

For instance, if a function contains a red or orange check and a green check on the same operation
for two different calls, the software combines the contexts and displays an orange check on the
operation. If you use this option, the check turns dark orange and the result details show the color of
the check for each call.

Settings
Default: none

none
The software does not store call context information for functions.

auto
The software stores call context information for checks in:

• Functions that form the leaves of the call tree. These functions are called by other functions,
but do not call functions themselves.

2 Analysis Options

2-296

• Small functions. The software uses an internal threshold to determine whether a function is
small.

custom
The software stores call context information for functions that you specify. To enter the name of a

function, click .

Tips
• If you select this option, you do not see tooltips in the body of the functions that benefit from this

option (and keep the call contexts separate).
• If you select this option, the analysis can show some code operations in grey (unreachable code)

even when you can identify execution paths leading to the operations. In this case, the grey code
indicates operations that might be unreachable only in a particular call context.

For instance, suppose this function is called with the arguments -1 and 1 :

int isPositive (int num) {
 if(num < 0)
 return 0;
 return 1;
}

If you use the option with this function as argument, there are two unreachable code checks:

• The check on if is grey because when the function is called with argument -1, the if condition
is always true.

• The check on the code inside the if branch is grey because when the function is called with
argument 1, the if condition is always false.

Each unreachable code check indicates code that is unreachable only in a particular call context.
You see the call context in the result details.

Command-Line Information
Parameter: -context-sensitivity
Value: function1[,function2,...]
Default: none
Example (Code Prover): polyspace-code-prover -sources file_name -context-
sensitivity myFunc1,myFunc2
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
context-sensitivity myFunc1,myFunc2

To allow the software to determine which functions receive call context storage, use the option -
context-sensitivity-auto.

See Also
Topics
“Specify Polyspace Analysis Options”
“Identify Function Call with Run-Time Error” (Polyspace Code Prover)

 Sensitivity context (-context-sensitivity)

2-297

Improve precision of interprocedural analysis (-
path-sensitivity-delta)
Avoid certain verification approximations for code with fewer lines

Description
This option affects a Code Prover analysis only.

For smaller code, use this option to improve the precision of cross-functional analysis.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Precision node.

Command line and options file: Use the option -path-sensitivity-delta. See “Command-Line
Information” on page 2-298.

Why Use This Option

Use this option to avoid certain software approximations on execution paths. Avoiding these
approximations results in fewer orange checks but a much longer verification time.

For instance, for deep function call hierarchies or nested conditional statements, to complete
verification in a reasonable amount of time, the software combines many execution paths and stores
less information at each stage of verification. If you use this option, the software stores more
information about the execution paths, resulting in a more precise verification.

Settings
Default: Off

Enter a positive integer to turn on this option.

Entering a higher value leads to a greater number of proven results, but also increases verification
time exponentially. For instance, a value of 10 can result in very long verification times.

Tips
Use this option only when you have less than 1000 lines of code.

Command-Line Information
Parameter: -path-sensitivity-delta
Value: Positive integer
Example (Code Prover): polyspace-code-prover -sources file_name -path-
sensitivity-delta 1
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
path-sensitivity-delta 1

2 Analysis Options

2-298

See Also
Topics
“Specify Polyspace Analysis Options”
“Improve Verification Precision” (Polyspace Code Prover)

 Improve precision of interprocedural analysis (-path-sensitivity-delta)

2-299

Precision level (-O)
Specify a precision level for the verification

Description
This option affects a Code Prover analysis only.

Specify the precision level that the verification must use.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Precision node.

Command line and options file: Use the option -O#, for instance, -O0 or -O1. See “Command-Line
Information” on page 2-301.

Why Use This Option

Higher precision leads to greater number of proven results but also requires more verification time.
Each precision level corresponds to a different algorithm used for verification.

In most cases, you see the optimal balance between precision and verification time at level 2.

Settings
Default: 2

0
This option corresponds to a static interval verification.

1
This option corresponds to a more complex static interval verification.

2
This option corresponds to a complex polyhedron model of domain values with additional
precision for interprocedural analysis depending on the option Improve precision of
interprocedural analysis (-path-sensitivity-delta).

3
This option is only suitable for code having less than 1000 lines. Using this option, the percentage
of proven results can be very high.

Tips
• For best results in reasonable time, use the default level 2. If the verification takes a long time,

reduce precision. However, the number of unproven checks can increase. Likewise, to reduce
orange checks, you can improve your precision. But the verification can take significantly longer
time.

2 Analysis Options

2-300

• The precision levels 2 and below begin to take effect only from verification levels higher than
Software Safety Analysis level 0. See also Verification level (-to).

For instance, to reduce analysis time, you might have reduced the verification level to Software
Safety Analysis level 0. Do not try to reduce the precision level below 2 to lower the
analysis time further.

Note that algorithms used in precision level 3 can also apply to the verification level Software
Safety Analysis level 0.

Command-Line Information
Parameter: -O0 | -O1 | -O2 | -O3
Default: -O2
Example (Code Prover): polyspace-code-prover -sources file_name -O1
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -O1

See Also
Verification level (-to) | Specific precision (-modules-precision)

Topics
“Specify Polyspace Analysis Options”
“Improve Verification Precision” (Polyspace Code Prover)

 Precision level (-O)

2-301

Specific precision (-modules-precision)
Specify source files you want to verify at higher precision than the remaining verification

Description
This option affects a Code Prover analysis only.

Specify source files that you want to verify at a precision level higher than that for the entire
verification.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Precision node. See “Dependency” on page 2-302 for other options you must also enable.

Command line and options file: Use the option -modules-precision. See “Command-Line
Information” on page 2-302.

Why Use This Option

If a specific file is verified imprecisely leading to many orange checks in the file and elsewhere, you
can improve the precision for that file.

Note that increasing precision also increases verification time.

Settings
Default: All files are verified with the precision you specified using Precision > Precision level.

Click to enter the name of a file without the extension .c and the corresponding precision level.

Dependency
This option is available only if you set Source code language (-lang) to C or C-CPP.

Command-Line Information
Parameter: -modules-precision
Value: file:O0 | file:O1 | file:O2 | file:O3
Example (Code Prover): polyspace-code-prover -sources file_name -O1 -modules-
precision My_File:02
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -O1
-modules-precision My_File:02

See Also
Precision level (-O)

Topics
“Specify Polyspace Analysis Options”

2 Analysis Options

2-302

“Improve Verification Precision” (Polyspace Code Prover)

 Specific precision (-modules-precision)

2-303

Verification level (-to)
Specify number of times the verification process runs on your code

Description
This option affects a Code Prover analysis only.

Specify the number of times the Polyspace verification process runs on your source code. Each run
can lead to greater number of proven results but also requires more verification time.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Precision node.

Command line and options file: Use the option -to. See “Command-Line Information” on page 2-
306.

Why Use This Option

There are many reasons you might want to increase or decrease the verification level. For instance:

• Coding rules are checked early during the compilation phase, with some exception only. If you
check for coding rules alone, you can lower the verification level. See “Check for Coding Standard
Violations”.

• If you see many orange checks after verification, try increasing the verification level. However,
increasing the verification level also increases verification time.

In most cases, you see the optimal balance between precision and verification time at level 2.

Settings
Default: Software Safety Analysis level 2

Source Compliance Checking
Polyspace checks for compilation errors only. Most coding rule violations are also found in this
phase.

Software Safety Analysis level 0
The verification process performs some simple analysis. The analysis is designed to reach
completion despite complexities in the code.

If the verification gets stuck at a higher level, try running to this level and review the results.
Software Safety Analysis level 1

The verification process analyzes each function once with algorithms whose complexity depends
on the precision level. See Precision level (-O). The analysis starts from the top of the
function call hierarchy (an actual or generated main function) and propagates to the leaves of the
call hierarchy.

2 Analysis Options

2-304

Software Safety Analysis level 2
The verification process analyzes each function twice. In the first pass, the analysis propagates
from the top of the function call hierarchy to the leaves. In the second pass, the analysis
propagates from the leaves back to the top. Each pass uses information gathered from the
previous pass.

Use this option for most accurate results in reasonable time.
Software Safety Analysis level 3

The verification process runs three times on each function: from the top of the function call
hierarchy to the leaves, from the leaves to the top, and from the top to the leaves again. Each
pass uses information gathered from the previous pass.

Software Safety Analysis level 4
The verification process runs four passes on each function: from the top of the function call
hierarchy to the leaves twice. Each pass uses information gathered from the previous pass.

other
If you use this option, Polyspace verification will make 20 passes unless you stop it manually.

Tips
• Use a higher verification level for fewer orange checks.

In some cases, if the verification can detect that results of maximum precision are available after
an earlier level, the verification stops and does not proceed to the level that you specify.

Difference between Level 0 and 1

The following example illustrates the difference between Software Safety Analysis level
0 and Software Safety Analysis level 1. In level 1, Code Prover can establish the success
of the final assertion that involves a relation between two array elements even without knowing
the actual elements of the array.

Software Safety Analysis Level 0 Software Safety Analysis Level 1
extern int tab[];

int main() {

 int i = tab[3];
 int j = tab[1];

 if (i > j) {
 int l = i-j;
 assert(l > 0);
 }
}

extern int tab[];

int main() {

 int i = tab[3];
 int j = tab[1];

 if (i > j) {
 int l = i-j;
 assert(l > 0);
 }
}

If a higher verification level fails because the verification runs out of memory, but results are
available at a lower level, Polyspace displays the results from the lower level.

• For best results, use the option Software Safety Analysis level 2. If the verification takes
too long, use a lower Verification level. Fix red errors and gray code before rerunning the
verification with higher verification levels.

 Verification level (-to)

2-305

• Use the option Other sparingly since it can increase verification time by an unreasonable amount.
Using Software Safety Analysis level 2 provides optimal verification of your code in most
cases.

• If the Verification Level is set to Source Compliance Checking, do not run verification on a
remote server. The source compliance checking, or compilation, phase takes place on your local
computer anyway. Therefore, if you are running verification only to the end of compilation, run
verification on your local computer.

• If you want to see global variable sharing and usage only use Show global variable sharing
and usage only (-shared-variables-mode) to run a less extensive analysis.

Command-Line Information
Parameter: -to
Value: compile | pass0 | pass1 | pass2 | pass3 | pass4 | other
Default: pass2
Example (Code Prover): polyspace-code-prover -sources file_name -to pass2
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -to
pass2

You can also use these additional values not available in the user interface:

• C projects: c-to-il (C to intermediate language conversion phase)
• C++ projects: cpp-to-il (C++ to intermediate language conversion phase), cpp-normalize (C

++ compilation), cpp-link (C++ compilation)

Use these values only if you have specific reasons to do so. For instance, to generate a blank
constraints (DRS) template for C++ projects, run an analysis up to the compilation by using cpp-
link or cpp-normalize.

The values cpp-link and cpp-normalize will be removed in a future release. Use compile
instead.

See Also
Precision level (-O) | Show global variable sharing and usage only (-shared-
variables-mode)

Topics
“Specify Polyspace Analysis Options”
“Improve Verification Precision” (Polyspace Code Prover)

2 Analysis Options

2-306

Verification time limit (-timeout)
Specify a time limit on your verification

Description
This option affects a Code Prover analysis only.

Specify a time limit for the verification in hours. If the verification does not complete within that limit,
it stops.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Precision node.

Command line and options file: Use the option -timeout. See “Command-Line Information” on
page 2-307.

Why Use This Option

Use this option to impose a time limit on the verification.

By default, if an internal step in the verification lasts for more than 24 hours, the verification stops.
You can use this option to reduce the time limit even further. Note that you can have verification
results despite the verification timing out. For instance, if a step in Software Safety Analysis level 1
times out, you still get the results from level 0. See Verification level (-to).

The option is useful only in very specific cases. Suppose your code has certain constructs that might
slow down the verification. To check this, you can impose a time limit on the verification so that the
verification stops if it takes too long.

Typically, Technical Support asks you to use this option as needed.

Settings
Enter the time in hours. For fractions of an hour, specify decimal form.

Command-Line Information
Parameter: -timeout
Value: time
Example (Code Prover): polyspace-code-prover -sources file_name -timeout 5.75
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
timeout 5.75

See Also
Topics
“Specify Polyspace Analysis Options”
“Improve Verification Precision” (Polyspace Code Prover)

 Verification time limit (-timeout)

2-307

Inline (-inline)
Specify functions that must be cloned internally for each function call

Description
This option affects a Code Prover analysis only.

Specify the functions that the verification must clone internally for every function call.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Scaling node.

Command line and options file: Use the option -inline. See “Command-Line Information” on
page 2-310.

Why Use This Option

Use this option sparingly. Sometimes, using the option helps to work around scaling issues during
verification. If your verification takes too long, Technical Support can ask you to use this option for
certain functions.

Do not use this option to understand results. For instance, suppose a function is called twice in your
code. The check color on each operation in the function body is a combined result of both calls. If you
want to distinguish between the colors in the two calls, use the option Sensitivity context (-
context-sensitivity).

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

The verification internally clones the function for each call. For instance, if you specify the function
func for inlining and func is called twice, the software internally creates two copies of func for
verification.

However, for each run-time check in the function body, you see only one color in your verification
results. The semantics of the check color is different from the normal specification.

Red checks:

• Normally, if a function is called twice and an operation causes a definite error only in one of the
calls, the check color is orange.

• If you use this option, the color changes to dark orange (shown with an orange exclamation mark
in the results list).

2 Analysis Options

2-308

Gray checks:

• Normally, if a function is called twice and an if statement branch is unreachable in only one of
the calls, the branch is shown as reachable.

• If you use this option, the worst color is shown for the check. Therefore, the if branch appears
gray.

Below each check in an inlined function, you see information specific to each calling context. For
instance, if a dark orange Division by zero occurs because a specific function call leads to a definite
division by zero, you can identify the call along with values resulting from that call.

Do not use this option to understand results. Use this option only if a certain function causes scaling
issues.

Tips
• Using this option can sometimes duplicate a lot of code and lead to scaling problems. Therefore

choose functions to inline carefully.
• Choose functions to inline based on hints provided by the alias verification.
• Do not use this option for entry point functions, including main.
• Using this option can increase the number of gray Unreachable code checks.

For example, in the following code, if you enter max for Inline, you obtain two Unreachable code
checks, one for each call to max.

int max(int a, int b) {
 return a > b ? a : b;
}

void main() {
 int i=3, j=1, k;
 k=max(i,j);
 i=0;
 k=max(i,j);
}

 Inline (-inline)

2-309

• If you use the keyword inline before a function definition, place the definition in a header file
and call the function from multiple source files, you have the same result as using the option
Inline.

• For C++ code, this option applies to all overloaded methods of a class.

Command-Line Information
Parameter: -inline
Value: function1[,function2[,...]]
No Default
Example (Code Prover): polyspace-code-prover -sources file_name -inline
func1,func2
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
inline func1,func2

See Also
Topics
“Specify Polyspace Analysis Options”

2 Analysis Options

2-310

Depth of verification inside structures (-k-
limiting)
Limit the depth of analysis for nested structures

Description
This option affects a Code Prover analysis only.

Specify a limit to the depth of analysis for nested structures.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Scaling node.

Command line and options file: Use the option -k-limiting. See “Command-Line Information”
on page 2-311.

Why Use This Option

Use this option if the analysis is slow because your code has a structure that is many levels deep.

Typically, you see a warning message when a structure with a deep hierarchy is slowing down the
verification.

Settings
Default: Full depth of nested structures is analyzed.

Enter a number to specify the depth of analysis for nested structures. For instance, if you specify 0,
the analysis does not verify a structure inside a structure.

If you specify a number less than 2, the verification could be less precise.

Command-Line Information
Parameter: -k-limiting
Value: positive integer
Example (Code Prover): polyspace-code-prover -sources file_name -k-limiting 3
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -k-
limiting 3

See Also
Topics
“Specify Polyspace Analysis Options”

 Depth of verification inside structures (-k-limiting)

2-311

Generate report
Specify whether to generate a report after the analysis

Description
Specify whether to generate a report along with analysis results.

Depending on the format you specify, you can view this report using an external software. For
example, if you specify the format PDF, you can view the report in a pdf reader.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Reporting node.

Command line and options file: See “Command-Line Information” on page 2-313.

Why Use This Option

You can generate a report from your analysis results for archiving purposes. You can provide this
report to your management or clients as proof of code quality.

Using other analysis options, you can tailor the report content and format for your specific needs. See
Bug Finder and Code Prover report (-report-template) and Output format (-
report-output-format).

Settings
 On

Polyspace generates an analysis report using the template and format you specify.

The report is stored in the Polyspace-Doc subfolder of your results folder.

In Polyspace desktop products, to open your results folder from the user interface, on the Project
Browser pane, right-click the results node and select Open Folder with File Manager.

2 Analysis Options

2-312

To change the results folder location, see “Contents of Polyspace Project and Results Folders”.

On the command-line, the results folder is the argument of the option -results-dir.
 Off (default)

Polyspace does not generate an analysis report. You can still view your results in the Polyspace
interface.

Tips
This option allows you to specify report generation before starting an analysis.

To generate a report after an analysis is complete, in the user interface of the Polyspace desktop
products, select Reporting > Run Report. Alternatively, at the command line, use the polyspace-
report-generator command.

After analysis, you can also export the result as a text file for further customization. Use the option -
generate-results-list-file with the polyspace-report-generator command.

Command-Line Information
There is no command-line option to solely turn on the report generator. However, using the options -
report-template for template and -report-output-format for output format automatically
turns on the report generator.

See Also
Bug Finder and Code Prover report (-report-template) | Output format (-report-
output-format) | polyspace-report-generator

Topics
“Specify Polyspace Analysis Options”
“Generate Reports from Polyspace Results”

 Generate report

2-313

Bug Finder and Code Prover report (-report-
template)
Specify template for generating analysis report

Description
Specify template for generating analysis report.

.rpt files for the report templates are available in polyspaceroot\toolbox\polyspace
\psrptgen\templates\. Here, polyspaceroot is the Polyspace installation folder, for instance,
C:\Program Files\Polyspace\R2021b.

Set Option

User interface (desktop products only): In your project configuration, the option is on the
Reporting node. You have separate options for Bug Finder and Code Prover analysis. See
“Dependencies” on page 2-319 for other options you must also enable.

Command line and options file: Use the option -report-template. See “Command-Line
Information” on page 2-320.

Why Use This Option

Depending on the template that you use, the report contains information about certain types of
results from the Results List pane. The template also determines what information is presented in
the report and how the information is organized. See the template descriptions below.

Settings – Bug Finder
Default: BugFinderSummary

BugFinder
The report lists:

• Polyspace Bug Finder Summary: Number of results in the project. The results are
summarized by file. The files that are partially analyzed because of compilation errors are
listed in a separate table.

• Code Metrics: Summary of the various code complexity metrics. For more information, see
“Code Metrics”.

• Coding Rules: Coding rule violations in the source code. For each rule violation, the report
lists the:

• Rule number and description.
• Function containing the rule violation.
• Review information, such as Severity, Status and comments.

• Defects: Defects found in the source code. For each defect, the report lists the:

2 Analysis Options

2-314

• Function containing the defect.
• Defect information on the Result Details pane.
• Review information, such as Severity, Status and comments.

• Configuration Settings: List of analysis options that Polyspace uses for analysis. If you
configured your project for multitasking, this section also lists the Concurrency Modeling
Summary. If your project has source files with compilation errors, these files are also listed.

If you check for coding rules, an additional Coding Rules Configuration section states the
rules along with the information whether they were enabled or disabled.

BugFinderSummary
The report lists:

• Polyspace Bug Finder Summary: Number of results in the project. The results are
summarized by file. The files that are partially analyzed because of compilation errors are
listed in a separate table.

• Code Metrics: Summary of the various code complexity metrics. For more information, see
“Code Metrics”.

• Coding Rules Summary: Coding rules along with number of violations.
• Defect Summary: Defects that Polyspace Bug Finder looks for. For each defect, the report

lists the:

• Defect group.
• Defect name.
• Number of instances of the defect found in the source code.

• Configuration Settings: List of analysis options that Polyspace uses for analysis. If you
configured your project for multitasking, this section also lists the Concurrency Modeling
Summary. For more information, see “Complete List of Polyspace Bug Finder Analysis Engine
Options”. If your project has source files with compilation errors, these files are also listed.

If you check for coding rules, an additional Coding Rules Configuration section states the
rules along with the information whether they were enabled or disabled.

CodeMetrics
The report lists the following:

• Code Metrics Summary: Various quantities related to the source code. For more
information, see “Code Metrics”.

• Code Metrics Details: Various quantities related to the source code with the information
broken down by file and function.

• Configuration Settings: List of analysis options that Polyspace uses for analysis. If you
configured your project for multitasking, this section also lists the Concurrency Modeling
Summary. If your project has source files with compilation errors, these files are also listed.

If you check for coding rules, an additional Coding Rules Configuration section states the
rules along with the information whether they were enabled or disabled.

 Bug Finder and Code Prover report (-report-template)

2-315

CodingStandards
The report contains separate chapters for each coding standard enabled in the analysis (for
instance, MISRA C: 2012, CERT C, custom rules, and so on). Each chapter contains the following
information:

• Summary - Violations by File: Graph showing each file with number of rule violations.
• Summary - Violations by Rule: Graph showing each rule with number of violations. If a rule

is not enabled or not violated, it does not appear in the graph.
• Summary for all Files: Table showing each file with number of rule violations.
• Summary for Enabled Guidelines or Summary for Enabled Rules: Table showing each

guideline or rule with number of violations.
• Violations: Tables listing each rule violation, along with information such as ID, function

name, severity, status, and so on. One table is created per file.

An appendix lists the options used in the Polyspace analysis.
SecurityCWE

The report contains the same information as the BugFinder report. However, in the Defects
chapter, an additional column lists the CWE rules mapped to each defect. The Configuration
Settings appendix also includes a Security Standard to Polyspace Result Map.

Metrics
Only available for results that you upload to the Polyspace Access interface.

The report lists information useful to quality engineers and available on the Polyspace Access
interface, including:

• Information about whether the project satisfies quality objectives
• Metrics about the whole project. For each metric, the report lists the quality threshold and

whether the metric satisfies this threshold.
• Coding rule violations in the project. For each rule, the report lists the number of violations
justified and whether the justifications satisfy quality objectives.

• Definite as well as possible run-time errors in the project. For each type of run-time error, the
report lists the number of errors justified and whether the justifications satisfy quality
objectives.

The appendices contain further details of Polyspace configuration settings, code metrics, coding
rule violations, and run-time errors.

Settings – Code Prover
Default: Developer

CodeMetrics
The report contains a summary of code metrics, followed by the complete metrics for an
application.

CodingStandards
The report contains separate chapters for each coding standard enabled in the analysis (for
instance, MISRA C: 2012, custom rules, and so on). Each chapter contains the following
information:

2 Analysis Options

2-316

• Summary - Violations by File: Graph showing each file with number of rule violations.
• Summary - Violations by Rule: Graph showing each rule with number of violations. If a rule

is not enabled or not violated, it does not appear in the graph.
• Summary for all Files: Table showing each file with number of rule violations.
• Summary for Enabled Guidelines or Summary for Enabled Rules: Table showing each

guideline or rule with number of violations.
• Violations: Tables listing each rule violation, along with information such as ID, function

name, severity, status, and so on. One table is created per file.

An appendix lists the options used in the Polyspace analysis.
Developer

The report lists information useful to developers, including:

• Summary of results
• Coding rule violations
• List of proven run-time errors or red checks
• List of unproven run-time errors or orange checks
• List of unreachable procedures or gray checks
• Global variable usage in code. See “Global Variables” (Polyspace Code Prover).

The report also contains the Polyspace configuration settings and modifiable assumptions used in
the analysis. If your project has source files with compilation errors, these files are also listed.

DeveloperReview
The report lists the same information as the Developer report. However, the reviewed results
are sorted by severity and status, and unreviewed results are sorted by file location.

Developer_withGreenChecks
The report lists the same information as the Developer report. In addition, the report lists code
proven to be error-free or green checks.

Quality
The report lists information useful to quality engineers, including:

• Summary of results
• Statistics about the code
• Graphs showing distributions of checks per file

The report also contains the Polyspace configuration settings and modifiable assumptions used in
the analysis. If your project has source files with compilation errors, these files are also listed.

VariableAccess
The report displays the global variable access in your source code. The report first displays the
number of global variables of each type. For information on the types, see “Global Variables”
(Polyspace Code Prover). For each global variable, the report displays the following information:

• Variable name.

The entry for each variable is denoted by |.
• Type of the variable.

 Bug Finder and Code Prover report (-report-template)

2-317

• Number of read and write operations on the variable.
• Details of read and write operations. For each read or write operation, the table displays the

following information:

• File and function containing the operation in the form file_name.function_name.

The entry for each read or write operation is denoted by ||. Write operations are denoted
by < and read operations by >.

• Line and column number of the operation.

This report captures the information available on the Variable Access pane in the Polyspace user
interface.

CallHierarchy
The report displays the call hierarchy in your source code. For each function call in your source
code, the report displays the following information:

• Level of call hierarchy, where the function is called.

Each level is denoted by |. If a function call appears in the table as |||->
file_name.function_name, the function call occurs at the third level of the hierarchy.
Beginning from main or an entry point, there are three function calls leading to the current
call.

• File containing the function call.

In addition, the line and column is also displayed.
• File containing the function definition.

In addition, the line and column where the function definition begins is also displayed.

In addition, the report also displays uncalled functions.

This report captures the information available on the Call Hierarchy pane in the Polyspace user
interface.

SoftwareQualityObjectives
The report lists information useful to quality engineers and available on the Polyspace Access
interface, including:

• Information about whether the project satisfies quality objectives
• Metrics about the whole project. For each metric, the report lists the quality threshold and

whether the metric satisfies this threshold.
• Coding rule violations in the project. For each rule, the report lists the number of violations
justified and whether the justifications satisfy quality objectives.

• Definite as well as possible run-time errors in the project. For each type of run-time error, the
report lists the number of errors justified and whether the justifications satisfy quality
objectives.

The appendices contain further details of Polyspace configuration settings, code metrics, coding
rule violations, and run-time errors.

2 Analysis Options

2-318

This template is available only if you generate a report from results uploaded to the Polyspace
Access web interface. See “Upload Results to Polyspace Access”. In each case, you have to set the
objectives explicitly in the web interface and then generate the reports.

For more information on the predefined Software Quality Objectives, see “Evaluate Polyspace
Code Prover Results Against Software Quality Objectives” (Polyspace Code Prover).

SoftwareQualityObjectives_Summary
The report contains the same information as the SoftwareQualityObjectives report.
However, it does not have the supporting appendices with details of code metrics, coding rule
violations and run-time errors.

This template is available only if you generate a report from results uploaded to the Polyspace
Access web interface. See “Upload Results to Polyspace Access”. In each case, you have to set a
quality objective level explicitly in the web interface and then generate the reports.

For more information on the predefined Software Quality Objectives, see “Evaluate Polyspace
Code Prover Results Against Software Quality Objectives” (Polyspace Code Prover).

Dependencies
In the user interface of the Polyspace desktop products, this option is enabled only if you select the
Generate report option.

Tips
• This option allows you to specify report generation before starting an analysis.

To generate a report after an analysis is complete, in the user interface of the Polyspace desktop
products, select Reporting > Run Report. Alternatively, at the command line, use the
polyspace-report-generator command.

After analysis, you can also export the result as a text file for further customization. Use the option
-generate-results-list-file with the polyspace-report-generator command.

• In Bug Finder, the report does not contain the line or column number for a result. Use the report
for archiving, gathering statistics and checking whether results have been reviewed and
addressed (for certification purposes or otherwise). To review a result in your source code, use the
Polyspace desktop interface, the Polyspace Access web interface, or your IDE if you are using a
Polyspace plugin.

• If you use the SoftwareQualityObjectives_Summary and SoftwareQualityObjectives
templates to generate reports, the pass/fail status depends on whether you set the quality
objectives level in Polyspace Access.

The pass/fail status is determined based on all results. For instance, if you use the level SQO-4
which sets a threshold of 60% on orange overflow checks, your project has a FAIL status if the
percentage of green and justified orange overflow checks is less than 60% of all green and orange
overflow checks.

• The first chapter of the reports contain a summary of the relevant results. You can enter a Pass/
Fail status in that chapter for your project based on the summary. If you use:

• The template SoftwareQualityObjectives or SoftwareQualityObjectives_Summary,
the status is automatically assigned based on your objectives and the verification results. For

 Bug Finder and Code Prover report (-report-template)

2-319

more information on enforcing objectives using Polyspace Access, see “Quality Objectives
Dashboard in Polyspace Access Web Interface”.

• The template SoftwareQualityObjectives or SoftwareQualityObjectives_Summary,
the status is automatically assigned based on your objectives and the verification results. For
more information on enforcing objectives using Polyspace Access, see “Quality Objectives
Dashboard in Polyspace Access Web Interface”.

Command-Line Information
Parameter: -report-template
Value: Full path to template.rpt
Example (Bug Finder): polyspace-bug-finder -sources file_name -report-template
polyspaceroot\toolbox\polyspace\psrptgen\templates\bug_finder\BugFinder.rpt
Example (Code Prover): polyspace-code-prover -sources file_name -report-template
polyspaceroot\toolbox\polyspace\psrptgen\templates\Developer.rpt
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
report-template polyspaceroot\toolbox\polyspace\psrptgen\templates\bug_finder
\BugFinder.rpt
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
report-template polyspaceroot\toolbox\polyspace\psrptgen\templates
\Developer.rpt

See Also
Generate report | Output format (-report-output-format) | polyspace-report-
generator

Topics
“Specify Polyspace Analysis Options”
“Generate Reports from Polyspace Results”

2 Analysis Options

2-320

Output format (-report-output-format)
Specify output format of generated report

Description
Specify output format of analysis report.

Set Option

User interface (desktop products only): In your project configuration, the option is on the
Reporting node. See “Dependencies” on page 2-321 for other options you must also enable.

Command line and options file: Use the option -report-output-format. See “Command-Line
Information” on page 2-322.

Why Use This Option

Use this option to specify whether you want a report in PDF, HTML or another format.

Settings
Default: Word

HTML
Generate report in .html format

PDF
Generate report in .pdf format

Word
Generate report in .docx format.

Tips
• This option allows you to specify report generation before starting an analysis.

To generate a report after an analysis is complete, in the user interface of the Polyspace desktop
products, select Reporting > Run Report. Alternatively, at the command line, use the
polyspace-report-generator command.

After analysis, you can also export the result as a text file for further customization. Use the option
-generate-results-list-file with the polyspace-report-generator command.

• If the table of contents or graphics in a .docx report appear outdated, select the content of the
report and refresh the document. Use keyboard shortcuts Ctrl+A to select the content and F9 to
refresh it.

Dependencies
In the user interface of the Polyspace desktop products, this option is enabled only if you select the
Generate report option.

 Output format (-report-output-format)

2-321

Command-Line Information
Parameter: -report-output-format
Value: html | pdf | word
Default: word
Example (Bug Finder): polyspace-bug-finder -sources file_name -report-output-
format pdf
Example (Code Prover): polyspace-code-prover -sources file_name -report-output-
format pdf
Example (Bug Finder Server): polyspace-bug-finder-server -sources file_name -
report-output-format pdf
Example (Code Prover Server): polyspace-code-prover-server -sources file_name -
report-output-format pdf

See Also
Generate report | Bug Finder and Code Prover report (-report-template) |
polyspace-report-generator

Topics
“Specify Polyspace Analysis Options”
“Generate Reports from Polyspace Results”

2 Analysis Options

2-322

Run Bug Finder or Code Prover analysis on a
remote cluster (-batch)
Enable batch remote analysis

Description
Specify that the analysis must be offloaded to a remote server.

To offload a Polyspace analysis, you need these products:

• A Polyspace product on the client side to submit an analysis job. Typically, you use a desktop
product such as Polyspace Bug Finder to submit jobs, but you can also use a server product such
as Polyspace Bug Finder Server to offload an analysis from one server to another.

• A Polyspace server product (Polyspace Bug Finder Server or Polyspace Code Prover Server) on the
server side to run the analysis.

• MATLAB Parallel Server™ to hold jobs from multiple clients in queue and allocate the jobs as
Polyspace Server instances become available.

For details, see “Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Run
Settings node. You have separate options for a Bug Finder and a Code Prover analysis.

Command line and options file: Use the option -batch. See “Command-Line Information” on page
2-324.

Why Use This Option

Use this option if you want the analysis to run on a remote cluster instead of your local desktop.

For instance, you can run remote analysis when:

• You want to shut down your local machine but not interrupt the analysis.
• You want to free execution time on your local machine.
• You want to transfer the analysis to a more powerful computer.

Settings
 On

Run batch analysis on a remote computer. In this remote analysis mode, the analysis is queued on
a cluster after the compilation phase. Therefore, on your local computer, after the analysis is
queued:

• If you are running the analysis from the Polyspace user interface, you can close the user
interface.

 Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

2-323

• If you are running the analysis from the command line, you can close the command-line
window.

You can manage the queue from the Polyspace Job Monitor. To use the Polyspace Job Monitor:

• In the Polyspace user interface, select Tools > Open Job Monitor. See “Send Polyspace
Analysis from Desktop to Remote Servers”.

• On the DOS or UNIX® command line, use the polyspace-jobs-manager command. For
more information, see “Send Polyspace Analysis from Desktop to Remote Servers Using
Scripts”.

• On the MATLAB command line, use the polyspaceJobsManager function.

After the analysis, you might have to manually download the results from the cluster.

If you use a Polyspace Server product to offload an analysis from one server to another, the
results are automatically downloaded after analysis.

 Off (default)
Do not run batch analysis on a remote computer.

Dependencies
• If you use a third-party scheduler instead of the MATLAB Job Scheduler, add the option -no-

credentials-check. The credentials check performed in the product is only compatible with
the MATLAB Job Scheduler. In the Polyspace user interface, add this option to the Other field.

• Do not run a Code Prover analysis on a remote cluster if you run up to the Verification Level of
Source Compliance Checking. For both local and remote analysis, the source compliance
checking or compilation phase takes place on your local computer. Therefore, if you are running
only up to this phase, run on your local computer.

• If you use a Polyspace Server product to offload an analysis from one server to another, the
offloading uses the MATLAB Job Scheduler that comes by default with MATLAB Parallel Server.
You cannot use a third-party scheduler.

Command-Line Information
To run a remote analysis from the command line, use with the -scheduler option.
Parameter: -batch
Value: -scheduler host_name if you have not set the Job scheduler host name in the Polyspace
user interface
Default: Off
Example (Bug Finder): polyspace-bug-finder -batch -scheduler NodeHost or
polyspace-bug-finder -batch -scheduler MJSName@NodeHost
Example (Code Prover): polyspace-code-prover -batch -scheduler NodeHost or
polyspace-code-prover -batch -scheduler MJSName@NodeHost
Example (Bug Finder Server): polyspace-bug-finder-server -batch -scheduler
NodeHost
Example (Code Prover Server): polyspace-code-prover-server -batch -scheduler
NodeHost

See Also
-scheduler

2 Analysis Options

2-324

Topics
“Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”
“Specify Polyspace Analysis Options”
“Send Polyspace Analysis from Desktop to Remote Servers”
“Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”
“Send Analysis from Client to Server”
“Offload Polyspace Analysis from Continuous Integration Server to Another Server”

 Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

2-325

Use fast analysis mode for Bug Finder (-fast-
analysis)
Run analysis using faster local mode

Description
This option affects a Bug Finder analysis only.

Run analysis using faster local mode. The first run analyzes all files, but subsequent runs reanalyze
only the files that you edited since the previous analysis.

Fast analysis mode is a faster way to analyze code for localized defects and coding standard
violations. When you launch fast analysis, Bug Finder analyzes your code for a subset of defects and
coding rules. These defects and coding standard violations are ones that can be found in the early
stages of the analysis or can leverage archived information from a previous analysis. The analysis
results are also comparatively easier to review and fix because most results can be understood by
focusing on two or three lines of code (the line with the defect and one or two previous events).

Because of the simplified nature of the analysis, you might see significantly fewer defects in the fast
analysis mode compared to a regular Bug Finder analysis.

Set Option

User interface (desktop products only): In your project configuration, the option is available on the
Run Settings node.

Command line and options file: Use the option -fast-analysis. See “Command-Line
Information” on page 2-328.

Why Use This Option

If you use this option, you have to wait less for analysis results from your second analysis onwards.
During development, you can frequently run analysis in fast mode and quickly fix new defects or
coding standard violations.

Polyspace produces results quickly because the analysis is localized. When you rerun in fast-analysis
mode, Polyspace reanalyzes only those files that need to be reanalyzed, regenerating results even
more quickly. These situations trigger a reanalysis.

Situation What Is Reanalyzed
You modified a source file. Modified source file
You modified a header file. Source files that include the modified header file

(directly or indirectly)
You added or removed an analysis option. All files
Previous fast-analysis results were not found.

For instance, you deleted the results folder.

All files

2 Analysis Options

2-326

Situation What Is Reanalyzed
You upgraded to a later release of Polyspace
and ran the analysis.

All files

Comments from the previous analysis are retained
and imported to the current analysis.

For example, consider a Polyspace project with three .c files and you fix a bug in one of the files.
When you rerun the analysis, Polyspace reanalyzes only the one file that you changed.

The results of fast analysis appear in a folder separate from the results of normal analysis.

Settings

Default: Off

 On
Polyspace Bug Finder runs in fast-analysis mode. Polyspace analyzes code for only a subset of
defects and coding standard violations. If you have enabled checking of defects or coding
standard violations that are not supported by fast-analysis, your code is not checked for those
results.

 Off
Polyspace Bug Finder runs in the normal mode. Analysis checks for all selected defects, coding
standard violations, and code metrics.

Tips
Comments Import

If you enter comments in your results, the comments are automatically imported to the next analysis
in fast mode.

To import the comments from fast mode results to results of a regular Bug Finder analysis, do one of
the following:

 Use fast analysis mode for Bug Finder (-fast-analysis)

2-327

• Select Tools > Import Comments. Navigate to the sibling results folder BF_Fast_Result and
import comments from the fast mode results.

• When reviewing results of fast mode, enter the comments directly into your code. If you run a
regular analysis on this code, the comments are imported to your analysis results.

For details on how to enter code comments, see “Annotate Code and Hide Known or Acceptable
Results”.

Fast Analysis Limitations

In fast analysis mode, you cannot perform these actions:

• You cannot create a new results folder for each run. Even if you choose to create a new result
folder, each new run overwrites the previous one.

• You cannot specify constraints using the option Constraint setup (-data-range-
specifications).

• You cannot run the analysis on a remote cluster.

Command-Line Information
Parameter: -fast-analysis
Default: Off
Example (Bug Finder): polyspace-bug-finder -sources filename -fast-analysis
Example (Bug Finder Server): polyspace-bug-finder-server -sources filename -fast-
analysis

See Also
Topics
“Bug Finder Results Found in Fast Analysis Mode”

2 Analysis Options

2-328

Command/script to apply after the end of the code
verification (-post-analysis-command)
Specify command or script to be executed after analysis

Description
Specify a command or script to be executed after the analysis.

Set Option

User interface (desktop products only): In your project configuration, the option is on the Advanced
Settings node.

Command line and options file: Use the option -post-analysis-command. See “Command-Line
Information” on page 2-330.

Why Use This Option

Create scripts for tasks that you want performed after the Polyspace analysis.

For instance, you want to be notified by email that the Polyspace analysis is over. Create a script that
sends an email and use this option to execute the script after the Polyspace analysis.

Settings
No Default

Enter full path to the command or script, or click to navigate to the location of the command or
script. After the analysis, this script is executed.

The script is executed in the Polyspace results folder. In your script, consider the results folder as the
current folder for relative paths to other files.

For a Perl script, in Windows, specify the full path to the Perl executable followed by the full path to
the script. For example, to specify a Perl script send_email.pl that sends an email once the
analysis is over, enter polyspaceroot\sys\perl\win32\bin\perl.exe <absolute_path>
\send_email.pl. Here, polyspaceroot is the location of the current Polyspace installation, such
as C:\Program Files\Polyspace\R2019a\, and <absolute_path> is the location of the Perl
script.

Tips
Running post analysis commands on the server

If you perform verification on a remote server, after verification, the software executes your command
on the server, not on the client desktop. If your command executes a script, the script must be
present on the server.

For instance, if you specify the command, /local/utils/send_mail.sh, the Shell script
send_email.sh must be present on the server in /local/utils/. The software does not copy the

 Command/script to apply after the end of the code verification (-post-analysis-command)

2-329

script send_email.sh from your desktop to the server before executing the command. If the script
is not present on the server, you encounter an error. Sometimes, there are multiple servers that the
MATLAB Job Scheduler can run the verification on. Place the script on each of the servers because
you do not control which server eventually runs your verification.

Running post analysis commands in the Polyspace user interface

To test the use of this option, run the following Perl script from a folder containing a Polyspace
project (.psprj file). The script parses the latest Polyspace log file in the folder
Module_1\CP_Result and writes the current project name and date to a file report.txt. The file
is saved in Module_1\CP_Result.

foreach my $file (`ls Module_1\\CP_Result\\Polyspace_*.log`) {
 open (FH, $file);

while ($line = <FH>) {
 if ($line =~ m/Ending at: (.*)/) {
 $date=$1;
 }
 if ($line =~ m/-prog=(.*)/) {
 $project=$1;
 }
 }
}

my $filename = 'report.txt';
open(my $fh, '>', $filename) or die "Could not open file '$filename' $!";

print $fh "date=$date\n";
print $fh "project=$project\n";

close $fh;

In Linux, you can specify the Perl script for this option.

In Windows, instead of specifying the Perl script directly, specify a .bat file that invokes Perl and
runs this script. For instance, the .bat file can contain the following line (assuming that the .bat file
and .pl file are in the Polyspace project folder). Depending on your MATLAB installation, change the
path to perl.exe appropriately.

"C:\Program Files\MATLAB\R2018b\sys\perl\win32\bin\perl.exe" command.pl

Run Code Prover. Check that the folder Module_1\CP_Result contains the file report.txt with
the project name and date.

Command-Line Information
Parameter: -post-analysis-command
Value: Path to executable file or command in quotes
No Default
Example in Linux (Bug Finder): polyspace-bug-finder -sources file_name -post-
analysis-command `pwd`/send_email.pl
Example in Linux (Code Prover) : polyspace-code-prover -sources file_name -post-
analysis-command `pwd`/send_email.pl

2 Analysis Options

2-330

Example in Linux (Bug Finder Server): polyspace-bug-finder-server -sources
file_name -post-analysis-command `pwd`/send_email.pl
Example in Linux (Code Prover Server): polyspace-code-prover-server -sources
file_name -post-analysis-command `pwd`/send_email.pl
Example in Windows: polyspace-bug-finder -sources file_name -post-analysis-
command "C:\Program Files\MATLAB\R2015b\sys\perl\win32\bin\perl.exe"
"C:\My_Scripts\send_email"

Note that in Windows, you use the full path to the Perl executable.

See Also
Command/script to apply to preprocessed files (-post-preprocessing-command)

Topics
“Specify Polyspace Analysis Options”

 Command/script to apply after the end of the code verification (-post-analysis-command)

2-331

Other
Specify additional flags for analysis

Description
This option is useful only if you run an analysis in the user interface of the Polyspace desktop
products.

Enter command-line-style flags such as -max-processes.

Set Option

In your project configuration, the option is on the Advanced Settings node. You can enter multiple
options in this field. If you enter the same option multiple times with different arguments, the analysis
uses your last argument.

Why Use This Option

Use this option to add nonofficial or command-line only options to the analyzer.

If you have to add several command line options, you can save them in a text file and specify the file
using the option -options-file. You can reuse the options file across projects.

Tip
Nonofficial options: In rare circumstances, to work around very specific issues, MathWorks Technical
Support might provide you some undocumented options. If you are running verification from the user
interface, you use the Other field in the Configuration pane to enter the options. Sometimes, the
options and their arguments have to be preceded by extra flags. When providing you the option,
Technical Support will let you know if the extra flags are required.
Possible Flags: -extra-flags | -c-extra-flags | -cpp-extra-flags | -cfe-extra-
flags | -il-extra-flags
Example (Bug Finder): polyspace-bug-finder -extra-flags -option-name -extra-
flags option_param
Example (Code Prover): polyspace-code-prover -extra-flags -option-name -extra-
flags option_param
Example (Bug Finder Server): polyspace-bug-finder-server -extra-flags -option-
name -extra-flags option_param
Example (Code Prover Server): polyspace-code-prover-server -extra-flags -option-
name -extra-flags option_param

2 Analysis Options

2-332

Analysis Options, Command-Line Only

3

-asm-begin -asm-end
Exclude compiler-specific asm functions from analysis

Syntax
-asm-begin "mark1[,mark2,...]" -asm-end "mark1[,mark2,...]"

Description
-asm-begin "mark1[,mark2,...]" -asm-end "mark1[,mark2,...]" excludes compiler-
specific assembly language source code functions from the analysis. You must use these two options
together.

Polyspace recognizes most inline assemblers by default. Use the option only if compilation errors
occur due to introduction of assembly code. For more information, see “Assumptions About Assembly
Code” (Polyspace Code Prover).

Mark the offending code block by two #pragma directives, one at the beginning of the assembly code
and one at the end. In the command usage, give these marks in the same order for -asm-begin as
they are for -asm-end.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
A block of code is delimited by #pragma start1 and #pragma end1. These names must be in the
same order for their respective options. Either:

-asm-begin "start1" -asm-end "end1"

or

-asm-begin "mark1,...markN,start1" -asm-end "mark1,...markN,end1"

The following example marks two functions for exclusion, foo_1 and foo_2.

Code:

#pragma asm_begin_foo
int foo(void) { /* asm code to be ignored by Polyspace */ }
#pragma asm_end_foo

#pragma asm_begin_bar
void bar(void) { /* asm code to be ignored by Polyspace */ }
#pragma asm_end_bar

Polyspace Command:

• Bug Finder:

3 Analysis Options, Command-Line Only

3-2

polyspace-bug-finder -lang c -asm-begin "asm_begin_foo,asm_begin_bar"
 -asm-end "asm_end_foo,asm_end_bar"

• Code Prover:

polyspace-code-prover -lang c -asm-begin "asm_begin_foo,asm_begin_bar"
 -asm-end "asm_end_foo,asm_end_bar"

• Bug Finder Server:

polyspace-bug-finder-server -lang c -asm-begin "asm_begin_foo,asm_begin_bar"
 -asm-end "asm_end_foo,asm_end_bar"

• Code Prover Server:

polyspace-code-prover-server -lang c -asm-begin "asm_begin_foo,asm_begin_bar"
 -asm-end "asm_end_foo,asm_end_bar"

asm_begin_foo and asm_begin_bar mark the beginning of the assembly source code sections to
be ignored. asm_end_foo and asm_end_bar mark the end of those respective sections.

Tips
If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

See Also
Topics
“Specify Polyspace Analysis Options”

 -asm-begin -asm-end

3-3

-author
Specify project author

Syntax
-author "value"

Description
-author "value" assigns an author to the Polyspace project. The name appears as the project
owner on generated reports.

The default value is the user name of the current user, given by the DOS or UNIX command whoami.

In the user interface of the Polyspace desktop products, select to specify the Project name,
Version, and Author parameters in the Polyspace Project – Properties dialog box.

Examples
Assign a project author to your Polyspace Project.

• Bug Finder:

polyspace-bug-finder -author "John Smith"

• Code Prover:

polyspace-code-prover -author "John Smith"

• Bug Finder Server:

polyspace-bug-finder-server -author "John Smith"

• Code Prover Server:

polyspace-code-prover-server -author "John Smith"

Tips
This option is not required for a Polyspace as You Code analysis.

See Also
-prog | -date

Topics
“Specify Polyspace Analysis Options”

3 Analysis Options, Command-Line Only

3-4

-checkers-activation-file
Enable specific defect and coding standard checkers using a checkers file created from a checkers
selection interface

Syntax
-checkers-activation-file checkersFile.xml

Description
-checkers-activation-file checkersFile.xml enables specific defect and coding standards
checkers for a Bug Finder analysis. You can select the checkers on a graphical user interface and
then create the file checkersFile.xml from this interface.

This option is an improved version of a similar option Set checkers by file (-checkers-
selection-file). The improvements are the following:

• This option is sufficient to both specify checkers and enable them. The option -checkers-
selection-file only specifies a set of checkers for the analysis using a checkers selection file.
You have to enable them separately using the value from-file for one of the coding standards
options (such as -misra3 or -autosar-cpp14).

• This option enables both defect and coding standard checkers. The option -checkers-
selection-file covers coding standard checkers only. To specify and enable defect checkers,
you have to then use the option -checkers with a comma-separated list of defect checker names.

Both options -checkers-activation-file and -checkers-selection-file require an XML
file with the checker specifications as argument. The XML files have the same format with the only
difference coming from the fact that -checkers-activation-file enables defect checkers in
addition to coding standard checkers. The XML file for -checkers-activation-file has this
additional element:

<standard name="Bug Finder Findings">
 <section name="Numerical">
 <check name="INT_ZERO_DIV" state="on">
 <check name="INT_CONV_OVFL" state="on">
 ...
 </section>
</standard>

If you use the XML generated for the option -checkers-activation-file with the option -
checkers-selection-file, the defect checker specification in the XML is not used at all. (In this
case, checkers enabled with the option -checkers are used. If you do not use the option -
checkers, only the default defect checkers are used.)

Examples
You can select checkers in a graphical user interface and then generate an XML file from the
selection. You or other developers can use this XML file with the option -checkers-activation-
file for a Bug Finder analysis.

 -checkers-activation-file

3-5

1 Open the graphical user interface to select checkers. At the command line, enter:

polyspace-checkers-selection

In the Findings selection window, select New. Select checkers that you want enabled and select
Save Changes to save your selection as an XML file, say, checkers.xml.

2 Specify the previously created XML file with the option -checkers-activation-file.

• Bug Finder:

polyspace-bug-finder -sources file.c -checkers-activation-file checkers.xml
• Bug Finder Server:

polyspace-bug-finder-server -sources file.c -checkers-activation-file checkers.xml

Tips
If you use Polyspace as You Code extensions in IDEs, this option is implemented through the IDE
extension setting. You do not have to use this option explicitly. If you want to explicitly use this option,
enter the option in an analysis options file. See options file.

See Also
Find defects (-checkers) | Set checkers by file (-checkers-selection-file)

Topics
“Configure Checkers for Polyspace as You Code at the Command Line”

3 Analysis Options, Command-Line Only

3-6

-code-behavior-specifications
Map imprecisely analyzed function to standard function for precise analysis

Syntax
-code-behavior-specifications file

Description
-code-behavior-specifications file allows you to associate certain behaviors with elements
of your code and modify the results of checks on those elements. Here, file is an XML file that
assigns specific behaviors to code elements such as functions.

For instance, you can:

• Map your library functions to corresponding standard functions that Polyspace recognizes.
Mapping to standard library functions can help with precision improvement or automatic
detection of new threads.

• Specify that a function has a special behavior or must be subjected to special checks.

For instance, you can specify that a function must only take addresses of initialized variables as
arguments, or that a function must not be used altogether.

If you run verification from the command line, specify the absolute path to the XML files or path
relative to the folder from which you run the command. If you run verification from the user interface
(desktop products only), specify the option along with an absolute path to the XML file in the Other
field. See Other. Note that a report generated from the analysis results only show the use of this
option and not the details of which behaviors were associated with code elements.

A sample template file code-behavior-specifications-template.xml shows the XML syntax.
The file is in polyspaceroot\polyspace\verifier\cxx\ where polyspaceroot is the
Polyspace installation folder.

If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

Using Option for Precision Improvement

XML Syntax: <function name="custom_function" std="std_function"> </function>

Use this entry in the XML file to reduce the number of orange checks from imprecise Code Prover
analysis of your function (or false negatives from an imprecise Bug Finder analysis). Sometimes, the
verification does not analyze certain kinds of functions precisely because of inherent limitations in
static verification. In those cases, if you find a standard function that is a close analog of your
function, use this mapping. Though your function itself is not analyzed, the analysis is more precise at
the locations where you call the function. For instance, if the verification cannot analyze your function
cos32 precisely and considers full range for its return value, map it to the cos function for a return
value in [-1,1].

The verification ignores the body of your function. However, the verification emulates your function
behavior in the following ways:

 -code-behavior-specifications

3-7

• The verification assumes the same return values for your function as the standard function.

For instance, if you map your function cos32 to the standard function cos, the verification
assumes that cos32 returns values in [-1,1].

• The verification checks for the same issues as it checks with the standard function.

For instance, if you map your function acos32 to the standard function acos, the Invalid use
of standard library routine check determines if the argument of acos32 is in [-1,1].

The functions that you can map to include:

• Standard library functions from math.h.
• Memory management functions from string.h.
• __ps_meminit: A function specific to Polyspace that initializes a memory area.

Sometimes, the verification does not recognize your memory initialization function and produces
an orange Non-initialized local variable check on a variable that you initialized through
this function. If you know that your memory initialization function initializes the variable through
its address, map your function to __ps_meminit. The check turns green.

• __ps_lookup_table_clip: A function specific to Polyspace that returns a value within the
range of the input array.

Sometimes, the verification considers full range for the return values of functions that look up
values in large arrays (look-up table functions). If you know that the return value of a look-up table
function must be within the range of values in its input array, map the function to
__ps_lookup_table_clip.

In code generated from models, the verification by default makes this assumption for look-up table
functions. To identify if the look-up table uses linear interpolation and no extrapolation, the
verification uses the function names. Use the mapping only for handwritten functions, for
instance, functions in a C/C++ S-Function block. The names of those functions do not follow
specific conventions. You must explicitly specify them.

See also “Extend Bug Finder Checkers for Standard Library Functions to Custom Libraries”.

Using Option for Concurrency Detection

XML Syntax: <function name="custom_function" std="std_function"> </function>

Use this entry in the XML file for automatic detection of thread-creation functions and functions that
begin and end critical sections. Polyspace supports automatic detection for certain families of
multitasking primitives only. Extend the support using this XML entry.

If your thread-creation function, for instance, does not belong to one of the supported families, map
your function to a supported concurrency primitive.

See “Extend Concurrency Defect Checkers to Unsupported Multithreading Environments”.

Using Option for Blacklisting Functions

This section applies only to a Bug Finder analysis.

XML Syntax:

3 Analysis Options, Command-Line Only

3-8

<function name="function_name">
 <behavior name="FORBIDDEN_FUNC">
</function>

Use this entry in the XML file to specify if the function must not be used in your source code.

See “Flag Deprecated or Unsafe Functions Using Bug Finder Checkers”.

Using Option for Extending Initialization Checks

XML Syntax:

<function name="function_name">
 <check name="ARGUMENT_POINTS_TO_INITIALIZED_VALUE" arg="n"/>
</function>

The number n specifies which argument must be checked for buffer initialization.

Use this entry in the XML file to specify if the pointer argument to a function must point to an
initialized buffer.

See “Extend Checkers for Initialization to Check Function Arguments Passed by Pointers”.

Using Option for Modifying Global Behavior

XML Syntax:

 <global_scope>
 <parameter name="MAX_NUMBER_NESTED_LEVEL_CONTROL_FLOW" value="n1"/>
 <parameter name="MAX_NUMBER_NESTED_LEVEL_INCLUDES" value="n2"/>
 <parameter name="MAX_NUMBER_CONSTANT_IN_ENUMERATION" value="n3"/>
 <parameter name="MAX_NUMBER_MACROS_TRANSLATION_UNIT" value="n4"/>
 <parameter name="MAX_NUMBER_MEMBERS_IN_STRUCT" value="n5"/>
 <parameter name="MAX_NUMBER_NESTED_MEMBERS_IN_STRUCT" value="n6"/>
 <parameter name="NUMBER_SIGNIFICANT_CHARACTER_EXTERNAL_IDENTIFIER" value="n7"/>
 <parameter name="NUMBER_SIGNIFICANT_CHARACTER_INTERNAL_IDENTIFIER" value="n8"/>
 </global_scope>

Here, n1,..,n8 specifies numerical values.

Use the entries n1,..,n6 for the following parameters to specify limits on certain aspects of your
program. The modifications affect the checking of MISRA C:2012 Rule 1.1.

• MAX_NUMBER_NESTED_LEVEL_CONTROL_FLOW: Maximum depth of nesting allowed in control flow
statements.

• MAX_NUMBER_NESTED_LEVEL_INCLUDES: Maximum levels of inclusion allowed using include
files.

• MAX_NUMBER_CONSTANT_IN_ENUMERATION: Maximum number of constants allowed in an
enumeration.

• MAX_NUMBER_MACROS_TRANSLATION_UNITMaximum number of macros allowed in a translation
unit.

• MAX_NUMBER_MEMBERS_IN_STRUCT: Maximum number of members allowed in a structure.
• MAX_NUMBER_NESTED_MEMBERS_IN_STRUCT: Maximum levels of nesting allowed in a structure.

Use the entries n7 and n8 to specify how many characters must be compared to determine if two
identifiers as identical. The modifications affect the checking of Rules 5.x.

 -code-behavior-specifications

3-9

• NUMBER_SIGNIFICANT_CHARACTER_EXTERNAL_IDENTIFIER: Number of characters to compare
for external identifiers. External identifiers are ones declared with global scope or storage class
extern.

• NUMBER_SIGNIFICANT_CHARACTER_INTERNAL_IDENTIFIER: Number of characters to compare
for internal identifiers.

Examples
The examples in the next sections refer to a Code Prover analysis. For Bug Finder examples, see:

• “Extend Bug Finder Checkers for Standard Library Functions to Custom Libraries”
• “Flag Deprecated or Unsafe Functions Using Bug Finder Checkers”
• “Extend Concurrency Defect Checkers to Unsupported Multithreading Environments”

Specify Mapping to Standard Function

You can adapt the sample mapping XML file provided with your Polyspace installation and map your
function to a standard function.

Suppose the default verification produces an orange User assertion check on this code:

double x = acos32(1.0) ;
assert(x <= 2.0);

Suppose you know that the function acos32 behaves like the function acos and the return value is 0.
You expect the check on the assert statement to be green. However, the verification considers that
acos32 returns any value in the range of type double because acos32 is not precisely analyzed. The
check is orange. To map your function acos32 to acos:

1 Copy the file code-behavior-specifications-template.xml from polyspaceroot
\polyspace\verifier\cxx\ to another location, for instance, "C:\Polyspace_projects
\Common\Config_files". Change the write permissions on the file.

2 To map your function to a standard function, modify the contents of the XML file. To map your
function acos32 to the standard library function acos, change the following code:

<function name="my_lib_cos" std="acos"> </function>

To:

<function name="acos32" std="acos"> </function>
3 Specify the location of the file for verification:

• Code Prover:

polyspace-code-prover -code-behavior-specifications
 "C:\Polyspace_projects\Common\Config_files
 \code-behavior-specifications-template.xml"

• Code Prover Server:

polyspace-code-prover-server -code-behavior-specifications
 "C:\Polyspace_projects\Common\Config_files
 \code-behavior-specifications-template.xml"

3 Analysis Options, Command-Line Only

3-10

Specify Mapping to Standard Function with Argument Remapping

Sometimes, the arguments of your function do not map one-to-one with arguments of the standard
function. In those cases, remap your function argument to the standard function argument. For
instance:

• __ps_lookup_table_clip:

This function specific to Polyspace takes only a look-up table array as argument and returns values
within the range of the look-up table. Your look-up table function might have additional arguments
besides the look-up table array itself. In this case, use argument remapping to specify which
argument of your function is the look-up table array.

For instance, suppose a function my_lookup_table has the following declaration:

double my_lookup_table(double u0, const real_T *table,
 const double *bp0);

The second argument of your function my_lookup_table is the look-up table array. In the file
code-behavior-specifications-template.xml, add this code:

<function name="my_lookup_table" std="__ps_lookup_table_clip">
 <mapping std_arg="1" arg="2"></mapping>
</function>

When you call the function:

res = my_lookup_table(u, table10, bp);

The verification interprets the call as:

res =__ps_lookup_table_clip(table10);

The verification assumes that the value of res lies within the range of values in table10.
• __ps_meminit:

This function specific to Polyspace takes a memory address as the first argument and a number of
bytes as the second argument. The function assumes that the bytes in memory starting from the
memory address are initialized with a valid value. Your memory initialization function might have
additional arguments. In this case, use argument remapping to specify which argument of your
function is the starting address and which argument is the number of bytes.

For instance, suppose a function my_meminit has the following declaration:

 void my_meminit(enum InitKind k, void* dest, int is_aligned,
 unsigned int size);

The second argument of your function is the starting address and the fourth argument is the
number of bytes. In the file code-behavior-specifications-template.xml, add this code:

<function name="my_meminit" std="__ps_meminit">
 <mapping std_arg="1" arg="2"></mapping>
 <mapping std_arg="2" arg="4"></mapping>
</function>

When you call the function:

my_meminit(INIT_START_BY_END, &buffer, 0, sizeof(buffer));

 -code-behavior-specifications

3-11

The verification interprets the call as:

__ps_meminit(&buffer, sizeof(buffer));

The verification assumes that sizeof(buffer) number of bytes starting from &buffer are
initialized.

• memset: Variable number of arguments.

If your function has variable number of arguments, you cannot map it directly to a standard
function without explicit argument remapping. For instance, say your function is declared as:

void* my_memset(void*, int, size_t, ...)

To map the function to the memset function, use the following mapping:

<function name="my_memset" std="memset">
 <mapping std_arg="1" arg="1"></mapping>
 <mapping std_arg="2" arg="2"></mapping>
 <mapping std_arg="3" arg="3"></mapping>
</function>

Effect of Mapping on Precision

These examples show the result of mapping certain functions to standard functions:

• my_acos → acos:

If you use the mapping, the User assertion check turns green. The verification assumes that
the return value of my_acos is 0.

• Before mapping:

double x = my_acos(1.0);
assert(x <= 2.0);

• Mapping specification:

<function name="my_acos" std="acos">
</function>

• After mapping:

double x = my_acos(1.0);
assert(x <= 2.0);

• my_sqrt → sqrt:

If you use the mapping, the Invalid use of standard library routine check turns red.
Otherwise, the verification does not check whether the argument of my_sqrt is nonnegative.

• Before mapping:

res = my_sqrt(-1.0);
• Mapping specification:

<function name="my_sqrt" std="sqrt">
</function>

• After mapping:

res = my_sqrt(-1.0);

3 Analysis Options, Command-Line Only

3-12

• my_lookup_table (argument 2) →__ps_lookup_table_clip (argument 1):

If you use the mapping, the User assertion check turns green. The verification assumes that
the return value of my_lookup_table is within the range of the look-up table array table.

• Before mapping:

double table[3] = {1.1, 2.2, 3.3}
.
.
double res = my_lookup_table(u, table, bp);
assert(res >= 1.1 && res <= 3.3);

• Mapping specification:

<function name="my_lookup_table" std="__ps_lookup_table_clip">
 <mapping std_arg="1" arg="2"></mapping>
</function>

• After mapping:

double table[3] = {1.1, 2.2, 3.3}
.
.
res_real = my_lookup_table(u, table9, bp);
assert(res_real >= 1.1 && res_real <= 3.3);

• my_meminit →__ps_meminit:

If you use the mapping, the Non-initialized local variable check turns green. The
verification assumes that all fields of the structure x are initialized with valid values.

• Before mapping:

struct X {
 int field1 ;
 int field2 ;
};
.
.
struct X x;
my_meminit(&x, sizeof(struct X));
return x.field1;

• Mapping specification:

<function name="my_meminit" std="__ps_meminit">
 <mapping std_arg="1" arg="1"></mapping>
 <mapping std_arg="2" arg="2"></mapping>
</function>

• After mapping:

struct X {
 int field1 ;
 int field2 ;
};
.
.
struct X x;
my_meminit(&x, sizeof(struct X));
return x.field1;

 -code-behavior-specifications

3-13

• my_meminit →__ps_meminit:

If you use the mapping, the Non-initialized local variable check turns red. The
verification assumes that only the field field1 of the structure x is initialized with valid values.

• Before mapping:

struct X {
 int field1 ;
 int field2 ;
};
.
.
struct X x;
my_meminit(&x, sizeof(int));
return x.field2;

• Mapping specification:

<function name="my_meminit" std="__ps_meminit">
</function>

• After mapping:

struct X {
 int field1 ;
 int field2 ;
};
.
.
struct X x;
my_meminit(&x, sizeof(int));
return x.field2;

See Also
Topics
“Specify Polyspace Analysis Options”

Introduced in R2016b

3 Analysis Options, Command-Line Only

3-14

-consider-analysis-perimeter-as-trust-boundary
Consider the analysis perimeter as trust boundary so that data coming from outside the current
analysis perimeter is considered tainted

Syntax
-checkers tainted_data -consider-analysis-perimeter-as-trust-boundary

Description
-checkers tainted_data -consider-analysis-perimeter-as-trust-boundary modifies
the behavior of the tainted data defects so that data originating from outside the analysis perimeter is
considered tainted. For instance, if you are analyzing a single file, then any data that originates
outside this file is considered tainted.

By default, these data are considered tainted:

• Objects declared or defined as volatile
• External data such as user input, hardware data, network data, and environment variable

See “Sources of Tainted Data”.

If you specify the option -consider-analysis-perimeter-as-trust-boundary along with the
option -checkers tainted_data, data that does not originate in the current scope of Polyspace
analysis is considered tainted. Such data might include:

• Formal parameters of externally visible function that do not have a visible caller.
• Return values of stubbed functions.
• Global variables external to the unit.

If you do not trust data that originates from an external module, use this option to detect operations
that are vulnerable to this tainted data.

Example
Consider this code:

#include<stdio.h>
double taintedloopboundary(double num, double denum) {
 int count;
 scanf("%d", &count);
 for (int i=0; i<count; ++i) {
 num = num/denum;
 }
 return num;
}

The example shows two cases of tainted data: one detected by default and one using this option.

• The variable count is obtained from the user. If you perform the default tainted data analysis by
using the command:

 -consider-analysis-perimeter-as-trust-boundary

3-15

polyspace-bug-finder -checkers tainted_data

Polyspace flags the tainted loop variable.
• The variables num and denum are not defined in the current module. If you modify the tainted data

analysis by using the command:

polyspace-bug-finder -checkers tainted_data -consider-analysis-perimeter-as-trust-boundary

Polyspace flags the division operation between num and denum.

Tips
This option is not useful in a Polyspace as You Code analysis.

See Also
Topics
“Tainted Data Defects”
“Sources of Tainting in a Polyspace Analysis”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2020b

3 Analysis Options, Command-Line Only

3-16

-custom-target
Create a custom target processor with specific data type sizes

Syntax
-custom-target target_sizes

Description
-custom-target target_sizes defines a custom target processor for the Polyspace analysis. The
target processor definition includes sizes in bytes of fundamental data types, signedness of plain
char, alignment of structures and underlying types of standard typedef-s such as size_t,
ptrdiff_t and wchar_t.

target_sizes is a comma-separated list specifying these values. From left to right, the values are
the following. If a data type is not supported, -1 is used for its size.

Specification Possible Values
Whether plain char is signed true or false
Size of char in bits

Other sizes are in bytes.

Number

Size of short Number
Size of int Number
Size of short long Number
Size of long Number
Size of long long Number
Size of float Number
Size of double Number
Size of long double Number
Size of pointer Number
Maximum alignment of all integer types Number
Maximum alignment of variables of type struct
or union

Number

Endianness little or big
Underlying type of size_t unknown, unsigned_char, unsigned_short,

unsigned_int, unsigned_long, or
unsigned_long_long

Underlying type of ptrdiff_t unknown, signed_char, short, int, long, or
long_long

Underlying type of wchar_t unknown, short, unsigned_short, int,
unsigned_int, long, or unsigned_long

 -custom-target

3-17

Typically, this option is used when the polyspace-configure command creates an options file for
the subsequent Polyspace analysis. However, you can directly enter this option when manually
writing options files. This option is useful in situations where your target specifications are not
covered by one of the predefined target processors. See Target processor type (-target).

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
An usage of the option looks like this:

-custom-target false,8,2,4,-1,4,8,4,8,8,4,8,1,little,unsigned_int,int,unsigned_int

The option argument translates to the following target specification.

Specification Possible Values
Whether plain char is signed false
Size of char 8 bits
Size of short 2 bytes
Size of int 4 bytes
Size of short long short long is not supported.
Size of long 4 bytes
Size of long long 8 bytes
Size of float 4 bytes
Size of double 8 bytes
Size of long double 8 bytes
Size of pointer 4 bytes
Maximum alignment of all integer types 8 bytes
Maximum alignment of variables of type struct
or union

1 byte

Endianness little
Underlying type of size_t unsigned_int
Underlying type of ptrdiff_t int
Underlying type of wchar_t unsigned_int

Tips
• If your configuration uses both -custom-target and Target processor type (-target) to

specify targets, the analysis uses the target that you specify with -custom-target.
• If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file.

See options file.

See Also
Target processor type (-target) | Generic target options

3 Analysis Options, Command-Line Only

3-18

Topics
“Specify Polyspace Analysis Options”

 -custom-target

3-19

-date
Specify date of analysis

Syntax
-date "date"

Description
-date "date" specifies the date stamp for the analysis in the format dd/mm/yyyy. By default the
value is the date the analysis starts.

Examples
Assign a date to your Polyspace Project:

• Bug Finder:

polyspace-bug-finder -date "15/03/2012"
• Code Prover:

polyspace-code-prover -date "15/03/2012"
• Bug Finder Server:

polyspace-bug-finder-server -date "15/03/2012"
• Code Prover Server:

polyspace-code-prover-server -date "15/03/2012"

Tips
This option is not required for a Polyspace as You Code analysis.

See Also
-author

Topics
“Specify Polyspace Analysis Options”

3 Analysis Options, Command-Line Only

3-20

-doc | -documentation
Display Polyspace documentation in help browser

Syntax
-doc
-documentation

Description
-doc and -documentation opens the Polyspace web documentation in your default web browser.
You can see information such as getting started, workflows and reference pages for commands and
analysis options. You can also search through the documentation.

Examples
Display Polyspace documentation in a help browser:

• Bug Finder:

polyspace-bug-finder -doc
polyspace-bug-finder -documentation

• Code Prover:

polyspace-code-prover -doc
polyspace-code-prover -documentation

• Bug Finder Server:

polyspace-bug-finder-server -doc
polyspace-bug-finder-server -documentation

• Code Prover Server:

polyspace-code-prover-server -doc
polyspace-code-prover-server -documentation

See Also
-h[elp]

 -doc | -documentation

3-21

-dump-preprocessing-info
Show all macros implicitly defined during a particular analysis

Syntax
-dump-preprocessing-info

Description
-dump-preprocessing-info prints all the macros implicitly defined (or undefined) during a
particular Polyspace analysis. The macro definitions come from:

• Your specification for the option Compiler (-compiler)

Polyspace emulates a compiler by defining the compiler-specific macros.
• Macros defined (or undefined) in the Polyspace implementation of Standard Library headers
• Macros that you explicitly define (or undefine) using the options Preprocessor definitions

(-D) and Disabled preprocessor definitions (-U)

Use this option only if you want to know how Polyspace defines a specific macro. In case you want to
use a different definition for the macro, you can then override the current definition.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other. On the Output
Summary pane, you can see each macro definition on a separate line. You can search for the macro
name in the user interface and click the line with the macro name to see further details in the Detail
pane.

Examples
Suppose that you use the ARM v6 compiler for building your source code. For the Polyspace analysis,
you use the value armclang for the option Compiler (-compiler). Suppose that you want to
know what Polyspace uses as definition for the macro __ARM_ARCH.

1 Enter the following command and pipe the console output to a file that you can search later:

polyspace-bug-finder -sources aFile.c -compiler armclang -dump-preprocessing-info

aFile.c can be a simple C file. You can also replace polyspace-bug-finder with
polyspace-code-prover, polyspace-bug-finder-server or polyspace-code-prover-
server.

2 Search for __ARM_ARCH in the file containing the console output. You can see the line with the
macro definition:

Remark: Definition of macro __ARM_ARCH (pre-processing __polyspace__stdstubs.c)
|#define __ARM_ARCH 8
|defined by syntax extension xml file
|predefined macro

3 Analysis Options, Command-Line Only

3-22

In this example, the macro is set to the value 8.

• To override this macro definition, use the option Preprocessor definitions (-D).
• To undefine this macro, use the option Disabled preprocessor definitions (-U).

See Also
Compiler (-compiler)

Topics
“Specify Polyspace Analysis Options”

 -dump-preprocessing-info

3-23

-force-data-races
Detect data races involving only atomic operations even when no critical sections are defined

Syntax
-force-data-races

Description
-force-data-races enforces detection of data races involving only atomic operations even when
no critical sections are defined.

By default, Bug Finder detects data races only if one or both operations accessing a shared variable is
nonatomic. You can explicitly enable detection of data races involving only atomic operations. See
Data race including atomic operations. However, if you do not use critical sections at all in
your code, to avoid flagging too many operations, this kind of data race detection is still disabled. To
force detection of data races involving atomic operations only even in the absence of critical sections,
use the option -force-data-races.

Examples
In this example, the variable sharedVar1 is shared between threads with start functions
thread1_main and thread2_main but operations on sharedVar1 are not protected against
concurrent access. If you run Bug Finder with the option -checkers data_race_all, you do not
see a data race because the code does not use critical sections at all. A critical section, for instance,
would involve use of a pthread_mutex_lock-pthread_mutex_unlock pair.

You also see a warning in the log:

Warning: Checker 'Data Race' is activated but no protection have been defined
Warning: Checker 'Data Race including atomic operations' is disabled
 because no critical sections, temporal exclusions or
 routines to disable/enable all interrupts have been defined.
| To force activation of this checker use option -force-data-races

Code Example

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <pthread.h>

#define MAX_LOOP_THREAD 1000
#define EXIT_CHAR 'c'

uint32_t sharedVar1 = 0;

pthread_mutex_t mtxForShV1 = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t mtxForShV2 = PTHREAD_MUTEX_INITIALIZER;

3 Analysis Options, Command-Line Only

3-24

void *thread1_main(void *arg)
{
 int32_t loop = 0;
 int32_t tmp = 0;

 while (loop<MAX_LOOP_THREAD)
 {
 sharedVar1 = 11;
 tmp = sharedVar1;

 usleep(50000); //50ms - Assume some operations here

 if (tmp != sharedVar1) {
 printf("thread:%d, sharedVar1= %u and tmp = %d differ\n",
 (int)arg, sharedVar1, tmp);
 }
 else {
 printf("thread:%d, sharedVar1= %u, tmp = %d\n",
 (int)arg, sharedVar1, tmp);
 }

 loop++;
 }

 pthread_exit((void *) 0);

 return NULL;
}

void *thread2_main(void *arg)
{
 int32_t loop = 0;
 int32_t tmp = 0;

 while (loop<MAX_LOOP_THREAD)
 {

 sharedVar1 = 21;
 tmp = sharedVar1;

 usleep(50000); //50ms - Assuming some operations here

 if (tmp != sharedVar1) {
 printf("thread:%d, sharedVar1= %u and tmp = %d differ\n",
 (int)arg, sharedVar1, tmp);
 }
 else {
 printf("thread:%d, sharedVar1= %u, tmp = %d\n",
 (int)arg, sharedVar1, tmp);
 }

 loop++;
 }

 pthread_exit((void *) 0);

 return NULL;

 -force-data-races

3-25

}

int main(void)
{
 int32_t status, errorStatus;
 static int32_t data1 = 1, data2 = 2, data3 = 3;
 pthread_t thread1, thread2, thread3;

 errorStatus = pthread_create(&thread1, NULL, &thread1_main, &data1);
 if (0 != errorStatus) {
 printf("thread1: pthread_create return errno : %d\n", errorStatus);
 exit(0);
 }

 errorStatus = pthread_create(&thread2, NULL, &thread2_main, &data2);
 if (0 != errorStatus) {
 printf("thread2: pthread_create return errno : %d\n", errorStatus);
 exit(0);
 }

 else {

 errorStatus = pthread_join(thread2, (void**)&status);
 if (0 != errorStatus) {
 printf("thread2: pthread_join return errno : %d\n", errorStatus);
 exit(0);
 }

 errorStatus = pthread_join(thread1, (void**)&status);
 if (0 != errorStatus) {
 printf("thread1: pthread_join return errno : %d\n", errorStatus);
 exit(0);
 }
 }

 return 0;
}

To see data races despite the absence of critical sections, use the option -force-data-races.

• Bug Finder:

polyspace-bug-finder -checkers data_race_all -force-data-races

• Bug Finder Server:

polyspace-bug-finder-server -checkers data_race_all -force-data-races

Tips
This option is not useful in a Polyspace as You Code analysis.

See Also
Data race including atomic operations

3 Analysis Options, Command-Line Only

3-26

-generate-launching-script-for
Extract information from project file

Syntax
-generate-launching-script-for PRJFILE

Description
-generate-launching-script-for PRJFILE extracts information from a project file PRJFILE
(created in the user interface of the Polyspace desktop products) so that you can run an analysis from
the command line. For each project module and each configuration in each module, a folder is
created containing the following files::

• source_command.txt — List of source files for the -sources-list-file option.
• options_command.txt — List of the analysis options for the -options-file option.
• temporal_exclusions.txt — List of temporal exclusions, generated only if you specify the

Temporally exclusive tasks (-temporal-exclusions-file) option.
• .polyspace_conf.psprj — A copy of the project file Polyspace used to generate the scripting
files.

• launchingCommand.sh (UNIX) or launchingCommand.bat (DOS) — shell script that calls the
correct commands. The script also calls any options that cannot be given to the -options-file
command, such as -batch or -add-to-results-repository. You can give this file additional
analysis options as parameters.

After you set up a project in the Polyspace user interface, you can create this script from the resulting
project file (with extension .psprj). The script that Polyspace generates runs the same analysis as a
run in the user interface. If your project runs without errors in the Polyspace user interface, the
script runs without errors at the command line.

To generate the script, you must run the command from the same folder as the project file.

Examples
Extract information to run myproject from the command line. Use this option with the desktop
binary polyspace:

• Bug Finder:

polyspace -generate-launching-script-for myproject.psprj -bug-finder
• Code Prover:

polyspace -generate-launching-script-for myproject.psprj

 -generate-launching-script-for

3-27

See Also
Topics
“Configure Polyspace Analysis Options in User Interface and Generate Scripts”

3 Analysis Options, Command-Line Only

3-28

-h | -help
Display list of possible options

Syntax
-h
-help

Description
-h and -help display the list of possible options in the command window along with option argument
syntax.

Examples
Display the command-line help:

• Bug Finder:

polyspace-bug-finder -h
polyspace-bug-finder -help

• Code Prover:

polyspace-code-prover -h
polyspace-code-prover -help

• Bug Finder Server:

polyspace-bug-finder-server -h
polyspace-bug-finder-server -help

• Code Prover Server:

polyspace-code-prover-server -h
polyspace-code-prover-server -help

See Also
-doc | -documentation

 -h | -help

3-29

-I
Specify include folder for compilation

Syntax
-I folder

Description
-I folder specifies a folder that contains include files required for compiling your sources. You can
specify only one folder for each instance of -I. However, you can specify this option multiple times.

The analysis looks for include files relative to the folder paths that you specify. For instance, if your
code contains the preprocessor directive #include<../mylib.h> and you include the folder:

C:\My_Project\MySourceFiles\Includes

the folder C:\My_Project\MySourceFiles must contain a file mylib.h.

The analysis automatically includes the ./sources folder (if it exists) after the include folders that
you specify.

Examples
Include two folders with the analysis:

• Bug Finder:

polyspace-bug-finder -I /com1/inc -I /com1/sys/inc

• Code Prover:

polyspace-code-prover -I /com1/inc -I /com1/sys/inc

• Bug Finder Server:

polyspace-bug-finder-server -I /com1/inc -I /com1/sys/inc

• Code Prover Server:

polyspace-code-prover-server -I /com1/inc -I /com1/sys/inc

The source folder is implicitly included. Include files in the source folder can be found automatically
without explicit inclusion of the source folder with the -I option.

Tips
If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

3 Analysis Options, Command-Line Only

3-30

See Also
Topics
“Specify Polyspace Analysis Options”

 -I

3-31

-import-comments
Import review information from previous analysis

Syntax
-import-comments resultsFolder

Description
-import-comments resultsFolder imports the review information (status, severity and
additional notes) from a previous analysis, as specified by the results folder.

You can import review information from the same type of results only. For instance:

• You cannot import review information from a results of a Bug Finder checker to a Code Prover
run-time check. Even when the checker names sound similar, the underlying semantics of Bug
Finder and Code Prover can be different. The only exception is checkers for coding rules. You can
import comments between Bug Finder and Code Prover for coding rule violations.

• You cannot import review information from results of a file-by-file verification in Code Prover to
results of a regular Code Prover verification.

You can also use this option to create a baseline for the analysis results. In the Polyspace user
interface, if you click the New button, only the analysis results that are new compared to the baseline
remain in the results list.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
Import review information from the previous results:

• Bug Finder:

polyspace-bug-finder -sources filename
 -import-comments C:\Results\myProj\1.2

• Code Prover:

polyspace-code-prover -sources filename
 -import-comments C:\Results\myProj\1.2

• Bug Finder Server:

polyspace-bug-finder-server -sources filename
 -import-comments C:\Results\myProj\1.2

• Code Prover Server:

polyspace-code-prover-server -sources filename
 -import-comments C:\Results\myProj\1.2

3 Analysis Options, Command-Line Only

3-32

Tips
If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

See Also
-v[ersion] | polyspace-comments-import

Topics
“Import Review Information from Previous Polyspace Analysis”

 -import-comments

3-33

-list-all-values
Display valid option arguments for a given command-line option

Syntax
-list-all-values option

Description
-list-all-values option displays all the valid option arguments for the command-line option
option.

Examples
Display the valid option arguments for option -misra3:

• Polyspace Bug Finder:

polyspace-bug-finder -list-all-values -misra3
• Polyspace Code Prover:

polyspace-code-prover -list-all-values -misra3
• Polyspace Bug Finder Server:

polyspace-bug-finder-server -list-all-values -misra3
• Polyspace Code Prover Server:

polyspace-code-prover-server -list-all-values -misra3

See Also
Topics
“Specify Polyspace Analysis Options”

Introduced in R2020a

3 Analysis Options, Command-Line Only

3-34

-max-processes
Specify maximum number of processors for analysis

Syntax
-max-processes num

Description
-max-processes num specifies the maximum number of processes that you want the analysis to
use. On a multicore system, the software parallelizes the analysis and creates the specified number of
processes to speed up the analysis. The valid range of num is 1 to 128.

Unless you specify this option, a Code Prover verification uses up to four processes. If you have fewer
than four processes, the verification uses the maximum available number. To increase or restrict the
number of processes, use this option.

Unless you specify this option, a Bug Finder analysis uses the maximum number of available
processes. Use this option to restrict the number of processes used.

To use this option effectively, determine the number of processors available for use. If the number of
processes you create is greater than the number of processors available, the analysis does not benefit
from the parallelization. Check the system information in your operating system.

Note that when you start a verification, a message states the number of logical processors detected
on your system. However, the analysis is parallelized to the physical processor cores on a machine.
Multithreading implementations such as hyper-threading is not taken into account.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
Disable parallel processing during the analysis:

• Bug Finder:

polyspace-bug-finder -max-processes 1

• Code Prover:

polyspace-code-prover -max-processes 1

• Bug Finder Server:

polyspace-bug-finder-server -max-processes 1

• Code Prover Server:

polyspace-code-prover-server -max-processes 1

 -max-processes

3-35

Tips
You must have at least 4 GB of RAM per processor for analysis. For instance, if your machine has 16
GB of RAM, do not use this option to specify more than four processes.

This option is not useful in a Polyspace as You Code analysis.

See Also
Topics
“Specify Polyspace Analysis Options”

3 Analysis Options, Command-Line Only

3-36

-non-preemptable-tasks
Specify functions that represent nonpreemptable tasks

Syntax
-non-preemptable-tasks function1[,function2[,...]]

Description
-non-preemptable-tasks function1[,function2[,...]] specifies functions that represent
nonpreemptable tasks.

The functions cannot be interrupted by other noncyclic tasks and cyclic tasks but can be interrupted
by interrupts, preemptable or nonpreemptable. Noncyclic tasks are specified with the option Tasks
(-entry-points), cyclic tasks with the option Cyclic tasks (-cyclic-tasks) and interrupts
with the option Interrupts (-interrupts). For examples, see “Define Preemptable Interrupts
and Nonpreemptable Tasks”.

To specify a function as a nonpreemptable cyclic task, you must first specify the function as a cyclic
or noncyclic task. The functions that you specify must have the prototype:

void function_name(void);

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Tips
This option is not useful in a Polyspace as You Code analysis.

See Also
Tasks (-entry-points) | Cyclic tasks (-cyclic-tasks) | Interrupts (-interrupts) |
Critical section details (-critical-section-begin -critical-section-end) |
Temporally exclusive tasks (-temporal-exclusions-file) | -non-preemptable-tasks
| -preemptable-interrupts

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Preemptable Interrupts and Nonpreemptable Tasks”
“Concurrency Defects”

Introduced in R2016b

 -non-preemptable-tasks

3-37

-options-file
Run Polyspace using list of options

Syntax
-options-file file

Description
-options-file file specifies a file which lists your analysis options. The file must be a text file
with each option on a separate line. Use # to add comments to this file.

Examples
1 Create an options file called listofoptions.txt with your options. For example:

• Bug Finder or Bug Finder Server:

#These are the options for MyBugFinderProject
-lang c
-prog MyBugFinderProject
-author jsmith
-sources "mymain.c,funAlgebra.c,funGeometry.c"
-target x86_64
-compiler generic
-dos
-misra2 required-rules
-do-not-generate-results-for all-headers
-checkers default
-disable-checkers concurrency
-results-dir C:\Polyspace\MyBugFinderProject

• Code Prover or Code Prover Server:

#These are the options for MyCodeProverProject
-lang c
-prog MyCodeProverProject
-author jsmith
-sources "mymain.c,funAlgebra.c,funGeometry.c"
-target x86_64
-compiler generic
-dos
-misra2 required-rules
-do-not-generate-results-for all-headers
-main-generator
-results-dir C:\Polyspace\MyCodeProverProject

2 Run Polyspace using options in the file listofoptions.txt:

• Bug Finder:

polyspace-bug-finder -options-file listofoptions.txt
• Code Prover:

3 Analysis Options, Command-Line Only

3-38

polyspace-code-prover -options-file listofoptions.txt
• Bug Finder Server:

polyspace-bug-finder-server -options-file listofoptions.txt
• Code Prover Server:

polyspace-code-prover-server -options-file listofoptions.txt

See Also
Topics
“Specify Polyspace Analysis Options”

 -options-file

3-39

-options-for-sources
Specify analysis options specific to a source file

Syntax
-options-for-sources filename options

Description
-options-for-sources filename options associates a semicolon-separated list of Polyspace
analysis options with the source file specified by filename..

This option is primarily used when the polyspace-configure command creates an options file for
the subsequent Polyspace analysis. The option -options-for-sources associates a group of
analysis options such as include folders and macro definitions with specific source files.

However, you can directly enter this option when manually writing options files. This option is useful
in situations where you want to associate a group of options with a specific source file without
applying it to other files.

In the user interface of the Polyspace desktop products, you can create a Polyspace project from your
build command. The project uses the option -options-for-sources to associate specific Polyspace
analysis options with specific files. However, when you open the project in the user interface, you
cannot see the use of this option. Open the project in a text editor to see this option.

Examples
In this sample options file, the include folder /usr/lib/gcc/x86_64-linux-gnu/6/include and
the macros __STDC_VERSION__ and __GNUC__ are associated only with the source file file.c and
not fileAnother.c.

-options-for-sources file.c;-I /usr/lib/gcc/x86_64-linux-gnu/6/include;
-options-for-sources file.c;-D __STDC_VERSION__=201112L;-D __GNUC__=6;
-sources file.c
-sources fileAnother.c

For the options used in this example, see:

• -sources
• -I
• Preprocessor definitions (-D)

Tips
When associating multiple options with a source file, if you use an option separator other than
semicolon, use a second option -options-for-sources-delimiter to explicitly specify this
separator. For instance, if you use the separator @, specify the additional option:

-options-for-sources-delimiter @

3 Analysis Options, Command-Line Only

3-40

Otherwise, the analysis assumes a semicolon separator.

See Also
-options-file | polyspace-configure

Topics
“Specify Polyspace Analysis Options”

 -options-for-sources

3-41

-preemptable-interrupts
Specify functions that represent preemptable interrupts

Syntax
-preemptable-interrupts function1[,function2[,...]]

Description
-preemptable-interrupts function1[,function2[,...]] specifies functions that represent
preemptable interrupts.

The function acts as an interrupt in every way except that it can be interrupted by other interrupts,
preemptable or nonpreemptable. Interrupts are specified with the option Interrupts (-
interrupts). For examples, see “Define Preemptable Interrupts and Nonpreemptable Tasks”.

To specify a function as a preemptable interrupt, you must first specify the function as an interrupt.
The functions that you specify must have the prototype:

void function_name(void);

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Tips
This option is not useful in a Polyspace as You Code analysis.

See Also
Tasks (-entry-points) | Cyclic tasks (-cyclic-tasks) | Interrupts (-interrupts) |
Critical section details (-critical-section-begin -critical-section-end) |
Temporally exclusive tasks (-temporal-exclusions-file) | -non-preemptable-tasks
| -preemptable-interrupts

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Preemptable Interrupts and Nonpreemptable Tasks”
“Concurrency Defects”

Introduced in R2016b

3 Analysis Options, Command-Line Only

3-42

-prog
Specify name of project

Syntax
-prog projectName

Description
-prog projectName specifies a name for your Polyspace project. This name must use only letters,
numbers, underscores (_), dashes (-), or periods (.).

The name appears in the analysis log and a few other places.

Examples
Assign a name to your Polyspace project:

• Bug Finder:

polyspace-bug-finder -prog MyApp
• Code Prover:

polyspace-code-prover -prog MyApp
• Bug Finder Server:

polyspace-bug-finder-server -prog MyApp
• Code Prover Server:

polyspace-code-prover-server -prog MyApp

Tips
This option is not required for a Polyspace as You Code analysis.

See Also
-author | -date

Topics
“Specify Polyspace Analysis Options”

 -prog

3-43

-regex-replace-rgx -regex-replace-fmt
Make replacements in preprocessor directives

Syntax
-regex-replace-rgx matchFileName -regex-replace-fmt replacementFileName

Description
-regex-replace-rgx matchFileName -regex-replace-fmt replacementFileName
replaces tokens in preprocessor directives for the purposes of Polyspace analysis. The original source
code is unchanged. You match a token using a regular expression in the file matchFileName and
replace the token using a replacement in the file replacementFileName.

Use the option only to replace or remove tokens in the preprocessor directives before preprocessing.
Normally, if a token in your source code causes a compilation error, you can replace or remove the
token from the preprocessed code by using the more convenient option Command/script to apply
to preprocessed files (-post-preprocessing-command). However, you cannot use the
option to replace tokens in preprocessor directives. In this case, use -regex-replace-rgx -
regex-replace-fmt.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

In the user interface, specify absolute paths to the text files with the search and replace patterns.

Examples
Suppose you want to replace &_rom_beg in this #define directive:

#define ROM_BEG_ADDR (uint16_t)(&_rom_beg)

and modify the directive to:

#define ROM_BEG_ADDR (0x4000u)

Specify this regular expression in a file match.txt:

^#define\s+ROM_BEG_ADDR\s+\(uint16_t\)\(\&_rom_beg\)

These elements are used in the regular expression:

• ^ asserts position at the start of a line.
• \s+ represents one or more whitespace characters.

The characters *, &, (and) in the original expression are escaped with \. For a complete list of
regular expressions, see Perl documentation.

Specify the replacement in a file replace.txt.

#define ROM_BEG_ADDR \(0x4000u\)

3 Analysis Options, Command-Line Only

3-44

https://perldoc.perl.org/perlre#Regular-Expressions

Specify the two text files during analysis with the options -regex-replace-rgx and -regex-
replace-fmt:

• Bug Finder:

polyspace-bug-finder -sources filename
 -regex-replace-rgx match.txt
 -regex-replace-fmt replace.txt

• Code Prover:

polyspace-code-prover -sources filename
 -regex-replace-rgx match.txt
 -regex-replace-fmt replace.txt

• Bug Finder Server:

polyspace-bug-finder-server -sources filename
 -regex-replace-rgx match.txt
 -regex-replace-fmt replace.txt

• Code Prover Server:

polyspace-code-prover-server -sources filename
 -regex-replace-rgx match.txt
 -regex-replace-fmt replace.txt

Tips
• If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file.

See options file.
• To make replacements in multiple kinds of preprocessor directives, enter one regular expression

per line in the match file and its replacement on the corresponding line in the replacement file.
Each preprocessor line that matches a regular expression in the match file is replaced with the
corresponding replacement from the replacement file.

For instance, the match file can contain two regular expressions such as:

^#define\s+ROM_BEG_ADDR\s+\(uint16_t\)\(\&_rom_beg\)
^#define\s+ROM_END_ADDR\s+\(uint16_t\)\(\&_rom_end\)

And the replacement file can contain these two replacements:

#define ROM_BEG_ADDR \(0x4000u\)
#define ROM_END_ADDR \(0x8000u\)

With these matches and replacements, the following source code:

#include <stdint.h>

#define ROM_BEG_ADDR (uint16_t)(&_rom_beg)
#define ROM_END_ADDR (uint16_t)(&_rom_end)

void main() {
 uint16_t beg_addr = ROM_BEG_ADDR;
 uint16_t end_addr = ROM_END_ADDR;
}

 -regex-replace-rgx -regex-replace-fmt

3-45

is converted to the following preprocessed code before analysis:

#include <stdint.h>

#define ROM_BEG_ADDR (0x4000u)
#define ROM_END_ADDR (0x8000u)

void main() {
 uint16_t beg_addr = ROM_BEG_ADDR;
 uint16_t end_addr = ROM_END_ADDR;
}

See Also
Command/script to apply to preprocessed files (-post-preprocessing-command)

Topics
“Specify Polyspace Analysis Options”

3 Analysis Options, Command-Line Only

3-46

-report-output-name
Specify name of report

Syntax
-report-output-name reportName

Description
-report-output-name reportName specifies the name of an analysis report.

The default name for a report is Prog_Template.Format:

• Prog is the name of the project specified by -prog.
• TemplateName is the type of report template specified by -report-template.
• Format is the file extension for the report specified by -report-output-format.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
Specify the name of the analysis report:

• Bug Finder:

polyspace-bug-finder -report-template Developer
 -report-output-name Airbag_v3.doc

• Code Prover:

polyspace-code-prover -report-template Developer
 -report-output-name Airbag_v3.doc

• Bug Finder Server:

polyspace-bug-finder-server -report-template Developer
 -report-output-name Airbag_v3.doc

• Code Prover Server:

polyspace-code-prover-server -report-template Developer
 -report-output-name Airbag_v3.doc

Tips
You cannot generate reports with Polyspace as You Code.

See Also
Bug Finder and Code Prover report (-report-template) | Output format (-report-
output-format)

 -report-output-name

3-47

Topics
“Specify Polyspace Analysis Options”
“Generate Reports from Polyspace Results”

3 Analysis Options, Command-Line Only

3-48

-results-dir
Specify the results folder

Syntax
-results-dir resultsFolder

Description
-results-dir resultsFolder specifies where to save the analysis results. The default location at
the command line is the current folder.

Note that the results folder is cleaned up and repopulated at each run. To avoid accidental removal of
files during the cleanup, instead of using an existing folder that contains other files, specify a
dedicated folder for the Polyspace results.

If you are running analysis in the user interface of the Polyspace desktop products, see “Run Analysis
in Polyspace Desktop User Interface”.

Examples
Specify to store your results in the RESULTS folder:

• Bug Finder:

polyspace-bug-finder -results-dir RESULTS

• Code Prover:

polyspace-code-prover -results-dir RESULTS

• Bug Finder Server:

polyspace-bug-finder-server -results-dir RESULTS

• Code Prover Server:

polyspace-code-prover-server -results-dir RESULTS

You can create the name of the results folder based on the verification date and time. For instance, in
a Bash shell, enter these commands to create a variable RESULTS that begins with results_ and
contains the current date and time:

export DATETIME=$(date +%d%B_%HH%M_%A)
export RESULTS=results_$DATE

You can then use the variable RESULTS as argument of the option -results-dir:

-results-dir $RESULTS

 -results-dir

3-49

Tips
If you use Polyspace as You Code extensions in IDEs, this option is implemented through the IDE
extension setting. You do not have to use this option explicitly. If you want to explicitly use this option,
enter the option in an analysis options file. See options file.

See Also
Topics
“Specify Polyspace Analysis Options”

3 Analysis Options, Command-Line Only

3-50

-scheduler
Specify cluster or job scheduler

Syntax
-scheduler schedulingOption

Description
-scheduler schedulingOption specifies the head node of the MATLAB Parallel Server cluster
that manages Polyspace analysis submissions from multiple clients and allocates the analysis to
worker nodes. You use this option along with the option Run Bug Finder or Code Prover
analysis on a remote cluster (-batch) to offload an analysis from a desktop to a remote
cluster. Note that you use this option with the commands in the desktop products (polyspace-bug-
finder and polyspace-code-prover) and not the commands in the server products (polyspace-
bug-finder-server and polyspace-code-prover-server).

For more information, see “Install Products for Submitting Polyspace Analysis from Desktops to
Remote Server”.

Examples
Run a batch analysis on a remote server using one of these syntaxes for the job scheduler:

• Bug Finder:

polyspace-bug-finder -batch -scheduler NodeHost
polyspace-bug-finder -batch -scheduler 192.168.1.124:12400
polyspace-bug-finder -batch -scheduler MJSName@NodeHost

• Code Prover:

polyspace-code-prover -batch -scheduler NodeHost
polyspace-code-prover -batch -scheduler 192.168.1.124:12400
polyspace-code-prover -batch -scheduler MJSName@NodeHost

For details, see “Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”.

You can track the status of the job using the polyspace-jobs-manager command:

polyspace-jobs-manager listjobs -scheduler NodeHost

Tips
You cannot submit analysis jobs to a remote cluster with Polyspace as You Code.

See Also
Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

Topics
“Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”

 -scheduler

3-51

“Send Bug Finder Analysis from Desktop to Locally Hosted Server”
“Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”

3 Analysis Options, Command-Line Only

3-52

-sources
Specify source files

Syntax
-sources file1[,file2,...]
-sources file1 -sources file2

Description
-sources file1[,file2,...] or -sources file1 -sources file2 specifies the list of
source files that you want to analyze. You can use standard UNIX wildcards with this option to specify
your sources.

The source files are compiled in the order in which they are specified.

Examples
Analyze the files mymain.c, funAlgebra.c, and funGeometry.c.

• Bug Finder:

polyspace-bug-finder -sources mymain.c
 -sources funAlgebra.c -sources funGeometry.c

• Code Prover:

polyspace-code-prover -sources mymain.c
 -sources funAlgebra.c -sources funGeometry.c

• Bug Finder Server:

polyspace-bug-finder-server -sources mymain.c
 -sources funAlgebra.c -sources funGeometry.c

• Code Prover Server:

polyspace-code-prover-server -sources mymain.c
 -sources funAlgebra.c -sources funGeometry.c

• Polyspace as You Code:

polyspace-bug-finder-access -sources myfile.c

Note that you can only analyze one file at a time with Polyspace as You Code. If you use Polyspace
as You Code extensions in IDEs, you do not have to specify this option. The analysis runs on the
file that is currently active in your IDE.

See Also
-sources-list-file | polyspace-configure

Topics
“Specify Polyspace Analysis Options”

 -sources

3-53

-sources-list-file
Specify file containing list of sources

Syntax
-sources-list-file file_path

Description
-sources-list-file file_path specifies the absolute path to a text file that lists each file name
that you want to analyze.

To specify your sources in the text file, on each line, specify the path to a source file. You can specify
an absolute path or a path relative to the folder from which you are running the analysis. For
example:

C:\Sources\myfile.c
C:\Sources2\myfile2.c

Examples
Run analysis on files listed in files.txt:

• Bug Finder:

polyspace-bug-finder -sources-list-file "C:\Analysis\files.txt"
polyspace-bug-finder -sources-list-file "/home/polyspace/files.txt"

• Code Prover:

polyspace-code-prover -sources-list-file "C:\Analysis\files.txt
polyspace-code-prover -sources-list-file "/home/polyspace/files.txt"

• Bug Finder Server:

polyspace-bug-finder-server -sources-list-file "C:\Analysis\files.txt"
polyspace-bug-finder-server -sources-list-file "/home/polyspace/files.txt"

• Code Prover Server:

polyspace-code-prover-server -sources-list-file "C:\Analysis\files.txt
polyspace-code-prover-server -sources-list-file "/home/polyspace/files.txt"

Tips
You cannot use this option with Polyspace as You Code.

See Also
Topics
“Specify Polyspace Analysis Options”

3 Analysis Options, Command-Line Only

3-54

-submit-job-from-previous-compilation-results
Specify that the analysis job must be resubmitted without recompilation

Syntax
-submit-job-from-previous-compilation-results

Description
-submit-job-from-previous-compilation-results specifies that the Polyspace analysis must
start after the compilation phase with compilation results from a previous analysis. The option is
primarily useful when offloading a Polyspace analysis from desktops to remote servers. If a remote
analysis stops after compilation, for instance because of communication problems between the server
and client computers, use this option. Note that you use this option with the commands in the
desktop products (polyspace-bug-finder and polyspace-code-prover) and not the commands
in the server products (polyspace-bug-finder-server and polyspace-code-prover-server).

When you perform a remote analysis:

1 On the local host computer, the Polyspace software performs code compilation and coding rule
checking.

2 The analysis job is then submitted to the MATLAB job scheduler on the head node of the MATLAB
Parallel Server cluster.

3 The head node of the MATLAB Parallel Server cluster assigns the verification job to a worker
node, where the remaining phases of the Polyspace analysis occur.

If an analysis stops after completing the first step and you restart the analysis, use this option to
reuse compilation results from the previous analysis. You thereby avoid restarting the analysis from
the compilation phase.

If previous compilation results do not exist in the current folder, an error occurs. Remove the option
and restart analysis from the compilation phase.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
Specify remote analysis with compilation results from a previous analysis:

• Bug Finder:

polyspace-bug-finder -batch -scheduler localhost
 -submit-job-from-previous-compilation-results

• Code Prover:

polyspace-code-prover -batch -scheduler localhost
 -submit-job-from-previous-compilation-results

 -submit-job-from-previous-compilation-results

3-55

Tips
You cannot submit analysis jobs to a remote cluster with Polyspace as You Code.

See Also
Topics
“Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”
“Send Bug Finder Analysis from Desktop to Locally Hosted Server”
“Install Products for Submitting Polyspace Analysis from Desktops to Remote Server”

3 Analysis Options, Command-Line Only

3-56

-termination-functions
Specify process termination functions

Syntax
-termination-functions function1[,function2[,...]]

Description
-termination-functions function1[,function2[,...]] specifies functions that behave like
the exit function and terminate your program.

Use this option to specify program termination functions that are declared but not defined in your
code.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
Polyspace detects an Integer division by zero defect in the following code because it does not
recognize that my_exit terminates the program.

void my_exit();

double reciprocal(int val) {
 if(val==0)
 my_exit();
 return (1/val);
}

To prevent Polyspace from flagging the division operation, use the -termination-functions
option:

polyspace-bug-finder -termination-functions my_exit

See Also
polyspaceBugFinder

Topics
“Run Polyspace Analysis from Command Line”

 -termination-functions

3-57

https://www.cplusplus.com/reference/cstdlib/exit/

-tmp-dir-in-results-dir
Keep temporary files in results folder

Syntax
-tmp-dir-in-results-dir

Description
-tmp-dir-in-results-dir specifies that temporary files must be stored in a subfolder of the
results folder. Use this option only when the standard temporary folder does not have enough disk
space. If the results folder is mounted on a network drive, this option can slow down your processor.

To learn how Polyspace determines the temporary folder location, see “Storage of Temporary Files
During Polyspace Analysis”.

If you are running an analysis from the user interface (Polyspace desktop products only), on the
Configuration pane, you can enter this option in the Other field. See Other.

Examples
Store temporary files in the results folder:

• Bug Finder:

polyspace-bug-finder -tmp-dir-in-results-dir

• Code Prover:

polyspace-code-prover -tmp-dir-in-results-dir

• Bug Finder Server:

polyspace-bug-finder-server -tmp-dir-in-results-dir

• Code Prover Server:

polyspace-code-prover-server -tmp-dir-in-results-dir

Tips
If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

See Also
Topics
“Specify Polyspace Analysis Options”

3 Analysis Options, Command-Line Only

3-58

-v | -version
Display Polyspace version number

Syntax
-v
-version

Description
-v or -version displays the version number of your Polyspace product.

Examples
Display the version number and release of your Polyspace product:

• Bug Finder:

polyspace-bug-finder -v
• Code Prover:

polyspace-code-prover -v
• Bug Finder Server:

polyspace-bug-finder-server -v
• Code Prover Server:

polyspace-code-prover-server -v

 -v | -version

3-59

-xml-annotations-description
Apply custom code annotations to Polyspace analysis results

Syntax
-xml-annotations-description file_path

Description
-xml-annotations-description file_path uses the annotation syntax defined in the XML file
located in file_path to interpret code annotations in your source files. You can use the XML file to
specify an annotation syntax and map it to the Polyspace annotation syntax. When you run an analysis
by using this option, you can justify and hide results with annotations that use your syntax. If you run
Polyspace at the command line, file_path is the absolute path or path relative to the folder from
which you run the command. If you run Polyspace through the user interface, file_path is the
absolute path.

If you are running an analysis through the user interface, you can enter this option in the Other field,
under the Advanced Settings node on the Configuration pane. See Other.

If you use Polyspace as You Code extensions in IDEs, enter this option in an analysis options file. See
options file.

Why Use This Option

If you have existing annotations from previous code reviews, you can import these annotations to
Polyspace. You do not have to review and justify results that you have already annotated. Similarly, if
your code comments must adhere to a specific format, you can map and import that format to
Polyspace.

Examples
Import Existing Annotations for Coding Rule Violations

Suppose that you have previously reviewed source file zero_div.c containing the following code,
and justified certain MISRA C: 2012 violations by using custom annotations.

3 Analysis Options, Command-Line Only

3-60

#include <stdio.h>

/* Violation of Misra C:2012
rules 8.4 and 8.7 on the next
line of code. */

int func(int p) //My_rule 50, 51
{
 int i;
 int j = 1;

 i = 1024 / (j - p);
 return i;
}

/* Violation of Misra C:2012
rule 8.4 on the next line of
code */

int func2(void){ //My_rule 50
 int x=func(2);
 return x;
}

The code comments My_rule 50, 51 and My_rule 50 do not use the Polyspace annotation syntax.
Instead, you use a convention where you place all MISRA rules in a single numbered list. In this list,
rules 8.4 and 8.7 correspond to the numbers 50 and 51.You can check this code for MISRA C: 2012
violations by typing the command:

• Bug Finder:
polyspace-bug-finder -sources source_path -misra3 all

• Code Prover:
polyspace-code-prover -sources source_path -misra3 all -main-generator

• Bug Finder Server:
polyspace-bug-finder-server -sources source_path -misra3 all

• Code Prover Server:
polyspace-code-prover-server -sources source_path -misra3 all -main-generator

source_path is the path to zero_div.c.

The annotated violations appear in the Results List pane. You must review and justify them again.

 -xml-annotations-description

3-61

This XML example defines the annotation format used in zero_div.c and maps it to the Polyspace
annotation syntax:

• The format of the annotation is the keyword My_rule, followed by a space and one or more
comma-separated alphanumeric rule identifiers.

• Rule identifiers 50 and 51 are mapped to MISRA C: 2012 rules 8.4 and 8.7 respectively. The
mapping uses the Polyspace annotation syntax.

<?xml version="1.0" encoding="UTF-8"?>

<Annotations xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="annotations_xml_schema.xsd"
 Group="exampleCustomAnnotation">

 <Expressions Search_For_Keywords="My_rule"
 Separator_Result_Name="," >

 <!-- This section defines the annotation syntax format -->
 <Expression Mode="SAME_LINE"
 Regex="My_rule\s(\w+(\s*,\s*\w+)*)"
 Rule_Identifier_Position="1"
 />

 </Expressions>
 <!-- This section maps the user annotation to the Polyspace
 annotation syntax -->
 <Mapping>
 <Result_Name_Mapping Rule_Identifier="50" Family="MISRA-C3" Result_Name="8.4"/>
 <Result_Name_Mapping Rule_Identifier="51" Family="MISRA-C3" Result_Name="8.7"/>
 </Mapping>
</Annotations>

To import the existing annotations and apply them to the corresponding Polyspace results:

3 Analysis Options, Command-Line Only

3-62

1 Copy the preceding code example to a text editor and save it on your machine as
annotations_description.xml, for instance in C:\Polyspace_workspace\annotations
\.

2 Rerun the analysis on zero_div.c by using the command:

• Bug Finder:

polyspace-bug-finder -sources source_path -misra3 all ^
-xml-annotations-desription ^
C:\Polyspace_workspace\annotations\annotations_description.xml

• Code Prover:

polyspace-code-prover -sources source_path -misra3 all ^
-main-generator -xml-annotations-desription ^
C:\Polyspace_workspace\annotations\annotations_description.xml

• Bug Finder Server:

polyspace-bug-finder-server -sources source_path -misra3 all ^
-xml-annotations-desription ^
C:\Polyspace_workspace\annotations\annotations_description.xml

• Code Prover Server:

polyspace-code-prover-server -sources source_path -misra3 all ^
-main-generator -xml-annotations-desription ^
C:\Polyspace_workspace\annotations\annotations_description.xml

Polyspace considers the annotated results justified and hides them in the Results List pane.

 -xml-annotations-description

3-63

See Also
Topics
“Specify Polyspace Analysis Options”
“Define Custom Annotation Format”
“Annotation Description Full XML Template”
“Fix Errors Applying Custom Annotation Format for Polyspace Results”

Introduced in R2017b

3 Analysis Options, Command-Line Only

3-64

Polyspace DOS/UNIX Commands

65

Polyspace DOS/Unix Commands

4

admin-docker-agent
(DOS/UNIX) Launch Cluster Admin interface to manage User Manager, Issue Tracker, and Polyspace
Access Apps

Syntax
admin-docker-agent [OPTIONS]

Description
admin-docker-agent [OPTIONS] starts the Cluster Admin interface. If you do not specify
additional OPTIONS, the Admin agent uses host name localhost and starts with the HTTP protocol
on port 9443.

Input Arguments
OPTIONS — Options to manage the Cluster Admin
string

Options to specify and manage the connection settings of the Cluster Admin.

General Options

Option Description
--hostname hostName Specify the fully qualified domain name of the machine on which you

run the Cluster Admin. This option is required if you use the HTTPS
configuration options. hostName must match the Common Name (CN)
that you specify to obtain SSL certificates.

The default host name is localhost.
--port portNumber Specify the server port number that you use to access the Cluster

Admin web interface.

The default port value is 9443.
--data-dir dirPath Specify the full path to the folder containing the settings.json file.

If the file does not exist, the Cluster Admin creates it in the specified
folder.

If the file already exists, the Cluster Admin reuses its contents to
configure the settings.

The default folder is the current folder.

4 Polyspace DOS/Unix Commands

4-2

Option Description
--network-name
networkName

Specify the name of the Docker network that the Polyspace Access,
User Manager, and Issue Tracker apps use.

Use this option if you do not want the apps to use the default
mathworks network, for instance, if that network conflicts with an
existing network.

To check if your docker network conflicts with an existing network, run
this command:

docker network inspect networkName

and inspect the IPAM.Config node to view the IP range that is used
by the network. You might need to contact your network administrator
to determine if the IP range is used by other services. To find
networkName, use the command docker network ls.

To create a new network, see docker network create.
--force-exposing-
ports

Specify this option to expose the ports of the services when you install
all the services on a single node. To specify the Docker host port to
which the exposed ports bind, open the Cluster Admin, click
Configure Nodes, then go to the Services tab.

By default, when you install on a single node, the ports of the services
are not exposed .

Use this option if you install on a single node but you must
communicate with one of the services through a third party tool, for
instance if you use PostgreSQL utilities to communicate with the
Polyspace Access database.

--reset-password Reset the password that you use to log into the Cluster Admin web
interface.

--version Display the version number of the Admin agent.
--help Display the help menu.

HTTPS Configuration Options

On Windows systems, all paths must point to local drives.

Option Description
--ssl-cert-file
absolutePath

Specify the absolute path to the SSL certificate PEM file.

--ssl-key-file
absolutePath

Specify the absolute path to the SSL private key PEM file that you used
to generate the certificate.

 admin-docker-agent

4-3

https://docs.docker.com/engine/reference/commandline/network_create/

Option Description
--ssl-ca-file
absolutePath

Specify the full path to the certificate store where you store trusted
certificate authorities. For instance, on a Linux Debian®

distribution, /etc/ssl/certs/ca-certificates.crt .

If you use self-signed certificates, use the same file that you specify for
--ssl-cert-file

--restart-gateway Use this option to restart the Gateway service if you restart the
admin-docker-agent and you make changes to the HTTPS
configuration options or you specify a different port.

Restart the Gateway service by using this option if you make changes
to the HTTPS configuration options or specify a different port.

New Node Configuration Options

If you choose to install Polyspace Access on multiple machines, use these options to create nodes on
the different machines. In the Cluster Dashboard, click Configure Nodes, and then select the
Services tab to select the node on which you want to run the service.

Before you create a node, you must have an instance of the admin-docker-agent already running
on at least one other machine. This other machine hosts the master node.

Option Description
--master-host
hostName:port

Specify the host name and port number of the machine hosting the
master node.

--node-id nodeName Name of the node that you create. After you start the Cluster Admin,
you see this node listed in the Node drop-down lists on the Services
tab of the Nodes settings.

Examples

Configure HTTPS Protocol With Self-Signed Certificate

The Cluster Admin uses the HTTP protocol by default. Encrypt the data between the Cluster
Admin and client machines by configuring the Cluster Admin with the HTTPS protocol. This
configuration also enables HTTPS for the API Gateway service, which handles communications
between all the other services and client machines.

If you install Polyspace Access on multiple nodes, or if you use the --force-exposing-ports to
start the Admin agent, you must configure HTTPS for the User Manager, Issue Tracker, and
Polyspace Access services separately. To configure HTTPS for the services, click Configure Nodes on
the Cluster Dashboard.

Create a self-signed SSL certificate and private key file by using the openssl toolkit.
openssl req -newkey rsa:2048 -new -nodes -x509 -days 365 -keyout self_key.pem -out self_cert.pem

After you enter the command, follow the prompts on the screen. You can leave most fields blank, but
you must provide a Common Name (CN). The CN must match the fully qualified domain name (FQDN)
of the machine running the admin-docker-agent. The command outputs a certificate file
self_cert.pem and a private key file self_key.pem.

4 Polyspace DOS/Unix Commands

4-4

https://www.openssl.org/

To obtain the FQDN of the machine, use the command hostname --fqdn on Linux or net config
workstation | findstr /C:"Full Computer name" on Windows .

Start the admin-docker-agent by using the certificate and private key files that you generated and
specify hostName, the FQDN of the machine. hostName must match the FQDN that you entered for
the CN of the SSL certificate. In the command, specify the full path to the files.

Windows PowerShell admin-docker-agent --hostname hostName`
--ssl-cert-file fullPathTo\self_cert.pem `
--ssl-key-file fullPathTo\self_key.pem.pem `
--ssl-ca-file fullPathTo\self_cert.pem

Linux ./admin-docker-agent --hostname hostName \
--ssl-cert-file fullPathTo/self_cert.pem \
--ssl-key-file fullPathTo/self_key.pem.pem \
--ssl-ca-file fullPathTo/self_cert.pem

You can now access the Cluster Admin web interface from your browser by using https://
hostName:9443/admin.

See Also
Topics
“Configure and Start the Cluster Admin”

Introduced in R2020b

 admin-docker-agent

4-5

polyspace-access
(DOS/UNIX) Manage upload or export of Polyspace results from the Polyspace Access web interface

Syntax
polyspace-access -host hostname [configuration options] -create-project
projectFolder

polyspace-access -host hostname [configuration options] -upload
pathToFolderOrZipFile [upload options]
polyspace-access -host hostname [configuration options] -export
findingsToExport -output filePath [export options]
polyspace-access -host hostname [configuration options] -download
findingsToDownload -output-folder-path folderPath

polyspace-access -host hostname [configuration options] -set-unassigned-
findings findingsToAssign -owner userToAssign -source-contains pattern [set
unassigned findings options]

polyspace-access -host hostname [configuration options] -list-project [
findingsPath]

polyspace-access -host hostname [configuration options] -set-role role -user
username -group groupname -project-path projectFolderOrFindingsPath
polyspace-access -host hostname [configuration options] -unset-role -user
username -group groupname -project-path projectFolderOrFindingsPath

polyspace-access -encrypt-password

polyspace-access -generate-migration-commands metrics_dir -output-folder-path
dir [generate migration commands options]
polyspace-access -host hostname [configuration options] -migrate -option-
file-path dir [-dryrun]

Description
polyspace-access -host hostname [configuration options] -create-project
projectFolder creates a project folder in the Polyspace Access web interface. The folder can be at
the top of the project hierarchy or a subfolder under an existing project folder.

polyspace-access -host hostname [configuration options] -upload
pathToFolderOrZipFile [upload options] uploads Polyspace results from a folder or a zipped
file to the Polyspace Access database. You upload results using this command only if those results
were generated with Polyspace Bug Finder Server or Polyspace Code Prover Server. To upload
results generated with the Polyspace desktop interface, see “Upload Results from Polyspace Desktop
Client”. Use the “upload options” on page 4-0 to specify a project folder or rename a project.

polyspace-access -host hostname [configuration options] -export
findingsToExport -output filePath [export options] exports project results from a
project in the Polyspace Access database to a text file whose location you specify with filePath. You

4 Polyspace DOS/Unix Commands

4-6

specify the project using either the full path in Polyspace Access or the run ID. Use this command to
export findings to other tools that you use for custom reports. To get the paths to projects and their
last run IDs, use polyspace-access with the -list-project command.

polyspace-access -host hostname [configuration options] -download
findingsToDownload -output-folder-path folderPath downloads results from Polyspace
Access project findingsToDownload to a folder whose location you specify with folderPath. You
specify the project using either the full path in Polyspace Access or the run ID.

Use this command as part of the workflow to merge review information between projects, or to create
a baseline for subsequent Polyspace analyses. To merge review information between projects, see
“Merge Review Information Between Polyspace Access Projects”.

To create a baseline for Polyspace a You Code results at the command-line, see “Baseline Polyspace as
You Code Results on Command Line”. To get the paths to projects and their last run IDs, use
polyspace-access with the -list-project command.

You cannot open the results that you download with this command in the Polyspace desktop interface
or the Polyspace as You Code IDE extensions.

polyspace-access -host hostname [configuration options] -set-unassigned-
findings findingsToAssign -owner userToAssign -source-contains pattern [set
unassigned findings options] assigns owners to unassigned results in a project in the
Polyspace Access database. You specify the project using either the full path in Polyspace Access or
the run ID. Use the set unassigned findings options to assign findings from different source
files or different groups of source files to different owners. To get the paths to projects and their last
run IDs, use polyspace-access with the -list-project command.

polyspace-access -host hostname [configuration options] -list-project [
findingsPath] without the optional argument findingsPath lists the paths to all projects in the
Polyspace Access database and their last run IDs. If you specify the full path to a project with the
argument findingsPath, the command lists the last run ID.

polyspace-access -host hostname [configuration options] -set-role role -user
username -group groupname -project-path projectFolderOrFindingsPath assigns a
role role to username or groupname for the specified project or project folder. A user or group role
set for a project folder applies to all project findings under that folder. All users in a group inherit the
role assigned to their parent group. You specify the project using either the full path in Polyspace
Access or the last run ID. To get the paths to projects and their last run IDs, use polyspace-access
command with the -list-project command.

polyspace-access -host hostname [configuration options] -unset-role -user
username -group groupname -project-path projectFolderOrFindingsPath removes any
role previously assigned to username or groupname for the specified project or project folder.
Unassigning a role for a group unassigns that role for all the users in that group. You specify the
project using either the full path in Polyspace Access or the last run ID. To get the paths to projects
and their last run IDs, use polyspace-access with the -list-project command.

polyspace-access -encrypt-password encrypts the password you use to log into Polyspace
Access. Use the output of this command as the argument of the -encrypted-password option when
you write automation scripts to interact with Polyspace Access.

polyspace-access -generate-migration-commands metrics_dir -output-folder-path
dir [generate migration commands options] generates scripts to migrate projects from the

 polyspace-access

4-7

path metrics_dir in Polyspace Metrics to Polyspace Access. The command stores the scripts in
dir. To specify which project findings to migrate, use generate migration commands options.

polyspace-access -host hostname [configuration options] -migrate -option-
file-path dir [-dryrun] migrates projects from Polyspace Metrics to Polyspace Access using
the scripts generated with the -generate-migration-commands command. To view which projects
are migrated without actually migrating the projects, use the -dryrun option.

Examples

Encrypt Password and Set Configuration Options

Polyspace Access requires login credentials. You can enter them at the command line when you
execute a command, or you can generate an encrypted password that you use in automation scripts.

To encrypt your password, use the -encrypt-password command and enter your Polyspace Access
credentials. The command uses the user name and password you enter to generate an encrypted
password.

polyspace-access -encrypt-password
login: jsmith
password:
CRYPTED_PASSWORD KEAGKAMJMCOPLFKPKOHOJNDJCBACFJBL
Command Completed

Store the login and encrypted password in a credentials file and restrict read and write permission on
this file. Open a text editor, copy these two lines in the editor, then save the file as
myCredentials.txt for example.

 -login jsmith
 -encrypted-password KEAGKAMJMCOPLFKPKOHOJNDJCBACFJBL

To restrict the file permissions, right-click the file and select the Permissions tab on Linux or the
Security tab on Windows.

If you manage your analysis findings through automated scripts, create a variable to store the
connection configuration and login credentials. Use this variable in your script, or at the command
line to avoid entering your credentials when you execute a command.
set LOGIN=-host my-company-server -port 1234 -credentials-file myCredentials.txt

polyspace-access %LOGIN% -create-project myProject

Create a Project Folder with Restricted Access and Upload to Folder

Suppose that you want to upload a set of findings to Polyspace Access generated with Polyspace Bug
Finder Server or Polyspace Code Prover Server, and authorize only some team members to view
these findings.

Create a project folder Restricted at the top of the project hierarchy.

polyspace-access -host my-company-server -port 1234 ^
-create-project Restricted

4 Polyspace DOS/Unix Commands

4-8

Set roles for users jsmith and rroll, and group Authorized Users, authorizing them to access
the project folder as contributors. If a user name or group name contains spaces, enclose it in double
quotes.
polyspace-access -host my-company-server ^
-port 1234 -set-role contributor ^
-user jsmith -user rroll -group "Authorized Users" -project-path Restricted

Aside from the creator of the project folder and the users and group with a role of contributor, no
other user can view or access any findings uploaded to Restricted.

Upload project findings under Restricted.

polyspace-access -host my-company-server -port 1234 ^
-upload C:\Polyspace_Workspace\projectName\Module_1 ^
-parent-project Restricted

The uploaded findings are stored under Restricted/projectName.

See also “Manage Project Permissions”.

Assign Results to Component Owners and Export Assigned Results

If you follow a component-based development approach, you can assign analysis findings by
component to their respective owners.

Get a list of projects currently stored on the Polyspace Access database. The command outputs a list
of project findings paths and their last run ID.
polyspace-access -host my-company-server -list-project

Connecting to https://my-company-server:9443
Connecting as jsmith

Get project list with the last Run Id
Restricted/Code_Prover_Example (Code Prover) RUN_ID 14
multimodule/vxWorks_demo (Code Prover) RUN_ID 16
public/Bug_Finder_Example (Bug Finder) RUN_ID 24
public/CP/Code_Prover_Example (Polyspace Code Prover) RUN_ID 8
public/Polyspace (Code Prover) RUN_ID 28
Command Completed

Assign all red and orange run-time error findings to the owner of all the files in Component_A of
project vxWorks_demo. Perform the same assignment for the owner of Component_B. To specify the
vxWorks_demo project, use the run ID.

polyspace-access -host my-company-server ^
-set-unassigned-findings 16 ^
-owner A_owner -source-contains Component_A ^
-owner B_owner -source-contains Component_B ^
-rte Red -rte Orange

-source-contains Component_A matches all files with a file path that contains Component_A.

-source-contains Component_B matches all files with a file path that contains Component_B,
but excludes files with a file path that contains Component_A.

After you assign findings, export the findings and generate .csv files for each owner containing the
findings assigned to them.

polyspace-access -host my-company-server ^
-export 16 ^

 polyspace-access

4-9

-output C:\Polyspace_Workspace\myResults.csv ^
-output-per-owner

The command generates file myResults.csv containing all findings from the project with run ID 16.
The command also generates files myResutls.csv.A_owner.csv and
myResults.csv.B_owner.csv on the same file path.

Migrate Projects from Metrics to Polyspace Access

If you have projects stored on a Polyspace Metrics server, you can migrate them to the Polyspace
Access database. Log in to your Metrics server to complete this operation.

Generate migration scripts for the projects you want to migrate. Specify the folder path of the
location where the projects are stored, for example C:\Users\jsmith\AppData\Roaming
\Polyspace_RLDatas\results-repository
polyspace-access -generate-migration-commands ^
C:\Users\jsmith\AppData\Roaming\Polyspace_RLDatas\results-repository ^
-output-folder-path C:\Polyspace_Workspace\toMigrate -project-date-after 2017-06

The command generates migration scripts for all projects in the specified metrics folder that were
uploaded on or after June 2017. The scripts are stored in folder C:\Polyspace_Workspace
\toMigrate.

Use the -dryrun option to check which projects will be migrated.

polyspace-access -host my-company-server ^
-migrate -option-file-path ^
C:\Polyspace_Workspace\toMigrate -dryrun

The command output contains a list of projects. Inspect it to ensure that you are migrating the
correct projects.

To perform the migration, rerun the last command without the -dryrun option.

Input Arguments
Connect and Login

hostname — Polyspace Access machine host name
string

hostname corresponds to the host name that you specify in the URL of the Polyspace Access
interface, for example https://hostname:port/metrics/index.html. If you are unsure about
which host name to use, contact your Polyspace Access administrator. The default host name is
localhost. You must specify a host name with all polyspace-access commands, except the -
generate-migration-commands and -encrypt-password commands .
Example: -host my-company-server

configuration options — Options to configure connection to Polyspace Access
string

Options to specify connection configuration and login credentials.

Configuration Options

4 Polyspace DOS/Unix Commands

4-10

Option Description
-port portNumber portNumber corresponds to the port number that you specify in the

URL of the Polyspace Access interface, for example https://
hostname:portNumber/metrics/index.html. If you are unsure
about which port number to use, contact your Polyspace Access
administrator. The default port number is 9443.

-protocol http |
https

HTTP protocol used to access Polyspace Access. The default protocol is
https.

-credentials-file
file_path

Full path to the text file where you store your login credentials. Use this
option if, for instance, you use a command that requires your Polyspace
Access credentials in a script but you do not want to store your
credentials in that script. While the script runs, someone inspecting
currently running processes cannot see your credentials.

You can store only one set of credentials in the file, either as -login
and -encrypted-password entries on separate lines, for instance:

-login jsmith
-encrypted-password LAMMMEACDMKEFELKMNDCONEAPECEEKPL

or as an -api-key entry:

-api-key keyValue123

Make sure that you restrict the read and write permissions on the file
where you store your credentials. For example, to restrict read and
write permissions on file login.txt in Linux, use this command:

chmod go-rwx login.txt

-api-key keyValue API key you use as a login credential instead of providing your login and
encrypted password. To assign an API key to a user, see “Configure User
Manager” or contact your Polyspace Access administrator.

Use the API key if, for instance, you use a command that requires your
Polyspace Access login credentials as part of an automation script with a
CI tool like Jenkins. If a user updates his or her password, you do not
need to update the API key associated with that user in your scripts.

It is recommended that you store the API key in a text file and pass that
file to the command by using -credentials-file. See the description
for option -credentials-file.

-login username

-encryted-password
ENCRYPTED_PASSWD

Login credentials you use to interact with Polyspace Access. The
argument of -encrypted-password is the output of the -encrypt-
password command.

If you do not use these two options, you are prompted to enter your
credentials at the command line, unless you use -api-key.

Miscellaneous Options

Option Description
-output file_path Full path to the file where you store command outputs.

 polyspace-access

4-11

Option Description
-tmp-dir folder_path Folder path where you store temporary files generated by the

polyspace-access commands. The default folder path is tmp/
ps_results_server on Linux and C:/Users/%username%/
AppData/Local/Temp/ps_results_server on Windows.

-log File path where you store the command output log. By default the
command does not generate a log file.

-h Display the help information for polyspace-access or one of its
commands.

Create New Folder

projectFolder — Name of project folder
string

Project folder path specified as a string. If the name includes spaces, use double quotes. Specify the
full path to folders nested under a parent folder.

If your folder path involves a folder that does not already exist, the folder is created.
Example: -create-project topFolder
Example: -create-project "topFolder/subFolder/subSubFolder"

Upload Results

pathToFolderOrZipFile — Path to folder or zipped file containing analysis results
string

Folder or zipped file path specified as a string. The folder or zipped file contains analysis results you
want to upload to Polyspace Access. Specify the path of the folder containing the *.psbf, *.pscp, or
*.rte file, or the path of the parent of this folder to upload multiple analysis runs.

For instance, for the Bug Finder results stored in C:\Polyspace_Workspace\myProject
\Module_1\BF_results\ps_results.psbf, specify the path to BF_results or to Module_1. If
the path name includes spaces, use double quotes.
Example: -upload C:\Polyspace_Workspace\myProject\Module_1\BF_results
Example: -upload C:\Polyspace_Workspace\myProject\Module_1\ -project
projectFolder

upload options — Options to specify where to upload results
string

Options to specify path to project folder where you upload results.

Option Description
-parent-project
projectFolder

Path of the parent project folder under which you upload project
findings. If you do not specify a parent project folder, projects are
upload to the public folder.

4 Polyspace DOS/Unix Commands

4-12

Option Description
-project
projectFolderOrFindi
ngsPath

If the FOLDER you specify for -upload contains only one analysis run,
for instance ps_results.psbf, this option is optional. Use -project
to rename project findings, or omit it to use the project name from your
Polyspace analysis.

If the FOLDER you specify for -upload contains more than one analysis
run, or if you specify the parent folder of the results folder, this option is
mandatory. Use -project to create a project folder under which all the
analysis runs are stored.

Export Results

findingsToExport — Project findings path or run ID
string

Path or run ID of the project findings that you export. Polyspace assigns a unique run ID to each
analysis run you upload. If the path name includes spaces, use double quotes. To get the project
findings path or last run ID, use -list-project.
Example: -export "public/Examples/Bug_Finder_Example (Bug Finder)"
Example: -export 4

filePath — Path to file containing command output
string

Path to the file that stores the output of the command when you specify the -output option. This
option is mandatory with the -export command.
Example: -output C:\Polyspace_Workspace\myResults.txt

export options — Options to specify which findings to export
string

Options to specify where to export findings, and which subset of findings you export. Use these
options to export findings to other tools you use to create custom reports or other custom review
templates.

Option Description
-output file_path File path where you export the findings. This option is mandatory with

the -export command.
-new-findings Export only new findings compared to the previous analysis (previous

upload with the same project name).
-output-per-owner Use this option to generate files that only contain findings assigned to a

particular user. The files are stored on the path you specify with -
output.

-rte color Type of RTE finding to export. Specify All, Red, Gray, Orange, or
Green.

To specify more than one argument, call the option for each argument.
For example, -rte Red -rte Orange.

 polyspace-access

4-13

Option Description
-defects impact Impact of DEFECTS findings to export. Specify All, High, Medium, or

Low.

To specify more than one argument, call the option for each argument.
For example, -defects Medium -defects Low.

-custom-coding-rules Export all custom coding rules findings.
-coding-rules Export all coding rules findings.
-code-metrics Export all code metrics findings.
-global-variables Export all global variables findings.
-review-status
status

Review status of the findings to export. Specify New, Unreviewed,
Unassigned, Toinvestigate, Tofix, Justified,
Noactionplanned, Notadefect, Other, or Annotated.

To specify more than one argument, call the option for each argument.
For example, -review-status Tofix -review-status
Toinvestigate.

-severity severity Severity of the findings to export. Specify All, High, Medium, or Low.

To specify more than one argument, call the option for each argument.
For example, -severity High -severity Low.

-open-findings-for-
sqo sqo_level

Software quality objective or SQO level that must be satisfied. Specify a
number from 1 to 6 for sqo_level. If you specify an SQO level, the
polyspace-access command exports only open findings that must be
fixed or justified to satisfy the requirements of this level.

For more information on the SQO levels, see “Evaluate Polyspace Bug
Finder Results Against Bug Finder Quality Objectives”. The SQO levels 1
to 6 specify an increasingly stricter set of requirements defined in terms
of Polyspace results. The requirements are predefined but you can
customize them in the Polyspace Access web interface.

For instance, SQO level 2 in Code Prover requires that you must not
have unjustified red checks. This specification means that if you use -
open-findings-for-sqo with a level higher than 2, all red checks are
exported and must be subsequently fixed or justified. If you want to
impose this requirement in the earlier SQO level 1, you can customize
level 1 in the Polyspace Access web interface.

You can also use a combination of options. For instance, -coding-rules -severity High exports
coding rule violations that have been assigned a status of High in the Polyspace Access web
interface.

Download Results

findingsToDownload — Project findings path or run ID
string

Path or run ID of the project findings that you download. Polyspace assigns a unique run ID to each
analysis run that you upload to Polyspace Access. If the path name includes spaces, use double
quotes. To get the project findings path or latest run ID, use -list-project.

4 Polyspace DOS/Unix Commands

4-14

When you specify the project path, the command downloads the latest run of that project. To
download an older run, specify the run ID. To obtain the run ID of older runs, in the Polyspace Access
interface, select a project in the Project Explorer, and then click the Current drop-down selection
in the toolstrip to view the available run IDs.
Example: -download "public/Examples/Bug_Finder_Example (Bug Finder)"
Example: -download 5113

folderPath — Path to folder containing downloaded results
string

Path of the folder where you store the downloaded results. If the folder you specify already exists, it
must be empty. This option is mandatory with the -download command.
Example: -output-folder-path C:\Polyspace_Workspace\baseline

Assign Findings

findingsToAssign — Project findings path or run ID
string

Path or run ID of the project findings that you assign to a user. Polyspace assigns a unique run ID to
each analysis run you upload. If the path name includes spaces, use double quotes. To get the project
findings path or last run ID, use -list-project.
Example: -set-unassigned-findings "public/Examples/Bug_Finder_Example (Bug
Finder)"

Example: -set-unassigned-findings 4

userToAssign — Polyspace Access user name
string

User name of user you assign as owner of unassigned findings. To assign multiple owners, call the
option for each user.

Each call to -owner must be paired with a call to -source-contains.
Example: -user jsmith

pattern — Pattern to match against file path
string

Pattern to match against file path of project source files. To match file paths for all source files, use -
source-contains /.

Enter a substring from the file path. You cannot use regular expressions.

When you call this option more than once, each instance excludes patterns from previous instances.
For example, -source-contains foo -source-contains bar matches all file paths that contain
foo, then all file paths that contain bar excluding paths that contain foo.

When you assign findings to multiple owners, call this option for each call to -owner.
Example: -source-contains main

set unassigned findings options — Options to specify which findings to assign
string

 polyspace-access

4-15

Options to assign all findings or only a subset based on component or individual source files. To make
an assignment, specify a pattern to match against the folder or file paths to assign.

Option Description
-rte color Type of RTE finding to assign. Specify All, Red, Gray, Orange, or

Green.

To specify more than one argument, call the option for each argument.
For example, -rte Red -rte Orange.

-defects impact Impact of DEFECTS findings to assign. Specify All, High, Medium, or
Low.

To specify more than one argument, call the option for each argument.
For example, -defects Medium -defects Low.

-custom-coding-rules Assign all custom coding rules findings.
-coding-rules Assign all coding rules findings.
-code-metrics Assign all code metrics findings.
-global-variables Assign all global variables findings.
-review-status
status

Review status of the findings to assign. Specify New, Unreviewed,
Unassigned, Toinvestigate, Tofix, Justified,
Noactionplanned, Notadefect, Other, or Annotated.

To specify more than one argument, call the option for each argument.
For example, -review-status Tofix -review-status
Toinvestigate.

-severity severity Severity of the findings to assign. Specify All, High, Medium, or Low.

To specify more than one argument, call the option for each argument.
For example, -severity High -severity Low.

-dryrun Display command output without making any assignment. Use this
option to check that your assignments are correct.

List Projects

findingsPath — Project findings path
string

Path of the project findings. Specify this optional argument with -list-project to get the path and
the last run ID of the corresponding project findings. If the path name includes spaces, use double
quotes.
Example: -list-project "public/Examples/Bug_Finder_Example (Bug Finder)"

Set and Unset User Roles

role — Level of access permissions for project folder or findings
owner | contributor | forbidden

Level of access to project folder and findings for a user.

• owner: User can move, rename, or delete specified project folders or findings and review their
content.

4 Polyspace DOS/Unix Commands

4-16

• contributor: User can review content of specified project folder or findings.
• forbidden: User cannot access specified project folder or findings. Set this role to restrict the

access of a user to a set of project findings inside a project folder that is accessible to the user.

Example: -set-role contributor

username — Polyspace Access user name
string

Polyspace Access user name.
Example: -user jsmith

groupname — Polyspace Access group name
string

Polyspace Access group name.
Example: -group "Group UI team"

projectFolderOrFindingsPath — Project folder or findings path
string

Path of a project folder or project findings. When projectFolderOrFindingsPath is the path to a
project folder, the user role you set applies to all subfolders and project findings under that folder. If
the path name includes spaces, use double quotes. To get the project folder or findings path, use -
list-project.
Example: -project-path "public/Examples/Bug_Finder_Example (Bug Finder)"
Example: -project-path public

Migrate Results from Metrics to Polyspace Access

metrics_dir — Folder path of Polyspace Metrics projects
string

Path of folder containing the Polyspace Metrics projects you want to migrate to Polyspace Access.
Example: -generate-migration-commands C:\Users\%username%\AppData\Roaming
\Polyspace_RLDatas\results-repository

dir — Output folder for migration scripts
string

Path to folder that stores the output of -generate-migration-commands. Do not specify an
existing folder.
Example: local/Polyspace_Workspace/migration_scripts

generate migration commands options — Options to specify which projects to migrate
string

Option Description
-output-folder-path
dir

Folder path where you want to store the generated command files. Do
not specify an existing folder.

 polyspace-access

4-17

Option Description
-max-project-runs
int

Number of most recent analysis runs you want to migrate for each
project. For instance, to migrate only the last two analysis runs of a
project, specify 2.

-project-date-after
YYYY[-MM[-DD]]

Only migrate results that were uploaded to Polyspace Metrics on or
after the specified date.

-product productName Product used to analyze and produce project findings, specified as bug-
finder, code-prover, or polyspace-ada.

-analysis-mode mode Analysis mode use to generate project findings, specified as
integration or unit-by-unit.

See Also
Topics
“Run Polyspace Bug Finder on Server and Upload Results to Web Interface”
“Send Email Notifications with Polyspace Bug Finder Server Results”
“Baseline Polyspace as You Code Results on Command Line”

Introduced in R2019a

4 Polyspace DOS/Unix Commands

4-18

polyspace-bug-finder-access
(DOS/UNIX) Run Polyspace as You Code from Windows, Linux, or other command line

Syntax
polyspace-bug-finder-access -sources sourceFile [OPTIONS]

polyspace-bug-finder-access -sources sourceFile -baseline-folder
baselineFolder [OPTIONS]

polyspace-bug-finder-access -sources sourceFile -options-file optFile

polyspace-bug-finder-access -h[elp]

Description
polyspace-bug-finder-access -sources sourceFile [OPTIONS] runs a Polyspace as You
Code analysis on the source file sourceFile. You can customize the analysis with additional options.

polyspace-bug-finder-access -sources sourceFile -baseline-folder
baselineFolder [OPTIONS] runs a Polyspace as You Code analysis on the source file sourceFile
and then imports the review information from a previous run stored in baselineFolder. Use this
workflow to compare your results against the results of a previous run that you download from
Polyspace Access and focus on new results only or on unreviewed results. See “Baseline Polyspace as
You Code Results on Command Line”.

polyspace-bug-finder-access -sources sourceFile -options-file optFile runs a
Polyspace as You Code analysis on the source file sourceFile with the options specified in the
option file. When you have many analysis options, an options file makes it easier to run the same
analysis again.

polyspace-bug-finder-access -h[elp] lists a summary of possible analysis options.

Examples
Run Analysis by Directly Specifying Options

Run the polyspace-bug-finder-access command on a single source file file.c in the current
folder. Save the results in the folder polyspaceResults.

polyspace-bug-finder-access -sources file.c -results-dir polyspaceResults

Run Analysis Using Options File

Enter the following in a text file opts.txt:

-results-dir polyspaceResults
-compiler gnu7.x

Run the polyspace-bug-finder-access command on a single source file file.c in the current
folder. Use the analysis options in the previously created file opts.txt:

 polyspace-bug-finder-access

4-19

polyspace-bug-finder-access -sources file.c -options-file opts.txt

Input Arguments
sourceFile — C or C++ file to analyze
source file name or path

C or C++ source file name, specified as a string. If the file is not in the current folder (pwd),
sourceFile must include a full or relative path. To avoid errors because of paths with spaces, add
quotes " " around the path. For more information, see -sources.

Note that you can only analyze a single source file at a time using Polyspace as You Code.
Example: myFile.c

[OPTIONS] — Analysis option and corresponding value
command-line flag with optional value

Analysis options and their corresponding values, specified by the option name and if applicable value.
For syntax specifications, see the individual analysis option reference pages.
Example: -lang C-CPP -compiler diab

optFile — Text file listing analysis options and values
options file name or path

Text file listing analysis options and values, specified as a string. If the file is not in the current folder
(pwd), optFile must include a full or relative path. To avoid errors because of paths with spaces, add
quotes " " around the path. For more information, see -options-file.
Example: opts.txt, "C:\ps_analysis\options.txt"

baselineFolder — Folder where you download baseline run
folder path

Path of folder where you store the run that you download from Polyspace Access. You use the
downloaded run as a baseline for Polyspace as You Code runs.
Example: "C:\Temp\Results_Folder\baseline"

See Also
polyspace-results-export | polyspace-configure

Topics
“Run Polyspace as You Code from Command Line and Export Results”
“Options Files for Polyspace Analysis”
“Baseline Polyspace as You Code Results on Command Line”

Introduced in R2021a

4 Polyspace DOS/Unix Commands

4-20

polyspace-bug-finder
(DOS/UNIX) Run a Bug Finder analysis from Windows, Linux, or other command line

Syntax
polyspace-bug-finder
polyspace-bug-finder -sources sourceFiles [OPTIONS]

polyspace-bug-finder -sources-list-file listOfSources [OPTIONS]

polyspace-bug-finder -options-file optFile

polyspace-bug-finder -h[elp]

Description
polyspace-bug-finder [OPTIONS] runs a Bug Finder analysis if your current folder contains a
sources subfolder with source files (.c or .cxx files). The analysis considers files in sources and
all subfolders under sources.

polyspace-bug-finder -sources sourceFiles [OPTIONS] runs a Bug Finder analysis on the
source file(s) sourceFiles. You can customize the analysis with additional options.

polyspace-bug-finder -sources-list-file listOfSources [OPTIONS] runs a Bug Finder
analysis on the source files listed in the text file listOfSources. You can customize the analysis
with additional options. Using a sources list file is recommended when you have many source files. By
keeping the list of sources in a text file, the command is shorter and updates to the list are easier.

polyspace-bug-finder -options-file optFile runs a Bug Finder analysis with the options
specified in the option file. When you have many analysis options, an options file makes it easier to
run the same analysis again.

polyspace-bug-finder -h[elp] lists a summary of possible analysis options.

Examples

Run Analysis by Directly Specifying Options

Run a local Bug Finder analysis by specifying analysis options in the command itself. This example
uses source files from a demo Polyspace Bug Finder example. To run this example, replace
polyspaceroot with the path to your Polyspace installation, for example C:\Program Files
\Polyspace\R2019a.

Run an analysis on numerical.c and programming.c, checking for MISRA C:2012 mandatory
rules, programming and numerical defects, and using GNU 4.7 compiler settings. This example
command is split by ^ characters for readability. In practice, you can put all commands on one line.

polyspaceroot\polyspace\bin\polyspace-bug-finder^
 -sources ^

 polyspace-bug-finder

4-21

polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example\sources\numerical.c,^
polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example\sources\programming.c ^
-compiler gnu4.7 -misra3 mandatory -checkers numerical,programming ^
-author jlittle -prog myProject -results-dir C:\Polyspace_Workspace\Results\

Open the results.

polyspaceroot\polyspace\bin\polyspace C:\Polyspace_Workspace\Results\^
ps_results.psbf

To rerun the analysis, you must rerun it from the command line.

Run Local Analysis with Options File

Run a local Bug Finder analysis by specifying analysis options with an options. This example uses
source files from a demo Polyspace Bug Finder example. To run this example, replace
polyspaceroot with the path to your Polyspace installation, for example C:\Program Files
\Polyspace\R2019a.

Save this text to a text file called myOptionsFile.txt.

Options for analyzing numerical.c and programming.c
-sources polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example\sources\numerical.c
-sources polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example\sources\programming.c
-compiler gnu4.7
-misra3 mandatory
-checkers numerical,programming
-author jlittle
-prog myProject
-results-dir C:\Polyspace_Workspace\Results\

Run the analysis with the options specified in the text file.

polyspaceroot\polyspace\bin\polyspace-bug-finder -options-file myOptionsFile.txt

Open the results.

polyspaceroot\polyspace\bin\polyspace C:\Polyspace_Workspace\Results\^
ps_results.psbf

To rerun the analysis, you must rerun it from the command line.

Input Arguments
sourceFiles — Comma-separated names of C or C++ files to analyze
source file name or path

Comma-separated C or C++ source file names, specified as a string. If the files are not in the current
folder (pwd), sourceFiles must include a full or relative path. To avoid errors because of paths with
spaces, add quotes " " around the path. For more information, see -sources.

If your current folder contains a sources subfolder with the source files, you can omit the -sources
flag. The analysis considers files in sources and all subfolders under sources.
Example: myFile.c, "C:\mySources\myFile1.c,C:\mySources\myFile2.c"

4 Polyspace DOS/Unix Commands

4-22

listOfSources — Text file listing names of C or C++ files to analyze
sources list file name or path

Text file which lists the name of C or C++ files, specified as a string. If the files are not in the current
folder (pwd), listOfSources must include a full or relative path. To avoid errors because of paths
with spaces, add quotes " " around the path. For more information, see -sources-list-file.
Example: filename.txt, "C:\ps_analysis\source_files.txt"

[OPTIONS] — Analysis option and corresponding value
command-line flag with optional value

Analysis options and their corresponding values, specified by the option name and if applicable value.
For syntax specifications, see the individual analysis option reference pages.
Example: -lang C-CPP -compiler diab

optFile — Text file listing analysis options and values
options file name or path

Text file listing analysis options and values, specified as a string. For more information, see -
options-file.
Example: opts.txt, "C:\ps_analysis\options.txt"

Tips
If you run the command as part of a script, check the exit status to confirm a successful analysis. The
command returns zero on a successful analysis. A nonzero return value means that the analysis failed
and was not completed. For instance, if the analyzed file does not compile, the command returns a
nonzero value. If some of the files do not compile when you are analyzing multiple files, the command
completes analysis on the files that do compile and returns zero. It is possible to stop analysis if a file
does not compile. See Stop analysis if a file does not compile (-stop-if-compile-
error).

After running the command, you can check the %ERRORLEVEL% variable in Windows command line to
confirm a successful analysis.

See Also
polyspaceBugFinder

Topics
“Run Polyspace Analysis from Command Line”
“Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”
“Complete List of Polyspace Bug Finder Analysis Engine Options”

Introduced in R2013b

 polyspace-bug-finder

4-23

polyspace-bug-finder-server
(DOS/UNIX) Run a Bug Finder analysis on a server from Windows, Linux, or other command line

Syntax
polyspace-bug-finder-server
polyspace-bug-finder-server -sources sourceFiles [OPTIONS]

polyspace-bug-finder-server -sources-list-file listOfSources [OPTIONS]

polyspace-bug-finder-server -options-file optFile

polyspace-bug-finder-server -h[elp]

Description
polyspace-bug-finder-server [OPTIONS] runs a Bug Finder analysis on a server if your
current folder contains a sources subfolder with source files (.c or .cxx files). The analysis
considers files in sources and all subfolders under sources.

polyspace-bug-finder-server -sources sourceFiles [OPTIONS] runs a Bug Finder
analysis on a server on the source file(s) sourceFiles. You can customize the analysis with
additional options.

polyspace-bug-finder-server -sources-list-file listOfSources [OPTIONS] runs a
Bug Finder analysis on a server on the source files listed in the text file listOfSources. You can
customize the analysis with additional options. Using a sources list file is recommended when you
have many source files. By keeping the list of sources in a text file, the command is shorter and
updates to the list are easier.

polyspace-bug-finder-server -options-file optFile runs a Bug Finder analysis on a
server with the options specified in the option file. When you have many analysis options, an options
file makes it easier to run the same analysis again.

polyspace-bug-finder-server -h[elp] lists a summary of possible analysis options.

Examples

Run Analysis by Directly Specifying Options

Run a Bug Finder analysis on a server by specifying analysis options in the run command itself. This
example uses source files from a demo Polyspace Bug Finder example. To run this example, replace
polyspaceroot with the path to your Polyspace installation, for example C:\Program Files
\Polyspace\R2019a.

Run an analysis on numerical.c and programming.c, checking for MISRA C:2012 mandatory
rules, programming and numerical defects, and using GNU 4.7 compiler settings. This example
command is split by ^ characters for readability. In practice, you can put all commands on one line.

4 Polyspace DOS/Unix Commands

4-24

polyspaceroot\polyspace\bin\polyspace-bug-finder-server^
 -sources ^
polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example\sources\numerical.c,^
polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example\sources\programming.c ^
-compiler gnu4.7 -misra3 mandatory -checkers numerical,programming ^
-author jlittle -prog myProject -results-dir C:\Polyspace_Workspace\Results\

After analysis, you can upload the results to the Polyspace Bug Finder Access interface for review.
See:

• polyspace-access
• “Run Polyspace Bug Finder on Server and Upload Results to Web Interface”

Run Analysis with Options File

Run a Bug Finder analysis on a server by specifying analysis options with an options file. This
example uses source files from a demo Polyspace Bug Finder example. To run this example, replace
polyspaceroot with the path to your Polyspace installation, for example C:\Program Files
\Polyspace\R2019a.

Save this text to a text file called myOptionsFile.txt.

Options for analyzing numerical.c and programming.c
-sources polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example\sources\numerical.c
-sources polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example\sources\programming.c
-compiler gnu4.7
-misra3 mandatory
-checkers numerical,programming
-author jlittle
-prog myProject
-results-dir C:\Polyspace_Workspace\Results\

Run the analysis with the options specified in the text file.

polyspaceroot\polyspace\bin\polyspace-bug-finder-server -options-file myOptionsFile.txt

After analysis, you can upload the results to the Polyspace Bug Finder Access interface for review.
See:

• polyspace-access
• “Run Polyspace Bug Finder on Server and Upload Results to Web Interface”

Input Arguments
sourceFiles — Comma-separated names of C or C++ files to analyze
source file name or path

Comma-separated C or C++ source file names, specified as a string. If the files are not in the current
folder (pwd), sourceFiles must include a full or relative path. To avoid errors because of paths with
spaces, add quotes " " around the path. For more information, see -sources.

If your current folder contains a sources subfolder with the source files, you can omit the -sources
flag. The analysis considers files in sources and all subfolders under sources.

 polyspace-bug-finder-server

4-25

Example: myFile.c, "C:\mySources\myFile1.c,C:\mySources\myFile2.c"

listOfSources — Text file listing names of C or C++ files to analyze
sources list file name or path

Text file which lists the name of C or C++ files, specified as a string. If the files are not in the current
folder (pwd), listOfSources must include a full or relative path. To avoid errors because of paths
with spaces, add quotes " " around the path. For more information, see -sources-list-file.
Example: filename.txt, "C:\ps_analysis\source_files.txt"

[OPTIONS] — Analysis option and corresponding value
command-line flag with optional value

Analysis options and their corresponding values, specified by the option name and if applicable value.
For syntax specifications, see the individual analysis option reference pages.
Example: -lang C-CPP -compiler diab

optFile — Text file listing analysis options and values
options file name or path

Text file listing analysis options and values, specified as a string. For more information, see -
options-file.
Example: opts.txt, "C:\ps_analysis\options.txt"

Tips
If you run the command as part of a script, check the exit status to confirm a successful analysis. The
command returns zero on a successful analysis. A nonzero return value means that the analysis failed
and was not completed. For instance, if the analyzed file does not compile, the command returns a
nonzero value. If some of the files do not compile when you are analyzing multiple files, the command
completes analysis on the files that do compile and returns zero. It is possible to stop analysis if a file
does not compile. See Stop analysis if a file does not compile (-stop-if-compile-
error).

After running the command, you can check the %ERRORLEVEL% variable in Windows command line to
confirm a successful analysis.

See Also
Topics
“Run Polyspace Bug Finder on Server and Upload Results to Web Interface”
“Complete List of Polyspace Bug Finder Analysis Engine Options”

Introduced in R2019a

4 Polyspace DOS/Unix Commands

4-26

polyspace-configure
(DOS/UNIX) Create Polyspace project from your build system at the DOS or UNIX command line

Syntax
polyspace-configure buildCommand

polyspace-configure [OPTIONS] buildCommand

polyspace-configure [OPTIONS] -compilation-database jsonFile

Description
polyspace-configure buildCommand traces your build system and creates a Polyspace project
with information gathered from your build system.

polyspace-configure [OPTIONS] buildCommand traces your build system and uses -option
value to modify the default operation of polyspace-configure. Specify the modifiers before
buildCommand, otherwise they are considered as options in the build command itself.

polyspace-configure [OPTIONS] -compilation-database jsonFile creates a Polyspace
project with information gathered from the JSON compilation database file jsonFile that you
provide. You do not need to specify a build command or trace your build system. For more on JSON
compilation databases, see JSON Compilation Database.

Examples

Create Polyspace Project from Makefile

This example shows how to create a Polyspace project if you use the command make targetName
buildOptions to build your source code.

Create a Polyspace project specifying a unique project name. Use the -B or -W makefileName
option with make so that the all prerequisite targets in the makefile are remade.

polyspace-configure -prog myProject \
make -B targetName buildOptions

Open the Polyspace project in the Polyspace user interface.

Create Polyspace Options File from JSON Compilation Database

This example shows how to create a Polyspace options file from a JSON compilation database that you
generate with the CMake build system generator. CMake generates build instructions for the build
tool you specify, such as a Unix Makefiles for make or project files for Microsoft Visual Studio. CMake
supports the generation of a JSON compilation database only for Makefile generators and Ninja
generator. For more information, see makefile generators.

 polyspace-configure

4-27

https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://cmake.org/cmake/help/v3.5/manual/cmake-generators.7.html#makefile-generators

Generate a JSON compilation database for your CMake project. For an example of a Cmake project,
see polyspaceroot\help\toolbox\bugfinder\examples\compilation_database where
polyspaceroot is your Polyspace installation folder.

Navigate to the root of your project source tree. This folder contains the file CMakeLists.txt which
CMake uses as an input to generate build instructions. Enter these commands:

mkdir JSON_cdb
cd JSON_cdb
cmake -G "Unix Makefiles" -DCMAKE_EXPORT_COMPILE_COMMANDS=1 ../

The last command generates a Unix makefile with build instructions for the make build tool. The
command also outputs file compile_commands.json. This file lists the compiler calls for every
translation unit in your project.

Generate a Polyspace options file from the compilation database that you generated in the previous
step.

polyspace-configure -compilation-database compile_commands.json \
-output-options-file options.txt

You do not need to specify a build command and polyspace-configure does not trace your build.
Polyspace extracts information about your build system from the JSON compilation database.

Pass the options file to Polyspace to run an analysis, for instance:

polyspace-bug-finder -options-file options.txt

Create Projects That Have Different Source Files from Same Build Trace

This example shows how to create different Polyspace projects from the same trace of your build
system. You can specify which source files to include for each project.

Trace your build system without creating a Polyspace project by specifying the option -no-project.
To ensure that all the prerequisite targets in your makefile are remade, use the appropriate make
build command option, for instance -B.

polyspace-configure -no-project make -B

polyspace-configure stores the cache information and the build trace in default locations inside
the current folder. To store the cache information and build trace in a different location, specify the
options -cache-path and -build-trace.

Generate Polyspace projects by using the build trace information from the previous step. Specify a
project name and use the -include-sources or -exclude-sources option to select which files to
include for each project.

polyspace-configure -no-build -prog myProject \
-include-sources "glob_pattern"

glob_pattern is a glob pattern that corresponds to folders or files you filter in or out of your
project. To ensure the shell does not expand the glob patterns you pass to polyspace-configure,
enclose them in double quotes. For more information on the supported syntax for glob patterns, see
“polyspace-configure Source Files Selection Syntax”.

4 Polyspace DOS/Unix Commands

4-28

If you specified the options -build-trace and -cache-path in the previous step, specify them
again.

Delete the trace file and cache folder.

rm -r polyspace_configure_cache polyspace_configure_built_trace

If you used the options -build-trace and -cache-path, use the paths and file names from those
options.

Run Command-Line Polyspace Analysis from Makefile

This example shows how to run Polyspace analysis if you use the command make targetName
buildOptions to build your source code. In this example, you use polyspace-configure to trace
your build system but do not create a Polyspace project. Instead you create an options file that you
can use to run Polyspace analysis from command-line.

Create a Polyspace options file specifying the -output-options-file command. Use the -B or -W
makefileName option with make so that all prerequisite targets in the makefile are remade.

polyspace-configure -output-options-file\
 myOptions make -B targetName buildOptions

Use the options file that you created to run a Polyspace analysis at the command line:

polyspace-bug-finder -options-file myOptions

Input Arguments
buildCommand — Command for building source code
build command

Build command specified exactly as you use to build your source code.
Example: make -B, make -W makefileName

[OPTIONS] — Options for changing default operation of polyspace-configure
single option starting with -, followed by argument | multiple space-separated option-argument pairs

Basic Options

Option Argument Description
-prog Project name Project name that appears in the Polyspace user

interface. The default is polyspace.

If you do not use the option -output-project, the -
prog argument also sets the project name.

Example: -prog myProject creates a project that
has the name myProject in the user interface. If you
do not use the option -output-project, the project
name is also myProject.psrprj.

 polyspace-configure

4-29

Option Argument Description
-author Author name Name of project author.

Example: -author jsmith
-output-project Path Project file name and location for saving project. The

default is the file polyspace.psprj in the current
folder.

Example: -output-project ../myProjects/
project1 creates a project project1.psprj in the
folder with the relative path ../myProjects/.

-output-options-file File name Option to create a Polyspace analysis options file. Use
this file for command-line analysis using one of these
commands:

• polyspace-bug-finder
• polyspace-code-prover
• polyspace-bug-finder-server
• polyspace-code-prover-server
• polyspace-bug-finder-access

-allow-build-error None Option to create a Polyspace project even if an error
occurs in the build process.

If an error occurs, the build trace log shows the
following message:

polyspace-configure (polyspaceConfigure)
 ERROR: build command
 command_name fail [status=status_value]

command_name is the build command name that you
use and status_value is the non-zero exit status or
error level that indicates which error occurred in
your build process.

This option is ignored when you use -compilation-
database.

-allow-overwrite None Option to overwrite a project with the same name, if
it exists.

By default, polyspace-configure
(polyspaceConfigure) throws an error if a project
with the same name already exists in the output
folder. Use this option to overwrite the project.

4 Polyspace DOS/Unix Commands

4-30

Option Argument Description
-no-console-output

-silent (default)

-verbose

None Option to suppress or display additional messages
from running polyspace-configure
(polyspaceConfigure).

• -no-console-output – Suppress all outputs
including errors and warnings.

• -silent (default) – Show only errors and
warnings.

• -verbose – Show all messages.

If you specify more than one of these options, the
most verbose option is applied.

These options are ignored if they are used in
combination with -easy-debug.

-help None Option to display the full list of polyspace-
configure (polyspaceConfigure) commands

-debug None Option to store debug information for use by
MathWorks technical support.

This option has been superseded by the option -
easy-debug.

-easy-debug Path Option to store debug information for use by
MathWorks technical support.

After a polyspace-configure
(polyspaceConfigure) run, the path provided
contains a zipped file ending with pscfg-
output.zip. If the run fails to create a complete
Polyspace project or options file, send this zipped file
to MathWorks Technical Support for further
debugging. The zipped file does not contain source
files traced in the build. See also “Errors in Project
Creation from Build Systems”.

Options to Create Multiple Modules

These options are not compatible with -compilation-database.

 polyspace-configure

4-31

Option Argument Description
-module None Option to create a separate options file for each

binary created in build system.

You can only create separate options files for different
binaries. You cannot create multiple modules in a
Polyspace project (for running in the Polyspace user
interface).

Use this option only for build systems that use GNU
and Visual C++ compilers.

See also “Modularize Polyspace Analysis by Using
Build Command”.

-output-options-path Path name Location where generated options files are saved. Use
this option together with the option -module.

The options files are named after the binaries created
in the build system.

Advanced Options

4 Polyspace DOS/Unix Commands

4-32

Option Argument Description
-compilation-database Path and file name Location and name of JSON compilation database

(JSON CDB) file. You generate this file from your
build system, for instance by using the flag -
DCMAKE_EXPORT_COMPILE_COMMANDS=1 with
cmake. The file contains compiler calls for all the
translation units in you projects. For more
information, see JSON Compilation Database.
polyspace-configure uses the content of this file
to get information about your build system. The
extracted compiler paths in the JSON CDB must be
accessible from the path where you run polyspace-
configure.

You do not specify a build command when you use
this option.

The build systems and compilers support the
generation of a JSON CDB:

• CMake
• Bazel
• Clang
• Ninja
• Qbs
• waf

This option is not compatible with -no-project and
with the options to create multiple modules.

The cache control options, -allow-build-error,
and -no-build are ignored when you use this
option.

-compiler-config Path and file name Location and name of compiler configuration file.

The file must be in a specific format. For guidance,
see the existing configuration files in
polyspaceroot\polyspace\configure\
compiler_configuration\. For information on the
contents of the file, see “Create Polyspace Projects
from Build Systems That Use Unsupported
Compilers”.

Example: -compiler-configuration
myCompiler.xml

 polyspace-configure

4-33

https://clang.llvm.org/docs/JSONCompilationDatabase.html

Option Argument Description
-no-project None Option to trace your build system without creating a

Polyspace project and save the build trace
information.

Use this option to save your build trace information
for a later run of polyspace-configure
(polyspaceConfigure) with the -no-build
option.

This option is not compatible with -compilation-
database.

-no-build None Option to create a Polyspace project using previously
saved build trace information.

To use this option, you must have the build trace
information saved from an earlier run of polyspace-
configure (polyspaceConfigure) with the -no-
project option.

If you use this option, you do not need to specify the
buildCommand argument.

This option is ignored when you use -compilation-
database.

4 Polyspace DOS/Unix Commands

4-34

Option Argument Description
-no-sources None Option to create a Polyspace options file that does not

contain the source file specifications.

Use this option when you intend to specify the source
files by other means. For instance, you can use this
option when:

• Running Polyspace on AUTOSAR-specific code.

You want to create an options file that traces your
build command for the compiler options:

-output-options-file options.txt -no-sources

You later append this options file when extracting
source file names from ARXML specifications and
running the subsequent Code Prover analysis with
polyspace-autosar

-extra-options-file options.txt

See also “Run Polyspace on AUTOSAR Code Using
Build Command” (Polyspace Code Prover).

• Running Polyspace in Eclipse™.

Your source files are already specified in your
Eclipse project. When running a Polyspace
analysis, you want to specify an options file that
has the compilation options only.

 polyspace-configure

4-35

Option Argument Description
-extra-project-options Options to use for

subsequent
Polyspace analysis.
For instance, "-
stubbed-
pointers-are-
unsafe".

Options that are used for subsequent Polyspace
analysis.

Once a Polyspace project is created, you can change
some of the default options in the project.
Alternatively, you can pass these options when
tracing your build command. The flag -extra-
project-options allows you to pass additional
options.

Specify multiple options in a space separated list, for
instance "-allow-negative-operand-in-shift
-stubbed-pointers-are-unsafe".

Suppose you have to set the option -stubbed-
pointers-are-unsafe for every Polyspace project
created. Instead of opening each project and setting
the option, you can use this flag when creating the
Polyspace project:

-extra-project-options
 "-stubbed-pointers-are-unsafe"

For the list of options available, see:

• “Complete List of Polyspace Bug Finder Analysis
Engine Options”

• “Complete List of Polyspace Code Prover Analysis
Options” (Polyspace Code Prover)

If you are creating an options file instead of a
Polyspace project from your build command, do not
use this flag.

-tmp-path Path Location of folder where temporary files are stored.
-build-trace Path and file name Location and name of file where build information is

stored. The default is ./
polyspace_configure_build_trace.log.

Example: -build-trace ../build_info/
trace.log

-log Path and file name Location and name of log file where the output of the
polyspace-configure command is stored. The use
of this option does not suppress the console output.

4 Polyspace DOS/Unix Commands

4-36

Option Argument Description
-include-sources

-exclude-sources

Glob pattern Option to specify which source files polyspace-
configure (polyspaceConfigure) includes in,
or excludes from, the generated project. You can
combine both options together.

A source file is included if the file path matches the
glob pattern that you pass to -include-sources.

A source file is excluded if the file path matches the
glob pattern that you pass to -exclude-sources.

-print-included-sources

-print-excluded-sources

None Option to print the list of source files that
polyspace-configure (polyspaceConfigure)
includes in, or excludes from, the generated project.
You can combine both options together. The output
displays the full path of each file on a separate line.

Use this option to troubleshoot the glob patterns that
you pass to -include-sources or -exclude-
sources. You can see which files match the pattern
that you pass to -include-sources or -exclude-
sources.

-compiler-cache-path Folder path Specify a folder path where polyspace-configure
looks for or stores the compiler cache files. If the
folder does not exist, polyspace-configure
creates it.

By default, Polyspace looks for and stores compiler
caches under these folder paths:

• Windows

%appdata%\Mathworks\R20xxY\Polyspace
• Linux

~/.matlab/R20xxY/Polyspace
• Mac

~/Library/Application Support/
MathWorks/MATLAB/R20xxY/Polyspace

R20xxY is the release version of your Polyspace
product, for instance R2020b.

 polyspace-configure

4-37

Option Argument Description
-no-compiler-cache None Use this option if you do not want Polyspace to cache

your compiler configuration information or to use an
existing cache for your compiler configuration.

By default, the first time you run polyspace-
configure with a particular compiler configuration,
Polyspace queries your compiler for the size of
fundamental types, compiler macro definitions, and
other compiler configuration information then caches
this information. Polyspace reuses the cached
information in subsequent runs of polyspace-
configure for builds that use the same compiler
configuration.

-reset-compiler-cache-
entry

None Use this option to query the compiler for the current
configuration and to refresh the entry in the cache
file that corresponds to this configuration. Other
compiler configuration entries in the cache are not
updated.

-clear-compiler-cache None Use this option to delete all compiler configurations
stored in the cache file.

If you also specify a build command or -
compilation-database, polyspace-configure
computes and caches the compiler configuration
information of the current run, except if you specify -
no-project or -no-compiler-cache.

-import-macro-definitions none

from-whitelist

from-source-
tokens

Use this option to specify how polyspace-
configure queries the compiler for macro
definitions.

You can specify:

• none — Polyspace does not query the compiler for
macro definitions. You must provide the macro
definitions manually.

• from-whitelist — Polyspace uses an internal
white list to query the compiler for macro
definitions.

Polyspace uses the white list by default when you
use the option -compilation-database.

• from-source-tokens (default, except if you use
-compilation-database) — Polyspace uses
every non-keyword token in your source code to
query your compiler for macro definitions.

4 Polyspace DOS/Unix Commands

4-38

Option Argument Description
-options-for-sources-
delimiter

A single character Specify an option separator to use when multiple
analysis options are associated with one source file
using the -options-for-sources option. Typically,
the -options-for-sources option uses a
semicolon as separator.

See also -options-for-sources.

Cache Control Options

These options are primarily useful for debugging. Use the options if polyspace-configure
(polyspaceConfigure) fails and MathWorks Technical Support asks you to use the option and
provide the cached files. Starting R2020a, the option -easy-debug provides an easier way to
provide debug information. See “Contact Technical Support About Issues with Running Polyspace”.

These options are ignored when you use -compilation-database.

Option Argument Description
-no-cache

-cache-sources (default)

-cache-all-text

-cache-all-files

None Option to perform one of the following:

• -no-cache: Not create a cache
• -cache-sources: Cache text files temporarily

created during build for later use by polyspace-
configure (polyspaceConfigure).

• -cache-all-text: Cache all text files including
sources and headers.

• -cache-all-files: Cache all files including
binaries.

Typically, you cache temporary files created by your
build command to debug issues in tracing the
command.

-cache-path Path Location of folder where cache information is stored.

When tracing a Visual Studio build (devenv.exe), if
you see the error:

path is too long

try using a shorter path for this option to work
around the error.

Example: -cache-path ../cache

 polyspace-configure

4-39

Option Argument Description
-keep-cache

-no-keep-cache (default)

None Option to preserve or clean up cache information
after polyspace-configure
(polyspaceConfigure) completes execution.

If polyspace-configure
(polyspaceConfigure) fails, you can provide this
cache information to technical support for debugging
purposes.

See Also
Topics
“Requirements for Project Creation from Build Systems”
“Create Polyspace Projects from Build Systems That Use Unsupported Compilers”
“Create Polyspace Analysis Configuration from Build Command (Makefile)”
“Modularize Polyspace Analysis by Using Build Command”

Introduced in R2013b

4 Polyspace DOS/Unix Commands

4-40

polyspace-report-generator
(DOS/UNIX) Generate reports for Polyspace analysis results stored locally or on Polyspace Access

Syntax
polyspace-report-generator -template outputTemplate [OPTIONS]
polyspace-report-generator -generate-results-list-file [-results-dir
resultsFolder] [-set-language-english]
polyspace-report-generator -generate-variable-access-file [-results-dir
resultsFolder] [-set-language-english]
polyspace-report-generator -configure-keystore

polyspace-report-generator -template outputTemplate -host hostName -run-id
runID [ACCESS_OPTIONS] [OPTIONS]
polyspace-report-generator -generate-results-list-file -host hostName -run-id
runID [ACCESS_OPTIONS] [-set-language-english]
polyspace-report-generator -generate-variable-access-file -host hostName -
run-id runID [ACCESS_OPTIONS] [-set-language-english]

Description
polyspace-report-generator -template outputTemplate [OPTIONS] generates a report
by using the template outputTemplate for the local analysis results that you specify with OPTIONS.

By default, reports for results from project-name are stored as project-name_report-name in
the PathToFolder\Polyspace-Doc folder. PathToFolder is the results folder of project-name.

polyspace-report-generator -generate-results-list-file [-results-dir
resultsFolder] [-set-language-english] exports the analysis results stored locally in
resultsFolder to a tab-delimited text file. The file contains the result information available on the
Results List pane in the user interface. For more information on the exported results list, see “View
Exported Results”.

By default, the results file for results from project-name is stored in the PathToFolder
\Polyspace-Doc folder. PathToFolder is the results folder of project-name.

For exporting results to a tab-delimited text file, the polyspace-results-export command is
preferred.

polyspace-report-generator -generate-variable-access-file [-results-dir
resultsFolder] [-set-language-english] exports the list of global variables in your code
from the Code Prover analysis stored locally in FOLDER to a tab-delimited text file. The file contains
the information available on the Variable Access pane in the user interface. For more information on
the exported variables list, see “View Exported Variable List” (Polyspace Code Prover).

By default, the variables file for results from project-name is stored in the PathToFolder
\Polyspace-Doc folder. PathToFolder is the results folder of project-name.

polyspace-report-generator -configure-keystore configures the report generator to
communicate with Polyspace Access over HTTPS.

 polyspace-report-generator

4-41

Run this one-time configuration step if Polyspace Access is configured to use the HTTPS protocol and
you do not have a Polyspace Bug Finder desktop license, or you have a desktop license but you have
not configured the desktop UI to communicate with Polyspace Access over HTTPS. Before running
this command, generate a client keystore to store the SSL certificate that Polyspace Access uses for
HTTPS. See “Generate a Client Keystore”.

polyspace-report-generator -template outputTemplate -host hostName -run-id
runID [ACCESS_OPTIONS] [OPTIONS] generates a report by using the template
outputTemplate for the analysis results corresponding to run runID on Polyspace Access.
hostName is the fully qualified host name of the machine that hosts Polyspace Access.

By default, reports for results from project-name are stored as project-name_report-name in
the PathToFolder\Polyspace-Doc folder. PathToFolder is the path from which you call the
command.

polyspace-report-generator -generate-results-list-file -host hostName -run-id
runID [ACCESS_OPTIONS] [-set-language-english] exports the analysis results
corresponding to run runID on Polyspace Access to a tab-delimited text file. The file contains the
result information available on the Results List pane in the Polyspace Access web interface.
hostName is the fully qualified host name of the machine that hosts Polyspace Access. For more
information on the exported results list, see “Results List in Polyspace Access Web Interface”.

By default, the results file for results from project-name is stored in the PathToFolder
\Polyspace-Doc folder. PathToFolder is the path from which you call the command.

For exporting results to a tab-delimited text file, the polyspace-results-export command is
preferred.

polyspace-report-generator -generate-variable-access-file -host hostName -
run-id runID [ACCESS_OPTIONS] [-set-language-english] exports the list of global
variables in your code from the Code Prover analysis corresponding to run runID on Polyspace
Access to a tab-delimited text file. The file contains the information available on the Variable Access
pane in the Polyspace Access web interface. hostName is the fully qualified host name of the machine
that hosts Polyspace Access. For more information on the exported variables list, see “View Exported
Variable List” (Polyspace Code Prover).

By default, the variables file for results from project-name is stored in the PathToFolder
\Polyspace-Doc folder. PathToFolder is the path from which you call the command.

Examples

Generate PDF Reports for Analysis Results Stored Locally

You can generate multiple reports for analysis results that you store locally.

Create a variable template_path to store the path to the report templates and create a variable
report_templates to store a comma-separated list of templates to use.

SET template_path="C:\Program Files"\Polyspace\R2019a\toolbox\polyspace^
\psrptgen\templates\bug_finder
SET report_templates=%template_path%\BugFinder.rpt,^
%template_path%\CodingStandards.rpt

4 Polyspace DOS/Unix Commands

4-42

Generate the reports from the templates that you specified in report_templates for analysis
results of Polyspace project myProject.

 polyspace-report-generator -template %report_templates% ^
-results-dir C:\Polyspace_Workspace\myProject\Module_1\BF_Result ^
-format PDF

The command generates two PDF reports, myProject_BugFinder.PDF and
myProject_CodingStandards.PDF. The reports are stored in C:\Polyspace_Workspace
\myProject\Module_1\BF_Result\Polyspace-Doc. For more information on the content of the
reports, see Bug Finder and Code Prover report (-report-template).

Configure Report Generator with Client Keystore

If you configure Polyspace Access to use the HTTPS protocol, you must generate a client keystore
where you store the SSL certificate that Polyspace Access uses, and configure polyspace-report-
generator to use that keystore. See “Generate a Client Keystore”. This one-time configuration
enables the report generator to communicate with Polyspace Access over HTTPS.

To configure the report generator with a client keystore, use the polyspace-report-generator -
configure-keystore command. Follow the prompts to provide the URL you use to log into
Polyspace Access, the full path to the keystore file you generated, and the keystore password.
polyspace-report-generator -configure-keystore
Location: US, user name: jsmit, id: 62600@us-jsmith, print mode: false
Enter the Polyspace Access URL using form http[s]://<host>:<port> :
https://myAccessServer:9443
Enter full path to client keystore file :
C:\R2019b\ssl\client-cert.jks
Enter client keystore password :

The keystore has been configured

You must run the keystore configuration command again if:

• The Polyspace Access URL changes, for instance if you use a different port number.
• The path to the keystore file changes.
• The keystore password changes.

Generate Report and Variables List from Polyspace Access

Note To generate reports of results on Polyspace Access at the command line, you must have a
Polyspace Bug Finder Server or Polyspace Code Prover Server installation.

Suppose that you want to generate a report and export the variables list for the results of a Code
Prover analysis stored on the Polyspace Access database.

To connect to Polyspace Access, provide a host name and your login credentials including your
encrypted password. To encrypt your password, use the polyspace-access command and enter
your user name and password at the prompt.

polyspace-access -encrypt-password
login: jsmith

 polyspace-report-generator

4-43

password:
CRYPTED_PASSWORD LAMMMEACDMKEFELKMNDCONEAPECEEKPL
Command Completed

Store the login and encrypted password in a credentials file and restrict read and write permission on
this file. Open a text editor, copy these two lines in the editor, then save the file as
myCredentials.txt for example.

 -login jsmith
 -encrypted-password LAMMMEACDMKEFELKMNDCONEAPECEEKPL

To restrict the file permissions, right-click the file and select the Permissions tab on Linux or the
Security tab on Windows.

To specify project results on Polyspace Access, specify the run ID of the project. To obtain a list of
projects with their latest run IDs, use the polyspace-access with option -list-project.
polyspace-access -host myAccessServer -credentials-file myCredentials.txt -list-project
Connecting to https://myAccessServer:9443
Connecting as jsmith
Get project list with the last Run Id
Restricted/Code_Prover_Example (Code Prover) RUN_ID 14
public/Bug_Finder_Example (Bug Finder) RUN_ID 24
public/CP/Code_Prover_Example (Polyspace Code Prover) RUN_ID 16
public/Polyspace (Code Prover) RUN_ID 28
Command Completed

For more information on this command, see polyspace-access.

Generate a Developer report for results with run ID 16 from the Polyspace Access instance with
host name myAccessServer. The URL of this instance of Polyspace Access is https://
myAccessServer:9443.

SET template_path=^
"C:\Program Files\Polyspace\R2019a\toolbox\polyspace\psrptgen\templates"

polyspace-report-generator -credentials-file myCredentials.txt ^
-template %template_path%\Developer.rpt ^
-host myAccessServer ^
-run-id 16 ^
-output-name myReport

The command creates report myReport.docx by using the template that you specify. The report is
stored in folder Polyspace-Doc on the path from which you called the command.

Generate a tab-delimited text file that contains a list of global variables in your code for the specified
analysis results.

polyspace-report-generator -credentials-file myCredentials.txt^
-generate-variable-access-file ^
-host myAccessServer ^
-run-id 16

4 Polyspace DOS/Unix Commands

4-44

The list of global variables Variable_View.txt is stored in the same folder as the generated
report. For more information on the exported variables list, see “View Exported Variable List”
(Polyspace Code Prover).

Input Arguments
outputTemplate — path to report template file
string

Path to the report template that you use to generate an analysis report. To generate multiple reports,
specify a comma-separated list of report template paths (do not put a space after the commas). The
templates are available in polyspaceroot\toolbox\polyspace\psrptgen\templates\ as .rpt
files. Here, polyspaceroot is the Polyspace installation folder. The polyspace-report-
generator command accepts the same templates as the analysis option -report-template. For
information on the available templates, see Bug Finder and Code Prover report (-report-
template).

This option is not compatible with -generate-variable-access-file and -generate-
results-list-file.
Example: C:\Program Files\Polyspace\R2019a\toolbox\polyspace\psrptgen\templates
\Developer.rpt

Example: TEMPLATE_PATH\BugFinder.rpt,TEMPLATE_PATH\CodingStandards.rpt

resultsFolder — Analysis results folder path
string

Path to a folder containing Polyspace analysis results (.psbf or .pscp file). To generate a report for
multiple verifications, specify a comma-separated list of folder paths (do not put a space after the
commas). If you do not specify a folder path, the command generates a report for analysis results in
the current folder.
Example: C:\Polyspace_Workspace\My_project\Module_1\results
Example: C:\Polyspace_Workspace\My_project
\Module_2\results,C:\Polyspace_Workspace\My_project\Module_3\other_results

hostName — Polyspace Access machine host name
string

Fully qualified host name of the machine that hosts the Polyspace Access Gateway API service. You
must specify a host name to generate a report for results on the Polyspace Access database.
Example: my-company-server

runID — Polyspace Access run ID
integer

Run ID of the project findings for which you generate a report. Polyspace assigns a unique run ID to
each analysis run that you upload to the Polyspace Access.

You can see the run ID of a project in the Polyspace Access web interface. To get the run ID, use the
command polyspace-access with option -list-project.

 polyspace-report-generator

4-45

OPTIONS — Options for generated report
string

Option Description
-format HTML | PDF | WORD File format of the report that you generate. By

default, the command generates a WORD
document.

To generate reports in multiple formats, specify a
comma-separated list of formats. (Do not put a
space after the commas). For instance, -format
PDF,HTML.

This option is not compatible with -generate-
variable-access-file and -generate-
results-list-file.

-output-name outputName Name of the generated report or folder name if
you generate multiple reports.

The report or exported file is saved on the path
from which you call the command. To save in a
different folder, specify the full path to the folder,
for instance -output-name C:\PathTo
\OtherFolder.

-results-dir FOLDER_1,...,FOLDER_N Path to the locally stored results folder. To
generate reports for multiple analyses, specify a
comma-separated list of folder path. (Do not put a
space after the commas). For example:

-results-dir folderPath1,folderPath2

-set-language-english Generate the report in English. Use this option if
your display language is set to another language.

-h Display the help information.

ACCESS_OPTIONS — Options for Polyspace Access
string

Option Description
-host HOST_NAME HOST_NAME corresponds to the host name that

you specify in the URL of the Polyspace Access
interface, for example https://
HOST_NAME:port/metrics/index.html. If
you are unsure about which host name to use,
contact your Polyspace Access administrator. The
default host name is localhost.

This option is mandatory when you generate
reports for results stored on the Polyspace Access
database.

4 Polyspace DOS/Unix Commands

4-46

Option Description
-run-id RUN_ID Run ID of the project. Polyspace assigns a unique

run ID to each analysis run that you upload. To
get the last run ID of a project, use the -list-
project option of the polyspace-access
command.

For more information on the command, see
polyspace-access.

This option is mandatory when you generate
reports for results stored on the Polyspace Access
database.

-all-units Specify this option to generate a report for all
units from a unit by unit analysis.

When you use this option, specify the run ID of
only one unit with -run-id. The command
includes the other units from the analysis in the
report.

-port portNumber portNumber corresponds to the port number
that you specify in the URL of the Polyspace
Access interface, for example https://
hostname:portNumber/metrics/
index.html. If you are unsure about which port
number to use, contact your Polyspace Access
administrator. The default port number is 9443.

-protocol http | https HTTP protocol used to connect to Polyspace
Access. Default value is https.

 polyspace-report-generator

4-47

Option Description
-credentials-file file_path Full path to the text file where you store your

login credentials. Use this option if, for instance,
you use a command that requires your Polyspace
Access credentials in a script but you do not want
to store your credentials in that script. While the
script runs, someone inspecting currently
running processes cannot see your credentials.

You can store only one set of credentials in the
file, either as -login and -encrypted-
password entries on separate lines, for instance:

-login jsmith
-encrypted-password LAMMMEACDMKEFELKMNDCONEAPECEEKPL

or as an -api-key entry:

-api-key keyValue123

Make sure that you restrict the read and write
permissions on the file where you store your
credentials. For example, to restrict read and
write permissions on file login.txt in Linux,
use this command:

chmod go-rwx login.txt

-api-key keyValue API key you use as a login credential instead of
providing your login and encrypted password. To
assign an API key to a user, see “Configure User
Manager” or contact your Polyspace Access
administrator.

Use the API key if, for instance, you use a
command that requires your Polyspace Access
login credentials as part of an automation script
with a CI tool like Jenkins. If a user updates his or
her password, you do not need to update the API
key associated with that user in your scripts.

It is recommended that you store the API key in a
text file and pass that file to the command by
using -credentials-file. See the description
for option -credentials-file.

-login username

-encryted-password ENCRYPTED_PASSWD

Credentials that you use to log into Polyspace
Access. The argument of -encrypted-
password is the output of the polyspace-
access -encrypt-password command.

For more information on the command, see
polyspace-access.

4 Polyspace DOS/Unix Commands

4-48

Tips
You cannot use the polyspace-report-generator command with results generated with
Polyspace as You Code. Use the polyspace-results-export command instead. See polyspace-
results-export.

Alternative Functionality
Instead of generating reports from existing analysis results, you might want a report to be generated
along with the analysis. In this case, use the analysis options -report-template and -report-
output-format. See “Reporting”.

Reports generated along with analysis will only contain only review information imported from
previous analyses (if any such information is imported). If you add new review information to the
results, you will have to regenerate the reports using the polyspace-report-generator
command.

See Also
polyspace-results-export

Topics
“Generate Reports from Polyspace Results”
“Customize Existing Bug Finder Report Template”

Introduced in R2013b

 polyspace-report-generator

4-49

polyspace-results-export
(DOS/UNIX) Export Polyspace results to external formats such as CSV or JSON

Syntax
polyspace-results-export -format exportFormat -results-dir resultsFolder [
OPTIONS]

polyspace-results-export -format exportFormat -host hostName -run-id runID [
OPTIONS] [ACCESS_OPTIONS]

Description
polyspace-results-export -format exportFormat -results-dir resultsFolder [
OPTIONS] exports Polyspace analysis results stored locally in resultsFolder to an external format
exportFormat.

polyspace-results-export -format exportFormat -host hostName -run-id runID [
OPTIONS] [ACCESS_OPTIONS] exports Polyspace analysis results stored in Polyspace Access to an
external format exportFormat. Specify the Polyspace Access instance by using hostName and the
project on Polyspace Access by using runID.

Examples

Export Polyspace Results Stored Locally

Export results from a project myProject in the Polyspace user interface to JSON format.

Suppose your project is stored in C:\Polyspace_Workspace. To export results from a specific
module in the project, specify the path to the folder that directly contains results from the module.

polyspace-results-export -format json-sarif ^
-results-dir C:\Polyspace_Workspace\myProject\Module_1\BF_Result
-output-name C:\Polyspace_Workspace\reports\myProject\myProject.json

Export Results Stored in Polyspace Access

Note To generate reports of results on Polyspace Access at the command line, you must have a
Polyspace Bug Finder Server or Polyspace Code Prover Server installation.

Suppose that you want to export the results of a project on Polyspace Access to JSON format.

To connect to Polyspace Access, provide a host name and your login credentials including your
encrypted password. To encrypt your password, use the polyspace-access command and enter
your user name and password at the prompt.

4 Polyspace DOS/Unix Commands

4-50

polyspace-access -encrypt-password
login: jsmith
password:
CRYPTED_PASSWORD LAMMMEACDMKEFELKMNDCONEAPECEEKPL
Command Completed

Store the login and encrypted password in a credentials file and restrict read and write permission on
this file. Open a text editor, copy these two lines in the editor, then save the file as
myCredentials.txt for example.

 -login jsmith
 -encrypted-password LAMMMEACDMKEFELKMNDCONEAPECEEKPL

To restrict the file permissions, right-click the file and select the Permissions tab on Linux or the
Security tab on Windows.

To specify project results on Polyspace Access, specify the run ID of the project. To obtain a list of
projects with their latest run IDs, use the polyspace-access with option -list-project.
polyspace-access -host myAccessServer -credentials-file myCredentials.txt -list-project
Connecting to https://myAccessServer:9443
Connecting as jsmith
Get project list with the last Run Id
Restricted/Code_Prover_Example (Code Prover) RUN_ID 14
public/Bug_Finder_Example (Bug Finder) RUN_ID 24
public/CP/Code_Prover_Example (Polyspace Code Prover) RUN_ID 16
public/Polyspace (Code Prover) RUN_ID 28
Command Completed

For more information on this command, see polyspace-access.

If Polyspace Access uses the HTTPS protocol, use the polyspace-report-generator binary to
configure polyspace-results-export to enable communications with Polyspace Access over
HTTPS. See “Configure Report Generator with Client Keystore” on page 4-43.

Export results from the project with run ID 16 to JSON format.

polyspace-results-export -credentials-file myCredentials.txt
-format json-sarif^
-host myAccessServer ^
-run-id 16

Input Arguments
exportFormat — Output format for results
csv | json-sarif | console

Format in which the Polyspace results are exported: csv for tab separated values (TSV) output or
json-sarif for JSON output. If you use the polyspace-bug-finder-access command for single-
file analysis (Polyspace as You Code), you can also export the results to the console using the format
console.

Each result consists of information such as result name, family, and so on. Both TSV and JSON
formats result in almost the same content being exported but the exported content might refer to the
same type of information by different names.

• In the TSV format, each result consists of tab-separated information in columns such as ID,
Family, Group, Color, Check, and so on.

 polyspace-results-export

4-51

To package and potentially filter your result data, use the csv format. For instance, you can
import the TSV file to Microsoft Excel® and use Excel filters on the results.

• In the JSON format, each result consists of almost the same information as JSON object
properties. The properties shown for a result sometimes use a name that is different from the
name used in the CSV format. For instance, to get the full rule checker name for a result, use the
ruleId property of a result in combination with the id and name property of a rule. The reason
for the difference is that the JSON format follows the standard notation provided by the OASIS
Static Analysis Results Interchange Format (SARIF).

The JSON format contains some additional information such as the checker short name and the
full message that accompanies a result. Use the JSON format if you want to use this short name or
message. You can also use this format for a more standardized reporting of results. For instance, if
you use several static analysis tools and want to report their results in one interface by using a
single parsing algorithm, you can export all the results to the standard SARIF JSON format.

The console output is preformatted in a form similar to compiler errors and warnings, and contains
less information than the other formats. In particular, if you baseline Polyspace as You Code results
using integration results in the Polyspace Access web interface, use the JSON or CSV format for
maximum benefits from the baselining. See “Baseline Polyspace as You Code Results on Command
Line”.

resultsFolder — Result folder path
string

Path to a folder containing Polyspace analysis results (.psbf or .pscp file). If you do not specify a
folder path, the command generates a report for analysis results in the current folder.
Example: C:\Polyspace_Workspace\My_project\Module_1\results

hostName — Polyspace Access machine host name
string

hostName corresponds to the host name that you specify in the URL of the Polyspace Access
interface, for example https://hostName:port/metrics/index.html. If you are unsure about
which host name to use, contact your Polyspace Access administrator. The default host name is
localhost. You must specify a host name to generate a report for results on the Polyspace Access
database.
Example: my-company-server

runID — Polyspace Access run ID
integer

Run ID of the project findings that you export. A unique run ID is assigned to each analysis run that
you upload to Polyspace Access.

You can see the run ID of a project in the Polyspace Access web interface. To get the run ID of a
project at the command line, use the command polyspace-access with option -list-project.

OPTIONS — Additional options for exporting results
string

4 Polyspace DOS/Unix Commands

4-52

Option Description
-output-name outputName Name of the exported file. The default name is

results_list.txt (TSV) or
results_list.json (JSON).

The file is saved on the path from which you call
the command. To save the file in a different
folder, specify the full path to the folder, for
instance -output-name C:\PathTo
\OtherFolder.

-set-language-english Use this option if your display language is set to a
language other than English but you want the
exported results in English.

To see options available with this command, enter polyspace-results-export -h.

ACCESS_OPTIONS — Additional options for exporting results from Polyspace Access
string

Option Description
-port portNumber portNumber corresponds to the port number

that you specify in the URL of the Polyspace
Access interface, for example https://
hostname:portNumber/metrics/
index.html. If you are unsure about which port
number to use, contact your Polyspace Access
administrator. The default port number is 9443.

-protocol http | https HTTP protocol to connect to Polyspace Access.
Default value is https.

 polyspace-results-export

4-53

Option Description
-credentials-file file_path Full path to the text file where you store your

login credentials. Use this option if, for instance,
you use a command that requires your Polyspace
Access credentials in a script but you do not want
to store your credentials in that script. While the
script runs, someone inspecting currently
running processes cannot see your credentials.

You can store only one set of credentials in the
file, either as -login and -encrypted-
password entries on separate lines, for instance:

-login jsmith
-encrypted-password
 LAMMMEACDMKEFELKMNDCONEAPECEEKPL

or as an -api-key entry:

-api-key keyValue123

Make sure that you restrict the read and write
permissions on the file where you store your
credentials. For example, to restrict read and
write permissions on file login.txt in Linux,
use this command:

chmod go-rwx login.txt

-api-key keyValue API key you use as a login credential instead of
providing your login and encrypted password. To
assign an API key to a user, see “Configure User
Manager” or contact your Polyspace Access
administrator.

Use the API key if, for instance, you use a
command that requires your Polyspace Access
login credentials as part of an automation script
with a CI tool like Jenkins. If a user updates his or
her password, you do not need to update the API
key associated with that user in your scripts.

It is recommended that you store the API key in a
text file and pass that file to the command by
using -credentials-file. See the description
for option -credentials-file.

-login username

-encryted-password ENCRYPTED_PASSWD

Credentials that you use to log into Polyspace
Access. The argument of -encrypted-
password is the output of the polyspace-
access -encrypt-password command.

For more information on the command, see
polyspace-access.

4 Polyspace DOS/Unix Commands

4-54

See Also
polyspace-report-generator

Introduced in R2020b

 polyspace-results-export

4-55

polyspace-comments-import
(DOS/UNIX) Import review information from previous Polyspace analysis

Syntax
polyspace-comments-import -diff-rte prevResultsFolder currentResultsFolder [-
print-new-results] [-overwrite-destination-comments]

Description
polyspace-comments-import -diff-rte prevResultsFolder currentResultsFolder [-
print-new-results] [-overwrite-destination-comments] imports review information from
a results file in prevResultsFolder to currentResultsFolder. The review information includes
the severity, status and additional notes that you assign to a result.

Besides importing the review information, the command also shows the number of results where
review information could not be imported either because the result changed or the result already had
new review information. If you use the option -print-new-results, you see this information:

• Number of new results in current results folder, that is, results not present in previous results
folder

• Number of results removed from previous results folder, that is, results no longer present in the
current results folder

• Number of results in current results folder that do not have associated review information

You can also use this command to create a baseline for the analysis results. In the Polyspace user
interface, if you click the New button, only the analysis results that are new compared to the baseline
remain in the results list.

If you use the option -overwrite-destination-comments, newer review information on
previously existing results are overwritten with previous review information. For instance, if the same
result has a different status in the current and previous results folder, after using the polyspace-
comments-import command:

• Without the option, the result in the current results folder retains its status.
• With the option, the status of the result in the current results folder is overwritten with the status

from the previous results folder.

Examples

Import Review Information from Previous Polyspace Results

Run Bug Finder on a sample file and add some review information. Then, run Bug Finder a second
time and import the information from the previous run.

Copy the file numerical.c from polyspaceroot\polyspace\examples\cxx
\Bug_Finder_Example\sources to a writable folder. Open a command window and navigate to the
folder (using cd). Run Bug Finder on the file and save results in the subfolder Run_1:

4 Polyspace DOS/Unix Commands

4-56

polyspace-bug-finder -sources numerical.c -results-dir Run_1/

Depending on the product installed, you can also run polyspace-code-prover, polyspace-bug-
finder-server or polyspace-code-prover-server.

Open the results file in the Run_1 subfolder:

polyspace Run_1/ps_results.psbf

Select a result. On the Result Details window, select a Severity and Status and add some notes.
You will import this review information to results from a later analysis.

Run Bug Finder again, but save the results in a different subfolder Run_2:

polyspace-bug-finder -sources numerical.c -results-dir Run_2/

You can open the results file in Run_2 and see that there is no review information.

Import the review information from the results file in the Run_1 subfolder to the Run_2 subfolder.
Add the option -print-new-results to see the number of new, removed and unreviewed results.

polyspace-comments-import -diff-rte Run_1/ Run_2/ -print-new-results

Open the results file in the Run_2 subfolder:

polyspace Run_2/ps_results.psbf

You see the review information imported from the results file in the Run_1 subfolder.

Input Arguments
prevResultsFolder — Folder containing previous Polyspace results with review
information
string

Path to a folder containing a Polyspace results file (.psbf file for Bug Finder results and .pscp file
for Code Prover results). The results are presumably from an earlier Polyspace analysis and contain
review information that will be imported to a later results file.
Example: "C:\Polyspace\Project_1_Run_25"

currentResultsFolder — Folder containing later Polyspace results
string

Path to a folder containing Polyspace results (.psbf file for Bug Finder results and .pscp file for
Code Prover results). The results are presumably from a later Polyspace analysis and have no review
information or review information for new results only. You want to import review information from
an earlier Polyspace analysis to these results.
Example: "C:\Polyspace\Project_1_Run_26"

See Also
-import-comments

 polyspace-comments-import

4-57

Topics
“Import Review Information from Previous Polyspace Analysis”
“Merge Review Information Between Polyspace Access Projects”

Introduced in R2013b

4 Polyspace DOS/Unix Commands

4-58

MATLAB and Simulink Functions,
Classes, and Methods

59

Functions, Properties, Classes, and Apps

5

pslinkfun
Manage model analysis at the command line

Syntax
pslinkfun('annotations','type',typeValue,'kind',kindValue,Name,Value)

pslinkfun('openresults',systemName)

pslinkfun('settemplate',psprjFile)
prjTemplate = pslinkfun('gettemplate')

pslinkfun('advancedoptions')
pslinkfun('enablebacktomodel')
pslinkfun('help')
pslinkfun('metrics')
pslinkfun('jobmonitor')
pslinkfun('stop')

Description
pslinkfun('annotations','type',typeValue,'kind',kindValue,Name,Value) adds an
annotation of type typeValue and kind kindValue to the selected block in the model. You can
specify a different block using a Name,Value pair argument. You can also add notes about a severity
classification, an action status, or other comments using Name,Value pairs.

In the generated code associated with the annotated block, Polyspace adds code comments before
and after the lines of code. Polyspace reads these comments and marks Polyspace results of the
specified kind with the annotated information.

Syntax limitations:

• You can have only one annotation per block. If a block produces both a rule violation and an error,
you can annotate only one type.

• Even though you apply annotations to individual blocks, the scope of the annotation can be larger.
The generated code from one block can overlap with another, causing the annotation to also
overlap.

For example, consider this model. The first summation block has a Polyspace annotation, but the
second does not.

However, the associated generated code adds all three inputs in one line of code.

5 Functions, Properties, Classes, and Apps

5-2

/* polyspace:begin<RTE:OVFL:Medium:To Fix>*/
annotate_y.Out1=(annotate_u.In1+annotate_U.In2)+annotate_U.In3;
/* polyspace:end<RTE:OVFL:Medium:To Fix> */

Therefore, the annotation justifies both summations.

pslinkfun('openresults',systemName) opens the Polyspace results associated with the model
or subsystem systemName in the Polyspace environment.

pslinkfun('settemplate',psprjFile) sets the configuration file for new verifications.

prjTemplate = pslinkfun('gettemplate') returns the template configuration file used for
new analyses.

pslinkfun('advancedoptions') opens the advanced verification options window to configure
additional options for the current model.

pslinkfun('enablebacktomodel') enables the back-to-model feature of the Simulink plug-in. If
your Polyspace results do not properly link to back to the model blocks, run this command.

pslinkfun('help') opens the Polyspace documentation in a separate window. Use this option for
only pre-R2013b versions of MATLAB.

pslinkfun('metrics') opens the Polyspace Metrics interface.

pslinkfun('jobmonitor') opens the Polyspace Job Monitor to display remote verifications in the
queue.

pslinkfun('stop') kills the code analysis that is currently running. Use this option for local
analyses only.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”.

Examples

Annotate a Block and Run a Polyspace Bug Finder Analysis

Use the Polyspace annotation function to annotate a block and see the annotation in the analysis
results.

In the example model WhereAreTheErrors, add an annotation to the switch block for MISRA C rule
13.7 violations with a comment, a severity, and a status.

model = 'WhereAreTheErrors';
open(model)
pslinkfun('annotations','type','Misra-C', 'kind', '13.7','block',...
 'WhereAreTheErrors/Switch1','status','to fix','comment','must fix')

In the open model, you can see a Polyspace annotation added to the Switch block.

Generate code for the model and run an analysis. After the analysis is finished, open the results in the
Polyspace environment:

 pslinkfun

5-3

slbuild(model)
opts = pslinkoptions(model);
opts.VerificationMode = 'BugFinder';
opts.VerificationSettings = 'PrjConfigAndMisra';
pslinkrun(model,opts)
pslinkfun('openresults',model)

The five MISRA C 13.7 rule violations are annotated with the information you added to the switch
block. The annotations appear in the Status and Comment columns.

Add Batch Options to Default Configuration Template

Change advanced Polyspace options and set the new configuration as a template.

Load the model WhereAreTheErrors and open the advanced options window.

model = 'WhereAreTheErrors';
load_system(model)
pslinkfun('advancedoptions')

In the Run Settings pane, select the options Run Bug Finder analysis on a remote cluster and
Upload results to Polyspace Metrics.

Set the configuration template for new Polyspace analyses to have these options.

pslinkfun('settemplate',fullfile(cd,'pslink_config',...
 'WhereAreTheErrors_config.psprj'))

View the current Polyspace template.

template = pslinkfun('gettemplate')

template =
C:\ModelLinkDemo\pslink_config\WhereAreTheErrors_config.psprj

View Polyspace Queue and Metrics

Run a remote analysis, view the analysis in the queue, and review the metrics.

Before performing this example, check that your Polyspace configuration is set up for remote analysis
and Polyspace Metrics.

Build the model WhereAreTheErrors, create a Polyspace options object, set the verification mode,
and open the advanced options window.

model = 'WhereAreTheErrors';
load_system(model)
slbuild(model)
opts = pslinkoptions(model);
opts.VerificationMode = 'BugFinder';
pslinkfun('advancedoptions')

In the Run Settings pane, select the options Run Bug Finder analysis on a remote cluster and
Upload results to Polyspace Metrics.

5 Functions, Properties, Classes, and Apps

5-4

Run Polyspace, then open the Job Monitor to monitor your remote job.

pslinkrun(model,opts)
pslinkfun('jobmonitor')

After your job is finished, open the metrics server to see your job in the repository.

pslinkfun('metrics')

Input Arguments
typeValue — type of result
'DEFECT' | 'MISRA-C' | 'MISRA-AC-AGC' | 'MISRA-CPP' | 'JSF'

The type of result with which to annotate the block, specified as:

• 'DEFECT' for defects.
• 'MISRA-C' for MISRA C coding rule violations (C code only).
• 'MISRA-AC-AGC' for MISRA C coding rule violations (C code only).
• 'MISRA-CPP' for MISRA C++ coding rule violations (C++ code only).
• 'JSF' for JSF C++ coding rule violations (C++ code only).

Example: 'type','MISRA-C'

kindValue — specific check or coding rule
check acronym | rule number

The specific check or coding rule specified by the acronym of the check or the coding rule number.
For the specific input for each type of annotation, see the following table.

type Value kind Values
'DEFECT' Use the abbreviation associated with the type of defect that you want to

annotate. For example, 'int_ovfl' – Integer overflow.

For the list of possible checks, see: “Complete List of Polyspace Bug
Finder Results”.

'MISRA-C' Use the rule number that you want to annotate. For example, '2.2'.

For the list of supported MISRA C rules and their numbers, see “MISRA
C:2004 and MISRA AC AGC Coding Rules”.

'MISRA-AC-AGC' Use the rule number that you want to annotate. For example, '2.2'.

For the list of supported MISRA C rules and their numbers, see “MISRA
C:2004 and MISRA AC AGC Coding Rules”.

'MISRA-CPP' Use the rule number that you want to annotate. For example, '0-1-1'.

For the list of supported MISRA C++ rules and their numbers, see
“MISRA C++:2008 Rules”.

 pslinkfun

5-5

type Value kind Values
'JSF' Use the rule number that you want to annotate. For example, '3'.

For the list of supported JSF C++ rules and their numbers, see “JSF AV C
++ Coding Rules”.

Example: pslinkfun('annotations','type','MISRA-CPP','kind','1-2-3')
Data Types: char

systemName — Simulink model
system | subsystem

Simulink model specified by the system or subsystem name.
Example: pslinkfun('openresults','WhereAreTheErrors')

psprjFile — Polyspace project file
standard Polyspace template (default) | absolute path to .psprj file

Polyspace project file specified as the absolute path to the .psprj project file. If psprjFile is
empty, Polyspace uses the standard Polyspace template file. New Polyspace projects start with this
project configuration.
Example: pslinkfun('settemplate', fullfile(polyspaceroot, 'polyspace',
'examples', 'cxx', 'Bug_Finder_Example', 'Bug_Finder_Example.bf.psprj'));

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'block','MyModel\Sum', 'status','to fix'

block — block to be annotated
gcb (default) | block name

The block you want to annotate specified by the block name. If you do not use this option, the block
returned by the function gcb is annotated.
Example: 'block','MyModel\Sum'

class — severity of the check
'high' | 'medium' | 'low' | 'unset'

Severity of the check specified as high, medium, low, or unset.
Example: 'class','high'

status — action status
'unreviewed' | 'to investigate' | 'to fix' | 'justified' | 'no action planned' | 'not
a defect' | 'other'

Action status of the check specified as unreviewed, to investigate, to fix, justified, no
action planned, not a defect, or other.
Example: 'status','no action planned'

5 Functions, Properties, Classes, and Apps

5-6

comment — additional comments
character vector

Additional comments specified as a character vector. The comments provide more information about
why the results are justified.
Example: 'comment','defensive code'

See Also
pslinkrun | pslinkoptions | gcb

Introduced in R2014a

 pslinkfun

5-7

pslinkoptions
Create an options object to customize configuration of a Simulink model, generated code or a S-
Function block. Use the object to specify configuration options for these Simulink objects in a
Polyspace run from the MATLAB command line

Syntax
opts = pslinkoptions(codegen)
opts = pslinkoptions(model)
opts = pslinkoptions(sfunc)

Description
opts = pslinkoptions(codegen) returns an options object with the configuration options for
code generated by codegen.

opts = pslinkoptions(model) returns an options object with the configuration options for the
Simulink model.

opts = pslinkoptions(sfunc) returns an options object with the configuration options for the
S-Function.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”.

Examples

Create generic options object for code generated by Embedded Coder

This example shows how you can create a generic Polyspace options object that is suitable for
analyzing code generated by using Embedded Coder. This options object is prepopulated with
appropriate Embedded Coder parameters. Edit the options object to modify the generic analysis.

Create a new Polyspace configuration object new_opt by calling the function pslinkoptions and
specify 'ec' as the input argument.

new_opt = pslinkoptions('ec')

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfig'
 OpenProjectManager: 0
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'BugFinder'
 EnablePrjConfigFile: 0

5 Functions, Properties, Classes, and Apps

5-8

 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 ModelRefVerifDepth: 'Current model only'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 1
 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'
 VerifAllSFcnInstances: 0

By default, this options object uses the same verification settings that you specify in the Polyspace
project. To check MISRA C® 2012 coding rule violations in addition to the existing verifications
specified in the project, run this code at the MATLAB command line:

new_opt.VerificationSettings = 'PrjConfigAndMisraC2012'

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfigAndMisraC2012'
 OpenProjectManager: 0
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'BugFinder'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 ModelRefVerifDepth: 'Current model only'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 1
 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'
 VerifAllSFcnInstances: 0

When you start the Polyspace analysis of the generated code, you might want to open the Polyspace
User Interface to follow the progress of the and to review the results afterwards. To open the
Polyspace interface when you start the analysis, run this code:

new_opt.OpenProjectManager = true

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfigAndMisraC2012'
 OpenProjectManager: 1
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'BugFinder'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0

 pslinkoptions

5-9

 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 ModelRefVerifDepth: 'Current model only'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 1
 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'
 VerifAllSFcnInstances: 0

Create and edit options object to modify Polyspace configuration

This example shows how you can store the Polyspace configurations of a Simulink model in to an
object, and use the object to edit the configuration options.

Load the model closed_loop_control.

load_system('closed_loop_control');

To create an object containing the Polyspace configurations of the model, call pslinkoptions.

model_opt = pslinkoptions('closed_loop_control')

model_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfig'
 OpenProjectManager: 0
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'BugFinder'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 ModelRefVerifDepth: 'Current model only'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 1
 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'
 VerifAllSFcnInstances: 0

The model is already configured for Embedded Coder®, so only the Embedded Coder configuration
options appear as the fields of the object model_opt.

To modify a Polyspace configuration option, set the corresponding field of model_opt. For instance,
change the results directory and set the verification mode to CodeProver by modifying fields :
model_opt.ResultDir and model_opt.VerificationMode, respectively.

model_opt.ResultDir = 'results_v1_$ModelName$';
model_opt.VerificationMode = 'CodeProver'

5 Functions, Properties, Classes, and Apps

5-10

model_opt =

 ResultDir: 'results_v1_$ModelName$'
 VerificationSettings: 'PrjConfig'
 OpenProjectManager: 0
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 ModelRefVerifDepth: 'Current model only'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 1
 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'
 VerifAllSFcnInstances: 0

Create and edit an options object for TargetLink at the command line

Create a Polyspace® options object called new_opt with TargetLink® parameters:

new_opt = pslinkoptions('tl')

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfig'
 OpenProjectManager: 0
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 AutoStubLUT: 1

Set the OpenProjectManager option to true to follow the progress in the Polyspace interface. Also
change the configuration to check for both run-time errors and MISRA C® coding rule violations:

new_opt.OpenProjectManager = true;
new_opt.VerificationSettings = 'PrjConfigAndMisra'

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfigAndMisra'
 OpenProjectManager: 1

 pslinkoptions

5-11

 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 AutoStubLUT: 1

Input Arguments
codegen — Code generator
'ec' | 'tl'

Code generator, specified as either 'ec' for Embedded Coder or 'tl' for TargetLink®. Each
argument creates a Polyspace options object with properties specific to that code generator.

For a description of all configuration options and their values, see pslinkoptions.
Example: ec_opt = pslinkoptions('ec')
Example: tl_opt = pslinkoptions('tl')
Data Types: char

model — Simulink model name
model name

Simulink model, specified by the model name. Creates a Polyspace options object with the
configuration options of that model. If you have not set any options, the object has the default
configuration options. If you have set a code generator, the object has the default options for that
code generator.

For a description of all configuration options and their values, see pslinkoptions.
Example: model_opt = pslinkoptions('my_model')
Data Types: char

sfunc — path to S-Function
character vector

Path to S-Function, specified as a character vector. Creates a Polyspace options object with the
configuration options for the S-function. If you have not set any options, the object has the default
configuration options.

For a description of all configuration options and their values, see pslinkoptions.
Example: sfunc_opt = pslinkoptions('path/to/sfunction')
Data Types: char

5 Functions, Properties, Classes, and Apps

5-12

Output Arguments
opts — Polyspace configuration options
options object

Polyspace configuration options, returned as an options object. The object is used with pslinkrun to
run Polyspace from the MATLAB command line.

For the list of object properties, see pslinkoptions.
Example: opts= pslinkoptions('ec')
opts.VerificationSettings = 'Misra'

See Also
pslinkrun | pslinkfun | pslinkoptions

Introduced in R2012a

 pslinkoptions

5-13

polyspacesetup
Integrate Polyspace installation with Simulink

Syntax
polyspacesetup('install')
polyspacesetup('install', 'polyspacefolder', folder)
polyspacesetup('install', 'polyspacefolder', folder, 'silent', isSilent)
polyspacesetup('uninstall')
polyspacesetup('showpolyspacefolders')

Description
polyspacesetup('install') integrates Polyspace from the default installation folder with
MATLAB or Simulink. If you installed Polyspace in a nondefault folder, the function prompts you for
the installation folder. See “Installation Folder”.

To run MATLAB scripts for Polyspace analysis, install MATLAB and Polyspace in separate folders, and
then integrate them by using this function. See also “Integrate Polyspace with MATLAB and
Simulink”“Integrate Polyspace Server Products with MATLAB”.

polyspacesetup('install', 'polyspacefolder', folder) integrates Polyspace installed in
the folder folder with MATLAB or Simulink.

polyspacesetup('install', 'polyspacefolder', folder, 'silent', isSilent)
integrates Polyspace installed in the folder folder with MATLAB or Simulink silently when
isSilent is true or with a prompt if isSilent is false. When you start MATLAB with the option
-batch, isSilent is set to true by default. If you use a nondefault folder to install Polyspace and
then do not specify the folder in folder, you are prompted to specify the install location even if you
use -batch to start MATLAB.

polyspacesetup('uninstall') unlinks the currently linked installation of Polyspace from
MATLAB.

polyspacesetup('showpolyspacefolders') lists all Polyspace folders that are linked to your
current installation of MATLAB.

Examples

Integrate Polyspace with MATLAB or Simulink

To integrate Polyspace with MATLAB or Simulink, use the function polyspacesetup.

Open MATLAB with administrator or root privilege.

At the MATLAB command prompt, enter:

polyspacesetup('install');

5 Functions, Properties, Classes, and Apps

5-14

If you install Polyspace in the default folder C:\Program Files\Polyspace\R2021b, the
command integrates Polyspace with MATLAB. You might be prompted that the workspace will be
cleared and all open models closed. Click Yes. The process might take a few minutes to complete.
When you start MATLAB with the -batch option, the installation completes without any prompts .

If a Polyspace installation is not detected at the default location, you are prompted for the installation
location. Use this command:

polyspacesetup('install', 'polyspaceFolder', Folder)

where Folder is the Polyspace installation folder.

Restart MATLAB.

Integrate Polyspace Noninteractively with MATLAB at Command Line by Using -batch

To integrate Polyspace with MATLAB in the command line noninteractively, start MATLAB with the
startup option -batch. See “Commonly Used Startup Options”.

When you start MATLAB with the startup option -batch, polyspacesetup is silent by default. That
is, the function does not emit any messages unless there is any input error.

1 Open a Windows command-line prompt with administrator or root privilege.
2 To ensure that the integration takes place noninteractively, specify the install folder for

Polyspace. At the command-line prompt, enter:

matlab -batch "polyspacesetup('install','polyspaceFolder',folder)"

where folder is the installation location of Polyspace.
3 If the integration is successful, this message is displayed:

Polyspace plug-in: installation complete.
Restart MATLAB before using Polyspace plug-in.

You can also enter the command in a script. For instance, you might have a script that performs
the installations of MATLAB and Polyspace. Append the preceding command to your script to
integrate MATLAB and Polyspace noninteractively.

Silently Integrate Polyspace with MATLAB or Simulink

To integrate Polyspace with MATLAB or Simulink silently, use the function polyspacesetup. By
default, Polyspace is installed in the folder C:\Program Files\Polyspace\R2021b.

Open MATLAB with administrator or root privilege.

At the MATLAB command prompt, enter:

polyspacesetup('install', 'polyspaceFolder', Folder, 'silent', true);

where Folder is the Polyspace installation folder. The process might take a few minutes to complete.

 polyspacesetup

5-15

Restart MATLAB.

Input Arguments
folder — Polyspace installation folder
C:\Program Files\Polyspace\R2021b | path to Polyspace installation

A character array containing the path to the Polyspace installation folder.
Example: polyspacesetup('install','polyspacefolder','C:\Program Files\Polyspace
\R2020b')

Data Types: char

isSilent — Indicator for silent integration
false (default) | true

Specifies whether to integrate Polyspace with MATLAB or Simulink silently (true) or not (false). When
you start MATLAB with the -batch option, this argument is set to true by default .
Example: polyspacesetup('install','polyspacefolder','C:\Program Files\Polyspace
\R2020b','silent',true)

Data Types: logical

See Also
polyspace.Project

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”
“Integrate Polyspace Server Products with MATLAB”

Introduced in R2019a

5 Functions, Properties, Classes, and Apps

5-16

polyspacePackNGo
Generate and package options files to run Polyspace analysis on code generated from Simulink model

Syntax
archivePath = polyspacePackNGo(mdlName)
archivePath = polyspacePackNGo(mdlName,psOpt)
archivePath = polyspacePackNGo(mdlName,psOpt,asModelRef)

Description
archivePath = polyspacePackNGo(mdlName) examines the Simulink model mdlName, extracts
Polyspace options files from it, and packages the options files in the zip file located at archivePath.
Before using polyspacePackNGo, generate code from your Simulink model. Then archive the
generated code, for instance, by using packNGo. Generate the Polyspace options files from the
Simulink model and include them in the code archive by using polyspacePackNGo. In a different
development environment, when running a Polyspace analysis of the generated code, use the options
files included in the code archive to preserve model-specific information, such as design range
specifications. You must have Embedded Coder to use slbuild.

archivePath = polyspacePackNGo(mdlName,psOpt) generates and packages the Polyspace
options files that are generated according to the specification in psOpt. The object psOpt must be a
Polyspace options object that is generated by using pslinkoptions. Using psOpt, modify the
options for the Polyspace analysis.

archivePath = polyspacePackNGo(mdlName,psOpt,asModelRef) generates and packages
the Polyspace options files by using asModelRef to specify whether to generate option files for
model reference code or standalone code.

Examples

Generate and Package Polyspace Options Files

To generate and package Polyspace options files for a Simulink model, use polyspacePacknGo.

Open the Simulink model rtwdemo_counter and specify a folder for storing the generated code.

% Make temporary folders for code genration
[TEMPDIR, CGDIR] = rtwdemodir();
% Open the model
mdlName = 'rtwdemo_counter';
open_system(mdlName);
% Specify a folder for generated code
codegenFolder = 'rtwdemo_counter_ert_rtw';

To enable packing the generated code in an archive, set the option
PackageGeneratedCodeAndArtifacts to true. Specify the name of the generated code archive
as genCodeArchive.zip.

 polyspacePackNGo

5-17

configSet = getActiveConfigSet(mdlName);
set_param(configSet, 'PackageGeneratedCodeAndArtifacts', true);
set_param(configSet, 'PackageName', 'genCodeArchive.zip');

To make the model compatible with Polyspace, set SystemTargetFile to ert.tlc.

set_param(configSet, 'SystemTargetFile', 'ert.tlc');

After configuring the model, generate code.

slbuild(mdlName)

Because PackageGeneratedCodeAndArtifacts is set to true, the generated code is packed into
the archive genCodeArchive.zip.

Generate and package Polyspace options files.

zipFile = polyspacePackNGo(mdlName);

In the code archive genCodeArchive.zip, the Polyspace options files are packaged in the
polyspace folder.

Package Polyspace Options Files That Have Specific Polyspace Analysis Options

To specify the Polyspace analysis options when packaging and generating options files, use
pslinktoptions.

Open the Simulink model rtwdemo_counter and configure the model for generating a code archive
that is compatible with Polyspace.

% Make temporary folders for code genration
[TEMPDIR, CGDIR] = rtwdemodir();
% Open the model
mdlName = 'rtwdemo_counter';
open_system(mdlName);
% Specify a folder for generated code
codegenFolder = 'rtwdemo_counter_ert_rtw';
configSet = getActiveConfigSet(mdlName);
% Enable packing the generated code into an archive
set_param(configSet, 'PackageGeneratedCodeAndArtifacts', true);
% Specify a name for the code archive
set_param(configSet, 'PackageName', 'genCodeArchive.zip');
% Configure the model to be Polyspace Compatible
set_param(configSet, 'SystemTargetFile', 'ert.tlc');

After configuring the model, generate code.

slbuild(mdlName)

Because PackageGeneratedCodeAndArtifacts is set to true, the generated code is packed into
the archive genCodeArchive.zip.

To specify the model configuration for the Polyspace analysis, use a pslinkoptions object. Create
this object by using the function pslinkoptions.

psOpt = pslinkoptions(mdlName);

5 Functions, Properties, Classes, and Apps

5-18

The object psopt is a structure where the fields are model configurations that you can specify.

Specify the model configuration by using psOpt object. For instance, set InputRangeMode to full
range. For a full options list, see the input argument psOpt.

psOpt.InputRangeMode = 'FullRange';

Generate and package Polyspace options files. Use the psOpt object as the second argument in
polyspacePacknGo.

zipFile = polyspacePackNGo(mdlName,psOpt);

In the code archive genCodeArchive.zip, the Polyspace options files are packaged in the
polyspace folder. The file optionsFile.txt contains the specified Polyspace analysis options.

Package Polyspace Options Files for Code Generated as a Model Reference

To accelerate model simulations, invoke referenced Simulink models as simulation targets. To
generate model reference simulation targets from a Simulink model, generate code from the model
by using slbuild with the build process specified as ModelReferenceCoderTargetOnly. Then,
package the generated code by using packNGo. To generate and package Polyspace options files for
analyzing such code, use the function polyspacePacknGo with the optional argument asModelRef
set to true.

Open the Simulink model rtwdemo_counter and configure the model for generating a code archive
that is compatible with Polyspace.

% Make temporary folders for code genration
[TEMPDIR, CGDIR] = rtwdemodir();
% Load model
mdlName = 'rtwdemo_counter';
load_system(mdlName);
configSet = getActiveConfigSet(mdlName);
% Enable packing the generated code into an archive
set_param(configSet, 'PackageGeneratedCodeAndArtifacts', true);
set_param(configSet, 'PackageName', '');
% Configure the model to be Polyspace Compatible
set_param(configSet, 'SystemTargetFile', 'ert.tlc');

After configuring the model, generate a model reference simulation target from it by using the
function slbuild. Specify the option ModelReferenceCoderTargetOnly. See slbuild.

slbuild(mdlName,'ModelReferenceCoderTargetOnly');

The code that is generated is stored in the folder slprj.

To package the code that is generated as a model reference, use the function packNGo. Locate the
file buildinfo.mat in <working folder>/slprj/ert/rtwdemo_counter and use the full path
to it as the input to packNGo. This command generates an archive containing the generated code and
the object buildinfo.mat. See packNGo.

% Locate buildinfo and generate code archive
buildinfo = fullfile(pwd,'slprj','ert',mdlName,'buildinfo.mat');
packNGo(buildinfo)

 polyspacePackNGo

5-19

Generate and package Polyspace options files. Omit the optional second argument. Set the third
argument asModelRef to true.

zipFile = polyspacePackNGo(mdlName,[],true);

In the code archive rtwdemo_counter.zip, the Polyspace options files are packaged in the
polyspace folder.

Input Arguments
mdlName — Name of Simulink model for which to generate Polyspace options files
model name

A character array containing the name of the model for which you want to generate and package the
Polyspace options files.
Example: polyspacePackNGo('rtwdemo_roll')
Data Types: char

psOpt — Polyspace options object
options associated with model (default) | object created by using pslinkoptions

Specifies the model configuration for the Polyspace analysis by using a pslinkoptions object. You
can modify certain analysis options by modifying psOpt, which is a structure where individual fields
represent analysis options. For a fill list of options that you can modify, see the table Polyspace
Analysis Options Supported by polyspacePacknGo.

5 Functions, Properties, Classes, and Apps

5-20

Polyspace Analysis Options Supported by polyspacePacknGo

Property Value Description
EnableAdditionalFileList:
Enable an additional file list to
be analyzed, specified as true
or false. Use with the
AdditionalFileList option.

true Polyspace verifies additional
files specified in the
AdditionalFileList option.

false (default) Polyspace does not verify
additional files.

AdditionalFileList: List of
additional files to be analyzed
specified as a cell array of files.
To add these files to the
analysis, use the
EnableAdditionalFileList
option.

cell array Polyspace considers the listed
files for verification.

InputRangeMode: Specifies the
range of the input variables.

'DesignMinMax' (default) Polyspace uses the input range
defined in the workspace or a
block.

'Fullrange' Polyspace uses full range inputs.
ParamRangeMode: Specifies the
range of the constant
parameters.

'DesignMinmax' Polyspace uses the constant
parameter range defined in the
workspace or in a block.

'None' (default) Polyspace uses the value of
parameters specified in the
code.

OutputRangeMode: Specifies
the output assertions.

'DesignMinMax' Polyspace applies assertions to
outputs by using a range
defined in a block or the
workspace.

'None' (default) Polyspace does not apply
assertions to the output
variables.

ModelRefVerifDepth: Specify
the depth for analyzing the
models that are referenced by
the current model.

'Current model Only'
(default)

Polyspace analyzes only the top
model without analyzing the
referenced models. Use this
option when you refer to models
that do not need to be analyzed,
such as library models.

 polyspacePackNGo

5-21

Property Value Description
'1'|'2'|'3' Polyspace analyzes referenced

models up to the specified depth
in the reference hierarchy. To
analyze the models that are
referenced by the top model,
specify the property
ModelRefVerifDepth as '1'.
To analyze models that are
referenced by the first level of
references, specify this property
as '2'.

'All' Polyspace verifies all referenced
models.

ModelRefByModelRefVerif:
Specify whether you want to
analyze all referenced models
together or individually.

true Polyspace analyzes the top
model and the referenced
models together. Use this option
to check for integration or
scaling issues.

false (default) Polyspace analyzes the top
model and the referenced
models individually.

AutoStubLUT: Specifies how
lookup tables are used.

true (default) Polyspace stubs the lookup
tables and verifies the model
without analyzing the lookup
table code.

false Polyspace includes the lookup
table code in the analysis.

CheckConfigBeforeAnalysis:
Specifies the level of
configuration checking done
before the Polyspace analysis
starts.

'Off' Polyspace checks only for
errors. The analysis stops if
errors are found.

'OnWarn' (default) Polyspace stops the analysis
when errors are found and
displays a message when
warnings are found.

'OnHalt' Polyspace stops the analysis
when either errors or warnings
are found.

Example: polyspacePackNGo('rtwdemo_roll', psOpt), where ps_opt is an options object
created by calling pslinkoptions

asModelRef — Indicator for model reference analysis
false (default) | true

Indicator for model reference analysis, specified as true or false.

• If asModelRef is false (default), the function generates options files so that Polyspace analyzes
the generated code as standalone code.

5 Functions, Properties, Classes, and Apps

5-22

• If asModelRef is true, the function generates options files so that Polyspace analyzes the
generated code as model reference code.

Note If you set asModelRef to true, use slbuild to generate code.

Example: polyspacePackNGo('rtwdemo_roll', psOpt,true)
Data Types: logical

Output Arguments
archivePath — The full path to the archive containing the generated options files
path to archive

A character array containing the path to the generated archive. The options files are located in the
polyspace folder in the archive. The polyspace folder contains these options files:

• optionsFile.txt: a text file containing the Polyspace options required to run a Polyspace
analysis on the generated code without losing model-specific information, such as design range
specification.

• model_drs.xml: A file containing the design range specification of the model.
• linkdata.xml: A file that links the generated code to the components of the model.

To run a Polyspace analysis on the generated code in an environment that is different than the
environment where the code was generated from the Simulink model, use these files.
Data Types: char

See Also
slbuild | pslinkoptions

Topics
“Run Polyspace Analysis on Generated Code by Using Packaged Options Files”
“Run Polyspace Analysis by Using MATLAB Scripts”
“Integrate Polyspace Server Products with MATLAB”
pslinkoptions Properties

Introduced in R2020b

 polyspacePackNGo

5-23

pslinkrunCrossRelease
Analyze C/C++ code generated by R2020b or newer Embedded Coder versions by using a different
version of Polyspace that is more recent than the Simulink version

Syntax
[polyspaceFolder, resultsFolder] = pslinkrunCrossRelease(ModelOrSubsystem)
[polyspaceFolder, resultsFolder] = pslinkrunCrossRelease(ModelOrSubsystem,
psOpt)
[polyspaceFolder, resultsFolder] = pslinkrunCrossRelease(ModelOrSubsystem,
psOpt,asModelRef)
[polyspaceFolder, resultsFolder] = pslinkrunCrossRelease(ModelOrSubsystem,
psOpt,asModelRef,OptionsFile)

Description
[polyspaceFolder, resultsFolder] = pslinkrunCrossRelease(ModelOrSubsystem)
runs a Polyspace analysis of the code generated from ModelOrSubsystem by using Embedded Coder
from an earlier release of Simulink.

[polyspaceFolder, resultsFolder] = pslinkrunCrossRelease(ModelOrSubsystem,
psOpt) runs a Polyspace analysis of the code generated from ModelOrSubsystem through an
earlier release of Simulink. The analysis uses the model configuration options that are specified in the
pslinkoptions object psOpt.

[polyspaceFolder, resultsFolder] = pslinkrunCrossRelease(ModelOrSubsystem,
psOpt,asModelRef) runs a Polyspace analysis of the code generated as a model reference from
ModelOrSubsystem through an earlier release of Simulink.The analysis uses asModelRef to specify
which type of generated code to analyze—standalone code or model reference code.

[polyspaceFolder, resultsFolder] = pslinkrunCrossRelease(ModelOrSubsystem,
psOpt,asModelRef,OptionsFile) runs a Polyspace analysis of the code generated from
ModelOrSubsystem through an earlier release of Simulink. The analysis uses the Polyspace analysis
options specified in the options file OptionsFile.

Examples

Analyze Code Generated by Using Earlier Simulink Release

To run a Polyspace analysis on code generated by using an earlier release of Simulink, use the
function pslinkrunCrossRelease. The analysis uses the configuration options associated with
ModelOrSubsystem. The Simulink release must be R2020b or later. Before you run an analysis, you
must integrate Polyspace with Simulink. See “Integrate Polyspace with MATLAB or Simulink
Installation from Earlier Release”.

1 Open the Simulink model rtwdemo_roll and configure the model for code generation.

% Load the model
model = 'rtwdemo_roll';

5 Functions, Properties, Classes, and Apps

5-24

load_system(model);
% Configure the Solver
configSet = getActiveConfigSet(model);
set_param(configSet,'Solver','FixedStepDiscrete');
set_param(configSet, 'SystemTargetFile', 'ert.tlc');

2 To enable packing the generated code in an archive, set the option
PackageGeneratedCodeAndArtifacts to true.

set_param(configSet, 'PackageGeneratedCodeAndArtifacts', true)
3 Create temporary folders for code generation and generate code.

[TEMPDIR, CGDIR] = rtwdemodir();
slbuild(model);

4 Start a Polyspace analysis.

% Run Polyspace analysis
[~,resultsFolder] = pslinkrunCrossRelease(model);
bdclose(model);

The character vector resultsFolder contains the full path to the results folder.

Run Polyspace Analysis with Modified Configuration While Analyzing Code Generated by
Using Earlier Simulink Release

To run a Polyspace analysis with modified model configurations, use a pslinkoptions object. For a
list of model configurations related to Polyspace analysis that you can modify, see the table
Polyspace Configuration Parameters Supported by pslinkrunCrossRelease on this page.
Before you run an analysis, you must integrate Polyspace with Simulink. See “Integrate Polyspace
with MATLAB or Simulink Installation from Earlier Release”.

1 Open the Simulink model rtwdemo_roll and configure the model for code generation.

% Load the model
model = 'rtwdemo_roll';
load_system(model);
% Configure the Solver
configSet = getActiveConfigSet(model);
set_param(configSet,'Solver','FixedStepDiscrete');
set_param(configSet, 'SystemTargetFile', 'ert.tlc');

2 To enable packing the generated code in an archive, set the option
PackageGeneratedCodeAndArtifacts to true.

set_param(configSet, 'PackageGeneratedCodeAndArtifacts', true)
3 Create temporary folders for code generation and generate code.

[TEMPDIR, CGDIR] = rtwdemodir();
slbuild(model);

4 To specify the model configurations for the Polyspace analysis, use a pslinkoptions object.
Create this object by using the function pslinkoptions. To run a Bug Finder analysis, set
psOpt.VerificationMode to 'BugFinder'. To assert the range defined in a block on its input
variables, specify psOpts.InputRangeMode as 'DesignMinMax'.

% Create a Polyspace options object from the model.
psOpts = pslinkoptions(model);

 pslinkrunCrossRelease

5-25

% Set model configurtion for the Polyspace analysis.
psOpts.VerificationMode = 'BugFinder';
psOpts.InputRangeMode = 'DesignMinMax';

5 Start a Polyspace analysis. To specify model configuration for the Polyspace analysis, set the
object psOpt as the optional second argument in pslinkrunCrossRelease.

% Run Polyspace analysis
[~,resultsFolder] = pslinkrunCrossRelease(model,psOpt);
bdclose(model);

The character vector resultsFolder contains the full path to the results folder.

Analyze Code Generated as Model Reference by Using an Earlier Simulink Release

To accelerate model simulations, invoke referenced Simulink models as simulation targets. To
generate model reference simulation targets from a Simulink model, generate code from the
ModelOrSubsystem by using slbuild with the build process specified as
ModelReferenceCoderTargetOnly. Package the generated code by using packNGo. Then, analyze
the generated code by running a cross-release Polyspace analysis. Before you run an analysis, you
must integrate Polyspace with Simulink. See “Integrate Polyspace with MATLAB or Simulink
Installation from Earlier Release”.

1 Open the Simulink model rtwdemo_roll and configure the model for code generation.

% Load the model
model = 'rtwdemo_roll';
load_system(model);
% Configure the Solver
configSet = getActiveConfigSet(model);
set_param(configSet,'Solver','FixedStepDiscrete');
set_param(configSet, 'SystemTargetFile', 'ert.tlc');
set_param(configSet, 'PackageGeneratedCodeAndArtifacts', true)

2 Create temporary folders for code generation and generate code. Specify the option
ModelReferenceCoderTargetOnly. See slbuild.

[TEMPDIR, CGDIR] = rtwdemodir();
slbuild(model,'ModelReferenceCoderTargetOnly');

The generated code is stored in the folder slprj
3 To package the code that is generated as a model reference, use the function packNGo. Locate

the file buildinfo.mat in <working folder>/slprj/ert/rtwdemo_counter and use the
full path to it as the input to packNGo. This command generates an archive containing the
generated code and the object buildinfo.mat. See packNGo.

% Locate buildinfo and generate code archive
buildinfo = fullfile(pwd,'slprj','ert',model,'buildinfo.mat');
packNGo(buildinfo)

4 To specify the Polyspace analysis options, use a pslinkoptions object. Create this object by
using the function pslinkoptions. To run a Bug Finder analysis, set
psOpt.VerificationMode to 'BugFinder'.

% Create a Polyspace options object from the model.
psOpts = pslinkoptions(model);

5 Functions, Properties, Classes, and Apps

5-26

% Set properties that define the Polyspace analysis.
psOpts.VerificationMode = 'BugFinder';
psOpts.InputRangeMode = 'DesignMinMax';

5 Start a Polyspace analysis. To specify Polyspace analysis options, set the object psOpt as the
optional second argument in pslinkrunCrossRelease. To analyze the code as a model
reference, set the optional third argument asModelRef to true.

% Run Polyspace analysis
[~,resultsFolder] = pslinkrunCrossRelease(model,psOpt,true);
bdclose(model);

The character vector resultsFolder contains the full path to the results folder.

Specify Polyspace Analysis Options While Analyzing Code Generated by Using an Earlier
Simulink Release

1 Open the Simulink model rtwdemo_roll and configure the model for code generation.

% Load the model
model = 'rtwdemo_roll';
load_system(model);
% Configure the Solver
configSet = getActiveConfigSet(model);
set_param(configSet,'Solver','FixedStepDiscrete');
set_param(configSet, 'SystemTargetFile', 'ert.tlc');

2 To enable packing the generated code in an archive, set the option
PackageGeneratedCodeAndArtifacts to true.

set_param(configSet, 'PackageGeneratedCodeAndArtifacts', true)
3 Create temporary folders for code generation and generate code.

[TEMPDIR, CGDIR] = rtwdemodir();
slbuild(model);

4 To specify the model configuration for the Polyspace analysis, use a pslinkoptions object.
Create this object by using the function pslinkoptions. To run a Bug Finder analysis, set
psOpt.VerificationMode to 'BugFinder'.

% Create a Polyspace options object from the model.
psOpts = pslinkoptions(model);

% Set properties that define the Polyspace analysis.
psOpts.VerificationMode = 'BugFinder';
psOpts.InputRangeMode = 'DesignMinMax';

5 To specify Polyspace analysis options, create an options file. An options file is a text file that
contains Polyspace options in a flat list, one line for each option. For instance, to enable all Bug
Finder checkers and AUTOSAR C++14 coding rules, create a text file named OptionFile.txt.
In the text file, enter:

-checkers all
-autosarcpp14 all

Save the options file. You can save the preceding options in an options file named Options.txt
in the default work folder.

See “Complete List of Polyspace Bug Finder Analysis Engine Options”.

 pslinkrunCrossRelease

5-27

6 Start a Polyspace analysis.

• To specify the model configurations for the Polyspace analysis run, set the object psOpt as
the optional second argument in pslinkrunCrossRelease.

• Because the code is generated as standalone code, set the third argument asModelRef to
false.

• To specify the Polyspace analysis options, specify the relative path to the created options file
as the fourth argument.

% Locate options file
optionsPath = fullfile(userpath,'Options.txt');
% Run Polyspace analysis
[~,resultsFolder] = pslinkrunCrossRelease(model,psOpts,false,optionsPath);
bdclose(model);

The character vector resultsFolder contains the full path to the results folder.

Input Arguments
ModelOrSubsystem — Target of the analysis
bdroot (default) | model or system name

Target of the analysis specified as a character vector with the model or system in single quotes. The
default value is the system returned by bdroot.
Example: resultsDir = pslinkrunCrossRelease('rtwdemo_roll') where rtwdemo_roll is
the name of a model.
Data Types: char

psOpt — Options object
configuration options associated with ModelOrSubsystem (default) | configuration object created by
using pslinkoptions

Specifies the model configuration for the Polyspace analysis by using a pslinkoptions object. You
can modify certain analysis options by modifying psOpt, which is an object where individual fields
represent model configuration options. For a full list of options that you can modify, see this table.

5 Functions, Properties, Classes, and Apps

5-28

Polyspace Configuration Parameters Supported by pslinkrunCrossRelease

Property Description Value Description
EnableAdditionalFileLis
t

Enable an additional file
list to be analyzed,
specified as true or
false. Use with the
AdditionalFileList
option.

true Polyspace verifies
additional files specified
in the
AdditionalFileList
option.

false (default) Polyspace does not
verify additional files.

AdditionalFileList List of additional files to
be analyzed, specified
as a cell array of files.
To add these files to the
analysis, use the
EnableAdditionalFi
leList option.

cell array Polyspace considers the
listed files for
verification.

VerificationMode Polyspace analysis mode
specified as
'BugFinder', for a
Bug Finder analysis, or
'CodeProver', for a
Code Prover
verification.

'BugFinder' Polyspace runs a Bug
Finder analysis.

'CodeProver' (default) Polyspace runs a Code
Prover analysis.

InputRangeMode Specifies the range of
the input variables.

'DesignMinMax'
(default)

Polyspace uses the
input range defined in
the workspace or a
block.

'Fullrange' Polyspace uses full
range inputs.

ParamRangeMode Specifies the range of
the constant
parameters.

'DesignMinmax' Polyspace uses the
constant parameter
range defined in the
workspace or in a block.

'None' (default) Polyspace uses the
value of parameters
specified in the code.

OutputRangeMode Specifies the output
assertions.

'DesignMinMax' Polyspace applies
assertions to outputs by
using a range defined in
a block or the
workspace.

'None' (default) Polyspace does not
apply assertions to the
output variables.

 pslinkrunCrossRelease

5-29

Property Description Value Description
ModelRefVerifDepth Specify the depth for

analyzing the models
that are referenced by
the current model.

'Current model
Only' (default)

Polyspace analyzes only
the top model without
analyzing the
referenced models. Use
this option when you
refer to models that do
not need to be analyzed,
such as library models.

'1'|'2'|'3' Polyspace analyzes
referenced models up to
the specified depth in
the reference hierarchy.
To analyze the models
that are referenced by
the top model, specify
the property
ModelRefVerifDepth
as '1'. To analyze
models that are
referenced by the first
level of references,
specify this property as
'2'.

'All' Polyspace verifies all
referenced models.

ModelRefByModelRefVe
rif

Specify whether you
want to analyze all
referenced models
together or individually.

true Polyspace analyzes the
top model and the
referenced models
together. Use this
option to check for
integration or scaling
issues.

false (default) Polyspace analyzes the
top model and the
referenced models
individually.

AutoStubLUT Specifies how lookup
tables are used.

true (default) Polyspace stubs the
lookup tables and
verifies the model
without analyzing the
lookup table code.

false Polyspace includes the
lookup table code in the
analysis.

5 Functions, Properties, Classes, and Apps

5-30

Property Description Value Description
CheckConfigBeforeAnal
ysis

Specifies the level of
configuration checking
done before the
Polyspace analysis
starts.

'Off' Polyspace checks only
for errors. The analysis
stops if errors are
found.

'OnWarn' (default) Polyspace stops the
analysis when errors
are found and displays a
message when warnings
are found.

'OnHalt' Polyspace stops the
analysis when either
errors or warnings are
found.

Example: pslinkrunCrossRelease('rtwdemo_roll', psOpt), where psOpt is an options
object created by calling pslinkoptions

asModelRef — Indicator for model reference analysis
false (default) | true

Indicator for model reference analysis, specified as true or false.

• If asModelRef is false (default), the function generates options files so that Polyspace analyzes
the generated code as standalone code.

• If asModelRef is true, the function generates options files so that Polyspace analyzes the
generated code as model reference code.

Example: pslinkrunCrossRelease('rtwdemo_roll', psOpt,true)
Data Types: logical

OptionsFile — Relative path to a Polyspace options file
default Polyspace analysis options (default) | relative path to a custom options file

Relative path to a text file that contains a list of Polyspace analysis options. The options file must have
each option in a separate line.
Example: pslinkrunCrossRelease('rtwdemo_roll', psOpt,true,'OptionsFile.txt')
Data Types: char

Output Arguments
polyspaceFolder — Folder containing Polyspace project and results
character vector

Name of the folder containing Polyspace projects and results, specified as a character vector. The
default value of this variable is results_$ModelName$.

To change this value, see “Output folder” on page 6-16.

resultsFolder — Full path to subfolder containing Polyspace results
character vector

 pslinkrunCrossRelease

5-31

Full path to subfolder containing Polyspace results, specified as a character vector.

The folder results_$ModelName$ contains your Polyspace project and a subfolder $ModelName$
containing the analysis results. This variable provides the full path to the subfolder.

To change the parent folder results_$ModelName$, see “Output folder” on page 6-16.

See Also
slbuild | pslinkoptions | polyspacePackNGo | pslinkrunCrossRelease

Topics
“Run Polyspace on Code Generated by Using Previous Releases of Simulink”
“Run Polyspace Analysis on Generated Code by Using Packaged Options Files”
“Run Polyspace Analysis by Using MATLAB Scripts”
“Integrate Polyspace Server Products with MATLAB”
pslinkoptions Properties

Introduced in R2021a

5 Functions, Properties, Classes, and Apps

5-32

pslinkrun
Run Polyspace analysis on model, system, or S-Function

Syntax
[polyspaceFolder, resultsFolder] = pslinkrun
[polyspaceFolder, resultsFolder]= pslinkrun(target)
[polyspaceFolder, resultsFolder] = pslinkrun('-slcc',target)
[polyspaceFolder, resultsFolder] = pslinkrun(target, opts)
[polyspaceFolder, resultsFolder] = pslinkrun('-slcc', target, opts)
[polyspaceFolder, resultsFolder] = pslinkrun(target, opts, asModelRef)
[polyspaceFolder, resultsFolder] = pslinkrun('-codegenfolder', codegenFolder,
opts)

Description
[polyspaceFolder, resultsFolder] = pslinkrun analyzes code generated from the current
system using the configuration options associated with the current system. It returns the location of
the results folder. The current system is the system returned by the command bdroot.

[polyspaceFolder, resultsFolder]= pslinkrun(target) analyzes target with the
configuration options associated with the model containing target. Before you run an analysis, you
must:

• Generate code for models and subsystems.
• Compile S-Functions.

[polyspaceFolder, resultsFolder] = pslinkrun('-slcc',target) runs Polyspace on C/C
++ custom code included in C Caller blocks and Stateflow charts in the model.

[polyspaceFolder, resultsFolder] = pslinkrun(target, opts) analyzes target using
the configuration options specified in the object opts. It returns the location of the results folder.

[polyspaceFolder, resultsFolder] = pslinkrun('-slcc', target, opts) runs
Polyspace on C/C++ custom code included in C Caller blocks and Stateflow charts in the model. The
analysis uses the configuration options specified in the object opts.

[polyspaceFolder, resultsFolder] = pslinkrun(target, opts, asModelRef) uses
asModelRef to specify which type of generated code to analyze—standalone code or model reference
code. This option is useful when you want to analyze code that is generated as model reference. Code
that is generated as model reference is intended to be called or used in other models or code.

[polyspaceFolder, resultsFolder] = pslinkrun('-codegenfolder', codegenFolder,
opts) runs Polyspace on C/C++ code generated from MATLAB code and stored in codegenFolder.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”.

 pslinkrun

5-33

Examples

Analyze Generated Code

Use a Simulink model to generate code, set configuration options, and then run an analysis from the
command line.

% Generate code from the model WhereAreTheErrors.
model = 'WhereAreTheErrors';
load_system(model);
slbuild(model);

% Create a Polyspace options object from the model.
opts = pslinkoptions(model);

% Set properties that define the Polyspace analysis.
opts.VerificationMode = 'CodeProver';
opts.VerificationSettings = 'PrjConfigAndMisraC2012';

% Run Polyspace using the options object.
[polyspaceFolder, resultsFolder] = pslinkrun(model,opts);
bdclose(model);

The results and the corresponding Polyspace project are saved to the
results_WhereAreTheErrors folder, listed in the polyspaceFolder variable. The full path to the
results folder is in the resultsFolder variable.

Analyze Referenced Model Code

Use a Simulink model to generate model reference code, set configuration options, and then run an
analysis from the command line.

% Generate code from the model WhereAreTheErrors.
% Treat WhereAreTheErrors as if referenced by another model.
model = 'WhereAreTheErrors';
load_system(model);
slbuild(model,'ModelReferenceCoderTargetOnly');

% Create a Polyspace options object from the model.
opts = pslinkoptions(model);

% Set properties that define the Polyspace analysis.
opts.VerificationMode = 'CodeProver';
opts.VerificationSettings = 'PrjConfigAndMisraC2012';

% Run Polyspace with the options object.
[polyspaceFolder, resultsFolder] = pslinkrun(model,opts,true);
bdclose(model);

5 Functions, Properties, Classes, and Apps

5-34

The results and corresponding Polyspace project are saved to the
results_mr_WhereAreTheErrors folder, listed in the polyspaceFolder variable. The full path to
the results folder is in the resultsFolder variable.

Reuse Analysis Options for Multiple Models

This example shows how to reuse a subset of options for Polyspace analysis of multiple models.
Create a generic options object and specify properties that describe the common options. Associate
the generic options object with a model-specific options object. Optionally, set some model-specific
options and run the Polyspace analysis.

% Generate code from the model WhereAreTheErrors.
model = 'psdemo_model_link_sl';
load_system(model);
slbuild(model);

% Create a generic options object to use for multiple model analyses.
opts = polyspace.ModelLinkOptions();
opts.CodingRulesCodeMetrics.EnableMisraC3 = true;
opts.CodingRulesCodeMetrics.MisraC3Subset = 'all';
opts.MergedReporting.ReportOutputFormat = 'PDF';
opts.MergedReporting.EnableReportGeneration = true;

% Create a model-specific options object.
mlopts = pslinkoptions(model);

% Create a project from the generic options object.
% Associate the project with the model-specific options object.
prjfile = opts.generateProject('model_link_opts');
mlopts.EnablePrjConfigFile = true;
mlopts.PrjConfigFile = prjfile;
mlopts.VerificationMode = 'BugFinder';

% Run Polyspace with the model-specific options object.
[polyspaceFolder, resultsFolder] = pslinkrun(model,mlopts);
bdclose(model);

After the analysis completes, results open automatically in the Polyspace interface.

Analyze C/C++ Code Generated from MATLAB Code

This example shows how to analyze C/C++ code generated from MATLAB code.

% Generate code
codeName = 'average_filter';
matlabFileName = fullfile(polyspaceroot, 'help',...
 'toolbox','codeprover','examples','matlab_coder','averaging_filter.m');
codegenFolder = fullfile(pwd, 'codegenFolder');
codegen(matlabFileName, '-config:lib', '-c', '-args', ...
 {zeros(1,100,'double')}, '-d', codegenFolder);

% Configure Polyspace analysis
opts = pslinkoptions('ec');

 pslinkrun

5-35

opts.ResultDir = ['results_',codeName];
opts.OpenProjectManager = 1;

% Run Polyspace
[polyspaceFolder, resultsFolder] = pslinkrun('-codegenfolder', codegenFolder, opts);

After the analysis completes, results open automatically in the Polyspace interface.

Input Arguments
target — Target of the analysis
bdroot (default) | model or system name | path to S-Function block

Target of the analysis specified as a character vector, with the model, system, or S-function in single
quotes. The default value is the system returned by bdroot.

If you analyze custom code in C Caller blocks and Stateflow charts using pslinkrun('-
slcc',...), the argument target cannot be an S-Function block.
Example: [polyspaceFolder, resultsFolder] = pslinkrun('demo') where demo is the
name of a model.
Example: [polyspaceFolder, resultsFolder] = pslinkrun('path/to/sfunction')
Data Types: char

opts — Configuration options
configuration options associated with target (default) | object created by pslinkoptions

Specify configuration options of target, specified as a Polyspace options object. The function
pslinkoptions creates such an options object. You can customize the options object by changing
the pslinkoption properties.
Example: pslinkrun('demo', opts_demo) where demo is the name of a model and opts_demo is
an options object.

asModelRef — Indicator for model reference analysis
false (default) | true

Indicator for model reference analysis, specified as true or false.

• If asModelRef is false (default), Polyspace analyzes the generated code as stand-alone code. This
option is equivalent to choosing Verify Code Generated For > Model in the Simulink Polyspace
options.

• If asModelRef is true, Polyspace analyzes the generated code as a model reference code. This
option is equivalent to choosing Verify Code Generated For > Referenced Model in the
Simulink Polyspace options. Specifying model reference code indicates that Polyspace must look
for the generated code in a different location from the location for standalone code.

Data Types: logical

codegenFolder — Folder containing generated C/C++ code
character vector

Folder containing C/C++ code generated from MATLAB code, specified as a character vector. You
specify this folder with the codegen command using the flag -d.

5 Functions, Properties, Classes, and Apps

5-36

Output Arguments
polyspaceFolder — Folder containing Polyspace project and results
character vector

Name of the folder containing Polyspace project and results, specified as a character vector. The
default value of this variable is results_$ModelName$.

To change this value, see “Output folder” on page 6-16.

resultsFolder — Full path to subfolder containing Polyspace results
character vector

Full path to subfolder containing Polyspace results, specified as a character vector.

The folder results_$ModelName$ contains your Polyspace project and a subfolder $ModelName$
with the analysis results. This variable gives you the full path to the subfolder. You can use this path
with a polyspace.BugFinderResults or polyspace.CodeProverResults object.

To change the parent folder results_$ModelName$, see “Output folder” on page 6-16.

See Also
pslinkfun | pslinkoptions | pslinkoptions

Topics
“Run Polyspace Analysis on Code Generated from Simulink Model”
“Run Polyspace Analysis on S-Function Code”
“Run Polyspace Analysis on Custom Code in C Caller Blocks and Stateflow Charts”
“Recommended Model Configuration Parameters for Polyspace Analysis”

Introduced in R2012a

 pslinkrun

5-37

polyspaceBugFinder
Run Polyspace Bug Finder analysis from MATLAB

Note For easier scripting, run Polyspace® analysis using a polyspace.Project object.

Syntax
status = polyspaceBugFinder
status = polyspaceBugFinder(projectFile)

status = polyspaceBugFinder(optsObject)
status = polyspaceBugFinder(projectFile, '-nodesktop')

status = polyspaceBugFinder(resultsFile)
status = polyspaceBugFinder('-results-dir',resultsFolder)

status = polyspaceBugFinder('-help')

status = polyspaceBugFinder('-sources',sourceFiles)
status = polyspaceBugFinder('-sources',sourceFiles,Name,Value)

Description
status = polyspaceBugFinder opens Polyspace Bug Finder.

status = polyspaceBugFinder(projectFile) opens a Polyspace project file in Polyspace Bug
Finder.

status = polyspaceBugFinder(optsObject) runs an analysis on the Polyspace options object
in MATLAB.

status = polyspaceBugFinder(projectFile, '-nodesktop') runs an analysis on the
Polyspace project file in MATLAB.

status = polyspaceBugFinder(resultsFile) opens a Polyspace results file in Polyspace Bug
Finder.

status = polyspaceBugFinder('-results-dir',resultsFolder) opens a Polyspace results
file from resultsFolder in Polyspace Bug Finder.

status = polyspaceBugFinder('-help') displays options that can be supplied to the
polyspaceBugFinder command to run a Polyspace Bug Finder analysis.

status = polyspaceBugFinder('-sources',sourceFiles) runs a Polyspace Bug Finder
analysis on the source files specified in sourceFiles.

status = polyspaceBugFinder('-sources',sourceFiles,Name,Value) runs a Polyspace
Bug Finder analysis on the source files with additional options specified by one or more Name,Value
pair arguments.

5 Functions, Properties, Classes, and Apps

5-38

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”.

Examples

Open Polyspace Projects from MATLAB

This example shows how to open a Polyspace project file with extension .psprj from MATLAB. In
this example, you open the project file Bug_Finder_Example.psprj from the folder
polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example.

Open the project Bug_Finder_Example.psprj in the Polyspace interface.

prjFile = fullfile(polyspaceroot, 'polyspace', 'examples', 'cxx', ...
 'Bug_Finder_Example', 'Bug_Finder_Example.psprj');
polyspaceBugFinder(prjFile);

Open Polyspace Results from MATLAB

This example shows how to open a Polyspace results file from MATLAB. In this example, you open the
results file from the folder polyspaceroot\polyspace\examples\cxx\Bug_Finder_Example
\Module_1\BF_Result.

Open the results of resFolder.

resFolder = fullfile(polyspaceroot, 'polyspace', 'examples', ...
 'cxx', 'Bug_Finder_Example', 'Module_1', 'BF_Result');
polyspaceBugFinder('-results-dir',resFolder)

Run Polyspace Analysis with Options Object

This example shows how to run a Polyspace analysis from the MATLAB command-line using objects.

Create an options object and add the source file and include folder to the properties.

opts = polyspace.BugFinderOptions;
opts.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
opts.EnvironmentSettings.IncludeFolders = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Bug_Finder_Example', 'sources')};
opts.ResultsDir = fullfile(pwd,'results');

Run the analysis and view the results.

polyspaceBugFinder(opts);
polyspaceBugFinder('-results-dir',opts.ResultsDir)

Run Polyspace Analysis from MATLAB with DOS/UNIX Options

This example shows how to run a Polyspace analysis in MATLAB using DOS/UNIX-style options.

 polyspaceBugFinder

5-39

Run the analysis and open the results.

sourceFiles = fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c');
includeFolders = fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Bug_Finder_Example', 'sources');
resultsDir = fullfile(pwd,'results');
polyspaceBugFinder('-sources',sourceFiles, ...
 '-I',includeFolders, ...
 '-results-dir',resultsDir);

To view the results, enter:

polyspaceBugFinder('-results-dir',resultsDir);

Run Polyspace Analysis with Coding Rules Checking

This example shows two different ways to customize an analysis in MATLAB. You can customize as
many additional options as you want by changing properties in an options object or by using Name-
Value pairs. Here you specify checking of MISRA C 2012 coding rules.

Create variables to save the source file path and results folder path. You can use these variables for
either analysis method.

sourceFileName = fullfile(polyspaceroot, 'polyspace','examples', 'cxx', ...
 'Bug_Finder_Example','sources','dataflow.c');
resFolder1 = fullfile('Polyspace_Results_1');
resFolder2 = fullfile('Polyspace_Results_2');

Analyze coding rules with an options object.

opts = polyspace.BugFinderOptions();
opts.Sources = {sourceFileName};
opts.ResultsDir = resFolder1;
opts.CodingRulesCodeMetrics.MisraC3Subset = 'all';
opts.CodingRulesCodeMetrics.EnableMisraC3 = true;
polyspaceBugFinder(opts);
polyspaceBugFinder('-results-dir',resFolder1);

Analyze coding rules with DOS/UNIX options.

polyspaceBugFinder('-sources',sourceFileName,'-results-dir',resFolder2,...
 '-misra3','all');
polyspaceBugFinder('-results-dir',resFolder2);

Input Arguments
optsObject — Polyspace options object name
object handle

Polyspace options object name, specified as the object handle.

To create an options object, use one of the Polyspace options classes.
Example: opts

5 Functions, Properties, Classes, and Apps

5-40

projectFile — Name of .psprj file
character vector

Name of project file with extension .psprj, specified as a character vector.

If the file is not in the current folder, projectFile must include a full or relative path.
Example: 'C:\Polyspace_Projects\myProject.psprj'
Data Types: char

resultsFile — Name of .psbf file
character vector

Name of results file with extension .psbf, specified as a character vector.

If the file is not in the current folder, resultsFile must include a full or relative path.
Example: 'myResults.psbf'
Data Types: char

resultsFolder — Name of result folder
character vector

Name of result folder, specified as a character vector. The folder must contain the results file with
extension .psbf. If the results file resides in a subfolder of the specified folder, this command does
not open the results file.

If the folder is not in the current folder, resultsFolder must include a full or relative path.
Example: 'C:\Polyspace\Results\'
Data Types: char

sourceFiles — Comma-separated names of C or C++ files
character vector

Comma-separated C or C++ source file names, specified as a single character vector.

If the files are not in the current folder, sourceFiles must include a full or relative path.
Example: 'myFile.c', 'C:\mySources\myFile1.c,C:\mySources\myFile2.c'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: '-target','i386','-compiler','gnu4.6' specifies that the source code is intended
for a i386 target and contains non-ANSI C syntax for GCC 4.6.

For option names and values, see the Command-Line Information section in “Complete List of
Polyspace Bug Finder Analysis Engine Options”.

 polyspaceBugFinder

5-41

Output Arguments
status — Status indicating whether the Polyspace Bug Finder analysis completed
successfully or not
true | false

If the Polyspace Bug Finder analysis completes without error, status is false. Otherwise, it is
true.

The analysis might fail for multiple reasons, including:

• You provided a source file, project file, or results file that does not exist.
• You specified an invalid path.
• One of your files did not compile.

See Also
polyspace.BugFinderOptions | polyspace.ModelLinkBugFinderOptions

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”

Introduced in R2013b

5 Functions, Properties, Classes, and Apps

5-42

polyspaceBugFinderServer
Run analysis with Polyspace Bug Finder Server using MATLAB scripts

Note For easier scripting, run Polyspace® analysis using a polyspace.Project object.

Syntax
polyspaceBugFinderServer(optsObject)

polyspaceBugFinderServer('-help')

polyspaceBugFinderServer('-sources',sourceFiles)
polyspaceBugFinderServer('-sources',sourceFiles,Name,Value)

Description
polyspaceBugFinderServer(optsObject) runs an analysis on the Polyspace options object in
MATLAB.

polyspaceBugFinderServer('-help') displays options that can be supplied to the
polyspaceBugFinderServer command to run an analysis with Polyspace Bug Finder Server.

polyspaceBugFinderServer('-sources',sourceFiles) runs an analysis with Polyspace Bug
Finder Server on the source files specified in sourceFiles.

polyspaceBugFinderServer('-sources',sourceFiles,Name,Value) runs an analysis with
Polyspace Bug Finder Server on the source files with additional options specified by one or more
Name,Value pair arguments.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace Server Products with MATLAB”.

Examples

Run Polyspace Analysis with Options Object

This example shows how to run a Polyspace analysis from the MATLAB command-line. For this
example:

• Use the source file numerical.c located in the directory polyspaceroot/polyspace/
examples/cxx/BugFinder_example/sources.

• Include the headers located in the same directory.

Create an options object and add the source file and include folder to the properties.

opts = polyspace.BugFinderOptions;
opts.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...

 polyspaceBugFinderServer

5-43

 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};;
opts.EnvironmentSettings.IncludeFolders = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Bug_Finder_Example', 'sources')};
opts.ResultsDir = 'C:\Polyspace_Results';

Polyspace runs on the file C:\Polyspace_Sources\source.c and stores the result in
C:\Polyspace_Results.

Run the analysis with Polyspace Bug Finder Server.

polyspaceBugFinderServer(opts);

Run Polyspace Analysis from MATLAB with DOS/UNIX Options

This example shows how to run a Polyspace analysis in MATLAB by using DOS/UNIX Options. For this
example:

• Use the source file numerical.c located in the directory polyspaceroot/polyspace/
examples/cxx/BugFinder_example/sources.

• Include the headers located in the same directory.

Define the location of source and include files.

src = fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c');
inc = fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Bug_Finder_Example', 'sources');
res = fullfile(pwd,'results');

To analyze numerical.c, run the following command.

polyspaceBugFinderServer('-sources',src, ...
 '-I',inc, ...
 '-results-dir',res)

Run Polyspace Analysis with Coding Rules Checking

This example shows two different ways to customize an analysis in MATLAB. You can customize as
many additional options as you want by changing properties in an options object or by using Name-
Value pairs. Here you specify checking of MISRA C 2012 coding rules.

Create variables to save the source file path and results folder path. You can use these variables for
either analysis method.

sourceFileName = fullfile(polyspaceroot, 'polyspace','examples', 'cxx', ...
 'Bug_Finder_Example','sources','dataflow.c');
resFolder1 = fullfile('Polyspace_Results_1');
resFolder2 = fullfile('Polyspace_Results_2');

Analyze coding rules with an options object.

opts = polyspace.BugFinderOptions();
opts.Sources = {sourceFileName};

5 Functions, Properties, Classes, and Apps

5-44

opts.ResultsDir = resFolder1;
opts.CodingRulesCodeMetrics.EnableMisraC3 = true;
opts.CodingRulesCodeMetrics.MisraC3Subset = 'all';
polyspaceBugFinderServer(opts);

Analyze coding rules with DOS/UNIX options.

polyspaceBugFinderServer('-sources',sourceFileName,'-results-dir',resFolder2,...
 '-misra3','all');

Input Arguments
optsObject — Polyspace options object name
object handle

Polyspace options object name, specified as the object handle.

To create an options object, use one of the Polyspace options classes polyspace.Options or
polyspace.Project.
Example: opts

sourceFiles — Comma-separated names of C or C++ files
character vector

Comma-separated C or C++ source file names, specified as a single character vector.

If the files are not in the current folder, sourceFiles must include a full or relative path.
Example: 'myFile.c', 'C:\mySources\myFile1.c,C:\mySources\myFile2.c'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: '-target','i386','-compiler','gnu4.6' specifies that the source code is intended
for a i386 target and contains non-ANSI C syntax for GCC 4.6.

For option names and values, see the Command-Line Information section in “Complete List of
Polyspace Bug Finder Analysis Engine Options”.

See Also
polyspace.Project

Topics
“Integrate Polyspace Server Products with MATLAB”

Introduced in R2019a

 polyspaceBugFinderServer

5-45

polyspaceConfigure
Create Polyspace project from your build system at the MATLAB command line

Syntax
polyspaceConfigure buildCommand

polyspaceConfigure -option value buildCommand

Description
polyspaceConfigure buildCommand traces your build system and creates a Polyspace project
with information gathered from your build system. You can run an analysis on a Polyspace project
only in the user interface of the Polyspace desktop products.

polyspaceConfigure -option value buildCommand traces your build system and uses -
option value to modify the default operation of polyspaceConfigure. Specify the modifiers
before buildCommand, otherwise they are considered as options in the build command itself.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink” or “Integrate Polyspace Server
Products with MATLAB”.

Examples

Create Polyspace Project from Makefile

This example shows how to create a Polyspace project if you use the command make targetName
buildOptions to build your source code. The example creates a Polyspace project that can be
opened only in the user interface of the Polyspace desktop products.

Create a Polyspace project specifying a unique project name. Use the -B or -W makefileName
option with make so that the all prerequisite targets in the makefile are remade.

polyspaceConfigure -prog myProject ...
 make -B targetName buildOptions

Open the Polyspace project in the Project Browser.

polyspaceBugFinder('myProject.psprj')

Create Projects That Have Different Source Files from Same Build Trace

This example shows how to create different Polyspace projects from the same trace of your build
system. You can specify which source files to include for each project. The example creates a
Polyspace project that can be opened only in the user interface of the Polyspace desktop products.

5 Functions, Properties, Classes, and Apps

5-46

Trace your build system without creating a Polyspace project by specifying the option -no-project.
To ensure that all the prerequisite targets in your makefile are remade, use the appropriate make
build command option, for instance -B.

polyspaceConfigure -no-project make -B;

polyspace-configure stores the cache information and the build trace in default locations inside
the current folder. To store the cache information and build trace in a different location, specify the
options -cache-path and -build-trace.

Generate Polyspace projects by using the build trace information from the previous step. Specify a
project name and use the -include-sources or -exclude-sources option to select which files to
include for each project.

polyspaceConfigure -no-build -prog myProject ...
-include-sources "glob_pattern";

glob_pattern is a glob pattern that corresponds to folders or files you filter in or out of your
project. To ensure the shell does not expand the glob patterns you pass to polysapce-configure,
enclose them in double quotes.For more information on the supported syntax for glob patterns, see
“polyspace-configure Source Files Selection Syntax”.

If you specified the options -build-trace and -cache-path in the previous step, specify them
again.

Delete the trace file and cache folder.

rmdir('polyspace_configure_cache', 's');
delete polyspace_configure_built_trace;

If you used the options -build-trace and -cache-path, use the paths and file names from those
options.

Run Command-Line Polyspace Analysis from Makefile

This example shows how to run Polyspace analysis if you use a build command such as make
targetName buildOptions to build your source code. In this example, you use
polyspaceConfigure to trace your build system but do not create a Polyspace project. Instead you
create an options file that you can use to run Polyspace analysis from the command-line.

Create a Polyspace options file specifying the -output-options-file command. Use the -B or -W
makefileName option with make so that all prerequisite targets in the makefile are remade.

polyspaceConfigure -output-options-file ...
 myOptions make -B targetName buildOptions

Use the options file that you created to run a Polyspace analysis at the command line:

 polyspaceConfigure

5-47

polyspaceBugFinder -options-file myOptions

Input Arguments
buildCommand — Command for building source code
build command

Build command specified exactly as you use to build your source code.
Example: make -B, make -W makefileName

-option value — Options for changing default operation of polyspaceConfigure
single option starting with -, followed by argument | multiple space-separated option-argument pairs

Basic Options

Option Argument Description
-prog Project name Project name that appears in the Polyspace user

interface. The default is polyspace.

If you do not use the option -output-project, the -
prog argument also sets the project name.

Example: -prog myProject creates a project that
has the name myProject in the user interface. If you
do not use the option -output-project, the project
name is also myProject.psrprj.

-author Author name Name of project author.

Example: -author jsmith
-output-project Path Project file name and location for saving project. The

default is the file polyspace.psprj in the current
folder.

Example: -output-project ../myProjects/
project1 creates a project project1.psprj in the
folder with the relative path ../myProjects/.

-output-options-file File name Option to create a Polyspace analysis options file. Use
this file for command-line analysis using one of these
commands:

• polyspace-bug-finder
• polyspace-code-prover
• polyspace-bug-finder-server
• polyspace-code-prover-server
• polyspace-bug-finder-access

5 Functions, Properties, Classes, and Apps

5-48

Option Argument Description
-allow-build-error None Option to create a Polyspace project even if an error

occurs in the build process.

If an error occurs, the build trace log shows the
following message:

polyspace-configure (polyspaceConfigure)
 ERROR: build command
 command_name fail [status=status_value]

command_name is the build command name that you
use and status_value is the non-zero exit status or
error level that indicates which error occurred in
your build process.

This option is ignored when you use -compilation-
database.

-allow-overwrite None Option to overwrite a project with the same name, if
it exists.

By default, polyspace-configure
(polyspaceConfigure) throws an error if a project
with the same name already exists in the output
folder. Use this option to overwrite the project.

-no-console-output

-silent (default)

-verbose

None Option to suppress or display additional messages
from running polyspace-configure
(polyspaceConfigure).

• -no-console-output – Suppress all outputs
including errors and warnings.

• -silent (default) – Show only errors and
warnings.

• -verbose – Show all messages.

If you specify more than one of these options, the
most verbose option is applied.

These options are ignored if they are used in
combination with -easy-debug.

-help None Option to display the full list of polyspace-
configure (polyspaceConfigure) commands

-debug None Option to store debug information for use by
MathWorks technical support.

This option has been superseded by the option -
easy-debug.

 polyspaceConfigure

5-49

Option Argument Description
-easy-debug Path Option to store debug information for use by

MathWorks technical support.

After a polyspace-configure
(polyspaceConfigure) run, the path provided
contains a zipped file ending with pscfg-
output.zip. If the run fails to create a complete
Polyspace project or options file, send this zipped file
to MathWorks Technical Support for further
debugging. The zipped file does not contain source
files traced in the build. See also “Errors in Project
Creation from Build Systems”.

Options to Create Multiple Modules

These options are not compatible with -compilation-database.

Option Argument Description
-module None Option to create a separate options file for each

binary created in build system.

You can only create separate options files for different
binaries. You cannot create multiple modules in a
Polyspace project (for running in the Polyspace user
interface).

Use this option only for build systems that use GNU
and Visual C++ compilers.

See also “Modularize Polyspace Analysis by Using
Build Command”.

-output-options-path Path name Location where generated options files are saved. Use
this option together with the option -module.

The options files are named after the binaries created
in the build system.

Advanced Options

5 Functions, Properties, Classes, and Apps

5-50

Option Argument Description
-compilation-database Path and file name Location and name of JSON compilation database

(JSON CDB) file. You generate this file from your
build system, for instance by using the flag -
DCMAKE_EXPORT_COMPILE_COMMANDS=1 with
cmake. The file contains compiler calls for all the
translation units in you projects. For more
information, see JSON Compilation Database.
polyspace-configure uses the content of this file
to get information about your build system. The
extracted compiler paths in the JSON CDB must be
accessible from the path where you run polyspace-
configure.

You do not specify a build command when you use
this option.

The build systems and compilers support the
generation of a JSON CDB:

• CMake
• Bazel
• Clang
• Ninja
• Qbs
• waf

This option is not compatible with -no-project and
with the options to create multiple modules.

The cache control options, -allow-build-error,
and -no-build are ignored when you use this
option.

-compiler-config Path and file name Location and name of compiler configuration file.

The file must be in a specific format. For guidance,
see the existing configuration files in
polyspaceroot\polyspace\configure\
compiler_configuration\. For information on the
contents of the file, see “Create Polyspace Projects
from Build Systems That Use Unsupported
Compilers”.

Example: -compiler-configuration
myCompiler.xml

 polyspaceConfigure

5-51

https://clang.llvm.org/docs/JSONCompilationDatabase.html

Option Argument Description
-no-project None Option to trace your build system without creating a

Polyspace project and save the build trace
information.

Use this option to save your build trace information
for a later run of polyspace-configure
(polyspaceConfigure) with the -no-build
option.

This option is not compatible with -compilation-
database.

-no-build None Option to create a Polyspace project using previously
saved build trace information.

To use this option, you must have the build trace
information saved from an earlier run of polyspace-
configure (polyspaceConfigure) with the -no-
project option.

If you use this option, you do not need to specify the
buildCommand argument.

This option is ignored when you use -compilation-
database.

5 Functions, Properties, Classes, and Apps

5-52

Option Argument Description
-no-sources None Option to create a Polyspace options file that does not

contain the source file specifications.

Use this option when you intend to specify the source
files by other means. For instance, you can use this
option when:

• Running Polyspace on AUTOSAR-specific code.

You want to create an options file that traces your
build command for the compiler options:

-output-options-file options.txt -no-sources

You later append this options file when extracting
source file names from ARXML specifications and
running the subsequent Code Prover analysis with
polyspace-autosar

-extra-options-file options.txt

See also “Run Polyspace on AUTOSAR Code Using
Build Command” (Polyspace Code Prover).

• Running Polyspace in Eclipse.

Your source files are already specified in your
Eclipse project. When running a Polyspace
analysis, you want to specify an options file that
has the compilation options only.

 polyspaceConfigure

5-53

Option Argument Description
-extra-project-options Options to use for

subsequent
Polyspace analysis.
For instance, "-
stubbed-
pointers-are-
unsafe".

Options that are used for subsequent Polyspace
analysis.

Once a Polyspace project is created, you can change
some of the default options in the project.
Alternatively, you can pass these options when
tracing your build command. The flag -extra-
project-options allows you to pass additional
options.

Specify multiple options in a space separated list, for
instance "-allow-negative-operand-in-shift
-stubbed-pointers-are-unsafe".

Suppose you have to set the option -stubbed-
pointers-are-unsafe for every Polyspace project
created. Instead of opening each project and setting
the option, you can use this flag when creating the
Polyspace project:

-extra-project-options
 "-stubbed-pointers-are-unsafe"

For the list of options available, see:

• “Complete List of Polyspace Bug Finder Analysis
Engine Options”

• “Complete List of Polyspace Code Prover Analysis
Options” (Polyspace Code Prover)

If you are creating an options file instead of a
Polyspace project from your build command, do not
use this flag.

-tmp-path Path Location of folder where temporary files are stored.
-build-trace Path and file name Location and name of file where build information is

stored. The default is ./
polyspace_configure_build_trace.log.

Example: -build-trace ../build_info/
trace.log

-log Path and file name Location and name of log file where the output of the
polyspace-configure command is stored. The use
of this option does not suppress the console output.

5 Functions, Properties, Classes, and Apps

5-54

Option Argument Description
-include-sources

-exclude-sources

Glob pattern Option to specify which source files polyspace-
configure (polyspaceConfigure) includes in,
or excludes from, the generated project. You can
combine both options together.

A source file is included if the file path matches the
glob pattern that you pass to -include-sources.

A source file is excluded if the file path matches the
glob pattern that you pass to -exclude-sources.

-print-included-sources

-print-excluded-sources

None Option to print the list of source files that
polyspace-configure (polyspaceConfigure)
includes in, or excludes from, the generated project.
You can combine both options together. The output
displays the full path of each file on a separate line.

Use this option to troubleshoot the glob patterns that
you pass to -include-sources or -exclude-
sources. You can see which files match the pattern
that you pass to -include-sources or -exclude-
sources.

-compiler-cache-path Folder path Specify a folder path where polyspace-configure
looks for or stores the compiler cache files. If the
folder does not exist, polyspace-configure
creates it.

By default, Polyspace looks for and stores compiler
caches under these folder paths:

• Windows

%appdata%\Mathworks\R20xxY\Polyspace
• Linux

~/.matlab/R20xxY/Polyspace
• Mac

~/Library/Application Support/
MathWorks/MATLAB/R20xxY/Polyspace

R20xxY is the release version of your Polyspace
product, for instance R2020b.

 polyspaceConfigure

5-55

Option Argument Description
-no-compiler-cache None Use this option if you do not want Polyspace to cache

your compiler configuration information or to use an
existing cache for your compiler configuration.

By default, the first time you run polyspace-
configure with a particular compiler configuration,
Polyspace queries your compiler for the size of
fundamental types, compiler macro definitions, and
other compiler configuration information then caches
this information. Polyspace reuses the cached
information in subsequent runs of polyspace-
configure for builds that use the same compiler
configuration.

-reset-compiler-cache-
entry

None Use this option to query the compiler for the current
configuration and to refresh the entry in the cache
file that corresponds to this configuration. Other
compiler configuration entries in the cache are not
updated.

-clear-compiler-cache None Use this option to delete all compiler configurations
stored in the cache file.

If you also specify a build command or -
compilation-database, polyspace-configure
computes and caches the compiler configuration
information of the current run, except if you specify -
no-project or -no-compiler-cache.

-import-macro-definitions none

from-whitelist

from-source-
tokens

Use this option to specify how polyspace-
configure queries the compiler for macro
definitions.

You can specify:

• none — Polyspace does not query the compiler for
macro definitions. You must provide the macro
definitions manually.

• from-whitelist — Polyspace uses an internal
white list to query the compiler for macro
definitions.

Polyspace uses the white list by default when you
use the option -compilation-database.

• from-source-tokens (default, except if you use
-compilation-database) — Polyspace uses
every non-keyword token in your source code to
query your compiler for macro definitions.

5 Functions, Properties, Classes, and Apps

5-56

Option Argument Description
-options-for-sources-
delimiter

A single character Specify an option separator to use when multiple
analysis options are associated with one source file
using the -options-for-sources option. Typically,
the -options-for-sources option uses a
semicolon as separator.

See also -options-for-sources.

Cache Control Options

These options are primarily useful for debugging. Use the options if polyspace-configure
(polyspaceConfigure) fails and MathWorks Technical Support asks you to use the option and
provide the cached files. Starting R2020a, the option -easy-debug provides an easier way to
provide debug information. See “Contact Technical Support About Issues with Running Polyspace”.

These options are ignored when you use -compilation-database.

Option Argument Description
-no-cache

-cache-sources (default)

-cache-all-text

-cache-all-files

None Option to perform one of the following:

• -no-cache: Not create a cache
• -cache-sources: Cache text files temporarily

created during build for later use by polyspace-
configure (polyspaceConfigure).

• -cache-all-text: Cache all text files including
sources and headers.

• -cache-all-files: Cache all files including
binaries.

Typically, you cache temporary files created by your
build command to debug issues in tracing the
command.

-cache-path Path Location of folder where cache information is stored.

When tracing a Visual Studio build (devenv.exe), if
you see the error:

path is too long

try using a shorter path for this option to work
around the error.

Example: -cache-path ../cache

 polyspaceConfigure

5-57

Option Argument Description
-keep-cache

-no-keep-cache (default)

None Option to preserve or clean up cache information
after polyspace-configure
(polyspaceConfigure) completes execution.

If polyspace-configure
(polyspaceConfigure) fails, you can provide this
cache information to technical support for debugging
purposes.

See Also
Topics
“Modularize Polyspace Analysis by Using Build Command”
“Create Polyspace Analysis Configuration from Build Command (Makefile)”
“Requirements for Project Creation from Build Systems”
“Create Polyspace Projects from Build Systems That Use Unsupported Compilers”

Introduced in R2013b

5 Functions, Properties, Classes, and Apps

5-58

polyspaceJobsManager
Manage Polyspace jobs on a MATLAB Parallel Server cluster

Syntax
polyspaceJobsManager('listjobs')
polyspaceJobsManager('cancel','-job',jobNumber)
polyspaceJobsManager('remove','-job',jobNumber)
polyspaceJobsManager('getlog','-job',jobNumber)
polyspaceJobsManager('wait','-job',jobNumber)
polyspaceJobsManager('promote','-job',jobNumber)
polyspaceJobsManager('demote','-job',jobNumber)

polyspaceJobsManager('download','-job',jobNumber)
polyspaceJobsManager('download','-job',jobNumber,'-results-folder',
resultsFolder)

polyspaceJobsManager(___ ,'-scheduler',scheduler)

Description
polyspaceJobsManager('listjobs') lists all Polyspace jobs in your cluster.

polyspaceJobsManager('cancel','-job',jobNumber) cancels the specified job. The job
appears in your queue as cancelled.

polyspaceJobsManager('remove','-job',jobNumber) removes the specified job from your
cluster.

polyspaceJobsManager('getlog','-job',jobNumber) displays the log for the specified job.

polyspaceJobsManager('wait','-job',jobNumber) pauses until the specified job is done.

polyspaceJobsManager('promote','-job',jobNumber) moves the specified job up in the
MATLAB job scheduler queue.

polyspaceJobsManager('demote','-job',jobNumber) moves the specified job down in the
MATLAB job scheduler queue.

polyspaceJobsManager('download','-job',jobNumber) downloads the results from the
specified job. The results are downloaded to the folder you specified when starting analysis, using the
-results-dir on page 3-49 option.

polyspaceJobsManager('download','-job',jobNumber,'-results-folder',
resultsFolder) downloads the results from the specified job to resultsFolder.

polyspaceJobsManager(___ ,'-scheduler',scheduler) performs the specified action on the
job scheduler specified. If you do not specify a server with any of the previous syntaxes, Polyspace
uses the server stored in your Polyspace preferences.

 polyspaceJobsManager

5-59

Examples

Manipulate Two Jobs in the Cluster

In this example, use a MATLAB Job Scheduler scheduler to run Polyspace remotely and monitor your
jobs through the queue.

Before performing this example, set up a MATLAB Job Scheduler. This example uses the
myMJS@myCompany.com scheduler. When you perform this example, replace this scheduler with your
own cluster name.

Set up your source files.

tempDir = fullfile(tempdir, 'psdemo', 'src');
mkdir(tempDir);
demo = fullfile(polyspaceroot,'polyspace','examples','cxx',...
'Bug_Finder_Example','sources');
copyfile(demo,tempDir,'f');

Submit two jobs to your scheduler.

If your jobs have not started running, promote the second job to run before the first job.

polyspaceJobsManager('promote','-job','20','-scheduler',...
 'myMJS@myCompany.com')

Job 20 starts running before job 19.

Cancel job 19.

polyspaceJobsManager('cancel','-job','19','-scheduler',...
 'myMJS@myCompany.com')
polyspaceJobsManager('listjobs','-scheduler','myMJS@myCompany.com')

Remove job 19.

polyspaceJobsManager('remove','-job','19','-scheduler',...
 'myMJS@myCompany.com')
polyspaceJobsManager('listjobs','-scheduler','myMJS@myCompany.com')

Get the log for job 20.

polyspaceJobsManager('getlog','-job','20','-scheduler',...
 'myMJS@myCompany.com')

Download the information from job 20.

resFolder3 = fullfile(tempDir, 'res3');
polyspaceJobsManager('download','-job','20','-results-folder', ...
 resFolder3,'-scheduler','myCluster')

Input Arguments
jobNumber — Queued job number
character vector of job number

5 Functions, Properties, Classes, and Apps

5-60

Number of the queued job that you want to manage, specified as a character vector in single quotes.
Example: '-job','10'

resultsFolder — Path to results folder
character vector

Path to results folder specified as a character vector in single quotes. This folder stores the
downloaded results files.
Example: '-results-folder','C:\psdemo\myresults'

scheduler — job scheduler
head node of your cluster | job scheduler name | cluster profile

Job scheduler for remote verifications specified as one of the following:

• Name of the computer that hosts the head node of your MATLAB Parallel Server cluster
(NodeHost).

• Name of the MATLAB Job Scheduler on the head node host (MJSName@NodeHost).
• Name of a MATLAB cluster profile (ClusterProfile).

Example: '-scheduler','myscheduler@mycompany.com'

See Also
polyspaceBugFinder

Topics
“Discover Clusters and Use Cluster Profiles” (Parallel Computing Toolbox)
“Send Polyspace Analysis from Desktop to Remote Servers Using Scripts”

Introduced in R2013b

 polyspaceJobsManager

5-61

polyspaceroot
Get Polyspace installation folder

Syntax
polyspaceroot

Description
polyspaceroot returns the Polyspace installation folder.

Starting in R2019a, to run MATLAB scripts for Polyspace analysis, you install MATLAB and Polyspace
in separate folders and link between them. After installation and linking, to access files in the
Polyspace installation folder from MATLAB, use this function. See also “Integrate Polyspace with
MATLAB and Simulink”“Integrate Polyspace Server Products with MATLAB”.

Examples

Get Polyspace Installation Folder

To determine the Polyspace installation folder, use the polyspaceroot function.

polyspaceroot

C:\Program Files\Polyspace\R2019a

With the products, Polyspace Bug Finder Server or Polyspace Code Prover Server, the default
installation folder in Windows is:

C:\Program Files\Polyspace Server\R2019a

Run Polyspace on Sample Files in Polyspace Installation Folder

To access sample files in the Polyspace installation folder, use the polyspaceroot function to get the
root of the installation folder. Append subfolders to the root folder path with the fullfile function.

Run Bug Finder on the file numerical.c in the subfolder polyspace\examples\cxx
\Bug_Finder_Example\sources of the Polyspace installation folder.

proj = polyspace.Project

% Specify sources and includes
sourceFile = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c');
includeFolder = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources');

% Configure analysis
proj.Configuration.Sources = {sourceFile};

5 Functions, Properties, Classes, and Apps

5-62

proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.EnvironmentSettings.IncludeFolders = {includeFolder};
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

See Also
polyspace.Project

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”
“Integrate Polyspace Server Products with MATLAB”

Introduced in R2019a

 polyspaceroot

5-63

polyspace_report
Generate reports from Polyspace analysis results

Syntax
polyspace_report('-template', template, '-results-dir', resultsFolder,
options)
polyspace_report('-generate-results-list-file', '-results-dir',
resultsFolder, options)
polyspace_report('-generate-variable-access-file', '-results-dir',
resultsFolder, options)

Description
polyspace_report('-template', template, '-results-dir', resultsFolder,
options) generates a report using a predefined template specified by template. By default, the
report is named after the results file in the folder resultsFolder and saved in the Polyspace-Doc
subfolder. You can change the default behavior using additional options.

polyspace_report('-generate-results-list-file', '-results-dir',
resultsFolder, options) exports the list of Polyspace results to a tab-delimited text file.

polyspace_report('-generate-variable-access-file', '-results-dir',
resultsFolder, options) exports the list of global variables to a tab-delimited text file.

Note

• Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB installations.
See “Integrate Polyspace with MATLAB and Simulink”“Integrate Polyspace Server Products with
MATLAB”.

• You need MATLAB Report Generator™ to use this function.

Examples

Generate PDF Report from Results

Generate a PDF report from sample Polyspace Code Prover results.

template = fullfile(polyspaceroot,'toolbox','polyspace','psrptgen','templates',...
 'Developer.rpt');
resPath = fullfile(polyspaceroot,'polyspace','examples','cxx','Code_Prover_Example',...

5 Functions, Properties, Classes, and Apps

5-64

 'Module_1','CP_Result');
polyspace_report('-template', template, '-results-dir', resPath, '-format', 'PDF');

Input Arguments
template — Path to report template file
character vector

Path to report template file, specified as a character vector. To generate multiple reports, specify a
comma-separated list of report template paths in the character vector (do not put a space after the
commas). The templates are available in polyspaceroot\toolbox\polyspace\psrptgen
\templates\ as .rpt files. Here, polyspaceroot is the Polyspace installation folder. For more
information on the available templates, see Bug Finder and Code Prover report (-report-
template).
Example: fullfile(polyspaceroot,'toolbox','polyspace','psrptgen','templates',
'Developer.rpt');

resultsFolder — Folder containing analysis results
character vector

Folder containing analysis results, specified as a character vector. The folder must contain a .psbf
file containing Polyspace Bug Finder results or a .pscp file containing Polyspace Code Prover results.

To generate reports for multiple analyses, specify a comma-separated list of folder paths (do not put a
space after the commas).
Example: 'C:\Polyspace_Workspace\My_project\Module_1\results'

options — Options for generating report
character vector

Options to control report generation, for instance, output format and output name.

Specify each option as a character vector, followed by the option value as a separate character vector.
For instance, you can specify the PDF format by using the syntax polyspace_report(..., '-
format','PDF').

 polyspace_report

5-65

Option Value Description
'-format' 'PDF', 'HTML' or 'WORD' File format of the report that

you generate. By default, the
command generates a Word
document.

To generate reports in multiple
formats, specify a comma-
separated list of formats. (Do
not put a space after the
commas). For instance,
polyspace_report(..., '-
format', 'PDF,HTML').

This option is not compatible
with -generate-variable-
access-file and -generate-
results-list-file.

'-set-language-english' Generate the report in English.
Use this option if your display
option is set to another
language.

'-output-name' Report name, for instance,
PolyspaceReport.

Name of the generated report or
folder name if you generate
multiple reports.

The full path to the report is
created by appending the name
to the current working folder. To
store the reports on a different
path, specify the full path as
value for this option.

See Also

Introduced in R2013b

5 Functions, Properties, Classes, and Apps

5-66

polyspace.Project
Run Polyspace analysis on C and C++ code and read results

Description
Run a Polyspace analysis on C and C++ source files by using this MATLAB object. To specify source
files and customize analysis options, use the Configuration property. To run the analysis, use the
run method. To read results after analysis, use the Results property.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”“Integrate Polyspace Server
Products with MATLAB”.

Creation
proj = polyspace.Project creates an object that you can use to configure and run a Polyspace
analysis, and then read the analysis results.

Properties
Configuration — Analysis options
polyspace.Options object

Options for running Polyspace analysis, implemented as a polyspace.Options object. The object
has properties corresponding to the analysis options. For more information on those properties, see
polyspace.Project.Configuration properties.

You can retain the default options or change them in one of these ways:

• Set the source code language to 'C', 'CPP', or 'C-CPP' (default). Some analysis options might not be
available depending on the language setting of the object.

proj=polyspace.Project;
proj.Configuration=polyspace.Options('C');

• Modify the properties directly.

proj = polyspace.Project;
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';

• Obtain the options from another polyspace.Project object.

proj1 = polyspace.Project;
proj1.Configuration.TargetCompiler.Compiler = 'gnu4.9';

proj2 = proj1;

To use common analysis options across multiple projects, follow this approach. For instance, you
want to reuse all options and change only the source files.

 polyspace.Project

5-67

• Obtain the options from a project created in the user interface of the Polyspace desktop products
(.psprj file).

proj = polyspace.Project;
projectLocation = fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'Bug_Finder_Example.psprj')
proj.Configuration = polyspace.loadProject(projectLocation);

To determine the optimal set of options, set your options in the user interface and then import
them to a polyspace.Project object. In the user interface, you can get tooltip help on options.

• Obtain the options from a Simulink model (applies only to Polyspace desktop products). Before
obtaining the options, generate code from the model.

modelName = 'rtwdemo_roll';
load_system(modelName);

% Set parameters for Embedded Coder target
set_param(modelName, 'SystemTargetFile', 'ert.tlc');
set_param(modelName,'Solver','FixedStepDiscrete');
set_param(modelName,'SupportContinuousTime','on');
set_param(modelName,'LaunchReport','off');
set_param(modelName,'InitFltsAndDblsToZero','on');

if exist(fullfile(pwd,'rtwdemo_roll_ert_rtw'), 'dir') == 0
 slbuild(modelName);
end

% Obtain configuration from model
proj = polyspace.Project;
proj.Configuration = polyspace.ModelLinkOptions(modelName);

Use the options to analyze the code generated from the model.

Results — Analysis results
polyspace.BugFinderResults or polyspace.CodeProverResults object

Results of Polyspace analysis. When you create a polyspace.Project object, this property is
initially empty. The property is populated only after you execute the run method of the object.
Depending on the argument to the run method, 'bugFinder' or 'codeProver', the property is
implemented as a polyspace.BugFinderResults object or polyspace.CodeProverResults
object.

To read the results, use these methods of the polyspace.BugFinderResults or
polyspace.CodeProverResults object:

• getSummary: Obtain a summarized format of the results into a MATLAB table.

proj = polyspace.Project;
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.ResultsDir = fullfile(pwd,'results');

run(proj, 'bugFinder');

resObj = proj.Results;
resTable = getSummary(resObj, 'defects');

5 Functions, Properties, Classes, and Apps

5-68

For more information, see getSummary.
• getResults: Obtain the full results or a more readable format into a MATLAB table.

proj = polyspace.Project;
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.ResultsDir = fullfile(pwd,'results');

run(proj, 'bugFinder');

resObj = proj.Results;
resTable = getResults(resObj, 'readable');

For more information, see getResults.

Object Functions
run Run a Polyspace analysis

Examples
Check for Bugs

Run a Polyspace Bug Finder analysis on the example file numerical.c. Configure these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = run(proj, 'bugFinder');

% Read results
resObj = proj.Results;
bfSummary = getSummary(resObj, 'defects');

Prove Absence of Run-Time Errors

Run a Polyspace Code Prover analysis on the example file single_file_analysis.c. Configure
these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.
• Specify that a main function must be generated, if the function does not exist in the source code.

proj = polyspace.Project

% Configure analysis

 polyspace.Project

5-69

proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');
proj.Configuration.CodeProverVerification.MainGenerator = true;

% Run analysis
cpStatus = run(proj, 'codeProver');

% Read results
resObj = proj.Results;
cpSummary = getSummary(resObj, 'runtime');

Check for Bugs and MISRA C:2012 Violations

Run a Polyspace Bug Finder analysis on the example file single_file_analysis.c. Configure
these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.
• Enable checking of MISRA C:2012 rules. Check for the mandatory rules only.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');
proj.Configuration.CodingRulesCodeMetrics.EnableMisraC3 = true;
proj.Configuration.CodingRulesCodeMetrics.MisraC3Subset = 'mandatory';

% Run analysis
bfStatus = run(proj, 'bugFinder');

% Read results
resObj = proj.Results;
defectsSummary = getSummary(resObj, 'defects');
misraSummary = getSummary(resObj, 'misraC2012');

See Also
Topics
“Run Polyspace Analysis by Using MATLAB Scripts”
“Generate MATLAB Scripts from Polyspace User Interface”
“Troubleshoot Polyspace Analysis from MATLAB”
“Integrate Polyspace Server Products with MATLAB”

Introduced in R2017b

5 Functions, Properties, Classes, and Apps

5-70

polyspace.Options class
Package: polyspace

Create object for running Polyspace analysis on handwritten code

Description
Create an object that specifies Polyspace options. When running a Polyspace analysis from MATLAB,
specify the configuration by using this options object. To specify source files and customize analysis
options, change the object properties.

polyspace.Options object apply to handwritten code. To analyze model-generated code (using the
Polyspace desktop products), use polyspace.ModelLinkOptions instead.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”“Integrate Polyspace Server
Products with MATLAB”.

Construction
opts = polyspace.Options creates an object whose properties correspond to options for running
a Polyspace analysis.

proj = polyspace.Project creates a polyspace.Project object. The object has a property
Configuration, which is a polyspace.Options object.

opts = polyspace.Options(lang) creates a Polyspace options object with options that are
applicable to the language lang.

opts = polyspace.loadProject(projectFile) creates a Polyspace options object from an
existing Polyspace project projectFile. You set the options in your project in the Polyspace user
interface and create the options object from that project for programmatically running the analysis.

Input Arguments

lang — Language of analysis
'C-CPP' (default) | 'C' | 'CPP'

The language of the analysis specified as 'C-CPP', 'C', or 'CPP'. This argument determines the
object properties.
Data Types: char

projectFile — Name of .psprj file
character vector

Name of Polyspace project file with extension .psprj, specified as a character vector.

If the file is not in the current folder, projectFile must include a full or relative path. To identify
the current folder, use pwd. To change the current folder, use cd.

 polyspace.Options class

5-71

Note You cannot use the loadProject method on a project file that is created from a build
command by using polyspace-configure.

Example: 'C:\projects\myProject.psprj'

Properties
The object properties correspond to the analysis options for Polyspace projects. The properties are
organized in the same categories as the Polyspace interface. The property names are a shortened
version of the DOS/UNIX command-line name. For syntax details, see polyspace.Project.Configuration
properties.

Methods

copyTo Copy common settings between Polyspace options objects
generateProject Generate psprj project from options object
toScript Add Polyspace options object definition to a script

Examples

Customize and Run Analysis

Create a Polyspace analysis options object and customize the properties. Then, run an analysis.

Create object and customize properties. In case you do not have write access to your current folder, a
temporary folder is being used for storing analysis results.

sources = fullfile(polyspaceroot, 'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
opts = polyspace.Options();
opts.Prog = 'MyProject';
opts.Sources = {sources};
opts.TargetCompiler.Compiler = 'gnu4.7';
opts.ResultsDir = tempname;

Run a Bug Finder analysis. To run a Code Prover analysis, use polyspaceCodeProver instead of
polyspaceBugFinder.

results = polyspaceBugFinder(opts);

With the Polyspace Server products, you can use the functions polyspaceBugFinderServer or
polyspaceCodeProverServer.

Open the results in the Polyspace user interface of the desktop products.

polyspaceBugFinder('-results-dir',opts.ResultsDir);

5 Functions, Properties, Classes, and Apps

5-72

Run Polyspace by Generating a Project File

Create a Polyspace analysis options object and customize the properties. Then, run a Bug Finder
analysis.

Create object and customize properties.

sources=fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
opts = polyspace.Options();
opts.Prog = 'MyProject';
opts.Sources = {sources};
opts.TargetCompiler.Compiler = 'gnu4.7';
opts.ResultsDir = tempname;

Generate a Polyspace project, name it using the Prog property, and open the project in the Polyspace
interface.

psprj = opts.generateProject(opts.Prog);
polyspaceBugFinder(psprj);

You can also analyze the project from the command line. Run the analysis and open the results in the
Polyspace interface.

results = polyspaceBugFinder(psprj, '-nodesktop');
polyspaceBugFinder('-results-dir',opts.ResultsDir);

Alternatives
If you are analyzing code generated from a model, use polyspace.ModelLinkOptions instead.

See Also
polyspace.ModelLinkOptions | polyspace.Project | polyspaceBugFinder |
polyspaceBugFinderServer

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”
“Generate MATLAB Scripts from Polyspace User Interface”
“Integrate Polyspace Server Products with MATLAB”

Introduced in R2017a

 polyspace.Options class

5-73

polyspace.ModelLinkOptions class
Package: polyspace

Create a project configuration object for running Polyspace analysis on generated code

Description
Run a Polyspace analysis from MATLAB by using a project configuration object. To specify source files
and customize analysis options, change the object properties.

This class is intended for model-generated code. If you are analyzing handwritten code, use
polyspace.Options instead.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”.

Construction
psprjConfig = polyspace.ModelLinkOptions creates a project configuration object that is
configured for running a Polyspace analysis on generated code.

psprjConfig = polyspace.ModelLinkOptions(lang) creates a project configuration object
that is configured to run analysis on code generated in the language lang.

psprjConfig = polyspace.ModelLinkOptions(model) creates a project configuration object
that is configured by using model specific information from the Simulink model model. Prior to
extracting options from model, you must load the model and generate code from it.

psprjConfig = polyspace.ModelLinkOptions(model, psOpt) creates a model-specific
project configuration object that is configured by using the Polyspace analysis options specified in
psOpt.

psprjConfig = polyspace.ModelLinkOptions(model, psOpt, asModelRef) creates a
project configuration object that uses asModelRef to specify which type of generated code to
analyze—standalone code or model reference code.

Input Arguments

lang — Language of analysis
'C-CPP' (default) | 'C' | 'CPP'

The language of the analysis specified as 'C-CPP', 'C', or 'CPP'. This argument determines the
object properties.

model — Model or subsystem name
character vector

Name or path to model or subsystem, specified as a character vector.

Prior to extracting options from the model, you must:

5 Functions, Properties, Classes, and Apps

5-74

1 Load the model. Use load_system or open_system.
2 Generate code from the model. Use slbuild or slbuild.

Example: 'psdemo_model_link_sl'

psOpt — Polyspace analysis options object
pslinkoptions object

An object containing the options that you use for the Polyspace analysis. You create this by calling the
function pslinkoptions. You can customize the options object by changing the properties of the
psOpt object.
Example: psOpt = pslinkoptions(model) where model is the name of a Simulink model.

asModelRef — Indicator for model reference analysis
false (default) | true

Indicator for model reference analysis, specified as true or false.

• To analyze generated code used or called elsewhere, set the flag asModelRef to true. This
option is equivalent to choosing Analyze Code from > Code Generated as Model Reference
on the Polyspace tab in the Simulink toolstrip.

• To analyze code that is generated to be used as stand-alone code, set the flag asModelRef to
false. This option is equivalent to choosing Analyze Code from > Code Generated as Top
model on the Polyspace tab in the Simulink toolstrip.

Data Types: logical

Properties
The object properties correspond to the configuration options for Polyspace projects. The properties
are organized in the same categories as the Polyspace interface. The property names are a shortened
version of the DOS command-line name. For syntax details, see polyspace.ModelLinkOptions.

Methods
copyTo Copy common settings between Polyspace options objects
generateProject Generate psprj project from options object
toScript Add Polyspace options object definition to a script

Examples

Script Analysis of Model Generated Code

This example shows how to customize and run an analysis on code generated from a model.

Generate code from the model sldemo_bounce. Before code generation, set a system target file
appropriate for code analysis. See also “Recommended Model Configuration Parameters for
Polyspace Analysis”.

modelName = 'rtwdemo_roll';
[TEMPDIR, CGDIR] = rtwdemodir();

 polyspace.ModelLinkOptions class

5-75

load_system(modelName);

% Set parameters for Embedded Coder target
set_param(modelName, 'SystemTargetFile', 'ert.tlc');
set_param(modelName,'Solver','FixedStepDiscrete');
set_param(modelName,'SupportContinuousTime','on');
set_param(modelName,'LaunchReport','off');
set_param(modelName,'InitFltsAndDblsToZero','on');

slbuild(modelName);

Associate a polyspace.ModelLinkOptions object with the model. A subset of the object properties
are set from the configuration parameters associated with the model. The other properties take their
default values. For details on the configuration parameters, see “Bug Finder Analysis in Simulink”.

psprjCfg = polyspace.ModelLinkOptions(modelName);

Change the property values if needed. For instance, you can specify that the analysis must check for
all MISRA C: 2012 violations and generate a PDF report of the results. You can also specify a folder
for the analysis results.

psprjCfg.CodingRulesCodeMetrics.EnableMisraC3 = true;
psprjCfg.CodingRulesCodeMetrics.MisraC3Subset = 'all';
psprjCfg.MergedReporting.EnableReportGeneration = true;
psprjCfg.MergedReporting.ReportOutputFormat = 'PDF';
psprjCfg.ResultsDir = 'newResfolder';

Create a polyspace.Project object. Associate the Configuration property of this object to the
options that you previously specified.

proj = polyspace.Project;
proj.Configuration = psprjCfg;

Run analysis and open results.

cpStatus = proj.run('codeProver');
proj.Results.getResults('readable');

Analyze Code Generated as Model Reference

This example shows how to analyze generated code used as a callable entity in another model or
code.

Load the Simulink model rtwdemo_roll and configure it for a Polyspace analysis. For details, see
“Recommended Model Configuration Parameters for Polyspace Analysis” for details.

% Make directory for code generation
[TEMPDIR, CGDIR] = rtwdemodir();
% Specify model name
model = 'rtwdemo_roll';
% Load the model
load_system(model);
% Configure the model for generating code
set_param(model, 'SystemTargetFile', 'ert.tlc');
set_param(model,'MatFileLogging','off');
set_param(model,'GenerateComments','on');

5 Functions, Properties, Classes, and Apps

5-76

set_param(model,'Solver','FixedStepDiscrete');
set_param(model,'LaunchReport','off');

To generate code as a model reference from the Simulink model, use slbuild. Set the buildspec
parameter to 'ModelReferenceCoderTargetOnly'.

slbuild(model,'ModelReferenceCoderTargetOnly');

To configure the Polyspace analysis of the generated code, create an options object psOpt by using
the function pslinkoptions. Change the properties of the object as needed. For instance, to run a
Code Prover analysis, set the Verificationmode to 'CodeProver'.

psOpt = pslinkoptions(model);
psOpt.VerificationMode = 'CodeProver';

To run a Polyspace analysis, create and configure a Polyspace project configuration object.

• To create the Polyspace project configuration object, use the function
polyspace.ModelLinkOptions.

• To associate the Polyspace analysis options with the project configuration, set the object psOpt as
the second argument in polyspace.ModelLinkOptions().

• To specify that the generated code must be analyzed as a model reference, specify the third
argument as 'true'.

For instance:

psprjCfg = polyspace.ModelLinkOptions(model, psOpt,true);

To configure the Polyspace project, change the properties of the psprjCfg object. For instance, to
enable checkers for the mandatory MISRA C: 2012 rules and to generate a PDF report of the results,
use:

psprjCfg.CodingRulesCodeMetrics.EnableMisraC3 = true;
psprjCfg.CodingRulesCodeMetrics.MisraC3Subset = 'mandatory-required';
psprjCfg.MergedReporting.EnableReportGeneration = true;
psprjCfg.MergedReporting.ReportOutputFormat = 'PDF';

For convenience, you can specify a separate result folder.

psprjCfg.ResultsDir = 'newResfolder';

Create a Polyspace project by using polyspace.Project and associate the project configuration
with it.

proj = polyspace.Project;
proj.Configuration = psprjCfg;

Run the Polyspace analysis by using the run function of the object proj.

cpStatus = proj.run('codeProver');

Because you enabled PDF report generation, the result of the Polyspace analysis is reported in a PDF
file, which can be found in newResfolder/Polyspace-Doc. To view the results in a MATLAB table,
use:

 polyspace.ModelLinkOptions class

5-77

result = proj.Results.getResults('readable');

Alternatives
If you are analyzing handwritten code, use a polyspace.Project object directly. Alternatively, use
a polyspace.Options object.

See Also
polyspace.Options | polyspace.Project | polyspaceBugFinder | pslinkrun

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”
polyspace.ModelLinkOptions Properties

Introduced in R2017a

5 Functions, Properties, Classes, and Apps

5-78

polyspace.BugFinderOptions class
Package: polyspace

Create Polyspace Bug Finder object for handwritten code

Note This class is deprecated and will be removed in a future release. Use polyspace.Options
instead.

Description
Customize a Polyspace Bug Finder analysis from MATLAB by creating a Bug Finder options object. To
specify source files and customize analysis options, change the object properties.

If you are analyzing model-generated code, use polyspace.ModelLinkBugFinderOptions
instead.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”.

Construction
opts = polyspace.BugFinderOptions creates a Bug Finder options object with available
options.

opts = polyspace.BugFinderOptions(lang) creates a Bug Finder options object with options
that are applicable for the language lang.

Input Arguments

lang — Language of analysis
'C-CPP' (default) | 'C' | 'CPP'

The language of the analysis specified as 'C-CPP', 'C', or 'CPP'. This argument determines which
properties the object has.

Properties
The object properties are the analysis options for Polyspace Bug Finder projects. The properties are
organized in the same categories as the Polyspace interface. The property names are a shortened
version of the DOS/UNIX command-line name. For syntax details, see polyspace.Options.

 polyspace.BugFinderOptions class

5-79

Methods

copyTo Copy common settings between Polyspace options objects
generateProject Generate psprj project from options object
toScript Add Polyspace options object definition to a script

Examples

Customize and Run Analysis

Create a Bug Finder analysis options object and customize the properties. Then, run an analysis.

Create object and customize properties.

sources = fullfile(polyspaceroot, 'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
optsBF = polyspace.BugFinderOptions();
optsBF.Prog = 'MyProject';
optsBF.Sources = {sources};
optsBF.TargetCompiler.Compiler = 'gnu4.7';
optsBF.ResultsDir = tempname;

Run the analysis and open the results in the Polyspace interface.

results = polyspaceBugFinder(optsBF);
polyspaceBugFinder('-results-dir',optsBF.ResultsDir);

Run Polyspace by Generating a Project File

Create a Bug Finder analysis options object and customize the properties. Then, run an analysis.

Create object and customize properties.

sources = fullfile(polyspaceroot, 'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
optsBF = polyspace.BugFinderOptions();
optsBF.Prog = 'MyProject';
optsBF.Sources = {sources};
optsBF.TargetCompiler.Compiler = 'gnu4.7';
optsBF.ResultsDir = tempname;

Generate a Polyspace project, name it using the Prog property, and open the project in the Polyspace
interface.

psprj = generateProject(optsBF, optsBF.Prog);
polyspaceBugFinder(psprj);

Run the analysis and open the results in the Polyspace interface.

5 Functions, Properties, Classes, and Apps

5-80

results = polyspaceBugFinder(psprj, '-nodesktop');
polyspaceBugFinder('-results-dir',optsBF.ResultsDir);

Alternatives
If you are analyzing code generated from a model, use polyspace.ModelLinkBugFinderOptions
instead.

See Also
polyspace.Options | polyspace.ModelLinkBugFinderOptions | polyspaceBugFinder

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”

Introduced in R2016b

 polyspace.BugFinderOptions class

5-81

polyspace.DefectsOptions class
Package: polyspace

Create custom list of defects to check

Description
Create a custom list of defects to check in a Polyspace analysis.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink” or “Integrate Polyspace Server
Products with MATLAB”.

Construction
defectsList = polyspace.DefectsOptions creates the defect options object defectsList.
You can customize the list of active defects by changing the properties.

Properties
An object is created with supported defects as properties. The defects are listed by their command-
line name. See “Short Names of Bug Finder Defect Checkers”.

By default, all defects are turned off. To turn on a defect, set the defect to true. For example:

defectsList = polyspace.DefectsOptions;
defectsList.FLOAT_ZERO_DIV = true;

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Customize List of Defects to Check

Customize the list of defects checked during a Polyspace Bug Finder analysis.

Create two objects: a polyspace.DefectsOptions object for setting coding rules and a
polyspace.Project object for running the Polyspace analysis.

defectsList = polyspace.DefectsOptions;
proj = polyspace.Project;

Enable the numerical defects.

defectsList.FLOAT_ZERO_DIV = true;
defectsList.INT_ZERO_DIV = true;

5 Functions, Properties, Classes, and Apps

5-82

defectsList.FLOAT_ABSORPTION = true;
defectsList.BITWISE_NEG = true;
defectsList.FLOAT_CONV_OVFL = true;
defectsList.FLOAT_OVFL = true;
defectsList.INT_CONV_OVFL = true;
defectsList.INT_OVFL = true;
defectsList.FLOAT_STD_LIB = true;
defectsList.INT_STD_LIB = true;
defectsList.SHIFT_NEG = true;
defectsList.SHIFT_OVFL = true;
defectsList.SIGN_CHANGE = true;
defectsList.UINT_CONV_OVFL = true;
defectsList.UINT_OVFL = true;
defectsList.BAD_PLAIN_CHAR_USE = true;

Add the customized list of defects to the Configuration property of the polyspace.Project
object.

proj.Configuration.BugFinderAnalysis.CheckersList = defectsList;
proj.Configuration.BugFinderAnalysis.CheckersPreset = 'custom';

You can now use the polyspace.Project object to run the analysis.

See Also
polyspace.Project | polyspace.Options | polyspace.ModelLinkOptions |
polyspace.CodingRulesOptions

Topics
“Short Names of Bug Finder Defect Checkers”

Introduced in R2016b

 polyspace.DefectsOptions class

5-83

polyspace.ModelLinkBugFinderOptions class
Package: polyspace

Create Polyspace Bug Finder object for generated code

Note This class is deprecated and will be removed in a future release. Use
polyspace.ModelLinkOptions instead.

Description
Customize a Polyspace Bug Finder analysis from MATLAB by creating a Bug Finder options object. To
specify source files and customize analysis options, change the object properties.

This class is intended for model-generated code. If you are analyzing handwritten code, use
polyspace.BugFinderOptions instead.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”.

Construction
opts = polyspace.BugFinderOptions creates a Bug Finder options object for generated code
with available options for C/C++ generated code.

Properties
The object properties are the analysis options for Polyspace Bug Finder model link projects. The
properties are organized in the same categories as the Polyspace interface. The property names are a
shortened version of the DOS command-line name. For syntax details, see
polyspace.ModelLinkOptions.

Methods

copyTo Copy common settings between Polyspace options objects
generateProject Generate psprj project from options object
toScript Add Polyspace options object definition to a script

Examples

Script Analysis of Model Generated Code

This example shows how to customize and run an analysis on model generated code with MATLAB
functions and objects.

5 Functions, Properties, Classes, and Apps

5-84

Create a custom configuration that checks MISRA C 2012 rules and generates a PDF report.

opts = polyspace.ModelLinkBugFinderOptions();
opts.CodingRulesCodeMetrics.EnableMisraC3 = true;
opts.CodingRulesCodeMetrics.MisraC3Subset = 'all';
opts.MergedReporting.ReportOutputFormat = 'PDF';
opts.MergedReporting.EnableReportGeneration = true;

Generate code from psdemo_model_link_sl.

[TEMPDIR, CGDIR] = rtwdemodir();
model = 'psdemo_model_link_sl';
load_system(model);
slbuild(model);

Add the configuration to pslinkoptions object.

prjfile = opts.generateProject('model_link_opts');
mlopts = pslinkoptions(model);
mlopts.EnablePrjConfigFile = true;
mlopts.PrjConfigFile = prjfile;
mlopts.VerificationMode = 'BugFinder';

Run analysis.

[polyspaceFolder, resultsFolder] = pslinkrun(model);

Alternatives
If you are analyzing handwritten code, use polyspace.BugFinderOptions instead.

See Also
polyspace.ModelLinkOptions | polyspace.BugFinderOptions | polyspaceBugFinder |
pslinkrun

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”

 polyspace.ModelLinkBugFinderOptions class

5-85

polyspace.GenericTargetOptions class
Package: polyspace

Create a generic target configuration

Description
Create a custom target for a Polyspace analysis if your target processor does not match one of the
predefined targets,.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”“Integrate Polyspace Server
Products with MATLAB”.

Construction
genericTarget = polyspace.GenericTargetOptions creates a generic target that you can
customize. To specify the sizes and alignment of data types, change the properties of the object. For
instance:

target = polyspace.GenericTargetOptions;
target.CharNumBits = 16;

Properties
For more details about any of the properties below, see Generic target options.

Alignment — Largest alignment of struct or array objects
32 (default) | 16 | 8

Largest alignment of struct or array objects, specified as 32, 16, or 8. Comparable with the DOS/
UNIX command-line option -align.
Example: target.Alignment = 8

CharNumBits — Define the number of bits for a char
8 (default) | 16

Define the number of bits for a char, specified as 8 or 16. Comparable with the DOS/UNIX command-
line option -char-is-16bits.
Example: target.CharNumBits = 16

DoubleNumBits — Define the number of bits for a double
32 (default) | 64

Define the number of bits for a double, specified as 32 or 64. Comparable with the DOS/UNIX
command-line option -double-is-64bits.
Example: target.DoubleNumBits = 64

5 Functions, Properties, Classes, and Apps

5-86

Endianness — Endianness of target architecture
little (default) | big

Endianness of target architecture, specified as little or big. Comparable with the DOS/UNIX
command-line options -little-endian or -big-endian.
Example: target.Endianess = 'big'

IntNumBits — Define the number of bits for an int
16 (default) | 32

Define the number of bits for an int, specified as 16 or 32. Comparable with the DOS/UNIX
command-line option -int-is-32bits.
Example: target.IntNumBits = 32

LongLongNumBits — Define the number of bits for a long long
32 (default) | 64

Define the number of bits for a long long, specified as 32 or 64. Comparable with the DOS/UNIX
command-line option -long-long-is-64bits.
Example: target.LongNumBits = 64

LongNumBits — Define the number of bits for a long
32 (default)

Define the number of bits for a long, specified as 32. Comparable with the DOS/UNIX command-line
option -long-is-32bits.
Example: target.LongNumBits = 32

PointerNumBits — Define the number of bits for a pointer
16 (default) | 24 | 32

Define the number of bits for a pointer, specified as 16, 24, or 32. Comparable with the DOS/UNIX
command-line options -pointer-is-24bits and -pointer-is-32bits.
Example: target.PointerNumBits = 32

ShortNumBits — Define the number of bits for a short
16 (default) | 8

Define the number of bits for an int, specified as 16 or 8. Comparable with the DOS/UNIX command-
line option -short-is-8bits.
Example: target.ShortNumBits = 8

SignOfChar — Default sign of plain char
signed (default) | unsigned

Default sign of plain char, specified as signed or unsigned. Comparable with the DOS/UNIX
command-line option -default-sign-of-char.
Example: target.SignOfChar = 'unsigned'

 polyspace.GenericTargetOptions class

5-87

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples
Customize Generic Target Settings

Use a custom target for the Polyspace analysis.

Create two objects: a polyspace.GenericTargetOptions object for creating a custom target and
a polyspace.Project object for running the Polyspace analysis.

target = polyspace.GenericTargetOptions;
proj = polyspace.Project;

Customize the generic target.

target.Endianess = 'big';
target.LongLongNumBits = 64;
target.ShortNumBits = 8;

Add the custom target to the Configuration property of the polyspace.Project object.

proj.Configuration.TargetCompiler.Target = target;

You can now use the polyspace.Project object to run the analysis.

polyspace.Project | polyspace.Options | polyspace.ModelLinkOptions |
polyspace.CodingRulesOptions | Generic target options

Introduced in R2016b

5 Functions, Properties, Classes, and Apps

5-88

polyspace.CodingRulesOptions class
Package: polyspace

Create custom list of coding rules to check

Description
Create a custom list of coding rules to check in a Polyspace analysis.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink”“Integrate Polyspace Server
Products with MATLAB”.

Construction
ruleList = polyspace.CodingRulesOptions(RuleSet) creates the coding rules object
ruleList for the RuleSet coding rule set. Set the active rules in the coding rules object.

Input Arguments

RuleSet — Standard coding rule set
misraC (default) | misraC2012 | misraAcAgc | misraCpp | jsf | certC | certCpp | iso17961 |
autosarCpp14

Standard coding rule set specified as one of the coding rule acronyms.
Example: 'misraCpp'
Data Types: char

Properties
For each coding rule set, an object is created with all supported rules divided into sections. By
default, all rules are on. To turn off a rule, set the rule to false. For example:

misraRules = polyspace.CodingRulesOptions('misraC');
misraRules.Section_20_Standard_libraries.rule_20_1 = false;

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects.

Examples

Customize List of Coding Rules to Check

Customize the coding rules that are checked in a Polyspace analysis. Since all rules are enabled by
default, you can create a custom subset by disabling some rules.

 polyspace.CodingRulesOptions class

5-89

Create two objects: a polyspace.CodingRulesOptions object for setting coding rules and a
polyspace.Project object for running the Polyspace analysis.

misraRules = polyspace.CodingRulesOptions('misraC2012');
proj = polyspace.Project;

Customize the coding rule list by turning off rules 2.1-2.7.

misraRules.Section_2_Unused_code.rule_2_1 = false;
misraRules.Section_2_Unused_code.rule_2_2 = false;
misraRules.Section_2_Unused_code.rule_2_3 = false;
misraRules.Section_2_Unused_code.rule_2_4 = false;
misraRules.Section_2_Unused_code.rule_2_5 = false;
misraRules.Section_2_Unused_code.rule_2_6 = false;
misraRules.Section_2_Unused_code.rule_2_7 = false;

Add the customized list of coding rules to the Configuration property of the polyspace.Project
object.

proj.Configuration.CodingRulesCodeMetrics.MisraC3Subset = misraRules;
proj.Configuration.CodingRulesCodeMetrics.EnableMisraC3 = true;
proj.Configuration.CodingRulesCodeMetrics.EnableCheckersSelectionByFile = true;

You have to enable checkers selection by file because the Polyspace run uses an XML file underneath
to enable the coding rule checkers. The XML file is saved in a .settings subfolder of the results
folder.

You can now use the polyspace.Project object to run the analysis. For instance, you can enter:

proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
run(proj, 'bugfinder');

Create Coding Rules Object Using Rule Numbers to Enable

Suppose that you want to specify a subset of MISRA C: 2012 rules for the analysis. Instead of
enumerating rules that you want disabled, you can specify the rules that you want to keep enabled.
You can also specify the rule numbers only without the MISRA C: 2012 sections containing the rules.

Specify the rule numbers in a cell array to the createRulesObject function defined as follows.

function rulesObject = createRulesObject(rulesToEnable)

%% This function takes a cell array of MISRA C:2012 rules and returns
%% a polyspace.CodingRulesOptions object with the rules enabled.
%% Example input argument: {'2.7', '3.1'}

 rulesObject = polyspace.CodingRulesOptions('misraC2012');

 % Coding Standards documents have many sections. Loop over all
 % sections.
 ruleSections = properties(rulesObject);
 for i=1:length(ruleSections)
 sectionName = ruleSections{i};
 rulesInSection = properties(rulesObject.(sectionName));

5 Functions, Properties, Classes, and Apps

5-90

 % Loop over all rules in a section, enable or disable rule based
 % on input
 for j=1:length(rulesInSection)
 ruleNumberAsProperty = rulesInSection{j};
 ruleNumber = strrep(strrep(ruleNumberAsProperty,'rule_',''),'_','.');
 if(any(strcmp(rulesToEnable,ruleNumber)))
 rulesObject.(sectionName).(ruleNumberAsProperty)=1;
 else
 rulesObject.(sectionName).(ruleNumberAsProperty)=0;
 end
 end
 end
end

For instance, to enable rules 1.1 and 2.2, enter:

createRulesObject({'1.1','2.2'})

See Also
polyspace.Project | polyspace.Options | polyspace.ModelLinkOptions

Introduced in R2016b

 polyspace.CodingRulesOptions class

5-91

polyspace.BugFinderResults
Read Polyspace Bug Finder results from MATLAB

Description
Read Polyspace Bug Finder analysis results to MATLAB tables by using this object. You can obtain a
high-level overview of results or details such as each instance of a defect.

Note Before you run Polyspace from MATLAB, you must link your Polyspace and MATLAB
installations. See “Integrate Polyspace with MATLAB and Simulink” or “Integrate Polyspace Server
Products with MATLAB”.

Creation

Syntax
resObj = polyspace.BugFinderResults(resultsFolder)
proj = polyspace.Project; resObj = proj.Results;

Description

resObj = polyspace.BugFinderResults(resultsFolder) creates an object for reading a
specific set of Bug Finder results into MATLAB tables. Use the object methods to read the results.

proj = polyspace.Project; resObj = proj.Results; creates a polyspace.Project
object with a Results property. If you run a Bug Finder analysis, this property is a
polyspace.BugFinderResults object.

Input Arguments

resultsFolder — Name of result folder
character vector

Name of result folder, specified as a character vector. The folder must directly contain the results file
with extension .psbf. Even if the results file resides in a subfolder of the specified folder, it cannot
be accessed.

If the folder is not in the current folder, resultsFolder must include a full or relative path.
Example: 'C:\Polyspace\Results\'

Object Functions
getSummary View number of Polyspace results organized by results type (Bug Finder) or color and

file (Code Prover)
getResults View all instances of Bug Finder or Code Prover results

5 Functions, Properties, Classes, and Apps

5-92

Examples

Read Existing Results to MATLAB Tables

This example shows how to read Bug Finder analysis results from MATLAB.

Copy a demo result set to a temporary folder.

resPath=fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example',...
'Module_1','BF_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.BugFinderResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = getSummary (resObj);
resTable = getResults (resObj);

Run Analysis and Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project;

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace',...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = run(proj, 'bugFinder');

% Read results
resObj = proj.Results;
bfSummary = getResults(resObj, 'readable');

See Also

Introduced in R2017a

 polyspace.BugFinderResults

5-93

pslinkoptions Properties
Properties for the pslinkoptions object

Description
You can create a pslinkoptions object to customize your analysis at the command-line. Use these
properties to specify configuration options, where and how to store results, additional files to include,
and data range modes.

Properties
Configuration Options

VerificationSettings — Coding rule and configuration settings for C code
'PrjConfig' (default) | 'PrjConfigAndMisraAGC' | 'PrjConfigAndMisra' |
'PrjConfigAndMisraC2012' | 'MisraAGC' | 'Misra' | 'MisraC2012'

Coding rule and configuration settings for C code specified as:

• 'PrjConfig' – Inherit options from the project configuration.
• 'PrjConfigAndMisraAGC' – Inherit options from the project configuration and enable MISRA

AC AGC rule checking.
• 'PrjConfigAndMisra' – Inherit options from the project configuration and enable MISRA

C:2004 rule checking.
• 'PrjConfigAndMisraC2012' – Inherit options from the project configuration and enable MISRA

C:2012 guideline checking.
• 'MisraAGC' – Enable MISRA AC AGC rule checking. This option runs only compilation and rule

checking.
• 'Misra' – Enable MISRA C:2004 rule checking. This option runs only compilation and rule

checking.
• 'MisraC2012' – Enable MISRA C:2012 rule checking. This option runs only compilation and

guideline checking.

Example: opt.VerificationSettings = 'PrjConfigAndMisraC2012'

VerificationMode — Polyspace mode
'BugFinder' (default) | 'CodeProver'

Polyspace mode specified as 'BugFinder', for a Bug Finder analysis, or 'CodeProver', for a Code
Prover verification.
Example: opt.VerificationMode = 'BugFinder';

EnablePrjConfigFile — Allow a custom configuration file
false (default) | true

Allows a custom configuration file instead of the default configuration specified as true or false. Use
the PrjConfigFile option to specify the configuration file.

5 Functions, Properties, Classes, and Apps

5-94

Example: opt.EnablePrjConfigFile = true;

PrjConfigFile — Custom configuration file
'' (default) | full path to a .psprj file

Custom configuration file to use instead of the default configuration specified by the full path to
a .psprj file. Use the EnablePrjConfigFile option to use this configuration file during your
analysis.
Example: opt.PrjConfigFile = 'C:\Polyspace\config.psprj';

CheckConfigBeforeAnalysis — Configuration check before analysis
'OnWarn' (default) | 'OnHalt' | 'Off'

This property sets the level of configuration checking done before the analysis starts. The
configuration check before analysis is specified as:

• 'Off' — Checks only for errors. Stops if errors are found.
• 'OnWarn' — Stops for errors. Displays a message for warnings.
• 'OnHalt' — Stops for errors and warnings.

Example: opt.CheckConfigBeforeAnalysis = 'OnHalt';

Results

ResultDir — Results folder name and location
'C:\Polyspace_Results\results_$ModelName$' (default) | folder name | folder path

Results folder name and location specified as the local folder name or the folder path. This folder is
where Polyspace writes the analysis results. This folder name can be either an absolute path or a path
relative to the current folder. The text $ModelName$ is replaced with the name of the original model.
Example: opt.ResultDir = '\results_v1_$ModelName$';

AddSuffixToResultDir — Add unique number to the results folder name
false (default) | true

Add unique number to the results folder name specified as true or false. If true, a unique number is
added to the end of every new result. Using this option helps you avoid overwriting the previous
results folders.
Example: opt.AddSuffixToResultDir = true;

OpenProjectManager — Open the Polyspace environment
false (default) | true

Open the Polyspace environment to monitor the progress of the analysis, specified as true or false.
Afterward, you can review the results.
Example: opt.OpenProjectManager = true;

AddToSimulinkProject — Add results to the open Simulink project
false (default) | true

Add your results to the currently open Simulink project, if any, specified as true or false. This option
allows you to keep your Polyspace results organized with the rest of your project files. If a Simulink
project is not open, the results are not added to a Simulink project.

 pslinkoptions Properties

5-95

Example: opt.AddToSimulinkProject = true;

Additional Files

EnableAdditionalFileList — Allow an additional file list
false (default) | true

Allow an additional file list to be analyzed, specified as true or false. Use with the
AdditionalFileList option.
Example: opt.EnableAdditionalFileList = true;

AdditionalFileList — List of additional files to be analyzed
{0x1 cell} (default) | cell array of files

List of additional files to be analyzed specified as a cell array of files. Use with the
EnableAdditionalFileList option to add these files to the analysis.
Example: opt.AdditionalFileList = {'sources\file1.c', 'sources\file2.c'};
Data Types: cell

Data Ranges

InputRangeMode — Enable design range information
'DesignMinMax' (default) | 'FullRange'

Enable design range information specified as 'DesignMinMax', to use data ranges defined in blocks
and workspaces, or 'FullRange', to treat inputs as full-range values.
Example: opt.InputRangeMode = 'FullRange';

ParamRangeMode — Enable constant parameter values
'None' (default) | 'DesignMinMax'

Enable constant parameter values, specified as 'None', to use constant parameters values specified
in the code, or 'DesignMinMax' to use a range defined in blocks and workspaces.
Example: opt.ParamRangeMode = 'DesignMinMax';

OutputRangeMode — Enable output assertions
'None' (default) | 'DesignMinMax'

Enable output assertions specified by 'None', to not apply assertions, or 'DesignMinMax' to apply
assertions to outputs using a range defined in blocks and workspace.
Example: opt.ParamRangeMode = 'DesignMinMax';

Embedded Coder Only

ModelRefVerifDepth — Depth of verification
'Current model only' (default) | '1' | '2' | '3' | 'All'

Specify the depth for analyzing the models that are referenced by the current model.

• 'Current Model Only': Analyze only the top model without analyzing the referenced models.
For instance, you might use this option when the referenced models are library models.

• '1', '2', or '3': Analyze referenced models up to the specified depth in the reference hierarchy.
For instance, to analyze the models that are referenced by the top model, specify the property

5 Functions, Properties, Classes, and Apps

5-96

ModelRefVerifDepth as '1'. To analyze models that are referenced by the first level of
references, specify this property as '2'.

• 'All': Analyze all referenced models with the current model.

For Embedded Coder only
Example: opt.ModelRefVerifDepth = '3';

ModelRefByModelRefVerif — Model reference analysis mode
false (default) | true

Specify whether you want to analyze all referenced models together, or analyze the models
individually.

• false: Analyze the top model and the referenced models together. For instance, you might want
to use this option to check for integration or scaling issues.

• true: Analyze the top model and the referenced models individually.

For Embedded Coder only
Example: opt.ModelRefByModelRefVerif = true;

CxxVerificationSettings — Coding rule and configuration settings for C++ code
'PrjConfig' (default) | 'PrjConfigAndMisraCxx' | 'PrjConfigAndJSF' | 'MisraCxx' |
'JSF'

Coding rule and configuration settings for C++ code specified as:

• 'PrjConfig' – Inherit options from project configuration and run complete analysis.
• 'PrjConfigAndMisraCxx' – Inherit options from project configuration, enable MISRA C++ rule

checking, and run complete analysis.
• 'PrjConfigAndJSF' – Inherit options from project configuration, enable JSF rule checking, and

run complete analysis.
• 'MisraCxx' – Enable MISRA C++ rule checking, and run compilation phase only.
• 'JSF' – Enable JSF rule checking, and run compilation phase only.

Only for Embedded Coder
Example: opt.CxxVerificationSettings = 'MisraCxx';

TargetLink Only

AutoStubLUT — Lookup Table code usage
false (default) | true

Lookup Table code usage, specified as true or false.

• true — use Lookup Table code during the analysis.
• false — stub Lookup Table code.

Only for TargetLink
Example: opts.AutoStubLUT = true;

 pslinkoptions Properties

5-97

See Also
pslinkoptions | pslinkrun

5 Functions, Properties, Classes, and Apps

5-98

polyspace.Project.Configuration Properties
Customize Polyspace analysis of handwritten code with options object properties

Description
To customize your Polyspace analysis, use these polyspace.Options or
polyspace.Project.Configuration properties. Each property corresponds to an analysis option
on the Configuration pane in the Polyspace user interface.

The properties are grouped using the same categories as the Configuration pane. This page only
shows what values each property can take. For details about:

• The different options, see the analysis option reference pages.
• How to create and use the object, see polyspace.Options or polyspace.Project.

The same properties are also available with the deprecated classes
polyspace.BugFinderOptions and polyspace.CodeProverOptions.

Each property description below also highlights if the option affects only one of Bug Finder or Code
Prover.

Note Some options might not be available depending on the language setting of the object. You can
set the source code language (Language) to 'C', 'CPP' or 'C-CPP' during object creation, but
cannot change it later.

Properties
Advanced

Additional — Additional flags for analysis
character vector

Additional flags for analysis specified as a character vector.

For more information, see Other.
Example: opts.Advanced.Additional = '-extra-flags -option -extra-flags value'

PostAnalysisCommand — Command or script software should execute after analysis
finishes
character vector

Command or script software should execute after analysis finishes, specified as a character vector.

For more information, see Command/script to apply after the end of the code
verification (-post-analysis-command).
Example: opts.Advanced.PostAnalysisCommand = '"C:\Program Files\perl\win32\bin
\perl.exe" "C:\My_Scripts\send_email"'

 polyspace.Project.Configuration Properties

5-99

BugFinderAnalysis (Affects Bug Finder Only)

CheckersList — List of custom checkers to activate
polyspace.DefectsOptions object | cell array of defect acronyms

This property affects Bug Finder analysis only.

List of custom checkers to activate specified by using the name of a polyspace.DefectsOptions
object or a cell array of defect acronyms. To use this custom list in your analysis, set
CheckersPreset to custom.

For more information, see polyspace.DefectsOptionspolyspace.DefectsOptions.
Example: defects = polyspace.DefectsOptions;
opts.BugFinderAnalysis.CheckersList = defects

Example: opts.BugFinderAnalysis.CheckersList =
{'INT_ZERO_DIV','FLOAT_ZERO_DIV'}

CheckersPreset — Subset of Bug Finder defects
'default' (default) | 'all' | 'CWE' | 'custom'

This property affects Bug Finder analysis only.

Preset checker list, specified as a character vector of one of the preset options: 'default', 'all',
'CWE',or 'custom'. To use 'custom', specify a value for the property
BugFinderAnalysis.CheckersList.

For more information, see Find defects (-checkers).
Example: opts.BugFinderAnalysis.CheckersPreset = 'all'

ChecksUsingSystemInputValues — Activate stricter checks for system inputs
false (default) | true

This property affects Bug Finder analysis only.

Activate stricter checks that consider all possible value for:

• Global variables.
• Reads of volatile variables.
• Returns of stubbed functions.
• Inputs to functions specified with SystemInputsFrom.

The analysis considers all possible values for a subset of Numerical and Static memory defects.

This property is equivalent to the Run stricter checks considering all values of system inputs
check box in the Polyspace interface.

For more information, see Run stricter checks considering all values of system
inputs (-checks-using-system-input-values).
Example: opts.BugFinderAnalysis.ChecksUsingSystemInputValues = true

EnableCheckers — Activate defect checking
true (default) | false

5 Functions, Properties, Classes, and Apps

5-100

This property affects Bug Finder analysis only.

Activate defect checking, specified as true or false. Setting this property to false disables all defects.
If you want to disable defect checking but still get results, turn on coding rules checking or code
metric checking.

This property is equivalent to the Find defects check box in the Polyspace interface.
Example: opts.BugFinderAnalysis.EnableCheckers = false

SystemInputsFrom — List of functions for which you run stricter checks
'auto' (default) | 'uncalled' | 'all' | 'custom'

This property affects Bug Finder analysis only.

Functions for which you want to run stricter checks that consider all possible values of the function
inputs. Specify the list of functions as 'auto', 'uncalled', 'all', or as a character array
beginning with custom= followed by a comma-separated list of function names.

To enable this option, set BugFinderAnalysis.ChecksUsingSystemInputValues = true.

For more information, see Consider inputs to these functions (-system-inputs-from).
Example: opts.BugFinderAnalysis.SystemInputsFrom = 'custom=foo,bar'

ChecksAssumption (Affects Code Prover Only)

AllowNegativeOperandInShift — Allow left shift operations on a negative number
false (default) | true

This property affects Code Prover analysis only.

Allow left shift operations on a negative number, specified as true or false.

For more information, see Allow negative operand for left shifts (-allow-negative-
operand-in-shift).
Example: opts.ChecksAssumption.AllowNegativeOperandInShift = true

AllowNonFiniteFloats — Incorporate infinities and/or NaNs
false (default) | true

This property affects Code Prover analysis only.

Incorporate infinities and/or NaNs, specified as true or false.

For more information, see Consider non finite floats (-allow-non-finite-floats).
Example: opts.ChecksAssumption.AllowNonFiniteFloats = true

AllowPtrArithOnStruct — Allow arithmetic on pointer to a structure field so that it points
to another field
false (default) | true

This property affects Code Prover analysis only.

Allow arithmetic on pointer to a structure field so that it points to another field, specified as true or
false.

 polyspace.Project.Configuration Properties

5-101

For more information, see Enable pointer arithmetic across fields (-allow-ptr-
arith-on-struct).
Example: opts.ChecksAssumption.AllowPtrArithOnStruct = true

CheckInfinite — Detect floating-point operations that result in infinities
'allow' (default) | 'warn-first' | 'forbid'

This property affects Code Prover analysis only.

Detect floating-point operations that result in infinities.

To activate this option, specify ChecksAssumption.AllowNonFiniteFloats.

For more information, see Infinities (-check-infinite).
Example: opts.ChecksAssumption.CheckInfinite = 'forbid'

CheckNan — Detect floating-point operations that result in NaN-s
'allow' (default) | 'warn-first' | 'forbid'

This property affects Code Prover analysis only.

Detect floating-point operations that result in NaN-s.

To activate this option, specify ChecksAssumption.AllowNonFiniteFloats.

For more information, see NaNs (-check-nan).
Example: opts.ChecksAssumption.CheckNan = 'forbid'

CheckSubnormal — Detect operations that result in subnormal floating point values
'allow' (default) | 'warn-first' | 'warn-all' | 'forbid'

This property affects Code Prover analysis only.

Detect operations that result in subnormal floating point values.

For more information, see Subnormal detection mode (-check-subnormal).
Example: opts.ChecksAssumption.CheckSubnormal = 'forbid'

DetectPointerEscape — Find cases where a function returns a pointer to one of its local
variables
false (default) | true

This property affects Code Prover analysis only.

Find cases where a function returns a pointer to one of its local variables, specified as true or false.

For more information, see Detect stack pointer dereference outside scope (-detect-
pointer-escape).
Example: opts.ChecksAssumption.DetectPointerEscape = true

DisableInitializationChecks — Disable checks for noninitialized variables and pointers
false (default) | true

5 Functions, Properties, Classes, and Apps

5-102

This property affects Code Prover analysis only.

Disable checks for noninitialized variables and pointers, specified as true or false.

For more information, see Disable checks for non-initialization (-disable-
initialization-checks).
Example: opts.ChecksAssumption.DisableInitializationChecks = true

PermissiveFunctionPointer — Allow type mismatch between function pointers and the
functions they point to
false (default) | true

This property affects Code Prover analysis only.

Allow type mismatch between function pointers and the functions they point to, specified as true or
false.

For more information, see Permissive function pointer calls (-permissive-function-
pointer).
Example: opts.ChecksAssumption.PermissiveFunctionPointer = true

SignedIntegerOverflows — Behavior of signed integer overflows
'forbid' (default) | 'allow' | 'warn-with-wrap-around'

This property affects Code Prover analysis only.

Enable the check for signed integer overflows and the assumptions to make following an overflow
specified as 'forbid', 'allow', or 'warn-with-wrap-around'.

For more information, see Overflow mode for signed integer (-signed-integer-
overflows).
Example: opts.ChecksAssumption.SignedIntegerOverflows = 'warn-with-wrap-around'

SizeInBytes — Allow a pointer with insufficient memory buffer to point to a structure
false (default) | true

This property affects Code Prover analysis only.

Allow a pointer with insufficient memory buffer to point to a structure, specified as true or false.

For more information, see Allow incomplete or partial allocation of structures (-
size-in-bytes).
Example: opts.ChecksAssumption.SizeInBytes = true

UncalledFunctionCheck — Detect functions that are not called directly or indirectly from
main or another entry-point function
'none' (default) | 'never-called' | 'called-from-unreachable' | 'all'

This property affects Code Prover analysis only.

Detect functions that are not called directly or indirectly from main or another entry-point function,
specified as none, never-called, called-from-unreachable, or all.

For more information, see Detect uncalled functions (-uncalled-function-checks).

 polyspace.Project.Configuration Properties

5-103

Example: opts.ChecksAssumption.UncalledFunctionCheck = 'all'

UnsignedIntegerOverflows — Behavior of unsigned integer overflows
'allow' (default) | 'forbid' | 'warn-with-wrap-around'

This property affects Code Prover analysis only.

Enable the check for unsigned integer overflows and the assumptions to make following an overflow,
specified as 'forbid', 'allow', or 'warn-with-wrap-around'.

For more information, see Overflow mode for unsigned integer (-unsigned-integer-
overflows).
Example: opts.ChecksAssumption.UnsignedIntegerOverflows = 'allow'

CodeProverVerification (Affects Code Prover only)

ClassAnalyzer — Classes that you want to verify
'all' (default) | 'none' | 'custom=class1[,class2,...]'

This property affects Code Prover analysis only.

Classes that you want to verify, specified as 'all', 'none', or as a character array beginning with
custom= followed by a comma-separated list of class names.

For more information, see Class (-class-analyzer).
Example: opts.CodeProverVerification.ClassAnalyzer = 'custom=myClass1,myClass2'

ClassAnalyzerCalls — Class methods that you want to verify
'unused' (default) | 'all' | 'all-public' | 'inherited-all' | 'inherited-all-public' |
'unused-public' | 'inherited-unused' | 'inherited-unused-public' |
'custom=method1[,method2,...]'

This property affects Code Prover analysis only.

Class methods that you want to verify, specified as one of the predefined sets or as a character array
beginning with custom= followed by a comma-separated list of method names.

For more information, see Functions to call within the specified classes (-class-
analyzer-calls).
Example: opts.CodeProverVerification.ClassAnalyzerCalls = 'unused-public'

ClassOnly — Analyze only class methods
false (default) | true

This property affects Code Prover analysis only.

Analyze only class methods, specified as true or false.

For more information, see Analyze class contents only (-class-only).
Example: opts.CodeProverVerification.ClassOnly = true

EnableMain — Use main function provided in application
false (default) | true

5 Functions, Properties, Classes, and Apps

5-104

This property affects Code Prover analysis only.

Use main function provided in application, specified as true or false. If you set this property to false,
the analysis generates a main function, if it is not present in the source files.

For more information, see Verify whole application.
Example: opts.CodeProverVerification.EnableMain = true

FunctionsCalledBeforeMain — Functions that you want the generated main to call ahead
of other functions
cell array of function names

This property affects Code Prover analysis only.

Functions that you want the generated main to call ahead of other functions, specified as a cell array
of function names.

For more information, see Initialization functions (-functions-called-before-main).
Example: opts.CodeProverVerification.FunctionsCalledBeforeMain =
{'func1','func2'}

Main — Use a Microsoft Visual C++ extensions of main
'_tmain' (default) | 'wmain' | '_tWinMain' | 'wWinMain' | 'WinMain' | 'DllMain'

This property applies to a Code Prover analysis only .

Use a Microsoft Visual C++ extension of main, specified as one of the predefined main extensions.

For more information, see Main entry point (-main).
Example: opts.CodeProverVerification.Main = 'wmain'

MainGenerator — Generate a main function if it is not present in source files
true (default) | false

This property applies to a Code Prover analysis only .

Generate a main function if it is not present in source files, specified as true or false.

For more information, see Verify module or library (-main-generator).
Example: opts.CodeProverVerification.MainGenerator = false

MainGeneratorCalls — Functions that you want the generated main to call after the
initialization functions
'unused' (default) | 'none' | 'all' | 'custom=function1[,function2,...]'

This property applies to a Code Prover analysis only .

Functions that you want the generated main to call after the initialization functions, specified as
'unused', 'all', 'none', or as a character array beginning with custom= followed by a comma-
separated list of function names.

For more information, see Functions to call (-main-generator-calls).
Example: opts.CodeProverVerification.MainGeneratorCalls = 'all'

 polyspace.Project.Configuration Properties

5-105

MainGeneratorWriteVariables — Global variables that you want the generated main to
initialize
'uninit' (C++ default) | 'public' (C default) | 'none' | 'all' |
'custom=variable1[,variable2,...]'

This property applies to a Code Prover analysis only .

Global variables that you want the generated main to initialize, specified as one of the predefined
sets, or as a character array beginning with custom= followed by a comma-separated list of variable
names.

For more information, see Variables to initialize (-main-generator-writes-
variables).
Example: opts.CodeProverVerification.MainGeneratorWriteVariables = 'all'

NoConstructorsInitCheck — Do not check if class constructor initializes class members
false (default) | true

This property applies to a Code Prover analysis only .

Do not check if class constructor initializes class members, specified as true or false.

For more information, see Skip member initialization check (-no-constructors-init-
check).
Example: opts.CodeProverVerification.NoConstructorsInitCheck = true

UnitByUnit — Verify each source file independently of other source files
false (default) | true

This property affects Code Prover analysis only.

Verify each source file independently of other source files, specified as true or false.

For more information, see Verify files independently (-unit-by-unit).
Example: opts.CodeProverVerification.UnitByUnit = true

UnitByUnitCommonSource — Files that you want to include with each source file during a
file-by-file verification
cell array of file paths

This property affects Code Prover analysis only.

Files that you want to include with each source file during a file-by-file verification, specified as a cell
array of file paths.

For more information, see Common source files (-unit-by-unit-common-source).
Example: opts.CodeProverVerification.UnitByUnitCommonSource = {'/inc/
file1.h','/inc/file2.h'}

5 Functions, Properties, Classes, and Apps

5-106

CodingRulesCodeMetrics

AcAgcSubset — Subset of MISRA AC AGC rules to check
'OBL-rules' (default) | 'OBL-REC-rules' | 'single-unit-rules' | 'system-decidable-
rules' | 'all-rules' | 'SQO-subset1' | 'SQO-subset2' | polyspace.CodingRulesOptions
object | 'from-file'

Subset of MISRA AC AGC rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check MISRA AC AGC (-misra-ac-agc).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check MISRA AC AGC rules, also set EnableAcAgc to true.
Example: opts.CodingRulesCodeMetrics.AcAgcSubset = 'all-rules'
Data Types: char

AllowedPragmas — Pragma directives for which MISRA C:2004 rule 3.4 or MISRA C++
16-6-1 must not be applied
cell array of character vectors

Pragma directives for which MISRA C:2004 rule 3.4 or MISRA C++ 16-6-1 must not be applied,
specified as a cell array of character vectors. This property affects only MISRA C:2004 or MISRA AC
AGC rule checking.

For more information, see Allowed pragmas (-allowed-pragmas).
Example: opts.CodingRulesCodeMetrics.AllowedPragmas = {'pragma_01','pragma_02'}
Data Types: cell

AutosarCpp14 — Set of AUTOSAR C++ 14 rules to check
'all' (default) | 'required' | 'automated' | polyspace.CodingRulesOptions object |
'from-file'

This property affects Bug Finder only.

Set of AUTOSAR C++ 14 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check AUTOSAR C++ 14 security checks (-autosar-cpp14).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

 polyspace.Project.Configuration Properties

5-107

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check AUTOSAR C++ 14 rules, also set EnableAutosarCpp14 to true.
Example: opts.CodingRulesCodeMetrics.AutosarCpp14 = 'all'
Data Types: char

BooleanTypes — Data types the coding rule checker must treat as effectively Boolean
cell array of character vectors

Data types that the coding rule checker must treat as effectively Boolean, specified as a cell array of
character vectors.

For more information, see Effective boolean types (-boolean-types).
Example: opts.CodingRulesCodeMetrics.BooleanTypes = {'boolean1_t','boolean2_t'}
Data Types: cell

CertC — Set of CERT C rules and recommendations to check
'all' (default) | 'publish-2016' | 'all-rules' | polyspace.CodingRulesOptions object |
'from-file'

This property affects Bug Finder only.

Set of CERT C rules and recommendations to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check CERT-C security checks (-cert-c).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use from-file for this property and then use
the EnableCheckersSelectionByFile and CheckersSelectionByFile property to specify
the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check CERT C rules and recommendations, also set EnableCertC to true.
Example: opts.CodingRulesCodeMetrics.CertC = 'all'
Data Types: char

CertCpp — Set of CERT C++ rules to check
'all' (default) | polyspace.CodingRulesOptions object | 'from-file'

5 Functions, Properties, Classes, and Apps

5-108

This property affects Bug Finder only.

Set of CERT C++ rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check CERT-C++ security checks (-cert-cpp).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check CERT C++ rules, also set EnableCertCpp to true.
Example: opts.CodingRulesCodeMetrics.CertCpp = 'all'
Data Types: char

CheckersSelectionByFile — File that defines custom set of coding standard checkers
full file path of .xml file

File where you define a custom set of coding standards checkers to check, specified as a .xml file.
You can, in the same file, define a custom set of checkers for each of the coding standards that
Polyspace supports. To create a file that defines a custom selection of coding standard checkers, in
the Polyspace interface, select a coding standard on the Coding Standards & Code Metrics node of
the Configuration pane and click Edit.

For more information, see Set checkers by file (-checkers-selection-file).
Example: opts.CodingRulesCodeMetrics.CheckersSelectionByFile = 'C:\ps_settings
\coding_rules\custom_rules.xml'

Data Types: char

CodeMetrics — Activate code metric calculations
false (default) | true

Activate code metric calculations, specified as true or false. If this property is turned off, Polyspace
does not calculate code metrics even if you upload your results to Polyspace Metrics.

For more information about the code metrics, see Calculate code metrics (-code-metrics).

If you assign a coding rules options object to this property, an XML file gets created automatically
with the rules specified.
Example: opts.CodingRulesCodeMetrics.CodeMetrics = true

EnableAcAgc — Check MISRA AC AGC rules
false (default) | true

Check MISRA AC AGC rules, specified as true or false. To customize which rules are checked, use
AcAgcSubset.

 polyspace.Project.Configuration Properties

5-109

For more information about the MISRA AC AGC checker, see Check MISRA AC AGC (-misra-ac-
agc).
Example: opts.CodingRulesCodeMetrics.EnableAcAgc = true;

EnableAutosarCpp14 — Check AUTOSAR C++ 14 rules
false (default) | true

This property affects Bug Finder only.

Check AUTOSAR C++ 14 rules, specified as true or false. To customize which rules are checked, use
AutosarCpp14.

For more information about the AUTOSAR C++ 14 checker, see Check AUTOSAR C++ 14 checks
(-autosar-cpp14).
Example: opts.CodingRulesCodeMetrics.EnableAutosarCpp14 = true;

EnableCertC — check CERT C rules and recommendations
false (default) | true

This property affects Bug Finder only.

Check CERT C rules and recommendations, specified as true or false. To customize which rules are
checked, use CertC.

For more information about the CERT C checker, see Check SEI CERT-C checks (-cert-c).
Example: opts.CodingRulesCodeMetrics.EnableCertC = true;

EnableCertCpp — check CERT C++ rules
false (default) | true

This property affects Bug Finder only.

Check CERT C++ rules, specified as true or false. To customize which rules are checked, use
CertCpp.

For more information about the CERT C++ checker, see Check SEI-CERT-C++ (-cert-cpp).
Example: opts.CodingRulesCodeMetrics.EnableCertCpp = true;

EnableCheckersSelectionByFile — Check custom set of coding standard checkers
false (default) | true

Check custom set of coding standard checkers, specified as true or false. Use with
CheckersSelectionByFile and these coding standards:

• opts.CodingRulesCodeMetrics.AutosarCpp14='from-file'
• opts.CodingRulesCodeMetrics.CertC='from-file'
• opts.CodingRulesCodeMetrics.CertCpp='from-file'
• opts.CodingRulesCodeMetrics.Iso17961='from-file'
• opts.CodingRulesCodeMetrics.JsfSubset='from-file'
• opts.CodingRulesCodeMetrics.MisraC3Subset='from-file'

5 Functions, Properties, Classes, and Apps

5-110

• opts.CodingRulesCodeMetrics.MisraCSubset='from-file'
• opts.CodingRulesCodeMetrics.MisraCppSubset='from-file'

For more information, see Check custom rules (-custom-rules).
Example: opts.CodingRulesCodeMetrics.EnableCheckersSelectionByFile = true;

EnableCustomRules — Check custom coding rules
false (default) | true

Check custom coding rules, specified as true or false. The file you specify with
CheckersSelectionByFile defines the custom coding rules.

Use with EnableCheckersSelectionByFile.

For more information, see Check custom rules (-custom-rules).
Example: opts.CodingRulesCodeMetrics.EnableCustomRules = true;

EnableIso17961 — check ISO-17961 rules
false (default) | true

This property affects Bug Finder only.

Check ISO/IEC TS 17961 rules, specified as true or false. To customize which rules are checked, use
Iso17961.

For more information about the ISO-17961 checker, see Check ISO-17961 security checks (-
iso-17961).
Example: opts.CodingRulesCodeMetrics.EnableIso17961 = true;

EnableJsf — Check JSF C++ rules
false (default) | true

Check JSF C++ rules, specified as true or false. To customize which rules are checked, use
JsfSubset.

For more information, see Check JSF C++ rules (-jsf-coding-rules).
Example: opts.CodingRulesCodeMetrics.EnableJsf = true;

EnableMisraC — Check MISRA C:2004 rules
false (default) | true

Check MISRA C:2004 rules, specified as true or false. To customize which rules are checked, use
MisraCSubset.

For more information, see Check MISRA C:2004 (-misra2).
Example: opts.CodingRulesCodeMetrics.EnableMisraC = true;

EnableMisraC3 — Check MISRA C:2012 rules
false (default) | true

Check MISRA C:2012 rules, specified as true or false. To customize which rules are checked, use
MisraC3Subset.

 polyspace.Project.Configuration Properties

5-111

For more information about the MISRA C:2012 checker, see Check MISRA C:2012 (-misra3).
Example: opts.CodingRulesCodeMetrics.EnableMisraC3 = true;

EnableMisraCpp — Check MISRA C++:2008 rules
false (default) | true

Check MISRA C++:2008 rules, specified as true or false. To customize which rules are checked, use
MisraCppSubset.

For more information about the MISRA C++:2008 checker, see Check MISRA C++ rules (-
misra-cpp).
Example: opts.CodingRulesCodeMetrics.EnableMisraCpp = true;

Iso17961 — Set of ISO-17961 rules to check
'all' (default) | 'decidable' | polyspace.CodingRulesOptions object | 'from-file'

This property affects Bug Finder only.

Set of ISO/IEC TS 17961 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check ISO-17961 (-iso-17961).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check ISO/IEC TS 17961 rules, also set EnableIso17961 to true.
Example: opts.CodingRulesCodeMetrics.Iso17961 = 'all'
Data Types: char

JsfSubset — Subset of JSF C++ rules to check
'shall-rules' (default) | 'shall-will-rules' | 'all-rules' |
polyspace.CodingRulesOptions object | 'from-file'

Subset of JSF C++ rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check JSF C++ rules (-jsf-coding-rules).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

5 Functions, Properties, Classes, and Apps

5-112

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check JSF C++ rules, set EnableJsf to true.
Example: opts.CodingRulesCodeMetrics.JsfSubset = 'all-rules'
Data Types: char

Misra3AgcMode — Use the MISRA C:2012 categories for automatically generated code
false (default) | true

Use the MISRA C:2012 categories for automatically generated code, specified as true or false.

For more information, see Use generated code requirements (-misra3-agc-mode).
Example: opts.CodingRulesCodeMetrics.Misra3AgcMode = true;

MisraC3Subset — Subset of MISRA C:2012 rules to check
'mandatory-required' (default) | 'mandatory' | 'single-unit-rules' | 'system-
decidable-rules' | 'all' | 'SQO-subset1' | 'SQO-subset2' |
polyspace.CodingRulesOptions object | 'from-file'

Subset of MISRA C:2012 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check MISRA C:2012 (-misra3).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check MISRA C:2012 rules, also set EnableMisraC3 to true.
Example: opts.CodingRulesCodeMetrics.MisraC3Subset = 'all'
Data Types: char

MisraCSubset — Subset of MISRA C:2004 rules to check
'required-rules' (default) | 'single-unit-rules' | 'system-decidable-rules' | 'all-
rules' | 'SQO-subset1' | 'SQO-subset2' | polyspace.CodingRulesOptions object | 'from-
file'

Subset of MISRA C:2004 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check MISRA C:2004 (-misra2).

 polyspace.Project.Configuration Properties

5-113

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check MISRA C:2004 rules, also set EnableMisraC to true.
Example: opts.CodingRulesCodeMetrics.MisraCSubset = 'all-rules'
Data Types: char

MisraCppSubset — Subset of MISRA C++ rules
'required-rules' (default) | 'all-rules' | 'SQO-subset1' | 'SQO-subset2' |
polyspace.CodingRulesOptions object | 'from-file'

Subset of MISRA C++:2008 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check MISRA C++ rules (-misra-cpp).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check MISRA C++ rules, set EnableMisraCpp to true.
Example: opts.CodingRulesCodeMetrics.MisraCppSubset = 'all-rules'
Data Types: char

EnvironmentSettings

Dos — Consider that file paths are in MS-DOS style
true (default) | false

Consider that file paths are in MS-DOS style, specified as true or false.

For more information, see Code from DOS or Windows file system (-dos).
Example: opts.EnvironmentSettings.Dos = true;

IncludeFolders — Include folders needed for compilation
cell array of include folder paths

Include folders needed for compilation, specified as a cell array of the include folder paths.

5 Functions, Properties, Classes, and Apps

5-114

To specify all subfolders of a folder, use folder path followed by **, for instance, 'C:\includes
**'. The notation follows the syntax of the dir function. See also “Specify Multiple Source Files”.

For more information, see -I.
Example: opts.EnvironmentSettings.IncludeFolders = {'/includes','/com1/inc'};
Example: opts.EnvironmentSettings.IncludeFolders = {'C:\project1\common
\includes'};

Data Types: cell

Includes — Files to be #include-ed by each C file
cell array of files

Files to be #include-ed by each C source file in the analysis, specified by a cell array of files.

For more information, see Include (-include).
Example: opts.EnvironmentSettings.Includes = {'/inc/inc_file.h','/inc/
inc_math.h'}

NoExternC — Ignore linking errors inside extern blocks
false (default) | true

Ignore linking errors inside extern blocks, specified as true or false.

For more information, see Ignore link errors (-no-extern-c).
Example: opts.EnvironmentSettings.NoExternC = false;

PostPreProcessingCommand — Command or script to run on source files after
preprocessing
character vector

Command or script to run on source files after preprocessing, specified as a character vector of the
command to run.

For more information, see Command/script to apply to preprocessed files (-post-
preprocessing-command).
Example: Linux — opts.EnvironmentSettings.PostPreProcessingCommand = [pwd,'/
replace_keyword.pl']

Example: Windows — opts.EnvironmentSettings.PostPreProcessingCommand =
'"C:\Program Files\MATLAB\R2015b\sys\perl\win32\bin\perl.exe" "C:\My_Scripts
\replace_keyword.pl"'

StopWithCompileError — Stop analysis if a file does not compile
false (default) | true

Stop analysis if a file does not compile, specified as true or false.

For more information, see Stop analysis if a file does not compile (-stop-if-
compile-error).
Example: opts.EnvironmentSettings.StopWithCompileError = true;

 polyspace.Project.Configuration Properties

5-115

InputsStubbing

DataRangeSpecifications — Constrain global variables, function inputs, and return values
of stubbed functions
file path

Constrain global variables, function inputs, and return values of stubbed functions specified by the
path to an XML constraint file. For more information about the constraint file, see “Specify External
Constraints”.

For more information about this option, see Constraint setup (-data-range-
specifications).
Example: opts.InputsStubbing.DataRangeSpecifications = 'C:\project
\constraint_file.xml'

DoNotGenerateResultsFor — Files on which you do not want analysis results
'include-folders' (default) | 'all-headers' | 'custom=folder1[,folder2,...]'

Files on which you do not want analysis results, specified by 'include-folders', 'all-headers',
or a character array beginning with custom= followed by a comma-separated list of file or folder
names.

Use this option with InputsStubbing.GenerateResultsFor. For more information, see Do not
generate results for (-do-not-generate-results-for).
Example: opts.InputsStubbing.DoNotGenerateResultsFor = 'custom=C:\project
\file1.c,C:\project\file2.c'

GenerateResultsFor — Files on which you want analysis results
'source-headers' (default) | 'all-headers' | 'custom=folder1[,folder2,...]'

Files on which you want analysis results, specified by 'source-headers', 'all-headers', or a
character array beginning with custom= followed by a comma-separated list of file or folder names.

Use this option with InputsStubbing.DoNotGenerateResultsFor. For more information, see
Generate results for sources and (-generate-results-for).
Example: opts.InputsStubbing.GenerateResultsFor = 'custom=C:\project
\includes_common_1,C:\project\includes_common_2'

FunctionsToStub — Functions to stub during analysis
cell array of function names

This property affects Code Prover analysis only.

Functions to stub during analysis, specified as a cell array of function names.

For more information, see Functions to stub (-functions-to-stub).
Example: opts.InputsStubbing.FunctionsToStub = {'func1', 'func2'}

NoDefInitGlob — Consider global variables as uninitialized
false (default) | true

This property affects Code Prover analysis only.

5 Functions, Properties, Classes, and Apps

5-116

Consider global variables as uninitialized, specified as true or false.

For more information, see Ignore default initialization of global variables (-no-
def-init-glob).
Example: opts.InputsStubbing.NoDefInitGlob = true

NoStlStubs — Do not use Polyspace implementations of functions in the Standard
Template Library
false (default) | true

This property applies only to a Code Prover analysis of C++ code.

Do not use Polyspace implementations of functions in the Standard Template Library, specified as
true or false.

For more information, see No STL stubs (-no-stl-stubs).
Example: opts.InputsStubbing.NoStlStubs = true

StubECoderLookupTables — Specify that the analysis must stub functions in the generated
code that use lookup tables
true (default) | false

This property applies only to a Code Prover analysis of code generated from models.

Specify that the analysis must stub functions in the generated code that use lookup tables. By
replacing the functions with stubs, the analysis assumes more precise return values for the functions.

For more information, see Generate stubs for Embedded Coder lookup tables (-stub-
embedded-coder-lookup-table-functions).
Example: opts.InputsStubbing.StubECoderLookupTables = true

Macros

DefinedMacros — Macros to be replaced
cell array of macros

In preprocessed code, macros are replaced by the definition, specified in a cell array of macros and
definitions. Specify the macro as Macro=Value. If you want Polyspace to ignore the macro, leave the
Value blank. A macro with no equal sign replaces all instances of that macro by 1.

For more information, see Preprocessor definitions (-D).
Example: opts.Macros.DefinedMacros = {'uint32=int','name3=','var'}

UndefinedMacros — Macros to undefine
cell array of macros

In preprocessed code, macros are undefined, specified by a cell array of macros to undefine.

For more information, see Disabled preprocessor definitions (-U).
Example: opts.Macros.DefinedMacros = {'name1','name2'}

 polyspace.Project.Configuration Properties

5-117

MergedComputingSettings

BatchBugFinder — Send Bug Finder analysis to remote server
false (default) | true

This property affects Bug Finder analysis only.

Send Bug Finder analysis to remote server, specified as true or false. To use this option, in your
Polyspace preferences, you must specify a metrics server.

For more information, see Run Bug Finder or Code Prover analysis on a remote
cluster (-batch).
Example: opts.MergedComputingSettings.BatchBugFinder = true;

BatchCodeProver — Send Code Prover analysis to remote server
false (default) | true

This property affects Code Prover analysis only.

Send Code Prover analysis to remote server, specified as true or false. To use this option, in your
Polyspace preferences, you must specify a metrics server.

For more information, see Run Bug Finder or Code Prover analysis on a remote
cluster (-batch).
Example: opts.MergedComputingSettings.BatchCodeProver = true;

FastAnalysis — Run Bug Finder analysis using faster local mode
false (default) | true

This property affects Bug Finder analysis only.

Use fast analysis mode for Bug Finder analysis, specified as true or false.

For more information, see Use fast analysis mode for Bug Finder (-fast-analysis).
Example: opts.MergedComputingSettings.FastAnalysis = true;

MergedReporting

EnableReportGeneration — Generate a report after the analysis
false (default) | true

After the analysis, generate a report, specified as true or false.

For more information, see Generate report.
Example: opts.MergedReporting.EnableReportGeneration = true

ReportOutputFormat — Output format of generated report
'Word' (default) | 'HTML' | 'PDF'

Output format of generated report, specified as one of the report formats. To activate this option,
specify Reporting.EnableReportGeneration.

For more information about the different values, see Output format (-report-output-format).

5 Functions, Properties, Classes, and Apps

5-118

Example: opts.MergedReporting.ReportOutputFormat = 'PDF'

BugFinderReportTemplate — Template for generating Bug Finder analysis report
'BugFinderSummary' (default) | 'BugFinder' | 'SecurityCWE' | 'CodeMetrics' |
'CodingStandards'

This property affects a Bug Finder analysis only.

Template for generating analysis report, specified as one of the report formats. To activate this
option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Bug Finder and Code Prover report (-
report-template).
Example: opts.MergedReporting.BugFinderReportTemplate = 'CodeMetrics'

CodeProverReportTemplate — Template for generating Code Prover analysis report
'Developer' (default) | 'CallHierarchy' | 'CodeMetrics' | 'CodingStandards' |
'DeveloperReview' | 'Developer_withGreenChecks' | 'Quality' | 'VariableAccess'

This property affects a Code Prover analysis only.

Template for generating analysis report, specified as one of the predefined report formats. To activate
this option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Bug Finder and Code Prover report (-
report-template).
Example: opts.MergedReporting.CodeProverReportTemplate = 'CodeMetrics'

Multitasking

ArxmlMultitasking — Specify path of ARXML files to parse for multitasking configuration
cell array of file paths

Specify the path to the ARXML files the software parses to set up your multitasking configuration.

To activate this option, specify Multitasking.EnableExternalMultitasking and set
Multitasking.ExternalMultitaskingType to autosar.

For more information, see ARXML files selection (-autosar-multitasking)
Example: opts.Multitasking.ArxmlMultitasking={'C:\Polyspace_Workspace\AUTOSAR
\myFile.arxml'}

CriticalSectionBegin — Functions that begin critical sections
cell array of critical section function names

Functions that begin critical sections specified as a cell array of critical section function names. To
activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionEnd.

For more information, see Critical section details (-critical-section-begin -
critical-section-end).
Example: opts.Multitasking.CriticalSectionBegin =
{'function1:cs1','function2:cs2'}

 polyspace.Project.Configuration Properties

5-119

CriticalSectionEnd — Functions that end critical sections
cell array of critical section function names

Functions that end critical sections specified as a cell array of critical section function names. To
activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionBegin.

For more information, see Critical section details (-critical-section-begin -
critical-section-end).
Example: opts.Multitasking.CriticalSectionEnd =
{'function1:cs1','function2:cs2'}

CyclicTasks — Specify functions that represent cyclic tasks
cell array of function names

Specify functions that represent cyclic tasks.

To activate this option, also specify Multitasking.EnableMultitasking.

For more information, see Cyclic tasks (-cyclic-tasks).
Example: opts.Multitasking.CyclicTasks = {'function1','function2'}

EnableConcurrencyDetection — Enable automatic detection of certain families of
threading functions
false (default) | true

This property affects Code Prover analysis only.

Enable automatic detection of certain families of threading functions, specified as true or false.

For more information, see Enable automatic concurrency detection for Code Prover (-
enable-concurrency-detection).
Example: opts.Multitasking.EnableConcurrencyDetection = true

EnableExternalMultitasking — Enable automatic multitasking configuration from
external file definitions
false (default) | true

Enable multitasking configuration of your projects from external files you provide. Configure
multitasking from ARXML files for an AUTOSAR project, or from OIL files for an OSEK project.

Activate this option to enable Multitasking.ArxmlMultitasking or
Multitasking.OsekMultitasking.

For more information, see OIL files selection (-osek-multitasking) and ARXML files
selection (-autosar-multitasking).
Example: opts.Multitasking.EnableExternalMultitasking = 1

EnableMultitasking — Configure multitasking manually
false (default) | true

Configure multitasking manually by specifying true. This property activates the other manual,
multitasking properties.

5 Functions, Properties, Classes, and Apps

5-120

For more information, see Configure multitasking manually.
Example: opts.Multitasking.EnableMultitasking = 1

EntryPoints — Functions that serve as entry-points to your multitasking application
cell array of entry-point function names

Functions that serve as entry-points to your multitasking application specified as a cell array of entry-
point function names. To activate this option, also specify Multitasking.EnableMultitasking.

For more information, see Tasks (-entry-points).
Example: opts.Multitasking.EntryPoints = {'function1','function2'}

ExternalMultitaskingType — Specify type of file to parse for multitasking configuration
'osek' (default) | 'autosar'

Specify the type of file the software parses to set up your multitasking configuration:

• For osek type, the analysis looks for OIL files in the file or folder paths that you specify.
• For autosar type, the analysis looks for ARXML files in the file paths that you specify.

To activate this option, specify Multitasking.EnableExternalMultitasking.

For more information, see OIL files selection (-osek-multitasking) and ARXML files
selection (-autosar-multitasking).
Example: opts.Multitasking.ExternalMultitaskingType = 'autosar'

Interrupts — Specify functions that represent nonpreemptable interrupts
cell array of function names

Specify functions that represent nonpreemptable interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Interrupts (-interrupts).
Example: opts.Multitasking.Interrupts = {'function1','function2'}

InterruptsDisableAll — Specify routine that disable interrupts
cell array with one function name

This property affects Bug Finder analysis only.

Specify function that disables all interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Disabling all interrupts (-routine-disable-interrupts -
routine-enable-interrupts)Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts).
Example: opts.Multitasking.InterruptsDisableAll = {'function'}

InterruptsEnableAll — Specify routine that reenable interrupts
cell array with one function name

 polyspace.Project.Configuration Properties

5-121

This property affects Bug Finder analysis only.

Specify function that reenables all interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Disabling all interrupts (-routine-disable-interrupts -
routine-enable-interrupts)Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts).
Example: opts.Multitasking.InterruptsEnableAll = {'function'}

OsekMultitasking — Specify path of OIL files to parse for multitasking configuration
'auto' (default) | 'custom=folder1[,folder2,...]'

Specify the path to the OIL files the software parses to set up your multitasking configuration:

• In the mode specified with 'auto', the analysis uses OIL files in your project source and include
folders, but not their subfolders.

• In the mode specified with 'custom=folder1[,folder2,...]', the analysis uses the OIL files
at the specified path, and the path subfolders.

To activate this option, specify Multitasking.EnableExternalMultitasking and set
Multitasking.ExternalMultitaskingType to osek.

For more information, see OIL files selection (-osek-multitasking)
Example: opts.Multitasking.OsekMultitasking = 'custom=file_path, dir_path'

TemporalExclusion — Entry-point functions that cannot execute concurrently
cell array of entry-point function names

Entry-point functions that cannot execute concurrently specified as a cell array of entry-point
function names. Each set of exclusive tasks is one cell array entry with functions separated by spaces.
To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Temporally exclusive tasks (-temporal-exclusions-file).
Example: opts.Multitasking.TemporalExclusion = {'function1 function2',
'function3 function4 function5'} where function1 and function2 are temporally exclusive,
and function3, function4, and function 5 are temporally exclusive.

Precision (Affects Code Prover Only)

ContextSensitivity — Store call context information to identify function call that caused
errors
'none' (default) | 'auto' | 'custom=function1[,function2,...]'

This property affects Code Prover analysis only.

Store call context information to identify a function call that caused errors, specified as none, auto,
or as a character array beginning with custom= followed by a list of comma-separated function
names.

For more information, see Sensitivity context (-context-sensitivity).
Example: opts.Precision.ContextSensitivity = 'auto'

5 Functions, Properties, Classes, and Apps

5-122

Example: opts.Precision.ContextSensitivity = 'custom=func1'

ModulesPrecision — Source files you want to verify at higher precision
cell array of file names and precision levels

This property affects Code Prover analysis only.

Source files that you want to verify at higher precision, specified as a cell array of file names without
the extension and precision levels using this syntax: filename:Olevel

For more information, see Specific precision (-modules-precision).
Example: opts.Precision.ModulesPrecision = {'file1:O0', 'file2:O3'}

OLevel — Precision level for the verification
2 (default) | 0 | 1 | 3

This property affects Code Prover analysis only.

Precision level for the verification, specified as 0, 1, 2, or 3.

For more information, see Precision level (-O).
Example: opts.Precision.OLevel = 3

PathSensitivityDelta — Avoid certain verification approximations for code with fewer
lines
positive integer

This property affects Code Prover analysis only.

Avoid certain verification approximations for code with fewer lines, specified as a positive integer
representing how sensitive the analysis is. Higher values can increase verification time exponentially.

For more information, see Improve precision of interprocedural analysis (-path-
sensitivity-delta).
Example: opts.Precision.PathSensitivityDelta = 2

Timeout — Time limit on your verification
character vector

This property affects Code Prover analysis only.

Time limit on your verification, specified as a character vector of time in hours.

For more information, see Verification time limit (-timeout).
Example: opts.Precision.Timeout = '5.75'

To — Number of times the verification process runs
'Software Safety Analysis level 2' (default) | 'Software Safety Analysis level 0' |
'Software Safety Analysis level 1' | 'Software Safety Analysis level 3' |
'Software Safety Analysis level 4' | 'Source Compliance Checking' | 'other'

This property affects Code Prover analysis only.

Number of times the verification process runs, specified as one of the preset analysis levels.

 polyspace.Project.Configuration Properties

5-123

For more information, see Verification level (-to).
Example: opts.Precision.To = 'Software Safety Analysis level 3'

Scaling (Affects Code Prover Only)

Inline — Functions on which separate results must be generated for each function call
cell array of function names

This property affects Code Prover analysis only.

Functions on which separate results must be generated for each function call, specified as a cell
array of function names.

For more information, see Inline (-inline).
Example: opts.Scaling.Inline = {'func1','func2'}

KLimiting — Limit depth of analysis for nested structures
positive integer

This property affects Code Prover analysis only.

Limit depth of analysis for nested structures, specified as a positive integer indicating how many
levels into a nested structure to verify.

For more information, see Depth of verification inside structures (-k-limiting).
Example: opts.Scaling.KLimiting = 3

TargetCompiler

Compiler — Compiler that builds your source code
'generic' (default) | 'gnu3.4' | 'gnu4.6' | 'gnu4.7' | 'gnu4.8' | 'gnu4.9' | 'gnu5.x' |
'gnu6.x' | 'gnu7.x' | 'clang3.x' | 'clang4.x' | 'clang5.x' | 'visual9.0' | 'visual10' |
'visual11.0' | 'visual12.0' | 'visual14.0' | 'visual15.x' | 'keil' | 'iar' | 'armcc' |
'armclang' | 'codewarrior' | 'diab' | 'greenhills' | 'iar-ew' | 'renesas' | 'tasking' |
'ti'

Compiler that builds your source code.

For more information, see Compiler (-compiler).
Example: opts.TargetCompiler.Compiler = 'Visual11.0'

CppVersion — Specify C++ standard version followed in code
'defined-by-compiler' (default) | 'cpp03' | 'cpp11' | 'cpp14' | 'cpp17'

Specify C++ standard version followed in code, specified as a character vector.

For more information, see C++ standard version (-cpp-version).
Example: opts.TargetCompiler.CppVersion = 'cpp11';

CVersion — Specify C standard version followed in code
'defined-by-compiler' (default) | 'c90' | 'c99' | 'c11'

Specify C standard version followed in code, specified as a character vector.

5 Functions, Properties, Classes, and Apps

5-124

For more information, see C standard version (-c-version).
Example: opts.TargetCompiler.CVersion = 'c90';

DivRoundDown — Round down quotients from division or modulus of negative numbers
false (default) | true

Round down quotients from division or modulus of negative numbers, specified as true or false.

For more information, see Division round down (-div-round-down).
Example: opts.TargetCompiler.DivRoundDown = true

EnumTypeDefinition — Base type representation of enum
'defined-by-compiler' (default) | 'auto-signed-first' | 'auto-unsigned-first'

Base type representation of enum, specified by an allowed base-type set. For more information about
the different values, see Enum type definition (-enum-type-definition).
Example: opts.TargetCompiler.EnumTypeDefinition = 'auto-unsigned-first'

IgnorePragmaPack — Ignore #pragma pack directives
false (default) | true

Ignore #pragma pack directives, specified as true or false.

For more information, see Ignore pragma pack directives (-ignore-pragma-pack).
Example: opts.TargetCompiler.IgnorePragmaPack = true

Language — Language of analysis
'C-CPP' (default) | 'C' | 'CPP'

This property is read-only.

Language of the analysis, specified during the object construction. This value changes which
properties appear.

For more information, see Source code language (-lang).

LogicalSignedRightShift — Treatment of signed bit on signed variables
'Arithmetical' (default) | 'Logical'

Treatment of signed bit on signed variables, specified as Arithmetical or Logical. For more
information, see Signed right shift (-logical-signed-right-shift).
Example: opts.TargetCompiler.LogicalSignedRightShift = 'Logical'

NoUliterals — Do not use predefined typedefs for char16_t or char32_t
false (default) | true

Do not use predefined typedefs for char16_t or char32_t, specified as true or false. For more
information, see Block char16/32_t types (-no-uliterals).
Example: opts.TargetCompiler.NoUliterals = true

PackAlignmentValue — Default structure packing alignment
'defined-by-compiler' (default) | '1' | '2' | '4' | '8' | '16'

 polyspace.Project.Configuration Properties

5-125

Default structure packing alignment, specified as 'defined-by-compiler', '1', '2', '4', '8', or
'16'. This property is available only for Visual C++ code.

For more information, see Pack alignment value (-pack-alignment-value).
Example: opts.TargetCompiler.PackAlignmentValue = '4'

SfrTypes — sfr types
cell array of sfr keywords

sfr types, specified as a cell array of sfr keywords using the syntax sfr_name=size_in_bits. For
more information, see Sfr type support (-sfr-types).

This option only applies when you set TargetCompiler.Compiler to keil or iar.
Example: opts.TargetCompiler.SfrTypes = {'sfr32=32'}

SizeTTypeIs — Underlying type of size_t
'defined-by-compiler' (default) | 'unsigned-int' | 'unsigned-long' | 'unsigned-long-
long'

Underlying type of size_t, specified as 'defined-by-compiler', 'unsigned-int',
'unsigned-long', or 'unsigned-long-long'. See Management of size_t (-size-t-type-
is).
Example: opts.TargetCompiler.SizeTTypeIs = 'unsigned-long'

Target — Target processor
'i386' (default) | 'arm' | 'arm64' | 'avr' | 'c-167' | 'c166' | 'c18' | 'c28x' | 'c6000' |
'coldfire' | 'hc08' | 'hc12' | 'm68k' | 'mcore' | 'mips' | 'mpc5xx' | 'msp430' | 'necv850'
| 'powerpc' | 'powerpc64' | 'rh850' | 'rl78' | 'rx' | 's12z' | 'sharc21x61' | 'sparc' |
'superh' | 'tms320c3x' | 'tricore' | 'x86_64' | generic target object

Set size of data types and endianness of processor, specified as one of the predefined target
processors or a generic target object.

For more information about the predefined processors, see Target processor type (-target).

For more information about creating a generic target, see polyspace.GenericTargetOptions.
Example: opts.TargetCompiler.Target = 'hc12'

WcharTTypeIs — Underlying type of wchar_t
'defined-by-compiler' (default) | 'signed-short' | 'unsigned-short' | 'signed-int' |
'unsigned-int' | 'signed-long' | 'unsigned-long'

Underlying type of wchar_t, specified as 'defined-by-compiler', 'signed-short',
'unsigned-short', 'signed-int', 'unsigned-int', 'signed-long', or 'unsigned-long'.
See Management of wchar_t (-wchar-t-type-is).
Example: opts.TargetCompiler.WcharTTypeIs = 'unsigned-int'

VerificationAssumption (Affects Code Prover Only)

ConsiderVolatileQualifierOnFields — Assume that volatile qualified structure fields can
have all possible values at any point in code
false (default) | true

5 Functions, Properties, Classes, and Apps

5-126

This property affects Code Prover analysis only.

Assume that volatile qualified structure fields can have all possible values at any point in code.

For more information, see Consider volatile qualifier on fields (-consider-
volatile-qualifier-on-fields).
Example: opts.VerificationAssumption.ConsiderVolatileQualifierOnFields = true

ConstraintPointersMayBeNull — Specify that environment pointers can be NULL unless
constrained otherwise
false (default) | true

This property affects Code Prover analysis only.

Specify that environment pointers can be NULL unless constrained otherwise.

For more information, see Consider environment pointers as unsafe (-stubbed-
pointers-are-unsafe).
Example: opts.VerificationAssumption.ConstraintPointersMayBeNull = true

FloatRoundingMode — Rounding modes to consider when determining the results of
floating-point arithmetic
to-nearest (default) | all

This property affects Code Prover analysis only.

Rounding modes to consider when determining the results of floating-point arithmetic, specified as
to-nearest or all.

For more information, see Float rounding mode (-float-rounding-mode).
Example: opts.VerificationAssumption.FloatRoundingMode = 'all'

RespectTypesInFields — Do not cast nonpointer fields of a structure to pointers
false (default) | true

This property affects Code Prover analysis only.

Do not cast nonpointer fields of a structure to pointers, specified as true or false.

For more information, see Respect types in fields (-respect-types-in-fields).
Example: opts.VerificationAssumption.RespectTypesInFields = true

RespectTypesInGlobals — Do not cast nonpointer global variables to pointers
false (default) | true

This property affects Code Prover analysis only.

Do not cast nonpointer global variables to pointers, specified as true or false.

For more information, see Respect types in global variables (-respect-types-in-
globals).
Example: opts.VerificationAssumption.RespectTypesInGlobals = true

 polyspace.Project.Configuration Properties

5-127

Other Properties

Author — Project author
username of current user (default) | character vector

Name of project author, specified as a character vector.

For more information, see -author.
Example: opts.Author = 'JaneDoe'

ImportComments — Import comments and justifications from previous analysis
character vector

To import comments and justifications from a previous analysis, specify the path to the results folder
of the previous analysis.

You can also point to a previous results folder to see only new results compared to the previous run.
See “Compare Results from Different Polyspace Runs by Using MATLAB Scripts”.

For more information, see -import-comments
Example: opts.ImportComments =
fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example','Mod
ule_1','BF_Result')

Prog — Project name
PolyspaceProject (default) | character vector

Project name, specified as a character vector.

For more information, see -prog.
Example: opts.Prog = 'myProject'

ResultsDir — Location to store results
folder path

Location to store results, specified as a folder path. By default, the results are stored in the current
folder.

For more information, see -results-dir.

You can also create a separate results folder for each new run. See “Compare Results from Different
Polyspace Runs by Using MATLAB Scripts”.
Example: opts.ResultsDir = 'C:\project\myproject\results\'

Sources — Source files
cell array of files

Source files to analyze, specified as a cell array of files.

To specify all files in a folder, use folder path followed by *, for instance, 'C:\src*'. To specify all
files in a folder and its subfolders, use folder path followed by **, for instance, 'C:\src**'. The
notation follows the syntax of the dir function. See also “Specify Multiple Source Files”.

For more information, see -sources.

5 Functions, Properties, Classes, and Apps

5-128

Example: opts.Sources = {'file1.c', 'file2.c', 'file3.c'}
Example: opts.Sources = {'project/src1/file1.c', 'project/src2/file2.c',
'project/src3/file3.c'}

Version — Project version number
'1.0' (default) | character array of a number

Version number of project, specified as a character array of a number. This option is useful if you
upload your results to Polyspace Metrics. If you increment version numbers each time that you
reanalyze your object, you can compare the results from two versions in Polyspace Metrics.

For more information, see -v[ersion].
Example: opts.Version = '2.3'

See Also
Topics
“Complete List of Polyspace Bug Finder Analysis Engine Options”

Introduced in R2017a

 polyspace.Project.Configuration Properties

5-129

polyspace.ModelLinkOptions Properties
Customize Polyspace analysis of generated code with options object properties

Description
To customize your Polyspace analysis of generated code, modify the
polyspace.ModelLinkOptions object properties. Each property corresponds to an analysis option
on the Configuration pane in the Polyspace user interface.

The properties are grouped using the same categories as the Configuration pane. This page only
shows what values each property can take. For details about:

• The different options, see the analysis options reference pages.
• How to create and use the object, see polyspace.ModelLinkOptions.

The same properties are also available with the deprecated classes
polyspace.ModelLinkBugFinderOptions and polyspace.ModelLinkCodeProverOptions.

Each property description below also highlights if the option affects only one of Bug Finder or Code
Prover.

Note Some options might not be available depending on the language setting of the object. You can
set the source code language (Language) to 'C', 'CPP' or 'C-CPP' during object creation, but
cannot change it later.

Properties
Advanced

Additional — Additional flags for analysis
character vector

Additional flags for analysis specified as a character vector.

For more information, see Other.
Example: opts.Advanced.Additional = '-extra-flags -option -extra-flags value'

PostAnalysisCommand — Command or script software should execute after analysis
finishes
character vector

Command or script software should execute after analysis finishes, specified as a character vector.

For more information, see Command/script to apply after the end of the code
verification (-post-analysis-command).
Example: opts.Advanced.PostAnalysisCommand = '"C:\Program Files\perl\win32\bin
\perl.exe" "C:\My_Scripts\send_email"'

5 Functions, Properties, Classes, and Apps

5-130

BugFinderAnalysis (Affects Bug Finder Only)

CheckersList — List of custom checkers to activate
polyspace.DefectsOptions object | cell array of defect acronyms

This property affects Bug Finder analysis only.

List of custom checkers to activate specified by using the name of a polyspace.DefectsOptions
object or a cell array of defect acronyms. To use this custom list in your analysis, set
CheckersPreset to custom.

For more information, see polyspace.DefectsOptionspolyspace.DefectsOptions.
Example: defects = polyspace.DefectsOptions;
opts.BugFinderAnalysis.CheckersList = defects

Example: opts.BugFinderAnalysis.CheckersList =
{'INT_ZERO_DIV','FLOAT_ZERO_DIV'}

CheckersPreset — Subset of Bug Finder defects
'default' (default) | 'all' | 'CWE' | 'custom'

This property affects Bug Finder analysis only.

Preset checker list, specified as a character vector of one of the preset options: 'default', 'all',
'CWE',or 'custom'. To use 'custom', specify a value for the property
BugFinderAnalysis.CheckersList.

For more information, see Find defects (-checkers).
Example: opts.BugFinderAnalysis.CheckersPreset = 'all'

ChecksUsingSystemInputValues — Activate stricter checks for system inputs
false (default) | true

This property affects Bug Finder analysis only.

Activate stricter checks that consider all possible value for:

• Global variables.
• Reads of volatile variables.
• Returns of stubbed functions.
• Inputs to functions specified with SystemInputsFrom.

The analysis considers all possible values for a subset of Numerical and Static memory defects.

This property is equivalent to the Run stricter checks considering all values of system inputs
check box in the Polyspace interface.

For more information, see Run stricter checks considering all values of system
inputs (-checks-using-system-input-values).
Example: opts.BugFinderAnalysis.ChecksUsingSystemInputValues = true

EnableCheckers — Activate defect checking
true (default) | false

 polyspace.ModelLinkOptions Properties

5-131

This property affects Bug Finder analysis only.

Activate defect checking, specified as true or false. Setting this property to false disables all defects.
If you want to disable defect checking but still get results, turn on coding rules checking or code
metric checking.

This property is equivalent to the Find defects check box in the Polyspace interface.
Example: opts.BugFinderAnalysis.EnableCheckers = false

SystemInputsFrom — List of functions for which you run stricter checks
'auto' (default) | 'uncalled' | 'all' | 'custom'

This property affects Bug Finder analysis only.

Functions for which you want to run stricter checks that consider all possible values of the function
inputs. Specify the list of functions as 'auto', 'uncalled', 'all', or as a character array
beginning with custom= followed by a comma-separated list of function names.

To enable this option, set BugFinderAnalysis.ChecksUsingSystemInputValues = true.

For more information, see Consider inputs to these functions (-system-inputs-from).
Example: opts.BugFinderAnalysis.SystemInputsFrom = 'custom=foo,bar'

ChecksAssumption (Affects Code Prover Only)

AllowNegativeOperandInShift — Allow left shift operations on a negative number
true (default) | false

This property affects Code Prover analysis only.

Allow left shift operations on a negative number, specified as true or false.

For more information, see Allow negative operand for left shifts (-allow-negative-
operand-in-shift).
Example: opts.ChecksAssumption.AllowNegativeOperandInShift = true

AllowNonFiniteFloats — Incorporate infinities and/or NaNs
false (default) | true

This property affects Code Prover analysis only.

Incorporate infinities and/or NaNs, specified as true or false.

For more information, see Consider non finite floats (-allow-non-finite-floats).
Example: opts.ChecksAssumption.AllowNonFiniteFloats = true

AllowPtrArithOnStruct — Allow arithmetic on pointer to a structure field so that it points
to another field
false (default) | true

This property affects Code Prover analysis only.

Allow arithmetic on pointer to a structure field so that it points to another field, specified as true or
false.

5 Functions, Properties, Classes, and Apps

5-132

For more information, see Enable pointer arithmetic across fields (-allow-ptr-
arith-on-struct).
Example: opts.ChecksAssumption.AllowPtrArithOnStruct = true

CheckInfinite — Detect floating-point operations that result in infinities
'allow' (default) | 'warn-first' | 'forbid'

This property affects Code Prover analysis only.

Detect floating-point operations that result in infinities.

To activate this option, specify ChecksAssumption.AllowNonFiniteFloats.

For more information, see Infinities (-check-infinite).
Example: opts.ChecksAssumption.CheckInfinite = 'forbid'

CheckNan — Detect floating-point operations that result in NaN-s
'allow' (default) | 'warn-first' | 'forbid'

This property affects Code Prover analysis only.

Detect floating-point operations that result in NaN-s.

To activate this option, specify ChecksAssumption.AllowNonFiniteFloats.

For more information, see NaNs (-check-nan).
Example: opts.ChecksAssumption.CheckNan = 'forbid'

CheckSubnormal — Detect operations that result in subnormal floating point values
'allow' (default) | 'warn-first' | 'warn-all' | 'forbid'

This property affects Code Prover analysis only.

Detect operations that result in subnormal floating point values.

For more information, see Subnormal detection mode (-check-subnormal).
Example: opts.ChecksAssumption.CheckSubnormal = 'forbid'

DetectPointerEscape — Find cases where a function returns a pointer to one of its local
variables
false (default) | true

This property affects Code Prover analysis only.

Find cases where a function returns a pointer to one of its local variables, specified as true or false.

For more information, see Detect stack pointer dereference outside scope (-detect-
pointer-escape).
Example: opts.ChecksAssumption.DetectPointerEscape = true

DisableInitializationChecks — Disable checks for noninitialized variables and pointers
false (default) | true

 polyspace.ModelLinkOptions Properties

5-133

This property affects Code Prover analysis only.

Disable checks for noninitialized variables and pointers, specified as true or false.

For more information, see Disable checks for non-initialization (-disable-
initialization-checks).
Example: opts.ChecksAssumption.DisableInitializationChecks = true

PermissiveFunctionPointer — Allow type mismatch between function pointers and the
functions they point to
false (default) | true

This property affects Code Prover analysis only.

Allow type mismatch between function pointers and the functions they point to, specified as true or
false.

For more information, see Permissive function pointer calls (-permissive-function-
pointer).
Example: opts.ChecksAssumption.PermissiveFunctionPointer = true

SignedIntegerOverflows — Behavior of signed integer overflows
'warn-with-wrap-around' (default) | 'forbid' | 'allow'

This property affects Code Prover analysis only.

Enable the check for signed integer overflows and the assumptions to make following an overflow
specified as 'forbid', 'allow', or 'warn-with-wrap-around'.

For more information, see Overflow mode for signed integer (-signed-integer-
overflows).
Example: opts.ChecksAssumption.SignedIntegerOverflows = 'warn-with-wrap-around'

SizeInBytes — Allow a pointer with insufficient memory buffer to point to a structure
false (default) | true

This property affects Code Prover analysis only.

Allow a pointer with insufficient memory buffer to point to a structure, specified as true or false.

For more information, see Allow incomplete or partial allocation of structures (-
size-in-bytes).
Example: opts.ChecksAssumption.SizeInBytes = true

UncalledFunctionCheck — Detect functions that are not called directly or indirectly from
main or another entry-point function
'none' (default) | 'never-called' | 'called-from-unreachable' | 'all'

This property affects Code Prover analysis only.

Detect functions that are not called directly or indirectly from main or another entry-point function,
specified as 'none', 'never-called', 'called-from-unreachable', or 'all'.

For more information, see Detect uncalled functions (-uncalled-function-checks).

5 Functions, Properties, Classes, and Apps

5-134

Example: opts.ChecksAssumption.UncalledFunctionCheck = 'all'

UnsignedIntegerOverflows — Behavior of unsigned integer overflows
'allow' (default) | 'forbid' | 'warn-with-wrap-around'

This property affects Code Prover analysis only.

Enable the check for unsigned integer overflows and the assumptions to make following an overflow,
specified as 'forbid', 'allow', or 'warn-with-wrap-around'.

For more information, see Overflow mode for unsigned integer (-unsigned-integer-
overflows).
Example: opts.ChecksAssumption.UnsignedIntegerOverflows = 'allow'

CodeProverVerification (Affects Code Prover only)

ClassAnalyzer — Classes that you want to verify
'none' (default) | 'all' | 'custom=class1[,class2,...]'

This property affects Code Prover analysis only.

Classes that you want to verify, specified as 'all', 'none', or as a character array beginning with
custom= followed by a comma-separated list of class names.

For more information, see Class (-class-analyzer).
Example: opts.CodeProverVerification.ClassAnalyzer = 'none'

FunctionsCalledAfterLoop — Functions that the generated main must call after the cyclic
code loop
cell array of function names

This property affects Code Prover analysis only.

Functions that the generated main must call after the cyclic code loop, specified as a cell array of
function names.

For more information, see Termination functions (-functions-called-after-loop).
Example: opts.CodeProverVerification.FunctionsCalledAfterLoop =
{'func1','func2'}

FunctionsCalledBeforeLoop — Functions that the generated main must call before the
cyclic code loop
cell array of function names

This property affects Code Prover analysis only.

Model Link only. Functions that the generated main must call before the cyclic code loop, specified as
a cell array of function names.

For more information, see Initialization functions (-functions-called-before-loop)).
Example: opts.CodeProverVerification.FunctionsCalledBeforeLoop =
{'func1','func2'}

 polyspace.ModelLinkOptions Properties

5-135

FunctionsCalledInLoop — Functions that the generated main must call in the cyclic code
loop
'none' (default) | 'all' | 'custom=function1[,function2,...]'

This property affects Code Prover analysis only.

Functions that the generated main must call in the cyclic code loop, specified as 'none', 'all', or
as a character array beginning with custom= followed by a comma-separated list of function names..

For more information, see Step functions (-functions-called-in-loop).
Example: opts.CodeProverVerification.FunctionsCalledInLoop = 'all'

MainGenerator — Generate a main function if it is not present in source files
true (default) | false

This property affects Code Prover analysis only.

Generate a main function if it is not present in source files, specified as true or false.

For more information, see Verify module or library (-main-generator).
Example: opts.CodeProverVerification.MainGenerator = false

VariablesWrittenBeforeLoop — Variables that the generated main must initialize before
the cyclic code loop
'none' (default) | 'all' | 'custom=variable1[,variable2,...]'

This property affects Code Prover analysis only.

Variables that the generated main must initialize before the cyclic code loop, specified as 'none',
'all', or as a character array beginning with custom= followed by a comma-separated list of
variable names.

For more information, see Parameters (-variables-written-before-loop).
Example: opts.CodeProverVerification.VariablesWrittenBeforeLoop = 'all'

VariablesWrittenInLoop — Variables that the generated main must initialize in the cyclic
code loop
'none' (default) | 'all' | 'custom=variable1[,variable2,...]'

This property affects Code Prover analysis only.

Variables that the generated main must initialize in the cyclic code loop, specified as 'none', 'all',
or as a character array beginning with custom= followed by a comma-separated list of variable
names.

For more information, see Inputs (-variables-written-in-loop).
Example: opts.CodeProverVerification.VariablesWrittenInLoop = 'all'

CodingRulesCodeMetrics

AcAgcSubset — Subset of MISRA AC AGC rules to check
'OBL-rules' (default) | 'OBL-REC-rules' | 'single-unit-rules' | 'system-decidable-
rules' | 'all-rules' | 'SQO-subset1' | 'SQO-subset2' | polyspace.CodingRulesOptions
object | 'from-file'

5 Functions, Properties, Classes, and Apps

5-136

Subset of MISRA AC AGC rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check MISRA AC AGC (-misra-ac-agc).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check MISRA AC AGC rules, also set EnableAcAgc to true.
Example: opts.CodingRulesCodeMetrics.AcAgcSubset = 'all-rules'
Data Types: char

AllowedPragmas — Pragma directives for which MISRA C:2004 rule 3.4 or MISRA C++
16-6-1 must not be applied
cell array of character vectors

Pragma directives for which MISRA C:2004 rule 3.4 or MISRA C++ 16-6-1 must not be applied,
specified as a cell array of character vectors. This property affects only MISRA C:2004 or MISRA AC
AGC rule checking.

For more information, see Allowed pragmas (-allowed-pragmas).
Example: opts.CodingRulesCodeMetrics.AllowedPragmas = {'pragma_01','pragma_02'}
Data Types: cell

AutosarCpp14 — Set of AUTOSAR C++ 14 rules to check
'all' (default) | 'required' | 'automated' | polyspace.CodingRulesOptions object |
'from-file'

This property affects Bug Finder only.

Set of AUTOSAR C++ 14 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check AUTOSAR C++ 14 security checks (-autosar-cpp14).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

 polyspace.ModelLinkOptions Properties

5-137

To check AUTOSAR C++ 14 rules, also set EnableAutosarCpp14 to true.
Example: opts.CodingRulesCodeMetrics.AutosarCpp14 = 'all'
Data Types: char

BooleanTypes — Data types the coding rule checker must treat as effectively Boolean
cell array of character vectors

Data types that the coding rule checker must treat as effectively Boolean, specified as a cell array of
character vectors.

For more information, see Effective boolean types (-boolean-types).
Example: opts.CodingRulesCodeMetrics.BooleanTypes = {'boolean1_t','boolean2_t'}
Data Types: cell

CertC — Set of CERT C rules and recommendations to check
'all' (default) | 'publish-2016' | 'all-rules' | polyspace.CodingRulesOptions object |
'from-file'

This property affects Bug Finder only.

Set of CERT C rules and recommendations to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check CERT-C security checks (-cert-c).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use from-file for this property and then use
the EnableCheckersSelectionByFile and CheckersSelectionByFile property to specify
the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check CERT C rules and recommendations, also set EnableCertC to true.
Example: opts.CodingRulesCodeMetrics.CertC = 'all'
Data Types: char

CertCpp — Set of CERT C++ rules to check
'all' (default) | polyspace.CodingRulesOptions object | 'from-file'

This property affects Bug Finder only.

Set of CERT C++ rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check CERT-C++ security checks (-cert-cpp).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

5 Functions, Properties, Classes, and Apps

5-138

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check CERT C++ rules, also set EnableCertCpp to true.
Example: opts.CodingRulesCodeMetrics.CertCpp = 'all'
Data Types: char

CheckersSelectionByFile — File that defines custom set of coding standard checkers
full file path of .xml file

File where you define a custom set of coding standards checkers to check, specified as a .xml file.
You can, in the same file, define a custom set of checkers for each of the coding standards that
Polyspace supports. To create a file that defines a custom selection of coding standard checkers, in
the Polyspace interface, select a coding standard on the Coding Standards & Code Metrics node of
the Configuration pane and click Edit.

For more information, see Set checkers by file (-checkers-selection-file).
Example: opts.CodingRulesCodeMetrics.CheckersSelectionByFile = 'C:\ps_settings
\coding_rules\custom_rules.xml'

Data Types: char

CodeMetrics — Activate code metric calculations
false (default) | true

Activate code metric calculations, specified as true or false. If this property is turned off, Polyspace
does not calculate code metrics even if you upload your results to Polyspace Metrics.

For more information about the code metrics, see Calculate code metrics (-code-metrics).

If you assign a coding rules options object to this property, an XML file gets created automatically
with the rules specified.
Example: opts.CodingRulesCodeMetrics.CodeMetrics = true

EnableAcAgc — Check MISRA AC AGC rules
false (default) | true

Check MISRA AC AGC rules, specified as true or false. To customize which rules are checked, use
AcAgcSubset.

For more information about the MISRA AC AGC checker, see Check MISRA AC AGC (-misra-ac-
agc).
Example: opts.CodingRulesCodeMetrics.EnableAcAgc = true;

EnableAutosarCpp14 — Check AUTOSAR C++ 14 rules
false (default) | true

 polyspace.ModelLinkOptions Properties

5-139

This property affects Bug Finder only.

Check AUTOSAR C++ 14 rules, specified as true or false. To customize which rules are checked, use
AutosarCpp14.

For more information about the AUTOSAR C++ 14 checker, see Check AUTOSAR C++ 14 checks
(-autosar-cpp14).
Example: opts.CodingRulesCodeMetrics.EnableAutosarCpp14 = true;

EnableCertC — check CERT C rules and recommendations
false (default) | true

This property affects Bug Finder only.

Check CERT C rules and recommendations, specified as true or false. To customize which rules are
checked, use CertC.

For more information about the CERT C checker, see Check SEI CERT-C checks (-cert-c).
Example: opts.CodingRulesCodeMetrics.EnableCertC = true;

EnableCertCpp — check CERT C++ rules
false (default) | true

This property affects Bug Finder only.

Check CERT C++ rules, specified as true or false. To customize which rules are checked, use
CertCpp.

For more information about the CERT C++ checker, see Check SEI-CERT-C++ (-cert-cpp).
Example: opts.CodingRulesCodeMetrics.EnableCertCpp = true;

EnableCheckersSelectionByFile — Check custom set of coding standard checkers
false (default) | true

Check custom set of coding standard checkers, specified as true or false. Use with
CheckersSelectionByFile and these coding standards:

• opts.CodingRulesCodeMetrics.AutosarCpp14='from-file'
• opts.CodingRulesCodeMetrics.CertC='from-file'
• opts.CodingRulesCodeMetrics.CertCpp='from-file'
• opts.CodingRulesCodeMetrics.Iso17961='from-file'
• opts.CodingRulesCodeMetrics.JsfSubset='from-file'
• opts.CodingRulesCodeMetrics.MisraC3Subset='from-file'
• opts.CodingRulesCodeMetrics.MisraCSubset='from-file'
• opts.CodingRulesCodeMetrics.MisraCppSubset='from-file'

For more information, see Check custom rules (-custom-rules).
Example: opts.CodingRulesCodeMetrics.EnableCheckersSelectionByFile = true;

EnableCustomRules — Check custom coding rules
false (default) | true

5 Functions, Properties, Classes, and Apps

5-140

Check custom coding rules, specified as true or false. The file you specify with
CheckersSelectionByFile defines the custom coding rules.

Use with EnableCheckersSelectionByFile.

For more information, see Check custom rules (-custom-rules).
Example: opts.CodingRulesCodeMetrics.EnableCustomRules = true;

EnableIso17961 — check ISO-17961 rules
false (default) | true

This property affects Bug Finder only.

Check ISO/IEC TS 17961 rules, specified as true or false. To customize which rules are checked, use
Iso17961.

For more information about the ISO-17961 checker, see Check ISO-17961 security checks (-
iso-17961).
Example: opts.CodingRulesCodeMetrics.EnableIso17961 = true;

EnableJsf — Check JSF C++ rules
false (default) | true

Check JSF C++ rules, specified as true or false. To customize which rules are checked, use
JsfSubset.

For more information, see Check JSF C++ rules (-jsf-coding-rules).
Example: opts.CodingRulesCodeMetrics.EnableJsf = true;

EnableMisraC — Check MISRA C:2004 rules
false (default) | true

Check MISRA C:2004 rules, specified as true or false. To customize which rules are checked, use
MisraCSubset.

For more information, see Check MISRA C:2004 (-misra2).
Example: opts.CodingRulesCodeMetrics.EnableMisraC = true;

EnableMisraC3 — Check MISRA C:2012 rules
false (default) | true

Check MISRA C:2012 rules, specified as true or false. To customize which rules are checked, use
MisraC3Subset.

For more information about the MISRA C:2012 checker, see Check MISRA C:2012 (-misra3).
Example: opts.CodingRulesCodeMetrics.EnableMisraC3 = true;

EnableMisraCpp — Check MISRA C++:2008 rules
false (default) | true

Check MISRA C++:2008 rules, specified as true or false. To customize which rules are checked, use
MisraCppSubset.

 polyspace.ModelLinkOptions Properties

5-141

For more information about the MISRA C++:2008 checker, see Check MISRA C++ rules (-
misra-cpp).
Example: opts.CodingRulesCodeMetrics.EnableMisraCpp = true;

Iso17961 — Set of ISO-17961 rules to check
'all' (default) | 'decidable' | polyspace.CodingRulesOptions object | 'from-file'

This property affects Bug Finder only.

Set of ISO/IEC TS 17961 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check ISO-17961 (-iso-17961).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check ISO/IEC TS 17961 rules, also set EnableIso17961 to true.
Example: opts.CodingRulesCodeMetrics.Iso17961 = 'all'
Data Types: char

JsfSubset — Subset of JSF C++ rules to check
'shall-rules' (default) | 'shall-will-rules' | 'all-rules' |
polyspace.CodingRulesOptions object | 'from-file'

Subset of JSF C++ rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check JSF C++ rules (-jsf-coding-rules).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check JSF C++ rules, set EnableJsf to true.
Example: opts.CodingRulesCodeMetrics.JsfSubset = 'all-rules'
Data Types: char

5 Functions, Properties, Classes, and Apps

5-142

Misra3AgcMode — Use the MISRA C:2012 categories for automatically generated code
false (default) | true

Use the MISRA C:2012 categories for automatically generated code, specified as true or false.

For more information, see Use generated code requirements (-misra3-agc-mode).
Example: opts.CodingRulesCodeMetrics.Misra3AgcMode = true;

MisraC3Subset — Subset of MISRA C:2012 rules to check
'mandatory-required' (default) | 'mandatory' | 'single-unit-rules' | 'system-
decidable-rules' | 'all' | 'SQO-subset1' | 'SQO-subset2' |
polyspace.CodingRulesOptions object | 'from-file'

Subset of MISRA C:2012 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check MISRA C:2012 (-misra3).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check MISRA C:2012 rules, also set EnableMisraC3 to true.
Example: opts.CodingRulesCodeMetrics.MisraC3Subset = 'all'
Data Types: char

MisraCSubset — Subset of MISRA C:2004 rules to check
'required-rules' (default) | 'single-unit-rules' | 'system-decidable-rules' | 'all-
rules' | 'SQO-subset1' | 'SQO-subset2' | polyspace.CodingRulesOptions object | 'from-
file'

Subset of MISRA C:2004 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check MISRA C:2004 (-misra2).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

 polyspace.ModelLinkOptions Properties

5-143

To check MISRA C:2004 rules, also set EnableMisraC to true.
Example: opts.CodingRulesCodeMetrics.MisraCSubset = 'all-rules'
Data Types: char

MisraCppSubset — Subset of MISRA C++ rules
'required-rules' (default) | 'all-rules' | 'SQO-subset1' | 'SQO-subset2' |
polyspace.CodingRulesOptions object | 'from-file'

Subset of MISRA C++:2008 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different subsets,
see Check MISRA C++ rules (-misra-cpp).

• A coding rules options object. To create a coding rules options object, see
polyspace.CodingRulesOptions.

• An XML file specifying coding standard checkers. Use 'from-file' for this property and then
use the EnableCheckersSelectionByFile and CheckersSelectionByFile property to
specify the full path to the file where you define a custom subset of checkers.

You can create this file manually or in the Polyspace interface. See “Check for Coding Standard
Violations”. If you assign a coding rules options object to this property, an XML file is created
automatically and assigned to the CheckersSelectionByFile property. The XML file enables
rules extracted from the coding rules options object.

To check MISRA C++ rules, set EnableMisraCpp to true.
Example: opts.CodingRulesCodeMetrics.MisraCppSubset = 'all-rules'
Data Types: char

EnvironmentSettings

Dos — Consider that file paths are in MS-DOS style
true (default) | false

Consider that file paths are in MS-DOS style, specified as true or false.

For more information, see Code from DOS or Windows file system (-dos).
Example: opts.EnvironmentSettings.Dos = true;

IncludeFolders — Include folders needed for compilation
cell array of include folder paths

Include folders needed for compilation, specified as a cell array of the include folder paths.

To specify all subfolders of a folder, use folder path followed by **, for instance, 'C:\includes
**'. The notation follows the syntax of the dir function. See also “Specify Multiple Source Files”.

For more information, see -I.
Example: opts.EnvironmentSettings.IncludeFolders = {'/includes','/com1/inc'};
Example: opts.EnvironmentSettings.IncludeFolders = {'C:\project1\common
\includes'};

Data Types: cell

5 Functions, Properties, Classes, and Apps

5-144

Includes — Files to be #include-ed by each C file
cell array of files

Files to be #include-ed by each C source file in the analysis, specified by a cell array of files.

For more information, see Include (-include).
Example: opts.EnvironmentSettings.Includes = {'/inc/inc_file.h','/inc/
inc_math.h'}

NoExternC — Ignore linking errors inside extern blocks
false (default) | true

Ignore linking errors inside extern blocks, specified as true or false.

For more information, see Ignore link errors (-no-extern-c).
Example: opts.EnvironmentSettings.NoExternC = false;

PostPreProcessingCommand — Command or script to run on source files after
preprocessing
character vector

Command or script to run on source files after preprocessing, specified as a character vector of the
command to run.

For more information, see Command/script to apply to preprocessed files (-post-
preprocessing-command).
Example: Linux — opts.EnvironmentSettings.PostPreProcessingCommand = [pwd,'/
replace_keyword.pl']

Example: Windows — opts.EnvironmentSettings.PostPreProcessingCommand =
'"C:\Program Files\MATLAB\R2015b\sys\perl\win32\bin\perl.exe" "C:\My_Scripts
\replace_keyword.pl"'

StopWithCompileError — Stop analysis if a file does not compile
false (default) | true

Stop analysis if a file does not compile, specified as true or false.

For more information, see Stop analysis if a file does not compile (-stop-if-
compile-error).
Example: opts.EnvironmentSettings.StopWithCompileError = true;

InputsStubbing

DataRangeSpecifications — Constrain global variables, function inputs, and return values
of stubbed functions
file path

Constrain global variables, function inputs, and return values of stubbed functions specified by the
path to an XML constraint file. For more information about the constraint file, see “Specify External
Constraints”.

For more information about this option, see Constraint setup (-data-range-
specifications).

 polyspace.ModelLinkOptions Properties

5-145

Example: opts.InputsStubbing.DataRangeSpecifications = 'C:\project
\constraint_file.xml'

DoNotGenerateResultsFor — Files on which you do not want analysis results
'include-folders' (default) | 'all-headers' | 'custom=folder1[,folder2,...]'

Files on which you do not want analysis results, specified by 'include-folders', 'all-headers',
or a character array beginning with custom= followed by a comma-separated list of file or folder
names.

Use this option with InputsStubbing.GenerateResultsFor. For more information, see Do not
generate results for (-do-not-generate-results-for).
Example: opts.InputsStubbing.DoNotGenerateResultsFor = 'custom=C:\project
\file1.c,C:\project\file2.c'

GenerateResultsFor — Files on which you want analysis results
'source-headers' (default) | 'all-headers' | 'custom=folder1[,folder2,...]'

Files on which you want analysis results, specified by 'source-headers', 'all-headers', or a
character array beginning with custom= followed by a comma-separated list of file or folder names.

Use this option with InputsStubbing.DoNotGenerateResultsFor. For more information, see
Generate results for sources and (-generate-results-for).
Example: opts.InputsStubbing.GenerateResultsFor = 'custom=C:\project
\includes_common_1,C:\project\includes_common_2'

FunctionsToStub — Functions to stub during analysis
cell array of function names

This property affects Code Prover analysis only.

Functions to stub during analysis, specified as a cell array of function names.

For more information, see Functions to stub (-functions-to-stub).
Example: opts.InputsStubbing.FunctionsToStub = {'func1', 'func2'}

NoDefInitGlob — Consider global variables as uninitialized
false (default) | true

This property affects Code Prover analysis only.

Consider global variables as uninitialized, specified as true or false.

For more information, see Ignore default initialization of global variables (-no-
def-init-glob).
Example: opts.InputsStubbing.NoDefInitGlob = true

NoStlStubs — Do not use Polyspace implementations of functions in the Standard
Template Library
false (default) | true

This property applies only to a Code Prover analysis of C++ code.

5 Functions, Properties, Classes, and Apps

5-146

Do not use Polyspace implementations of functions in the Standard Template Library, specified as
true or false.

For more information, see No STL stubs (-no-stl-stubs).
Example: opts.InputsStubbing.NoStlStubs = true

StubECoderLookupTables — Specify that the analysis must stub functions in the generated
code that use lookup tables
true (default) | false

This property applies only to a Code Prover analysis of code generated from models.

Specify that the analysis must stub functions in the generated code that use lookup tables. By
replacing the functions with stubs, the analysis assumes more precise return values for the functions.

For more information, see Generate stubs for Embedded Coder lookup tables (-stub-
embedded-coder-lookup-table-functions).
Example: opts.InputsStubbing.StubECoderLookupTables = true

Macros

DefinedMacros — Macros to be replaced
cell array of macros

In preprocessed code, macros are replaced by the definition, specified in a cell array of macros and
definitions. Specify the macro as Macro=Value. If you want Polyspace to ignore the macro, leave the
Value blank. A macro with no equal sign replaces all instances of that macro by 1.

For more information, see Preprocessor definitions (-D).
Example: opts.Macros.DefinedMacros = {'uint32=int','name3=','var'}

UndefinedMacros — Macros to undefine
cell array of macros

In preprocessed code, macros are undefined, specified by a cell array of macros to undefine.

For more information, see Disabled preprocessor definitions (-U).
Example: opts.Macros.DefinedMacros = {'name1','name2'}

MergedComputingSettings

BatchBugFinder — Send Bug Finder analysis to remote server
false (default) | true

This property affects Bug Finder analysis only.

Send Bug Finder analysis to remote server, specified as true or false. To use this option, in your
Polyspace preferences, you must specify a metrics server.

For more information, see Run Bug Finder or Code Prover analysis on a remote
cluster (-batch).
Example: opts.MergedComputingSettings.BatchBugFinder = true;

 polyspace.ModelLinkOptions Properties

5-147

BatchCodeProver — Send Code Prover analysis to remote server
false (default) | true

This property affects Code Prover analysis only.

Send Code Prover analysis to remote server, specified as true or false. To use this option, in your
Polyspace preferences, you must specify a metrics server.

For more information, see Run Bug Finder or Code Prover analysis on a remote
cluster (-batch).
Example: opts.MergedComputingSettings.BatchCodeProver = true;

FastAnalysis — Run Bug Finder analysis using faster local mode
false (default) | true

This property affects Bug Finder analysis only.

Use fast analysis mode for Bug Finder analysis, specified as true or false.

For more information, see Use fast analysis mode for Bug Finder (-fast-analysis).
Example: opts.MergedComputingSettings.FastAnalysis = true;

MergedReporting

EnableReportGeneration — Generate a report after the analysis
false (default) | true

After the analysis, generate a report, specified as true or false.

For more information, see Generate report.
Example: opts.MergedReporting.EnableReportGeneration = true

ReportOutputFormat — Output format of generated report
'Word' (default) | 'HTML' | 'PDF'

Output format of generated report, specified as one of the report formats. To activate this option,
specify Reporting.EnableReportGeneration.

For more information about the different values, see Output format (-report-output-format).
Example: opts.MergedReporting.ReportOutputFormat = 'PDF'

BugFinderReportTemplate — Template for generating Bug Finder analysis report
'BugFinderSummary' (default) | 'BugFinder' | 'SecurityCWE' | 'CodeMetrics' |
'CodingStandards'

This property affects a Bug Finder analysis only.

Template for generating analysis report, specified as one of the report formats. To activate this
option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Bug Finder and Code Prover report (-
report-template).
Example: opts.MergedReporting.BugFinderReportTemplate = 'CodeMetrics'

5 Functions, Properties, Classes, and Apps

5-148

CodeProverReportTemplate — Template for generating Code Prover analysis report
'Developer' (default) | 'CallHierarchy' | 'CodeMetrics' | 'CodingStandards' |
'DeveloperReview' | 'Developer_withGreenChecks' | 'Quality' | 'VariableAccess'

This property affects a Code Prover analysis only.

Template for generating analysis report, specified as one of the predefined report formats. To activate
this option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Bug Finder and Code Prover report (-
report-template).
Example: opts.MergedReporting.CodeProverReportTemplate = 'CodeMetrics'

Multitasking

ArxmlMultitasking — Specify path of ARXML files to parse for multitasking configuration
cell array of file paths

Specify the path to the ARXML files the software parses to set up your multitasking configuration.

To activate this option, specify Multitasking.EnableExternalMultitasking and set
Multitasking.ExternalMultitaskingType to autosar.

For more information, see ARXML files selection (-autosar-multitasking)
Example: opts.Multitasking.ArxmlMultitasking={'C:\Polyspace_Workspace\AUTOSAR
\myFile.arxml'}

CriticalSectionBegin — Functions that begin critical sections
cell array of critical section function names

Functions that begin critical sections specified as a cell array of critical section function names. To
activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionEnd.

For more information, see Critical section details (-critical-section-begin -
critical-section-end).
Example: opts.Multitasking.CriticalSectionBegin =
{'function1:cs1','function2:cs2'}

CriticalSectionEnd — Functions that end critical sections
cell array of critical section function names

Functions that end critical sections specified as a cell array of critical section function names. To
activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionBegin.

For more information, see Critical section details (-critical-section-begin -
critical-section-end).
Example: opts.Multitasking.CriticalSectionEnd =
{'function1:cs1','function2:cs2'}

CyclicTasks — Specify functions that represent cyclic tasks
cell array of function names

 polyspace.ModelLinkOptions Properties

5-149

Specify functions that represent cyclic tasks.

To activate this option, also specify Multitasking.EnableMultitasking.

For more information, see Cyclic tasks (-cyclic-tasks).
Example: opts.Multitasking.CyclicTasks = {'function1','function2'}

EnableConcurrencyDetection — Enable automatic detection of certain families of
threading functions
false (default) | true

This property affects Code Prover analysis only.

Enable automatic detection of certain families of threading functions, specified as true or false.

For more information, see Enable automatic concurrency detection for Code Prover (-
enable-concurrency-detection).
Example: opts.Multitasking.EnableConcurrencyDetection = true

EnableExternalMultitasking — Enable automatic multitasking configuration from
external file definitions
false (default) | true

Enable multitasking configuration of your projects from external files you provide. Configure
multitasking from ARXML files for an AUTOSAR project, or from OIL files for an OSEK project.

Activate this option to enable Multitasking.ArxmlMultitasking or
Multitasking.OsekMultitasking.

For more information, see OIL files selection (-osek-multitasking) and ARXML files
selection (-autosar-multitasking).
Example: opts.Multitasking.EnableExternalMultitasking = 1

EnableMultitasking — Configure multitasking manually
false (default) | true

Configure multitasking manually by specifying true. This property activates the other manual,
multitasking properties.

For more information, see Configure multitasking manually.
Example: opts.Multitasking.EnableMultitasking = 1

EntryPoints — Functions that serve as entry-points to your multitasking application
cell array of entry-point function names

Functions that serve as entry-points to your multitasking application specified as a cell array of entry-
point function names. To activate this option, also specify Multitasking.EnableMultitasking.

For more information, see Tasks (-entry-points).
Example: opts.Multitasking.EntryPoints = {'function1','function2'}

ExternalMultitaskingType — Specify type of file to parse for multitasking configuration
'osek' (default) | 'autosar'

5 Functions, Properties, Classes, and Apps

5-150

Specify the type of file the software parses to set up your multitasking configuration:

• For osek type, the analysis looks for OIL files in the file or folder paths that you specify.
• For autosar type, the analysis looks for ARXML files in the file paths that you specify.

To activate this option, specify Multitasking.EnableExternalMultitasking.

For more information, see OIL files selection (-osek-multitasking) and ARXML files
selection (-autosar-multitasking).
Example: opts.Multitasking.ExternalMultitaskingType = 'autosar'

Interrupts — Specify functions that represent nonpreemptable interrupts
cell array of function names

Specify functions that represent nonpreemptable interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Interrupts (-interrupts).
Example: opts.Multitasking.Interrupts = {'function1','function2'}

InterruptsDisableAll — Specify routine that disable interrupts
cell array with one function name

This property affects Bug Finder analysis only.

Specify function that disables all interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Disabling all interrupts (-routine-disable-interrupts -
routine-enable-interrupts)Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts).
Example: opts.Multitasking.InterruptsDisableAll = {'function'}

InterruptsEnableAll — Specify routine that reenable interrupts
cell array with one function name

This property affects Bug Finder analysis only.

Specify function that reenables all interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Disabling all interrupts (-routine-disable-interrupts -
routine-enable-interrupts)Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts).
Example: opts.Multitasking.InterruptsEnableAll = {'function'}

OsekMultitasking — Specify path of OIL files to parse for multitasking configuration
'auto' (default) | 'custom=folder1[,folder2,...]'

Specify the path to the OIL files the software parses to set up your multitasking configuration:

 polyspace.ModelLinkOptions Properties

5-151

• In the mode specified with 'auto', the analysis uses OIL files in your project source and include
folders, but not their subfolders.

• In the mode specified with 'custom=folder1[,folder2,...]', the analysis uses the OIL files
at the specified path, and the path subfolders.

To activate this option, specify Multitasking.EnableExternalMultitasking and set
Multitasking.ExternalMultitaskingType to osek.

For more information, see OIL files selection (-osek-multitasking)
Example: opts.Multitasking.OsekMultitasking = 'custom=file_path, dir_path'

TemporalExclusion — Entry-point functions that cannot execute concurrently
cell array of entry-point function names

Entry-point functions that cannot execute concurrently specified as a cell array of entry-point
function names. Each set of exclusive tasks is one cell array entry with functions separated by spaces.
To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Temporally exclusive tasks (-temporal-exclusions-file).
Example: opts.Multitasking.TemporalExclusion = {'function1 function2',
'function3 function4 function5'} where function1 and function2 are temporally exclusive,
and function3, function4, and function 5 are temporally exclusive.

Precision (Affects Code Prover Only)

ContextSensitivity — Store call context information to identify function call that caused
errors
'none' (default) | 'auto' | 'custom=function1[,function2,...]'

This property affects Code Prover analysis only.

Store call context information to identify a function call that caused errors, specified as none, auto,
or as a character array beginning with custom= followed by a list of comma-separated function
names.

For more information, see Sensitivity context (-context-sensitivity).
Example: opts.Precision.ContextSensitivity = 'auto'
Example: opts.Precision.ContextSensitivity = 'custom=func1'

ModulesPrecision — Source files you want to verify at higher precision
cell array of file names and precision levels

This property affects Code Prover analysis only.

Source files that you want to verify at higher precision, specified as a cell array of file names without
the extension and precision levels using this syntax: filename:Olevel

For more information, see Specific precision (-modules-precision).
Example: opts.Precision.ModulesPrecision = {'file1:O0', 'file2:O3'}

OLevel — Precision level for the verification
2 (default) | 0 | 1 | 3

5 Functions, Properties, Classes, and Apps

5-152

This property affects Code Prover analysis only.

Precision level for the verification, specified as 0, 1, 2, or 3.

For more information, see Precision level (-O).
Example: opts.Precision.OLevel = 3

PathSensitivityDelta — Avoid certain verification approximations for code with fewer
lines
positive integer

This property affects Code Prover analysis only.

Avoid certain verification approximations for code with fewer lines, specified as a positive integer
representing how sensitive the analysis is. Higher values can increase verification time exponentially.

For more information, see Improve precision of interprocedural analysis (-path-
sensitivity-delta).
Example: opts.Precision.PathSensitivityDelta = 2

Timeout — Time limit on your verification
character vector

This property affects Code Prover analysis only.

Time limit on your verification, specified as a character vector of time in hours.

For more information, see Verification time limit (-timeout).
Example: opts.Precision.Timeout = '5.75'

To — Number of times the verification process runs
'Software Safety Analysis level 2' (default) | 'Software Safety Analysis level 0' |
'Software Safety Analysis level 1' | 'Software Safety Analysis level 3' |
'Software Safety Analysis level 4' | 'Source Compliance Checking' | 'other'

This property affects Code Prover analysis only.

Number of times the verification process runs, specified as one of the preset analysis levels.

For more information, see Verification level (-to).
Example: opts.Precision.To = 'Software Safety Analysis level 3'

Scaling (Affects Code Prover Only)

Inline — Functions on which separate results must be generated for each function call
cell array of function names

This property affects Code Prover analysis only.

Functions on which separate results must be generated for each function call, specified as a cell
array of function names.

For more information, see Inline (-inline).

 polyspace.ModelLinkOptions Properties

5-153

Example: opts.Scaling.Inline = {'func1','func2'}

KLimiting — Limit depth of analysis for nested structures
positive integer

This property affects Code Prover analysis only.

Limit depth of analysis for nested structures, specified as a positive integer indicating how many
levels into a nested structure to verify.

For more information, see Depth of verification inside structures (-k-limiting).
Example: opts.Scaling.KLimiting = 3

TargetCompiler

Compiler — Compiler that builds your source code
'generic' (default) | 'gnu3.4' | 'gnu4.6' | 'gnu4.7' | 'gnu4.8' | 'gnu4.9' | 'gnu5.x' |
'gnu6.x' | 'gnu7.x' | 'clang3.x' | 'clang4.x' | 'clang5.x' | 'visual9.0' | 'visual10' |
'visual11.0' | 'visual12.0' | 'visual14.0' | 'visual15.x' | 'keil' | 'iar' | 'armcc' |
'armclang' | 'codewarrior' | 'diab' | 'greenhills' | 'iar-ew' | 'renesas' | 'tasking' |
'ti'

Compiler that builds your source code.

For more information, see Compiler (-compiler).
Example: opts.TargetCompiler.Compiler = 'Visual11.0'

CppVersion — Specify C++ standard version followed in code
'defined-by-compiler' (default) | 'cpp03' | 'cpp11' | 'cpp14' | 'cpp17'

Specify C++ standard version followed in code, specified as a character vector.

For more information, see C++ standard version (-cpp-version).
Example: opts.TargetCompiler.CppVersion = 'cpp11';

CVersion — Specify C standard version followed in code
'defined-by-compiler' (default) | 'c90' | 'c99' | 'c11'

Specify C standard version followed in code, specified as a character vector.

For more information, see C standard version (-c-version).
Example: opts.TargetCompiler.CVersion = 'c90';

DivRoundDown — Round down quotients from division or modulus of negative numbers
false (default) | true

Round down quotients from division or modulus of negative numbers, specified as true or false.

For more information, see Division round down (-div-round-down).
Example: opts.TargetCompiler.DivRoundDown = true

EnumTypeDefinition — Base type representation of enum
'defined-by-compiler' (default) | 'auto-signed-first' | 'auto-unsigned-first'

5 Functions, Properties, Classes, and Apps

5-154

Base type representation of enum, specified by an allowed base-type set. For more information about
the different values, see Enum type definition (-enum-type-definition).
Example: opts.TargetCompiler.EnumTypeDefinition = 'auto-unsigned-first'

IgnorePragmaPack — Ignore #pragma pack directives
false (default) | true

Ignore #pragma pack directives, specified as true or false.

For more information, see Ignore pragma pack directives (-ignore-pragma-pack).
Example: opts.TargetCompiler.IgnorePragmaPack = true

Language — Language of analysis
'C-CPP' (default) | 'C' | 'CPP'

This property is read-only.

Language of the analysis, specified during the object construction. This value changes which
properties appear.

For more information, see Source code language (-lang).

LogicalSignedRightShift — Treatment of signed bit on signed variables
'Arithmetical' (default) | 'Logical'

Treatment of signed bit on signed variables, specified as Arithmetical or Logical. For more
information, see Signed right shift (-logical-signed-right-shift).
Example: opts.TargetCompiler.LogicalSignedRightShift = 'Logical'

NoUliterals — Do not use predefined typedefs for char16_t or char32_t
false (default) | true

Do not use predefined typedefs for char16_t or char32_t, specified as true or false. For more
information, see Block char16/32_t types (-no-uliterals).
Example: opts.TargetCompiler.NoUliterals = true

PackAlignmentValue — Default structure packing alignment
'defined-by-compiler' (default) | '1' | '2' | '4' | '8' | '16'

Default structure packing alignment, specified as 'defined-by-compiler', '1', '2', '4', '8', or
'16'. This property is available only for Visual C++ code.

For more information, see Pack alignment value (-pack-alignment-value).
Example: opts.TargetCompiler.PackAlignmentValue = '4'

SfrTypes — sfr types
cell array of sfr keywords

sfr types, specified as a cell array of sfr keywords using the syntax sfr_name=size_in_bits. For
more information, see Sfr type support (-sfr-types).

This option only applies when you set TargetCompiler.Compiler to keil or iar.

 polyspace.ModelLinkOptions Properties

5-155

Example: opts.TargetCompiler.SfrTypes = {'sfr32=32'}

SizeTTypeIs — Underlying type of size_t
'defined-by-compiler' (default) | 'unsigned-int' | 'unsigned-long' | 'unsigned-long-
long'

Underlying type of size_t, specified as 'defined-by-compiler', 'unsigned-int',
'unsigned-long', or 'unsigned-long-long'. See Management of size_t (-size-t-type-
is).
Example: opts.TargetCompiler.SizeTTypeIs = 'unsigned-long'

Target — Target processor
'i386' (default) | 'arm' | 'arm64' | 'avr' | 'c-167' | 'c166' | 'c18' | 'c28x' | 'c6000' |
'coldfire' | 'hc08' | 'hc12' | 'm68k' | 'mcore' | 'mips' | 'mpc5xx' | 'msp430' | 'necv850'
| 'powerpc' | 'powerpc64' | 'rh850' | 'rl78' | 'rx' | 's12z' | 'sharc21x61' | 'sparc' |
'superh' | 'tms320c3x' | 'tricore' | 'x86_64' | generic target object

Set size of data types and endianness of processor, specified as one of the predefined target
processors or a generic target object.

For more information about the predefined processors, see Target processor type (-target).

For more information about creating a generic target, see polyspace.GenericTargetOptions.
Example: opts.TargetCompiler.Target = 'hc12'

WcharTTypeIs — Underlying type of wchar_t
'defined-by-compiler' (default) | 'signed-short' | 'unsigned-short' | 'signed-int' |
'unsigned-int' | 'signed-long' | 'unsigned-long'

Underlying type of wchar_t, specified as 'defined-by-compiler', 'signed-short',
'unsigned-short', 'signed-int', 'unsigned-int', 'signed-long', or 'unsigned-long'.
See Management of wchar_t (-wchar-t-type-is).
Example: opts.TargetCompiler.WcharTTypeIs = 'unsigned-int'

VerificationAssumption (Affects Code Prover Only)

ConsiderVolatileQualifierOnFields — Assume that volatile qualified structure fields can
have all possible values at any point in code
false (default) | true

This property affects Code Prover analysis only.

Assume that volatile qualified structure fields can have all possible values at any point in code.

For more information, see Consider volatile qualifier on fields (-consider-
volatile-qualifier-on-fields).
Example: opts.VerificationAssumption.ConsiderVolatileQualifierOnFields = true

ConstraintPointersMayBeNull — Specify that environment pointers can be NULL unless
constrained otherwise
false (default) | true

This property affects Code Prover analysis only.

5 Functions, Properties, Classes, and Apps

5-156

Specify that environment pointers can be NULL unless constrained otherwise.

For more information, see Consider environment pointers as unsafe (-stubbed-
pointers-are-unsafe).
Example: opts.VerificationAssumption.ConstraintPointersMayBeNull = true

FloatRoundingMode — Rounding modes to consider when determining the results of
floating-point arithmetic
to-nearest (default) | all

This property affects Code Prover analysis only.

Rounding modes to consider when determining the results of floating-point arithmetic, specified as
to-nearest or all.

For more information, see Float rounding mode (-float-rounding-mode).
Example: opts.VerificationAssumption.FloatRoundingMode = 'all'

RespectTypesInFields — Do not cast nonpointer fields of a structure to pointers
false (default) | true

This property affects Code Prover analysis only.

Do not cast nonpointer fields of a structure to pointers, specified as true or false.

For more information, see Respect types in fields (-respect-types-in-fields).
Example: opts.VerificationAssumption.RespectTypesInFields = true

RespectTypesInGlobals — Do not cast nonpointer global variables to pointers
false (default) | true

This property affects Code Prover analysis only.

Do not cast nonpointer global variables to pointers, specified as true or false.

For more information, see Respect types in global variables (-respect-types-in-
globals).
Example: opts.VerificationAssumption.RespectTypesInGlobals = true

Other Properties

Author — Project author
username of current user (default) | character vector

Name of project author, specified as a character vector.

For more information, see -author.
Example: opts.Author = 'JaneDoe'

ImportComments — Import comments and justifications from previous analysis
character vector

To import comments and justifications from a previous analysis, specify the path to the results folder
of the previous analysis.

 polyspace.ModelLinkOptions Properties

5-157

You can also point to a previous results folder to see only new results compared to the previous run.
See “Compare Results from Different Polyspace Runs by Using MATLAB Scripts”.

For more information, see -import-comments
Example: opts.ImportComments =
fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example','Mod
ule_1','BF_Result')

Prog — Project name
PolyspaceProject (default) | character vector

Project name, specified as a character vector.

For more information, see -prog.
Example: opts.Prog = 'myProject'

ResultsDir — Location to store results
folder path

Location to store results, specified as a folder path. By default, the results are stored in the current
folder.

For more information, see -results-dir.

You can also create a separate results folder for each new run. See “Compare Results from Different
Polyspace Runs by Using MATLAB Scripts”.
Example: opts.ResultsDir = 'C:\project\myproject\results\'

Sources — Source files
cell array of files

Source files to analyze, specified as a cell array of files.

To specify all files in a folder, use folder path followed by *, for instance, 'C:\src*'. To specify all
files in a folder and its subfolders, use folder path followed by **, for instance, 'C:\src**'. The
notation follows the syntax of the dir function. See also “Specify Multiple Source Files”.

For more information, see -sources.
Example: opts.Sources = {'file1.c', 'file2.c', 'file3.c'}
Example: opts.Sources = {'project/src1/file1.c', 'project/src2/file2.c',
'project/src3/file3.c'}

Version — Project version number
'1.0' (default) | character array of a number

Version number of project, specified as a character array of a number. This option is useful if you
upload your results to Polyspace Metrics. If you increment version numbers each time that you
reanalyze your object, you can compare the results from two versions in Polyspace Metrics.

For more information, see -v[ersion].
Example: opts.Version = '2.3'

5 Functions, Properties, Classes, and Apps

5-158

See Also
Topics
“Complete List of Polyspace Bug Finder Analysis Engine Options”

Introduced in R2017a

 polyspace.ModelLinkOptions Properties

5-159

copyTo
Class: polyspace.Options
Package: polyspace

Copy common settings between Polyspace options objects

Syntax
optsFrom.copyTo(optsTo)

Description
optsFrom.copyTo(optsTo) copies the common options from optsFrom to optsTo. The options
objects do not need to be the same type of options object. This method copies only properties that are
common between the two objects.

Input Arguments
optsFrom — Options object you want to copy properties from
polyspace.Options or polyspace.ModelLinkOptions object

Option object that you want to copy properties from, specified as a polyspace.Options or
polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

optsTo — Options object you want to copy properties to
polyspace.Options object

Option object that you want to copy properties to, specified as a polyspace.Options or
polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

Examples

Copy Polyspace Options Object

This example shows how to set the properties of one options object and then copy that object to
another one.

Create a Polyspace options object and set properties.

opts1 = polyspace.Options();
opts1.Prog = 'DataRaceProject';
opts1.Sources = {'datarace.c'};
opts1.TargetCompiler.Compiler = 'gnu4.9';

Create another object and use copyTo to copy over options from the previous object.

5 Functions, Properties, Classes, and Apps

5-160

opts2 = polyspace.Options();
opts1.copyTo(opts2);

See Also
polyspace.Options | generateProject | polyspace.ModelLinkOptions

Introduced in R2016b

 copyTo

5-161

generateProject
Class: polyspace.Options
Package: polyspace

Generate psprj project from options object

Syntax
opts.generateProject(projectName)

Description
opts.generateProject(projectName) creates a .psprj project called projectName from the
options specified in the polyspace.Options object opts. You can open a .psprj project in the
user interface of the Polyspace desktop products.

Input Arguments
opts — Options object to convert into a psprj file
polyspace.Options or polyspace.ModelLinkOptions object

Option object convert into a psprj file, specified as a polyspace.Options or
polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

projectName — Project file name
character vector

Project file name specified as a character vector. This argument is used as the name of the psprj file.
Example: 'myProject'

Examples

Generate Project from a Bug Finder Options Object

This example shows how to create and use a Polyspace project that was generated from an options
object.

Create a Bug Finder object and set properties.

sources = fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
opts = polyspace.Options();
opts.Prog = 'MyProject';
opts.Sources = {sources};
opts.TargetCompiler.Compiler = 'gnu4.7';

Generate a Polyspace project. Name the project using the Prog property.

5 Functions, Properties, Classes, and Apps

5-162

psprj = opts.generateProject(opts.Prog);

Run a Bug Finder analysis using one of these commands. Both commands produce identical analysis
results. The only difference is that the psprj project can be rerun in the Polyspace interface.

polyspaceBugFinder(psprj, '-nodesktop');
polyspaceBugFinder(opts);

To run a Code Prover analysis, use polyspaceCodeProver instead of polyspaceBugFinder.

Tips
If you want to include an options object in a pslinkoptions object:

1 Use this method to convert your object to a project.
2 Add the project to the pslinkoptions property PrjConfig.
3 Turn on the property EnablePrjConfig.

See Also
polyspace.Options | copyTo | polyspace.ModelLinkOptions

Introduced in R2016b

 generateProject

5-163

toScript
Class: polyspace.Options
Package: polyspace

Add Polyspace options object definition to a script

Syntax
filePath = opts.toScript(fileName,positionInScript)

Description
filePath = opts.toScript(fileName,positionInScript) adds the properties of a
polyspace.Options object to a MATLAB script. The script shows the values assigned to all the
properties of the object. You can run the script later to define the object in the MATLAB workspace
and use it.

Input Arguments
opts — Options object with Polyspace analysis options
polyspace.Options or polyspace.ModelLinkOptions object

Option object to store in MATLAB script, specified as a polyspace.Options or
polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

fileName — Script name
character vector

Name or path to script, specified as a character vector. If you specify a relative path, the script is
created in subfolder of the current working folder.
Example: 'runPolyspace.m'

positionInScript — Where to add object definition
'create' (default) | 'append'

Position in script where the object properties are added, specified as 'create' or 'append'. If you
specify 'append', the object properties are added to the end of an existing script. Otherwise, a new
script is created.

Output Arguments
filePath — Full path to script
character vector

Full path to script, specified as a character vector.
Example: 'C:\myScripts\runPolyspace.m'

5 Functions, Properties, Classes, and Apps

5-164

See Also
polyspace.Options | generateProject | polyspace.ModelLinkOptions | copyTo

Introduced in R2017b

 toScript

5-165

run
Run a Polyspace analysis

Syntax
run(proj, product)

Description
status = run(proj, product) runs a Polyspace Bug Finder or Polyspace Code Prover analysis
using the configuration specified in the polyspace.Project object proj. The analysis results are
also stored in proj.

Input Arguments
proj — Polyspace project
polyspace.Project object

Polyspace project with configuration and results, specified as a polyspace.Project object.

product — Type of analysis
'bugFinder' | 'codeProver'

Type of analysis to run.

Output Arguments
status — Results of a Code Prover analysis
true | false

Status of analysis. If the analysis succeeds, the status is false. Otherwise, it is true.

The analysis can fail for multiple reasons:

• You provide source files that do not exist.
• None of your files compile. Even if one file compiles, unless you set the property

StopWithCompileError to true, the analysis succeeds and returns a false status.

There can be many other reasons why the analysis fails. If the analysis fails, in your results folder,
check the log file. You can see the results folder using the Configuration property of the
polyspace.Project object:

proj = polyspace.Project;
proj.Configuration.ResultsDir

The log file is named Polyspace_R20##n_ProjectName_date-time.log.

5 Functions, Properties, Classes, and Apps

5-166

Examples
Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = run(proj, 'bugFinder');

% Read results
bfSummary = proj.Results.getSummary('defects');

Introduced in R2017b

 run

5-167

getSummary
View number of Polyspace results organized by results type (Bug Finder) or color and file (Code
Prover)

Syntax
resSummary = getSummary(resObj, resultsType)

Description
resSummary = getSummary(resObj, resultsType) returns the distribution of results of type
resultsType in a Polyspace results set, resObj. The results set resObj can be a Bug Finder results
set denoted by a polyspace.BugFinderResults object or a Code Prover results set denoted by a
polyspace.CodeProverResults object.

For instance:

• If you choose to see Bug Finder defects, you can see how many defects of each type are present in
the result set, for instance, how many non-initialized variables or declaration mismatches.

• If you choose to see Code Prover run-time checks, you see how many red, orange, gray and green
checks are present in each file.

Examples

Read Existing Bug Finder Results to MATLAB Tables

This example shows how to read Bug Finder analysis results from MATLAB.

Copy a demo result set to a temporary folder.

resPath=fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example', ...
'Module_1','BF_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.BugFinderResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = getSummary(resObj, 'defects');
resTable = getResults(resObj);

Run Bug Finder Analysis and Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these options:

5 Functions, Properties, Classes, and Apps

5-168

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = run(proj, 'bugFinder');

% Read results
resObj = proj.Results;
bfSummary = getSummary(resObj, 'defects');

Read Existing Code Prover Results to MATLAB Tables

This example shows how to read Code Prover analysis results from MATLAB.

Copy a demo result set to a temporary folder.

resPath = fullfile(polyspaceroot,'polyspace','examples','cxx','Code_Prover_Example', ...
'Module_1','CP_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.CodeProverResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = getSummary(resObj, 'runtime');
resTable = getResults(resObj);

Run Code Prover Analysis and Read Results to MATLAB Tables

Run a Polyspace Code Prover analysis on the demo file single_file_analysis.c. Configure these
options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.
• Specify that a main function must be generated, if it does not exist in the source code.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';

 getSummary

5-169

proj.Configuration.ResultsDir = fullfile(pwd,'results');
proj.Configuration.CodeProverVerification.MainGenerator = true;

% Run analysis
cpStatus = run(proj, 'codeProver');

% Read results
resObj = proj.Results;
cpSummary = getResults(resObj, 'readable');

Input Arguments
resObj — Bug Finder or Code Prover results
polyspace.BugFinderResults or polyspace.CodeProverResults object

Bug Finder or Code Prover results set, specified as a polyspace.BugFinderResults or
polyspace.CodeProverResults object respectively.

resultsType — Type of Bug Finder or Code Prover analysis result
'defects' | 'runtime' | 'misraC' | 'misraCAGC' | 'misraCPP' | 'misraC2012' | 'jsf' |
'certC' | 'certCpp' | 'iso17961' | 'autosarCPP14' | 'metrics' | 'customRules'

Type of result, specified as a character vector. The default for a Bug Finder results set is 'defects'
and the default for a Code Prover results set is 'runtime'.

Entry Meaning
'defects' Bug Finder defects.
'runtime' Code Prover checks for run-time errors.
'misraC' MISRA C:2004 rules.
'misraCAGC' MISRA C:2004 rules for generated code.
'misraCPP' MISRA C++ rules.
'misraC2012' MISRA C:2012 rules.
'jsf' JSF C++ rules.
'certC' CERT C rules.
'certCpp' CERT C++ rules.
'iso17961' ISO/IEC TS 17961 rules.
'autosarCPP14' AUTOSAR C++ 14 rules.
'metrics' Code complexity metrics.
'customRules' Custom rules enforcing naming conventions for

identifiers.

Output Arguments
resSummary — Distribution of Bug Finder results by result type or Code Prover run-time
checks by check color and file
table

5 Functions, Properties, Classes, and Apps

5-170

Distribution of results, specified as a table. For instance:

• If you choose to see a summary of Bug Finder defects, an extract of the table looks like this:

Category Defect Impact Total
Concurrency Data race High 2
Concurrency Deadlock High 1
Data flow Non-initialized

variable
High 2

The table above shows that the result set contains two data races, one deadlock and two non-
initialized variables.

• If you choose to see a summary of Code Prover run-time checks, an extract of the table looks like
this:

File Proven Green Red Gray Orange
file1.c 92.0% 87 3 2 8
file2.c 97.7% 41 0 1 1

The table above shows that file1.c has:

• 3 red, 2 gray and 8 orange checks.
• 92% of operations proven.

In other words, of every 100 operations that the verification checked, 92 operations were
proven green, red or gray. See “Code Prover Result and Source Code Colors” (Polyspace Code
Prover).

For more information on MATLAB tables, see “Tables”.

See Also
polyspace.BugFinderResults | polyspace.CodeProverResults

Introduced in R2017a

 getSummary

5-171

getResults
View all instances of Bug Finder or Code Prover results

Syntax
resTable = getResults(resObj, content)

Description
resTable = getResults(resObj, content) returns a table showing all results in a Polyspace
result set, resObj. The results set resObj can be a Bug Finder results set denoted by a
polyspace.BugFinderResults object or a Code Prover results set denoted by a
polyspace.CodeProverResults object. You can manipulate the table to produce graphs and
statistics about your results that you cannot obtain readily from the user interface.

Examples

Read Existing Bug Finder Results to MATLAB Tables

This example shows how to read Bug Finder analysis results from MATLAB.

Copy a demo result set to a temporary folder.

resPath = fullfile(polyspaceroot,'polyspace','examples','cxx','Bug_Finder_Example', ...
'Module_1','BF_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.BugFinderResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = getSummary(resObj, 'defects');
resTable = getResults(resObj);

Run Bug Finder Analysis and Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};

5 Functions, Properties, Classes, and Apps

5-172

proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results
resObj = proj.Results;
bfSummary = getResults(resObj, 'readable');

Read Existing Code Prover Results to MATLAB Tables

This example shows how to read Code Prover analysis results from MATLAB.

Copy a demo result set to a temporary folder.

resPath=fullfile(polyspaceroot,'polyspace','examples','cxx','Code_Prover_Example', ...
'Module_1','CP_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.CodeProverResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = getSummary (resObj);
resTable = getResults (resObj);

Run Code Prover Analysis and Read Results to MATLAB Tables

Run a Polyspace Code Prover analysis on the demo file single_file_analysis.c. Configure these
options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.
• Specify that a main function must be generated, if it does not exist in the source code.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(polyspaceroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');
proj.Configuration.CodeProverVerification.MainGenerator = true;

% Run analysis
cpStatus = proj.run('codeProver');

% Read results

 getResults

5-173

resObj = proj.Results;
cpSummary = getResults(resObj, 'readable');

Input Arguments
resObj — Bug Finder or Code Prover results
polyspace.BugFinderResults or polyspace.CodeProverResults object

Bug Finder or Code Prover results set, specified as a polyspace.BugFinderResults or
polyspace.CodeProverResults object respectively.

content — Result information to include
'' (default) | 'readable'

Amount of information to be included for each result. If you specify '', all information is included. If
you specify 'readable', the following information is not included:

• ID: Unique number for a result for the current analysis.
• Group: Defect groups, Check groups (Polyspace Code Prover), MISRA C:2012 groups, etc.
• Status, Severity, Comment: Information that you enter about a result.

If you do not specify this argument, the full table is included.

See “Export Polyspace Analysis Results”.

Output Arguments
resTable — Results of a Bug Finder or Code Prover analysis
table

Table showing all results from a single Bug Finder or Code Prover analysis. For each result, the table
has information such as file, family, and so on. If a particular information is not available for a result,
the entry in the table states <undefined>.

For more information on:

• The columns of the table, see “Export Polyspace Analysis Results”.
• MATLAB tables, see “Tables”.

See Also
polyspace.BugFinderResults | polyspace.CodeProverResults

Introduced in R2017a

5 Functions, Properties, Classes, and Apps

5-174

Configuration Parameters

• “Settings from (C)” on page 6-2
• “Settings from (C++)” on page 6-4
• “Use custom project file” on page 6-6
• “Project configuration” on page 6-7
• “Enable additional file list” on page 6-8
• “Stub lookup tables” on page 6-9
• “Input” on page 6-11
• “Tunable parameters” on page 6-12
• “Output” on page 6-13
• “Model reference verification depth” on page 6-14
• “Model by model verification” on page 6-15
• “Output folder” on page 6-16
• “Make output folder name unique by adding a suffix” on page 6-17
• “Add results to current Simulink project” on page 6-18
• “Open results automatically after verification” on page 6-19
• “Check configuration before verification” on page 6-20
• “Verify all S-function occurrences” on page 6-21

6

Settings from (C)
Select settings for the analysis configuration. You can quickly activate coding rules checking for
generated C code

Model Configuration Parameters Category: Polyspace

Settings
Default: Project configuration

Project configuration
Run Polyspace with the options specified in the “Project configuration” on page 6-7 or “Use
custom project file” on page 6-6.

You do not check coding rules unless you select a rule set in the configuration.
Project configuration and MISRA AC AGC checking

Run Polyspace with the options specified in the Project configuration plus MISRA AC-AGC
obligatory and recommended rules.

Project configuration and MISRA C 2004 checking
Run Polyspace with the options specified in the Project configuration plus all MISRA C 2004
rules.

Project configuration and MISRA C 2012 checking
Run Polyspace with the options specified in the Project configuration plus all MISRA C 2012
rules. This option automatically applies the rule categories for generated code. See Use
generated code requirements (-misra3-agc-mode).

MISRA AC AGC checking
Check compliance with the MISRA AC-AGC obligatory and recommended rules. After rules
checking, Polyspace stops.

MISRA C 2004 checking
Check compliance with all MISRA C 2004 rules. After rules checking, Polyspace stops.

MISRA C 2012 checking
Check compliance with all MISRA C 2012 rules. This option automatically applies the rule
categories for generated code. See Use generated code requirements (-misra3-agc-
mode). After rules checking, Polyspace stops.

Dependency
This setting overrides custom configuration settings in “Project configuration” on page 6-7 and
“Use custom project file” on page 6-6. If you want to use your custom coding rule settings, select
the Project configuration option.

Command-Line Information
Use the pslinkoptions property VerificationSettings.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.

6 Configuration Parameters

6-2

Use the parameter PSVerificationSettings with the same value as for the pslinkoptions
property VerificationSettings. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 Settings from (C)

6-3

Settings from (C++)
Select settings for the analysis configuration. This option allows you to quickly activate coding rules
checking for generated C++ code.

Model Configuration Parameters Category: Polyspace

Settings
Default: Project configuration

Project configuration
Run Polyspace with the options specified in the “Project configuration” on page 6-7 or “Use
custom project file” on page 6-6.

You do not check coding rules unless you select a rule set in the configuration.
Project configuration and MISRA C++ checking

Run Polyspace with the options specified in the Project configuration plus MISRA C++
required rules.

Project configuration and JSF C++ checking
Run Polyspace with the options specified in the Project configuration plus JSF C++ shall rules.

MISRA C++ checking
Check compliance with the MISRA C++: 2008 required rules. After rules checking, Polyspace
stops.

JSF C++ checking
Check compliance with the JSF C++ shall rules. After rules checking, Polyspace stops.

Dependency
This setting overrides custom configuration settings in “Project configuration” on page 6-7 and
“Use custom project file” on page 6-6. If you want to use your custom coding rule settings, select
the Project configuration option.

Command-Line Information
Use the pslinkoptions property CxxVerificationSettings.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameter PSCxxVerificationSettings with the same value as for the pslinkoptions
property CxxVerificationSettings. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

6 Configuration Parameters

6-4

Related Examples
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 Settings from (C++)

6-5

Use custom project file
Set Polyspace configuration options with a custom .psprj file

Model Configuration Parameters Category: Polyspace

Settings
Default: Off

Off
Analysis uses configuration options from Project configuration on page 6-7 parameters.

On
Analysis uses configuration options from the specified .psprj project file.

Dependency
The Settings from parameter overrides custom configuration settings for coding rules. If you want
to use your custom coding rule settings, set Settings from > Project configuration.

Command-Line Information
Use the pslinkoptions properties EnablePrjConfigFile and PrjConfigFile.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameters PSEnablePrjConfigFile and PSPrjConfigFile with the same values as for
the pslinkoptions properties EnablePrjConfigFile and PrjConfigFile. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

6 Configuration Parameters

6-6

Project configuration
Set advanced configuration options to customize the analysis.

Settings
Open the Polyspace Configuration window by using the Configure button. Customize additional
settings in this window and save your project configuration. If you added a custom project file in the
parameter “Use custom project file” on page 6-6, that project file configuration is shown. Otherwise,
the default project template is used.

For details about the advanced options, see “Complete List of Polyspace Bug Finder Analysis Engine
Options”.

Dependency
The Settings from parameter overrides custom configuration settings for coding rules. If you want
to use your custom coding rule settings, set Settings from > Project configuration.

Command-Line Information
Use a Polyspace project (.psprj file) with the pslinkoptions properties EnablePrjConfigFile
and PrjConfigFile.

See Also
polyspace.ModelLinkOptions | pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 Project configuration

6-7

Enable additional file list
Add additional supporting code files to the analysis.

For instance, suppose you use C files for testing results from the generated code or providing inputs
to the generated code. The analysis of generated code only considers files generated from the
Simulink model. If you want the analysis to consider the C files that you use for testing or inputs,
provide them as additional files.

Model Configuration Parameters Category: Polyspace

Settings
Default: Off

Off
The analysis includes no additional files.

On
Polyspace analyzes the specified C/C++ files with the generated code. Use the Select files
button to specify these additional files.

Command-Line Information
Use the pslinkoptions properties EnableAdditionalFileList and AdditionalFileList.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameters PSEnableAdditionalFileList and PSAdditionalFileList with the same
values as for the pslinkoptions properties EnableAdditionalFileList and
AdditionalFileList. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

6 Configuration Parameters

6-8

Stub lookup tables
Specify that the verification must stub auto-generated functions that use certain kinds of lookup
tables in their body. The lookup tables in these functions use linear interpolation and do not allow
extrapolation. That is, the result of using the lookup table always lies between the lower and upper
bounds of the table.

If you use this option, the verification is more precise and has fewer orange checks. The verification
of lookup table functions is usually imprecise. The software has to make certain assumptions about
these functions. To avoid missing a run-time error, the verification assumes that the result of using
the lookup table is within the full range allowed by the result data type. This assumption can cause
many unproven results (orange checks) when a lookup table function is called. By using this option,
you narrow down the assumption. For functions using lookup tables with linear interpolation and no
extrapolation, the result is at least within the bounds of the table.

The option is relevant only if your model uses Lookup Table blocks.

Model Configuration Parameters Category: Polyspace

Settings
Default: On

On
For autogenerated functions that use lookup tables with linear interpolation and no extrapolation,
the verification:

• Does not check for run-time errors in the function body.
• Calls a function stub instead of the actual function at the function call sites. The stub ensures

that the result of using the lookup table is within the bounds of the table.

To identify if the lookup table in the function uses linear interpolation and no extrapolation, the
verification uses information provided by the code generation product. For instance, if you use
Embedded Coder to generate code, the lookup table functions with linear interpolation and no
extrapolation follow specific naming conventions.

Off
The verification does not stub autogenerated functions that use lookup tables.

Tips
• The option applies only to autogenerated functions. If you integrate your own C/C++ S-Function

using lookup tables with the model, the option does not cause them to be stubbed.
• The option is on by default. For certification purposes, if you want your verification tool to be

independent of the code generation tool, turn off the option.

Command-Line Information
Use the pslinkoptions property AutoStubLUT.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.

 Stub lookup tables

6-9

Use the parameter PSAutoStubLUT with the same value as for the pslinkoptions property
AutoStubLUT. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

6 Configuration Parameters

6-10

Input
Choose whether to constrain Inport block variables.

Model Configuration Parameters Category: Polyspace

Settings
Default: Use specified minimum and maximum values

Use specified minimum and maximum values
Analysis assumes minimum and maximum values for input variables. These values are specified in
the Inport block dialog box. Use this value to reduce the number of false positive results.

Unbounded inputs
Analysis assumes full range for input variables. Use this value to run a robust analysis that
includes values outside the expected range.

Command-Line Information
Use the pslinkoptions property InputRangeMode.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameter PSInputRangeMode with the same value as for the pslinkoptions property
InputRangeMode. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”
• “External Constraints on Polyspace Analysis of Generated Code”

 Input

6-11

Tunable parameters
Choose how to treat tunable parameter values during the analysis. Treat values as either constants or
a range of values.

Model Configuration Parameters Category: Polyspace

Settings
Default: Use calibration data

Use calibration data
Analysis assumes constant values for tunable parameters. Use this value to run a contextual
analysis. This option can reduce the number of false positive results.

Use specified minimum and maximum values
Analysis assumes a range of values for the tunable parameter variables. Specify maximum and
minimum values in the model. Use this option to run a robust analysis that includes values
outside the expected parameter value.

Command-Line Information
Use the pslinkoptions property ParamRangeMode.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameter PSParamRangeMode with the same value as for the pslinkoptions property
ParamRangeMode. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”
• “External Constraints on Polyspace Analysis of Generated Code”

6 Configuration Parameters

6-12

Output
Choose whether to verify output values.

Code Prover option only. Bug Finder cannot check output values.

Model Configuration Parameters Category: Polyspace

Settings
Default: No verification

No verification
Polyspace does not verify output values.

Verify outputs are within minimum and maximum values
Polyspace checks to see if the output variable values are within the expected minimum and
maximum values. Specify the minimum and maximum values in the output block dialog boxes.

Command-Line Information
Use the pslinkoptions property OutputRangeMode.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameter PSOutputRangeMode with the same value as for the pslinkoptions property
OutputRangeMode. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”
• “External Constraints on Polyspace Analysis of Generated Code”

 Output

6-13

Model reference verification depth
Only for models that use Embedded Coder generated code. Indicate how deep into the model
hierarchy to analyze.

Model Configuration Parameters Category: Polyspace

Settings
Default: Current model only

Current model only
Polyspace analyzes only the current model

1
Polyspace analyzes the current model and the referenced models that are one level below the
current model.

2
Polyspace analyzes the current model and the referenced models that are up to two levels below
the current model.

3
Polyspace analyzes the current model and the referenced models that are up to three levels below
the current model.

All
Polyspace analyzes the current model and all referenced models.

Command-Line Information
Use the pslinkoptions property ModelRefVerifDepth.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameter PSModelRefVerifDepth with the same value as for the pslinkoptions
property ModelRefVerifDepth. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

6 Configuration Parameters

6-14

Model by model verification
Only for models that use Embedded Coder generated code. Analyze each model or referenced model
individually. If you have a large project, this option can help modularize your analysis .

Model Configuration Parameters Category: Polyspace

Settings
Default: Off

Off
Polyspace analyzes your models together. Model interactions are analyzed.

On
Polyspace analyzes your model and each of its referenced models in isolation. This option does
not analyze model interactions.

Command-Line Information
Use the pslinkoptions property ModelRefByModelRefVerif.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameter PSModelRefByModelRefVerif with the same value as for the pslinkoptions
property ModelRefByModelRefVerif. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 Model by model verification

6-15

Output folder
Specify the location and folder name for your analysis results.

Model Configuration Parameters Category: Polyspace

Settings
Default: results_$ModelName$

Enter a path for your results folder. If you do not use a full path, the results folder is relative to your
current MATLAB folder.

If you select “Add results to current Simulink project” on page 6-18, the results folder is relative to
the Simulink project folder.

By default, the software stores your results in Current Folder\results_model_name.

Command-Line Information
Use the pslinkoptions property ResultDir.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameter PSResultDir with the same value as for the pslinkoptions property
ResultDir. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

6 Configuration Parameters

6-16

Make output folder name unique by adding a suffix
Add a unique suffix to the results folder for every run to avoid overwriting previous results.

Model Configuration Parameters Category: Polyspace

Settings
Default: Off

Off
Every time you rerun your analysis, your results are overwritten.

On
For each run of the analysis, Polyspace specifies a new location for the results folder by
appending a unique number to the folder name.

Command-Line Information
Use the pslinkoptions property AddSuffixToResultDir.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameter PSAddSuffixToResultDir with the same value as for the pslinkoptions
property AddSuffixToResultDir. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 Make output folder name unique by adding a suffix

6-17

Add results to current Simulink project
Add your Polyspace results to the current Simulink project. To use this option, you must have a
Simulink project open.

Model Configuration Parameters Category: Polyspace

Settings
Default: Off

Off
Results are saved to the current folder.

On
Results are saved to the currently open Simulink project.

Dependencies
You must have a Simulink project open to use this option.

Command-Line Information
Use the pslinkoptions property AddToSimulinkProject.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameter PSAddToSimulinkProject with the same value as for the pslinkoptions
property AddToSimulinkProject. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

6 Configuration Parameters

6-18

Open results automatically after verification
Decide whether to open your results in the Polyspace interface after running analysis from Simulink.

Model Configuration Parameters Category: Polyspace

Settings
Default: On

On
After you run an analysis, your results open automatically in the Polyspace interface.

Off
You must manually open your results after running an analysis.

Command-Line Information
Use the pslinkoptions property OpenProjectManager.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameter PSOpenProjectManager with the same value as for the pslinkoptions
property OpenProjectManager. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 Open results automatically after verification

6-19

Check configuration before verification
Check whether model and code configurations are optimal for code analysis.

Model Configuration Parameters Category: Polyspace

Settings
Default: On (proceed with warnings)

On (proceed with warnings)
The process stops for errors, but continues the code analysis if the configuration has only
warnings.

On (stop for warnings)
If the configuration has errors or warnings, the process stops.

Off
The software does not check the configuration.

Command-Line Information
Use the pslinkoptions property CheckConfigBeforeAnalysis. For details, see pslinkoptions.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameter PSVerifALLSFcnInstances with the same value as for the pslinkoptions
property VerifALLSFcnInstances. See pslinkoptions.

See Also
pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

6 Configuration Parameters

6-20

Verify all S-function occurrences
For S-Function analyses only. Run an analysis on all instances of the selected S-Function.

Model Configuration Parameters Category: Polyspace

Settings
Default: Off

Off
Analyze only the selected S-Function block. The analysis includes only information from the
selected S-Function block.

On
Analyze all occurrences of the S-function in the model. If the S-Function is included in the model
multiple times, information from all occurrences is included in the analysis.

Command-Line Information
Use the pslinkoptions property VerifALLSFcnInstances.

The pslinkoptions function allows you to create a Polyspace options object that you can reuse for
multiple models. You can also use the set_param function to associate this property with the model.
Use the parameter PSVerifALLSFcnInstances with the same value as for the pslinkoptions
property VerifALLSFcnInstances. See pslinkoptions.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 Verify all S-function occurrences

6-21

Polyspace Results: Defect Checkers

23

Numerical Defects

7

Absorption of float operand
One addition or subtraction operand is absorbed by the other operand

Description
This defect occurs when one operand of an addition or subtraction operation is always negligibly
small compared to the other operand. Therefore, the result of the operation is always equal to the
value of the larger operand, making the operation redundant.

Risk

Redundant operations waste execution cycles of your processor.

The absorption of a float operand can indicate design issues elsewhere in the code. It is possible that
the developer expected a different range for one of the operands and did not expect the redundancy
of the operation. However, the operand range is different from what the developer expects because of
issues elsewhere in the code.

Fix

See if the operand ranges are what you expect. To see the ranges, place your cursor on the operation.

• If the ranges are what you expect, justify why you have the redundant operation in place. For
instance, the code is only partially written and you anticipate other values for one or both of the
operands from future unwritten code.

If you cannot justify the redundant operation, remove it.
• If the ranges are not what you expect, in your code, trace back to see where the ranges come

from. To begin your traceback, search for instances of the operand in your code. Browse through
previous instances of the operand and determine where the unexpected range originates.

To determine when one operand is negligible compared to the other operand, the defect uses rules
based on IEEE 754 standards. To fix the defect, instead of using the actual rules, you can use this
heuristic: the ratio of the larger to the smaller operand must be less than 2p-1 at least for some
values. Here, p is equal to 24 for 32-bit precision and 53 for 64-bit precision. To determine the
precision, the defect uses your specification for Target processor type (-target).

This defect appears only if one operand is always negligibly smaller than the other operand. To see
instances of subnormal operands or results, use the check Subnormal Float in Polyspace Code
Prover.

Examples
One Addition Operand Negligibly Smaller Than The Other Operand

#include <stdlib.h>

float get_signal(void);
void do_operation(float);

float input_signal1(void) {

7 Numerical Defects

7-2

 float temp = get_signal();
 if(temp > 0. && temp < 1e-30)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

float input_signal2(void) {
 float temp = get_signal();
 if(temp > 1.)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

void main() {
 float signal1 = input_signal1();
 float signal2 = input_signal2();
 float super_signal = signal1 + signal2;
 do_operation(super_signal);
}

In this example, the defect appears on the addition because the operand signal1 is in the range
(0,1e-30) but signal2 is greater than 1.

Correction — Remove Redundant Operation

One possible correction is to remove the redundant addition operation. In the following corrected
code, the operand signal2 and its associated code is also removed from consideration.

#include <stdlib.h>

float get_signal(void);
void do_operation(float);

float input_signal1(void) {
 float temp = get_signal();
 if(temp > 0. && temp < 1e-30)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

void main() {
 float signal1 = input_signal1();
 do_operation(signal1);
}

Correction — Verify Operand Range

Another possible correction is to see if the operand ranges are what you expect. For instance, if one
of the operand range is not supposed to be negligibly small, fix the issue causing the small range. In

 Absorption of float operand

7-3

the following corrected code, the range (0,1e-2) is imposed on signal2 so that it is not always
negligibly small as compared to signal1.

#include <stdlib.h>

float get_signal(void);
void do_operation(float);

float input_signal1(void) {
 float temp = get_signal();
 if(temp > 0. && temp < 1e-2)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

float input_signal2(void) {
 float temp = get_signal();
 if(temp > 1.)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

void main() {
 float signal1 = input_signal1();
 float signal2 = input_signal2();
 float super_signal = signal1 + signal2;
 do_operation(super_signal);
}

Result Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: FLOAT_ABSORPTION
Impact: High
CWE ID: 189, 682, 873

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2016b

7 Numerical Defects

7-4

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/873.html

Bitwise operation on negative value
Undefined behavior for bitwise operations on negative values

Description
This defect occurs when bitwise operators (>>, ^, |, ~, but, not, &) are used on signed integer
variables with negative values.

Risk

If the value of the signed integer is negative, bitwise operation results can be unexpected because:

• Bitwise operations on negative values can produce compiler-specific results.
• Unexpected calculations can lead to additional vulnerabilities, such as buffer overflow.

Fix

When performing bitwise operations, use unsigned integers to avoid unexpected results.

Examples
Right-Shift of Negative Integer

#include <stdio.h>
#include <stdarg.h>

static void demo_sprintf(const char *format, ...)
{
 int rc;
 va_list ap;
 char buf[sizeof("256")];

 va_start(ap, format);
 rc = vsprintf(buf, format, ap);
 if (rc == -1 || rc >= sizeof(buf)) {
 /* Handle error */
 }
 va_end(ap);
}

void bug_bitwiseneg()
{
 int stringify = 0x80000000;
 demo_sprintf("%u", stringify >> 24);
}

In this example, the statement demo_sprintf("%u", stringify >> 24) stops the program
unexpectedly. You expect the result of stringify >> 24 to be 0x80. However, the actual result is
0xffffff80 because stringify is signed and negative. The sign bit is also shifted.

 Bitwise operation on negative value

7-5

Correction — Add unsigned Keyword

By adding the unsigned keyword, stringify is not negative and the right-shift operation gives the
expected result of 0x80.

#include <stdio.h>
#include <stdarg.h>

static void demo_sprintf(const char *format, ...)
{
 int rc;
 va_list ap;
 char buf[sizeof("256")];

 va_start(ap, format);
 rc = vsprintf(buf, format, ap);
 if (rc == -1 || rc >= sizeof(buf)) {
 /* Handle error */
 }
 va_end(ap);
}

void corrected_bitwiseneg()
{
 unsigned int stringify = 0x80000000;
 demo_sprintf("%u", stringify >> 24);
}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: BITWISE_NEG
Impact: Medium
CWE ID: 682, 758

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Extend Bug Finder Checkers to Find Defects from Specific System Input Values”

Introduced in R2016b

7 Numerical Defects

7-6

https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/758.html

Float conversion overflow
Overflow when converting between floating point data types

Description
This defect occurs when converting a floating point number to a smaller floating point data type. If
the variable does not have enough memory to represent the original number, the conversion
overflows.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).

Risk

Overflows can result in unpredictable values from computations. The result can be infinity or the
maximum finite value depending on the rounding mode used in the implementation. If you use the
result of an overflowing conversion in subsequent computations and do not account for the overflow,
you can see unexpected results.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. Use this event list to determine how the variable being converted acquires its
current value You can implement the fix on any event in the sequence. If the result details do not
show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”
or “Interpret Bug Finder Results in Polyspace Access Web Interface”.

You can fix the defect by:

• Using a bigger data type for the result of the conversion so that all values can be accommodated.
• Checking for values that lead to the overflow and performing appropriate error handling.

In general, avoid conversions to smaller floating point types.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Converting from double to float
float convert(void) {

 Float conversion overflow

7-7

 double diam = 1e100;
 return (float)diam;
}

In the return statement, the variable diam of type double (64 bits) is converted to a variable of type
float (32 bits). However, the value 1^100 requires more than 32 bits to be precisely represented.

Result Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: FLOAT_CONV_OVFL
Impact: High
CWE ID: 189, 197, 681

See Also
Find defects (-checkers) | Integer conversion overflow | Unsigned integer
conversion overflow | Sign change integer conversion overflow

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Extend Bug Finder Checkers to Find Defects from Specific System Input Values”

Introduced in R2013b

7 Numerical Defects

7-8

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/197.html
https://cwe.mitre.org/data/definitions/681.html

Float division by zero
Dividing floating point number by zero

Description
This defect occurs when the denominator of a division operation can be a zero-valued floating point
number.

Risk

A division by zero can result in a program crash.

Fix

The fix depends on the root cause of the defect. Often the result details (or source code tooltips in
Polyspace as You Code) show a sequence of events that led to the defect. You can implement the fix
on any event in the sequence. If the result details do not show this event history, you can search for
previous references of variables relevant to the defect using right-click options in the source code
and find related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”
or “Interpret Bug Finder Results in Polyspace Access Web Interface”.

It is a good practice to check for zero values of a denominator before division and handle the error.
Instead of performing the division directly:

res = num/den;

use a library function that handles zero values of the denominator before performing the division:

res = div(num, den);

See examples of fixes below.

If you do not want to fix the issue, for instance, when you handle infinities in your code, add
comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Dividing a Floating Point Number by Zero

float fraction(float num)
{
 float denom = 0.0;
 float result = 0.0;

 result = num/denom;

 Float division by zero

7-9

 return result;
}

A division by zero error occurs at num/denom because denom is zero.

Correction — Check Before Division

float fraction(float num)
{
 float denom = 0.0;
 float result = 0.0;

 if(((int)denom) != 0)
 result = num/denom;

 return result;
}

Before dividing, add a test to see if the denominator is zero, checking before division occurs. If denom
is always zero, this correction can produce a dead code defect in your Polyspace results.

Correction — Change Denominator

One possible correction is to change the denominator value so that denom is not zero.

float fraction(float num)
{
 float denom = 2.0;
 float result = 0.0;

 result = num/denom;

 return result;
}

Result Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: FLOAT_ZERO_DIV
Impact: High
CWE ID: 189, 369

See Also
Find defects (-checkers) | Integer division by zero

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Extend Bug Finder Checkers to Find Defects from Specific System Input Values”

Introduced in R2013b

7 Numerical Defects

7-10

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/369.html

Float overflow
Overflow from operation between floating points

Description
This defect occurs when an operation on floating point variables results in values that cannot be
represented by the data type that the operation uses. This data type depends on the operand types
and determines the number of bytes allocated for storing the result, thus constraining the range of
allowed values.

Note that:

• The data type used to determine an overflow is based on the operand data types. If you then
assign the result of an operation to another variable, a different checker, Float conversion
overflow, determines if the value assigned also overflows the variable assigned to. For instance,
in an operation such as:

res = x + y;

This checker checks for an overflow based on the types of x and y, and not on the type of res. The
checker for float conversion overflows then checks for an overflow based on the type of res.

• The two operands in a binary operation might undergo promotion before the operation occurs. See
also “Assumptions About Implicit Data Type Conversions” (Polyspace Code Prover).

The exact storage allocation for different types depends on your processor. See Target processor
type (-target).

Risk

Overflows can result in unpredictable values from computations. The result can be infinity or the
maximum finite value depending on the rounding mode used in the implementation. If you use the
result of an overflowing computation in subsequent computations and do not account for the overflow,
you can see unexpected results.

Fix

The fix depends on the root cause of the defect. Often the result details (or source code tooltips in
Polyspace as You Code) show a sequence of events that led to the defect. You can implement the fix
on any event in the sequence. If the result details do not show this event history, you can search for
previous references of variables relevant to the defect using right-click options in the source code
and find related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”
or “Interpret Bug Finder Results in Polyspace Access Web Interface”.

See examples of fixes below.

If you do not want to fix the issue, for instance, when you handle infinities in your code, add
comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

 Float overflow

7-11

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Multiplication of Floats

#include <float.h>

float square(void) {

 float val = FLT_MAX;
 return val * val;
}

In the return statement, the variable val is multiplied by itself. The square of the maximum float
value cannot be represented by a float (the return type for this function) because the value of val is
the maximum float value.

Correction — Different Storage Type

One possible correction is to store the result of the operation in a larger data type. In this example,
by returning a double instead of a float, the overflow defect is fixed.

#include <float.h>

double square(void) {
 float val = FLT_MAX;

 return (double)val * (double)val;
}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: FLOAT_OVFL
Impact: Low
CWE ID: 189, 682, 873

See Also
Find defects (-checkers) | Integer overflow | Unsigned integer overflow

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Extend Bug Finder Checkers to Find Defects from Specific System Input Values”

Introduced in R2013b

7 Numerical Defects

7-12

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/873.html

Integer constant overflow
Constant value falls outside range of integer data type

Description
This defect occurs when you assign a compile-time constant to a signed integer variable whose data
type cannot accommodate the value. An n-bit signed integer holds values in the range [-2n-1,
2n-1-1].

For instance, c is an 8-bit signed char variable that cannot hold the value 255.

signed char c = 255;

To determine the sizes of fundamental types, Bug Finder uses your specification for Target
processor type (-target).

Risk

The default behavior for constant overflows can vary between compilers and platforms. Retaining
constant overflows can reduce the portability of your code.

Even if your compilers wraps around overflowing constants with a warning, the wrap-around
behavior can be unintended and cause unexpected results.

Fix

Check if the constant value is what you intended. If the value is correct, use a different, possibly
wider, data type for the variable.

Examples
Overflowing Constant from Macro Expansion

#define MAX_UNSIGNED_CHAR 255
#define MAX_SIGNED_CHAR 127

void main() {
 char c1 = MAX_UNSIGNED_CHAR;
 char c2 = MAX_SIGNED_CHAR+1;
}

In this example, the defect appears on the macros because at least one use of the macro causes an
overflow. To reproduce these defects, use a Target processor type (-target) where char is
signed by default.
Correction — Use Different Data Type

One possible correction is to use a different data type for the variables that overflow.

#define MAX_UNSIGNED_CHAR 255
#define MAX_SIGNED_CHAR 127

void main() {

 Integer constant overflow

7-13

 unsigned char c1 = MAX_UNSIGNED_CHAR;
 unsigned char c2 = MAX_SIGNED_CHAR+1;
}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: INT_CONSTANT_OVFL
Impact: Medium
CWE ID: 128, 189, 190, 191

See Also
Integer overflow | Integer conversion overflow | Unsigned integer overflow |
Unsigned integer conversion overflow | Unsigned integer constant overflow | Sign
change integer conversion overflow | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018b

7 Numerical Defects

7-14

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html

Integer conversion overflow
Overflow when converting between integer types

Description
This defect occurs when converting an integer to a smaller integer type. If the variable does not have
enough bytes to represent the original value, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).

Risk

Integer conversion overflows result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details (or source code tooltips in
Polyspace as You Code) show a sequence of events that led to the defect. You can implement the fix
on any event in the sequence. If the result details do not show this event history, you can search for
previous references of variables relevant to the defect using right-click options in the source code
and find related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”
or “Interpret Bug Finder Results in Polyspace Access Web Interface”.

You can fix the defect by:

• Using a bigger data type for the result of the conversion so that all values can be accommodated.
• Checking for values that lead to the overflow and performing appropriate error handling.

In general, avoid conversions to smaller integer types.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Converting from int to char

char convert(void) {

 int num = 1000000;

 return (char)num;
}

 Integer conversion overflow

7-15

In the return statement, the integer variable num is converted to a char. However, an 8-bit or 16-bit
character cannot represent 1000000 because it requires at least 20 bits. So the conversion operation
overflows.

Correction — Change Conversion Type

One possible correction is to convert to a different integer type that can represent the entire number.

long convert(void) {

 int num = 1000000;

 return (long)num;
}

Result Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: INT_CONV_OVFL
Impact: High
CWE ID: 128, 189, 190, 191, 192, 197

See Also
Float conversion overflow | Unsigned integer conversion overflow | Sign change
integer conversion overflow | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Extend Bug Finder Checkers to Find Defects from Specific System Input Values”

Introduced in R2013b

7 Numerical Defects

7-16

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html
https://cwe.mitre.org/data/definitions/192.html
https://cwe.mitre.org/data/definitions/197.html

Integer division by zero
Dividing integer number by zero

Description
This defect occurs when the denominator of a division or modulo operation can be a zero-valued
integer.

Risk

A division by zero can result in a program crash.

Fix

The fix depends on the root cause of the defect. Often the result details (or source code tooltips in
Polyspace as You Code) show a sequence of events that led to the defect. You can implement the fix
on any event in the sequence. If the result details do not show this event history, you can search for
previous references of variables relevant to the defect using right-click options in the source code
and find related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”
or “Interpret Bug Finder Results in Polyspace Access Web Interface”.

It is a good practice to check for zero values of a denominator before division and handle the error.
Instead of performing the division directly:

res = num/den;

use a library function that handles zero values of the denominator before performing the division:

res = div(num, den);

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Dividing an Integer by Zero

int fraction(int num)
{
 int denom = 0;
 int result = 0;

 result = num/denom;

 Integer division by zero

7-17

 return result;
}

A division by zero error occurs at num/denom because denom is zero.
Correction — Check Before Division

int fraction(int num)
{
 int denom = 0;
 int result = 0;

 if (denom != 0)
 result = num/denom;

 return result;
}

Before dividing, add a test to see if the denominator is zero, checking before division occurs. If denom
is always zero, this correction can produce a dead code defect in your Polyspace results.
Correction — Change Denominator

One possible correction is to change the denominator value so that denom is not zero.

int fraction(int num)
{
 int denom = 2;
 int result = 0;

 result = num/denom;

 return result;
}

Modulo Operation with Zero
int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 arr[i] = input % i;
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

In this example, Polyspace flags the modulo operation as a division by zero. Because modulo is
inherently a division operation, the divisor (right hand argument) cannot be zero. The modulo
operation uses the for loop index as the divisor. However, the for loop starts at zero, which cannot
be an iterator.
Correction — Check Divisor Before Operation

One possible correction is checking the divisor before the modulo operation. In this example, see if
the index i is zero before the modulo operation.

int mod_arr(int input)
{

7 Numerical Defects

7-18

 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 if(i != 0)
 {
 arr[i] = input % i;
 }
 else
 {
 arr[i] = input;
 }
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

Correction — Change Divisor

Another possible correction is changing the divisor to a nonzero integer. In this example, add one to
the index before the % operation to avoid dividing by zero.

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 arr[i] = input % (i+1);
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

Result Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: INT_ZERO_DIV
Impact: High
CWE ID: 189, 369

See Also
Find defects (-checkers) | Float division by zero

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Extend Bug Finder Checkers to Find Defects from Specific System Input Values”

Introduced in R2013b

 Integer division by zero

7-19

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/369.html

Integer overflow
Overflow from operation between integers

Description
This defect occurs when an operation on integer variables results in values that cannot be
represented by the data type that the operation uses. This data type depends on the operand types
and determines the number of bytes allocated for storing the result, thus constraining the range of
allowed values.

Note that:

• The data type used to determine an overflow is based on the operand data types. If you then
assign the result of an operation to another variable, a different checker, Integer conversion
overflow, determines if the value assigned also overflows the variable assigned to. For instance,
in an operation such as:

res = x + y;

This checker checks for an overflow based on the types of x and y, and not on the type of res. The
checker for integer conversion overflows then checks for an overflow based on the type of res.

• The two operands in a binary operation might undergo promotion before the operation occurs. See
also “Assumptions About Implicit Data Type Conversions” (Polyspace Code Prover).

The exact storage allocation for different data types depends on your processor. See Target
processor type (-target).

Risk

Integer overflows on signed integers result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details (or source code tooltips in
Polyspace as You Code) show a sequence of events that led to the defect. You can implement the fix
on any event in the sequence. If the result details do not show this event history, you can search for
previous references of variables relevant to the defect using right-click options in the source code
and find related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”
or “Interpret Bug Finder Results in Polyspace Access Web Interface”.

You can fix the defect by:

• Using a bigger data type for the result of the operation so that all values can be accommodated.
• Checking for values that lead to the overflow and performing appropriate error handling.

To avoid overflows in general, try one of these techniques:

• Keep integer variable values restricted to within half the range of signed integers.
• In operations that might overflow, check for conditions that can lead to the overflow and

implement wrap around or saturation behavior depending on how the result of the operation is
used. The result then becomes predictable and can be safely used in subsequent computations.

7 Numerical Defects

7-20

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Addition of Maximum Integer
#include <limits.h>

int plusplus(void) {

 int var = INT_MAX;
 var++;
 return var;
}

In the third statement of this function, the variable var is increased by one. But the value of var is
the maximum integer value, so an int cannot represent one plus the maximum integer value.
Correction — Different Storage Type

One possible correction is to change data types. Store the result of the operation in a larger data type
(Note that on a 32-bit machine, int and long has the same size). In this example, on a 32-bit
machine, by returning a long long instead of an int, the overflow error is fixed.

#include <limits.h>

long long plusplus(void) {

 long long lvar = INT_MAX;
 lvar++;
 return lvar;
}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: INT_OVFL
Impact: Medium
CWE ID: 128, 189, 190, 191, 192

See Also
Find defects (-checkers) | Unsigned integer overflow | Float overflow

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”

 Integer overflow

7-21

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html
https://cwe.mitre.org/data/definitions/192.html

“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Extend Bug Finder Checkers to Find Defects from Specific System Input Values”

Introduced in R2013b

7 Numerical Defects

7-22

Integer precision exceeded
Operation using integer size instead of precision can cause undefined behavior

Description
This defect occurs when an integer expression uses the integer size in an operation that exceeds the
integer precision. On some architectures, the size of an integer in memory can include sign and
padding bits. On these architectures, the integer size is larger than the precision which is just the
number of bits that represent the value of the integer.

Risk

Using the size of an integer in an operation on the integer precision can result in integer overflow,
wrap around, or unexpected results. For instance, an unsigned integer can be stored in memory in 64
bits, but uses only 48 bits to represent its value. A 56 bits left-shift operation on this integer is
undefined behavior.

Assuming that the size of an integer is equal to its precision can also result in program portability
issues between different architectures.

Fix

Do not use the size of an integer instead of its precision. To determine the integer precision,
implement a precision computation routine or use a builtin function such as
__builtin_popcount().

Examples
Using Size of unsigned int for Left Shift Operation

#include <limits.h>

unsigned int func(unsigned int exp)
{
 if (exp >= sizeof(unsigned int) * CHAR_BIT) {
 /* Handle error */
 }
 return 1U << exp;
}

In this example, the function uses a left shift operation to return the value of 2 raised to the power of
exp. The operation shifts the bits of 1U by exp positions to the left. The if statement ensures that
the operation does not shift the bits by a number of positions exp greater than the size of an
unsigned int. However, if unsigned int contains padding bits, the value returned by sizeof()
is larger than the precision of unsigned int. As a result, some values of exp might be too large,
and the shift operation might be undefined behavior.

Correction — Implement Function to Compute Precision of unsigned int

One possible correction is to implement a function popcount() that computes the precision of
unsigned int by counting the number of set bits.

 Integer precision exceeded

7-23

#include <stddef.h>
#include <stdint.h>
#include <limits.h>

size_t popcount(uintmax_t);
#define PRECISION(umax_value) popcount(umax_value)

unsigned int func(unsigned int exp)
{
 if (exp >= PRECISION(UINT_MAX)) {
 /* Handle error */
 }
 return 1 << exp;
}

size_t popcount(uintmax_t num)
{
 size_t precision = 0;
 while (num != 0) {
 if (num % 2 == 1) {
 precision++;
 }
 num >>= 1;
 }
 return precision;
}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: INT_PRECISION_EXCEEDED
Impact: Low
CWE ID: 190

See Also
Bitwise operation on negative value | Possible invalid operation on boolean
operand | Integer conversion overflow | Integer overflow | Shift of a negative
value | Shift operation overflow | Unsigned integer conversion overflow | Unsigned
integer overflow | MISRA C:2012 Rule 10.1 | MISRA C:2012 Rule 10.2 | Find defects
(-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018b

7 Numerical Defects

7-24

https://cwe.mitre.org/data/definitions/190.html

Invalid use of standard library floating point
routine
Wrong arguments to standard library function

Description
This defect occurs when you use invalid arguments with a floating point function from the standard
library. This defect picks up:

• Rounding and absolute value routines

ceil, fabs, floor, fmod
• Fractions and division routines

fmod, modf
• Exponents and log routines

frexp, ldexp, sqrt, pow, exp, log, log10
• Trigonometry function routines

cos, sin, tan, acos, asin, atan, atan2, cosh, sinh, tanh, acosh, asinh,
atanh

Risk

Domain errors on standard library floating point functions result in implementation-defined values. If
you use the function return value in subsequent computations, you can see unexpected results.

Fix

The fix depends on the root cause of the defect. Often the result details (or source code tooltips in
Polyspace as You Code) show a sequence of events that led to the defect. You can implement the fix
on any event in the sequence. If the result details do not show this event history, you can search for
previous references of variables relevant to the defect using right-click options in the source code
and find related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”
or “Interpret Bug Finder Results in Polyspace Access Web Interface”.

It is a good practice to handle for domain errors before using a standard library floating point
function. For instance, before calling the acos function, check if the argument is in [-1.0, 1.0] and
handle the error.

See examples of fixes below.

If you do not want to fix the issue, for instance, when you handle infinities in your code, add
comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

 Invalid use of standard library floating point routine

7-25

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Arc Cosine Operation

#include <math.h>

double arccosine(void) {
 double degree = 5.0;
 return acos(degree);
}

The input value to acos must be in the interval [-1,1]. This input argument, degree, is outside this
range.

Correction — Change Input Argument

One possible correction is to change the input value to fit the specified range. In this example, change
the input value from degrees to radians to fix this defect.

#include <math.h>

double arccosine(void) {
 double degree = 5.0;
 double radian = degree * 3.14159 / 180.;
 return acos(radian);
}

Result Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: FLOAT_STD_LIB
Impact: High
CWE ID: 227, 369, 682, 873

See Also
Find defects (-checkers) | Invalid use of standard library integer routine |
Invalid use of standard library memory routine | Invalid use of standard
library string routine | Invalid use of standard library routine

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Extend Bug Finder Checkers for Standard Library Functions to Custom Libraries”
“Extend Bug Finder Checkers to Find Defects from Specific System Input Values”

Introduced in R2013b

7 Numerical Defects

7-26

https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/873.html

Invalid use of standard library integer routine
Wrong arguments to standard library function

Description
This defect occurs when you use invalid arguments with an integer function from the standard library.
This defect picks up:

• Character Conversion

toupper, tolower
• Character Checks

isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint, ispunct,
isspace, isupper, isxdigit

• Integer Division

div, ldiv
• Absolute Values

abs, labs

Fix

The fix depends on the root cause of the defect. Often the result details (or source code tooltips in
Polyspace as You Code) show a sequence of events that led to the defect. You can implement the fix
on any event in the sequence. If the result details do not show this event history, you can search for
previous references of variables relevant to the defect using right-click options in the source code
and find related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”
or “Interpret Bug Finder Results in Polyspace Access Web Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Absolute Value of Large Negative

#include <limits.h>
#include <stdlib.h>

int absoluteValue(void) {

 Invalid use of standard library integer routine

7-27

 int neg = INT_MIN;
 return abs(neg);
}

The input value to abs is INT_MIN. The absolute value of INT_MIN is INT_MAX+1. This number
cannot be represented by the type int.

Correction — Change Input Argument

One possible correction is to change the input value to fit returned data type. In this example, change
the input value to INT_MIN+1.

#include <limits.h>
#include <stdlib.h>

int absoluteValue(void) {

 int neg = INT_MIN+1;
 return abs(neg);
}

Result Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: INT_STD_LIB
Impact: High
CWE ID: 227, 369, 682, 872

See Also
Find defects (-checkers) | Invalid use of standard library floating point
routine | Invalid use of standard library memory routine | Invalid use of
standard library string routine | Invalid use of standard library routine

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Extend Bug Finder Checkers for Standard Library Functions to Custom Libraries”
“Extend Bug Finder Checkers to Find Defects from Specific System Input Values”

Introduced in R2013b

7 Numerical Defects

7-28

https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/872.html

Possible invalid operation on boolean operand
Operation can exceed precision of Boolean operand or result in arbitrary value

Description
This defect occurs when you use a Boolean operand in an arithmetic, relational, or bitwise operation
and:

• The Boolean operand has a trap representation. The size of a Boolean type in memory is at least
one addressable unit (size of char). A Boolean type requires only one bit to represent the value
true (1) or false (0). The representation of a Boolean operand in memory contains padding
bits. The memory representation can result in values that are not true or false, a trap
representation.

• The result of the operation can exceed the precision of the Boolean operand.

For example, in this code snippet:

bool_v >> 2

• If the value of bool_v is true (1) or false (0), the bitwise shift exceeds the one-bit precision
of bool_v and always results in 0.

• If bool_v has a trap representation, the result of the operation is an arbitrary value.

Possible invalid operation on boolean operand raises no defect when:

• The operation does not result in a precision overflow. For instance, bitwise & or | operations with
0x01 or 0x00.

• The Boolean operand cannot have a trap representation. For instance, a constant expression that
results in 0 or 1, or a comparison evaluated to true or false.

Risk

Arithmetic, relational, or bitwise operations on a Boolean operand can exceed the operand precision
and cause unexpected results when used as a Boolean value. Operations on Boolean operands with
trap representations can return arbitrary values.

Fix

Avoid performing operations on Boolean operands other than these operations:

• Assignment operation (=).
• Equality operations (== or !=).
• Logical operations (&&, ||, or !).

Examples
Possible Trap Representation of Boolean Operand
#include <stdio.h>
#include <stdbool.h>

 Possible invalid operation on boolean operand

7-29

#define BOOL _Bool

int arr[2] = {1, 2};

int func(BOOL b)
{
 return arr[b];
}

int main(void)
{
 BOOL b;
 char* ptr = (char*)&b;
 *ptr = 64;
 return func(b);
}

In this example, Boolean operand b is used as an array index in func for an array with two elements.
Depending on the compiler and optimization flags you use, the value b might not be 0 or 1. For
instance, in Linux Debian 8, if you use gcc version 4.9 with optimization flag -O0, the value of b is
64, which causes a buffer overflow.

Correction — Use Only Last Significant Bit Value of Boolean Operand

One possible correction is to use a variable b0 of type unsigned int to get only the value of the last
significant bit of the Boolean operand. The value of this bit is in the range [0..1], even if the
Boolean operand has a trap representation.

#include <stdio.h>
#include <stdbool.h>

#define BOOL _Bool

int arr[2] = {1, 2};

int func(BOOL b)
{
 unsigned int b0 = (unsigned int)b;
 b0 &= 0x1;
 return arr[b0];
}

int main(void)
{
 BOOL b;
 char* ptr = (char*)&b;
 *ptr = 64;
 return func(b);
}

Note that a trap representation is often the result of an earlier issue in the code, such as:

• A non-initialized variable of bool type.
• A side effect that modifies any part of a bool type object using a lvalue expression.
• A read of a bool member from a union type with the last stored value of another type.

7 Numerical Defects

7-30

As such, it is best practice to respect boolean semantics even in C++ code.

<= Operation Uses Boolean Operands
#include <iostream>

template <typename T>
bool less_or_equal(const T& x, const T& y)
{
 std::cout << "INTEGER VERSION" << '\n';
 return x <= y;
}
bool b1 = true, b2 = false;
int i1 = 2, i2 = 3;

int main()
{
 std::cout << std::boolalpha;
 std::cout << "less_or_equal(" << b1 << ',' << b2 << ") = " << less_or_equal<bool>(b1, b2) << '\n';
 std::cout << "less_or_equal(" << i1 << ',' << i2 << ") = " << less_or_equal<int>(11, 12) << '\n';
 return 0;
}

In this example, function template less_or_equal evaluates whether variable x is less than or equal
to y. When you pass boolean types to this function, the <= operation might result in an arbitrary value
if the memory representation of the operands, including their padding bits, is neither 1 nor 0.

Correction — Specialize Function Template for Boolean Types

One possible correction is to specialize the function template for boolean types. The specialized
function template uses a logical (||) operation to compare the boolean operands.

#include <iostream>

template <typename T>
bool less_or_equal(const T& x, const T& y)
{
 std::cout << "INTEGER VERSION" << '\n';
 return x <= y;
}

template<>
bool less_or_equal<bool>(const bool& x, const bool& y)
{
 std::cout << "BOOLEAN VERSION" << '\n';
 return !x || y;
}

bool b1 = true, b2 = false;
int i1 = 2, i2 = 3;

int main()
{
 std::cout << std::boolalpha;
 std::cout << "less_or_equal(" << b1 << ',' << b2 << ") = " << less_or_equal<bool>(b1, b2) << '\n';
 std::cout << "less_or_equal(" << i1 << ',' << i2 << ") = " << less_or_equal<int>(11, 12) << '\n';
 return 0;
}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: INVALID_OPERATION_ON_BOOLEAN
Impact: Low
CWE ID: 190

 Possible invalid operation on boolean operand

7-31

https://cwe.mitre.org/data/definitions/190.html

See Also
Bitwise and arithmetic operation on the same data | Bitwise operation on
negative value | Integer conversion overflow | Integer overflow | Integer
precision exceeded | Shift of a negative value | Shift operation overflow |
Unsigned integer conversion overflow | Unsigned integer overflow | MISRA C:2004
Rule 12.6 | MISRA C:2012 Rule 10.1 | MISRA C:2012 Rule 12.2 | MISRA C++:2008 Rule
4-5-2 | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018b

7 Numerical Defects

7-32

Precision loss in integer to float conversion
Least significant bits of integer lost during conversion to floating-point type

Description
This defect occurs when you cast an integer value to a floating-point type that cannot represent the
original integer value.

For instance, the long int value 1234567890L is too large for a variable of type float .

Risk

If the floating-point type cannot represent the integer value, the behavior is undefined (see C11
standard, 6.3.1.4, paragraph 2). For instance, least significant bits of the variable value can be
dropped leading to unexpected results.

Fix

Convert to a floating-point type that can represent the integer value.

For instance, if the float data type cannot represent the integer value, use the double data type
instead.

When writing a function that converts an integer to floating point type, before the conversion, check
if the integer value can be represented in the floating-point type. For instance, DBL_MANT_DIG *
log2(FLT_RADIX) represents the number of base-2 digits in the type double. Before conversion to
the type double, check if this number is greater than or equal to the precision of the integer that you
are converting. To determine the precision of an integer num, use this code:

 size_t precision = 0;
 while (num != 0) {
 if (num % 2 == 1) {
 precision++;
 }
 num >>= 1;
 }

Some implementations provide a builtin function to determine the precision of an integer. For
instance, GCC provides the function __builtin_popcount.

Examples
Conversion of Large Integer to Floating-Point Type

#include <stdio.h>

int main(void) {
 long int big = 1234567890L;
 float approx = big;
 printf("%ld\n", (big - (long int)approx));
 return 0;
}

 Precision loss in integer to float conversion

7-33

In this C code, the long int variable big is converted to float.

Correction — Use a Wider Floating-Point Type

One possible correction is to convert to the double data type instead of float.

#include <stdio.h>

int main(void) {
 long int big = 1234567890L;
 double approx = big;
 printf("%ld\n", (big - (long int)approx));
 return 0;
}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: INT_TO_FLOAT_PRECISION_LOSS
Impact: Low
CWE ID: 189, 681, 704

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018b

7 Numerical Defects

7-34

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/681.html
https://cwe.mitre.org/data/definitions/704.html

Shift of a negative value
Shift operator on negative value

Description
This defect occurs when a bit-wise shift is used on a variable that can have negative values.

Risk

Shifts on negative values overwrite the sign bit that identifies a number as negative. The shift
operation can result in unexpected values.

Fix

The fix depends on the root cause of the defect. Often the result details (or source code tooltips in
Polyspace as You Code) show a sequence of events that led to the defect. You can implement the fix
on any event in the sequence. If the result details do not show this event history, you can search for
previous references of variables relevant to the defect using right-click options in the source code
and find related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”
or “Interpret Bug Finder Results in Polyspace Access Web Interface”.

To fix the defect, check for negative values before the bit-wise shift operation and perform
appropriate error handling.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Shifting a negative variable

int shifting(int val)
{
 int res = -1;
 return res << val;
}

In the return statement, the variable res is shifted a certain number of bits to the left. However,
because res is negative, the shift might overwrite the sign bit.

Correction — Change the Data Type

One possible correction is to change the data type of the shifted variable to unsigned. This correction
eliminates the sign bit, so left shifting does not change the sign of the variable.

 Shift of a negative value

7-35

int shifting(int val)
{
 unsigned int res = -1;
 return res << val;
}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: SHIFT_NEG
Impact: Low
CWE ID: 189

See Also
Find defects (-checkers) | Shift operation overflow

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Extend Bug Finder Checkers to Find Defects from Specific System Input Values”

Introduced in R2013b

7 Numerical Defects

7-36

https://cwe.mitre.org/data/definitions/189.html

Shift operation overflow
Overflow from shifting operation

Description
This defect occurs when a shift operation can result in values that cannot be represented by the
result data type. The data type of a variable determines the number of bytes allocated for the variable
storage and constrains the range of allowed values.

The exact storage allocation for different data types depends on your processor. See Target
processor type (-target).

Risk

Shift operation overflows can result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details (or source code tooltips in
Polyspace as You Code) show a sequence of events that led to the defect. You can implement the fix
on any event in the sequence. If the result details do not show this event history, you can search for
previous references of variables relevant to the defect using right-click options in the source code
and find related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”
or “Interpret Bug Finder Results in Polyspace Access Web Interface”.

You can fix the defect by:

• Using a bigger data type for the result of the shift operation so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error handling.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Left Shift of Integer

int left_shift(void) {

 int foo = 33;
 return 1 << foo;
}

 Shift operation overflow

7-37

In the return statement of this function, bit-wise shift operation is performed shifting 1 foo bits to
the left. However, an int has only 32 bits, so the range of the shift must be between 0 and 31.
Therefore, this shift operation causes an overflow.

Correction — Different storage type

One possible correction is to store the shift operation result in a larger data type. In this example, by
returning a long long instead of an int, the overflow defect is fixed.

long long left_shift(void) {

 int foo = 33;
 return 1LL << foo;
}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: SHIFT_OVFL
Impact: Low
CWE ID: 189, 190

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Extend Bug Finder Checkers to Find Defects from Specific System Input Values”

Introduced in R2013b

7 Numerical Defects

7-38

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html

Sign change integer conversion overflow
Overflow when converting between signed and unsigned integers

Description
This defect occurs when converting an unsigned integer to a signed integer. If the variable does not
have enough bytes to represent both the original constant and the sign bit, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).

Fix

The fix depends on the root cause of the defect. Often the result details (or source code tooltips in
Polyspace as You Code) show a sequence of events that led to the defect. You can implement the fix
on any event in the sequence. If the result details do not show this event history, you can search for
previous references of variables relevant to the defect using right-click options in the source code
and find related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”
or “Interpret Bug Finder Results in Polyspace Access Web Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Convert from unsigned char to char

char sign_change(void) {
 unsigned char count = 255;

 return (char)count;
}

In the return statement, the unsigned character variable count is converted to a signed character.
However, char has 8 bits, 1 for the sign of the constant and 7 to represent the number. The
conversion operation overflows because 255 uses 8 bits.

Correction — Change conversion types

One possible correction is using a larger integer type. By using an int, there are enough bits to
represent the sign and the number value.

int sign_change(void) {
 unsigned char count = 255;

 Sign change integer conversion overflow

7-39

 return (int)count;
}

Result Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: SIGN_CHANGE
Impact: Medium
CWE ID: 192, 194, 195, 196

See Also
Find defects (-checkers) | Float conversion overflow | Unsigned integer
conversion overflow | Integer conversion overflow

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Extend Bug Finder Checkers to Find Defects from Specific System Input Values”

Introduced in R2013b

7 Numerical Defects

7-40

https://cwe.mitre.org/data/definitions/192.html
https://cwe.mitre.org/data/definitions/194.html
https://cwe.mitre.org/data/definitions/195.html
https://cwe.mitre.org/data/definitions/196.html

Unsigned integer constant overflow
Constant value falls outside range of unsigned integer data type

Description
This defect occurs when you assign a compile-time constant to a unsigned integer variable whose
data type cannot accommodate the value. An n-bit unsigned integer holds values in the range [0,
2n-1].

For instance, c is an 8-bit unsigned char variable that cannot hold the value 256.

unsigned char c = 256;

To determine the sizes of fundamental types, Bug Finder uses your specification for Target
processor type (-target).

Risk

The C standard states that overflowing unsigned integers must be wrapped around (see, for instance,
the C11 standard, section 6.2.5). However, the wrap-around behavior can be unintended and cause
unexpected results.

Fix

Check if the constant value is what you intended. If the value is correct, use a wider data type for the
variable.

Examples
Overflowing Constant from Macro Expansion

#define MAX_UNSIGNED_CHAR 255
#define MAX_UNSIGNED_SHORT 65535

void main() {
 unsigned char c1 = MAX_UNSIGNED_CHAR + 1;
 unsigned short c2 = MAX_UNSIGNED_SHORT + 1;
}

In this example, the defect appears on the macros because at least one use of the macro causes an
overflow.
Correction — Use Wider Data Type

One possible correction is to use a wider data type for the variables that overflow.

#define MAX_UNSIGNED_CHAR 255
#define MAX_UNSIGNED_SHORT 65535

void main() {
 unsigned short c1 = MAX_UNSIGNED_CHAR + 1;
 unsigned int c2 = MAX_UNSIGNED_SHORT + 1;
}

 Unsigned integer constant overflow

7-41

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: UINT_CONSTANT_OVFL
Impact: Low
CWE ID: 128, 189, 190, 191

See Also
Integer overflow | Integer conversion overflow | Integer constant overflow |
Unsigned integer overflow | Unsigned integer conversion overflow | Sign change
integer conversion overflow | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018b

7 Numerical Defects

7-42

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html

Unsigned integer conversion overflow
Overflow when converting between unsigned integer types

Description
This defect occurs when converting an unsigned integer to a smaller unsigned integer type. If the
variable does not have enough bytes to represent the original constant, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).

Risk

Integer conversion overflows result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details (or source code tooltips in
Polyspace as You Code) show a sequence of events that led to the defect. You can implement the fix
on any event in the sequence. If the result details do not show this event history, you can search for
previous references of variables relevant to the defect using right-click options in the source code
and find related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”
or “Interpret Bug Finder Results in Polyspace Access Web Interface”.

You can fix the defect by:

• Using a bigger data type for the result of the conversion so that all values can be accommodated.
• Checking for values that lead to the overflow and performing appropriate error handling.

In general, avoid conversions to smaller integer types.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Converting from int to char

unsigned char convert(void) {
 unsigned int unum = 1000000U;

 return (unsigned char)unum;
}

 Unsigned integer conversion overflow

7-43

In the return statement, the unsigned integer variable unum is converted to an unsigned character
type. However, the conversion overflows because 1000000 requires at least 20 bits. The C
programming language standard does not view unsigned overflow as an error because the program
automatically reduces the result by modulo the maximum value plus 1. In this example, unum is
reduced by modulo 2^8 because a character data type can only represent 2^8-1.

Correction — Change Conversion Type

One possible correction is to convert to a different integer type that can represent the entire number.
For example, long.

unsigned long convert(void) {
 unsigned int unum = 1000000U;

 return (unsigned long)unum;
}

Result Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: UINT_CONV_OVFL
Impact: Low
CWE ID: 128, 131, 189, 190, 191, 192, 197

See Also
Find defects (-checkers) | Float conversion overflow | Integer conversion
overflow | Sign change integer conversion overflow

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Extend Bug Finder Checkers to Find Defects from Specific System Input Values”

Introduced in R2013b

7 Numerical Defects

7-44

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html
https://cwe.mitre.org/data/definitions/192.html
https://cwe.mitre.org/data/definitions/197.html

Unsigned integer overflow
Overflow from operation between unsigned integers

Description
This defect occurs when an operation on unsigned integer variables can result in values that cannot
be represented by the result data type. The data type of a variable determines the number of bytes
allocated for the variable storage and constrains the range of allowed values.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).

Risk

The C11 standard states that unsigned integer overflows result in wrap-around behavior. However, a
wrap around behavior might not always be desirable. For instance, if the result of a computation is
used as an array size and the computation overflows, the array size is much smaller than expected.

Fix

The fix depends on the root cause of the defect. Often the result details (or source code tooltips in
Polyspace as You Code) show a sequence of events that led to the defect. You can implement the fix
on any event in the sequence. If the result details do not show this event history, you can search for
previous references of variables relevant to the defect using right-click options in the source code
and find related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”
or “Interpret Bug Finder Results in Polyspace Access Web Interface”.

You can fix the defect by:

• Using a bigger data type for the result of the operation so that all values can be accommodated.
• Checking for values that lead to the overflow and performing appropriate error handling. In the

error handling code, you can override the default wrap-around behavior for overflows and
implement saturation behavior, for instance.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Add One to Maximum Unsigned Integer

#include <limits.h>

 Unsigned integer overflow

7-45

unsigned int plusplus(void) {

 unsigned uvar = UINT_MAX;
 uvar++;
 return uvar;
}

In the third statement of this function, the variable uvar is increased by 1. However, the value of
uvar is the maximum unsigned integer value, so 1 plus the maximum integer value cannot be
represented by an unsigned int. The C programming language standard does not view unsigned
overflow as an error because the program automatically reduces the result by modulo the maximum
value plus 1. In this example, uvar is reduced by modulo UINT_MAX. The result is uvar = 1.

Correction — Different Storage Type

One possible correction is to store the operation result in a larger data type. In this example, by
returning an unsigned long long instead of an unsigned int, the overflow error is fixed.

#include <limits.h>

unsigned long long plusplus(void) {

 unsigned long long ullvar = UINT_MAX;
 ullvar++;
 return ullvar;
}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: UINT_OVFL
Impact: Low
CWE ID: 128, 131, 189, 190, 191, 192

See Also
Find defects (-checkers) | Integer overflow | Float overflow

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Extend Bug Finder Checkers to Find Defects from Specific System Input Values”

Introduced in R2013b

7 Numerical Defects

7-46

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html
https://cwe.mitre.org/data/definitions/192.html

Use of plain char type for numerical value
Plain char variable in arithmetic operation without explicit signedness

Description
This defect occurs when char variables without explicit signedness are used in these ways:

• To store non-char constants.
• In an arithmetic operation when the char is:

• A negative value.
• The result of a sign changing overflow.

• As a buffer offset.

char variables without a signed or unsigned qualifier can be signed or unsigned depending on
your compiler.

Risk

Operations on a plain char can result in unexpected numerical values. If the char is used as an offset,
the char can cause buffer overflow or underflow.

Fix

When initializing a char variable, to avoid implementation-defined confusion, explicitly state whether
the char is signed or unsigned.

Examples
Divide by char Variable
#include <stdio.h>

void badplaincharuse(void)
{
 char c = 200;
 int i = 1000;
 (void)printf("i/c = %d\n", i/c);
}

In this example, the char variable c can be signed or unsigned depending on your compiler. Assuming
8-bit, two's complement character types, the result is either i/c = 5 (unsigned char) or i/c = -17
(signed char). The correct result is unknown without knowing the signedness of char.
Correction — Add signed Qualifier

One possible correction is to add a signed qualifier to char. This clarification makes the operation
defined.

#include <stdio.h>

void badplaincharuse(void)

 Use of plain char type for numerical value

7-47

{
 signed char c = -56;
 int i = 1000;
 (void)printf("i/c = %d\n", i/c);
}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: BAD_PLAIN_CHAR_USE
Impact: Medium
CWE ID: 682, 758

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2016b

7 Numerical Defects

7-48

https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/758.html

Static Memory Defects

8

Arithmetic operation with NULL pointer
Arithmetic operation performed on NULL pointer

Description
This defect occurs when an arithmetic operation involves a pointer whose value is NULL.

Risk

Performing pointer arithmetic on a null pointer and dereferencing the resulting pointer is undefined
behavior. In most implementations, the dereference can cause your program to crash.

Fix

Check a pointer for NULL before arithmetic operations on the pointer.

If the issue occurs despite an earlier check for NULL, look for intermediate events between the check
and the subsequent dereference. Often the result details (or source code tooltips in Polyspace as You
Code) show a sequence of events that led to the defect. You can implement the fix on any event in the
sequence. If the result details do not show this event history, you can search for previous references
of variables relevant to the defect using right-click options in the source code and find related events.
See also “Interpret Bug Finder Results in Polyspace Desktop User Interface” or “Interpret Bug Finder
Results in Polyspace Access Web Interface”.

See examples of fixes below.

Examples
Arithmetic Operation with NULL Pointer Error
#include<stdlib.h>

int Check_Next_Value(int *loc, int val)
 {
 int *ptr = loc, found = 0;

 if (ptr==NULL)
 {
 ptr++;
 /* Defect: NULL pointer shifted */

 if (*ptr==val) found=1;
 }

 return(found);
 }

When ptr is a NULL pointer, the code enters the if statement body. Therefore, a NULL pointer is
shifted in the statement ptr++.
Correction — Avoid NULL Pointer Arithmetic

One possible correction is to perform the arithmetic operation when ptr is not NULL.

8 Static Memory Defects

8-2

#include<stdlib.h>

int Check_Next_Value(int *loc, int val)
 {
 int *ptr = loc, found = 0;

 /* Fix: Perform operation when ptr is not NULL */
 if (ptr!=NULL)
 {
 ptr++;

 if (*ptr==val) found=1;
 }

 return(found);
 }

Result Information
Group: Static memory
Language: C | C++
Default: Off
Command-Line Syntax: NULL_PTR_ARITH
Impact: Low

See Also
Find defects (-checkers) | Null pointer

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

 Arithmetic operation with NULL pointer

8-3

Array access out of bounds
Array index outside bounds during array access

Description
This defect occurs when an array index falls outside the range [0...array_size-1] during array
access.

Risk

Accessing an array outside its bounds is undefined behavior. You can read an unpredictable value or
try to access a location that is not allowed and encounter a segmentation fault.

Fix

The fix depends on the root cause of the defect. For instance, you accessed an array inside a loop and
one of these situations happened:

• The upper bound of the loop is too large.
• You used an array index that is the same as the loop index instead of being one less than the loop

index.

To fix the issue, you have to modify the loop bound or the array index.

Another reason why an array index can exceed array bounds is a prior conversion from signed to
unsigned integers. The conversion can result in a wrap around of the index value, eventually causing
the array index to exceed the array bounds.

Often the result details (or source code tooltips in Polyspace as You Code) show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show this event history, you can search for previous references of variables relevant to the defect
using right-click options in the source code and find related events. See also “Interpret Bug Finder
Results in Polyspace Desktop User Interface” or “Interpret Bug Finder Results in Polyspace Access
Web Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Array Access Out of Bounds Error
#include <stdio.h>

8 Static Memory Defects

8-4

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 printf("The 10-th Fibonacci number is %i .\n", fib[i]);
 /* Defect: Value of i is greater than allowed value of 9 */
}

The array fib is assigned a size of 10. An array index for fib has allowed values of [0,1,2,...,9].
The variable i has a value 10 when it comes out of the for-loop. Therefore, the printf statement
attempts to access fib[10] through i.
Correction — Keep Array Index Within Array Bounds

One possible correction is to print fib[i-1] instead of fib[i] after the for-loop.

#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 /* Fix: Print fib[9] instead of fib[10] */
 printf("The 10-th Fibonacci number is %i .\n", fib[i-1]);
}

The printf statement accesses fib[9] instead of fib[10].

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: OUT_BOUND_ARRAY
Impact: High
CWE ID: 119, 131, 466

See Also
Find defects (-checkers) | Pointer access out of bounds

 Array access out of bounds

8-5

https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/466.html

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Extend Bug Finder Checkers to Find Defects from Specific System Input Values”

Introduced in R2013b

8 Static Memory Defects

8-6

Buffer overflow from incorrect string format
specifier
String format specifier causes buffer argument of standard library functions to overflow

Description
This defect occurs when the format specifier argument for functions such as sscanf leads to an
overflow or underflow in the memory buffer argument.

Risk

If the format specifier specifies a precision that is greater than the memory buffer size, an overflow
occurs. Overflows can cause unexpected behavior such as memory corruption.

Fix

Use a format specifier that is compatible with the memory buffer size.

Examples
Memory Buffer Overflow

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%33c", buf);
}

In this example, buf can contain 32 char elements. Therefore, the format specifier %33c causes a
buffer overflow.

Correction — Use Smaller Precision in Format Specifier

One possible correction is to read a smaller number of elements into the buffer.

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%32c", buf);
}

Result Information
Group: Static memory
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: STR_FORMAT_BUFFER_OVERFLOW
Impact: High
CWE ID: 124, 125, 126, 127

 Buffer overflow from incorrect string format specifier

8-7

https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/127.html

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

8 Static Memory Defects

8-8

Destination buffer overflow in string manipulation
Function writes to buffer at offset greater than buffer size

Description
This defect occurs when certain string manipulation functions write to their destination buffer
argument at an offset greater than the buffer size.

For instance, when calling the function sprintf(char* buffer, const char* format), you
use a constant string format of greater size than buffer.

Risk

Buffer overflow can cause unexpected behavior such as memory corruption or stopping your system.
Buffer overflow also introduces the risk of code injection.

Fix

One possible solution is to use alternative functions to constrain the number of characters written.
For instance:

• If you use sprintf to write formatted data to a string, use snprintf, _snprintf or sprintf_s
instead to enforce length control. Alternatively, use asprintf to automatically allocate the
memory required for the destination buffer.

• If you use vsprintf to write formatted data from a variable argument list to a string, use
vsnprintf or vsprintf_s instead to enforce length control.

• If you use wcscpy to copy a wide string, use wcsncpy, wcslcpy, or wcscpy_s instead to enforce
length control.

Another possible solution is to increase the buffer size.

Examples
Buffer Overflow in sprintf Use

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 sprintf(buffer, fmt_string);
}

In this example, buffer can contain 20 char elements but fmt_string has a greater size.
Correction — Use snprintf Instead of sprintf

One possible correction is to use the snprintf function to enforce length control.

#include <stdio.h>

 Destination buffer overflow in string manipulation

8-9

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 snprintf(buffer, 20, fmt_string);
}

Result Information
Group: Static memory
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: STRLIB_BUFFER_OVERFLOW
Impact: High
CWE ID: 121, 125, 135, 251, 787

See Also
Find defects (-checkers) | Destination buffer underflow in string manipulation

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

8 Static Memory Defects

8-10

https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/135.html
https://cwe.mitre.org/data/definitions/251.html
https://cwe.mitre.org/data/definitions/787.html

Destination buffer underflow in string
manipulation
Function writes to buffer at a negative offset from beginning of buffer

Description
This defect occurs when certain string manipulation functions write to their destination buffer
argument at a negative offset from the beginning of the buffer.

For instance, for the function sprintf(char* buffer, const char* format), you obtain the
buffer from an operation buffer = (char*)arr; ... buffer += offset;. arr is an array
and offset is a negative value.

Risk

Buffer underflow can cause unexpected behavior such as memory corruption or stopping your system.
Buffer underflow also introduces the risk of code injection.

Fix

If the destination buffer argument results from pointer arithmetic, see if you are decrementing a
pointer. Fix the pointer decrement by modifying either the original value before decrement or the
decrement value.

Examples
Buffer Underflow in sprintf Use

#include <stdio.h>
#define offset -2

void func(void) {
 char buffer[20];
 char *fmt_string ="Text";

 sprintf(&buffer[offset], fmt_string);
}

In this example, &buffer[offset] is at a negative offset from the memory allocated to buffer.

Correction — Change Pointer Decrementer

One possible correction is to change the value of offset.

#include <stdio.h>
#define offset 2

void func(void) {
 char buffer[20];
 char *fmt_string ="Text";

 Destination buffer underflow in string manipulation

8-11

 sprintf(&buffer[offset], fmt_string);
}

Result Information
Group: Static memory
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: STRLIB_BUFFER_UNDERFLOW
Impact: High
CWE ID: 124, 786, 787

See Also
Find defects (-checkers) | Destination buffer overflow in string manipulation

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

8 Static Memory Defects

8-12

https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/786.html
https://cwe.mitre.org/data/definitions/787.html

Invalid use of standard library memory routine
Standard library memory function called with invalid arguments

Description
This defect occurs when a memory library function is called with invalid arguments. For instance, the
memcpy function copies to an array that cannot accommodate the number of bytes copied.

Risk

Use of a memory library function with invalid arguments can result in issues such as buffer overflow.

Fix

The fix depends on the root cause of the defect. Often the result details (or source code tooltips in
Polyspace as You Code) show a sequence of events that led to the defect. You can implement the fix
on any event in the sequence. If the result details do not show this event history, you can search for
previous references of variables relevant to the defect using right-click options in the source code
and find related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”
or “Interpret Bug Finder Results in Polyspace Access Web Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Invalid Use of Standard Library Memory Routine Error

#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void)
 {
 char str1[10],str2[5];

 printf("Enter string:\n");
 scanf("%s",str1);

 memcpy(str2,str1,6);
 /* Defect: Arguments of memcpy invalid: str2 has size < 6 */

 return str2;
 }

 Invalid use of standard library memory routine

8-13

The size of string str2 is 5, but six characters of string str1 are copied into str2 using the memcpy
function.

Correction — Call Function with Valid Arguments

One possible correction is to adjust the size of str2 so that it accommodates the characters copied
with the memcpy function.

#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void)
 {
 /* Fix: Declare str2 with size 6 */
 char str1[10],str2[6];

 printf("Enter string:\n");
 scanf("%s",str1);

 memcpy(str2,str1,6);
 return str2;
 }

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: MEM_STD_LIB
Impact: High
CWE ID: 120, 227, 690

See Also
Find defects (-checkers) | Invalid use of standard library string routine

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

8 Static Memory Defects

8-14

https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/690.html

Invalid use of standard library string routine
Standard library string function called with invalid arguments

Description
This defect occurs when a string library function is called with invalid arguments.

Risk

The risk depends on the type of invalid arguments. For instance, using the strcpy function with a
source argument larger than the destination argument can result in buffer overflows.

Fix

The fix depends on the standard library function involved in the defect. In some cases, you can
constrain the function arguments before the function call. For instance, if the strcpy function:

char * strcpy(char * destination, const char* source)

tries to copy too many bytes into the destination argument compared to the available buffer, constrain
the source argument before the call to strcpy. In some cases, you can use an alternative function to
avoid the error. For instance, instead of strcpy, you can use strncpy to control the number of bytes
copied.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Invalid Use of Standard Library String Routine Error

 #include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);
 /* Error: Size of text is less than gbuffer */

 return(res);
 }

 Invalid use of standard library string routine

8-15

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot copy text
into gbuffer.

Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger size than
the source string text.

#include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 /*Fix: gbuffer has equal or larger size than text */
 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);
 }

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: STR_STD_LIB
Impact: High
CWE ID: 120, 227, 690

See Also
Find defects (-checkers) | Invalid use of standard library memory routine

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

8 Static Memory Defects

8-16

https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/690.html

Move operation on const object
std::move function is called with object declared const or const&

Description
This defect occurs when the std::move function is called with an object declared const or const&.

Risk

For objects declared const or const&, unlike what you might expect, the copy constructor is called
instead of the move constructor.

Fix

Avoid calling the std::move function on const objects. If you want to perform a move operation,
cast the const object to a non-const one and then move the non-const object.

Note that this issue might also trigger the checker Const std::move input may cause a more
expensive object copy. If you decide to justify the issue, you can use the same justification for
both results.

Result Information
Group: Programming
Language: C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: MOVE_CONST_OBJECT
Impact: High

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020a

 Move operation on const object

8-17

Null pointer
NULL pointer dereferenced

Description
This defect occurs when you use a pointer with a value of NULL as if it points to a valid memory
location.

Risk

Dereferencing a null pointer is undefined behavior. In most implementations, the dereference can
cause your program to crash.

Fix

Check a pointer for NULL before dereference.

If the issue occurs despite an earlier check for NULL, look for intermediate events between the check
and the subsequent dereference. Often the result details (or source code tooltips in Polyspace as You
Code) show a sequence of events that led to the defect. You can implement the fix on any event in the
sequence. If the result details do not show this event history, you can search for previous references
of variables relevant to the defect using right-click options in the source code and find related events.
See also “Interpret Bug Finder Results in Polyspace Desktop User Interface” or “Interpret Bug Finder
Results in Polyspace Access Web Interface”.

See examples of fixes below.

Examples
Null pointer error

#include <stdlib.h>

int FindMax(int *arr, int Size)
{
 int* p=NULL;

 *p=arr[0];
 /* Defect: Null pointer dereference */

 for(int i=0;i<Size;i++)
 {
 if(arr[i] > (*p))
 *p=arr[i];
 }

 return *p;
}

The pointer p is initialized with value of NULL. However, when the value arr[0] is written to *p, p is
assumed to point to a valid memory location.

8 Static Memory Defects

8-18

Correction — Assign Address to Null Pointer Before Dereference

One possible correction is to initialize p with a valid memory address before dereference.

#include <stdlib.h>

int FindMax(int *arr, int Size)
{
 /* Fix: Assign address to null pointer */
 int* p=&arr[0];

 for(int i=0;i<Size;i++)
 {
 if(arr[i] > (*p))
 *p=arr[i];
 }

 return *p;
}

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: NULL_PTR
Impact: High
CWE ID: 476, 690

See Also
Find defects (-checkers) | Arithmetic operation with NULL pointer | Non-
initialized pointer

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Extend Bug Finder Checkers to Find Defects from Specific System Input Values”

Introduced in R2013b

 Null pointer

8-19

https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/690.html

Pointer access out of bounds
Pointer dereferenced outside its bounds

Description
This defect occurs when a pointer is dereferenced outside its bounds.

When a pointer is assigned an address, a block of memory is associated with the pointer. You cannot
access memory beyond that block using the pointer.

Risk

Dereferencing a pointer outside its bounds is undefined behavior. You can read an unpredictable
value or try to access a location that is not allowed and encounter a segmentation fault.

Fix

The fix depends on the root cause of the defect. For instance, you dereferenced a pointer inside a loop
and one of these situations happened:

• The upper bound of the loop is too large.
• You used pointer arithmetic to advance the pointer with an incorrect value for the pointer

increment.

To fix the issue, you have to modify the loop bound or the pointer increment value.

Often the result details (or source code tooltips in Polyspace as You Code) show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show this event history, you can search for previous references of variables relevant to the defect
using right-click options in the source code and find related events. See also “Interpret Bug Finder
Results in Polyspace Desktop User Interface” or “Interpret Bug Finder Results in Polyspace Access
Web Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Pointer access out of bounds error

int* Initialize(void)
{
 int arr[10];

8 Static Memory Defects

8-20

 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 ptr++;
 *ptr=i;
 /* Defect: ptr out of bounds for i=9 */
 }

 return(arr);
}

ptr is assigned the address arr that points to a memory block of size 10*sizeof(int). In the for-
loop, ptr is incremented 10 times. In the last iteration of the loop, ptr points outside the memory
block assigned to it. Therefore, it cannot be dereferenced.

Correction — Check Pointer Stays Within Bounds

One possible correction is to reverse the order of increment and dereference of ptr.

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 /* Fix: Dereference pointer before increment */
 *ptr=i;
 ptr++;
 }

 return(arr);
}

After the last increment, even though ptr points outside the memory block assigned to it, it is not
dereferenced more.

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: OUT_BOUND_PTR
Impact: High
CWE ID: 119, 131, 188, 466, 823

See Also
Find defects (-checkers) | Array access out of bounds

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

 Pointer access out of bounds

8-21

https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/188.html
https://cwe.mitre.org/data/definitions/466.html
https://cwe.mitre.org/data/definitions/823.html

Introduced in R2013b

8 Static Memory Defects

8-22

Pointer or reference to stack variable leaving
scope
Pointer to local variable leaves the variable scope

Description
This defect occurs when a pointer or reference to a local variable leaves the scope of the variable. For
instance:

• A function returns a pointer to a local variable.
• A function performs the assignment globPtr = &locVar. globPtr is a global pointer variable

and locVar is a local variable.
• A function performs the assignment *paramPtr = &locVar. paramPtr is a function parameter

that is, for instance, an int** pointer and locVar is a local int variable.
• A C++ method performs the assignment memPtr = &locVar. memPtr is a pointer data member

of the class the method belongs to. locVar is a variable local to the method.
• (C++11 and later) A function returns a lambda expression object that captures local variables of

the function by reference.

The defect also applies to memory allocated using the alloca function. The defect does not apply to
static, local variables.

Risk

Local variables are allocated an address on the stack. Once the scope of a local variable ends, this
address is available for reuse. Using this address to access the local variable value outside the
variable scope can cause unexpected behavior.

If a pointer to a local variable leaves the scope of the variable, Polyspace Bug Finder highlights the
defect. The defect appears even if you do not use the address stored in the pointer. For maintainable
code, it is a good practice to not allow the pointer to leave the variable scope. Even if you do not use
the address in the pointer now, someone else using your function can use the address, causing
undefined behavior.

Fix

Do not allow a pointer or reference to a local variable to leave the variable scope.

Examples
Pointer to Local Variable Returned from Function

void func2(int *ptr) {
 *ptr = 0;
}

int* func1(void) {
 int ret = 0;

 Pointer or reference to stack variable leaving scope

8-23

 return &ret ;
}
void main(void) {
 int* ptr = func1() ;
 func2(ptr) ;
}

In this example, func1 returns a pointer to local variable ret.

In main, ptr points to the address of the local variable. When ptr is accessed in func2, the access is
illegal because the scope of ret is limited to func1,

Pointer to Local Variable Escapes Through Lambda Expression

auto createAdder(int amountToAdd) {
 int addThis = amountToAdd;
 auto adder = [&] (int initialAmount) {
 return (initialAmount + addThis);
 };
 return adder;
}

void func() {
 auto AddByTwo = createAdder(2);
 int res = AddByTwo(10);
}

In this example, the createAdder function defines a lambda expression adder that captures the
local variable addThis by reference. The scope of addThis is limited to the createAdder function.
When the object returned by createAdder is called, a reference to the variable addThis is accessed
outside its scope. When accessed in this way, the value of addThis is undefined.

Correction – Capture Local Variables by Copy in Lambda Expression Instead of Reference

If a function returns a lambda expression object, avoid capturing local variables by reference in the
lambda object. Capture the variables by copy instead.

Variables captured by copy have the same lifetime as the lambda object, but variables captured by
reference often have a smaller lifetime than the lambda object itself. When the lambda object is used,
these variables accessed outside scope have undefined values.

auto createAdder(int amountToAdd) {
 int addThis = amountToAdd;
 auto adder = [=] (int initialAmount) {
 return (initialAmount + addThis);
 };
 return adder;
}

void func() {
 auto AddByTwo = createAdder(2);
 int res = AddByTwo(10);
}

8 Static Memory Defects

8-24

Result Information
Group: Static memory
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: LOCAL_ADDR_ESCAPE
Impact: High
CWE ID: 562, 825

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

 Pointer or reference to stack variable leaving scope

8-25

https://cwe.mitre.org/data/definitions/562.html
https://cwe.mitre.org/data/definitions/825.html

Subtraction or comparison between pointers to
different arrays
Subtraction or comparison between pointers causes undefined behavior

Description
This defect occurs when you subtract or compare pointers that are null or that point to elements in
different arrays. The relational operators for the comparison are >, <, >=, and <=.

Risk

When you subtract two pointers to elements in the same array, the result is the difference between
the subscripts of the two array elements. Similarly, when you compare two pointers to array
elements, the result is the positions of the pointers relative to each other. If the pointers are null or
point to different arrays, a subtraction or comparison operation is undefined. If you use the
subtraction result as a buffer index, it can cause a buffer overflow.

Fix

Before you subtract or use relational operators to compare pointers to array elements, check that
they are non-null and that they point to the same array.

Examples
Subtraction Between Pointers to Elements in Different Arrays

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE20 20

size_t func(void)
{
 int nums[SIZE20];
 int end;
 int *next_num_ptr = nums;
 size_t free_elements;
 /* Increment next_num_ptr as array fills */

 /* Subtraction operation is undefined unless array nums
 is adjacent to variable end in memory. */
 free_elements = &end - next_num_ptr;
 return free_elements;
}

In this example, the array nums is incrementally filled. Pointer subtraction is then used to determine
how many free elements remain. Unless end points to a memory location one past the last element of
nums, the subtraction operation is undefined.

8 Static Memory Defects

8-26

Correction — Subtract Pointers to the Same Array

Subtract the pointer to the last element that was filled from the pointer to the last element in the
array.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE20 20

size_t func(void)
{
 int nums[SIZE20];
 int *next_num_ptr = nums;
 size_t free_elements;
 /* Increment next_num_ptr as array fills */

 /* Subtraction operation involves pointers to the same array. */
 free_elements = &(nums[SIZE20 - 1]) - next_num_ptr;

 return free_elements + 1;
}

Result Information
Group: Static memory
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: PTR_TO_DIFF_ARRAY
Impact: High
CWE ID: 469

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017b

 Subtraction or comparison between pointers to different arrays

8-27

https://cwe.mitre.org/data/definitions/469.html

Unreliable cast of function pointer
Function pointer cast to another function pointer with different argument or return type

Description
This defect occurs when a function pointer is cast to another function pointer that has different
argument or return type.

This defect applies only if the code language for the project is C.

Risk

If you cast a function pointer to another function pointer with different argument or return type and
then use the latter function pointer to call a function, the behavior is undefined.

Fix

Avoid a cast between two function pointers with mismatch in argument or return types.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Unreliable cast of function pointer error
#include <stdio.h>
#include <math.h>
#define PI 3.142

double Calculate_Sum(int (*fptr)(double))
{
 double sum = 0.0;
 double y;

 for (int i = 0; i <= 100; i++)
 {
 y = (*fptr)(i*PI/100);
 sum += y;
 }
 return sum / 100;
}

int main(void)
{

8 Static Memory Defects

8-28

 double (*fp)(double);
 double sum;

 fp = sin;
 sum = Calculate_Sum(fp);
 /* Defect: fp implicitly cast to int(*) (double) */

 printf("sum(sin): %f\n", sum);
 return 0;
}

The function pointer fp is declared as double (*)(double). However in passing it to function
Calculate_Sum, fp is implicitly cast to int (*)(double).

Correction — Avoid Function Pointer Cast

One possible correction is to check that the function pointer in the definition of Calculate_Sum has
the same argument and return type as fp. This step makes sure that fp is not implicitly cast to a
different argument or return type.

#include <stdio.h>
#include <math.h>
define PI 3.142

/*Fix: fptr has same argument and return type everywhere*/
double Calculate_Sum(double (*fptr)(double))
{
 double sum = 0.0;
 double y;

 for (int i = 0; i <= 100; i++)
 {
 y = (*fptr)(i*PI/100);
 sum += y;
 }
 return sum / 100;
}

int main(void)
{
 double (*fp)(double);
 double sum;

 fp = sin;
 sum = Calculate_Sum(fp);
 printf("sum(sin): %f\n", sum);

 return 0;
}

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: FUNC_CAST

 Unreliable cast of function pointer

8-29

Impact: Medium

See Also
Find defects (-checkers) | Unreliable cast of pointer

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

8 Static Memory Defects

8-30

Unreliable cast of pointer
Pointer implicitly cast to different data type

Description
This defect occurs when a pointer is implicitly cast to a data type different from its declaration type.
Such an implicit casting can take place, for instance, when a pointer to data type char is assigned
the address of an integer.

This defect applies only if the code language for the project is C.

Risk

Casting a pointer to data type different from its declaration type can result in issues such as buffer
overflow. If the cast is implicit, it can indicate a coding error.

Fix

Avoid implicit cast of a pointer to a data type different from its declaration type.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Unreliable cast of pointer error
 #include <string.h>

 void Copy_Integer_To_String()
 {
 int src[]={1,2,3,4,5,6,7,8,9,10};
 char buffer[]="Buffer_Text";
 strcpy(buffer,src);
 /* Defect: Implicit cast of (int*) to (char*) */
 }

src is declared as an int* pointer. The strcpy statement, while copying to buffer, implicitly casts
src to char*.
Correction — Avoid Pointer Cast

One possible correction is to declare the pointer src with the same data type as buffer.

 #include <string.h>
 void Copy_Integer_To_String()

 Unreliable cast of pointer

8-31

 {
 /* Fix: Declare src with same type as buffer */
 char *src[10]={"1","2","3","4","5","6","7","8","9","10"};
 char *buffer[10];

 for(int i=0;i<10;i++)
 buffer[i]="Buffer_Text";

 for(int i=0;i<10;i++)
 buffer[i]= src[i];
 }

Result Information
Group: Static memory
Language: C
Default: On
Command-Line Syntax: PTR_CAST
Impact: Medium
CWE ID: 135, 704, 843

See Also
Find defects (-checkers) | Unreliable cast of function pointer

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

8 Static Memory Defects

8-32

https://cwe.mitre.org/data/definitions/135.html
https://cwe.mitre.org/data/definitions/704.html
https://cwe.mitre.org/data/definitions/843.html

Use of automatic variable as putenv-family
function argument
putenv-family function argument not accessible outside its scope

Description
This defect occurs when the argument of a putenv-family function is a local variable with automatic
duration.

Risk

The function putenv(char *string) inserts a pointer to its supplied argument into the
environment array, instead of making a copy of the argument. If the argument is an automatic
variable, its memory can be overwritten after the function containing the putenv() call returns. A
subsequent call to getenv() from another function returns the address of an out-of-scope variable
that cannot be dereferenced legally. This out-of-scope variable can cause environment variables to
take on unexpected values, cause the program to stop responding, or allow arbitrary code execution
vulnerabilities.

Fix

Use setenv()/unsetenv() to set and unset environment variables. Alternatively, use putenv-family
function arguments with dynamically allocated memory, or, if your application has no reentrancy
requirements, arguments with static duration. For example, a single thread execution with no
recursion or interrupts does not require reentrancy. It cannot be called (reentered) during its
execution.

Examples
Automatic Variable as Argument of putenv()

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE1024 1024

void func(int var)
{
 char env[SIZE1024];
 int retval = sprintf(env, "TEST=%s", var ? "1" : "0");
 if (retval <= 0) {
 /* Handle error */
 }
 /* Environment variable TEST is set using putenv().
 The argument passed to putenv is an automatic variable. */
 retval = putenv(env);
 if (retval != 0) {
 /* Handle error */
 }

 Use of automatic variable as putenv-family function argument

8-33

}

In this example, sprintf() stores the character string TEST=var in env. The value of the
environment variable TEST is then set to var by using putenv(). Because env is an automatic
variable, the value of TEST can change once func() returns.

Correction — Use static Variable for Argument of putenv()

Declare env as a static-duration variable. The memory location of env is not overwritten for the
duration of the program, even after func() returns.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE1024 1024
void func(int var)
{
 /* static duration variable */
 static char env[SIZE1024];
 int retval = sprintf(env,"TEST=%s", var ? "1" : "0");
 if (retval <= 0) {
 /* Handle error */
 }

 /* Environment variable TEST is set using putenv() */
 retval=putenv(env);
 if (retval != 0) {
 /* Handle error */
 }
}

Correction — Use setenv() to Set Environment Variable Value

To set the value of TEST to var, use setenv().

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE1024 1024

void func(int var)
{
 /* Environment variable TEST is set using setenv() */
 int retval = setenv("TEST", var ? "1" : "0", 1);

 if (retval != 0) {
 /* Handle error */
 }
}

Result Information
Group: Static memory
Language: C | C++
Default: On for handwritten code, off for generated code

8 Static Memory Defects

8-34

Command-Line Syntax: PUTENV_AUTO_VAR
Impact: High
CWE ID: 562, 686, 825

See Also
Pointer or reference to stack variable leaving scope | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017b

 Use of automatic variable as putenv-family function argument

8-35

https://cwe.mitre.org/data/definitions/562.html
https://cwe.mitre.org/data/definitions/686.html
https://cwe.mitre.org/data/definitions/825.html

Use of path manipulation function without
maximum sized buffer checking
Destination buffer of getwd or realpath is smaller than PATH_MAX bytes

Description
This defect occurs when the destination argument of a path manipulation function such as realpath
or getwd has a buffer size less than PATH_MAX bytes.

Risk

A buffer smaller than PATH_MAX bytes can overflow but you cannot test the function return value to
determine if an overflow occurred. If an overflow occurs, following the function call, the content of
the buffer is undefined.

For instance, char *getwd(char *buf) copies an absolute path name of the current folder to its
argument. If the length of the absolute path name is greater than PATH_MAX bytes, getwd returns
NULL and the content of *buf is undefined. You can test the return value of getwd for NULL to see if
the function call succeeded.

However, if the allowed buffer for buf is less than PATH_MAX bytes, a failure can occur for a smaller
absolute path name. In this case, getwd does not return NULL even though a failure occurred.
Therefore, the allowed buffer for buf must be PATH_MAX bytes long.

Fix

Possible fixes are:

• Use a buffer size of PATH_MAX bytes. If you obtain the buffer from an unknown source, before
using the buffer as argument of getwd or realpath function, make sure that the size is less than
PATH_MAX bytes.

• Use a path manipulation function that allows you to specify a buffer size.

For instance, if you are using getwd to get the absolute path name of the current folder, use char
*getcwd(char *buf, size_t size); instead. The additional argument size allows you to
specify a size greater than or equal to PATH_MAX.

• Allow the function to allocate additional memory dynamically, if possible.

For instance, char *realpath(const char *path, char *resolved_path); dynamically
allocates memory if resolved_path is NULL. However, you have to deallocate this memory later
using the free function.

Examples
Possible Buffer Overflow in Use of getwd Function

#include <unistd.h>
#include <linux/limits.h>
#include <stdio.h>

8 Static Memory Defects

8-36

void func(void) {
 char buf[PATH_MAX];
 if (getwd(buf+1)!= NULL) {
 printf("cwd is %s\n", buf);
 }
}

In this example, although the array buf has PATH_MAX bytes, the argument of getwd is buf + 1,
whose allowed buffer is less than PATH_MAX bytes.

Correction — Use Array of Size PATH_MAX Bytes

One possible correction is to use an array argument with size equal to PATH_MAX bytes.

#include <unistd.h>
#include <linux/limits.h>
#include <stdio.h>

void func(void) {
 char buf[PATH_MAX];
 if (getwd(buf)!= NULL) {
 printf("cwd is %s\n", buf);
 }
}

Result Information
Group: Static memory
Language: C | C++
Default: Off
Command-Line Syntax: PATH_BUFFER_OVERFLOW
Impact: High
CWE ID: 785

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

 Use of path manipulation function without maximum sized buffer checking

8-37

https://cwe.mitre.org/data/definitions/785.html

Wrong allocated object size for cast
Allocated memory does not match destination pointer

Description
This defect occurs during pointer conversion when the pointer’s address is misaligned. If a pointer is
converted to a different pointer type, the size of the allocated memory must be a multiple of the size
of the destination pointer.

Risk

Dereferencing a misaligned pointer has undefined behavior and can cause your program to crash.

Fix

Suppose you convert a pointer ptr1 to ptr2. If ptr1 points to a buffer of N bytes and ptr2 is a type
* pointer where sizeof(type) is n bytes, make sure that N is an integer multiple of n.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Dynamic Allocation of Pointers

#include <stdlib.h>

void dyn_non_align(void){
 void *ptr = malloc(13);
 long *dest;

 dest = (long*)ptr; //defect
}

In this example, the software raises a defect on the conversion of ptr to a long*. The dynamically
allocated memory of ptr, 13 bytes, is not a multiple of the size of dest, 4 bytes. This misalignment
causes the Wrong allocated object size for cast defect.
Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In this
example, resolve the defect by changing the allocated memory to 12 instead of 13.

#include <stdlib.h>

8 Static Memory Defects

8-38

void dyn_non_align(void){
 void *ptr = malloc(12);
 long *dest;

 dest = (long*)ptr;
}

Static Allocation of Pointers

void static_non_align(void){
 char arr[13], *ptr;
 int *dest;

 ptr = &arr[0];
 dest = (int*)ptr; //defect
}

In this example, the software raises a defect on the conversion of ptr to an int* in line 6. ptr has a
memory size of 13 bytes because the array arr has a size of 13 bytes. The size of dest is 4 bytes,
which is not a multiple of 13. This misalignment causes the Wrong allocated object size for cast
defect.
Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In this
example, resolve the defect by changing the size of the array arr to a multiple of 4.

void static_non_align(void){
 char arr[12], *ptr;
 int *dest;

 ptr = &arr[0];
 dest = (int*)ptr;
}

Allocation with a Function

#include <stdlib.h>

void *my_alloc(int size) {
 void *ptr_func = malloc(size);
 if(ptr_func == NULL) exit(-1);
 return ptr_func;
}

void fun_non_align(void){
 int *dest1;
 char *dest2;

 dest1 = (int*)my_alloc(13); //defect
 dest2 = (char*)my_alloc(13); //not a defect
}

In this example, the software raises a defect on the conversion of the pointer returned by
my_alloc(13) to an int* in line 11. my_alloc(13) returns a pointer with a dynamically allocated
size of 13 bytes. The size of dest1 is 4 bytes, which is not a divisor of 13. This misalignment causes
the Wrong allocated object size for cast defect. In line 12, the same function call, my_alloc(13),
does not call a defect for the conversion to dest2 because the size of char*, 1 byte, a divisor of 13.

 Wrong allocated object size for cast

8-39

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In this
example, resolve the defect by changing the argument for my_alloc to a multiple of 4.

#include <stdlib.h>

void *my_alloc(int size) {
 void *ptr_func = malloc(size);
 if(ptr_func == NULL) exit(-1);
 return ptr_func;
}

void fun_non_align(void){
 int *dest1;
 char *dest2;

 dest1 = (int*)my_alloc(12);
 dest2 = (char*)my_alloc(13);
}

Result Information
Group: Static Memory
Language: C | C++
Default: Off
Command-Line Syntax: OBJECT_SIZE_MISMATCH
Impact: High
CWE ID: 704

See Also
Find defects (-checkers) | Unreliable cast of pointer

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

8 Static Memory Defects

8-40

https://cwe.mitre.org/data/definitions/704.html

Dynamic Memory Defects

9

Alignment changed after memory reallocation
Memory reallocation changes the originally stricter alignment of an object

Description
This defect occurs when you use realloc() to modify the size of objects with strict memory
alignment requirements.

Risk

The pointer returned by realloc() can be suitably assigned to objects with less strict alignment
requirements. A misaligned memory allocation can lead to buffer underflow or overflow, an illegally
dereferenced pointer, or access to arbitrary memory locations. In processors that support misaligned
memory, the allocation impacts the performance of the system.

Fix

To reallocate memory:

1 Resize the memory block.

• In Windows, use _aligned_realloc() with the alignment argument used in
_aligned_malloc() to allocate the original memory block.

• In UNIX/Linux, use the same function with the same alignment argument used to allocate the
original memory block.

2 Copy the original content to the new memory block.
3 Free the original memory block.

Note This fix has implementation-defined behavior. The implementation might not support the
requested memory alignment and can have additional constraints for the size of the new memory.

Examples
Memory Reallocated Without Preserving the Original Alignment

#include <stdio.h>
#include <stdlib.h>

#define SIZE1024 1024

void func(void)
{
 size_t resize = SIZE1024;
 size_t alignment = 1 << 12; /* 4096 bytes alignment */
 int *ptr = NULL;
 int *ptr1;

 /* Allocate memory with 4096 bytes alignment */

9 Dynamic Memory Defects

9-2

 if (posix_memalign((void **)&ptr, alignment, sizeof(int)) != 0)
 {
 /* Handle error */
 }

 /*Reallocate memory without using the original alignment.
 ptr1 may not be 4096 bytes aligned. */

 ptr1 = (int *)realloc(ptr, sizeof(int) * resize);

 if (ptr1 == NULL)
 {
 /* Handle error */
 }

 /* Processing using ptr1 */

 /* Free before exit */
 free(ptr1);
}

In this example, the allocated memory is 4096-bytes aligned. realloc() then resizes the allocated
memory. The new pointer ptr1 might not be 4096-bytes aligned.

Correction — Specify the Alignment for the Reallocated Memory

When you reallocate the memory, use posix_memalign() and pass the alignment argument that you
used to allocate the original memory.

#include <stdio.h>
#include <stdlib.h>

#define SIZE1024 1024

void func(void)
{
 size_t resize = SIZE1024;
 size_t alignment = 1 << 12; /* 4096 bytes alignment */
 int *ptr = NULL;

 /* Allocate memory with 4096 bytes alignment */
 if (posix_memalign((void **)&ptr, alignment, sizeof(int)) != 0)
 {
 /* Handle error */
 }

 /* Reallocate memory using the original alignment. */
 if (posix_memalign((void **)&ptr, alignment, sizeof(int) * resize) != 0)
 {
 /* Handle error */
 free(ptr);
 ptr = NULL;
 }

 /* Processing using ptr */

 Alignment changed after memory reallocation

9-3

 /* Free before exit */
 free(ptr);
}

Result Information
Group: Dynamic memory
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: ALIGNMENT_CHANGE
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017b

9 Dynamic Memory Defects

9-4

Deallocation of previously deallocated pointer
Memory freed more than once without allocation

Description
This defect occurs when a block of memory is freed more than once using the free function without
an intermediate allocation.

Risk

When a pointer is allocated dynamic memory with malloc, calloc or realloc, it points to a
memory location on the heap. When you use the free function on this pointer, the associated block of
memory is freed for reallocation. Trying to free this block of memory can result in a segmentation
fault.

Fix

The fix depends on the root cause of the defect. See if you intended to allocate a memory block to the
pointer between the first deallocation and the second. Otherwise, remove the second free statement.

As a good practice, after you free a memory block, assign the corresponding pointer to NULL. Before
freeing pointers, check them for NULL values and handle the error. In this way, you are protected
against freeing an already freed block.

Examples
Deallocation of Previously Deallocated Pointer Error
#include <stdlib.h>

void allocate_and_free(void)
{

 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return;

 *pi = 2;
 free(pi);
 free (pi);
 /* Defect: pi has already been freed */
}

The first free statement releases the block of memory that pi refers to. The second free statement
on pi releases a block of memory that has been freed already.
Correction — Remove Duplicate Deallocation

One possible correction is to remove the second free statement.

#include <stdlib.h>

void allocate_and_free(void)
{

 Deallocation of previously deallocated pointer

9-5

 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return;

 *pi = 2;
 free(pi);
 /* Fix: remove second deallocation */
 }

Result Information
Group: Dynamic memory
Language: C | C++
Default: On
Command-Line Syntax: DOUBLE_DEALLOCATION
Impact: High
CWE ID: 415, 825

See Also
Find defects (-checkers) | Use of previously freed pointer

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

9 Dynamic Memory Defects

9-6

https://cwe.mitre.org/data/definitions/415.html
https://cwe.mitre.org/data/definitions/825.html

Invalid deletion of pointer
Pointer deallocation using delete without corresponding allocation using new

Description
This defect occurs when:

• You release a block of memory with the delete operator but the memory was previously not
allocated with the new operator.

• You release a block of memory with the delete operator using the single-object notation but the
memory was previously allocated as an array with the new operator.

This defect applies only to C++ source files.

Risk

The risk depends on the cause of the issue:

• The delete operator releases a block of memory allocated on the heap. If you try to access a
location on the heap that you did not allocate previously, a segmentation fault can occur.

• If you use the single-object notation for delete on a pointer that is previously allocated with the
array notation for new, the behavior is undefined.

The issue can also highlight other coding errors. For instance, you perhaps wanted to use the delete
operator or a previous new operator on a different pointer.

Fix

The fix depends on the cause of the issue:

• In most cases, you can fix the issue by removing the delete statement. If the pointer is not
allocated memory from the heap with the new operator, you do not need to release the pointer
with delete. You can simply reuse the pointer as required or let the object be destroyed at the
end of its scope.

• In case of mismatched notation for new and delete, correct the mismatch. For instance, to
allocate and deallocate a single object, use this notation:

classType* ptr = new classType;
delete ptr;

To allocate and deallocate an array objects, use this notation:

classType* p2 = new classType[10];
delete[] p2;

If the issue highlights a coding error such as use of delete or new on the wrong pointer, correct the
error.

 Invalid deletion of pointer

9-7

Examples
Deleting Static Memory
void assign_ones(void)
{
 int ptr[10];

 for(int i=0;i<10;i++)
 *(ptr+i)=1;

 delete[] ptr;
}

The pointer ptr is released using the delete operator. However, ptr points to a memory location
that was not dynamically allocated.
Correction: Remove Pointer Deallocation

If the number of elements of the array ptr is known at compile time, one possible correction is to
remove the deallocation of the pointer ptr.

void assign_ones(void)
{
 int ptr[10];

 for(int i=0;i<10;i++)
 *(ptr+i)=1;
}

Correction — Add Pointer Allocation

If the number of array elements is not known at compile time, one possible correction is to
dynamically allocate memory to the array ptr using the new operator.

void assign_ones(int num)
{
 int *ptr = new int[num];

 for(int i=0; i < num; i++)
 *(ptr+i) = 1;

 delete[] ptr;
 }

Mismatched new and delete
int main (void)
{
 int *p_scale = new int[5];

 //more code using scal

 delete p_scale;
}

In this example, p_scale is initialized to an array of size 5 using new int[5]. However, p_scale is
deleted with delete instead of delete[]. The new-delete pair does not match. Do not use delete
without the brackets when deleting arrays.

9 Dynamic Memory Defects

9-8

Correction — Match delete to new

One possible correction is to add brackets so the delete matches the new [] declaration.

int main (void)
{
 int *p_scale = new int[5];

 //more code using p_scale

 delete[] p_scale;
}

Correction — Match new to delete

Another possible correction is to change the declaration of p_scale. If you meant to initialize
p_scale as 5 itself instead of an array of size 5, you must use different syntax. For this correction,
change the square brackets in the initialization to parentheses. Leave the delete statement as it is.

int main (void)
{
 int *p_scale = new int(5);

 //more code using p_scale

 delete p_scale;
}

Result Information
Group: Dynamic memory
Language: C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: BAD_DELETE
Impact: High
CWE ID: 404

See Also
Find defects (-checkers) | Invalid free of pointer | Memory leak

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

 Invalid deletion of pointer

9-9

https://cwe.mitre.org/data/definitions/404.html

Invalid free of pointer
Pointer deallocation without a corresponding dynamic allocation

Description
This defect occurs when a block of memory released using the free function was not previously
allocated using malloc, calloc, or realloc.

Risk

The free function releases a block of memory allocated on the heap. If you try to access a location on
the heap that you did not allocate previously, a segmentation fault can occur.

The issue can highlight coding errors. For instance, you perhaps wanted to use the free function or a
previous malloc function on a different pointer.

Fix

In most cases, you can fix the issue by removing the free statement. If the pointer is not allocated
memory from the heap with malloc or calloc, you do not need to free the pointer. You can simply
reuse the pointer as required.

If the issue highlights a coding error such as use of free or malloc on the wrong pointer, correct the
error.

If the issue occurs because you use the free function to free memory allocated with the new
operator, replace the free function with the delete operator.

Examples
Invalid Free of Pointer Error

#include <stdlib.h>

void Assign_Ones(void)
{
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;

 free(p);
 /* Defect: p does not point to dynamically allocated memory */
}

The pointer p is deallocated using the free function. However, p points to a memory location that
was not dynamically allocated.

Correction — Remove Pointer Deallocation

If the number of elements of the array p is known at compile time, one possible correction is to
remove the deallocation of the pointer p.

9 Dynamic Memory Defects

9-10

#include <stdlib.h>

void Assign_Ones(void)
 {
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;
 /* Fix: Remove deallocation of p */
 }

Correction — Introduce Pointer Allocation

If the number of elements of the array p is not known at compile time, one possible correction is to
dynamically allocate memory to the array p.

#include <stdlib.h>

void Assign_Ones(int num)
{
 int *p;
 /* Fix: Allocate memory dynamically to p */
 p=(int*) calloc(10,sizeof(int));
 for(int i=0;i<10;i++)
 *(p+i)=1;
 free(p);
}

Result Information
Group: Dynamic Memory
Language: C | C++
Default: On
Command-Line Syntax: BAD_FREE
Impact: High
CWE ID: 404, 590, 762

See Also
Find defects (-checkers) | Invalid deletion of pointer

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

 Invalid free of pointer

9-11

https://cwe.mitre.org/data/definitions/404.html
https://cwe.mitre.org/data/definitions/590.html
https://cwe.mitre.org/data/definitions/762.html

Memory leak
Memory allocated dynamically not freed

Description
This defect occurs when you do not free a block of memory allocated through malloc, calloc,
realloc, or new. If the memory is allocated in a function, the defect does not occur if:

• Within the function, you free the memory using free or delete.
• The function returns the pointer assigned by malloc, calloc, realloc, or new.
• The function stores the pointer in a global variable or in a parameter.

Risk

Dynamic memory allocation functions such as malloc allocate memory on the heap. If you do not
release the memory after use, you reduce the amount of memory available for another allocation. On
embedded systems with limited memory, you might end up exhausting available heap memory even
during program execution.

Fix

Determine the scope where the dynamically allocated memory is accessed. Free the memory block at
the end of this scope.

To free a block of memory, use the free function on the pointer that was used during memory
allocation. For instance:

ptr = (int*)malloc(sizeof(int));
...
free(ptr);

It is a good practice to allocate and free memory in the same module at the same level of abstraction.
For instance, in this example, func allocates and frees memory at the same level but func2 does not.

void func() {
 ptr = (int*)malloc(sizeof(int));
 {
 ...
 }
 free(ptr);
}

void func2() {
 {
 ptr = (int*)malloc(sizeof(int));
 ...
 }
 free(ptr);
}

See CERT-C Rule MEM00-C.

9 Dynamic Memory Defects

9-12

https://wiki.sei.cmu.edu/confluence/x/FtYxBQ

Examples
Dynamic Memory Not Released Before End of Function

#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return;
 }

 *pi = 42;
 /* Defect: pi is not freed */
}

In this example, pi is dynamically allocated by malloc. The function assign_memory does not free
the memory, nor does it return pi.

Correction — Free Memory

One possible correction is to free the memory referenced by pi using the free function. The free
function must be called before the function assign_memory terminates

#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return;
 }
 *pi = 42;

 /* Fix: Free the pointer pi*/
 free(pi);
}

Correction — Return Pointer from Dynamic Allocation

Another possible correction is to return the pointer pi. Returning pi allows the function calling
assign_memory to free the memory block using pi.

#include<stdlib.h>
#include<stdio.h>

int* assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)

 Memory leak

9-13

 {
 printf("Memory allocation failed");
 return(pi);
 }
 *pi = 42;

 /* Fix: Return the pointer pi*/
 return(pi);
}

Memory Leak with New/Delete

#define NULL '\0'

void initialize_arr1(void)
{
 int *p_scalar = new int(5);
}

void initialize_arr2(void)
{
 int *p_array = new int[5];
}

In this example, the functions create two variables, p_scalar and p_array, using the new keyword.
However, the functions end without cleaning up the memory for these pointers. Because the functions
used new to create these variables, you must clean up their memory by calling delete at the end of
each function.

Correction — Add Delete

To correct this error, add a delete statement for every new initialization. If you used brackets [] to
instantiate a variable, you must call delete with brackets as well.

#define NULL '\0'

void initialize_arrs(void)
{
 int *p_scalar = new int(5);
 int *p_array = new int[5];

 delete p_scalar;
 p_scalar = NULL;

 delete[] p_array;
 p_scalar = NULL;
}

Result Information
Group: Dynamic memory
Language: C | C++
Default: Off
Command-Line Syntax: MEM_LEAK
Impact: Medium

9 Dynamic Memory Defects

9-14

CWE ID: 401, 404

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

 Memory leak

9-15

https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/404.html

Mismatched alloc/dealloc functions on Windows
Improper deallocation function causes memory corruption issues

Description
This defect occurs when you use a Windows deallocation function that is not properly paired to its
corresponding allocation function.

Risk

Deallocating memory with a function that does not match the allocation function can cause memory
corruption or undefined behavior. If you are using an older version of Windows, the improper function
can also cause compatibility issues with newer versions.

Fix

Properly pair your allocation and deallocation functions according to the functions listed in this table.

Allocation Function Deallocation Function
malloc() free()
realloc() free()
calloc() free()
_aligned_malloc() _aligned_free()
_aligned_offset_malloc() _aligned_free()
_aligned_realloc() _aligned_free()
_aligned_offset_realloc() _aligned_free()
_aligned_recalloc() _aligned_free()
_aligned_offset_recalloc() _aligned_free()
_malloca() _freea()
LocalAlloc() LocalFree()
LocalReAlloc() LocalFree()
GlobalAlloc() GlobalFree()
GlobalReAlloc() GlobalFree()
VirtualAlloc() VirtualFree()
VirtualAllocEx() VirtualFreeEx()
VirtualAllocExNuma() VirtualFreeEx()
HeapAlloc() HeapFree()
HeapReAlloc() HeapFree()

9 Dynamic Memory Defects

9-16

Examples
Memory Deallocated with Incorrect Function

#ifdef _WIN32_
#include <windows.h>
#else
#define _WIN32_
typedef void *HANDLE;
typedef HANDLE HGLOBAL;
typedef HANDLE HLOCAL;
typedef unsigned int UINT;
extern HLOCAL LocalAlloc(UINT uFlags, UINT uBytes);
extern HLOCAL LocalFree(HLOCAL hMem);
extern HGLOBAL GlobalFree(HGLOBAL hMem);
#endif

#define SIZE9 9

void func(void)
{
 /* Memory allocation */
 HLOCAL p = LocalAlloc(0x0000, SIZE9);

 if (p) {
 /* Memory deallocation. */
 GlobalFree(p);

 }
}

In this example, memory is allocated with LocallAlloc(). The program then erroneously uses
GlobalFree() to deallocate the memory.

Correction — Properly Pair Windows Allocation and Deallocation Functions

When you allocate memory with LocalAllocate(), use LocalFree() to deallocate the memory.

#ifdef _WIN32_
#include <windows.h>
#else
#define _WIN32_
typedef void *HANDLE;
typedef HANDLE HGLOBAL;
typedef HANDLE HLOCAL;
typedef unsigned int UINT;
extern HLOCAL LocalAlloc(UINT uFlags, UINT uBytes);
extern HLOCAL LocalFree(HLOCAL hMem);
extern HGLOBAL GlobalFree(HGLOBAL hMem);
#endif

#define SIZE9 9
void func(void)
{
 /* Memory allocation */

 Mismatched alloc/dealloc functions on Windows

9-17

 HLOCAL p = LocalAlloc(0x0000, SIZE9);
 if (p) {
 /* Memory deallocation. */
 LocalFree(p);
 }
}

Result Information
Group: Dynamic memory
Language: C | C++
Default: Off
Command-Line Syntax: WIN_MISMATCH_DEALLOC
Impact: Low
CWE ID: 404, 762

See Also
Invalid deletion of pointer | Invalid free of pointer | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017b

9 Dynamic Memory Defects

9-18

https://cwe.mitre.org/data/definitions/404.html
https://cwe.mitre.org/data/definitions/873.html

Unprotected dynamic memory allocation
Pointer returned from dynamic allocation not checked for NULL or nullptr value

Description
This defect occurs when you access dynamically allocated memory without first checking if the prior
memory allocation succeeded.

Risk

When memory is dynamically allocated using malloc, calloc, or realloc, it returns a value NULL if
the requested memory is not available. If the code following the allocation accesses the memory block
without checking for this NULL value, this access is not protected from failures.

Fix

Check the return value of malloc, calloc, or realloc for NULL before accessing the allocated
memory location.

int *ptr = malloc(size * sizeof(int));

if(ptr) /* Check for NULL */
{
 /* Memory access through ptr */
}

Examples
Unprotected dynamic memory allocation error

#include <stdlib.h>

void Assign_Value(void)
{
 int* p = (int*)calloc(5, sizeof(int));

 *p = 2;
 /* Defect: p is not checked for NULL value */

 free(p);
}

If the memory allocation fails, the function calloc returns NULL to p. Before accessing the memory
through p, the code does not check whether p is NULL

Correction — Check for NULL Value

One possible correction is to check whether p has value NULL before dereference.

#include <stdlib.h>

void Assign_Value(void)
 {

 Unprotected dynamic memory allocation

9-19

 int* p = (int*)calloc(5, sizeof(int));

 /* Fix: Check if p is NULL */
 if(p!=NULL) *p = 2;

 free(p);
 }

Unprotected dynamic memory allocation error only on dereference

#include <stdlib.h>
#include<string.h>
typedef struct recordType {
 const char* id;
 const char* data;
} RECORD;

RECORD* MakerecordType(const char *id,unsigned int size){
 RECORD *rec = (RECORD *)calloc(1, sizeof(RECORD));
 rec->id = strdup(id);

 const char *newData = (char *)calloc(1, size);
 rec->data = newData;
 return rec;
}

In this example, the checker raises a defect when you dereference the pointer rec without checking
for a NULL value from the prior dynamic memory allocation.

A similar issue happens with the pointer newData. However, a defect is not raised because the
pointer is not dereferenced but simply copied over to rec->data. Simply copying over a possibly null
pointer is not an issue by itself. For instance, callers of the recordType_new function might check
for NULL value of rec->data before dereferencing, thereby avoiding a null pointer dereference.

Result Information
Group: Dynamic memory
Language: C | C++
Default: Off
Command-Line Syntax: UNPROTECTED_MEMORY_ALLOCATION
Impact: Low
CWE ID: 253, 690, 789

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

9 Dynamic Memory Defects

9-20

https://cwe.mitre.org/data/definitions/253.html
https://cwe.mitre.org/data/definitions/690.html
https://cwe.mitre.org/data/definitions/789.html

Use of previously freed pointer
Memory accessed after deallocation

Description
This defect occurs when you access a block of memory after freeing the block using the free
function.

Risk

When a pointer is allocated dynamic memory with malloc, calloc or realloc, it points to a
memory location on the heap. When you use the free function on this pointer, the associated block of
memory is freed for reallocation. Trying to access this block of memory can result in unpredictable
behavior or even a segmentation fault.

Fix

The fix depends on the root cause of the defect. See if you intended to free the memory later or
allocate another memory block to the pointer before access.

As a good practice, after you free a memory block, assign the corresponding pointer to NULL. Before
dereferencing pointers, check them for NULL values and handle the error. In this way, you are
protected against accessing a freed block.

Examples
Use of Previously Freed Pointer Error

#include <stdlib.h>
#include <stdio.h>
 int increment_content_of_address(int base_val, int shift)
 {
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;
 free(pi);

 j = *pi + shift;
 /* Defect: Reading a freed pointer */

 return j;
 }

The free statement releases the block of memory that pi refers to. Therefore, dereferencingpi after
the free statement is not valid.

Correction — Free Pointer After Use

One possible correction is to free the pointer pi only after the last instance where it is accessed.

 Use of previously freed pointer

9-21

#include <stdlib.h>

int increment_content_of_address(int base_val, int shift)
{
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;

 j = *pi + shift;
 *pi = 0;

 /* Fix: The pointer is freed after its last use */
 free(pi);
 return j;
}

Result Information
Group: Dynamic memory
Language: C | C++
Default: On
Command-Line Syntax: FREED_PTR
Impact: High
CWE ID: 416, 825

See Also
Find defects (-checkers) | Deallocation of previously deallocated pointer

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

9 Dynamic Memory Defects

9-22

https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/825.html

C++ Exception Defects

10

Exception caught by value
catch statement accepts an object by value

Description
This defect occurs when a catch statement accepts an object by value.

Risk

If a throw statement passes an object and the corresponding catch statement accepts the exception
by value, the object is copied to the catch statement parameter. This copy can lead to unexpected
behavior such as:

• Object slicing, if the throw statement passes a derived class object.
• Undefined behavior of the exception, if the copy fails.

Fix

Catch the exception by reference or by pointer. Catching an exception by reference is recommended.

Examples
Standard Exception Caught by Value

#include <exception>

extern void print_str(const char* p);
extern void throw_exception();

void func() {
 try {
 throw_exception();
 }

 catch(std::exception exc) {
 print_str(exc.what());
 }
}

In this example, the catch statement takes a std::exception object by value. Catching an
exception by value causes copying of the object. It can cause undefined behavior of the exception if
the copy fails.
Correction: Catch Exception by Reference

One possible solution is to catch the exception by reference.

#include <exception>

extern void print_str(const char* p);
extern void throw_exception();

void corrected_excpcaughtbyvalue() {

10 C++ Exception Defects

10-2

 try {
 throw_exception();
 }
 catch(std::exception& exc) {
 print_str(exc.what());
 }
}

Derived Class Exception Caught by Value

#include <exception>
#include <string>
#include <typeinfo>
#include <iostream>

// Class declarations
class BaseExc {
public:
 explicit BaseExc();
 virtual ~BaseExc() {};
protected:
 BaseExc(const std::string& type);
private:
 std::string _id;
};

class IOExc: public BaseExc {
public:
 explicit IOExc();
};

//Class method declarations
BaseExc::BaseExc():_id(typeid(this).name()) {
}
BaseExc::BaseExc(const std::string& type): _id(type) {
}
IOExc::IOExc(): BaseExc(typeid(this).name()) {
}

int input(void);

int main(void) {
 int rnd = input();
 try {
 if (rnd==0) {
 throw IOExc();
 } else {
 throw BaseExc();
 }
 }

 catch(BaseExc exc) {
 std::cout << "Intercept BaseExc" << std::endl;
 }
 return 0;
}

 Exception caught by value

10-3

In this example, the catch statement takes a BaseExc object by value. Catching exceptions by value
causes copying of the object. The copying can cause:

• Undefined behavior of the exception if it fails.
• Object slicing if an exception of the derived class IOExc is caught.

Correction — Catch Exceptions by Reference

One possible correction is to catch exceptions by reference.

#include <exception>
#include <string>
#include <typeinfo>
#include <iostream>

// Class declarations
class BaseExc {
public:
 explicit BaseExc();
 virtual ~BaseExc() {};
protected:
 BaseExc(const std::string& type);
private:
 std::string _id;
};

class IOExc: public BaseExc {
public:
 explicit IOExc();
};

//Class method declarations
BaseExc::BaseExc():_id(typeid(this).name()) {
}
BaseExc::BaseExc(const std::string& type): _id(type) {
}
IOExc::IOExc(): BaseExc(typeid(this).name()) {
}

int input(void);

int main(void) {
 int rnd = input();
 try {
 if (rnd==0) {
 throw IOExc();
 } else {
 throw BaseExc();
 }
 }

 catch(BaseExc& exc) {
 std::cout << "Intercept BaseExc" << std::endl;
 }
 return 0;
}

10 C++ Exception Defects

10-4

Result Information
Group: C++ Exception
Language: C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: EXCP_CAUGHT_BY_VALUE
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

 Exception caught by value

10-5

Exception handler hidden by previous handler
catch statement is not reached because of an earlier catch statement for the same exception

Description
This defect occurs when a catch statement is not reached because a previous catch statement
handles the exception.

For instance, a catch statement accepts an object of a class my_exception and a later catch
statement accepts one of the following:

• An object of the my_exception class.
• An object of a class derived from the my_exception class.

Risk

Because the catch statement is not reached, it is effectively dead code.

Fix

One possible fix is to remove the redundant catch statement.

Another possible fix is to reverse the order of catch statements. Place the catch statement that
accepts the derived class exception before the catch statement that accepts the base class
exception.

Examples
catch Statement Hidden by Previous Statement

#include <new>

extern void print_str(const char* p);
extern void throw_exception();

void func() {
 try {
 throw_exception();
 }
 catch(std::exception& exc) {
 print_str(exc.what());
 }

 catch(std::bad_alloc& exc) {
 print_str(exc.what());
 }
}

In this example, the second catch statement accepts a std::bad_alloc object. Because the
std::bad_alloc class is derived from a std::exception class, the second catch statement is
hidden by the previous catch statement that accepts a std::exception object.

10 C++ Exception Defects

10-6

The defect appears on the parameter type of the catch statement. To find which catch statement
hides the current catch statement:

1 On the Source pane, right-click the keyword catch and select Search For "catch"in Current
Source File.

2 On the Search pane, click each search result, proceeding backwards from the current catch
statement. Continue until you find the catch statement that hides the catch statement with the
defect.

Correction — Reorder catch Statement

One possible correction is to place the catch statement with the derived class parameter first.

#include <new>

extern void print_str(const char* p);
extern void throw_exception();

void corrected_excphandlerhidden() {
 try {
 throw_exception();
 }

 catch(std::bad_alloc& exc) {
 print_str(exc.what());
 }
 catch(std::exception& exc) {
 print_str(exc.what());
 }
}

Result Information
Group: C++ Exception
Language: C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: EXCP_HANDLER_HIDDEN
Impact: Medium
CWE ID: 755

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

 Exception handler hidden by previous handler

10-7

https://cwe.mitre.org/data/definitions/755.html

Throw argument raises unexpected exception
The argument expression in a throw statement raises unexpected exceptions, leading to resource
leaks and security vulnerabilities

Description
This defect occurs when the argument expression of a throw statement might raise an exception.
Expressions that can raise exceptions include:

• Functions that are specified as noexcept(false)
• Functions that contain one or more explicit throw statements
• Constructors that perform memory allocation operations
• Expressions that involve dynamic casting

Risk

When raising an exception explicitly by using throw statements, the compiler first creates the
expected exception by evaluating the argument of the throw statement, and then raises the expected
exception. If an unexpected exception is raised when the compiler is creating the expected exception
in a throw statement, the unexpected exception is propagated instead of the expected one. This
unexpected exception might become an unhandled exception. Depending on your environment, the
compiler might call std::abort to abnormally terminate the program execution without unwinding
the stack when exceptions become unhandled, leading to resource leak and security vulnerabilities.
Consider this code where a throw statement raises an explicit exception of class myException.

class myException{
 myException(){
 msg = new char[10];
 //...
 }
 //...
};

foo(){
 try{
 //..
 throw myException();
 }
 catch(myException& e){
 //...
 }
}

During construction of the temporary myException object, the new operator can raise a bad_alloc
exception. In such a case, the throw statement raises a bad_alloc exception, instead of
myException. Because myException was the expected exception, the catch block is incompatible
with bad_alloc. The bad_alloc exception becomes an unhandled exception. It might cause the
program to abort abnormally without unwinding the stack, leading to resource leak and security
vulnerabilities.

10 C++ Exception Defects

10-8

Fix

Avoid using expressions that might raise exceptions as argument in a throw statement.

Examples
Use of Functions Specified as noexcept(false) in throw Statements

int f_throw() noexcept(false);
int foo(){
 try{
 //...
 throw f_throw();
 }
 catch(...){
 //...
 }
}

In this example, the function f_throw() is specified as noexcept(false). If an exception is raised
in f_throw(), it can cause the program to terminate without unwinding the stack, resulting in
resource leak and security vulnerabilities.

Correction – Use Functions Specified As noexcept(true) as Argument Expression of throw
Statements

One possible correction is to use functions that do not raise exceptions in argument expression of a
throw statement. These functions are specified as noexcept(true).

int f_throw() noexcept(true);
int foo(){
 try{
 //...
 throw f_throw();
 }
 catch(...){
 //...
 }
}

Use of Constructors with Dynamic Memory Allocation in throw Statements

class WithDynamicAlloc {
public:
 WithDynamicAlloc(int n) {
 m_data = new int[n];
 }
 ~WithDynamicAlloc() {
 delete[] m_data;
 }
private:
 int* m_data;
};
int foo(){

 Throw argument raises unexpected exception

10-9

 try{
 //...
 throw WithDynamicAlloc(10);
 }
 catch(WithDynamicAlloc& e){
 //...
 }
}

In this example, the constructor of the object WithDynamicAlloc performs a dynamic memory
allocation operation. This constructor might raise an exception such as bad_alloc that might cause
the program to terminate without unwinding the stack, resulting in resource leak and security
vulnerabilities.

Correction – Use Constructors that Does Not Allocate Memory as Argument Expression of throw
Statements

One possible correction is to use objects that do not require dynamic memory allocation as exception
objects.

class WithoutDynamicAlloc {
public:
 WithoutDynamicAlloc(int n) : m_data(n){
 }
 ~WithoutDynamicAlloc() {
 }
private:
 int m_data;
};
int foo(){
 try{
 //...
 throw WithoutDynamicAlloc(10);
 }
 catch(WithoutDynamicAlloc& e){
 //...
 }
}

Use of Functions That Might Raise Exceptions in throw Statements

int MightThrow(bool b) {
 if (b) {
 throw 2.1;
 }
 return 42;
}
int foo(){
 try{
 //...
 throw MightThrow(false);
 throw MightThrow(true);
 }
 catch(int e){
 //...

10 C++ Exception Defects

10-10

 }
}

In this example, the function MightThrow() raises an exception depending on the input b. Because
Polyspace analyzes functions statically, it assumes that MightThrow() raises exceptions regardless
of input, and raises a violation of this checker on both throw MightThrow(true) and throw
MightThrow(false).

Correction – Use Comments To Justify Result

Because MightThrow(false) does not raise an exception, a possible correction is to use comments
to justify the statement throw MightThrow(false).See“Address Polyspace Results Through Bug
Fixes or Justifications”

int MightThrow(bool b) {
 if (b) {
 throw 2.1;
 }
 return 42;
}
int foo(){
 try{
 //...
 throw MightThrow(false);// polyspace DEFECT:THROW_THROWS [Justified:Low] "Does not Throw"
 throw MightThrow(true);
 }
 catch(int e){
 //...
 }
}

Result Information
Group: C++ Exception
Language: C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: THROW_ARGUMENT_EXPRESSION_THROWS
Impact: High

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020b

 Throw argument raises unexpected exception

10-11

Noexcept function exits with exception
Functions specified as noexcept, noexcept(true) or noexcept(<true condition>) exits with
an exception, which causes abnormal termination of program execution, leading to resource leak and
security vulnerability

Description
This defect occurs when a callable entity that is specified by using noexcept, noexcept(true), or
noexcept(<true condition>) might exit with an exception.

When a callable entity invokes other callable entities, Polyspace makes certain assumptions to
calculate whether there might be unhandled exceptions.

• Functions: When a noexcept function calls another function, Polyspace checks whether the called
function might raise an exception only if it is specified as noexcept(<false>).If the called
function is specified as noexcept, Polyspace assumes that it does not raise an exception. Some
standard library functions, such as the constructor of std::string, use pointers to functions to
perform memory allocation, which might raise exceptions. Because these functions are not
specified as noexcept(<false>), Polyspace does not flag a function that calls these standard
library functions.

• External function: When a noexcept function calls an external function, Polyspace flags the
function declaration if the external function is specified as noexcept(<false>).

• Virtual function: When a function calls a virtual function, Polyspace flags the function declaration
if the virtual function is specified as noexcept(<false>) in a derived class. For instance, if a
noexcept function calls a virtual function that is declared as noexcept(<true>) in the base
class, and noexcept(<false>) in a subsequent derived class, Polyspace flags the declaration of
the noexcept function.

• Pointers to function: When a noexcept function invokes a pointer to a function, Polyspace
assumes that the pointer to function does not raise exceptions.

When analyzing whether a function raises unhandled exceptions, Polyspace ignores:

• Exceptions raised in destructors
• Exceptions raised in atexit() operations

Polyspace also ignores the dynamic context when checking for exceptions. For instance, a function
might raise unhandled exceptions that arise only in certain dynamic contexts. Polyspace flags such a
function even if the exception might not be raised.

Risk

You can specify that a callable entity does not exit with an exception by specifying it as noexcept,
noexcept(true), or noexcept(<true condition>). The compiler omits the exception handing
process for noexcept entities. When such an entity exits with an exception,the compiler implicitly
invokes std::terminate().

Depending on the hardware and software you use, the function std::terminate() might invoke
std::abort() to abnormally abort the execution without unwinding the stack. If the stack is not
unwound before program termination, then the destructors of the variables in the stack are not
invoked, leading to resource leak and security vulnerabilities.

10 C++ Exception Defects

10-12

Fix

Specify functions as noexcept or noexcept(true) only when you know the functions raise no
exceptions. If you cannot determine the exception specification of a function, specify it by using
noexcept(false)

Examples
Use of noexcept Functions That Might Raise Exceptions

#include <stdexcept>
#include <typeinfo>
void LibraryFunc();
void LibraryFunc_noexcept_false() noexcept(false);
void LibraryFunc_noexcept_true() noexcept(true);

void SpecFalseCT() noexcept
{
 try {
 LibraryFunc_noexcept_false();
 } catch (int &e) {
 LibraryFunc_noexcept_false();
 } catch (std::exception &e) {
 } catch (...) {
 }
}

class A {
public:
 virtual void f() {}
};

class B : A {
public:
 virtual void f() noexcept {}
};

class C : B {
public:
 virtual void f() noexcept {}
};

class D : A {
public:
 virtual void f() noexcept(false) { throw(2);}
};

void A1(A &a) noexcept {
 a.f();
}

void D2(D &d) noexcept {
 try {
 d.f();

 Noexcept function exits with exception

10-13

 } catch (int i) {
 } catch (...) {
 }
}

void B2(B *b) noexcept {
 b->f();
}
template <class T>
T f_tp(T a) noexcept(sizeof(T)<=4)
{
 if (sizeof(T) >4) {
 throw std::runtime_error("invalid case");
 }
 return a;
}
void instantiate(void)
{
 f_tp<char>(1);
}
void f() noexcept {
 throw std::runtime_error("dead code");
}

void g() noexcept {
 f();
}

In this example, there are several noexcept functions. These functions invoke other callable entities
like functions, external functions, and virtual functions.

• Polyspace flags the declaration of the function template f_tp even though the throw statement is
not reached because Polyspace ignores dynamic context. Polyspace also analyzes only the
instantiated templates in your code. For instance, if f_tp is not instantiated in the function
instantiate(), Polyspace does not analyze the template.

• Polyspace flags the noexcept function SpecFaleCT() because this function calls the
noexcept(false)external function LibraryFunc_noexcept_false() without encapsulating
it in a try-catch block. Any exceptions raised by this call to the external function might raise an
unhandled exception.

• Polyspace flags the declaration of the noexcept function A1() because this function might call
the noexcept(false) function D.f() when the input parameter a is of class D. Depending on
the class of the input parameter, the noexcept polymorphic function A1() might raise an
unhandled exception.

• Polyspace flags the function f() because it is a noexcept function that uses throw to raise an
unhandled exception. Polyspace does not flag the noexcept function g() even though it calls f()
because f() is specified as noexcept.

• Polyspace doe not flag the noexcept function D2() even though it calls the noexcept(false)
function D.f() because D2() handles the exceptions that might arise by using a catch(...)
block.

Correction – Specify Functions as noexcept(false)

You can modify your code so that the functions that might exit with an exception are specified as
noexcept(false). Such functions can exit with an exceptions without abnormally terminating the
program and this defect is not raised.

10 C++ Exception Defects

10-14

#include <stdexcept>
#include <typeinfo>
void LibraryFunc_noexcept_false() noexcept(false);
void SpecFalseCT() noexcept(false)
{
 try {
 LibraryFunc_noexcept_false();
 } catch (int &e) {
 LibraryFunc_noexcept_false();
 } catch (std::exception &e) {
 } catch (...) {
 }
}

The function SpecFalseCT() uses an external function that is specified as noexcept(false). The
function SpecFalseCT() is specified as noexcept(false) because it might exit with an exception.
This function does not raise the defect.

Correction – Handle Exceptions in noexcept Functions

You can modify your code so that exceptions are handled within a noexcept function. If raised
exceptions and handled within the function, then the noexcept function does not exit with an
exception and this defect is not raised.

#include <stdexcept>
#include <typeinfo>

void f() noexcept(false) {
throw(2);
}
void CallerFunc() noexcept {
 try {
 f();
 } catch (int i) {
 } catch (...) {
 }
}

The noexcept function CallerFunc() calls f() which can raise exceptions. CallerFunc() has
handlers to handle exceptions that might be raised and does not exit with an exception. This
functions does not raise the defect.

Correction – Justify Defects Using Comments

You can justify raised defects using comments: Because Polyspace analyzes functions statically, it
might raise this defect to flag exceptions that are in dead code. Use comments to justify defects if you
think the exception might not be raised.

#include <stdexcept>
#include <typeinfo>
void MightThrow(unsigned int input) noexcept{// polyspace DEFECT:NOEXCEPT_FUNCTION_THROWS
 if(input<0)
 throw 1;
 //..

 Noexcept function exits with exception

10-15

}

The noexcept function MightThrow() exits with an exception in a dynamic context that might not
arise. For instance, the unsigned int input is nonnegative and the throw statement does not
execute. Because Polyspace analyzes functions statically, it raises the defect on the throw statement.
Justify the defect using a comment. See“Address Polyspace Results Through Bug Fixes or
Justifications”

Result Information
Group: C++ Exception
Language: C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: NOEXCEPT_FUNCTION_THROWS
Impact: High

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020b

10 C++ Exception Defects

10-16

Programming Defects

11

Abnormal termination of exit handler
Exit handler function interrupts the normal execution of a program

Description
This defect occurs when an exit handler itself calls another function that interrupts the program’s
expected termination sequence and causes an abnormal exit.

• Exit handlers are functions designated for execution when a program terminates. These functions
are first registered with specific functions such as atexit, (WinAPI) _onexit, or
at_quick_exit().

• Some functions that can cause abnormal exits are exit, abort, longjmp, or (WinAPI) _onexit.

Risk

If your exit handler terminates your program, you can have undefined behavior. Abnormal program
termination means other exit handlers are not invoked. These additional exit handlers may do
additional clean up or other required termination steps.

Fix

In inside exit handlers, remove calls to functions that prevent the exit handler from terminating
normally.

Examples
Exit Handler With Call to exit

#include <stdlib.h>

volatile int some_condition = 1;
void demo_exit1(void)
{
 /* ... Cleanup code ... */
 return;
}
void exitabnormalhandler(void)
{
 if (some_condition)
 {
 /* Clean up */
 exit(0);
 }
 return;
}

int demo_install_exitabnormalhandler(void)
{

 if (atexit(demo_exit1) != 0) /* demo_exit1() performs additional cleanup */
 {
 /* Handle error */

11 Programming Defects

11-2

 }
 if (atexit(exitabnormalhandler) != 0)
 {
 /* Handle error */
 }
 /* ... Program code ... */
 return 0;
}

In this example, demo_install_exitabnormalhandler registers two exit handlers, demo_exit1
and exitabnormalhandler. Exit handlers are invoked in the reverse order of which they are
registered. When the program ends, exitabnormalhandler runs, then demo_exit1. However,
exitabnormalhandler calls exit interrupting the program exit process. Having this exit inside
an exit handler causes undefined behavior because the program is not finished cleaning up safely.

Correction — Remove exit from Exit Handler

One possible correction is to let your exit handlers terminate normally. For this example, exit is
removed from exitabnormalhandler, allowing the exit termination process to complete as
expected.

#include <stdlib.h>

volatile int some_condition = 1;
void demo_exit1(void)
{
 /* ... Cleanup code ... */
 return;
}
void exitabnormalhandler(void)
{
 if (some_condition)
 {
 /* Clean up */
 /* Return normally */
 }
 return;
}

int demo_install_exitabnormalhandler(void)
{

 if (atexit(demo_exit1) != 0) /* demo_exit1() continues clean up */
 {
 /* Handle error */
 }
 if (atexit(exitabnormalhandler) != 0)
 {
 /* Handle error */
 }
 /* ... Program code ... */
 return 0;
}

Result Information
Group: Programming

 Abnormal termination of exit handler

11-3

Language: C | C++
Default: Off
Command-Line Syntax: EXIT_ABNORMAL_HANDLER
Impact: Medium
CWE ID: 705

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2016b

11 Programming Defects

11-4

https://cwe.mitre.org/data/definitions/705.html

Accessing object with temporary lifetime
Read or write operations on the object are undefined behavior

Description
This defect occurs when you attempt to read from or write to an object with temporary lifetime that is
returned by a function call. In a structure or union returned by a function, and containing an array,
the array members are temporary objects. The lifetime of temporary objects ends:

• When the full expression or full declarator containing the call ends, as defined in the C11
Standard.

• After the next sequence point, as defined in the C90 and C99 Standards. A sequence point is a
point in the execution of a program where all previous evaluations are complete and no
subsequent evaluation has started yet.

For C++ code, Accessing object with temporary lifetime raises a defect only when you write to an
object with a temporary lifetime.

If the temporary lifetime object is returned by address, no defect is raised.

Risk

Modifying objects with temporary lifetime is undefined behavior and can cause abnormal program
termination and portability issues.

Fix

Assign the object returned from the function call to a local variable. The content of the temporary
lifetime object is copied to the variable. You can now modify it safely.

Examples
Modifying Temporary Lifetime Object Returned by Function Call

#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>

#define SIZE6 6

struct S_Array
{
 int t;
 int a[SIZE6];
};

struct S_Array func_temp(void);

/* func_temp() returns a struct value containing
* an array with a temporary lifetime.
*/

 Accessing object with temporary lifetime

11-5

int func(void) {

/*Writing to temporary lifetime object is
 undefined behavior
 */
 return ++(func_temp().a[0]);
}

void main(void) {
 (void)func();
}

In this example, func_temp() returns by value a structure with an array member a. This member
has temporary lifetime. Incrementing it is undefined behavior.

Correction — Assign Returned Value to Local Variable Before Writing

One possible correction is to assign the return of the call to func_temp() to a local variable. The
content of the temporary object a is copied to the variable, which you can safely increment.

 #include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>

#define SIZE6 6

struct S_Array
{
 int t;
 int a[SIZE6];
};

struct S_Array func_temp(void);

int func(void) {

/* Assign object returned by function call to
 *local variable
 */
 struct S_Array s = func_temp();

/* Local variable can safely be
 *incremented
 */
 ++(s.a[0]);
 return s.a[0];
}

void main(void) {
 (void)func();
}

Result Information
Group: Programming
Language: C | C++

11 Programming Defects

11-6

Default: On for handwritten code, off for generated code
Command-Line Syntax: TEMP_OBJECT_ACCESS
Impact: Low
CWE ID: 825

See Also
Find defects (-checkers) | Misuse of structure with flexible array member |
Write without a further read

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

 Accessing object with temporary lifetime

11-7

https://cwe.mitre.org/data/definitions/825.html

Alternating input and output from a stream
without flush or positioning call
Undefined behavior for input or output stream operations

Description
This defect occurs when:

• You do not perform a flush or function positioning call between an output operation and a
following input operation on a file stream in update mode.

• You do not perform a function positioning call between an input operation and a following output
operation on a file stream in update mode.

Risk

Alternating input and output operations on a stream without an intervening flush or positioning call is
undefined behavior.

Fix

Call fflush() or a file positioning function such as fseek() or fsetpos() between output and
input operations on an update stream.

Call a file positioning function between input and output operations on an update stream.

Examples
Read After Write Without Intervening Flush

#include <stdio.h>
#define SIZE20 20

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void func()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)
 {

11 Programming Defects

11-8

 (void)fclose(file);
 /* Handle error. */;
 }
 /* Read operation after write without
 intervening flush. */
 if (fread(data, 1, SIZE20, file) < SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;
 }
}

In this example, the file demo.txt is opened for reading and appending. After the call to fwrite(),
a call to fread() without an intervening flush operation is undefined behavior.

Correction — Call fflush() Before the Read Operation

After writing data to the file, before calling fread(), perform a flush call.

#include <stdio.h>
#define SIZE20 20

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void func()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Buffer flush after write and before read */
 if (fflush(file) != 0)
 {
 (void)fclose(file);
 /* Handle error. */;
 }

 Alternating input and output from a stream without flush or positioning call

11-9

 if (fread(data, 1, SIZE20, file) < SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;
 }
}

Result Information
Group:Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: IO_INTERLEAVING
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017b

11 Programming Defects

11-10

Assertion
Failed assertion statement

Description
This defect occurs when you use an assert, and the asserted expression is or could be false.

Note Polyspace does not flag assert(0) as an assertion defect because these statements are
commonly used to disable certain sections of code.

Risk

Typically you use assert statements for functional testing in debug mode. An assertion failure found
using static analysis indicates that the corresponding functional test would fail at run time.

Fix

The fix depends on the root cause of the defect. For instance, the root cause can be unconstrained
input from an external source that eventually led to the assertion failure.

Often the result details (or source code tooltips in Polyspace as You Code) show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show this event history, you can search for previous references of variables relevant to the defect
using right-click options in the source code and find related events. See also “Interpret Bug Finder
Results in Polyspace Desktop User Interface” or “Interpret Bug Finder Results in Polyspace Access
Web Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Check Assertion on Unsigned Integer
#include <assert.h>

void asserting_x(unsigned int theta) {
 theta =+ 5;
 assert(theta < 0);
}

In this example, the assert function checks if the input variable, theta, is less than or equal to zero.
The assertion fails because theta is an unsigned integer, so the value at the beginning of the

 Assertion

11-11

function is at least zero. The += statement increases this positive value by five. Therefore, the range
of theta is [5..MAX_INT]. theta is always greater than zero.

Correction — Change Assert Expression

One possible correction is to change the assertion expression. By changing the less-than-or-equal-to
sign to a greater-than-or-equal-to sign, the assertion does not fail.

#include <assert.h>

void asserting_x(unsigned int theta) {
 theta =+ 5;
 assert(theta > 0);
}

Correction — Fix Code

One possible correction is to fix the code related to the assertion expression. If the assertion
expression is true, fix your code so the assertion passes.

#include <assert.h>
#include <stdlib.h>

void asserting_x(int theta) {
 theta = -abs(theta);
 assert(theta < 0);
}

Asserting Zero

#include <assert.h>

#define FLAG 0

int main(void){
 int i_test_z = 0;
 float f_test_z = (float)i_test_z;

 assert(i_test_z);
 assert(f_test_z);
 assert(FLAG);

 return 0;
}

In this example, Polyspace does not flag assert(FLAG) as a violation because a macro defines FLAG
as 0. The Polyspace Bug Finder assertion checker does not flag assertions with a constant zero
parameter, assert(0). These types of assertions are commonly used as dynamic checks during
runtime. By inserting assert(0), you indicate that the program must not reach this statement
during run time, otherwise the program crashes.

However, the assertion checker does flag failed assertions caused by a variable value equal to zero, as
seen in the example with assert(i_test_z) and assert(f_test_z).

Result Information
Group: Programming

11 Programming Defects

11-12

Language: C | C++
Default: On
Command-Line Syntax: ASSERT
Impact: High

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

 Assertion

11-13

Bad file access mode or status
Access mode argument of function in fopen or open group is invalid

Description
This defect occurs when you use functions in the fopen or open group with invalid or incompatible
file access modes, file creation flags, or file status flags as arguments. For instance, for the open
function, examples of valid:

• Access modes include O_RDONLY, O_WRONLY, and O_RDWR
• File creation flags include O_CREAT, O_EXCL, O_NOCTTY, and O_TRUNC.
• File status flags include O_APPEND, O_ASYNC, O_CLOEXEC, O_DIRECT, O_DIRECTORY,

O_LARGEFILE, O_NOATIME, O_NOFOLLOW, O_NONBLOCK, O_NDELAY, O_SHLOCK, O_EXLOCK,
O_FSYNC, O_SYNC and so on.

The defect can occur in the following situations.

Situation Risk Fix
You pass an empty or invalid
access mode to the fopen
function.

According to the ANSI C
standard, the valid access
modes for fopen are:

• r,r+
• w,w+
• a,a+
• rb, wb, ab
• r+b, w+b, a+b
• rb+, wb+, ab+

fopen has undefined behavior
for invalid access modes.

Some implementations allow
extension of the access mode
such as:

• GNU: rb+cmxe,ccs=utf
• Visual C++: a+t, where t
specifies a text mode.

However, your access mode
string must begin with one of
the valid sequences.

Pass a valid access mode to
fopen.

You pass the status flag
O_APPEND to the open function
without combining it with either
O_WRONLY or O_RDWR.

O_APPEND indicates that you
intend to add new content at the
end of a file. However, without
O_WRONLY or O_RDWR, you
cannot write to the file.

The open function does not
return -1 for this logical error.

Pass either O_APPEND|
O_WRONLY or O_APPEND|
O_RDWR as access mode.

11 Programming Defects

11-14

Situation Risk Fix
You pass the status flags
O_APPEND and O_TRUNC
together to the open function.

O_APPEND indicates that you
intend to add new content at the
end of a file. However, O_TRUNC
indicates that you intend to
truncate the file to zero.
Therefore, the two modes
cannot operate together.

The open function does not
return -1 for this logical error.

Depending on what you intend
to do, pass one of the two
modes.

You pass the status flag
O_ASYNC to the open function.

On certain implementations, the
mode O_ASYNC does not enable
signal-driven I/O operations.

Use the fcntl(pathname,
F_SETFL, O_ASYNC); instead.

Fix

The fix depends on the function and the flags used. See fixes in the table above and code examples
with fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Invalid Access Mode with fopen
#include <stdio.h>

void func(void) {
 FILE *file = fopen("data.txt", "rw");
 if(file!=NULL) {
 fputs("new data",file);
 fclose(file);
 }
}

In this example, the access mode rw is invalid. Because r indicates that you open the file for reading
and w indicates that you create a new file for writing, the two access modes are incompatible.
Correction — Use Either r or w as Access Mode

One possible correction is to use the access mode corresponding to what you intend to do.

#include <stdio.h>

void func(void) {
 FILE *file = fopen("data.txt", "w");
 if(file!=NULL) {

 Bad file access mode or status

11-15

 fputs("new data",file);
 fclose(file);
 }
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: BAD_FILE_ACCESS_MODE_STATUS
Impact: Medium
CWE ID: 628, 686

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

11 Programming Defects

11-16

https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/686.html

Call through non-prototyped function pointer
Function pointer declared without its type or number of parameters causes unexpected behavior

Description
This defect occurs when a function without a complete prototype is called using a function pointer.

A function prototype specifies the type and number of parameters.

Risk

Arguments passed to a function without a prototype might not match the number and type of
parameters of the function definition, which can cause undefined behavior. If the parameters are
restricted to a subset of their type domain, arguments from untrusted sources can trigger
vulnerabilities in the called function.

Fix

Before calling the function through a pointer, provide a function prototype.

Examples
Argument Does Not Match Parameter Restriction

#include <stdio.h>
#include <limits.h>
#define SIZE2 2

typedef void (*func_ptr)();
extern int getchar_wrapper(void);
extern void restricted_int_sink(int i);
/* Integer value restricted to
range [-1, 255] */
extern void restricted_float_sink(double i);
/* Double value restricted to > 0.0 */

func_ptr generic_callback[SIZE2] =
{
 (func_ptr)restricted_int_sink,
 (func_ptr)restricted_float_sink
};

void func(void)
{
 int ic;
 ic = getchar_wrapper();
 /* Wrong index used for generic_callback.
 Negative 'int' passed to restricted_float_sink. */
 (*generic_callback[1])(ic);
}

 Call through non-prototyped function pointer

11-17

In this example, a call through func_ptr passes ic as an argument to function
generic_callback[1]. The type of ic can have negative values, while the parameter of
generic_callback[1] is restricted to float values greater than 0.0. Typically, compilers and static
analysis tools cannot perform type checking when you do not provide a pointer prototype.

Correction — Provide Prototype of Pointer to Function

Pass the argument ic to a function with a parameter of type int, by using a properly prototyped
pointer.

#include <stdio.h>
#include <limits.h>
#define SIZE2 2

typedef void (*func_ptr_proto)(int);
extern int getchar_wrapper(void);
extern void restricted_int_sink(int i);
/* Integer value restricted to
range [-1, 255] */
extern void restricted_float_sink(double i);
/* Double value restricted to > 0.0 */

func_ptr_proto generic_callback[SIZE2] =
{
 (func_ptr_proto)restricted_int_sink,
 (func_ptr_proto)restricted_float_sink
};

void func(void)
{
 int ic;
 ic = getchar_wrapper();
 /* ic passed to function through
properly prototyped pointer. */
 (*generic_callback[0])(ic);
}

Result Information
Group: Programming
Language: C
Default: On for handwritten code, off for generated code
Command-Line Syntax: UNPROTOTYPED_FUNC_CALL
Impact: Medium

See Also
Declaration mismatch | Unreliable cast of function pointer | Find defects (-
checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”

11 Programming Defects

11-18

“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017b

 Call through non-prototyped function pointer

11-19

Call to memset with unintended value
memset or wmemset used with possibly incorrect arguments

Description
This defect occurs when Polyspace Bug Finder detects a use of the memset or wmemset function with
possibly incorrect arguments.

void *memset (void *ptr, int value, size_t num) fills the first num bytes of the memory
block that ptr points to with the specified value. If the argument value is incorrect, the memory
block is initialized with an unintended value.

The unintended initialization can occur in the following cases.

Issue Risk Possible Fix
The second argument is '0'
instead of 0 or '\0'.

The ASCII value of character
'0' is 48 (decimal), 0x30
(hexadecimal), 069 (octal) but
not 0 (or '\0') .

If you want to initialize with
'0', use one of the ASCII
values. Otherwise, use 0 or
'\0'.

The second and third arguments
are probably reversed. For
instance, the third argument is
a literal and the second
argument is not a literal.

If the order is reversed, a
memory block of unintended
size is initialized with incorrect
arguments.

Reverse the order of the
arguments.

The second argument cannot be
represented in a byte.

If the second argument cannot
be represented in a byte, and
you expect each byte of a
memory block to be filled with
that argument, the initialization
does not occur as intended.

Apply a bit mask to the
argument to produce a wrapped
or truncated result that can be
represented in a byte. When you
apply a bit mask, make sure that
it produces an expected result.

For instance, replace
memset(a, -13,
sizeof(a)) with memset(a,
(-13) & 0xFF, sizeof(a)).

Fix

The fix depends on the root cause of the defect. See fixes in the table above and code examples with
fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

11 Programming Defects

11-20

Examples
Value Cannot Be Represented in a Byte
#include <string.h>

#define SIZE 32
void func(void) {
 char buf[SIZE];
 int c = -2;
 memset(buf, (char)c, sizeof(buf));
}

In this example, (char)c cannot be represented in a byte.
Correction — Apply Cast

One possible correction is to apply a cast so that the result can be represented in a byte. Check that
the result of the cast is an acceptable initialization value. In this correction, Polyspace does not raise
this defect. The cast from signed int to unsigned char is contrary to best practices and Polyspace
raises the defect Sign change integer conversion overflow.

#include <string.h>

#define SIZE 32
void func(void) {
 char buf[SIZE];
 int c = -2;
 memset(buf, (unsigned char)c, sizeof(buf));// Might Overflow
}

Correction — Avoid Using memset

One possible correction is to reserve the use of memset only for setting or clearing all bits in a buffer.
For instance, in this code, memset is called to clear the bits of the character array buf.

#include <string.h>

#define SIZE 32
void func(void) {
 char buf[SIZE];
 int c = -2;
 memset(buf, 0, sizeof(buf));//Compliant
 /* After clearing buf, use it in operations*/
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: MEMSET_INVALID_VALUE
Impact: Low
CWE ID: 665, 683

See Also
Find defects (-checkers) | Use of memset with size argument zero

 Call to memset with unintended value

11-21

https://cwe.mitre.org/data/definitions/665.html
https://cwe.mitre.org/data/definitions/683.html

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

11 Programming Defects

11-22

Character value absorbed into EOF
Data type conversion makes a valid character value same as End-of-File (EOF)

Description
This defect occurs when you perform a data type conversion that makes a valid character value
indistinguishable from EOF (End-of-File). Bug Finder flags the defect in one of the following
situations:

• End-of-File: You perform a data type conversion such as from int to char that converts a non-
EOF character value into EOF.

char ch = (char)getchar()

You then compare the result with EOF.

if((int)ch == EOF)

The conversion can be explicit or implicit.
• Wide End-of-File: You perform a data type conversion that can convert a non-WEOF wide

character value into WEOF, and then compare the result with WEOF.

Risk

The data type char cannot hold the value EOF that indicates the end of a file. Functions such as
getchar have return type int to accommodate EOF. If you convert from int to char, the values
UCHAR_MAX (a valid character value) and EOF get converted to the same value -1 and become
indistinguishable from each other. When you compare the result of this conversion with EOF, the
comparison can lead to false detection of EOF. This rationale also applies to wide character values
and WEOF.

Fix

Perform the comparison with EOF or WEOF before conversion.

Examples
Return Value of getchar Converted to char

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

char func(void)
{
 char ch;
 ch = getchar();
 if (EOF == (int)ch) {
 fatal_error();
 }
 return ch;
}

 Character value absorbed into EOF

11-23

In this example, the return value of getchar is implicitly converted to char. If getchar returns
UCHAR_MAX, it is converted to -1, which is indistinguishable from EOF. When you compare with EOF
later, it can lead to a false positive.

Correction — Perform Comparison with EOF Before Conversion

One possible correction is to first perform the comparison with EOF, and then convert from int to
char.

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

char func(void)
{
 int i;
 i = getchar();
 if (EOF == i) {
 fatal_error();
 }
 else {
 return (char)i;
 }
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: CHAR_EOF_CONFUSED
Impact: High
CWE ID: 704

See Also
Find defects (-checkers) | Invalid use of standard library integer routine |
Returned value of a sensitive function not checked | Errno not checked | Misuse
of sign-extended character value

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017a

11 Programming Defects

11-24

https://cwe.mitre.org/data/definitions/704.html

Copy of overlapping memory
Source and destination arguments of a copy function have overlapping memory

Description
This defect occurs when there is a memory overlap between the source and destination argument of a
copy function such as memcpy or strcpy. For instance, the source and destination arguments of
strcpy are pointers to different elements in the same string.

Risk

If there is memory overlap between the source and destination arguments of copy functions,
according to C standards, the behavior is undefined.

Fix

Determine if the memory overlap is what you want. If so, find an alternative function. For instance:

• If you are using memcpy to copy values from one memory location to another, use memmove
instead of memcpy.

• If you are using strcpy to copy one string to another, use memmove instead of strcpy, as follows:

s = strlen(source);
memmove(destination, source, s + 1);

strlen determines the string length without the null terminator. Therefore, you must move s+1
bytes instead of s bytes.

Examples
Overlapping Copy

#include <string.h>

char str[] = {"ABCDEFGH"};

void my_copy() {
 strcpy(&str[0],(const char*)&str[2]);
}

In this example, because the source and destination argument are pointers to the same string str,
there is memory overlap between their allowed buffers.

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: OVERLAPPING_COPY
Impact: Medium
CWE ID: 475, 628, 687

 Copy of overlapping memory

11-25

https://cwe.mitre.org/data/definitions/475.html
https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/687.html

See Also
Find defects (-checkers) | Overlapping assignment

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

11 Programming Defects

11-26

Declaration mismatch
Mismatch between function or variable declarations

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when a function or variable declaration does not match other instances of the
function or variable.

Risk

When a mismatch occurs between two variable declarations in different compilation units, a typical
linker follows an algorithm to pick one declaration for the variable. If you expect a variable
declaration that is different from the one chosen by the linker, you can see unexpected results when
the variable is used.

A similar issue can occur with mismatch in function declarations.

Fix

The fix depends on the type of declaration mismatch. If both declarations indeed refer to the same
object, use the same declaration. If the declarations refer to different objects, change the names of
the one of the variables. If you change a variable name, remember to make the change in all places
that use the variable.

Sometimes, declaration mismatches can occur because the declarations are affected by previous
preprocessing directives. For instance, a declaration occurs in a macro, and the macro is defined on
one inclusion path but undefined in another. These declaration mismatches can be tricky to debug.
Identify the divergence between the two inclusion paths and fix the conflicting macro definitions.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Inconsistent Declarations in Two Files

file1.c

int foo(void) {
 return 1;
}

file2.c

 Declaration mismatch

11-27

double foo(void);

int bar(void) {
 return (int)foo();
}

In this example, file1.c declares foo() as returning an integer. In file2.c, foo() is declared as
returning a double. This difference might cause a compile failure. Polyspace raises a defect on the
second instance of foo in file2.
Correction — Align the Function Return Values

One possible correction is to change the function declarations so that they match. In this example, by
changing the declaration of foo in file2.c to match file1.c, the defect is fixed.

file1.c

int foo(void) {
 return 1;
}

file2.c

int foo(void);

int bar(void) {
 return foo();
}

Inconsistent Structure Alignment

test1.c

#include<stdio.h>
#include "square.h"
#include "circle.h"
struct aCircle circle;
struct aSquare square;

void func2();

int main(){
 square.side=1;
 circle.radius=1;

 func2();
 return 0;
}

test2.c

#include<stdio.h>
#include "circle.h"
#include "square.h"
struct aCircle circle;
struct aSquare square;

void func2(){
 printf("%d\n", square.side);
 printf("%d\n", circle.radius);
}

circle.h

#pragma pack(1)

extern struct aCircle{
 int radius;
} circle;

square.h

extern struct aSquare {
 unsigned int side:1;
} square;

In this example, a declaration mismatch defect is raised on square in test2.c because Polyspace
infers that square in square.h does not have the same alignment as square in test2.c. This error

11 Programming Defects

11-28

occurs because the #pragma pack(1) statement in circle.h declares specific alignment. In test2.c,
circle.h is included before square.h. Therefore, the #pragma pack(1) statement from circle.h is not
reset to the default alignment after the aCircle structure. Because of this omission, test2.c infers
that the aSquare square structure also has an alignment of 1 byte. This defect might cause a
compilation failure.

Correction — Close Packing Statements

One possible correction is to reset the structure alignment after the aCircle struct declaration. For
the GNU or Microsoft Visual compilers, fix the defect by adding a #pragma pack() statement at the
end of circle.h.

test1.c

#include<stdio.h>
#include "square.h"
#include "circle.h"
struct aCircle circle;
struct aSquare square;

void func2();

int main(){
 square.side=1;
 circle.radius=1;

 func2();
 return 0;
}

test2.c

#include<stdio.h>
#include "circle.h"
#include "square.h"
struct aCircle circle;
struct aSquare square;

void func2(){
 printf("%d\n", square.side);
 printf("%d\n", circle.radius);
}

circle.h

#pragma pack(1)

extern struct aCircle{
 int radius;
} circle;

#pragma pack()

square.h

extern struct aSquare {
 unsigned int side:1;
} square;

Other compilers require different #pragma pack syntax. For your syntax, see the documentation for
your compiler.

Correction — Use the Ignore pragma pack directives Option

One possible correction is to add the Ignore pragma pack directives option to your Bug Finder
analysis. If you want the structure alignment to change for each structure, and you do not want to see
this Declaration mismatch defect, use this correction.

1 On the Configuration pane, select the Advanced Settings pane.
2 In the Other box, enter -ignore-pragma-pack.
3 Rerun your analysis.

The Declaration mismatch defect is resolved.

 Declaration mismatch

11-29

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: DECL_MISMATCH
Impact: High
CWE ID: 685, 686

See Also
Ignore pragma pack directives (-ignore-pragma-pack) | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

11 Programming Defects

11-30

https://cwe.mitre.org/data/definitions/685.html
https://cwe.mitre.org/data/definitions/686.html

Environment pointer invalidated by previous
operation
Call to setenv or putenv family function modifies environment pointed to by pointer

Description
This defect occurs when you use the third argument of main() in a hosted environment to access the
environment after an operation modifies the environment. In a hosted environment, many C
implementations support the nonstandard syntax:

main (int argc, char *argv[], char *envp[])

A call to a setenv or putenv family function modifies the environment pointed to by *envp.

Risk

When you modify the environment through a call to a setenv or putenv family function, the
environment memory can potentially be reallocated. The hosted environment pointer is not updated
and might point to an incorrect location. A call to this pointer can return unexpected results or cause
an abnormal program termination.

Fix

Do not use the hosted environment pointer. Instead, use global external variable environ in Linux,
_environ or _wenviron in Windows, or their equivalent. When you modify the environment, these
variables are updated.

Examples
Access Environment Through Pointer envp

#include <stdio.h>
#include <stdlib.h>

extern int check_arguments(int argc, char **argv, char **envp);
extern void use_envp(char **envp);

/* envp is from main function */
int func(char **envp)
{
 /* Call to setenv may cause environment
 *memory to be reallocated
 */
 if (setenv(("MY_NEW_VAR"),("new_value"),1) != 0)
 {
 /* Handle error */
 return -1;
 }
 /* envp not updated after call to setenv, and may
 *point to incorrect location.
 **/

 Environment pointer invalidated by previous operation

11-31

 if (envp != ((void *)0)) {
 use_envp(envp);
/* No defect on second access to
*envp because defect already raised */
 }
 return 0;
}

void main(int argc, char **argv, char **envp)
{
 if (check_arguments(argc, argv, envp))
 {
 (void)func(envp);
 }
}

In this example, envp is accessed inside func() after a call to setenv that can reallocate the
environment memory. envp can point to an incorrect location because it is not updated after setenv
modifies the environment. No defect is raised when use_envp() is called because the defect is
already raised on the previous line of code.

Correction — Use Global External Variable environ

One possible correction is to access the environment by using a variable that is always updated after
a call to setenv. For instance, in the following code, the pointer envp is still available from main(),
but the environment is accessed in func() through the global external variable environ.

#include <stdio.h>
#include <stdlib.h>
extern char **environ;

extern int check_arguments(int argc, char **argv, char **envp);
extern void use_envp(char **envp);

int func(void)
{
 if (setenv(("MY_NEW_VAR"), ("new_value"),1) != 0) {
 /* Handle error */
 return -1;
 }
 /* Use global external variable environ
 *which is always updated after a call to setenv */

 if (environ != NULL) {
 use_envp(environ);
 }
 return 0;
}

void main(int argc, char **argv, char **envp)
{
 if (check_arguments(argc, argv, envp))
 {
 (void)func();
 }
}

11 Programming Defects

11-32

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: INVALID_ENV_POINTER
Impact: Medium
CWE ID: 825

See Also
Find defects (-checkers) | Misuse of return value from nonreentrant standard
function | Modification of internal buffer returned from nonreentrant standard
function

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

 Environment pointer invalidated by previous operation

11-33

https://cwe.mitre.org/data/definitions/825.html

Errno not reset
errno not reset before calling a function that sets errno

Description
This defect occurs when you do not reset errno before calling a function that sets errno to indicate
error conditions. However, you check errno for those error conditions after the function call.

Risk

The errno is not clean and can contain values from a previous call. Checking errno for errors can
give the false impression that an error occurred.

errno is set to zero at program startup but subsequently, errno is not reset by a C standard library
function. You must explicitly set errno to zero when required.

Fix

Before calling a function that sets errno to indicate error conditions, reset errno to zero explicitly.

Examples
errno Not Reset Before Call to strtod

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <float.h>

#define fatal_error() abort()

double func(const char *s1, const char *s2)
{
 double f1;
 f1 = strtod (s1, NULL);
 if (0 == errno) {
 double f2 = strtod (s2, NULL);
 if (0 == errno) {
 long double result = (long double)f1 + f2;
 if ((result <= (long double)DBL_MAX) && (result >= (long double)-DBL_MAX))
 {
 return (double)result;
 }
 }
 }
 fatal_error();
 return 0.0;
}

In this example, errno is not reset to 0 before the first call to strtod. Checking errno for 0 later
can lead to a false positive.

11 Programming Defects

11-34

Correction — Reset errno Before Call

One possible correction is to reset errno to 0 before calling strtod.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <float.h>

#define fatal_error() abort()

double func(const char *s1, const char *s2)
{
 double f1;
 errno = 0;
 f1 = strtod (s1, NULL);
 if (0 == errno) {
 double f2 = strtod (s2, NULL);
 if (0 == errno) {
 long double result = (long double)f1 + f2;
 if ((result <= (long double)DBL_MAX) && (result >= (long double)-DBL_MAX))
 {
 return (double)result;
 }
 }
 }
 fatal_error();
 return 0.0;
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: MISSING_ERRNO_RESET
Impact: High
CWE ID: 253, 456, 703

See Also
Find defects (-checkers) | Returned value of a sensitive function not checked |
Misuse of errno | Errno not checked

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017a

 Errno not reset

11-35

https://cwe.mitre.org/data/definitions/253.html
https://cwe.mitre.org/data/definitions/456.html
https://cwe.mitre.org/data/definitions/703.html

Floating point comparison with equality operators
Imprecise comparison of floating-point variables

Description
This defect occurs when you use an equality (==) or inequality (!=) operation with floating-point
numbers.

Polyspace does not raise a defect for an equality or inequality operation with floating-point numbers
when:

• The comparison is between two float constants.

 float flt = 1.0;
 if (flt == 1.1)

• The comparison is between a constant and a variable that can take a finite, reasonably small
number of values.

float x;

int rand = random();
switch(rand) {
case 1: x = 0.0; break;
case 2: x = 1.3; break;
case 3: x = 1.7; break;
case 4: x = 2.0; break;
default: x = 3.5; break; }
…
if (x==1.3)

• The comparison is between floating-point expressions that contain only integer values.

float x = 0.0;
for (x=0.0;x!=100.0;x+=1.0) {
…
if (random) break;
}

if (3*x+4==2*x-1)
…
if (3*x+4 == 1.3)

• One of the operands is 0.0, unless you use the option flag -detect-bad-float-op-on-zero.

/* Defect detected when
you use the option flag */

if (x==0.0f)

If you are running an analysis through the user interface, you can enter this option in the Other
field, under the Advanced Settings node on the Configuration pane. See Other.

At the command line, add the flag to your analysis command.

11 Programming Defects

11-36

polyspace-bug-finder -sources filename ^
-checkers BAD_FLOAT_OP -detect-bad-float-op-on-zero

Risk

Checking for equality or inequality of two floating-point values might return unexpected results
because floating-point representations are inexact and involve rounding errors.

Fix

Instead of checking for equality of floating-point values:

if (val1 == val2)

check if their difference is less than a predefined tolerance value (for instance, the value
FLT_EPSILON defined in float.h):

#include <float.h>
if(fabs(val1-val2) < FLT_EPSILON)

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Floats Inequality in for-loop

#include <stdio.h>
#include <math.h>
#include <float.h>

void func(void)
{
 float f;
 for (f = 1.0; f != 2.0; f = f + 0.1)
 (void)printf("Value: %f\n", f);
}

In this function, the for-loop tests the inequality of f and the number 2.0 as a stopping mechanism.
The number of iterations is difficult to determine, or might be infinite, because of the imprecision in
floating-point representation.

Correction — Change the Operator

One possible correction is to use a different operator that is not as strict. For example, an inequality
like >= or <=.

#include <stdio.h>
#include <math.h>

 Floating point comparison with equality operators

11-37

#include <float.h>

void func(void)
{
 float f;
 for (f = 1.0; f <= 2.0; f = f + 0.1)
 (void)printf("Value: %f\n", f);
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: BAD_FLOAT_OP
Impact: Medium
CWE ID: 873

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

11 Programming Defects

11-38

https://cwe.mitre.org/data/definitions/873.html

Format string specifiers and arguments mismatch
Format specifiers in printf-like functions do not match corresponding arguments

Description
This defect occurs when the format specifiers in the formatted output functions such as printf do
not match their corresponding arguments. For example, an argument of type unsigned long must
have a format specification of %lu.

Risk

Mismatch between format specifiers and the corresponding arguments result in undefined behavior.

Fix

Make sure that the format specifiers match the corresponding arguments. For instance, in this
example, the %d specifier does not match the string argument message and the %s specifier does not
match the integer argument err_number.

 const char *message = "License not available";
 int err_number = ;-4
 printf("Error: %d (error type %s)\n", message, err_number);

Switching the two format specifiers fixes the issue. See the specifications for the printf function for
more information about format specifiers.

In cases where integer promotion modifies the perceived data type of an argument, the analysis
result shows both the original type and the type after promotion. The format specifier has to match
the type after integer promotion.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Printing a Float
#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", fst);
}

In the printf statement, the format specifier, %d, does not match the data type of fst.

 Format string specifiers and arguments mismatch

11-39

https://en.cppreference.com/w/cpp/io/c/fprintf

Correction — Use an Unsigned Long Format Specifier

One possible correction is to use the %lu format specifier. This specifier matches the unsigned
integer type and long size of fst.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%lu\n", fst);
}

Correction — Use an Integer Argument

One possible correction is to change the argument to match the format specifier. Convert fst to an
integer to match the format specifier and print the value 1.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", (int)fst);
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: STRING_FORMAT
Impact: Low
CWE ID: 683, 685, 686

See Also
Find defects (-checkers) | Invalid use of standard library string routine

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

External Websites
Standard library output functions

Introduced in R2013b

11 Programming Defects

11-40

https://cwe.mitre.org/data/definitions/683.html
https://cwe.mitre.org/data/definitions/685.html
https://cwe.mitre.org/data/definitions/686.html
https://en.cppreference.com/w/cpp/io/c/fprintf

Function called from signal handler not
asynchronous-safe
Call to interrupted function causes undefined program behavior

Description
This defect occurs when a signal handler calls a function that is not asynchronous-safe according to
the POSIX standard. An asynchronous-safe function can be interrupted at any point in its execution,
then called again without causing an inconsistent state. It can also correctly handle global data that
might be in an inconsistent state.

If a signal handler calls another function that calls an asynchronous-unsafe function, the defect
appears on the function call in the signal handler. The defect traceback shows the full path from the
signal handler to the asynchronous-unsafe function.

Risk

When a signal handler is invoked, the execution of the program is interrupted. After the handler is
finished, program execution resumes at the point of interruption. If a function is executing at the time
of the interruption, calling it from within the signal handler is undefined behavior, unless it is
asynchronous-safe.

Fix

The POSIX standard defines these functions as asynchronous-safe. You can call these functions from a
signal handler.

_exit() getpgrp() setsockopt()
_Exit() getpid() setuid()
abort() getppid() shutdown()
accept() getsockname() sigaction()
access() getsockopt() sigaddset()
aio_error() getuid() sigdelset()
aio_return() kill() sigemptyset()
aio_suspend() link() sigfillset()
alarm() linkat() sigismember()
bind() listen() signal()
cfgetispeed() lseek() sigpause()
cfgetospeed() lstat() sigpending()
cfsetispeed() mkdir() sigprocmask()
cfsetospeed() mkdirat() sigqueue()
chdir() mkfifo() sigset()
chmod() mkfifoat() sigsuspend()

 Function called from signal handler not asynchronous-safe

11-41

chown() mknod() sleep()
clock_gettime() mknodat() sockatmark()
close() open() socket()
connect() openat() socketpair()
creat() pathconf() stat()
dup() pause() symlink()
dup2() pipe() symlinkat()
execl() poll() sysconf()
execle() posix_trace_event() tcdrain()
execv() pselect() tcflow()
execve() pthread_kill() tcflush()
faccessat() pthread_self() tcgetattr()
fchdir() pthread_sigmask() tcgetpgrp()
fchmod() quick_exit() tcsendbreak()
fchmodat() raise() tcsetattr()
fchown() read() tcsetpgrp()
fchownat() readlink() time()
fcntl() readlinkat() timer_getoverrun()
fdatasync() recv() timer_gettime()
fexecve() recvfrom() timer_settime()
fork() recvmsg() times()
fpathconf() rename() umask()
fstat() renameat() uname()
fstatat() rmdir() unlink()
fsync() select() unlinkat()
ftruncate() sem_post() utime()
futimens() send() utimensat()
getegid() sendmsg() utimes()
geteuid() sendto() wait()
getgid() setgid() waitpid()
getgroups() setpgid() write()
getpeername() setsid()

Functions not in the previous table are not asynchronous-safe, and should not be called from a signal
hander.

11 Programming Defects

11-42

Examples
Call to printf() Inside Signal Handler

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

#define SIZE20 20

extern volatile sig_atomic_t e_flag;

void display_info(const char *info)
{
 if (info)
 {
 (void)fputs(info, stderr);
 }
}

void sig_handler(int signum)
{
 /* Call function printf() that is not
 asynchronous-safe */
 printf("signal %d received.", signum);
 e_flag = 1;
}

int main(void)
{
 e_flag = 0;
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 char *info = (char *)calloc(SIZE20, sizeof(char));
 if (info == NULL)
 {
 /* Handle Error */
 }
 while (!e_flag)
 {
 /* Main loop program code */
 display_info(info);
 /* More program code */
 }
 free(info);
 info = NULL;
 return 0;
}

 Function called from signal handler not asynchronous-safe

11-43

In this example, sig_handler calls printf() when catching a signal. If the handler catches
another signal while printf() is executing, the behavior of the program is undefined.

Correction — Set Flag Only in Signal Handler

Use your signal handler to set only the value of a flag. e_flag is of type volatile sig_atomic_t.
sig_handler can safely access it asynchronously.

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

#define SIZE20 20

extern volatile sig_atomic_t e_flag;

void display_info(const char *info)
{
 if (info)
 {
 (void)fputs(info, stderr);
 }
}

void sig_handler1(int signum)
{
 int s0 = signum;
 e_flag = 1;
}

int func(void)
{
 e_flag = 0;
 if (signal(SIGINT, sig_handler1) == SIG_ERR)
 {
 /* Handle error */
 }
 char *info = (char *)calloc(SIZE20, 1);
 if (info == NULL)
 {
 /* Handle error */
 }
 while (!e_flag)
 {
 /* Main loop program code */
 display_info(info);
 /* More program code */
 }
 free(info);
 info = NULL;
 return 0;
}

11 Programming Defects

11-44

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: SIG_HANDLER_ASYNC_UNSAFE
Impact: Medium
CWE ID: 364, 387, 413, 479, 663, 828

See Also
Function called from signal handler not asynchronous-safe (strict) | Return
from computational exception signal handler | Shared data access within signal
handler | Signal call from within signal handler | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017b

 Function called from signal handler not asynchronous-safe

11-45

https://cwe.mitre.org/data/definitions/364.html
https://cwe.mitre.org/data/definitions/387.html
https://cwe.mitre.org/data/definitions/413.html
https://cwe.mitre.org/data/definitions/479.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/828.html

Function called from signal handler not
asynchronous-safe (strict)
Call to interrupted function causes undefined program behavior

Description
This defect occurs when a signal handler calls a function that is not asynchronous-safe according to
the C standard. An asynchronous-safe function can be interrupted at any point in its execution, then
called again without causing an inconsistent state. It can also correctly handle global data that might
be in an inconsistent state.

When you select the checker Function called from signal handler not asynchronous-safe, the
checker detects calls to functions that are not asynchronous-safe according to the POSIX standard.
Function called from signal handler not asynchronous-safe (strict) does not raise a defect for
these cases. Function called from signal handler not asynchronous-safe (strict) raises a defect
for functions that are asynchronous-safe according to the POSIX standard but not according to the C
standard.

If a signal handler calls another function that calls an asynchronous-unsafe function, the defect
appears on the function call in the signal handler. The defect traceback shows the full path from the
signal handler to the asynchronous-unsafe function.

Risk

When a signal handler is invoked, the execution of the program is interrupted. After the handler is
finished, program execution resumes at the point of interruption. If a function is executing at the time
of the interruption, calling it from within the signal handler is undefined behavior, unless it is
asynchronous-safe.

Fix

The C standard defines the following functions as asynchronous-safe. You can call these functions
from a signal handler:

• abort()
• _Exit()
• quick_exit()
• signal()

Examples
Call to raise() Inside Signal Handler

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>

11 Programming Defects

11-46

#include <unistd.h>

void SIG_ERR_handler(int signum)
{
 int s0 = signum;
 /* SIGTERM specific handling */
}

void sig_handler(int signum)
{
 int s0 = signum;
 /* Call raise() */
 if (raise(SIGTERM) != 0) {
 /* Handle error */
 }
}

int finc(void)
{
 if (signal(SIGTERM, SIG_ERR_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 }
 /* More code */
 return 0;
}

In this example, sig_handler calls raise() when catching a signal. If the handler catches another
signal while raise() is executing, the behavior of the program is undefined.

Correction — Remove Call to raise() in Signal Handler

According to the C standard, the only functions that you can safely call from a signal handler are
abort(), _Exit(), quick_exit(), and signal().

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

void SIG_ERR_handler(int signum)
{
 int s0 = signum;
 /* SIGTERM specific handling */

 Function called from signal handler not asynchronous-safe (strict)

11-47

}
void sig_handler(int signum)
{
 int s0 = signum;

}

int func(void)
{
 if (signal(SIGTERM, SIG_ERR_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 }
 /* More code */
 return 0;
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: SIG_HANDLER_ASYNC_UNSAFE_STRICT
Impact: Medium
CWE ID: 364, 387, 413, 479, 663, 828

See Also
Function called from signal handler not asynchronous-safe | Shared data access
within signal handler | Signal call from within signal handler | Find defects (-
checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017b

11 Programming Defects

11-48

https://cwe.mitre.org/data/definitions/364.html
https://cwe.mitre.org/data/definitions/387.html
https://cwe.mitre.org/data/definitions/413.html
https://cwe.mitre.org/data/definitions/479.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/828.html

Improper array initialization
Incorrect array initialization when using initializers

Description
This defect occurs when Polyspace Bug Finder considers that an array initialization using initializers
is incorrect.

This defect applies to normal and designated initializers. In C99, with designated initializers, you can
place the elements of an array initializer in any order and implicitly initialize some array elements.
The designated initializers use the array index to establish correspondence between an array element
and an array initializer element. For instance, the statement int arr[6] = { [4] = 29, [2] =
15 } is equivalent to int arr[6] = { 0, 0, 15, 0, 29, 0 }.

You can use initializers incorrectly in one of the following ways.

Issue Risk Possible Fix
In your initializer for a one-
dimensional array, you have
more elements than the array
size.

Unused array initializer
elements indicate a possible
coding error.

Increase the array size or
remove excess elements.

You place the braces enclosing
initializer values incorrectly.

Because of the incorrect
placement of braces, some array
initializer elements are not
used.

Unused array initializer
elements indicate a possible
coding error.

Place braces correctly.

In your designated initializer,
you do not initialize the first
element of the array explicitly.

The implicit initialization of the
first array element indicates a
possible coding error. You
possibly overlooked the fact that
array indexing starts from 0.

Initialize all elements explicitly.

In your designated initializer,
you initialize an element twice.

The first initialization is
overridden.

The redundant first initialization
indicates a possible coding
error.

Remove the redundant
initialization.

You use designated and
nondesignated initializers in the
same initialization.

You or another reviewer of your
code cannot determine the size
of the array by inspection.

Use either designated or
nondesignated initializers.

Fix

The fix depends on the root cause of the defect. See fixes in the table above and code examples with
fixes below.

 Improper array initialization

11-49

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Incorrectly Placed Braces (C Only)

int arr[2][3]
= {{1, 2},
 {3, 4},
 {5, 6}
};

In this example, the array arr is initialized as {1,2,0,3,4,0}. Because the initializer contains
{5,6}, you might expect the array to be initialized {1,2,3,4,5,6}.

Correction — Place Braces Correctly

One possible correction is to place the braces correctly so that all elements are explicitly initialized.

int a1[2][3]
= {{1, 2, 3},
 {4, 5, 6}
};

First Element Not Explicitly Initialized

int arr[5]
= {
 [1] = 2,
 [2] = 3,
 [3] = 4,
 [4] = 5
};

In this example, arr[0] is not explicitly initialized. It is possible that the programmer did not
consider that the array indexing starts from 0.

Correction — Explicitly Initialize All Elements

One possible correction is to initialize all elements explicitly.

int arr[5]
= {
 [0] = 1,
 [1] = 2,
 [2] = 3,
 [3] = 4,

11 Programming Defects

11-50

 [4] = 5
};

Element Initialized Twice

int arr[5]
= {
 [0] = 1,
 [1] = 2,
 [2] = 3,
 [2] = 4,
 [4] = 5
};

In this example, arr[2] is initialized twice. The first initialization is overridden. In this case, because
arr[3] was not explicitly initialized, it is possible that the programmer intended to initialize arr[3]
when arr[2] was initialized a second time.

Correction — Fix Redundant Initialization

One possible correction is to eliminate the redundant initialization.

int arr[5]
= {
 [0] = 1,
 [1] = 2,
 [2] = 3,
 [3] = 4,
 [4] = 5
};

Mix of Designated and Nondesignated Initializers

int arr[]
= {
 [0] = 1,
 [3] = 3,
 4,
 [5] = 5,
 6
 };

In this example, because a mix of designated and nondesignated initializers are used, it is difficult to
determine the size of arr by inspection.

Correction — Use Only Designated Initializers

One possible correction is to use only designated initializers for array initialization.

int arr[]
= {
 [0] = 1,
 [3] = 3,
 [4] = 4,
 [5] = 5,
 [6] = 6
};

 Improper array initialization

11-51

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: IMPROPER_ARRAY_INIT
Impact: Medium
CWE ID: 665

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

11 Programming Defects

11-52

https://cwe.mitre.org/data/definitions/665.html

Incorrect data type passed to va_arg
Data type of variadic function argument does not match type in va_arg call

Description
This defect occurs when the data type in a va_arg call does not match the data type of the variadic
function argument that va_arg reads.

For instance, you pass an unsigned char argument to a variadic function func. Because of default
argument promotion, the argument is promoted to int. When you use a va_arg call that reads an
unsigned char argument, a type mismatch occurs.

void func (int n, ...) {
 ...
 va_list args;
 va_arg(args, unsigned char);
 ...
}

void main(void) {
 unsigned char c;
 func(1,c);
}

Risk

In a variadic function (function with variable number of arguments), you use va_arg to read each
argument from the variable argument list (va_list). The va_arg use does not guarantee that there
actually exists an argument to read or that the argument data type matches the data type in the
va_arg call. You have to make sure that both conditions are true.

Reading an incorrect type with a va_arg call can result in undefined behavior. Because function
arguments reside on the stack, you might access an unwanted area of the stack.

Fix

Make sure that the data type of the argument passed to the variadic function matches the data type
in the va_arg call.

Arguments of a variadic function undergo default argument promotions. The argument data types of
a variadic function cannot be determined from a prototype. The arguments of such functions undergo
default argument promotions (see Sec. 6.5.2.2 and 7.15.1.1 in the C99 Standard). Integer arguments
undergo integer promotion and arguments of type float are promoted to double. For integer
arguments, if a data type can be represented by an int, for instance, char or short, it is promoted
to an int. Otherwise, it is promoted to an unsigned int. All other arguments do not undergo
promotion.

To avoid undefined and implementation-defined behavior, minimize the use of variadic functions. Use
the checkers for MISRA C:2012 Rule 17.1 or MISRA C++:2008 Rule 8-4-1 to detect use of
variadic functions.

 Incorrect data type passed to va_arg

11-53

Examples
char Used as Function Argument Type and va_arg argument

#include <stdarg.h>
#include <stdio.h>

unsigned char func(size_t count, ...) {
 va_list ap;
 unsigned char result = 0;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, unsigned char);
 }
 va_end(ap);
 return result;
}

void func_caller(void) {
 unsigned char c = 0x12;
 (void)func(1, c);
}

In this example, func takes an unsigned char argument, which undergoes default argument
promotion to int. The data type in the va_arg call is still unsigned char, which does not match
the int argument type.

Correction — Use int as va_arg Argument

One possible correction is to read an int argument with va_arg.

#include <stdarg.h>
#include <stdio.h>

unsigned char func(size_t count, ...) {
 va_list ap;
 unsigned char result = 0;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 }
 va_end(ap);
 return result;
}

void func_caller(void) {
 unsigned char c = 0x12;
 (void)func(1, c);
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: VA_ARG_INCORRECT_TYPE
Impact: Medium

11 Programming Defects

11-54

CWE ID: 686

See Also
Invalid va_list argument | Too many va_arg calls for current argument list |
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

 Incorrect data type passed to va_arg

11-55

https://cwe.mitre.org/data/definitions/686.html

Incorrect pointer scaling
Implicit scaling in pointer arithmetic might be ignored

Description
This defect occurs when Polyspace Bug Finder considers that you are ignoring the implicit scaling in
pointer arithmetic.

For instance, the defect can occur in the following situations.

Situation Risk Possible Fix
You use the sizeof operator in
arithmetic operations on a
pointer.

The sizeof operator returns
the size of a data type in
number of bytes.

Pointer arithmetic is already
implicitly scaled by the size of
the data type of the pointed
variable. Therefore, the use of
sizeof in pointer arithmetic
produces unintended results.

Do not use sizeof operator in
pointer arithmetic.

You perform arithmetic
operations on a pointer, and
then apply a cast.

Pointer arithmetic is implicitly
scaled. If you do not consider
this implicit scaling, casting the
result of a pointer arithmetic
produces unintended results.

Apply the cast before the
pointer arithmetic.

Fix

The fix depends on the root cause of the defect. See fixes in the table above and code examples with
fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Use of sizeof Operator

void func(void) {
 int arr[5] = {1,2,3,4,5};
 int *ptr = arr;

11 Programming Defects

11-56

 int value_in_position_2 = *(ptr + 2*(sizeof(int)));
}

In this example, the operation 2*(sizeof(int)) returns twice the size of an int variable in bytes.
However, because pointer arithmetic is implicitly scaled, the number of bytes by which ptr is offset is
2*(sizeof(int))*(sizeof(int)).

In this example, the incorrect scaling shifts ptr outside the bounds of the array. Therefore, a Pointer
access out of bounds error appears on the * operation.

Correction — Remove sizeof Operator

One possible correction is to remove the sizeof operator.

void func(void) {
 int arr[5] = {1,2,3,4,5};
 int *ptr = arr;

 int value_in_position_2 = *(ptr + 2);
}

Cast Following Pointer Arithmetic

int func(void) {
 int x = 0;
 char r = *(char *)(&x + 1);
 return r;
}

In this example, the operation &x + 1 offsets &x by sizeof(int). Following the operation, the
resulting pointer points outside the allowed buffer. When you dereference the pointer, a Pointer
access out of bounds error appears on the * operation.

Correction — Apply Cast Before Pointer Arithmetic

If you want to access the second byte of x, first cast &x to a char* pointer and then perform the
pointer arithmetic. The resulting pointer is offset by sizeof(char) bytes and still points within the
allowed buffer, whose size is sizeof(int) bytes.

int func(void) {
 int x = 0;
 char r = *((char *)(&x)+ 1);
 return r;
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: BAD_PTR_SCALING
Impact: Medium
CWE ID: 468

See Also
Find defects (-checkers)

 Incorrect pointer scaling

11-57

https://cwe.mitre.org/data/definitions/468.html

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

11 Programming Defects

11-58

Incorrect type data passed to va_start
Data type of second argument to va_start macro leads to undefined behavior

Description
This defect occurs when the second argument of the va_start macro has one of these data types:

• A data type that changes when undergoing default argument promotion.

For instance, char and short undergo promotion to int or unsigned int and float
undergoes promotion to double. The types int and double do not change under default
argument promotion.

• (C only) A register type or a data type declared with the register qualifier.
• (C++ only) A reference data type.
• (C++ only) A data type that has a nontrivial copy constructor or a nontrivial move constructor.

Risk

In a variadic function or function with variable number of arguments:

void multipleArgumentFunction(int someArg, short rightmostFixedArg, ...) {
 va_list myList;
 va_start(myList, rightmostFixedArg);
 ...
 va_end(myList);
}

The va_start macro initializes a variable argument list so that additional arguments to the variadic
function after the fixed parameters can be captured in the list. According to the C11 and C++14
Standards, if you use one of the flagged data types for the second argument of the va_start macro
(for instance, rightmostFixedArg in the preceding example), the behavior is undefined.

If the data type involves a nontrivial copy constructor, the behavior is implementation-defined. For
instance, whether the copy constructor is invoked in the call to va_start depends on the compiler.

Fix

When using the va_start macro, try to use the types int, unsigned int or double for the
rightmost named parameter of the variadic function. Then, use this parameter as the second
argument of the va_start macro.

For instance, in this example, the rightmost named parameter of the variadic function has a
supported data type int:

void multipleArgumentFunction(int someArg, int rightmostFixedArg, ...) {
 va_list myList;
 va_start(myList, rightmostFixedArg);
 ...
 va_end(myList);
}

 Incorrect type data passed to va_start

11-59

To avoid undefined and implementation-defined behavior, minimize the use of variadic functions. Use
the checkers for MISRA C:2012 Rule 17.1 or MISRA C++:2008 Rule 8-4-1 to detect use of
variadic functions.

Examples
Incorrect Data Types for Second Argument of va_start
#include <string>
#include <cstdarg>

double addVariableNumberOfDoubles(double* weight, short num, ...) {
 double sum=0.0;
 va_list list;
 va_start(list, num);
 for(int i=0; i < num; i++) {
 sum+=weight[i]*va_arg(list, double);
 }
 va_end(list);
 return sum;
}

double addVariableNumberOfFloats(float* weight, int num, std::string s, ...) {
 float sum=0.0;
 va_list list;
 va_start(list, s);
 for(int i=0; i < num; i++) {
 sum+=weight[i]*va_arg(list, float);
 }
 va_end(list);
 return sum;
}

In this example, the checker flags the call to va_start in:

• addVariableNumberOfDoubles because the argument has type short, which undergoes
default argument promotion to int.

• addVariableNumberOfFloats because the argument has type std::string, which has a
nontrivial copy constructor.

Correction — Fix Data Type for Second Argument of va_start

Make sure that the second argument of the va_start macro has a supported data type. In the
following corrected example:

• In addVariableNumberOfDoubles, the data type of the last named parameter of the variadic
function is changed to int.

• In addVariableNumberOfFloats, the second and third parameters of the variadic function are
switched so that data type of the last named parameter is int.

#include <string>
#include <cstdarg>

double addVariableNumberOfDoubles(double* weight, int num, ...) {
 double sum=0.0;
 va_list list;

11 Programming Defects

11-60

 va_start(list, num);
 for(int i=0; i < num; i++) {
 sum+=weight[i]*va_arg(list, double);
 }
 va_end(list);
 return sum;
}

double addVariableNumberOfFloats(double* weight, std::string s, int num, ...) {
 double sum=0.0;
 va_list list;
 va_start(list, num);
 for(int i=0; i < num; i++) {
 sum+=weight[i]*va_arg(list, double);
 }
 va_end(list);
 return sum;
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: VA_START_INCORRECT_TYPE
Impact: Medium

See Also
Incorrect data type passed to va_arg | Too many va_arg calls for current
argument list | Incorrect use of va_start | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2019a

 Incorrect type data passed to va_start

11-61

Incorrect use of offsetof in C++
Incorrect arguments to offsetof macro causes undefined behavior

Description
This defect occurs when you pass arguments to the offsetof macro for which the behavior of the
macro is not defined.

The offsetof macro:

offsetof(classType, aMember)

returns the offset in bytes of the data member aMember from the beginning of an object of type
classType. For use in offsetof, classType and aMember have certain restrictions:

• classType must be a standard layout class.

For instance, it must not have virtual member functions. For more information on the
requirements for a standard layout class, see C++ named requirements: StandardLayoutType.

• aMember must not be static.
• aMember must not be a member function.

The checker flags uses of the offsetof macro where the arguments violate one or more of these
restrictions.

Risk

Violating the restrictions on the arguments of the offsetof macro leads to undefined behavior.

Fix

Use the offsetof macro only on nonstatic data members of a standard layout class.

The result details state which restriction on the offsetof macro is violated. Fix the violation.

Examples
Use of offsetof Macro with Nonstandard Layout Class

#include <cstddef>

class myClass {
 int member1;
 public:
 int member2;
};

void func() {
 size_t off = offsetof(myClass, member2);
 // ...
}

11 Programming Defects

11-62

https://en.cppreference.com/w/cpp/named_req/StandardLayoutType

In this example, the class myClass has two data members with different access control, one private
and the other public. Therefore, the class does not satisfy the requirements of a standard layout class
and cannot be used with the offsetof macro.

Correction — Use Uniform Access Control for All Data Members

If the use of offsetof is important for the application, make sure that the first argument is a class
with a standard layout. For instance, see if you can work around the need for a public data member.

#include <cstddef>

class myClass {
 int member1;
 int member2;
 public:
 int getMember2(void) { return member2;}
 friend void func(void);
};

void func() {
 size_t off = offsetof(myClass, member2);
 // ...
}

Result Information
Group: Programming
Language: C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: OFFSETOF_MISUSE
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2019a

 Incorrect use of offsetof in C++

11-63

Incorrect use of va_start
va_start is called in a non-variadic function or called with a second argument that is not the
rightmost parameter of a variadic function

Description
This defect occurs when you use the va_start macro in a way that violates its specifications.

In a variadic function or function with variable number of arguments:

void multipleArgumentFunction(int someArg, int rightmostFixedArg, ...) {
 va_list myList;
 va_start(myList, rightmostFixedArg);
 ...
 va_end(myList);
}

The va_start macro initializes a variable argument list so that additional arguments to the variadic
function after the fixed parameters can be captured in the list. In the preceding example, the
va_start macro initializes myList so that it can capture arguments after rightmostFixedArg.

You can violate the specifications of va_start in multiple ways. For instance:

• You call va_start in a non-variadic function.
• The second argument of va_start is not the rightmost fixed parameter of the variadic function.

Risk

Violating the specifications of the va_start macro can result in compilation errors. If the compiler
fails to detect the violation, the violation can result in undefined behavior.

Fix

Make sure that:

• The va_start macro is used in a variadic function
• The second argument of the va_start macro is the rightmost fixed parameter of the variadic

function.

To avoid undefined and implementation-defined behavior, minimize the use of variadic functions. Use
the checkers for MISRA C:2012 Rule 17.1 or MISRA C++:2008 Rule 8-4-1 to detect use of
variadic functions.

Examples
Incorrect Argument to va_start
#include <stdarg.h>

double addVariableNumberOfDoubles(int num, double* weight, ...) {
 double sum=0.0;
 va_list list;

11 Programming Defects

11-64

 va_start(list, num);
 for(int i=0; i < num; i++) {
 sum+=weight[i]*va_arg(list, double);
 }
 va_end(list);
 return sum;
}

In this example, the rightmost fixed parameter to the addVariableNumberOfDoubles function is
weight. However, a different parameter is used as the second argument to the va_start macro.

Correction — Switch Order of Fixed Parameters of Variadic Function

One possible correction is to modify the order of fixed parameters to the variadic function so that the
rightmost fixed parameter is used for the va_start macro.

#include <stdarg.h>

double addVariableNumberOfDoubles(double* weight, int num, ...) {
 double sum=0.0;
 va_list list;
 va_start(list, num);
 for(int i=0; i < num; i++) {
 sum+=weight[i]*va_arg(list, double);
 }
 va_end(list);
 return sum;
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: VA_START_MISUSE
Impact: Medium

See Also
Incorrect data type passed to va_arg | Too many va_arg calls for current
argument list | Incorrect type data passed to va_start | Find defects (-
checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2019a

 Incorrect use of va_start

11-65

Incorrect value forwarding
Forwarded object might be modified unexpectedly

Description
This defect occurs when:

• You use std:move to forward a forwarding reference to a function, including objects of type auto
&&.

• You use std:forward to forward an rvalue reference to a function.

You can pass an object efficiently to a function by casting the object to an rvalue and taking
advantage of move semantics.

Polyspace does not flag the use of std:move or std:forward if no forwarding to a function takes
place. For instance, in this code snippet, no defect is raised on the use of std:move with forwarding
reference b2 and the use of std:forward with revalue reference b1.

template <typename T1, typename T2>
void func(T1& b1, T2&& b2)
{
 const T1& b10 = std::forward(b1);
 const T2& b20 = std::forward(b2);
 const T1& b11 = std::move(b1);
 const T2& b21 = std::move(b2);
}

Risk

Using std:move with forwarding references might result in an unexpected modification of an lvalue.
Using std:forward with rvalue references is possible but it is error-prone and might increase the
complexity of your code.

Fix

• If you are forwarding an rvalue reference to a function, use std:move to cast the object to an
rvalue.

• If you are forwarding a forwarding reference (or universal reference) to a function, use
std:forward to cast the object to an rvalue if and only if the object is bound to an rvalue. A
forwarding reference might be bound to an rvalue or an lvalue. Objects with type auto && are
considered as forwarding references.

Examples
Values Forwarded Incorrectly

#include <cstdint>
#include <string>
#include <utility>

11 Programming Defects

11-66

class A
{
public:
 explicit A(std::string&& s)
 : str(std::move(s))
 {
 }

private:
 std::string str;
};

template <typename ...T>
void f1(T...t);

template <typename T1, typename T2>
void func(T1&& t1, T2& t2)
{
 f1(std::move(t1));
 f1(std::forward<T1>(t1));

 f1(std::forward<T2>(t2));
 f1(std::move(t2));
}

void func_auto(A& var)
{
 auto&& var1 = var;
 f1(std::move(var1));
 f1(std::forward<decltype(var1)>(var1));
}

void main()
{
 int32_t i;
 func(0, i);
}

In this example, template function func forwards parameters t1 and t2 to function f1. Polyspace
flags the use of std::forward with t2 because this parameter is an rvalue reference (type T&).

Polyspace also flags the use of std::move with t1 because this parameter is a forwarding reference
(type T&&). If t1 is initialized with an lvalue, the move might result in an unexpected modification of
the parameter. Similarly, Polyspace flags the use of std::move in func_auto because objects of
type auto&& are considered as forwarding references.

For each defect, the suggested correction is shown on the following line.

Result Information
Group: Programming
Language: C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: INCORRECT_VALUE_FORWARDING
Impact: High

 Incorrect value forwarding

11-67

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020b

11 Programming Defects

11-68

Inline constraint not respected
Modifiable static variable is modified in nonstatic inline function

Description
This defect occurs when you refer to a file scope modifiable static variable or define a local modifiable
static variable in a nonstatic inlined function. The checker considers a variable as modifiable if it is
not const-qualified.

For instance, var is a modifiable static variable defined in an inline function func. g_step is a
file scope modifiable static variable referred to in the same inlined function.

static int g_step;
inline void func (void) {
 static int var = 0;
 var += g_step;
}

Risk

When you modify a static variable in multiple function calls, you expect to modify the same variable in
each call. For instance, each time you call func, the same instance of var1 is incremented but a
separate instance of var2 is incremented.

void func(void) {
 static var1 = 0;
 var2 = 0;
 var1++;
 var2++;
}

If a function has an inlined and non-inlined definition (in separate files), when you call the function,
the C standard allows compilers to use either the inlined or the non-inlined form (see ISO/IEC
9899:2011, sec. 6.7.4). If your compiler uses an inlined definition in one call and the non-inlined
definition in another, you are no longer modifying the same variable in both calls. This behavior defies
the expectations from a static variable.

Fix

Use one of these fixes:

• If you do not intend to modify the variable, declare it as const.

If you do not modify the variable, there is no question of unexpected modification.
• Make the variable non-static. Remove the static qualifier from the declaration.

If the variable is defined in the function, it becomes a regular local variable. If defined at file
scope, it becomes an extern variable. Make sure that this change in behavior is what you intend.

• Make the function static. Add a static qualifier to the function definition.

 Inline constraint not respected

11-69

If you make the function static, the file with the inlined definition always uses the inlined
definition when the function is called. Other files use another definition of the function. The
question of which function definition gets used is not left to the compiler.

Examples
Static Variable Use in Inlined and External Definition

/* file1. c : contains inline definition of get_random()*/

inline unsigned int get_random(void)
{

 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

int call_get_random(void)
{
 unsigned int rand_no;
 int ii;
 for (ii = 0; ii < 100; ii++) {
 rand_no = get_random();
 }
 rand_no = get_random();
 return 0;
}

/* file2. c : contains external definition of get_random()*/

extern unsigned int get_random(void)
{
 /* Initialize seeds */
 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

In this example, get_random() has an inline definition in file1.c and an external definition in
file2.c. When get_random is called in file1.c, compilers are free to choose whether to use the
inline or the external definition.

Depending on the definition used, you might or might not modify the version of m_z and m_w in the
inlined version of get_random(). This behavior contradicts the usual expectations from a static
variable. When you call get_random(), you expect to always modify the same m_z and m_w.

11 Programming Defects

11-70

Correction — Make Inlined Function Static

One possible correction is to make the inlined get_random() static. Irrespective of your compiler,
calls to get_random() in file1.c then use the inlined definition. Calls to get_random() in other
files use the external definition. This fix removes the ambiguity about which definition is used and
whether the static variables in that definition are modified.

/* file1. c : contains inline definition of get_random()*/

static inline unsigned int get_random(void)
{

 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

int call_get_random(void)
{
 unsigned int rand_no;
 int ii;
 for (ii = 0; ii < 100; ii++) {
 rand_no = get_random();
 }
 rand_no = get_random();
 return 0;
}

/* file2. c : contains external definition of get_random()*/

extern unsigned int get_random(void)
{
 /* Initialize seeds */
 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: INLINE_CONSTRAINT_NOT_RESPECTED
Impact: Medium

See Also
Find defects (-checkers)

 Inline constraint not respected

11-71

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

11 Programming Defects

11-72

Invalid assumptions about memory organization
Address is computed by adding or subtracting from address of a variable

Description
This defect occurs when you compute the address of a variable in the stack by adding or subtracting
from the address of another non-array variable.

Risk

When you compute the address of a variable in the stack by adding or subtracting from the address of
another variable, you assume a certain memory organization. If your assumption is incorrect,
accessing the computed address can be invalid.

Fix

Do not perform an access that relies on assumptions about memory organization.

Examples
Reliance on Memory Organization

void func(void) {
 int var1 = 0x00000011, var2;
 *(&var1 + 1) = 0;
}

In this example, the programmer relies on the assumption that &var1 + 1 provides the address of
var2. Therefore, an Invalid assumptions about memory organization appears on the +
operation. In addition, a Pointer access out of bounds error also appears on the dereference.

Correction — Do Not Rely on Memory Organization

One possible correction is not perform direct computation on addresses to access separately declared
variables.

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: INVALID_MEMORY_ASSUMPTION
Impact: Medium
CWE ID: 188

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”

 Invalid assumptions about memory organization

11-73

https://cwe.mitre.org/data/definitions/188.html

“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

11 Programming Defects

11-74

Invalid file position
fsetpos() is invoked with a file position argument not obtained from fgetpos()

Description
This defect occurs when the file position argument of fsetpos() uses a value that is not obtained
from fgetpos().

Risk

The function fgetpos(FILE *stream, fpos_t *pos) gets the current file position of the stream.
When you use any other value as the file position argument of fsetpos(FILE *stream, const
fpos_t *pos), you might access an unintended location in the stream.

Fix

Use the value returned from a successful call to fgetpos() as the file position argument of
fsetpos().

Examples
memset() Sets File Position Argument
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

FILE *func(FILE *file)
{
 fpos_t offset;
 if (file == NULL)
 {
 /* Handle error */
 }
 /* Store initial position in variable 'offset' */
 (void)memset(&offset, 0, sizeof(offset));

 /* Read data from file */

 /* Return to the initial position. offset was not
 returned from a call to fgetpos() */
 if (fsetpos(file, &offset) != 0)
 {
 /* Handle error */
 }
 return file;
}

In this example, fsetpos() uses offset as its file position argument. However, the value of offset
is set by memset(). The preceding code might access the wrong location in the stream.

 Invalid file position

11-75

Correction — Use a File Position Returned From fgetpos()

Call fgetpos(), and if it returns successfully, use the position argument in your call to fsetpos().

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

FILE *func(FILE *file)
{
 fpos_t offset;
 if (file == NULL)
 {
 /* Handle error */
 }
 /* Store initial position in variable 'offset'
 using fgetpos() */
 if (fgetpos(file, &offset) != 0)
 {
 /* Handle error */
 }

 /* Read data from file */

 /* Back to the initial position */
 if (fsetpos(file, &offset) != 0)
 {
 /* Handle error */
 }
 return file;
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: INVALID_FILE_POS
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017b

11 Programming Defects

11-76

Invalid use of = operator
Assignment in conditional statement

Description
This defect occurs when an assignment is made inside the predicate of a conditional, such as if or
while.

In C and C++, a single equal sign is an assignment not a comparison. Using a single equal sign in a
conditional statement can indicate a typo or a mistake.

Risk

• Conditional statement tests the wrong values— The single equal sign operation assigns the value
of the right operand to the left operand. Then, because this assignment is inside the predicate of a
conditional, the program checks whether the new value of the left operand is nonzero or not
NULL.

• Maintenance and readability issues — Even if the assignment is intended, someone reading or
updating the code can misinterpret the assignment as an equality comparison instead of an
assignment.

Fix

• If the assignment is a bug, to check for equality, add a second equal sign (==).
• If the assignment inside the conditional statement was intentional, to improve readability,

separate the assignment and the test. Move the assignment outside the control statement. In the
control statement, simply test the result of the assignment.

If you do not want to fix the issue, add comments to your result or code to avoid another review.
See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results
in a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Single Equal Sign Inside an if Condition

#include <stdio.h>

void bad_equals_ex(int alpha, int beta)
{
 if(alpha = beta)
 {
 printf("Equal\n");
 }
}

 Invalid use of = operator

11-77

The equal sign is flagged as a defect because the assignment operator is used within the predicate of
the if-statement. The predicate assigns the value beta to alpha, then implicitly tests whether alpha
is true or false.

Correction — Change Expression to Comparison

One possible correction is adding an additional equal sign. This correction changes the assignment to
a comparison. The if condition compares whether alpha and beta are equal.

#include <stdio.h>

void equality_test(int alpha, int beta)
{
 if(alpha == beta)
 {
 printf("Equal\n");
 }
}

Correction — Assignment and Comparison Inside the if Condition

If an assignment must be made inside the predicate, a possible correction is adding an explicit
comparison. This correction assigns the value of beta to alpha, then explicitly checks whether
alpha is nonzero. The code is clearer.

#include <stdio.h>

int assignment_not_zero(int alpha, int beta)
{
 if((alpha = beta) != 0)
 {
 return alpha;
 }
 else
 {
 return 0;
 }
}

Correction — Move Assignment Outside the if Statement

If the assignment can be made outside the control statement, one possible correction is to separate
the assignment and comparison. This correction assigns the value of beta to alpha before the if.
Inside the if-condition, only alpha is given to test if alpha is nonzero or not NULL.

#include <stdio.h>

void assign_and_print(int alpha, int beta)
{
 alpha = beta;
 if(alpha)
 {
 printf("%d", alpha);
 }
}

11 Programming Defects

11-78

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: BAD_EQUAL_USE
Impact: Medium
CWE ID: 480, 481

See Also
Find defects (-checkers) | Invalid use of == (equality) operator

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

 Invalid use of = operator

11-79

https://cwe.mitre.org/data/definitions/480.html
https://cwe.mitre.org/data/definitions/481.html

Invalid use of == operator
Equality operation in assignment statement

Description
This defect occurs when you use an equality operator instead of an assignment operator in a simple
statement.

Risk

The use of == operator instead of an = operator can silently produce incorrect results. If you intended
to assign a value to a variable, the assignment does not occur. The variable retains its previous value
or if not initialized previously, stays uninitialized.

Fix

Use the = (assignment) operator instead of the == (equality) operator.

The check appears on chained assignment and equality operators such as:

compFlag = val1 == val2;

For better readability of your code, place the equality check in parenthesis.

compFlag = (val1 == val2);

If the use of == operator is intended, add comments to your result or code to avoid another review.
See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Equality Evaluation in for-Loop

void populate_array(void)
{
 int i = 0;
 int j = 0;
 int array[4];

 for (j == 5; j < 9; j++) {
 array[i] = j;
 i++;
 }
}

11 Programming Defects

11-80

Inside the for-loop, the statement j == 5 tests whether j is equal to 5 instead of setting j to 5. The
for-loop iterates from 0 to 8 because j starts with a value of 0, not 5. A by-product of the invalid
equality operator is an out-of-bounds array access in the next line.

Correction — Change to Assignment Operator

One possible correction is to change the == operator to a single equal sign (=). Changing the == sign
resolves both defects because the for-loop iterates the intended number of times.

void populate_array(void)
{
 int i = 0;
 int j = 0;
 int array[4];

 for (j = 5; j < 9; j++) {
 array[i] = j;
 i++;
 }
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: BAD_EQUAL_EQUAL_USE
Impact: High
CWE ID: 480, 482

See Also
Find defects (-checkers) | Invalid use of = (assignment) operator

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

 Invalid use of == operator

11-81

https://cwe.mitre.org/data/definitions/480.html
https://cwe.mitre.org/data/definitions/482.html

Invalid use of standard library routine
Wrong arguments to standard library function

Description
This defect occurs when you use invalid arguments with a function from the standard library. This
defect picks up errors related to other functions not covered by float, integer, memory, or string
standard library routines.

Risk

Invalid arguments to a standard library function result in undefined behavior.

Fix

The fix depends on the root cause of the defect. For instance, the argument to a printf function can
be NULL because a pointer was initialized with NULL and the initialization value was not overwritten
along a specific execution path.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Calling printf Without a String

#include <stdio.h>
#include <stdlib.h>

void print_null(void) {

 printf(NULL);
}

The function printf takes only string input arguments or format specifiers. In this function, the
input value is NULL, which is not a valid string.
Correction — Use Compatible Input Arguments

One possible correction is to change the input arguments to fit the requirements of the standard
library routine. In this example, the input argument was changed to a character.

#include <stdio.h>

void print_null(void) {

11 Programming Defects

11-82

 char zero_val = '0';
 printf((const char*)zero_val);
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: OTHER_STD_LIB
Impact: High
CWE ID: 227, 690

See Also
Find defects (-checkers) | Invalid use of standard library integer routine |
Invalid use of standard library floating point routine | Invalid use of
standard library memory routine | Invalid use of standard library string
routine

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

 Invalid use of standard library routine

11-83

https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/690.html

Invalid va_list argument
Variable argument list used after invalidation with va_end or not initialized with va_start or
va_copy

Description
This defect occurs when you use a va_list variable as an argument to a function in the vprintf
group but:

• You do not initialize the variable previously using va_start or va_copy.
• You invalidate the variable previously using va_end and do not reinitialize it.

For instance, you call the function vsprintf as vsprintf (buffer,format, args). However,
before the function call, you do not initialize the va_list variable args using either of the following:

• va_start(args, paramName). paramName is the last named argument of a variable-argument
function. For instance, for the function definition void func(int n, char c, ...) {}, c is
the last named argument.

• va_copy(args, anotherList). anotherList is another valid va_list variable.

Risk

The behavior of an uninitialized va_list argument is undefined. Calling a function with an
uninitialized va_list argument can cause stack overflows.

Fix

Before using a va_list variable as function argument, initialize it with va_start or va_copy.

Clean up the variable using va_end only after all uses of the variable.

Examples
va_list Variable Used Following Call to va_end
#include <stdarg.h>
#include <stdio.h>

int call_vfprintf(int line, const char *format, ...) {
 va_list ap;
 int r=0;

 va_start(ap, format);
 r = vfprintf(stderr, format, ap);
 va_end(ap);

 r += vfprintf(stderr, format, ap);
 return r;
}

In this example, the va_list variable ap is used in the vfprintf function, after the va_end macro
is called.

11 Programming Defects

11-84

Correction — Call va_end After Using va_list Variable

One possible correction is to call va_end only after all uses of the va_list variable.

#include <stdarg.h>
#include <stdio.h>

int call_vfprintf(int line, const char *format, ...) {
 va_list ap;
 int r=0;

 va_start(ap, format);
 r = vfprintf(stderr, format, ap);
 r += vfprintf(stderr, format, ap);
 va_end(ap);

 return r;
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: INVALID_VA_LIST_ARG
Impact: High
CWE ID: 628

See Also
Find defects (-checkers) | Incorrect data type passed to va_arg

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

 Invalid va_list argument

11-85

https://cwe.mitre.org/data/definitions/628.html

Memory comparison of float-point values
Object representation of floating-point values can be different (same) for equal (not equal) floating-
point values

Description
This defect occurs when you compare the object representation of floating-point values or the object
representation of structures containing floating-point members. When you use the functions memcmp,
bcmp, or wmemcmp to perform the bit pattern comparison, the defect is raised.

Risk

The object representation of floating-point values uses specific bit patterns to encode those values.
Floating-point values that are equal, for instance -0.0 and 0.0 in the IEC 60559 standard, can have
different bit patterns in their object representation. Similarly, floating-point values that are not equal
can have the same bit pattern in their object representation.

Fix

When you compare structures containing floating-point members, compare the structure members
individually.

To compare two floating-point values, use the == or != operators. If you follow a standard that
discourages the use of these operators, such as MISRA, ensure that the difference between the
floating-point values is within an acceptable range.

Examples
Using memcmp to Compare Structures with Floating-Point Members

#include <string.h>

typedef struct {
 int i;
 float f;
} myStruct;

extern void initialize_Struct(myStruct *);

int func_cmp(myStruct *s1, myStruct *s2) {
/* Comparison between structures containing
* floating-point members */
 return memcmp
 ((const void *)s1, (const void *)s2, sizeof(myStruct));
}

void func(void) {
 myStruct s1, s2;
 initialize_Struct(&s1);
 initialize_Struct(&s2);
 (void)func_cmp(&s1, &s2);
}

11 Programming Defects

11-86

In this example, func_cmp() calls memcmp() to compare the object representations of structures s1
and s2. The comparison might be inaccurate because the structures contain floating-point members.

Correction — Compare Structure Members Individually

One possible correction is to compare the structure members individually and to ensure that the
difference between the floating-point values is within an acceptable range defined by ESP.

#include <string.h>
#include <math.h>

typedef struct {
 int i;
 float f;
} myStruct;

extern void initialize_Struct(myStruct *);

#define ESP 0.00001

int func_cmp(myStruct *s1, myStruct *s2) {

/*Structure members are compared individually */
 return ((s1->i == s2->i) &&
 (fabsf(s1->f - s2->f) <= ESP));
}

void func(void) {
 myStruct s1, s2;
 initialize_Struct(&s1);
 initialize_Struct(&s2);
 (void)func_cmp(&s1, &s2);
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: MEMCMP_FLOAT
Impact: Low

See Also
Find defects (-checkers) | Floating point comparison with equality operators |
Memory comparison of padding data | Memory comparison of strings

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

 Memory comparison of float-point values

11-87

Memory comparison of padding data
memcmp compares data stored in structure padding

Description
This defect occurs when you use the memcmp function to compare two structures as a whole. In the
process, you compare meaningless data stored in the structure padding.

For instance:

struct structType {
 char member1;
 int member2;
 .
 .
};

structType var1;
structType var2;
.
.
if(memcmp(&var1,&var2,sizeof(var1)))
{...}

Risk

If members of a structure have different data types, your compiler introduces additional padding for
data alignment in memory. For an example of padding, see Higher Estimate of Size of Local
Variables.

The content of these extra padding bytes is meaningless. The C Standard allows the content of these
bytes to be indeterminate, giving different compilers latitude to implement their own padding. If you
perform a byte-by-byte comparison of structures with memcmp, you compare even the meaningless
data stored in the padding. You might reach the false conclusion that two data structures are not
equal, even if their corresponding members have the same value.

Fix

Instead of comparing two structures in one attempt, compare the structures member by member.

For efficient code, write a function that does the comparison member by member. Use this function
for comparing two structures.

You can use memcmp for byte-by-byte comparison of structures only if you know that the structures do
not contain padding. Typically, to prevent padding, you use specific attributes or pragmas such as
#pragma pack. However, these attributes or pragmas are not supported by all compilers and make
your code implementation-dependent. If your structures contain bit-fields, using these attributes or
pragmas cannot prevent padding.

11 Programming Defects

11-88

Examples
Structures Compared with memcmp
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define fatal_error() abort()

typedef struct s_padding
{
 char c;
 int i;
 unsigned int bf1:1;
 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

/* Function that guarantees safe access to the input memory */
extern int trusted_memory_zone(void *ptr, size_t sz);

int func(const S_Padding *left, const S_Padding *right)
{

 if (!trusted_memory_zone((void *)left, sizeof(S_Padding)) ||
 !trusted_memory_zone((void *)right, sizeof(S_Padding))) {
 fatal_error();
 }

 if (0 == memcmp(left, right, sizeof(S_Padding)))
 {
 return 1;
 }
 else
 return 0;
}

In this example, memcmp compares byte-by-byte the two structures that left and right point to.
Even if the values stored in the structure members are the same, the comparison can show an
inequality if the meaningless values in the padding bytes are not the same.
Correction — Compare Structures Member by Member

One possible correction is to compare individual structure members.

Note You can compare entire arrays by using memcmp. All members of an array have the same data
type. Padding bytes are not required to store arrays.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define fatal_error() abort()

typedef struct s_padding

 Memory comparison of padding data

11-89

{
 char c;
 int i;
 unsigned int bf1:1;
 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

/* Function that guarantees safe access to the input memory */
extern int trusted_memory_zone(void *ptr, size_t sz);

int func(const S_Padding *left, const S_Padding *right)
{
 if (!trusted_memory_zone((void *)left, sizeof(S_Padding)) ||
 !trusted_memory_zone((void *)right, sizeof(S_Padding))) {
 fatal_error();
 }

 return ((left->c == right->c) &&
 (left->i == right->i) &&
 (left->bf1 == right->bf1) &&
 (left->bf2 == right->bf2) &&
 (memcmp(left->buffer, right->buffer, 20) == 0));
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: MEMCMP_PADDING_DATA
Impact: Medium
CWE ID: 188

See Also
Find defects (-checkers) | Memory comparison of strings

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017a

11 Programming Defects

11-90

https://cwe.mitre.org/data/definitions/188.html

Memory comparison of strings
memcmp compares data stored in strings after the null terminator

Description
This defect occurs when:

• You compare two strings byte-by-byte with the memcmp function.
• The number of bytes compared is such that you compare meaningless data stored after the null

terminator.

For instance:

memcmp(string1, string2, sizeof(string1))

can compare bytes in the string after the null terminator.

Risk

The null terminator signifies the end of a string. Comparison of bytes after the null terminator is
meaningless. You might reach the false conclusion that two strings are not equal, even if the bytes
before the null terminator store the same value.

Fix

Use strcmp for string comparison. The function compares strings only up to the null terminator.

If you use memcmp for a byte-by-byte comparison of two strings, avoid comparison of bytes after the
null terminator. Determine the number of bytes to compare by using the strlen function.

Examples
Strings Compared with memcmp

#include <stdio.h>
#include <string.h>

#define SIZE20 20

int func()
{
 char s1[SIZE20] = "abc";
 char s2[SIZE20] = "abc";

 return memcmp(s1, s2, sizeof(s1));
}

In this example, sizeof returns the length of the entire array s1, which is 20. However, only the first
three bytes of the string are relevant.

Even though s1 and s2 hold the same value, the comparison with memcmp can show a false inequality.

 Memory comparison of strings

11-91

Correction — Use strlen to Determine Number of Bytes to Compare

One possible correction is to determine the number of bytes to compare using the strlen function.
strlen returns the number of bytes before the null terminator (and excluding the null terminator
itself).

#include <stdio.h>
#include <string.h>

#define SIZE20 20

int func()
{
 char s1[SIZE20] = "abc";
 char s2[SIZE20] = "abc";

 return memcmp(s1, s2, strlen(s1));
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: MEMCMP_STRINGS
Impact: Medium
CWE ID: 188

See Also
Find defects (-checkers) | Memory comparison of padding data

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017a

11 Programming Defects

11-92

https://cwe.mitre.org/data/definitions/188.html

Missing byte reordering when transferring data
Different endianness of host and network

Description
This defect occurs when you do not use a byte ordering function:

• Before sending data to a network socket.
• After receiving data from a network socket.

Risk

Some system architectures implement little endian byte ordering (least significant byte first), and
other systems implement big endian (most significant byte first). If the endianness of the sent data
does not match the endianness of the receiving system, the value returned when reading the data is
incorrect.

Fix

After receiving data from a socket, use a byte ordering function such as ntohl(). Before sending
data to a socket, use a byte ordering function such as htonl() .

Examples
Data Transferred Without Byte Reordering

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <byteswap.h>
#include <unistd.h>
#include <string.h>

unsigned int func(int sock, int server)
{
 unsigned int num; /* assume int is 32-bits */
 if (server)
 {
 /* Server side */
 num = 0x17;
 /* Endianness of server host may not match endianness of network. */
 if (send(sock, (void *)&num, sizeof(num), 0) < (int)sizeof(num))
 {
 /* Handle error */
 }
 return 0;
 }
 else {

 Missing byte reordering when transferring data

11-93

 /* Endianness of client host may not match endianness of network. */
 if (recv (sock, (void *)&num, sizeof(num), 0) < (int) sizeof(num))
 {
 /* Handle error */
 }

 /* Comparison may be inaccurate */
 if (num> 255)
 {
 return 255;
 }
 else
 {
 return num;
 }
 }
}

In this example, variable num is assigned hexadecimal value 0x17 and is sent over a network to the
client from the server. If the server host is little endian and the network is big endian, num is
transferred as 0x17000000. The client then reads an incorrect value for num and compares it to a
local numeric value.
Correction — Use Byte Ordering Function

Before sending num from the server host, use htonl() to convert from host to network byte
ordering. Similarly, before reading num on the client host, use ntohl() to convert from network to
host byte ordering.

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <byteswap.h>
#include <unistd.h>
#include <string.h>

unsigned int func(int sock, int server)
{
 unsigned int num; /* assume int is 32-bits */
 if (server)
 {
 /* Server side */
 num = 0x17;

 /* Convert to network byte order. */
 num = htonl(num);
 if (send(sock, (void *)&num, sizeof(num), 0) < (int)sizeof(num))
 {
 /* Handle error */
 }
 return 0;
 }
 else {

11 Programming Defects

11-94

 if (recv (sock, (void *)&num, sizeof(num), 0) < (int) sizeof(num))
 {
 /* Handle error */
 }

 /* Convert to host byte order. */
 num = ntohl(num);
 if (num > 255)
 {
 return 255;
 }
 else
 {
 return num;
 }
 }
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: MISSING_BYTESWAP
Impact: Medium
CWE ID: 188, 198

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017b

 Missing byte reordering when transferring data

11-95

https://cwe.mitre.org/data/definitions/188.html
https://cwe.mitre.org/data/definitions/198.html

Missing null in string array
String does not terminate with null character

Description
This defect occurs when a string does not have enough space to terminate with a null character
'\0'.

This defect applies only for projects in C.

Risk

A buffer overflow can occur if you copy a string to an array without assuming the implicit null
terminator.

Fix

If you initialize a character array with a literal, avoid specifying the array bounds.

char three[] = "THREE";

The compiler automatically allocates space for a null terminator. In the preceding example, the
compiler allocates sufficient space for five characters and a null terminator.

If the issue occurs after initialization, you might have to increase the size of the array by one to
account for the null terminator.

In certain circumstances, you might want to initialize the character array with a sequence of
characters instead of a string. In this situation, add comments to your result or code to avoid another
review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Array size is too small

void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[5] = "THREE";
}

The character array three has a size of 5 and 5 characters 'T', 'H', 'R', 'E', and 'E'. There is no
room for the null character at the end because three is only five bytes large.

11 Programming Defects

11-96

Correction — Increase Array Size

One possible correction is to change the array size to allow for the five characters plus a null
character.

void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[6] = "THREE";
}

Correction — Change Initialization Method

One possible correction is to initialize the string by leaving the array size blank. This initialization
method allocates enough memory for the five characters and a terminating-null character.

void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[] = "THREE";
}

Result Information
Group: Programming
Language: C
Default: On for handwritten code, off for generated code
Command-Line Syntax: MISSING_NULL_CHAR
Impact: Low
CWE ID: 170

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

 Missing null in string array

11-97

https://cwe.mitre.org/data/definitions/170.html

Misuse of a FILE object
Use of copy of FILE object

Description
This defect occurs when:

• You dereference a pointer to a FILE object, including indirect dereference by using memcmp().
• You modify an entire FILE object or one of its components through its pointer.
• You take the address of FILE object that was not returned from a call to an fopen-family function.

No defect is raised if a macro defines the pointer as the address of a built-in FILE object, such as
#define ptr (&__stdout).

Risk

In some implementations, the address of the pointer to a FILE object used to control a stream is
significant. A pointer to a copy of a FILE object is interpreted differently than a pointer to the original
object, and can potentially result in operations on the wrong stream. Therefore, the use of a copy of a
FILE object can cause the software to stop responding, which an attacker might exploit in denial-of-
service attacks.

Fix

Do not make a copy of a FILE object. Do not use the address of a FILE object that was not returned
from a successful call to an fopen-family function.

Examples
Copy of FILE Object Used in fputs()

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>

void fatal_error(void);

int func(void)
{
 /*'stdout' dereferenced and contents
 copied to 'my_stdout'. */
 FILE my_stdout = *stdout;

 /* Address of 'my_stdout' may not point to correct stream. */
 if (fputs("Hello, World!\n", &my_stdout) == EOF)
 {
 /* Handler error */
 fatal_error();
 }
 return 0;

11 Programming Defects

11-98

}

In this example, FILE object stdout is dereferenced and its contents are copied to my_stdout. The
contents of stdout might not be significant. fputs() is then called with the address of my_stdout
as an argument. Because no call to fopen() or a similar function was made, the address of
my_stdout might not point to the correct stream.

Correction — Copy the FILE Object Pointer

Declare my_stdout to point to the same address as stdout to ensure that you write to the correct
stream when you call fputs().

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>

void fatal_error(void);

int func(void)
{
 /* 'my_stdout' and 'stdout' point to the same object. */
 FILE *my_stdout = stdout;
 if (fputs("Hello, World!\n", my_stdout) == EOF)
 {
 /* Handler error */
 fatal_error();
 }
 return 0;
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: FILE_OBJECT_MISUSE
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017b

 Misuse of a FILE object

11-99

Misuse of errno
errno incorrectly checked for error conditions

Description
This defect occurs when you check errno for error conditions in situations where checking errno
does not guarantee the absence of errors. In some cases, checking errno can lead to false positives.

For instance, you check errno following calls to the functions:

• fopen: If you follow the ISO Standard, the function might not set errno on errors.
• atof: If you follow the ISO Standard, the function does not set errno.
• signal: The errno value indicates an error only if the function returns the SIG_ERR error

indicator.

Risk

The ISO C Standard does not enforce that these functions set errno on errors. Whether the functions
set errno or not is implementation-dependent.

To detect errors, if you check errno alone, the validity of this check also becomes implementation-
dependent.

In some cases, the errno value indicates an error only if the function returns a specific error
indicator. If you check errno before checking the function return value, you can see false positives.

Fix

For information on how to detect errors, see the documentation for that specific function.

Typically, the functions return an out-of-band error indicator to indicate errors. For instance:

• fopen returns a null pointer if an error occurs.
• signal returns the SIG_ERR error indicator and sets errno to a positive value. Check errno

only after you have checked the function return value.

Examples
Incorrectly Checking for errno After fopen Call

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

#define fatal_error() abort()

const char *temp_filename = "/tmp/demo.txt";

FILE *func()
{
 FILE *fileptr;

11 Programming Defects

11-100

 errno = 0;
 fileptr = fopen(temp_filename, "w+b");
 if (errno != 0) {
 if (fileptr != NULL) {
 (void)fclose(fileptr);
 }
 /* Handle error */
 fatal_error();
 }
 return fileptr;
}

In this example, errno is the first variable that is checked after a call to fopen. You might expect
that fopen changes errno to a nonzero value if an error occurs. If you run this code with an
implementation of fopen that does not set errno on errors, you might miss an error condition. In
this situation, fopen can return a null pointer that escapes detection.

Correction — Check Return Value of fopen After Call

One possible correction is to only check the return value of fopen for a null pointer.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

#define fatal_error() abort()

const char *temp_filename = "/tmp/demo.txt";

FILE *func()
{
 FILE *fileptr;
 fileptr = fopen(temp_filename, "w+b");
 if (fileptr == NULL) {
 fatal_error();
 }
 return fileptr;
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: ERRNO_MISUSE
Impact: High
CWE ID: 703

See Also
Find defects (-checkers) | Returned value of a sensitive function not checked |
Errno not reset | Errno not checked | Unsafe conversion from string to numerical
value

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”

 Misuse of errno

11-101

https://cwe.mitre.org/data/definitions/703.html

“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017a

11 Programming Defects

11-102

Misuse of errno in a signal handler
You read errno after calling an errno-setting function in a signal handler

Description
This defect occurs when you call one of these functions in a signal handler:

• signal: You call the signal function in a signal handler and then read the value of errno.

For instance, the signal handler function handler calls signal and then calls perror, which
reads errno.

typedef void (*pfv)(int);

void handler(int signum) {
 pfv old_handler = signal(signum, SIG_DFL);
 if (old_handler == SIG_ERR) {
 perror("SIGINT handler");
 }
}

• errno-setting POSIX function: You call an errno-setting POSIX function in a signal handler but
do not restore errno when returning from the signal handler.

For instance, the signal handler function handler calls waitpid, which changes errno, but does
not restore errno before returning.

#include <stddef.h>
#include <errno.h>
#include <sys/wait.h>

void handler(int signum) {
 int rc = waitpid(-1, NULL, WNOHANG);
 if (ECHILD != errno) {
 }
}

Risk

In each case that the checker flags, you risk relying on an indeterminate value of errno.

• signal: If the call to signal in a signal handler fails, the value of errno is indeterminate (see
C11 Standard, Sec. 7.14.1.1). If you rely on a specific value of errno, you can see unexpected
results.

• errno-setting POSIX function: An errno-setting function sets errno on failure. If you read
errno after a signal handler is called and the signal handler itself calls an errno-setting function,
you can see unexpected results.

Fix

Avoid situations where you risk relying on an indeterminate value of errno.

• signal: After calling the signal function in a signal handler, do not read errno or use a
function that reads errno.

 Misuse of errno in a signal handler

11-103

• errno-setting POSIX function: Before calling an errno-setting function in a signal handler, save
errno to a temporary variable. Restore errno from this variable before returning from the signal
handler.

Examples
Reading errno After signal Call in Signal Handler

#include <signal.h>
#include <stdlib.h>
#include <stdio.h>

#define fatal_error() abort()

void handler(int signum) {
 if (signal(signum, SIG_DFL) == SIG_ERR) {
 perror("SIGINT handler");
 }
}

int func(void) {
 if (signal(SIGINT, handler) == SIG_ERR) {
 /* Handle error */
 fatal_error();
 }
 /* Program code */
 if (raise(SIGINT) != 0) {
 /* Handle error */
 fatal_error();
 }
 return 0;
}

In this example, the function handler is called to handle the SIGINT signal. In the body of handler,
the signal function is called. Following this call, the value of errno is indeterminate. The checker
raises a defect when the perror function is called because perror relies on the value of errno.
Correction — Avoid Reading errno After signal Call

One possible correction is to not read errno after calling the signal function in a signal handler.
The corrected code here calls the abort function via the fatal_error macro instead of the perror
function.

#include <signal.h>
#include <stdlib.h>
#include <stdio.h>

#define fatal_error() abort()

void handler(int signum) {
 if (signal(signum, SIG_DFL) == SIG_ERR) {
 fatal_error();
 }
}

int func(void) {
 if (signal(SIGINT, handler) == SIG_ERR) {

11 Programming Defects

11-104

 /* Handle error */
 fatal_error();
 }
 /* Program code */
 if (raise(SIGINT) != 0) {
 /* Handle error */
 fatal_error();
 }
 return 0;
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: SIG_HANDLER_ERRNO_MISUSE
Impact: Medium

See Also
Function called from signal handler not asynchronous-safe | Errno not checked |
Errno not reset | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

 Misuse of errno in a signal handler

11-105

Misuse of narrow or wide character string
Narrow (wide) character string passed to wide (narrow) string function

Description
This defect occurs when you pass a narrow character string to a wide string function, or a wide
character string to a narrow string function.

Misuse of narrow or wide character string raises no defect on operating systems where narrow
and wide character strings have the same size.

Risk

Using a narrow character string with a wide string function, or vice versa, can result in unexpected
or undefined behavior.

If you pass a wide character string to a narrow string function, you can encounter these issues:

• Data truncation. If the string contains null bytes, a copy operation using strncpy() can
terminate early.

• Incorrect string length. strlen() returns the number of characters of a string up to the first null
byte. A wide string can have additional characters after its first null byte.

If you pass a narrow character string to a wide string function, you can encounter this issue:

• Buffer overflow. In a copy operation using wcsncpy(), the destination string might have
insufficient memory to store the result of the copy.

Fix

Use the narrow string functions with narrow character strings. Use the wide string functions with
wide character strings.

Examples
Passing Wide Character Strings to strncpy()

#include <string.h>
#include <wchar.h>

void func(void)
{
 wchar_t wide_str1[] = L"0123456789";
 wchar_t wide_str2[] = L"0000000000";
 strncpy(wide_str2, wide_str1, 10);
}

In this example, strncpy() copies 10 wide characters from wide_strt1 to wide_str2. If
wide_str1 contains null bytes, the copy operation can end prematurely and truncate the wide
character string.

11 Programming Defects

11-106

Correction — Use wcsncpy() to Copy Wide Character Strings

One possible correction is to use wcsncpy() to copy wide_str1 to wide_str2.

#include <string.h>
#include <wchar.h>

void func(void)
{
 wchar_t wide_str1[] = L"0123456789";
 wchar_t wide_str2[] = L"0000000000";
 wcsncpy(wide_str2, wide_str1, 10);
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: NARROW_WIDE_STR_MISUSE
Impact: High
CWE ID: 135

See Also
Array access out of bounds | Destination buffer overflow in string manipulation
| Invalid use of standard library routine | Invalid use of standard library
string routine | Pointer access out of bounds | Unreliable cast of function
pointer | Wrong allocated object size for cast | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018b

 Misuse of narrow or wide character string

11-107

https://cwe.mitre.org/data/definitions/135.html

Misuse of return value from nonreentrant
standard function
Pointer to static buffer from previous call is used despite a subsequent call that modifies the buffer

Description
This defect occurs when these events happen in this sequence:

1 You point to the buffer returned from a nonreentrant standard function such as getenv or
setlocale.

user = getenv("USER");

2 You call that nonreentrant standard function again.

user2 = getenv("USER2");

3 You use or dereference the pointer from the first step expecting the buffer to remain unmodified
since that step. In the meantime, the call in the second step has modified the buffer.

For instance:

var=*user;

In some cases, the defect might appear even if you do not call the getenv function a second time but
simply return the pointer. For instance:

char* func() {
 user=getenv("USER");
 .
 .
 return user;
}

For information on which functions are covered by this defect, see documentation on nonreentrant
standard functions.

Risk

The C Standard allows nonreentrant functions such as getenv to return a pointer to a static buffer.
Because the buffer is static, a second call to getenv modifies the buffer. If you continue to use the
pointer returned from the first call past the second call, you can see unexpected results. The buffer
that it points to no longer has values from the first call.

The defect appears even if you do not call getenv a second time but simply return the pointer. The
reason is that someone calling your function might use the returned pointer after a second call to
getenv. By returning the pointer from your call to getenv, you make your function unsafe to use.

The same rationale is true for other nonreentrant functions covered by this defect.

11 Programming Defects

11-108

https://www.securecoding.cert.org/confluence/display/c/ENV34-C.+Do+not+store+pointers+returned+by+certain+functions
https://www.securecoding.cert.org/confluence/display/c/ENV34-C.+Do+not+store+pointers+returned+by+certain+functions

Fix

After the first call to getenv, make a copy of the buffer that the returned pointer points to. After the
second call to getenv, use this copy. Even if the second call modifies the buffer, your copy is
untouched.

Examples
Return from getenv Used After Second Call to getenv

#include <stdlib.h>
#include <string.h>

int func()
{
 int result = 0;

 char *home = getenv("HOME"); /* First call */
 if (home != NULL) {
 char *user = NULL;
 char *user_name_from_home = strrchr(home, '/');

 if (user_name_from_home != NULL) {
 user = getenv("USER"); /* Second call */
 if ((user != NULL) &&
 (strcmp(user, user_name_from_home) == 0))
 {
 result = 1;
 }
 }
 }
 return result;
}

In this example, the pointer user_name_from_home is derived from the pointer home. home points
to the buffer returned from the first call to getenv. Therefore, user_name_from_home points to a
location in the same buffer.

After the second call to getenv, the buffer is modified. If you continue to use
user_name_from_home, you can get unexpected results.
Correction — Make Copy of Buffer Before Second Call

If you want to access the buffer from the first call to getenv past the second call, make a copy of the
buffer after the first call. One possible correction is to use the strdup function to make the copy.

#include <stdlib.h>
#include <string.h>

int func()
{
 int result = 0;

 char *home = getenv("HOME");
 if (home != NULL) {
 char *user = NULL;
 char *user_name_from_home = strrchr(home, '/');

 Misuse of return value from nonreentrant standard function

11-109

 if (user_name_from_home != NULL) {
 /* Make copy before second call */
 char *saved_user_name_from_home = strdup(user_name_from_home);
 if (saved_user_name_from_home != NULL) {
 user = getenv("USER");
 if ((user != NULL) &&
 (strcmp(user, saved_user_name_from_home) == 0))
 {
 result = 1;
 }
 free(saved_user_name_from_home);
 }
 }
 }
 return result;
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: NON_REENTRANT_STD_RETURN
Impact: High

See Also
Find defects (-checkers) | Modification of internal buffer returned from
nonreentrant standard function | Use of obsolete standard function

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017a

11 Programming Defects

11-110

Misuse of sign-extended character value
Data type conversion with sign extension causes unexpected behavior

Description
This defect occurs when you convert a signed or plain char variable containing possible negative
values to a wider integer data type (or perform an arithmetic operation that does the conversion) and
then use the resulting value in one of these ways:

• For comparison with EOF (using == or !=)
• As array index
• As argument to a character-handling function in ctype.h, for instance, isalpha() or

isdigit()

If you convert a signed char variable with a negative value to a wider type such as int, the sign bit
is preserved (sign extension). This can lead to specific problems even in situations where you think
you have accounted for the sign bit.

For instance, the signed char value of -1 can represent the character EOF (end-of-file), which is an
invalid character. Suppose a char variable var acquires this value. If you treat var as a char
variable, you might want to write special code to account for this invalid character value. However, if
you perform an operation such as var++ (involving integer promotion), it leads to the value 0, which
represents a valid value '\0' by accident. You transitioned from an invalid to a valid value through
the arithmetic operation.

Even for negative values other than -1, a conversion from signed char to signed int can lead to
other issues. For instance, the signed char value -126 is equivalent to the unsigned char value 130
(corresponding to an extended character '\202'). If you convert the value from char to int, the
sign bit is preserved. If you then cast the resulting value to unsigned int, you get an unexpectedly
large value, 4294967170 (assuming 32-bit int). If your code expects the unsigned char value of
130 in the final unsigned int variable, you can see unexpected results.

The underlying cause of this issue is the sign extension during conversion to a wider type. Most
architectures use two's complement representation for storing values. In this representation, the
most significant bit indicates the sign of the value. When converted to a wider type, the conversion is
done by copying this sign bit to all the leading bits of the wider type, so that the sign is preserved.
For instance, the char value of -3 is represented as 11111101 (assuming 8-bit char). When
converted to int, the representation is:

11111111 11111111 11111111 11111101

The value -3 is preserved in the wider type int. However, when converted to unsigned int, the
value (4294967293) is no longer the same as the unsigned char equivalent of the original char
value. If you are not aware of this issue, you can see unexpected results in your code.

Risk

In the following cases, Bug Finder flags use of variables after a conversion from char to a wider data
type or an arithmetic operation that implicitly converts the variable to a wider data type:

 Misuse of sign-extended character value

11-111

• If you compare the variable value with EOF:

A char value of -1 can represent the invalid character EOF or the valid extended character value
'\377' (corresponding to the unsigned char equivalent, 255). After a char variable is cast to a
wider type such as int, because of sign extension, the char value -1, representing one of EOF or
'\377' becomes the int value -1, representing only EOF. The unsigned char value 255 can no
longer be recovered from the int variable. Bug Finder flags this situation so that you can cast the
variable to unsigned char first (or avoid the char-to-int conversion or converting operation
before comparison with EOF). Only then, a comparison with EOF is meaningful. See “Sign-
Extended Character Value Compared with EOF” on page 11-112.

• If you use the variable value as an array index:

After a char variable is cast to a wider type such as int, because of sign extension, all negative
values retain their sign. If you use the negative values directly to access an array, you cause buffer
overflow/underflow. Even when you account for the negative values, the way you account for them
might result in incorrect elements being read from the array. See “Sign-Extended Character Value
Used as Array Index” on page 11-113.

• If you pass the variable value as argument to a character-handling function:

According to the C11 standard (Section 7.4), if you supply an integer argument that cannot be
represented as unsigned char or EOF, the resulting behavior is undefined. Bug Finder flags this
situation because negative char values after conversion can no longer be represented as
unsigned char or EOF. For instance, the signed char value -126 is equivalent to the unsigned
char value 130, but the signed int value -126 cannot be represented as unsigned char or EOF.

Fix

Before conversion to a wider integer data type, cast the signed or plain char value explicitly to
unsigned char.

If you use the char data type to not represent characters but simply as a smaller data type to save
memory, your use of sign-extended char values might avoid the risks mentioned earlier. If so, add
comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Sign-Extended Character Value Compared with EOF

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

extern char parsed_token_buffer[20];

static int parser(char *buf)
{
 int c = EOF;

11 Programming Defects

11-112

 if (buf && *buf) {
 c = *buf++;
 }
 return c;
}

void func()
{
 if (parser(parsed_token_buffer) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

In this example, the function parser can traverse a string input buf. If a character in the string has
the value -1, it can represent either EOF or the valid character value '\377' (corresponding to the
unsigned char equivalent 255). When converted to the int variable c, its value becomes the
integer value -1, which is always EOF. The later comparison with EOF will not detect if the value
returned from parser is actually EOF.

Correction — Cast to unsigned char Before Conversion

One possible correction is to cast the plain char value to unsigned char before conversion to the
wider int type. Only then can you test if the return value of parser is really EOF.

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

extern char parsed_token_buffer[20];

static int parser(char *buf)
{
 int c = EOF;
 if (buf && *buf) {
 c = (unsigned char)*buf++;
 }
 return c;
}

void func()
{
 if (parser(parsed_token_buffer) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

Sign-Extended Character Value Used as Array Index

#include <limits.h>
#include <stddef.h>
#include <stdio.h>

#define NUL '\0'
#define SOH 1 /* start of heading */
#define STX 2 /* start of text */
#define ETX 3 /* end of text */

 Misuse of sign-extended character value

11-113

#define EOT 4 /* end of transmission */
#define ENQ 5 /* enquiry */
#define ACK 6 /* acknowledge */

static const int ascii_table[UCHAR_MAX + 1] =
{
 [0]=NUL,[1]=SOH, [2]=STX, [3]=ETX, [4]=EOT, [5]=ENQ,[6]=ACK,
 /* ... */
 [126] = '~',
 /* ... */
 [130/*-126*/]='\202',
 /* ... */
 [255 /*-1*/]='\377'
};

int lookup_ascii_table(char c)
{
 int i;
 i = (c < 0 ? -c : c);
 return ascii_table[i];
}

In this example, the char variable c is converted to the int variable i. If c has negative values, they
are converted to positive values before assignment to i. However, this conversion can lead to
unexpected values when i is used as array index. For instance:

• If c has the value -1 representing the invalid character EOF, you want to probably treat this value
separately. However, in this example, a value of c equal to -1 leads to a value of i equal to 1. The
function lookup_ascii_table returns the value ascii_table[1] (or SOH) without the invalid
character value EOF being accounted for.

If you use the char data type to not represent characters but simply as a smaller data type to save
memory, you need not worry about this issue.

• If c has a negative value, when assigned to i, its sign is reversed. However, if you access the
elements of ascii_table through i, this sign reversal can result in unexpected values being
read.

For instance, if c has the value -126, i has the value 126. The function lookup_ascii_table
returns the value ascii_table[126] (or '~') but you probably expected the value
ascii_table[130] (or '\202').

Correction – Cast to unsigned char

To correct the issues, avoid the conversion from char to int. First, check c for the value EOF. Then,
cast the value of the char variable c to unsigned char and use the result as array index.

#include <limits.h>
#include <stddef.h>
#include <stdio.h>

#define NUL '\0'
#define SOH 1 /* start of heading */
#define STX 2 /* start of text */
#define ETX 3 /* end of text */
#define EOT 4 /* end of transmission */
#define ENQ 5 /* enquiry */

11 Programming Defects

11-114

#define ACK 6 /* acknowledge */

static const int ascii_table[UCHAR_MAX + 1] =
{
 [0]=NUL,[1]=SOH, [2]=STX, [3]=ETX, [4]=EOT, [5]=ENQ,[6]=ACK,
 /* ... */
 [126] = '~',
 /* ... */
 [130/*-126*/]='\202',
 /* ... */
 [255 /*-1*/]='\377'
};

int lookup_ascii_table(char c)
{
 int r = EOF;
 if (c != EOF) /* specific handling EOF, invalid character */
 r = ascii_table[(unsigned char)c]; /* cast to 'unsigned char' */
 return r;
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: CHARACTER_MISUSE
Impact: Medium
CWE ID: 704

See Also
Find defects (-checkers) | Invalid use of standard library integer routine |
Returned value of a sensitive function not checked | Errno not checked |
Character value absorbed into EOF

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017a

 Misuse of sign-extended character value

11-115

https://cwe.mitre.org/data/definitions/704.html

Misuse of structure with flexible array member
Memory allocation ignores flexible array member

Description
This defect occurs when:

• You define an object with a flexible array member of unknown size at compilation time.
• You make an assignment between structures with a flexible array member without using

memcpy() or a similar function.
• You use a structure with a flexible array member as an argument to a function and pass the

argument by value.
• Your function returns a structure with a flexible array member.

A flexible array member has no array size specified and is the last element of a structure with at least
two named members.

Risk

If the size of the flexible array member is not defined, it is ignored when allocating memory for the
containing structure. Accessing such a structure has undefined behavior.

Fix

• Use malloc() or a similar function to allocate memory for a structure with a flexible array
member.

• Use memcpy() or a similar function to copy a structure with a flexible array member.
• Pass a structure with a flexible array member as a function argument by pointer.

Examples
Structure Passed By Value to Function

#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>

struct example_struct
{
 size_t num;
 int data[];
};

extern void arg_by_value(struct example_struct s);

void func(void)
{

11 Programming Defects

11-116

 struct example_struct *flex_struct;
 size_t i;
 size_t array_size = 4;
 /* Dynamically allocate memory for the struct */
 flex_struct = (struct example_struct *)
 malloc(sizeof(struct example_struct) + sizeof(int) * array_size);
 if (flex_struct == NULL)
 {
 /* Handle error */
 }
 /* Initialize structure */
 flex_struct->num = array_size;
 for (i = 0; i < array_size; ++i)
 {
 flex_struct->data[i] = 0;
 }
 /* Handle structure */

 /* Argument passed by value. 'data' not
 copied to passed value. */
 arg_by_value(*flex_struct);

 /* Free dynamically allocated memory */
 free(flex_struct);
}

In this example, flex_struct is passed by value as an argument to arg_by_value. As a result, the
flexible array member data is not copied to the passed argument.

Correction — Pass Structure by Pointer to Function

To ensure that all the members of the structure are copied to the passed argument, pass
flex_struct to arg_by_pointer by pointer.

#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>

struct example_struct
{
 size_t num;
 int data[];
};

extern void arg_by_pointer(struct example_struct *s);

void func(void)
{
 struct example_struct *flex_struct;
 size_t i;
 size_t array_size = 4;
 /* Dynamically allocate memory for the struct */
 flex_struct = (struct example_struct *)

 Misuse of structure with flexible array member

11-117

 malloc(sizeof(struct example_struct) + sizeof(int) * array_size);
 if (flex_struct == NULL)
 {
 /* Handler error */
 }
 /* Initialize structure */
 flex_struct->num = array_size;
 for (i = 0; i < array_size; ++i)
 {
 flex_struct->data[i] = 0;
 }
 /* Handle structure */

 /* Structure passed by pointer */
 arg_by_pointer(flex_struct);

 /* Free dynamically allocated memory */
 free(flex_struct);
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: FLEXIBLE_ARRAY_MEMBER_STRUCT_MISUSE
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017b

11 Programming Defects

11-118

Modification of internal buffer returned from
nonreentrant standard function
Function attempts to modify internal buffer returned from a nonreentrant standard function

Description
This defect occurs when the following happens:

• A nonreentrant standard function returns a pointer.
• You attempt to write to the memory location that the pointer points to.

Nonreentrant standard functions that return a non const-qualified pointer to an internal buffer
include getenv, getlogin, crypt, setlocale, localeconv, strerror and others.

Risk

Modifying the internal buffer that a nonreentrant standard function returns can cause the following
issues:

• It is possible that the modification does not succeed or alters other internal data.

For instance, getenv returns a pointer to an environment variable value. If you modify this value,
you alter the environment of the process and corrupt other internal data.

• Even if the modification succeeds, it is possible that a subsequent call to the same standard
function does not return your modified value.

For instance, you modify the environment variable value that getenv returns. If another process,
thread, or signal handler calls setenv, the modified value is overwritten. Therefore, a subsequent
call to getenv does not return your modified value.

Fix

Avoid modifying the internal buffer using the pointer returned from the function.

Examples
Modification of getenv Return Value

#include <stdlib.h>
#include <string.h>

void printstr(const char*);

void func() {
 char* env = getenv("LANGUAGE");
 if (env != NULL) {
 strncpy(env, "C", 1);
 printstr(env);
 }
}

 Modification of internal buffer returned from nonreentrant standard function

11-119

In this example, the first argument of strncpy is the return value from a nonreentrant standard
function getenv. The behavior can be undefined because strncpy modifies this argument.

Correction - Copy Return Value of getenv and Modify Copy

One possible solution is to copy the return value of getenv and pass the copy to the strncpy
function.

#include <stdlib.h>
#include <string.h>
enum {
 SIZE20 = 20
};

void printstr(const char*);

void func() {
 char* env = getenv("LANGUAGE");
 if (env != NULL) {
 char env_cp[SIZE20];
 strncpy(env_cp, env, SIZE20);
 strncpy(env_cp, "C", 1);
 printstr(env_cp);
 }
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: WRITE_INTERNAL_BUFFER_RETURNED_FROM_STD_FUNC
Impact: Low
CWE ID: 573, 628

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

11 Programming Defects

11-120

https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/628.html

Overlapping assignment
Memory overlap between left and right sides of an assignment

Description
This defect occurs when there is a memory overlap between the left and right sides of an assignment.
For instance, a variable is assigned to itself or one member of a union is assigned to another.

Risk

If the left and right sides of an assignment have memory overlap, the behavior is either redundant or
undefined. For instance:

• Self-assignment such as x=(int)(long)x; is redundant unless x is volatile-qualified.
• Assignment of one union member to another causes undefined behavior.

For instance, in the following code:

• The result of the assignment u1.a = u1.b is undefined because u1.b is not initialized.
• The result of the assignment u2.b = u2.a depends on the alignment and endianness of the

implementation. It is not defined by C standards.

union {
 char a;
 int b;
}u1={'a'}, u2={'a'}; //'u1.a' and 'u2.a' are initialized

u1.a = u1.b;
u2.b = u2.a;

Fix

Avoid assignment between two variables that have overlapping memory.

Examples
Assignment of Union Members

#include <string.h>

union Data {
 int i;
 float f;
};

int main() {
 union Data data;
 data.i = 0;
 data.f = data.i;

 return 0;
}

 Overlapping assignment

11-121

In this example, the variables data.i and data.f are part of the same union and are stored in the
same location. Therefore, part of their memory storage overlaps.

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: OVERLAPPING_ASSIGN
Impact: Low
CWE ID: 665

See Also
Find defects (-checkers) | Copy of overlapping memory

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

11 Programming Defects

11-122

https://cwe.mitre.org/data/definitions/665.html

Possible misuse of sizeof
Use of sizeof operator can cause unintended results

Description
This defect occurs when Polyspace Bug Finder detects possibly unintended results from the use of
sizeof operator. For instance:

• You use the sizeof operator on an array parameter name, expecting the array size. However, the
array parameter name by itself is a pointer. The sizeof operator returns the size of that pointer.

• You use the sizeof operator on an array element, expecting the array size. However, the operator
returns the size of the array element.

• The size argument of certain functions such as strncmp or wcsncpy is incorrect because you
used the sizeof operator earlier with possibly incorrect expectations. For instance:

• In a function call strncmp(string1, string2, num), num is obtained from an incorrect
use of the sizeof operator on a pointer.

• In a function call wcsncpy(destination, source, num), num is the not the number of
wide characters but a size in bytes obtained by using the sizeof operator. For instance, you
use wcsncpy(destination, source, sizeof(destination) - 1) instead of
wcsncpy(destination, source, (sizeof(desintation)/sizeof(wchar_t)) - 1).

Risk

Incorrect use of the sizeof operator can cause the following issues:

• If you expect the sizeof operator to return array size and use the return value to constrain a
loop, the number of loop runs are smaller than what you expect.

• If you use the return value of sizeof operator to allocate a buffer, the buffer size is smaller than
what you require. Insufficient buffer can lead to resultant weaknesses such as buffer overflows.

• If you use the return value of sizeof operator incorrectly in a function call, the function does not
behave as you expect.

Fix

Possible fixes are:

• Do not use the sizeof operator on an array parameter name or array element to determine array
size.

The best practice is to pass the array size as a separate function parameter and use that
parameter in the function body.

• Use the sizeof operator carefully to determine the number argument of functions such as
strncmp or wcsncpy. For instance, for wide string functions such as wcsncpy, use the number of
wide characters as argument instead of the number of bytes.

 Possible misuse of sizeof

11-123

Examples
sizeof Used Incorrectly to Determine Array Size

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < sizeof(a)/sizeof(int); i++) {
 a[i] = i + 1;
 }
}

In this example, sizeof(a) returns the size of the pointer a and not the array size.

Correction — Determine Array Size in Another Way

One possible correction is to use another means to determine the array size.

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < MAX_SIZE; i++) {
 a[i] = i + 1;
 }
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: SIZEOF_MISUSE
Impact: High
CWE ID: 467

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

External Websites
Linux man page for strncmp

Introduced in R2015b

11 Programming Defects

11-124

https://cwe.mitre.org/data/definitions/467.html
https://man7.org/linux/man-pages/man3/strcmp.3.html

Possibly unintended evaluation of expression
because of operator precedence rules
Operator precedence rules cause unexpected evaluation order in arithmetic expression

Description
This defect occurs when an arithmetic expression result is possibly unintended because operator
precedence rules dictate an evaluation order that you do not expect.

The defect highlights expressions of the form x op_1 y op_2 z. Here, op_1 and op_2 are operator
combinations that commonly induce this error. For instance, x == y | z.

The checker does not flag all operator combinations. For instance, x == y || z is not flagged
because you most likely intended to perform a logical OR between x == y and z. Specifically, the
checker flags these combinations:

• && and ||: For instance, x || y && z or x && y || z.
• Assignment and bitwise operations: For instance, x = y | z.
• Assignment and comparison operations: For instance, x = y != z or x = y > z.
• Comparison operations: For instance, x > y > z (except when one of the comparisons is an

equality x == y > z).
• Shift and numerical operation: For instance, x << y + 2.
• Pointer dereference and arithmetic: For instance, *p++.

Risk

The defect can cause the following issues:

• If you or another code reviewer reviews the code, the intended order of evaluation is not
immediately clear.

• It is possible that the result of the evaluation does not meet your expectations. For instance:

• In the operation *p++, it is possible that you expect the dereferenced value to be incremented.
However, the pointer p is incremented before the dereference.

• In the operation (x == y | z), it is possible that you expect x to be compared with y | z.
However, the == operation happens before the | operation.

Fix

See if the order of evaluation is what you intend. If not, apply parentheses to implement the
evaluation order that you want.

For better readability of your code, it is good practice to apply parenthesis to implement an
evaluation order even when operator precedence rules impose that order.

 Possibly unintended evaluation of expression because of operator precedence rules

11-125

Examples
Expressions with Possibly Unintended Evaluation Order

int test(int a, int b, int c) {
 return(a & b == c);
}

In this example, the == operation happens first, followed by the & operation. If you intended the
reverse order of operations, the result is not what you expect.

Correction — Parenthesis For Intended Order

One possible correction is to apply parenthesis to implement the intended evaluation order.

int test(int a, int b, int c) {
 return((a & b) == c);
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: OPERATOR_PRECEDENCE
Impact: High
CWE ID: 783

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

External Websites
C++ Operator Precedence

Introduced in R2015b

11 Programming Defects

11-126

https://cwe.mitre.org/data/definitions/783.html
https://en.cppreference.com/w/cpp/language/operator_precedence

Predefined macro used as an object
You use standard library macros such as assert and errno as objects

Description
This defect occurs when you use certain identifiers in a way that requires an underlying object to be
present. These identifiers are defined as macros. The C Standard does not allow you to redefine them
as objects. You use the identifiers in such a way that macro expansion of the identifiers cannot occur.

For instance, you refer to an external variable errno:

extern int errno;

However, errno does not occur as a variable but a macro.

The defect applies to these macros: assert, errno, math_errhandling, setjmp, va_arg,
va_copy, va_end, and va_start. The checker looks for the defect only in source files (not header
files).

Risk

The C11 Standard (Sec. 7.1.4) allows you to redefine most macros as objects. To access the object
and not the macro in a source file, you do one of these:

• Redeclare the identifier as an external variable or function.
• For function-like macros, enclose the identifier name in parentheses.

If you try to use these strategies for macros that cannot be redefined as objects, an error occurs.

Fix

Do not use the identifiers in such a way that a macro expansion is suppressed.

• Do not redeclare the identifiers as external variables or functions.
• For function-like macros, do not enclose the macro name in parentheses.

Examples
Use of assert as Function

#include<assert.h>
typedef void (*err_handler_func)(int);

extern void demo_handle_err(err_handler_func, int);

void func(int err_code) {
 extern void assert(int);
 demo_handle_err(&(assert), err_code);
}

 Predefined macro used as an object

11-127

In this example, the assert macro is redefined as an external function. When passed as an argument
to demo_handle_err, the identifier assert is enclosed in parentheses, which suppresses use of the
assert macro.

Correction — Use assert as Macro

One possible correction is to directly use the assert macro from assert.h. A different
implementation of the function demo_handle_err directly uses the assert macro instead of taking
the address of an assert function.

#include<assert.h>
void demo_handle_err(int err_code) {
 assert(err_code == 0);
}

void func(int err_code) {
 demo_handle_err(err_code);
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: MACRO_USED_AS_OBJECT
Impact: Low

See Also
MISRA C:2012 Rule 21.2 | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

11 Programming Defects

11-128

Preprocessor directive in macro argument
You use a preprocessor directive in the argument to a function-like macro

Description
This defect occurs when you use a preprocessor directive in the argument to a function-like macro or
a function that might be implemented as a function-like macro.

For instance, a #ifdef statement occurs in the argument to a memcpy function. The memcpy function
might be implemented as a macro.

memcpy(dest, src,
 #ifdef PLATFORM1
 12
 #else
 24
 #endif
);

The checker flags similar usage in printf and assert, which can also be implemented as macros.

Risk

During preprocessing, a function-like macro call is replaced by the macro body and the parameters
are replaced by the arguments to the macro call (argument substitution). Suppose a macro min() is
defined as follows.

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

When you call min(1,2), it is replaced by the body ((X) < (Y) ? (X) : (Y)). X and Y are
replaced by 1 and 2.

According to the C11 Standard (Sec. 6.10.3), if the list of arguments to a function-like macro itself
has preprocessing directives, the argument substitution during preprocessing is undefined.

Fix

To ensure that the argument substitution happens in an unambiguous manner, use the preprocessor
directives outside the function-like macro.

For instance, to execute memcpy with different arguments based on a #ifdef directive, call memcpy
multiple times within the #ifdef directive branches.

#ifdef PLATFORM1
 memcpy(dest, src, 12);
#else
 memcpy(dest, src, 24);
#endif

 Preprocessor directive in macro argument

11-129

Examples
Directives in Function-Like Macros

#include <stdio.h>

#define print(A) printf(#A)

void func(void) {
 print(
#ifdef SW
 "Message 1"
#else
 "Message 2"
#endif
);
}

In this example, the preprocessor directives #ifdef and #endif occur in the argument to the
function-like macro print().

Correction — Use Directives Outside Macro

One possible correction is to use the function-like macro multiple times in the branches of the
#ifdef directive.

#include <stdio.h>

#define print(A) printf(#A)

void func(void) {
#ifdef SW
 print("Message 1");
#else
 print("Message 2");
#endif
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: PRE_DIRECTIVE_MACRO_ARG
Impact: Low

See Also
MISRA C:2012 Rule 20.6 | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

11 Programming Defects

11-130

Introduced in R2018a

 Preprocessor directive in macro argument

11-131

Qualifier removed in conversion
Variable qualifier is lost during conversion

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs during a pointer conversion when one pointer has a qualifier and the other does
not. For example, when converting from a const int* to an int*, the conversion removes the
const qualifier.

This defect applies only for projects in C.

Risk

Qualifiers such as const or volatile in a pointer declaration:

const int* ptr;

imply that the underlying object is const or volatile. These qualifiers act as instructions to the
compiler. For instance, a const object is not supposed to be modified in the code and a volatile
object is not supposed to be optimized away by the compiler.

If a second pointer points to the same object but does not use the same qualifier, the qualifier on the
first pointer is no longer valid. For instance, if a const int* pointer and an int* pointer point to
the same object, you can modify the object through the second pointer and violate the contract
implied by the const qualifier in the first pointer.

Fix

If you intend to convert from one pointer to another, declare both pointers with the same qualifiers.

Examples
Cast of Character Pointers

void implicit_cast(void) {
 const char cc, *pcc = &cc;
 char * quo;

 quo = &cc;
 quo = pcc;

 read(quo);
}

During the assignment to the character q, the variables, cc and pcc, are converted from const
char to char. The const qualifier is removed during the conversion causing a defect.

11 Programming Defects

11-132

Correction — Add Qualifiers

One possible correction is to add the same qualifiers to the new variables. In this example, changing
q to a const char fixes the defect.

void implicit_cast(void) {
 const char cc, *pcc = &cc;
 const char * quo;

 quo = &cc;
 quo = pcc;

 read(quo);
}

Correction — Remove Qualifiers

One possible correction is to remove the qualifiers in the converted variable. In this example,
removing the const qualifier from the cc and pcc initialization fixes the defect.

void implicit_basic_cast(void) {
 char cc, *pcc = &cc;
 char * quo;

 quo = &cc;
 quo = pcc;

 read(quo);
}

Result Information
Group: Programming
Language: C
Default: Off
Command-Line Syntax: QUALIFIER_MISMATCH
Impact: Low
CWE ID: 704

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

 Qualifier removed in conversion

11-133

https://cwe.mitre.org/data/definitions/704.html

Return from computational exception signal
handler
Undefined behavior when signal handler returns normally from program error

Description
This defect occurs when a signal handler returns after catching a computational exception signal
SIGFPE, SIGILL, or SIGSEGV.

Risk

A signal handler that returns normally from a computational exception is undefined behavior. Even if
the handler attempts to fix the error that triggered the signal, the program can behave unexpectedly.

Fix

Check the validity of the values of your variables before the computation to avoid using a signal
handler to catch exceptions. If you cannot avoid a handler to catch computation exception signals,
call abort(), quick_exit(), or _Exit() in the handler to stop the program.

Examples
Signal Handler Return from Division by Zero
#include <errno.h>
#include <limits.h>
#include <signal.h>
#include <stdlib.h>

static volatile sig_atomic_t denom;
/* Declare signal handler to catch division by zero
computation error. */
void sig_handler(int s)
{
 int s0 = s;
 if (denom == 0)
 {
 denom = 1;
 }
 /* Normal return from computation exception
 signal */
 return;
}

long func(int v)
{
 denom = (sig_atomic_t)v;

 if (signal(SIGFPE, sig_handler) == SIG_ERR)
 {
 /* Handle error */

11 Programming Defects

11-134

 }

 long result = 100 / (long)denom;
 return result;
}

In this example, sig_handler is declared to handle a division by zero computation error. The
handler changes the value of denom if it is zero and returns, which is undefined behavior.

Correction — Call abort() to Terminate Program

After catching a computational exception, call abort() from sig_handler to exit the program
without further error.

#include <errno.h>
#include <limits.h>
#include <signal.h>
#include <stdlib.h>

static volatile sig_atomic_t denom;
/* Declare signal handler to catch division by zero
computation error. */

void sig_handler(int s)
{
 int s0 = s;
 /* call to abort() to exit the program */
 abort();
}

long func(int v)
{
 denom = (sig_atomic_t)v;

 if (signal(SIGFPE, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }

 long result = 100 / (long)denom;
 return result;
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: SIG_HANDLER_COMP_EXCP_RETURN
Impact: Low
CWE ID: 387

 Return from computational exception signal handler

11-135

https://cwe.mitre.org/data/definitions/387.html

See Also
Function called from signal handler not asynchronous-safe | Function called
from signal handler not asynchronous-safe (strict) | Signal call from within
signal handler | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017b

11 Programming Defects

11-136

Shared data access within signal handler
Access or modification of shared data causes inconsistent state

Description
This defect occurs when you access or modify a shared object inside a signal handler.

Risk

When you define a signal handler function to access or modify a shared object, the handler accesses
or modifies the shared object when it receives a signal. If another function is already accessing the
shared object, that function causes a race condition and can leave the data in an inconsistent state.

Fix

To access or modify shared objects inside a signal handler, check that the objects are lock-free
atomic, or, if they are integers, declare them as volatile sig_atomic_t.

Examples
int Variable Access in Signal Handler

#include <signal.h>
#include <stdlib.h>
#include <string.h>

/* declare global variable. */
int e_flag;

void sig_handler(int signum)
{
 /* Signal handler accesses variable that is not
 of type volatile sig_atomic_t. */
 e_flag = signum;
}

int func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 abort();
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 abort();
 }
 /* More code */
 return 0;
}

 Shared data access within signal handler

11-137

In this example, sig_handler accesses e_flag, a variable of type int. A concurrent access by
another function can leave e_flag in an inconsistent state.

Correction — Declare Variable of Type volatile sig_atomic_t

Before you access a shared variable from a signal handler, declare the variable with type volatile
sig_atomic_t instead of int. You can safely access variables of this type asynchronously.

#include <signal.h>
#include <stdlib.h>
#include <string.h>

/* Declare variable of type volatile sig_atomic_t. */
volatile sig_atomic_t e_flag;
void sig_handler(int signum)
{
 /* Use variable of proper type inside signal handler. */
 e_flag = signum;

}

int func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 abort();
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 abort();
 }
 /* More code */
 return 0;
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: SIG_HANDLER_SHARED_OBJECT
Impact: Medium
CWE ID: 364, 413

See Also
Function called from signal handler not asynchronous-safe | Signal call from
within signal handler | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”

11 Programming Defects

11-138

https://cwe.mitre.org/data/definitions/364.html
https://cwe.mitre.org/data/definitions/413.html

“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017b

 Shared data access within signal handler

11-139

Side effect in arguments to unsafe macro
Macro contains arguments that can be evaluated multiple times or not evaluated

Description
This defect occurs when you call an unsafe macro with an expression that has a side effect.

• Unsafe macro: When expanded, an unsafe macro evaluates its arguments multiple times or does
not evaluate its argument at all.

For instance, the ABS macro evaluates its argument x twice.

#define ABS(x) (((x) < 0) ? -(x) : (x))

• Side effect: When evaluated, an expression with a side effect modifies at least one of the variables
in the expression.

For instance, ++n modifies n, but n+1 does not modify n.

The checker does not consider side effects in nested macros. The checker also does not consider
function calls or volatile variable access as side effects.

Risk

If you call an unsafe macro with an expression that has a side effect, the expression is evaluated
multiple times or not evaluated at all. The side effect can occur multiple times or not occur at all,
causing unexpected behavior.

For instance, in the call MACRO(++n), you expect only one increment of the variable n. If MACRO is an
unsafe macro, the increment happens more than once or does not happen at all.

The checker flags expressions with side effects in the assert macro because the assert macro is
disabled in non-debug mode. To compile in non-debug mode, you define the NDEBUG macro during
compilation. For instance, in GCC, you use the flag -DNDEBUG.

Fix

Evaluate the expression with a side effect in a separate statement, and then use the result as a macro
argument.

For instance, instead of:

MACRO(++n);

perform the operation in two steps:

++n;
MACRO(n);

Alternatively, use an inline function instead of a macro. Pass the expression with side effect as
argument to the inline function.

11 Programming Defects

11-140

The checker considers modifications of a local variable defined only in the block scope of a macro
body as a side effect. This defect cannot happen since the variable is visible only in the macro body. If
you see a defect of this kind, ignore the defect.

Examples
Macro Argument with Side Effects

#define ABS(x) (((x) < 0) ? -(x) : (x))

void func(int n) {
 /* Validate that n is within the desired range */
 int m = ABS(++n);

 /* ... */
}

In this example, the ABS macro evaluates its argument twice. The second evaluation can result in an
unintended increment.

Correction — Separate Evaluation of Expression from Macro Usage

One possible correction is to first perform the increment, and then pass the result to the macro.

#define ABS(x) (((x) < 0) ? -(x) : (x))

void func(int n) {
 /* Validate that n is within the desired range */
 ++n;
 int m = ABS(n);

 /* ... */
}

Correction — Evaluate Expression in Inline Function

Another possible correction is to evaluate the expression in an inline function.

static inline int iabs(int x) {
 return (((x) < 0) ? -(x) : (x));
}

void func(int n) {
 /* Validate that n is within the desired range */

int m = iabs(++n);

 /* ... */
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: SIDE_EFFECT_IN_UNSAFE_MACRO_ARG
Impact: Medium

 Side effect in arguments to unsafe macro

11-141

See Also
Side effect of expression ignored | Stream argument with possibly unintended
side effects | MISRA C:2012 Rule 13.2 | MISRA C:2012 Rule 13.3 | MISRA C:2012 Rule
13.4 | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018b

11 Programming Defects

11-142

Side effect of expression ignored
sizeof, _Alignof, or _Generic operates on expression with side effect

Description
This defect occurs when the sizeof, _Alignof, or _Generic operator operates on an expression
with a side effect. When evaluated, an expression with side effect modifies at least one of the
variables in the expression.

For instance, the defect checker does not flag sizeof(n+1) because n+1 does not modify n. The
checker flags sizeof(n++) because n++ is intended to modify n.

The check also applies to the C++ operator alignof and its C extensions, __alignof__ and
__typeof__.

Risk

The expression in a _Alignof or _Generic operator is not evaluated. The expression in a sizeof
operator is evaluated only if it is required for calculating the size of a variable-length array, for
instance, sizeof(a[n++]).

When an expression with a side effect is not evaluated, the variable modification from the side effect
does not happen. If you rely on the modification, you can see unexpected results.

Fix

Evaluate the expression with a side effect in a separate statement, and then use the result in a
sizeof, _Alignof, or _Generic operator.

For instance, instead of:

a = sizeof(n++);

perform the operation in two steps:

n++;
a = sizeof(n);

The checker considers a function call as an expression with a side effect. Even if the function does not
have side effects now, it might have side effects on later additions. The code is more maintainable if
you call the function outside the sizeof operator.

Examples
Increment Operator in sizeof
#include <stdio.h>

void func(void) {
 unsigned int a = 1U;
 unsigned int b = (unsigned int)sizeof(++a);
 printf ("%u, %u\n", a, b);
}

 Side effect of expression ignored

11-143

In this example, sizeof operates on ++a, which is intended to modify a. Because the expression is
not evaluated, the modification does not happen. The printf statement shows that a still has the
value 1.

Correction — Perform Increment Outside sizeof

One possible correction is to perform the increment first, and then provide the result to the sizeof
operator.

#include <stdio.h>

void func(void) {
 unsigned int a = 1U;
 ++a;
 unsigned int b = (unsigned int)sizeof (a);
 printf ("%u, %u\n", a, b);
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: SIDE_EFFECT_IGNORED
Impact: Low

See Also
MISRA C:2012 Rule 13.6 | Redundant expression in sizeof operand | Find defects
(-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

11 Programming Defects

11-144

Signal call from within signal handler
Nonpersistent signal handler calling signal() in Windows system causes race condition

Description
This defect occurs when you call the function signal() from a signal handler on Windows platforms.

The defect is detected only if you specify a Visual Studio compiler. See Compiler (-compiler).

Risk

The function signal() associates a signal with a signal handler function. On platforms such as
Windows, which removes this association after receiving the signal, you might call the function
signal() again within the signal handler to re-establish the association.

However, this attempt to make a signal handler persistent is prone to race conditions. On Windows
platforms, from the time the signal handler begins execution to when the signal function is called
again, it is the default signal handling, SIG_DFL, that is active. If a second signal is received within
this time window, you see the default signal handling and not the custom signal handler, but you
might expect otherwise.

Fix

Do not call signal() from a signal handler on Windows platforms.

Examples
signal() Called from Signal Handler

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>

volatile sig_atomic_t e_flag = 0;

void sig_handler(int signum)
{
 int s0 = signum;
 e_flag = 1;

 /* Call signal() to reestablish sig_handler
 upon receiving SIG_ERR. */

 if (signal(s0, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
}

 Signal call from within signal handler

11-145

void func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

 }
 /* more code */
}

In this example, the definition of sig_handler() includes a call to signal() when the handler
catches SIG_ERR. On Windows platforms, signal handlers are nonpersistent. This code can result in a
race condition.

The issue is detected only if you specify a compiler such as visual15.x for the analysis.

Correction — Do Not Call signal() from Signal Handler

Avoid attempting to make a signal handler persistent on Windows. If your code requires the use of a
persistent signal handler on a Windows platform, use a persistent signal handler after performing a
thorough risk analysis.

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>

volatile sig_atomic_t e_flag = 0;

void sig_handler(int signum)
{
 int s0 = signum;
 e_flag = 1;
 /* No call to signal() */
}

int main(void)
{

 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

 }
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: SIG_HANDLER_CALLING_SIGNAL

11 Programming Defects

11-146

Impact: Medium
CWE ID: 387, 474

See Also
Find defects (-checkers) | Function called from signal handler not
asynchronous-safe | Return from computational exception signal handler | Shared
data access within signal handler

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017b

 Signal call from within signal handler

11-147

https://cwe.mitre.org/data/definitions/387.html
https://cwe.mitre.org/data/definitions/474.html

Standard function call with incorrect arguments
Argument to a standard function does not meet requirements for use in the function

Description
This defect occurs when the arguments to certain standard functions do not meet the requirements
for their use in the functions.

For instance, the arguments to these functions can be invalid in the following ways.

Function Type Situation Risk Fix
String manipulation
functions such as
strlen and strcpy

The pointer arguments
do not point to a NULL-
terminated string.

The behavior of the
function is undefined.

Pass a NULL-terminated
string to string
manipulation functions.

File handling functions
in stdio.h such as
fputc and fread

The FILE* pointer
argument can have the
value NULL.

The behavior of the
function is undefined.

Test the FILE* pointer
for NULL before using it
as function argument.

File handling functions
in unistd.h such as
lseek and read

The file descriptor
argument can be -1.

The behavior of the
function is undefined.

Most implementations
of the open function
return a file descriptor
value of -1. In addition,
they set errno to
indicate that an error
has occurred when
opening a file.

Test the return value of
the open function for -1
before using it as
argument for read or
lseek.

If the return value is -1,
check the value of
errno to see which
error has occurred.

The file descriptor
argument represents a
closed file descriptor.

The behavior of the
function is undefined.

Close the file descriptor
only after you have
completely finished
using it. Alternatively,
reopen the file
descriptor before using
it as function argument.

Directory name
generation functions
such as mkdtemp and
mkstemps

The last six characters
of the string template
are not XXXXXX.

The function replaces
the last six characters
with a string that makes
the file name unique. If
the last six characters
are not XXXXXX, the
function cannot
generate a unique
enough directory name.

Test if the last six
characters of a string
are XXXXXX before
using the string as
function argument.

11 Programming Defects

11-148

Function Type Situation Risk Fix
Functions related to
environment variables
such as getenv and
setenv

The string argument is
"".

The behavior is
implementation-defined.

Test the string
argument for "" before
using it as getenv or
setenv argument.

The string argument
terminates with an
equal sign, =. For
instance, "C=" instead
of "C".

The behavior is
implementation-defined.

Do not terminate the
string argument with =.

String handling
functions such as
strtok and strstr

• strtok: The
delimiter argument
is "".

• strstr: The search
string argument is
"".

Some implementations
do not handle these
edge cases.

Test the string for ""
before using it as
function argument.

Fix

The fix depends on the root cause of the defect. See fixes in the table above and code examples with
fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
NULL Pointer Passed as strnlen Argument

#include <string.h>
#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE20 = 20
};

int func() {
 char* s = NULL;
 return strnlen(s, SIZE20);
}

In this example, a NULL pointer is passed as strnlen argument instead of a NULL-terminated string.

Before running analysis on the code, specify a GNU compiler. See Compiler (-compiler).

 Standard function call with incorrect arguments

11-149

Correction — Pass NULL-terminated String

Pass a NULL-terminated string as the first argument of strnlen.

#include <string.h>
#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE20 = 20
};

int func() {
 char* s = "";
 return strnlen(s, SIZE20);
}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: STD_FUNC_ARG_MISMATCH
Impact: Medium
CWE ID: 628, 685, 686, 687, 690, 910

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

11 Programming Defects

11-150

https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/685.html
https://cwe.mitre.org/data/definitions/686.html
https://cwe.mitre.org/data/definitions/687.html
https://cwe.mitre.org/data/definitions/690.html
https://cwe.mitre.org/data/definitions/910.html

Stream argument with possibly unintended side
effects
Stream argument side effects occur more than once

Description
This defect occurs when you call getc(), putc(), getwc(), or putwc() with a stream argument
that has side effects.

Stream argument with possibly unintended side effects considers the following as stream side
effects:

• Any assignment of a variable of a stream, such as FILE *, or any assignment of a variable of a
deeper stream type, such as an array of FILE *.

• Any call to a function that manipulates a stream or a deeper stream type.

The number of defects raised corresponds to the number of side effects detected. When a stream
argument is evaluated multiple times in a function implemented as a macro, a defect is raised for
each evaluation that has a side effect.

A defect is also raised on functions that are not implemented as macros but that can be implemented
as macros on another operating system.

Risk

If the function is implemented as an unsafe macro, the stream argument can be evaluated more than
once, and the stream side effect happens multiple times. For instance, a stream argument calling
fopen() might open the same file multiple times, which is unspecified behavior.

Fix

To ensure that the side effect of a stream happens only once, use a separate statement for the stream
argument.

Examples
Stream Argument of getc() Has Side Effect fopen()
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

#define fatal_error() abort()

const char* myfile = "my_file.log";

void func(void)
{
 int c;
 FILE* fptr;
 /* getc() has stream argument fptr with

 Stream argument with possibly unintended side effects

11-151

 * 2 side effects: call to fopen(), and assignment
 * of fptr
 */
 c = getc(fptr = fopen(myfile, "r"));
 if (c == EOF) {
 /* Handle error */
 (void)fclose(fptr);
 fatal_error();
 }
 if (fclose(fptr) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

void main(void)
{
 func();

}

In this example, getc() is called with stream argument fptr. The stream argument has two side
effects: the call to fopen() and the assignment of fptr. If getc() is implemented as an unsafe
macro, the side effects happen multiple times.

Correction — Use Separate Statement for fopen()

One possible correction is to use a separate statement for fopen(). The call to fopen() and the
assignment of fptr happen in this statement so there are no side effects when you pass fptr to
getc().

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

#define fatal_error() abort()

const char* myfile = "my_file.log";

void func(void)
{
 int c;
 FILE* fptr;

 /* Separate statement for fopen()
 * before call to getc()
 */
 fptr = fopen(myfile, "r");
 if (fptr == NULL) {
 /* Handle error */
 fatal_error();
 }
 c = getc(fptr);
 if (c == EOF) {
 /* Handle error */
 (void)fclose(fptr);
 fatal_error();

11 Programming Defects

11-152

 }
 if (fclose(fptr) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

void main(void)
{
 func();

}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: STREAM_WITH_SIDE_EFFECT
Impact: Low

See Also
Find defects (-checkers) | Returned value of a sensitive function not checked |
Opening previously opened resource | Standard function call with incorrect
arguments

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

 Stream argument with possibly unintended side effects

11-153

Too many va_arg calls for current argument list
Number of calls to va_arg exceeds number of arguments passed to variadic function

Description
This defect occurs when the number of calls to va_arg exceeds the number of arguments passed to
the corresponding variadic function. The analysis raises a defect only when the variadic function is
called.

Too many va_arg calls for current argument list does not raise a defect when:

• The number of calls to va_arg inside the variadic function is indeterminate. For example, if the
calls are from an external source.

• The va_list used in va_arg is invalid.

Risk

When you call va_arg and there is no next argument available in va_list, the behavior is
undefined. The call to va_arg might corrupt data or return an unexpected result.

Fix

Ensure that you pass the correct number of arguments to the variadic function.

Examples
No Argument Available When Calling va_arg

#include <stdarg.h>
#include <stddef.h>
#include <math.h>

/* variadic function defined with
* one named argument 'count'
*/
int variadic_func(int count, ...) {
 int result = -1;
 va_list ap;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 count --;
 if (count > 0) {
/* No further argument available
* in va_list when calling va_arg
*/

 result += va_arg(ap, int);
 }
 }
 va_end(ap);
 return result;

11 Programming Defects

11-154

}

void func(void) {

 (void)variadic_func(2, 100);

}

In this example, the named argument and only one variadic argument are passed to
variadic_func() when it is called inside func(). On the second call to va_arg, no further
variadic argument is available in ap and the behavior is undefined.

Correction — Pass Correct Number of Arguments to Variadic Function

One possible correction is to ensure that you pass the correct number of arguments to the variadic
function.

#include <stdarg.h>
#include <stddef.h>
#include <math.h>

/* variadic function defined with
* one named argument 'count'
*/

int variadic_func(int count, ...) {
 int result = -1;
 va_list ap;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 count --;
 if (count > 0) {

/* The correct number of arguments is
* passed to va_list when variadic_func()
* is called inside func()
*/
 result += va_arg(ap, int);
 }
 }
 va_end(ap);
 return result;
}

void func(void) {

 (void)variadic_func(2, 100, 200);

}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: TOO_MANY_VA_ARG_CALLS

 Too many va_arg calls for current argument list

11-155

Impact: Medium
CWE ID: 685

See Also
Find defects (-checkers) | Invalid va_list argument | Incorrect data type passed
to va_arg

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

11 Programming Defects

11-156

https://cwe.mitre.org/data/definitions/685.html

Typedef mismatch
Mismatch between typedef statements

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when typedef statements lead to conflicting underlying types for one of these
data types:

• size_t
• ssize_t
• wchar_t
• ptrdiff_t

Risk

If you change the underlying type of size_t, ssize_t, wchar_t, or ptrdiff_t, you have
inconsistent definitions of the same type. Compilation units with different include paths can
potentially use different-sized types causing conflicts in your program.

For example, say that you define a function in one compilation unit that redefines size_t as
unsigned long. But in another compilation unit that uses the size_t definition from <stddef.h>,
you use the same function as an extern declaration. Your program will encounter a mismatch
between the function declaration and function definition.

Fix

Use consistent type definitions. For example:

• Remove custom type definitions for these fundamental types. Only use system definitions.
• Use the same size for all compilation units. Move your typedef to a shared header file.

Examples
Two Definitions of size_t

file1.c:

#include <stddef.h>

void func1()
{
 size_t var = 0;
 /*... more code ... */
}

file2.c:

 Typedef mismatch

11-157

typedef unsigned char size_t;

void func2()
{
 size_t var = 0;
 /*... more code ... */
}

In this example, Polyspace flags the definition of size_t in file2.c as a defect. This definition is a
typedef mismatch because another file in your project, file1.c, includes stddef.h, which defines
size_t as unsigned long.
Correction — Use System Definition

One possible correction is to use the system definition of size_t in stddef.h to avoid conflicting
type definitions.

file1.c:

#include <stddef.h>

void func1()
{
 size_t var = 0;
 /*... more code ... */
}

file2.c:

#include <stddef.h>

void func2()
{
 size_t var = 0;
 /*... more code ... */
}

Correction — Use Shared Header File

One possible correction is to use a shared header file to store your type definition that gets included
in both files.

types.h:

typedef unsigned char size_t;

file1.c:

#include "types.h"

void func1()
{
 size_t var = 0;
 /*... more code ... */
}

file2.c:

#include "types.h"

11 Programming Defects

11-158

void func2()
{
 size_t var = 0;
 /*... more code ... */
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: TYPEDEF_MISMATCH
Impact: High

See Also
Declaration mismatch | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2016b

 Typedef mismatch

11-159

Universal character name from token
concatenation
You create a universal character name by joining tokens with ## operator

Description
This defect occurs when two preprocessing tokens joined with a ## operator create a universal
character name. A universal character name begins with \u or \U followed by hexadecimal digits. It
represents a character not found in the basic character set.

For instance, you form the character \u0401 by joining two tokens:

#define assign(uc1, uc2, val) uc1##uc2 = val
...
assign(\u04, 01, 4);

Risk

The C11 Standard (Sec. 5.1.1.2) states that if a universal character name is formed by token
concatenation, the behavior is undefined.

Fix

Use the universal character name directly instead of producing it through token concatenation.

Examples
Universal Character Name from Token Concatenation

#define assign(uc1, uc2, val) uc1##uc2 = val

int func(void) {
 int \u0401 = 0;
 assign(\u04, 01, 4);
 return \u0401;
}

In this example, the assign macro, when expanded, joins the two tokens \u04 and 01 to form the
universal character name \u0401.

Correction — Use Universal Character Name Directly

One possible correction is to use the universal character name \u0401 directly. The correction
redefines the assign macro so that it does not join tokens.

#define assign(ucn, val) ucn = val

int func(void) {
 int \u0401 = 0;
 assign(\u0401, 4);
 return \u0401;
}

11 Programming Defects

11-160

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: PRE_UCNAME_JOIN_TOKENS
Impact: Low

See Also
MISRA C:2012 Rule 20.10 | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

 Universal character name from token concatenation

11-161

Unnamed namespace in header file
Header file contains unnamed namespace leading to multiple definitions

Description
This defect occurs when an unnamed namespace is used in a header file, which can lead to multiple
definitions of objects in the namespace.

Risk

According to the C++ standard, names in an unnamed namespace, for instance, aVar:

namespace {
 int aVar;
}

have internal linkage by default. If a header file contains an unnamed namespace, each translation
unit with a source file that #include-s the header file defines its own instance of objects in the
namespace. The multiple definitions are probably not what you intended and can lead to unexpected
results, unwanted excess memory usage, or inadvertently violating the one-definition rule.

Fix

Specify names for namespaces in header files or avoid using namespaces in header files.

Examples
Unexpected Results from Unnamed Namespaces in Header Files

Header File: aHeader.h

namespace {
 int aVar;
}

First source file: aSource.cpp

#include "aHeader.h"
#include <iostream>

void setVar(int arg) {
 std::cout << "Current value: " << aVar << std::endl;
 aVar = arg;
 std::cout << "Value set at: " << aVar << std::endl;
}

Second source file: anotherSource.cpp

#include "aHeader.h"
#include <iostream>

extern void setVar(int);

11 Programming Defects

11-162

void resetVar() {
 std::cout << "Current value: " << aVar << std::endl;
 aVar = 0;
 std::cout << "Value set at: 0" << std::endl;
}

void main() {
 setVar(1);
 resetVar();
}

In this example, the unnamed namespace leads to two definitions of aVar in the translation unit from
aSource.cpp and the translation unit from anotherSource.cpp. The two definitions lead to
possible unexpected output:

Current value: 0
Value set at: 1
Current value: 0
Value set at: 0

Correction – Avoid the Unnamed Namespace

One possible correction is to avoid a namespace in the header file.

Header File: aHeader.h

extern int aVar;

First source file: aSource.cpp

#include "aHeader.h"
#include <iostream>

void setVar(int arg) {
 std::cout << "Current value: " << aVar << std::endl;
 aVar = arg;
 std::cout << "Value set at: " << aVar << std::endl;
}

Second source file: anotherSource.cpp

#include "aHeader.h"
#include <iostream>

extern void setVar(int);
int aVar;

void resetVar() {
 std::cout << "Current value: " << aVar << std::endl;
 aVar = 0;
 std::cout << "Value set at: 0" << std::endl;
}

void main() {
 setVar(1);
 resetVar();
}

You now see the expected sequence in the output:

 Unnamed namespace in header file

11-163

Current value: 0
Value set at: 1
Current value: 1
Value set at: 0

Result Information
Group: Programming
Language: C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: UNNAMED_NAMESPACE_IN_HEADER
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2019b

11 Programming Defects

11-164

Unsafe conversion between pointer and integer
Misaligned or invalid results from conversions between pointer and integer types

Description
This defect occurs when you convert between a pointer type, such as intptr_t, or uintprt_t, and
an integer type, such as enum, ptrdiff_t, or pid_t, or vice versa.

Risk

The mapping between pointers and integers is not always consistent with the addressing structure of
the environment.

Converting from pointers to integers can create:

• Truncated or out of range integer values.
• Invalid integer types.

Converting from integers to pointers can create:

• Misaligned pointers or misaligned objects.
• Invalid pointer addresses.

Fix

Where possible, avoid pointer-to-integer or integer-to-pointer conversions. If you want to convert a
void pointer to an integer, so that you do not change the value, use types:

• C99 — intptr_t or uintptr_t
• C90 — size_t or ssize_t

Examples
Integer to Pointer Conversions

unsigned int *badintptrcast(void)
{
 unsigned int *ptr0 = (unsigned int *)0xdeadbeef;
 char *ptr1 = (char *)0xdeadbeef;
 return (unsigned int *)(ptr0 - (unsigned int *)ptr1);
}

In this example, there are three conversions, two unsafe conversions and one safe conversion. The
first conversion of 0xdeadbeef to unsigned int* causes alignment issues for the pointer. The
second conversion of 0xdeadbeef to char * is safe because there are no alignment issues for char.
The third conversion in the return casts ptrdiff_t to a pointer. This pointer might or might not
point to an invalid address.

 Unsafe conversion between pointer and integer

11-165

Correction — Use intptr_t

One possible correction is to use intptr_t types to store the pointer address 0xdeadbeef. Also, you
can change the second pointer to an integer offset so that there is no longer a conversion from
ptrdiff_t to a pointer.

#include <stdint.h>

unsigned int *badintptrcast(void)
{
 intptr_t iptr0 = (intptr_t)0xdeadbeef;
 int offset = 0;
 return (unsigned int *)(iptr0 - offset);
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: BAD_INT_PTR_CAST
Impact: Medium
CWE ID: 465, 466, 587, 758

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2016b

11 Programming Defects

11-166

https://cwe.mitre.org/data/definitions/465.html
https://cwe.mitre.org/data/definitions/466.html
https://cwe.mitre.org/data/definitions/587.html
https://cwe.mitre.org/data/definitions/758.html

Unsafe conversion from string to numerical value
String to number conversion without validation checks

Description
This defect occurs when you perform conversions from strings to integer or floating-point values and
your conversion method does not include robust error handling.

Risk

Converting a string to numerical value can cause data loss or misinterpretation. Without validation of
the conversion or error handling, your program continues with invalid values.

Fix

• Add additional checks to validate the numerical value.
• Use a more robust string-to-numeric conversion function such as strtol, strtoll, strtoul, or

strtoull.

Examples
Conversion With atoi
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static int demo_check_string_not_empty(char *s)
{
 if (s != NULL)
 return strlen(s) > 0; /* check string null-terminated and not empty */
 else
 return 0;
}

int unsafestrtonumeric(char* argv1)
{
 int s = 0;
 if (demo_check_string_not_empty(argv1))
 {
 s = atoi(argv1);
 }
 return s;
}

In this example, argv1 is converted to an integer with atoi. atoi does not provide errors for an
invalid integer string. The conversion can fail unexpectedly.
Correction — Use strtol instead

One possible correction is to use strtol to validate the input string and the converted integer.

#include <stdio.h>
#include <stdlib.h>

 Unsafe conversion from string to numerical value

11-167

#include <string.h>
#include <limits.h>
#include <errno.h>

static int demo_check_string_not_empty(char *s)
{
 if (s != NULL)
 return strlen(s) > 0; /* check string null-terminated and not empty */
 else
 return 0;
}

int unsafestrtonumeric(char *argv1)
{
 char *c_str = argv1;
 char *end;
 long sl;

 if (demo_check_string_not_empty(c_str))
 {
 errno = 0; /* set errno for error check */
 sl = strtol(c_str, &end, 10);
 if (end == c_str)
 {
 (void)fprintf(stderr, "%s: not a decimal number\n", c_str);
 }
 else if ('\0' != *end)
 {
 (void)fprintf(stderr, "%s: extra characters: %s\n", c_str, end);
 }
 else if ((LONG_MIN == sl || LONG_MAX == sl) && ERANGE == errno)
 {
 (void)fprintf(stderr, "%s out of range of type long\n", c_str);
 }
 else if (sl > INT_MAX)
 {
 (void)fprintf(stderr, "%ld greater than INT_MAX\n", sl);
 }
 else if (sl < INT_MIN)
 {
 (void)fprintf(stderr, "%ld less than INT_MIN\n", sl);
 }
 else
 {
 return (int)sl;
 }
 }
 return 0;
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: UNSAFE_STR_TO_NUMERIC
Impact: Low

11 Programming Defects

11-168

CWE ID: 20, 253, 676

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2016b

 Unsafe conversion from string to numerical value

11-169

https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/253.html
https://cwe.mitre.org/data/definitions/676.html

Use of indeterminate string
Use of unvalidated buffer from fgets-family function

Description
This defect occurs when you do not check if a write operation using an fgets-family function such
as:

char * fgets(char* buf, int n, FILE *stream)

succeeded and the buffer written has valid content, or you do not reset the buffer on failure. You then
perform an operation that assumes a buffer with valid content. For instance, if the buffer with
possibly indeterminate content is buf (as shown above), the checker raises a defect if:

• You pass buf as argument to standard functions that print or manipulate strings or wide strings.
• You return buf from a function.
• You pass buf as argument to external functions with parameter type const char * or const

wchar_t *.
• You read buf as buf[index] or *(buf + offset), where index or offset is a numerical

value representing the distance from the beginning of the buffer.

Risk

If an fgets-family function fails, the content of its output buffer is indeterminate. Use of such a
buffer has undefined behavior and can result in a program that stops working or other security
vulnerabilities.

Fix

Reset the output buffer of an fgets-family function to a known string value when the function fails.

Examples
Output of fgets() Passed to External Function

#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <stdlib.h>

#define SIZE20 20

extern void display_text(const char *txt);

void func(void) {
 char buf[SIZE20];

 /* Check fgets() error */
 if (fgets (buf, sizeof (buf), stdin) == NULL)
 {
 /* 'buf' may contain an indeterminate string. */

11 Programming Defects

11-170

 ;
 }
 /* 'buf passed to external function */
 display_text(buf);
}

In this example, the output buf is passed to the external function display_text(), but its value is
not reset if fgets() fails.

Correction — Reset fgets() Output on Failure

If fgets() fails, reset buf to a known value before you pass it to an external function.

#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <stdlib.h>

#define SIZE20 20

extern void display_text(const char *txt);

void func1(void) {
 char buf[SIZE20];
 /* Check fgets() error */
 if (fgets (buf, sizeof (buf), stdin) == NULL)
 {
 /* value of 'buf' reset after fgets() failure. */
 buf[0] = '\0';
 }
 /* 'buf' passed to external function */
 display_text(buf);
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: INDETERMINATE_STRING
Impact: Medium

See Also
Invalid use of standard library string routine | Returned value of a sensitive
function not checked | Use of dangerous standard function | Find defects (-
checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

 Use of indeterminate string

11-171

Introduced in R2017b

11 Programming Defects

11-172

Use of memset with size argument zero
Size argument of function in memset family is zero

Description
This defect occurs when you call a function in the memset family with size argument zero. Functions
include memset, wmemset, bzero, SecureZeroMemory, RtlSecureZeroMemory, and so on.

Risk

void *memset (void *ptr, int value, size_t num) fills the first num bytes of the memory
block that ptr points to with the specified value. A zero value of num renders the call to memset
redundant. The memory that ptr points to:

• Remains uninitialized, if not previously initialized.
• Is not cleared and can contain sensitive data, if previously initialized.

Fix

Determine if the zero size argument occurs because of a previous error in your code. Fix the error.

Examples
Zero Size Argument of memset

#include <stdio.h>
#include <string.h>

void func (unsigned int size)
{
 char str[] = "Buffer to be filled.";
 memset (str,'-',size);
 puts (str);
}

void calling_func(void) {
 unsigned int buf_size=0;
 func(buf_size);
}

In this example, the argument size of memset is zero.

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: MEMSET_INVALID_SIZE
Impact: Medium
CWE ID: 665

 Use of memset with size argument zero

11-173

https://cwe.mitre.org/data/definitions/665.html

See Also
Find defects (-checkers) | Call to memset with unintended value

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

11 Programming Defects

11-174

Variable length array with nonpositive size
Size of variable-length array is zero or negative

Description
This defect occurs when size of a variable-length array is zero or negative.

Risk

If the size of a variable-length array is zero or negative, unexpected behavior can occur, such as stack
overflow.

Fix

When you declare a variable-length array as a local variable in a function:

• If you use a function parameter as the array size, check that the parameter is positive.
• If you use the result of a computation on a function parameter as the array size, check that the

result is positive.

You can place a test for positive value either before the function call or the array declaration in the
function body.

Examples
Nonpositive Array Size

int input(void);

void add_scalar(int n, int m) {
 int r=0;
 int arr[m][n];
 for (int i=0; i<m; i++) {
 for (int j=0; j<n; j++) {
 arr[i][j] = input();
 r += arr[i][j];
 }
 }
}

void main() {
 add_scalar(2,2);
 add_scalar(-1,2);
 add_scalar(2,0);
}

In this example, the second and third calls to add_scalar result in a negative and zero size of arr.

Correction — Make Array Size Positive

One possible correction is fix or remove calls that result in a nonpositive array size.

 Variable length array with nonpositive size

11-175

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: NON_POSITIVE_VLA_SIZE
Impact: High
CWE ID: 687

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

11 Programming Defects

11-176

https://cwe.mitre.org/data/definitions/687.html

Writing to const qualified object
Object declared with a const qualifier is modified

Description
This defect occurs when you do one of the following:

• Use a const-qualified object as the destination of an assignment.
• Pass a const-qualified object to a function that modifies the argument.

For instance, the defect can occur in the following situations:

• You pass a const-qualified object as first argument of one of the following functions:

• mkstemp
• mkostemp
• mkostemps
• mkdtemp

• You pass a const-qualified object as the destination argument of one of the following functions:

• strcpy
• strncpy
• strcat
• memset

• You perform a write operation on a const-qualified object.

Risk

The risk depends upon the modifications made to the const-qualified object.

Situation Risk
Passing to mkstemp, mkostemp, mkostemps,
mkdtemp, and so on.

These functions replace the last six characters of
their first argument with a string. Therefore, they
expect a modifiable char array as their first
argument.

Passing to strcpy, strncpy, strcat, memset
and so on.

These functions modify their destination
argument. Therefore, they expect a modifiable
char array as their destination argument.

Writing to the object The const qualifier implies an agreement that
the value of the object will not be modified. By
writing to a const-qualified object, you break the
agreement. The result of the operation is
undefined.

Fix

The fix depends on the modification made to the const-qualified object.

 Writing to const qualified object

11-177

Situation Fix
Passing to mkstemp, mkostemp, mkostemps,
mkdtemp, and so on.

Pass a non-const object as first argument of the
function.

Passing to strcpy, strncpy, strcat, memset
and so on.

Pass a non-const object as destination argument
of the function.

Writing to the object Perform the write operation on a non-const
object.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Writing to const-Qualified Object

#include <string.h>

const char* buffer = "abcdeXXXXXXX";

void func(char* string) {
 char *ptr = (char*)strchr(buffer,'X');
 if(ptr)
 strcpy(ptr,string);
}

In this example, because buffer is const-qualified, strchr(buffer,'X') returns a const-
qualified char* pointer. When this char* pointer is used as the destination argument of strcpy, a
Writing to const qualified object error appears.

Correction — Copy const-Qualified Object to Non-const Object

One possible correction is to assign the constant string to a non-const object and use the non-const
object as destination argument of strchr.

#include <string.h>

char buffer[] = "abcdeXXXXXXX";

void func(char* string) {
 char *ptr = (char*)strchr(buffer,'X');
 if(ptr)
 strcpy(ptr,string);
}

11 Programming Defects

11-178

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: CONSTANT_OBJECT_WRITE
Impact: High
CWE ID: 227, 471, 686

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

 Writing to const qualified object

11-179

https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/471.html
https://cwe.mitre.org/data/definitions/686.html

Wrong type used in sizeof
sizeof argument does not match pointed type

Description
This defect occurs when both of the following conditions hold:

• You assign the address of a block of memory to a pointer, or transfer data between two blocks of
memory. The assignment or copy uses the sizeof operator.

For instance, you initialize a pointer using malloc(sizeof(type)) or copy data between two
addresses using memcpy(destination_ptr, source_ptr, sizeof(type)).

• You use an incorrect type as argument of the sizeof operator. You use the pointer type instead of
the type that the pointer points to.

For instance, to initialize a type* pointer, you use malloc(sizeof(type*)) instead of
malloc(sizeof(type)).

Risk

Irrespective of what type stands for, the expression sizeof(type*) always returns a fixed size. The
size returned is the pointer size on your platform in bytes. The appearance of sizeof(type*) often
indicates an unintended usage. The error can cause allocation of a memory block that is much
smaller than what you need and lead to weaknesses such as buffer overflows.

For instance, assume that structType is a structure with ten int variables. If you initialize a
structType* pointer using malloc(sizeof(structType*)) on a 32-bit platform, the pointer is
assigned a memory block of four bytes. However, to be allocated completely for one structType
variable, the structType* pointer must point to a memory block of sizeof(structType) = 10 *
sizeof(int) bytes. The required size is much greater than the actual allocated size of four bytes.

Fix

To initialize a type* pointer, replace sizeof(type*) in your pointer initialization expression with
sizeof(type).

Examples
Allocate a Char Array With sizeof

#include <stdlib.h>

void test_case_1(void) {
 char* str;

 str = (char*)malloc(sizeof(char*) * 5);
 free(str);

}

11 Programming Defects

11-180

In this example, memory is allocated for the character pointer str using a malloc of five char
pointers. However, str is a pointer to a character, not a pointer to a character pointer. Therefore the
sizeof argument, char*, is incorrect.

Correction — Match Pointer Type to sizeof Argument

One possible correction is to match the argument to the pointer type. In this example, str is a
character pointer, therefore the argument must also be a character.

#include <stdlib.h>

void test_case_1(void) {
 char* str;

 str = (char*)malloc(sizeof(char) * 5);
 free(str);

}

Result Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: PTR_SIZEOF_MISMATCH
Impact: High
CWE ID: 467

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

 Wrong type used in sizeof

11-181

https://cwe.mitre.org/data/definitions/467.html

Non-compliance with AUTOSAR specification
An RTE API function is used with arguments that violate the AUTOSAR standard specification

Description
This defect occurs when you use an RTE API function with arguments that violate the AUTOSAR
standard specifications.

For instance, checks on Rte_Write_* or Rte_Byps_Write_* function calls determine if the
pointer-to-data argument in the call:

• Is NULL valued.
• Points to a memory buffer.
• Points to an initialized memory buffer.
• For buffers with enum values, values are within the enum range.

For more information on the RTE API specifications, see the AUTOSAR documentation.

To enable this check, use the value autosar for the option Libraries used (-library).

A more exhaustive version of the same checker is available with Code Prover. When checking for
AUTOSAR standard violations on an Rte_ function call, the Code Prover checker considers all
execution paths that lead to the function call (subject to verification assumptions).

Risk

The RTE function usage might lead to run-time errors.

Fix

The fix depends on the root cause of the defect. To diagnose this check, read the message on the
Result Details pane. The message shows all checks performed on the RTE API function, along with
information about whether the check passed. For instance, this message:

Shows the results of three checks, all three of which might fail. The first argument of the function
might be a null pointer, might not be allocated and might not point to initialized memory.

Investigate the root cause of the issue further.

11 Programming Defects

11-182

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_RTE.pdf

Examples
Rte_Byps_Write_* Argument Pointing to Statically Allocated Noninitialized Buffer

#include <stdlib.h>

// Type declarations that are typically in AUTOSAR header Rte_type.h
typedef unsigned char uint8_T;
typedef unsigned int uint32_T;
typedef uint8_T Std_ReturnType;

typedef struct {
 uint8_T color;
 uint32_T number;
}
colorNumber;

extern Std_ReturnType Rte_Byps_Write_out_colorNumber_1(colorNumber*);

void SendData() {
 colorNumber aColor;
 uint8_T copyColor;
 uint32_T copyNumber;

 colorNumber* aPtrColor = &aColor;
 Rte_Byps_Write_out_colorNumber_1(aPtrColor);

 copyColor = aColor.color;
 copyNumber = aColor.number;
}

In this example, the function Rte_Byps_Write_out_colorNumber_1 takes a pointer to a non-
initialized variable. The checker flags the function call because the pointer does not point to
initialized memory. To run this example, use the option -library autosar.

Rte_Byps_Write_* Argument Pointing to Dynamically Allocated Noninitialized Buffer

#include <stdlib.h>

// Type declarations that are typically in AUTOSAR header Rte_type.h
typedef unsigned char uint8_T;
typedef unsigned int uint32_T;
typedef uint8_T Std_ReturnType;

typedef struct {
 uint8_T color;
 uint32_T number;
}
colorNumber;
extern Std_ReturnType Rte_Byps_Write_out_colorNumber_2(colorNumber*);

void SendData() {
 colorNumber* arrayColorNumber = (colorNumber*) malloc(2*sizeof(colorNumber));
 uint8_T copyColor;
 uint32_T copyNumber;

 Non-compliance with AUTOSAR specification

11-183

 Rte_Byps_Write_out_colorNumber_2(arrayColorNumber);

 copyColor = arrayColorNumber[0].color;
 copyNumber = arrayColorNumber[0].number;
}

In this example, the function Rte_Byps_Write_out_colorNumber_2 takes a pointer returned from
a memory allocation with malloc. The checker flags the function call because the pointer does not
point to initialized memory. To run this example, use the option -library autosar.

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: autosar_lib_non_compliance
Impact: High

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2021a

11 Programming Defects

11-184

C string from string::c_str() compared to
pointer
The C string obtained from std::string::c_str() is compared to a pointer (or NULL)

Description
This defect occurs when a C string that is obtained by calling the std::string::c_str function is
compared to a pointer or a NULL. For instance, Polyspace flags the comparison operations in the if
statements in this code:

void foo(){
 //...
 std::string str{"loren ipsum"};
 //...
 const char pStr[] = "loren ipsum";
 const char* p = str.c_str();
 if(p==NULL){//Defect: Unnecessary

 }
 if(p==pStr){ //Defect: Compares pointer address
 //..
 }
 //..
}

Risk

Comparing a pointer to the C string obtained from a string has these risks:

• When you compare the output of std::string::c_str to a pointer, the addresses of the
pointers are compared. You might expect the compiler to compare the content of the pointers. For
instance, in the preceding code, you might expect that (p==pStr) evaluates to true because
both pointers contains loren ipsum. The compiler compares the addresses p and pStr, which
evaluates to false. Comparing pointers as a method of comparing strings produces unexpected
results.

• The C string p that is obtained by calling std::string::c_str() is always non-NULL. The
expression (p==NULL) always evaluates to false. Comparing such a C string to NULL might
produce unexpected results and indicates a logic error in the code.

Fix

To fix this issue:

• To compare the content of strings, use string functions or use operators with the string objects
directly.

• Because std::string::c_str() always returns a non-NULL value, remove the comparison to
NULL or refactor your logic.

 C string from string::c_str() compared to pointer

11-185

Examples
Avoid Comparing C Strings from string::c_str() to NULL

#include<string>
extern void setCategoryName(const char *);

void setName(const std::string &s)
{
 if (s.c_str() != NULL)//Defect
 {
 setCategoryName(s.c_str());
 }
}

In this example, the function setName sets the category name when the C string obtained from the
string s is non-NULL. You might expect the condition (s.c_str() != NULL) to evaluate to true only
when s contains a string of nonzero length. Because std::string::c_str() returns a non-NULL
value regardless of the content of the string object, the condition always evaluates to true. As a
result, this comparison is unnecessary and cannot detect empty strings.

Correction — Use string::empty to Detect Empty

To fix this defect, remove the comparison of the C string to NULL. To detect empty string, use
std::string::empty().

#include<string>

extern void setCategoryName(const char *);
void setName_possibleFix1(const std::string &s)
{
 setCategoryName(s.c_str());
}

void setName_possibleFix2(const std::string &s)
{
 if (!s.empty())
 {
 setCategoryName(s.c_str());
 }
}

Avoid Comparing C Strings From string::c_str() to Other Pointers

#include<string>
bool is_same(const std::string &s1, const std::string &s2)
{
 const char* pStr1 = s1.c_str();
 const char* pStr2 = s2.c_str();
 return (pStr1 == pStr2);//Defect
}
bool is_different(const std::string &s1, const char* Cstr)
{
 const char* pStr1 = s1.c_str();
 return (pStr1 != Cstr);//Defect
}

11 Programming Defects

11-186

In this example, C strings pStr1 and pStr2 are obtained by calling string::c_str() and then
compared to other pointers. In is_same, you might expect (pStr1 == pStr2) to evaluate to true
if the contents of s1 and s2 contains the same string. Because this operation is a pointer comparison,
it compares the address of the pointers pStr1 and pStr2 instead of the content of the string,
producing unexpected results.

When comparing string objects and C strings, you might expects comparison operations such as
(pStr1 != Cstr) to compare the content of the string and char pointer. Because this operation
compares the addresses of the pointers instead of the string contents, the results might be
unexpected.

Correction — Use Member Functions and Overloaded Operators of std::string

To fix this defect, use the member functions and overloaded operators of std::string to compare
strings and C strings.

#include <string>

bool is_same(const std::string &s1, const std::string &s2)
{
 return (s1 == s2);
}
bool is_different(const std::string &s1, const char* Cstr)
{
 return (s1!= Cstr);
}

Result Information
Group: Programming
Language: C++
Default: Off
Command-Line Syntax: STD_STRING_C_STR_COMPARED_TO_POINTER
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2021b

 C string from string::c_str() compared to pointer

11-187

Data Flow Defects

12

Code deactivated by constant false condition
Code segment deactivated by #if 0 directive or if(0) condition

Description
This defect occurs when a block of code is deactivated using a #if 0 directive or if(0) condition.

Risk

A #if 0 directive or if(0) condition is used to temporarily deactivate segments of code. If your
production code contains these directives, it means that the deactivation has not been lifted before
shipping the code.

Fix

If the segment of code is present for debugging purposes only, remove the segment from production
code. If the deactivation occurred by accident, remove the #if 0 and #endif statements.

Often, a segment of code is deactivated for specific conditions, for instance, a specific operating
system. Use macros with the #if directive to indicate these conditions instead of deactivating the
code completely with a #if 0 directive. For instance, GCC provides macros to detect the Windows
operating system:

#ifdef _WIN32
 //Code deactivated for all operating systems
 //Other than 32-bit Windows
#endif

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Code Deactivated by Constant False Condition Error

#include<stdio.h>
int Trim_Value(int* Arr,int Size,int Cutoff)
{
 int Count=0;

 for(int i=0;i < Size;i++){
 if(Arr[i]>Cutoff){
 Arr[i]=Cutoff;
 Count++;
 }
 }

12 Data Flow Defects

12-2

 #if 0
 /* Defect: Code Segment Deactivated */

 if(Count==0){
 printf("Values less than cutoff.");
 }
 #endif

 return Count;
}

In the preceding code, the printf statement is placed within a #if #endif directive. The software
treats the portion within the directive as code comments and not compiled.

Correction — Change #if 0 to #if 1

Unless you intended to deactivate the printf statement, one possible correction is to reactivate the
block of code in the #if #endif directive. To reactivate the block, change #if 0 to #if 1.

#include<stdio.h>
int Trim_Value(int* Arr,int Size,int Cutoff)
{
 int Count=0;

 for(int i=0;i < Size;i++)
 {
 if(Arr[i]>Cutoff)
 {
 Arr[i]=Cutoff;
 Count++;
 }
 }

 /* Fix: Replace #if 0 by #if 1 */
 #if 1
 if(Count==0)
 {
 printf("Values less than cutoff.");
 }
 #endif

 return Count;
}

Result Information
Group: Data flow
Language: C | C++
Default: off
Command-Line Syntax: DEACTIVATED_CODE
Impact: Low

See Also
Find defects (-checkers) | Unreachable code | Useless if | Dead code

 Code deactivated by constant false condition

12-3

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

12 Data Flow Defects

12-4

Dead code
Code does not execute

Description
This defect occurs when a block of code cannot be reached because of a condition that is always true
or false. This defect excludes:

• Code deactivated by constant false condition, which checks for directives with
compile-time constants such as #if 0 or if(0).

• Unreachable code, which checks for code after a control escape such as goto, break, or
return.

• Useless if, which checks for if statements that are always true.

Risk

Dead code wastes development time, memory and execution cycles. Developers have to maintain
code that is not being executed. Instructions that are not executed still have to be stored and cached.

Dead code often represents legacy code that is no longer used. Cleaning up dead code periodically
reduces future maintenance.

Fix

The fix depends on the root cause of the defect. For instance, the root cause can be an error condition
that is checked twice on the same execution path, making the second check redundant and the
corresponding block dead code.

Often the result details (or source code tooltips in Polyspace as You Code) show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show this event history, you can search for previous references of variables relevant to the defect
using right-click options in the source code and find related events. See also “Interpret Bug Finder
Results in Polyspace Desktop User Interface” or “Interpret Bug Finder Results in Polyspace Access
Web Interface”.

See examples of fixes below.

If you see dead code from use of functions such as isinf and isnan, enable an analysis mode that
takes into account non-finite values. See Consider non finite floats (-allow-non-finite-
floats).

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

 Dead code

12-5

Examples
Dead Code from if-Statement

#include <stdio.h>

int Return_From_Table(int ch){

 int table[5];

 /* Create a table */
 for(int i=0;i<=4;i++){
 table[i]=i^2+i+1;
 }

 if(table[ch]>100){ /* Defect: Condition always false */
 return 0;
 }
 return table[ch];
}

The maximum value in the array table is 4^2+4+1=21, so the test expression table[ch]>100
always evaluates to false. The return 0 in the if statement is not executed.

Correction — Remove Dead Code

One possible correction is to remove the if condition from the code.

#include <stdio.h>

int Return_From_Table(int ch){

 int table[5];

 /* Create a table */
 for(int i=0;i<=4;i++){
 table[i]=i^2+i+1;
 }

 return table[ch];
}

Dead Code for if with Enumerated Type

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void do_something(suit s);

void bridge(void)
{
 suit card = nextcard();
 if ((card < SPADES) || (card > CLUBS))
 card = UNKNOWN_SUIT;

 if (card > 7) {
 do_something(card);
 }
}

12 Data Flow Defects

12-6

The type suit is enumerated with five options. However, the conditional expression card > 7
always evaluates to false because card can be at most 5. The content in the if statement is not
executed.

Correction — Change Condition

One possible correction is to change the if-condition in the code. In this correction, the 7 is changed
to HEART to relate directly to the type of card.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void do_something(suit s);

void bridge(void)
{
 suit card = nextcard();
 if ((card < SPADES) || (card > CLUBS))
 card = UNKNOWN_SUIT;

 if (card > HEARTS) {
 do_something(card);
 }
}

Result Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: DEAD_CODE
Impact: Low
CWE ID: 561

See Also
Find defects (-checkers) | Unreachable code | Useless if | Code deactivated by
constant false condition

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

 Dead code

12-7

https://cwe.mitre.org/data/definitions/561.html

Missing return statement
Function does not return value though return type is not void

Description
This defect occurs when a function does not return a value along at least one execution path. This
defect does not occur if:

• The return type of the function is void.
• The execution path is terminated by a function that does not return the flow of execution, such as

a [[noreturn]] function.

Risk

If a function has a non-void return value in its signature, it is expected to return a value. The return
value of this function can be used in later computations. If the execution of the function body goes
through a path where a return statement is missing, the function return value is indeterminate.
Computations with this return value can lead to unpredictable results.

Fix

In most cases, you can fix this defect by placing the return statement at the end of the function
body. If your code has execution paths that do not return the flow of execution, specify them by using
the attribute [[noreturn]].

Alternatively, you can identify which execution paths through the function body do not have a return
statement and add a return statement on those paths. Often the result details (or source code
tooltips in Polyspace as You Code) show a sequence of events that led to the defect. You can
implement the fix on any event in the sequence. If the result details do not show this event history,
you can search for previous references of variables relevant to the defect using right-click options in
the source code and find related events. See also “Interpret Bug Finder Results in Polyspace Desktop
User Interface” or “Interpret Bug Finder Results in Polyspace Access Web Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

If the analysis flags a missing return statement on a path where a process termination function
exists, you can make the analysis aware of the process termination function using the option -
termination-functions.

12 Data Flow Defects

12-8

Examples
Missing or invalid return statement error

int AddSquares(int n)
 {
 int i=0;
 int sum=0;

 if(n!=0)
 {
 for(i=1;i<=n;i++)
 {
 sum+=i^2;
 }
 return(sum);
 }
 }
/* Defect: No return value if n is not 0*/

If n is equal to 0, the code does not enter the if statement. Therefore, the function AddSquares
does not return a value if n is 0.

Correction — Place Return Statement on Every Execution Path

One possible correction is to return a value in every branch of the if...else statement.

 int AddSquares(int n)
 {
 int i=0;
 int sum=0;

 if(n!=0)
 {
 for(i=1;i<=n;i++)
 {
 sum+=i^2;
 }
 return(sum);
 }

 /*Fix: Place a return statement on branches of if-else */
 else
 return 0;
 }

Result Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: MISSING_RETURN
Impact: Low

See Also
Find defects (-checkers)

 Missing return statement

12-9

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

12 Data Flow Defects

12-10

Non-initialized pointer
Pointer not initialized before dereference

Description
This defect occurs when a pointer is not assigned an address before dereference.

Risk

Unless a pointer is explicitly assigned an address, it points to an unpredictable location.

Fix

The fix depends on the root cause of the defect. For instance, you assigned an address to the pointer
but the assignment is unreachable.

Often the result details (or source code tooltips in Polyspace as You Code) show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show this event history, you can search for previous references of variables relevant to the defect
using right-click options in the source code and find related events. See also “Interpret Bug Finder
Results in Polyspace Desktop User Interface” or “Interpret Bug Finder Results in Polyspace Access
Web Interface”.

See examples of fixes below. It is a good practice to initialize a pointer to NULL when declaring the
pointer.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Non-initialized pointer error

#include <stdlib.h>

int* assign_pointer(int* prev)
{
 int j = 42;
 int* pi;

 if (prev == NULL)
 {
 pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return NULL;
 }

 Non-initialized pointer

12-11

 *pi = j;
 /* Defect: Writing to uninitialized pointer */

 return pi;
}

If prev is not NULL, the pointer pi is not assigned an address. However, pi is dereferenced on every
execution paths, irrespective of whether prev is NULL or not.

Correction — Initialize Pointer on Every Execution Path

One possible correction is to assign an address to pi when prev is not NULL.

#include <stdlib.h>

int* assign_pointer(int* prev)
{
 int j = 42;
 int* pi;

 if (prev == NULL)
 {
 pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return NULL;
 }
 /* Fix: Initialize pi in branches of if statement */
 else
 pi = prev;

 *pi = j;

 return pi;
}

Result Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: NON_INIT_PTR
Impact: High
CWE ID: 456, 457, 824, 908

See Also
Find defects (-checkers) | Non-initialized variable

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

12 Data Flow Defects

12-12

https://cwe.mitre.org/data/definitions/456.html
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/824.html
https://cwe.mitre.org/data/definitions/908.html

Non-initialized variable
Variable not initialized before use

Description
This defect occurs when a variable is not initialized before its value is read.

Risk

Unless a variable is explicitly initialized, the variable value is unpredictable. You cannot rely on the
variable having a specific value.

Fix

The fix depends on the root cause of the defect. For instance, you assigned a value to the variable but
the assignment is unreachable or you assigned a value to the variable in one of two branches of a
conditional statement. Fix the unreachable code or missing assignment.

Often the result details (or source code tooltips in Polyspace as You Code) show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show this event history, you can search for previous references of variables relevant to the defect
using right-click options in the source code and find related events. See also “Interpret Bug Finder
Results in Polyspace Desktop User Interface” or “Interpret Bug Finder Results in Polyspace Access
Web Interface”.

See examples of fixes below. It is a good practice to initialize a variable at declaration.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Non-initialized variable error

int get_sensor_value(void)
{
 extern int getsensor(void);
 int command;
 int val;

 command = getsensor();
 if (command == 2)
 {
 val = getsensor();
 }

 Non-initialized variable

12-13

 return val;
 /* Defect: val does not have a value if command is not 2 */
}

If command is not 2, the variable val is unassigned. In this case, the return value of function
get_sensor_value is undetermined.

Correction — Initialize During Declaration

One possible correction is to initialize val during declaration so that the initialization is not bypassed
on some execution paths.

int get_sensor_value(void)
{
 extern int getsensor(void);
 int command;
 /* Fix: Initialize val */
 int val=0;

 command = getsensor();
 if (command == 2)
 {
 val = getsensor();
 }

 return val;
 }

val is assigned an initial value of 0. When command is not equal to 2, the function
get_sensor_value returns this value.

Result Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: NON_INIT_VAR
Impact: High
CWE ID: 456, 457, 908

See Also
Find defects (-checkers) | Non-initialized pointer

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Extend Checkers for Initialization to Check Function Arguments Passed by Pointers”

Introduced in R2013b

12 Data Flow Defects

12-14

https://cwe.mitre.org/data/definitions/456.html
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/908.html

Partially accessed array
Array partly read or written before end of scope

Description
This defect occurs when an array is partially read or written before the end of array scope. For arrays
local to a function, the end of scope occurs when the function ends.

Risk

A partially accessed array often indicates an omission in coding. For instance, when sorting an array
using a loop, you used a number of loop iterations such that one array element is never read. The
implementation can result in an array that is not fully sorted.

Fix

The fix depends on the root cause of the defect. For instance, if the root cause is a loop with an
incorrect number of iterations, change the loop bound or add a step after the loop to access the
unread or unwritten elements.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Partially accessed array error

int Calc_Sum(void)
{
 int tab[5]={0,1,2,3,4},sum=0;
 /* Defect: tab[4] is not read */

 for (int i=0; i<4;i++) sum+=tab[i];

 return(sum);

 }

The array tab is only partially read before end of function Calc_Sum. While calculating sum, tab[4]
is not included.
Correction — Access Every Array Element

One possible correction is to read every element in the array tab.

 Partially accessed array

12-15

int Calc_Sum(void)
{
 int tab[5]={0,1,2,3,4},sum=0;

 /* Fix: Include tab[4] in calculating sum */
 for (int i=0; i<5;i++) sum+=tab[i];

 return(sum);

 }

Result Information
Group: Data flow
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: PARTIALLY_ACCESSED_ARRAY
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

12 Data Flow Defects

12-16

Pointer to non-initialized value converted to const
pointer
Pointer to constant assigned address that does not contain a value

Description
This defect occurs when a pointer to a constant (const int*, const char*, etc.) is assigned an
address that does not yet contain a value.

Risk

A pointer to a constant stores a value that must not be changed later in the program. If you assign the
address of a non-initialized variable to the pointer, it now points to an address with garbage values
for the remainder of the program.

Fix

Initialize a variable before assigning its address to a pointer to a constant.

Examples
Pointer to non initialized value converted to const pointer error
#include<stdio.h>

void Display_Parity()
 {
 int num,parity;
 const int* num_ptr = #
 /* Defect: Address &num does not store a value */

 printf("Enter a number\n:");
 scanf("%d",&num);

 parity=((*num_ptr)%2);
 if(parity==0)
 printf("The number is even.");
 else
 printf("The number is odd.");

 }

num_ptr is declared as a pointer to a constant. However the variable num does not contain a value
when num_ptr is assigned the address &num.
Correction — Store Value in Address Before Assignment to Pointer

One possible correction is to obtain the value of num from the user before &num is assigned to
num_ptr.

#include<stdio.h>

 Pointer to non-initialized value converted to const pointer

12-17

void Display_Parity()
 {
 int num,parity;
 const int* num_ptr;

 printf("Enter a number\n:");
 scanf("%d",&num);

 /* Fix: Assign &num to pointer after it receives a value */
 num_ptr=#
 parity=((*num_ptr)%2);
 if(parity==0)
 printf("The number is even.");
 else
 printf("The number is odd.");
 }

The scanf statement stores a value in &num. Once the value is stored, it is legitimate to assign &num
to num_ptr.

Result Information
Group: Data flow
Language: C | C++
Default: Off
Command-Line Syntax: NON_INIT_PTR_CONV
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

12 Data Flow Defects

12-18

Static uncalled function
Function with static scope not called in file

Description
This defect occurs when a static function is not called in the same file where it is defined.

Risk

Uncalled functions often result from legacy code and cause unnecessary maintenance.

Fix

If the function is not meant to be called, remove the function. If the function is meant for debugging
purposes only, wrap the function definition in a debug macro.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Uncalled function error

Save the following code in the file Initialize_Value.c

#include <stdlib.h>
#include <stdio.h>

static int Initialize(void)
/* Defect: Function not called */
 {
 int input;
 printf("Enter an integer:");
 scanf("%d",&input);
 return(input);
 }

 void main()
 {
 int num;

 num=0;

 printf("The value of num is %d",num);
 }

 Static uncalled function

12-19

The static function Initialize is not called in the file Initialize_Value.c.

Correction — Call Function at Least Once

One possible correction is to call Initialize at least once in the file Initialize_Value.c.

#include <stdlib.h>
#include <stdio.h>

static int Initialize(void)
 {
 int input;
 printf("Enter an integer:");
 scanf("%d",&input);
 return(input);
 }

 void main()
 {
 int num;

 /* Fix: Call static function Initialize */
 num=Initialize();

 printf("The value of num is %d",num);
 }

Result Information
Group: Data flow
Language: C | C++
Default: Off
Command-Line Syntax: UNCALLED_FUNC
Impact: Low
CWE ID: 561

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

12 Data Flow Defects

12-20

https://cwe.mitre.org/data/definitions/561.html

Unreachable code
Code not executed because of preceding control-flow statements

Description
This defect occurs when a section of code cannot be reached because of a previous break in control
flow.

Statements such as break, goto, and return, move the flow of the program to another section or
function. Because of this flow escape, the statements following the control-flow code, statistically, do
not execute, and therefore the statements are unreachable.

This check also finds code following trivial infinite loops, such as while(1). These types of loops only
release the flow of the program by exiting the program. This type of exit causes code after the infinite
loop to be unreachable.

Risk

Unreachable code wastes development time, memory and execution cycles. Developers have to
maintain code that is not being executed. Instructions that are not executed still have to be stored
and cached.

Fix

The fix depends on the intended functionality of the unreachable code. If you want the code to be
executed, check the placement of the code or the prior statement that diverts the control flow. For
instance, if the unreachable code follows a return statement, you might have to switch their order
or remove the return statement altogether.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Unreachable Code After Return

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void guess(suit s);

suit deal(void){
 suit card = nextcard();
 if((card < SPADES) || (card > CLUBS))
 card = UNKNOWN_SUIT;
 return card;

 Unreachable code

12-21

 if (card < HEARTS) {
 guess(card);
 }
 return card;
}

In this example, there are missing braces and misleading indentation. The first return statement
changes the flow of code back to where the function was called. Because of this return statement, the
if-block and second return statement do not execute.

If you correct the indentation and the braces, the error becomes clearer.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void guess(suit s);

suit deal(void){
 suit card = nextcard();
 if((card < SPADES) || (card > CLUBS)){
 card = UNKNOWN_SUIT;
 }
 return card;

 if (card < HEARTS) {
 guess(card);
 }
 return card;
}

Correction — Remove Return

One possible correction is to remove the escape statement. In this example, remove the first return
statement to reach the final if statement.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void guess(suit s);

suit deal(void){
 suit card = nextcard();
 if((card < SPADES) || (card > CLUBS))
 {
 card = UNKNOWN_SUIT;
 }

 if(card < HEARTS)
 {
 guess(card);
 }
 return card;
}

Correction — Remove Unreachable Code

Another possible correction is to remove the unreachable code if you do not need it. Because the
function does not reach the second if-statement, removing it simplifies the code and does not change
the program behavior.

12 Data Flow Defects

12-22

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void guess(suit s);

suit deal(void){
 suit card = nextcard();
 if((card < SPADES) || (card > CLUBS))
 {
 card = UNKNOWN_SUIT;
 }
 return card;
}

Infinite Loop Causing Unreachable Code

int add_apples(int apple) {
 int count = 1;
 while(1) {
 if(apple < 99){
 apple++;
 count++;
 }else{
 count--;
 }
 }
 return count;
}

In this example, the while(1) statement creates an infinite loop. The return count statement
following this infinite loop is unreachable because the only way to exit this infinite loop is to exit the
program.

Correction — Rewrite Loop Condition

One possible correction is to change the loop condition to make the while loop finite. In the example
correction here, the loop uses the statement from the if condition: apple < 99.

int add_apples1(int apple) {
 int count = 0;
 while(apple < 99) {
 apple++;
 count++;
 }
 if(count == 0)
 count = -1;
 return count;
}

Correction — Add a Break Statement

Another possible correction is to add a break from the infinite loop, so there is a possibility of
reaching code after the infinite loop. In this example, a break is added to the else block making the
return count statement reachable.

int add_apples(int apple) {
 int count = 1;
 while(1) {
 if(apple < 99)

 Unreachable code

12-23

 {
 apple++;
 count++;
 }else{
 count--;
 break;
 }
 }
 return count;
}

Correction — Remove Unreachable Code

Another possible correction is to remove the unreachable code. This correction cleans up the code
and makes it easier to review and maintain. In this example, remove the return statement and change
the function return type to void.

void add_apples(int apple) {
 int count = 1;
 while(1) {
 if(apple < 99)
 {
 apple++;
 count++;
 }else{
 count--;
 }
 }
}

Result Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: UNREACHABLE
Impact: Medium
CWE ID: 561

See Also
Find defects (-checkers) | Dead code | Useless if | Code deactivated by constant
false condition

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

12 Data Flow Defects

12-24

https://cwe.mitre.org/data/definitions/561.html

Useless if
Unnecessary if conditional

Description
This defect occurs on if-statements where the condition is always true. This defect occurs only on if-
statements that do not have an else-statement.

This defect shows unnecessary if-statements when there is no difference in code execution if the if-
statement is removed.

Risk

Unnecessary if statements often indicate a coding error. Perhaps the if condition is coded
incorrectly or the if statement is not required at all.

Fix

The fix depends on the root cause of the defect. For instance, the root cause can be an error condition
that is checked twice on the same execution path, making the second check redundant.

Often the result details (or source code tooltips in Polyspace as You Code) show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show this event history, you can search for previous references of variables relevant to the defect
using right-click options in the source code and find related events. See also “Interpret Bug Finder
Results in Polyspace Desktop User Interface” or “Interpret Bug Finder Results in Polyspace Access
Web Interface”.

See examples of fixes below.

If the redundant condition represents defensive coding practices and you do not want to fix the issue,
add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
if with Enumerated Type

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void do_something(suit s);

void bridge(void)
{
 suit card = nextcard();
 if ((card < SPADES) || (card > CLUBS)){

 Useless if

12-25

 card = UNKNOWN_SUIT;
 }

 if (card < 7) {
 do_something(card);
 }
}

The type suit is enumerated with five options. However, the conditional expression card < 7
always evaluates to true because card can be at most 5. The if statement is unnecessary.

Correction — Change Condition

One possible correction is to change the if-condition in the code. In this correction, the 7 is changed
to UNKNOWN_SUIT to relate directly to the type of card.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void do_something(suit s);

void bridge(void)
{
 suit card = nextcard();
 if ((card < SPADES) || (card > CLUBS)){
 card = UNKNOWN_SUIT;
 }

 if (card > UNKNOWN_SUIT) {
 do_something(card);
 }
}

Correction — Remove If

Another possible correction is to remove the if-condition in the code. Because the condition is always
true, you can remove the condition to simplify your code.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void do_something(suit s);

void bridge(void)
{
 suit card = nextcard();
 if ((card < SPADES) || (card > CLUBS)){
 card = UNKNOWN_SUIT;
 }

 do_something(card);
}

Result Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: USELESS_IF

12 Data Flow Defects

12-26

Impact: Medium

See Also
Find defects (-checkers) | Unreachable code | Dead code | Code deactivated by
constant false condition

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

 Useless if

12-27

Variable shadowing
Variable hides another variable of same name with nested scope

Description
This defect occurs when a variable hides another variable of the same name in an outer scope.

For instance, if a local variable has the same name as a global variable, the local variable hides the
global variable during its lifetime.

Risk

When two variables with the same name exist in an inner and outer scope, any reference to the
variable name uses the variable in the inner scope. However, a developer or reviewer might
incorrectly expect that the variable in the outer scope was used.

Fix

The fix depends on the root cause of the defect. For instance, suppose you refactor a function such
that you use a local static variable in place of a global variable. In this case, the global variable is
redundant and you can remove its declaration. Alternatively, if you are not sure if the global variable
is used elsewhere, you can modify the name of the local static variable and all references within the
function.

If the shadowing is intended and you do not want to fix the issue, add comments to your result or
code to avoid another review. See

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Variable Shadowing Error

#include <stdio.h>

int fact[5]={1,2,6,24,120};

int factorial(int n)
 {
 int fact=1;
 /*Defect: Local variable hides global array with same name */

 for(int i=1;i<=n;i++)
 fact*=i;

 return(fact);
 }

12 Data Flow Defects

12-28

Inside the factorial function, the integer variable fact hides the global integer array fact.

Correction — Change Variable Name

One possible correction is to change the name of one of the variables, preferably the one with more
local scope.

#include <stdio.h>

int fact[5]={1,2,6,24,120};

int factorial(int n)
 {
 /* Fix: Change name of local variable */
 int f=1;

 for(int i=1;i<=n;i++)
 f*=i;

 return(f);
 }

Result Information
Group: Data flow
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: VAR_SHADOWING
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

 Variable shadowing

12-29

Write without a further read
Variable never read after assignment

Description
This defect occurs when a value assigned to a variable is never read.

For instance, you write a value to a variable and then write a second value before reading the
previous value. The first write operation is redundant.

Risk

Redundant write operations often indicate programming errors. For instance, you forgot to read the
variable between two successive write operations or unintentionally read a different variable.

Fix

Identify the reason why you write to the variable but do not read it later. Look for common
programming errors such as accidentally reading a different variable with a similar name.

If you determine that the write operation is redundant, remove the operation.

Examples
Write Without Further Read Error

void sensor_amplification(void)
{
 extern int getsensor(void);
 int level;

 level = 4 * getsensor();
 /* Defect: Useless write */
}

After the variable level gets assigned the value 4 * getsensor(), it is not read.

Correction — Use Value After Assignment

One possible correction is to use the variable level after the assignment.

#include <stdio.h>

void sensor_amplification(void)
{
 extern int getsensor(void);
 int level;

 level = 4 * getsensor();

 /* Fix: Use level after assignment */
 printf("The value is %d", level);

12 Data Flow Defects

12-30

}

The variable level is printed, reading the new value.

Result Information
Group: Data flow
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: USELESS_WRITE
Impact: Low
CWE ID: 398

See Also
Find defects (-checkers) | MISRA C:2012 Rule 2.2

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

 Write without a further read

12-31

https://cwe.mitre.org/data/definitions/398.html

Security Defects

13

Bad order of dropping privileges
Dropped higher elevated privileges before dropping lower elevated privileges

Description
This defect occurs when you use functions such as setuid and setgid in the incorrect order,
dropping higher elevated privileges before dropping lower elevated privileges. For example, you drop
elevated primary group privileges before dropping elevated ancillary group privileges.

Risk

If you drop privileges in the wrong order, you can potentially drop higher privileges that you need to
drop lower privileges. The incorrect order can mean that privileges are not dropped compromising
the security of your program.

Fix

Respect this order of dropping elevated privileges:

• Drop (elevated) ancillary group privileges, then drop (elevated) primary group privileges.
• Drop (elevated) primary group privileges, then drop (elevated) user privileges.

Examples
Dropping User Privileges First

#define _BSD_SOURCE
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
#include <stdlib.h>
#define fatal_error() abort()

static void sanitize_privilege_drop_check(uid_t olduid, gid_t oldgid)
{
 if (seteuid(olduid) != -1)
 {
 /* Privileges can be restored, handle error */
 fatal_error();
 }
 if (setegid(oldgid) != -1)
 {
 /* Privileges can be restored, handle error */
 fatal_error();
 }
}
void badprivilegedroporder(void) {
 uid_t
 newuid = getuid(),
 olduid = geteuid();
 gid_t
 newgid = getgid(),

13 Security Defects

13-2

 oldgid = getegid();

 if (setuid(newuid) == -1) {
 /* handle error condition */
 fatal_error();
 }
 if (setgid(newgid) == -1) {
 /* handle error condition */
 fatal_error();
 }
 if (olduid == 0) {
 /* drop ancillary groups IDs only possible for root */
 if (setgroups(1, &newgid) == -1) {
 /* handle error condition */
 fatal_error();
 }
 }

 sanitize_privilege_drop_check(olduid, oldgid);
}

In this example, there are two privilege drops made in the incorrect order. setgid attempts to drop
group privileges. However, setgid requires the user privileges, which were dropped previously
using setuid, to perform this function. After dropping group privileges, this function attempts to
drop ancillary groups privileges by using setgroups. This task requires the higher primary group
privileges that were dropped with setgid. At the end of this function, it is possible to regain group
privileges because the order of dropping privileges was incorrect.
Correction — Reverse Privilege Drop Order

One possible correction is to drop the lowest level privileges first. In this correction, ancillary group
privileges are dropped, then primary group privileges are dropped, and finally user privileges are
dropped.

#define _BSD_SOURCE
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
#include <stdlib.h>
#define fatal_error() abort()

static void sanitize_privilege_drop_check(uid_t olduid, gid_t oldgid)
{
 if (seteuid(olduid) != -1)
 {
 /* Privileges can be restored, handle error */
 fatal_error();
 }
 if (setegid(oldgid) != -1)
 {
 /* Privileges can be restored, handle error */
 fatal_error();
 }
}
void badprivilegedroporder(void) {
 uid_t
 newuid = getuid(),
 olduid = geteuid();

 Bad order of dropping privileges

13-3

 gid_t
 newgid = getgid(),
 oldgid = getegid();

 if (olduid == 0) {
 /* drop ancillary groups IDs only possible for root */
 if (setgroups(1, &newgid) == -1) {
 /* handle error condition */
 fatal_error();
 }
 }
 if (setgid(getgid()) == -1) {
 /* handle error condition */
 fatal_error();
 }
 if (setuid(getuid()) == -1) {
 /* handle error condition */
 fatal_error();
 }

 sanitize_privilege_drop_check(olduid, oldgid);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: BAD_PRIVILEGE_DROP_ORDER
Impact: High
CWE ID: 250, 696

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2016b

13 Security Defects

13-4

https://cwe.mitre.org/data/definitions/250.html
https://cwe.mitre.org/data/definitions/696.html

Deterministic random output from constant seed
Seeding routine uses a constant seed making the output deterministic

Description
This defect occurs when you use standard random number generator functions that have
deterministic output given a constant seed.

The checker detects this issue with the following random number generator functions:

• C Standard Library functions such as srand, srandom and initstate
• OpenSSL functions such as RAND_seed and RAND_add
• C++ Standard Library functions such as std::linear_congruential_engine<>::seed()

and std::mersenne_twister_engine<>::seed() (and also the constructors of these class
templates)

Risk

With constant seeds, random number generator functions produce the same output every time your
program is run. A hacker can disrupt your program if they know how your program behaves.

Fix

Use a different random standard function or use a nonconstant seed.

Some standard random routines are inherently cryptographically weak on page 13-86, and should
not be used for security purposes.

Examples
Random Number Generator Initialization

#include <stdlib.h>

void random_num(void)
{
 srand(12345U);
 /* ... */
}

This example initializes a random number generator using srand with a constant seed. The random
number generation is deterministic, making this function cryptographically weak.
Correction — Use Different Random Number Generator

One possible correction is to use a random number generator that does not require a seed. This
example uses rand_s.

#define _CRT_RAND_S
#include <stdlib.h>

 Deterministic random output from constant seed

13-5

#include <stdio.h>

unsigned int random_num_time(void)
{

 unsigned int number;
 errno_t err;
 err = rand_s(&number);

 if(err != 0)
 {
 return number;
 }
 else
 {
 return err;
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: RAND_SEED_CONSTANT
Impact: Medium
CWE ID: 330, 336

See Also
Predictable random output from predictable seed | Unsafe standard encryption
function | Vulnerable pseudo-random number generator | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

13 Security Defects

13-6

https://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/336.html

Errno not checked
errno is not checked for error conditions following function call

Description
This defect occurs when you call a function that sets errno to indicate error conditions, but do not
check errno after the call. For these functions, checking errno is the only reliable way to determine
if an error occurred.

Functions that set errno on errors include:

• fgetwc, strtol, and wcstol.

For a comprehensive list of functions, see documentation about errno.
• POSIX errno-setting functions such as encrypt and setkey.

Risk

To see if the function call completed without errors, check errno for error values.

The return values of these errno-setting functions do not indicate errors. The return value can be
one of the following:

• void
• Even if an error occurs, the return value can be the same as the value from a successful call. Such

return values are called in-band error indicators.

You can determine if an error occurred only by checking errno.

For instance, strtol converts a string to a long integer and returns the integer. If the result of
conversion overflows, the function returns LONG_MAX and sets errno to ERANGE. However, the
function can also return LONG_MAX from a successful conversion. Only by checking errno can you
distinguish between an error and a successful conversion.

Fix

Before calling the function, set errno to zero.

After the function call, to see if an error occurred, compare errno to zero. Alternatively, compare
errno to known error indicator values. For instance, strtol sets errno to ERANGE to indicate
errors.

The error message in the Polyspace result shows the error indicator value that you can compare to.

Examples
errno Not Checked After Call to strtol

#include<stdio.h>
#include<stdlib.h>
#include<errno.h>

 Errno not checked

13-7

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152351

int main(int argc, char *argv[]) {
 char *str, *endptr;
 int base;

 str = argv[1];
 base = 10;

 long val = strtol(str, &endptr, base);
 printf("Return value of strtol() = %ld\n", val);
}

You are using the return value of strtol without checking errno.

Correction — Check errno After Call

Before calling strtol, set errno to zero . After a call to strtol, check the return value for
LONG_MIN or LONG_MAX and errno for ERANGE.

#include<stdlib.h>
#include<stdio.h>
#include<errno.h>
#include<limits.h>

int main(int argc, char *argv[]) {
 char *str, *endptr;
 int base;

 str = argv[1];
 base = 10;

 errno = 0;
 long val = strtol(str, &endptr, base);
 if((val == LONG_MIN || val == LONG_MAX) && errno == ERANGE) {
 printf("strtol error");
 exit(EXIT_FAILURE);
 }
 printf("Return value of strtol() = %ld\n", val);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: ERRNO_NOT_CHECKED
Impact: Medium
CWE ID: 253, 391

See Also
Find defects (-checkers) | Returned value of a sensitive function not checked |
Errno not reset | Misuse of errno

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”

13 Security Defects

13-8

https://cwe.mitre.org/data/definitions/253.html
https://cwe.mitre.org/data/definitions/391.html

“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017a

 Errno not checked

13-9

Execution of a binary from a relative path can be
controlled by an external actor
Command with relative path is vulnerable to malicious attack

Description
This defect occurs when you call an external command with a relative path or without a path.

This defect also finds results that the Execution of externally controlled command defect checker
finds.

Risk

By using a relative path or no path to call an external command, your program uses an unsafe search
process to find the command. An attacker can control the search process and replace the intended
command with a command of their own.

Fix

When you call an external command, specify the full path.

Examples
Call Command with Relative Path

define _GNU_SOURCE
include <sys/types.h>
include <sys/socket.h>
include <unistd.h>
include <stdio.h>
include <stdlib.h>
include <wchar.h>
include <string.h>
define MAX_BUFFER 100

void rel_path()
{
 char * data;
 char data_buf[MAX_BUFFER] = "";
 data = data_buf;

 strcpy(data, "ls -la");
 FILE *pipe;
 pipe = popen(data, "wb");
 if (pipe != NULL) pclose(pipe);
}

In this example, Bug Finder flags popen because it tries to call ls -la using a relative path to the
ls command. An attacker can manipulate the command to use a malicious version.

13 Security Defects

13-10

Correction — Use Full Path

One possible correction is to use the full path when calling the command.

define _GNU_SOURCE
include <sys/types.h>
include <sys/socket.h>
include <unistd.h>
include <stdio.h>
include <stdlib.h>
include <wchar.h>
include <string.h>
define MAX_BUFFER 100

void rel_path()
{
 char * data;
 char data_buf[MAX_BUFFER] = "";
 data = data_buf;

 strcpy(data, "/usr/bin/ls -la");
 FILE *pipe;
 pipe = popen(data, "wb");
 if (pipe != NULL) pclose(pipe);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: RELATIVE_PATH_CMD
Impact: Medium
CWE ID: 114, 427

See Also
Load of library from a relative path can be controlled by an external actor |
Vulnerable path manipulation | Execution of externally controlled command |
Command executed from externally controlled path | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

 Execution of a binary from a relative path can be controlled by an external actor

13-11

https://cwe.mitre.org/data/definitions/114.html
https://cwe.mitre.org/data/definitions/427.html

File access between time of check and use
(TOCTOU)
File or folder might change state due to access race

Description
This defect occurs when a race condition happens between checking the existence of a file or folder,
and using the file or folder.

Risk

An attacker can access and manipulate your file between your check for the file and your use of a file.
Symbolic links are particularly risky because an attacker can change where your symbolic link points.

Fix

Before using a file, do not check its status. Instead, use the file and check the results afterward.

Examples
Check File Before Using

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

extern void print_tofile(FILE* f);

void toctou(char * log_path) {
 if (access(log_path, W_OK)==0) {
 FILE* f = fopen(log_path, "w");
 if (f) {
 print_tofile(f);
 fclose(f);
 }
 }
}

In this example, before opening and using the file, the function checks if the file exists. However, an
attacker can change the file between the first and second lines of the function.

Correction — Open Then Check

One possible correction is to open the file, and then check the existence and contents afterward.

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

extern void print_tofile(FILE* f);

void toctou(char * log_path) {

13 Security Defects

13-12

 int fd = open(log_path, O_WRONLY);
 if (fd!=-1) {
 FILE *f = fdopen(fd, "w");
 if (f) {
 print_tofile(f);
 fclose(f);
 }
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: TOCTOU
Impact: Medium
CWE ID: 367

See Also
Data race | Bad file access mode or status | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

 File access between time of check and use (TOCTOU)

13-13

https://cwe.mitre.org/data/definitions/367.html

File descriptor exposure to child process
Copied file descriptor used in multiple processes

Description
This defect occurs when a process is forked and the child process uses file descriptors inherited from
the parent process.

Risk

When you fork a child process, file descriptors are copied from the parent process, which means that
you can have concurrent operations on the same file. Use of the same file descriptor in the parent and
child processes can lead to race conditions that may not be caught during standard debugging. If you
do not properly manage the file descriptor permissions and privileges, the file content is vulnerable to
attacks targeting the child process.

Fix

Check that the file has not been modified before forking the process. Close all inherited file
descriptors and reopen them with stricter permissions and privileges, such as read-only permission.

Examples
File Descriptor Accessed from Forked Process

include <stdio.h>
include <stdlib.h>
include <string.h>
include <unistd.h>
include <fcntl.h>
include <sys/types.h>
include <sys/stat.h>

const char *test_file="/home/user/test.txt";

void func(void)
{
 char c;
 pid_t pid;
 /* create file descriptor in read and write mode */
 int fd = open(test_file, O_RDWR);
 if (fd == -1)
 {
 /* Handle error */
 abort();
 }
 /* fork process */
 pid = fork();
 if (pid == -1)
 {

13 Security Defects

13-14

 /* Handle error */
 abort();
 }
 else if (pid == 0)
 { /* Child process accesses file descriptor inherited
 from parent process */
 (void)read(fd, &c, 1);
 }
 else
 { /* Parent process access same file descriptor as
 child process */
 (void)read(fd, &c, 1);
 }
}

In this example, a file descriptor fd is created in read and write mode. The process is then forked.
The child process inherits and accesses fd with the same permissions as the parent process. A race
condition exists between the parent and child processes. The contents of the file is vulnerable to
attacks through the child process.

Correction — Close and Reopen Inherited File Descriptor

After you create the file descriptor, check the file for tampering. Then, close the inherited file
descriptor in the child process and reopen it in read-only mode.

include <stdio.h>
include <stdlib.h>
include <string.h>
include <unistd.h>
include <fcntl.h>
include <sys/types.h>
include <sys/stat.h>

const char *test_file="/home/user/test.txt";

void func(void)
{
 char c;
 pid_t pid;

 /* Get the state of file for further file tampering checking */

 /* create file descriptor in read and write mode */
 int fd = open(test_file, O_RDWR);
 if (fd == -1)
 {
 /* Handle error */
 abort();
 }

 /* Be sure the file was not tampered with while opening */

 /* fork process */

 pid = fork();
 if (pid == -1)

 File descriptor exposure to child process

13-15

 {
 /* Handle error */
 (void)close(fd);
 abort();
 }
 else if (pid == 0)
 { /* Close file descriptor in child process and repoen
 it in read only mode */

 (void)close(fd);
 fd = open(test_file, O_RDONLY);
 if (fd == -1)
 {
 /* Handle error */
 abort();
 }

 (void)read(fd, &c, 1);
 (void)close(fd);
 }
 else
 { /* Parent acceses original file descriptor */
 (void)read(fd, &c, 1);
 (void)close(fd);
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: FILE_EXPOSURE_TO_CHILD
Impact: Medium
CWE ID: 362

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017b

13 Security Defects

13-16

https://cwe.mitre.org/data/definitions/362.html

File manipulation after chroot() without
chdir("/")
Path-related vulnerabilities for file manipulated after call to chroot

Description
This defect occurs when you have access to a file system outside of the jail created by chroot. By
calling chroot, you create a file system jail that confines access to a specific file subsystem.
However, this jail is ineffective if you do not call chdir("/").

Risk

If you do not call chdir("/") after creating a chroot jail, file manipulation functions that takes a
path as an argument can access files outside of the jail. An attacker can still manipulate files outside
the subsystem that you specified, making the chroot jail ineffective.

Fix

After calling chroot, call chdir("/") to make your chroot jail more secure.

Examples
Open File in chroot-jail

#include <unistd.h>
#include <stdio.h>

const char root_path[] = "/var/ftproot";
const char log_path[] = "file.log";
FILE* chrootmisuse() {
 FILE* res;
 chroot(root_path);
 chdir("base");
 res = fopen(log_path, "r");
 return res;
}

This example uses chroot to create a chroot-jail. However, to use the chroot jail securely, you must
call chdir("\") afterward. This example calls chdir("base"), which is not equivalent. Bug Finder
also flags fopen because fopen opens a file in the vulnerable chroot-jail.
Correction — Call chdir("/")

Before opening files, call chdir("/").

#include <unistd.h>
#include <stdio.h>

const char root_path[] = "/var/ftproot";
const char log_path[] = "file.log";
FILE* chrootmisuse() {
 FILE* res;

 File manipulation after chroot() without chdir("/")

13-17

 chroot(root_path);
 chdir("/");
 res = fopen(log_path, "r");
 return res;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: CHROOT_MISUSE
Impact: Medium
CWE ID: 243, 922

See Also
Umask used with chmod-style arguments | Vulnerable path manipulation | Find
defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

13 Security Defects

13-18

https://cwe.mitre.org/data/definitions/243.html
https://cwe.mitre.org/data/definitions/922.html

Function pointer assigned with absolute address
Constant expression is used as function address is vulnerable to code injection

Description
This defect occurs when a function pointer is assigned an absolute address.

Bug Finder considers expressions with any combination of literal constants as an absolute address.
The one exception is when the value of the expression is zero.

Risk

Using a fixed address is not portable because it is possible that the address is invalid on other
platforms.

An attacker can inject code at the absolute address, causing your program to execute arbitrary,
possibly malicious, code.

Fix

Do not use an absolute address with function pointers.

Examples
Function Pointer Address Assignment

extern int func0(int i, char c);
typedef int (*FuncPtr) (int, char);

FuncPtr funcptrabsoluteaddr() {
 return (FuncPtr)0x08040000;
}

In this example, the function returns a function pointer to the address 0x08040000. If an attacker
knows this absolute address, an attacker can compromise your program.

Correction — Function Address

One possible correction is to use the address of an existing function instead.

extern int func0(int i, char c);
typedef int (*FuncPtr) (int, char);

FuncPtr funcptrabsoluteaddr() {
 return &func0;
}

Result Information
Group: Security
Language: C | C++
Default: Off

 Function pointer assigned with absolute address

13-19

Command-Line Syntax: FUNC_PTR_ABSOLUTE_ADDR
Impact: Low
CWE ID: 587

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

13 Security Defects

13-20

https://cwe.mitre.org/data/definitions/587.html

Hard-coded sensitive data
Sensitive data is exposed in code, for instance as string literals

Description
This defect occurs when data that is potentially sensitive is directly exposed in the code, for instance,
as string literals. The checker identifies certain data as sensitive from their use in certain functions
such as password encryption functions.

Following data can be potentially sensitive.

Type of Data Functions That Indicate Sensitive Nature of
Information

Host name • sethostname, setdomainname,
gethostbyname, gethostbyname2,
getaddrinfo, gethostbyname_r,
gethostbyname2_r (string argument)

• inet_aton, inet_pton, inet_net_pton,
inet_addr, inet_network (string
argument)

• mysql_real_connect,
mysql_real_connect_nonblocking,
mysql_connect (2nd argument)

Password • CreateProcessWithLogonW, LogonUser
(1st argument)

• mysql_real_connect,
mysql_real_connect_nonblocking,
mysql_connect (3rd argument)

Database • MySQL: mysql_real_connect,
mysql_real_connect_nonblocking,
mysql_connect (4th argument)

• SQLite: sqlite3_open, sqlite3_open16,
sqlite3_open_v2 (1st argument)

• PostgreSQL: PQconnectdb
• Microsoft SQL: SQLDriverConnect (3rd

argument)
User name • getpw, getpwnam, getpwnam_r, getpwuid,

getpwuid_r
Salt crypt, crypt_r (2nd argument)

 Hard-coded sensitive data

13-21

Type of Data Functions That Indicate Sensitive Nature of
Information

Cryptography keys and initialization vectors OpenSSL:

• EVP_CipherInit, EVP_EncryptInit,
EVP_DecryptInit (3rd argument)

• EVP_CipherInit_ex,
EVP_EncryptInit_ex,
EVP_DecryptInit_ex (4th argument)

Seed • srand, srandom, initstate (1st argument)
• OpenSSL: RAND_seed, RAND_add

Risk

Information that is hardcoded can be queried from binaries generated from the code.

Fix

Avoid hard coding sensitive information.

Examples
Sensitive Data Exposed Through String Literals

// Typically, you include the header "mysql.h" with function and type declarations.
// In this example, only the required lines from the header are quoted.

typedef struct _MYSQL MYSQL;

MYSQL *mysql_real_connect(MYSQL *mysql,
 const char *host, const char *user, const char *passwd,
 const char *db, unsigned int port, const char *unix_socket,
 unsigned long client_flag);

typedef void * DbHandle;
extern MYSQL *sql;

// File that uses functions from "mysql.h"
const char *host = "localhost";
char *user = "guest";
char *passwd;

DbHandle connect_to_database_server(const char *db)
{
 passwd = (char*)"guest";
 return (DbHandle)
 mysql_real_connect (sql, host, user, passwd, db, 0, 0x0, 0);
}

In this example, the arguments host (host name), user (user name), and passwd (password) are
string literals and directly exposed in the code.

Querying the generated binary for ASCII strings can reveal this information.

13 Security Defects

13-22

Correction – Read Sensitive Data from Secured Configuration Files

One possible correction is to read the data from a configuration file. In the following corrected
example, the call to function connect_to_database_server_init presumably reads the host
name, user name, and password into its arguments from a secured configuration file.

// Typically, you include the header "mysql.h" with function and type declarations.
// In this example, only the required lines from the header are quoted.

typedef struct _MYSQL MYSQL;

MYSQL *mysql_real_connect(MYSQL *mysql,
 const char *host, const char *user, const char *passwd,
 const char *db, unsigned int port, const char *unix_socket,
 unsigned long client_flag);

typedef void * DbHandle;
extern MYSQL *sql;

// File that uses functions from "mysql.h"

int connect_to_database_server_init(const char **host,
 const char **user,
 const char **passwd,
 const char **db);

DbHandle connect_to_database_server(const char *db)
{
 const char *host_from_cfg;
 const char *user_from_cfg;
 const char *passwd_from_cfg;
 const char *db_from_cfg;
 if (connect_to_database_server_init(&host_from_cfg,
 &user_from_cfg,
 &passwd_from_cfg,
 &db_from_cfg))
 {
 return (DbHandle)
 mysql_real_connect (sql, host_from_cfg, user_from_cfg,
 passwd_from_cfg, db_from_cfg, 0, 0x0, 0);
 }
 else
 return (DbHandle)0x0;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: HARD_CODED_SENSITIVE_DATA
Impact: Medium

See Also
Find defects (-checkers)

 Hard-coded sensitive data

13-23

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020a

13 Security Defects

13-24

Inappropriate I/O operation on device files
Operation can result in security vulnerabilities or a system failure

Description
This defect occurs when you do not check whether a file name parameter refers to a device file before
you pass it to these functions:

• fopen()
• fopen_s()
• freopen()
• remove()
• rename()
• CreateFile()
• CreateFileA()
• CreateFileW()
• _wfopen()
• _wfopen_s()

Device files are files in a file system that provide an interface to device drivers. You can use these files
to interact with devices.

Inappropriate I/O operation on device files does not raise a defect when:

• You use stat or lstat-family functions to check the file name parameter before calling the
previously listed functions.

• You use a string comparison function to compare the file name against a list of device file names.

Risk

Operations appropriate only for regular files but performed on device files can result in denial-of-
service attacks, other security vulnerabilities, or system failures.

Fix

Before you perform an I/O operation on a file:

• Use stat(), lstat(), or an equivalent function to check whether the file name parameter refers
to a regular file.

• Use a string comparison function to compare the file name against a list of device file names.

Examples
Using fopen() Without Checking file_name

#include <stdio.h>
#include <string.h>

 Inappropriate I/O operation on device files

13-25

#define SIZE1024 1024

FILE* func()
{

 FILE* f;
 const char file_name[SIZE1024] = "./tmp/file";

 if ((f = fopen(file_name, "w")) == NULL) {
 /*handle error */
 };
 /*operate on file */
}

In this example, func() operates on the file file_name without checking whether it is a regular file.
If file_name is a device file, attempts to access it can result in a system failure.

Correction — Check File with lstat() Before Calling fopen()

One possible correction is to use lstat() and the S_ISREG macro to check whether the file is a
regular file. This solution contains a TOCTOU race condition that can allow an attacker to modify the
file after you check it but before the call to fopen(). To prevent this vulnerability, ensure that
file_name refers to a file in a secure folder.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>

#define SIZE1024 1024

FILE* func()
{

 FILE* f;
 const char file_name[SIZE1024] = "./tmp/file";
 struct stat orig_st;
 if ((lstat(file_name, &orig_st) != 0) ||
 (!S_ISREG(orig_st.st_mode))) {
 exit(0);
 }
 if ((f = fopen(file_name, "w")) == NULL) {
 /*handle error */
 };
 /*operate on file */
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: INAPPROPRIATE_IO_ON_DEVICE
Impact: Medium
CWE ID: 67

13 Security Defects

13-26

https://cwe.mitre.org/data/definitions/67.html

See Also
File access between time of check and use (TOCTOU) | Opening previously opened
resource | Resource leak | Returned value of a sensitive function not checked |
Vulnerable path manipulation | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018b

 Inappropriate I/O operation on device files

13-27

Incorrect order of network connection operations
Socket is not correctly established due to bad order of connection steps or missing steps

Description
This defect occurs when you perform operations on a network connection at the wrong point of the
connection lifecycle.

Risk

Sending or receiving data to an incorrectly connected socket can cause unexpected behavior or
disclosure of sensitive information.

If you do not connect your socket correctly or change the connection by mistake, you can send
sensitive data to an unexpected port. You can also get unexpected data from an incorrect socket.

Fix

During socket connection and communication, check the return of each call and the length of the
data.

Before reading, writing, sending, or receiving information, create sockets in this order:

• For a connection-oriented server socket (SOCK_STREAM or SOCK_SEQPACKET):

socket(...);
bind(...);
listen(...);
accept(...);

• For a connectionless server socket (SOCK_DGRAM):

socket(...);
bind(...);

• For a client socket (connection-oriented or connectionless):

socket(...);
connect(...);

Examples
Connecting a Connection-Oriented Server Socket

include <stdio.h>
include <string.h>
include <time.h>
include <arpa/inet.h>
include <unistd.h>

enum { BUF_SIZE=1025 };

volatile int rd;

13 Security Defects

13-28

int stream_socket_server(int argc, char *argv[])
{
 int listenfd = 0, connfd = 0;
 struct sockaddr_in serv_addr;

 char sendBuff[BUF_SIZE];
 time_t ticks;
 struct tm * timeinfo;

 listenfd = socket(AF_INET, SOCK_STREAM, 0);
 memset(&serv_addr, 48, sizeof(serv_addr));
 memset(sendBuff, 48, sizeof(sendBuff));

 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
 serv_addr.sin_port = htons(5000);

 bind(listenfd, (struct sockaddr*)&serv_addr, sizeof(serv_addr));

 listen(listenfd, 10);

 while(1)
 {
 connfd = accept(listenfd, (struct sockaddr*)NULL, NULL);

 ticks = time(NULL);
 timeinfo = localtime(&ticks);
 strftime (sendBuff,BUF_SIZE,"%I:%M%p.",timeinfo);

 write(listenfd, sendBuff, strlen(sendBuff));

 close(connfd);
 sleep(1);
 }
}

This example creates a connection-oriented network connection. The function calls the correct
functions in the correct order: socket, bind, listen, accept. However, the program should write
to the connfd socket instead of the listenfd socket.

Correction — Use Safe Socket

One possible correction is to write to the connfd function instead of the listenfd socket.

include <stdio.h>
include <string.h>
include <time.h>
include <arpa/inet.h>
include <unistd.h>

enum { BUF_SIZE=1025 };

volatile int rd;

int stream_socket_server_good(int argc, char *argv[])
{
 int listenfd = 0, connfd = 0;
 struct sockaddr_in serv_addr;

 Incorrect order of network connection operations

13-29

 char sendBuff[BUF_SIZE];
 time_t ticks;
 struct tm * timeinfo;

 listenfd = socket(AF_INET, SOCK_STREAM, 0);
 memset(&serv_addr, 48, sizeof(serv_addr));
 memset(sendBuff, 48, sizeof(sendBuff));

 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
 serv_addr.sin_port = htons(5000);

 bind(listenfd, (struct sockaddr*)&serv_addr, sizeof(serv_addr));
 listen(listenfd, 10);

 while(1)
 {
 connfd = accept(listenfd, (struct sockaddr*)NULL, NULL);
 ticks = time(NULL);
 timeinfo = localtime(&ticks);
 strftime (sendBuff,BUF_SIZE,"%I:%M%p.",timeinfo);
 write(connfd, sendBuff, strlen(sendBuff));
 close(connfd);
 sleep(1);
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: BAD_NETWORK_CONNECT_ORDER
Impact: Medium
CWE ID: 666

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

13 Security Defects

13-30

https://cwe.mitre.org/data/definitions/666.html

Information leak via structure padding
Padding bytes can contain sensitive information

Description
This defect occurs when you do not initialize the padding data of a structure or union before passing
it across a trust boundary. A compiler adds padding bytes to the structure or union to ensure a proper
memory alignment of its members. The bit-fields of the storage units can also have padding bits.

Information leak via structure padding raises a defect when:

• You call an untrusted function with structure or union pointer type argument containing
uninitialized padding data.

All external functions are considered untrusted.
• You copy or assign a structure or union containing uninitialized padding data to an untrusted

object.

All external structure or union objects, the output parameters of all externally linked functions,
and the return pointer of all external functions are considered untrusted objects.

Risk

The padding bytes of the passed structure or union might contain sensitive information that an
untrusted source can access.

Fix

• Prevent the addition of padding bytes for memory alignment by using the pack pragma or
attribute supported by your compiler.

• Explicitly declare and initialize padding bytes as fields within the structure or union.
• Explicitly declare and initialize bit-fields corresponding to padding bits, even if you use the pack

pragma or attribute supported by your compiler.

Examples
Structure with Padding Bytes Passed to External Function

#include <stddef.h>
#include <stdlib.h>
#include <string.h>

typedef struct s_padding
{
 /* Padding bytes may be introduced between
 * 'char c' and 'int i'
 */
 char c;
 int i;

/*Padding bits may be introduced around the bit-fields

 Information leak via structure padding

13-31

* even if you use "#pragma pack" (Windows) or
* __attribute__((__packed__)) (GNU)*/

 unsigned int bf1:1;
 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

/* External function */
extern void copy_object(void *out, void *in, size_t s);

void func(void *out_buffer)
{
/*Padding bytes not initialized*/

 S_Padding s = {'A', 10, 1, 3, {}};
/*Structure passed to external function*/

 copy_object((void *)out_buffer, (void *)&s, sizeof(s));
}

void main(void)
{
 S_Padding s1;
 func(&s1);
}

In this example, structure s1 can have padding bytes between the char c and int i members. The
bit-fields of the storage units of the structure can also contain padding bits. The content of the
padding bytes and bits is accessible to an untrusted source when s1 is passed to func.

Correction — Use pack Pragma to Prevent Padding Bytes

One possible correction in Microsoft Visual Studio is to use #pragma pack() to prevent padding
bytes between the structure members. To prevent padding bits in the bit-fields of s1, explicitly
declare and initialize the bit-fields even if you use #pragma pack().

 #include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>

#define CHAR_BIT 8

#pragma pack(push, 1)

typedef struct s_padding
{
/*No Padding bytes when you use "#pragma pack" (Windows) or
* __attribute__((__packed__)) (GNU)*/
 char c;
 int i;
 unsigned int bf1:1;
 unsigned int bf2:2;
/* Padding bits explicitely declared */
 unsigned int bf_filler : sizeof(unsigned) * CHAR_BIT - 3;

13 Security Defects

13-32

 unsigned char buffer[20];
}

 S_Padding;

#pragma pack(pop)

/* External function */
extern void copy_object(void *out, void *in, size_t s);

void func(void *out_buffer)
{
 S_Padding s = {'A', 10, 1, 3, 0 /* padding bits */, {}};
 copy_object((void *)out_buffer, (void *)&s, sizeof(s));
}

void main(void)
{
 S_Padding s1;
 func(&s1);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: PADDING_INFO_LEAK
Impact: Low

See Also
Find defects (-checkers) | Memory comparison of padding data | Use of memset
with size argument zero | Invalid assumptions about memory organization |
Sensitive heap memory not cleared before release | Uncleared sensitive data in
stack

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

 Information leak via structure padding

13-33

Load of library from a relative path can be
controlled by an external actor
Library loaded with relative path is vulnerable to malicious attacks

Description
This defect occurs when library loading routines that load an external library use a relative path or do
not use a path at all.

Risk

By using a relative path or no path to load an external library, your program uses an unsafe search
process to find the library. An attacker can control the search process and replace the intended
library with a library of their own.

Fix

When you load an external library, specify the full path.

Examples
Open Library with Library Name

#include <dlfcn.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <stdio.h>

void relative_path()
{
 dlopen("liberty.dll",RTLD_LAZY);
}

In this example, dlopen opens the liberty library by calling only the name of the library. However,
this call to the library uses a relative path to find the library, which is unsafe.

Correction — Use Full Path to Library

One possible correction is to use the full path to the library when you load it into your program.

#include <dlfcn.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <stdio.h>

void relative_path()
{
 dlopen("/home/my_libs/library/liberty.dll",RTLD_LAZY);
}

13 Security Defects

13-34

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: RELATIVE_PATH_LIB
Impact: Medium
CWE ID: 114, 427

See Also
Execution of a binary from a relative path can be controlled by an external
actor | Vulnerable path manipulation | Library loaded from externally controlled
path | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

 Load of library from a relative path can be controlled by an external actor

13-35

https://cwe.mitre.org/data/definitions/114.html
https://cwe.mitre.org/data/definitions/427.html

Mismatch between data length and size
Data size argument is not computed from actual data length

Description
This defect occurs when you do not check the length argument and data buffer argument of memory
copying functions such as memcpy, memset, or memmove, to protect against buffer overflows.

Risk

If an attacker can manipulate the data buffer or length argument, the attacker can cause buffer
overflow by making the actual data size smaller than the length.

This mismatch in length allows the attacker to copy memory past the data buffer to a new location. If
the extra memory contains sensitive information, the attacker can now access that data.

This defect is similar to the SSL Heartbleed bug.

Fix

When copying or manipulating memory, compute the length argument directly from the data so that
the sizes match.

Examples
Copy Buffer of Data
#include <stdlib.h>
#include <string.h>

typedef struct buf_mem_st {
 char *data;
 size_t max; /* size of buffer */
} BUF_MEM;

extern BUF_MEM beta;

int cpy_data(BUF_MEM *alpha)
{
 BUF_MEM *os = alpha;
 int num, length;

 if (alpha == 0x0) return 0;
 num = 0;

 length = *(unsigned short *)os->data;
 memcpy(&(beta.data[num]), os->data + 2, length);

 return(1);
}

This function copies the buffer alpha into a buffer beta. However, the length variable is not related
to data+2.

13 Security Defects

13-36

Correction — Check Buffer Length

One possible correction is to check the length of your buffer against the maximum value minus 2.
This check ensures that you have enough space to copy the data to the beta structure.

#include <stdlib.h>
#include <string.h>

typedef struct buf_mem_st {
 char *data;
 size_t max; /* size of buffer */
} BUF_MEM;

extern BUF_MEM beta;

int cpy_data(BUF_MEM *alpha)
{
 BUF_MEM *os = alpha;
 int num, length;

 if (alpha == 0x0) return 0;
 num = 0;

 length = *(unsigned short *)os->data;
 if (length<(os->max -2)) {
 memcpy(&(beta.data[num]), os->data + 2, length);
 }

 return(1);

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: DATA_LENGTH_MISMATCH
Impact: Medium
CWE ID: 130, 240

See Also
Copy of overlapping memory | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

 Mismatch between data length and size

13-37

https://cwe.mitre.org/data/definitions/130.html
https://cwe.mitre.org/data/definitions/240.html

Missing case for switch condition
switch variable not covered by cases and default case is missing

Description
This defect occurs when the switch variable can take values that are not covered by a case
statement.

Note Bug Finder only raises a defect if the switch variable is not full range.

Risk

If the switch variable takes a value that is not covered by a case statement, your program can have
unintended behavior.

A switch-statement that makes a security decision is particularly vulnerable when all possible values
are not explicitly handled. An attacker can use this situation to deviate the normal execution flow.

Fix

It is good practice to use a default statement as a catch-all for values that are not covered by a
case statement. Even if the switch variable takes an unintended value, the resulting behavior can
be anticipated.

Examples
Missing Default Condition

#include <stdio.h>
#include <string.h>

typedef enum E
{
 ADMIN=1,
 GUEST,
 UNKNOWN = 0
} LOGIN;

static LOGIN system_access(const char *username) {
 LOGIN user = UNKNOWN;

 if (strcmp(username, "root") == 0)
 user = ADMIN;

 if (strcmp(username, "friend") == 0)
 user = GUEST;

 return user;
}

13 Security Defects

13-38

int identify_bad_user(const char * username)
{
 int r=0;

 switch(system_access(username))
 {
 case ADMIN:
 r = 1;
 break;
 case GUEST:
 r = 2;
 }

 printf("Welcome!\n");
 return r;
}

In this example, the enum parameter User can take a value UNKNOWN that is not covered by a case
statement.

Correction — Add a Default Condition

One possible correction is to add a default condition for possible values that are not covered by a
case statement.

#include <stdio.h>
#include <string.h>

typedef enum E
{
 ADMIN=1,
 GUEST,
 UNKNOWN = 0
} LOGIN;

static LOGIN system_access(const char *username) {
 LOGIN user = UNKNOWN;

 if (strcmp(username, "root") == 0)
 user = ADMIN;

 if (strcmp(username, "friend") == 0)
 user = GUEST;

 return user;
}

int identify_bad_user(const char * username)
{
 int r=0;

 switch(system_access(username))
 {
 case ADMIN:
 r = 1;
 break;
 case GUEST:
 r = 2;

 Missing case for switch condition

13-39

 break;
 default:
 printf("Invalid login credentials!\n");
 }

 printf("Welcome!\n");
 return r;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: MISSING_SWITCH_CASE
Impact: Low
CWE ID: 478

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

13 Security Defects

13-40

https://cwe.mitre.org/data/definitions/478.html

Misuse of readlink()
Third argument of readlink does not leave space for null terminator in buffer

Description
This defect occurs when you pass a buffer size argument to readlink() that does not leave space
for a null terminator in the buffer.

For instance:

ssize_t len = readlink("/usr/bin/perl", buf, sizeof(buf));

The third argument is exactly equal to the size of the second argument. For large enough symbolic
links, this use of readlink() does not leave space to enter a null terminator.

Risk

The readlink() function copies the content of a symbolic link (first argument) to a buffer (second
argument). However, the function does not append a null terminator to the copied content. After
using readlink(), you must explicitly add a null terminator to the buffer.

If you fill the entire buffer when using readlink, you do not leave space for this null terminator.

Fix

When using the readlink() function, make sure that the third argument is one less than the buffer
size.

Then, append a null terminator to the buffer. To determine where to add the null terminator, check
the return value of readlink(). If the return value is -1, an error has occurred. Otherwise, the
return value is the number of characters (bytes) copied.

Examples
Incorrect Size Argument of readlink

#include <unistd.h>

#define SIZE1024 1024

extern void display_path(const char *);

void func() {
 char buf[SIZE1024];
 ssize_t len = readlink("/usr/bin/perl", buf, sizeof(buf));
 if (len > 0) {
 buf[len - 1] = '\0';
 }
 display_path(buf);
}

 Misuse of readlink()

13-41

In this example, the third argument of readlink is exactly the size of the buffer (second argument).
If the first argument is long enough, this use of readlink does not leave space for the null
terminator.

Also, if no characters are copied, the return value of readlink is 0. The following statement leads to
a buffer underflow when len is 0.

buf[len - 1] = '\0';

Correction — Make Sure Size Argument is One Less Than Buffer Size

One possible correction is to make sure that the third argument of readlink is one less than size of
the second argument.

The following corrected code also accounts for readlink returning 0.

#include <stdlib.h>
#include <unistd.h>

#define fatal_error() abort()
#define SIZE1024 1024

extern void display_path(const char *);

void func() {
 char buf[SIZE1024];
 ssize_t len = readlink("/usr/bin/perl", buf, sizeof(buf) - 1);
 if (len != -1) {
 buf[len] = '\0';
 display_path(buf);
 }
 else {
 /* Handle error */
 fatal_error();
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: READLINK_MISUSE
Impact: Medium
CWE ID: 170

See Also
Find defects (-checkers) | Returned value of a sensitive function not checked |
Invalid use of standard library string routine | Array access out of bounds |
Pointer access out of bounds | File access between time of check and use
(TOCTOU)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”

13 Security Defects

13-42

https://cwe.mitre.org/data/definitions/170.html

“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017a

 Misuse of readlink()

13-43

Predictable random output from predictable seed
Seeding routine uses a predictable seed making the output predictable

Description
This defect occurs when you use standard random number generator functions with a nonconstant
but predictable seed. Examples of predictable seed generators are time, gettimeofday, and
getpid.

The checker detects this issue with the following random number generator functions:

• C Standard Library functions such as srand, srandom and initstate
• C++ Standard Library functions such as std::linear_congruential_engine<>::seed()

and std::mersenne_twister_engine<>::seed() (and also the constructors of these class
templates)

Risk

When you use predictable seed values for random number generation, your random numbers are also
predictable. A hacker can disrupt your program if they know how your program behaves.

Fix

You can use a different function to generate less predictable seeds.

You can also use a different random number generator that does not require a seed. For example, the
Windows API function rand_s seeds itself by default. It uses information from the entire system, for
example, system time, thread ids, system counter, and memory clusters. This information is more
random and a user cannot access this information.

Some standard random routines are inherently cryptographically weak on page 13-86, and should
not be used for security purposes.

Examples
Seed as an Argument

#include <stdlib.h>
#include <time.h>

void seed_rng(int seed)
{
 srand(seed);
}

int generate_num(void)
{
 seed_rng(time(NULL) + 3);
 /* ... */
}

13 Security Defects

13-44

This example uses srand to start the random number generator with seed as the seed. However,
seed is predictable because the function time generates it. So, an attacker can predict the random
numbers generated by srand.

Correction — Use Different Random Number Generator

One possible correction is to use a random number generator that does not require a seed. This
example uses rand_s.

#define _CRT_RAND_S

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>

int generate_num(void)
{
 unsigned int number;
 errno_t err;
 err = rand_s(&number);

 if(err != 0)
 {
 return number;
 }
 else
 {
 return err;
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: RAND_SEED_PREDICTABLE
Impact: Medium
CWE ID: 330, 337

See Also
Deterministic random output from constant seed | Unsafe standard encryption
function | Vulnerable pseudo-random number generator | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

 Predictable random output from predictable seed

13-45

https://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/337.html

Privilege drop not verified
Attacker can gain unintended elevated access to program

Description
This defect occurs when you relinquish privileges using functions such as setuid but do not verify
that the privileges were actually dropped before exiting your function.

Risk

If privilege relinquishment fails, an attacker can regain elevated privileges and have more access to
your program than intended. This security hole can cause unexpected behavior in your code if left
open.

Fix

Before the end of scope, verify that the privileges that you dropped were actually dropped.

Examples
Drop Privileges Within a Function
#define _BSD_SOURCE
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
#include <stdlib.h>
#define fatal_error() abort()
extern int need_more_privileges;

void missingprivilegedropcheck()
{
 /* Code intended to run with elevated privileges */

 /* Temporarily drop elevated privileges */
 if (seteuid(getuid()) != 0) {
 /* Handle error */
 fatal_error();
 }

 /* Code intended to run with lower privileges */

 if (need_more_privileges) {
 /* Restore elevated privileges */
 if (seteuid(0) != 0) {
 /* Handle error */
 fatal_error();
 }
 /* Code intended to run with elevated privileges */
 }

 /* ... */

13 Security Defects

13-46

 /* Permanently drop elevated privileges */
 if (setuid(getuid()) != 0) {
 /* Handle error */
 fatal_error();
 }

 /* Code intended to run with lower privileges */
}

In this example, privileges are elevated and dropped to run code with the intended privilege level.
When privileges are dropped, the privilege level before exiting the function body is not verified. A
malicious attacker can regain their elevated privileges.

Correction — Verify Privilege Drop

One possible correction is to use setuid to verify that the privileges were dropped.

#define _BSD_SOURCE
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
#include <stdlib.h>
#define fatal_error() abort()
extern int need_more_privileges;

void missingprivilegedropcheck()
{
 /* Store the privileged ID for later verification */
 uid_t privid = geteuid();

 /* Code intended to run with elevated privileges */

 /* Temporarily drop elevated privileges */
 if (seteuid(getuid()) != 0) {
 /* Handle error */
 fatal_error();
 }

 /* Code intended to run with lower privileges */

 if (need_more_privileges) {
 /* Restore elevated Privileges */
 if (seteuid(privid) != 0) {
 /* Handle error */
 fatal_error();
 }
 /* Code intended to run with elevated privileges */
 }

 /* ... */

 /* Restore privileges if needed */
 if (geteuid() != privid) {
 if (seteuid(privid) != 0) {
 /* Handle error */
 fatal_error();
 }
 }

 Privilege drop not verified

13-47

 /* Permanently drop privileges */
 if (setuid(getuid()) != 0) {
 /* Handle error */
 fatal_error();
 }

 if (setuid(0) != -1) {
 /* Privileges can be restored, handle error */
 fatal_error();
 }

 /* Code intended to run with lower privileges; */
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: MISSING_PRIVILEGE_DROP_CHECK
Impact: High
CWE ID: 250, 273

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2016b

13 Security Defects

13-48

https://cwe.mitre.org/data/definitions/250.html
https://cwe.mitre.org/data/definitions/273.html

Returned value of a sensitive function not checked
Sensitive functions called without checking for unexpected return values and errors

Description
This defect occurs when you call sensitive standard functions that return information about possible
errors and you do one of the following:

• Ignore the return value.

You simply do not assign the return value to a variable, or explicitly cast the return value to void.
• Use an output from the function (return value or argument passed by reference) without testing

the return value for errors.

The checker considers a function as sensitive if the function call is prone to failure because of reasons
such as:

• Exhausted system resources (for example, when allocating resources).
• Changed privileges or permissions.
• Tainted sources when reading, writing, or converting data from external sources.
• Unsupported features despite an existing API.

The checker only considers functions where the return value indicates if the function completed
without errors.

Some of these functions can perform critical tasks such as:

• Set privileges (for example, setuid)
• Create a jail (for example, chroot)
• Create a process (for example, fork)
• Create a thread (for example, pthread_create)
• Lock or unlock mutex (for example, pthread_mutex_lock)
• Lock or unlock memory segments (for example, mlock)

Risk

If you do not check the return value of functions that perform sensitive tasks and indicate error
information through their return values, your program can behave unexpectedly. Errors from these
functions can propagate throughout the program causing incorrect output, security vulnerabilities,
and possibly system failures.

Fix

Before continuing with the program, test the return value of critical sensitive functions.

For sensitive functions that are not critical, you can explicitly ignore a return value by casting the
function to void. Polyspace does not raise this defect for sensitive functions cast to void. This
resolution is not accepted for critical sensitive functions because they perform more vulnerable tasks.

 Returned value of a sensitive function not checked

13-49

Examples
Sensitive Function Return Ignored

#include <pthread.h>
#include <string.h>
#include <stddef.h>
#include <stdio.h>

void initialize() {
 pthread_attr_t attr;

 pthread_attr_init(&attr);//Noncompliant
}
int read_file(int argc, char *argv[])
{
 FILE *in;
 if (argc != 2) {
 /* Handle error */
 }

 in = fmemopen (argv[1], strlen (argv[1]), "r");
 return 0; //Noncompliant

}

This example shows calls to the sensitive POSIX functions pthread_attr_init and fmemopen.
Their return values are ignored, causing defect.

Correction — Cast Function to (void)

One possible correction is to cast the function to void. This fix informs Polyspace and any reviewers
that you are explicitly ignoring the return value of the sensitive function.

#include <pthread.h>
#include <string.h>
#include <stddef.h>
#include <stdio.h>

void initialize() {
 pthread_attr_t attr;

 (void)pthread_attr_init(&attr);//Compliant
}
int read_file(int argc, char *argv[])
{
 FILE *in;
 if (argc != 2) {
 /* Handle error */
 }

 (void)fmemopen (argv[1], strlen (argv[1]), "r"); //Compliant

 return 0;
}

13 Security Defects

13-50

Correction — Test Return Value

One possible correction is to test the return value of pthread_attr_init and fmemopen to check
for errors.

#include <pthread.h>
#include <string.h>
#include <stddef.h>
#include <stdio.h>

void initialize() {
 pthread_attr_t attr;

 int result = pthread_attr_init(&attr);//Compliant
 if(result != 0){
 //Handle fatal error
 }
}
int read_file(int argc, char *argv[])
{
 FILE *in;
 if (argc != 2) {
 /* Handle error */
 }

 in = fmemopen (argv[1], strlen (argv[1]), "r");
 if (in==NULL){
 // Handle error
 }
 return 0;//Compliant
}

Critical Function Return Ignored
#include <pthread.h>
extern void *start_routine(void *);

void returnnotchecked() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;

 (void)pthread_attr_init(&attr);
 (void)pthread_create(&thread_id, &attr, &start_routine, ((void *)0));
 pthread_join(thread_id, &res);
}

In this example, two critical functions are called: pthread_create and pthread_join. The return
value of the pthread_create is ignored by casting to void, but because pthread_create is a
critical function (not just a sensitive function), Polyspace does not ignore this Return value of a
sensitive function not checked defect. The other critical function, pthread_join, returns value that
is ignored implicitly. pthread_join uses the return value of pthread_create, which was not
checked.
Correction — Test the Return Value of Critical Functions

The correction for this defect is to check the return value of these critical functions to verify the
function performed as expected.

 Returned value of a sensitive function not checked

13-51

#include <pthread.h>
#include <stdlib.h>
#define fatal_error() abort()

extern void *start_routine(void *);

void returnnotchecked() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;
 int result;

 (void)pthread_attr_init(&attr);
 result = pthread_create(&thread_id, &attr, &start_routine, NULL);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }

 result = pthread_join(thread_id, &res);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: RETURN_NOT_CHECKED
Impact: High
CWE ID: 252, 253, 690, 754

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2016b

13 Security Defects

13-52

https://cwe.mitre.org/data/definitions/252.html
https://cwe.mitre.org/data/definitions/253.html
https://cwe.mitre.org/data/definitions/690.html
https://cwe.mitre.org/data/definitions/754.html

Sensitive data printed out
Function prints sensitive data

Description
This defect occurs when print functions such as stdout or stderr print sensitive information.

The checker considers the following as sensitive information:

• Return values of password manipulation functions such as getpw, getpwnam or getpwuid.
• Input values of functions such as the Windows-specific function LogonUser.

Risk

Printing sensitive information, such as passwords or user information, allows an attacker additional
access to the information.

Fix

One fix for this defect is to not print out sensitive information.

If you are saving your logfile to an external file, set the file permissions so that attackers cannot
access the logfile information.

Examples
Printing Passwords

#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

extern void verify_null(const char* buf);
void bug_sensitivedataprint(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 puts("Name\n");
 puts(pwd.pw_name);
 puts("PassWord\n");
 puts(pwd.pw_passwd);
 memset(buf, 0, sizeof(buf));
 verify_null(buf);
}

In this example, Bug Finder flags puts for printing out the password pwd.pw_passwd.

 Sensitive data printed out

13-53

Correction — Obfuscate the Password

One possible correction is to obfuscate the password information so that the information is not
visible.

#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

extern void verify_null(const char* buf);

void sensitivedataprint(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 puts("Name\n");
 puts(pwd.pw_name);
 puts("PassWord\n");
 puts("XXXXXXXX\n");
 memset(buf, 0, sizeof(buf));
 verify_null(buf);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: SENSITIVE_DATA_PRINT
Impact: Medium
CWE ID: 532, 534, 535

See Also
Sensitive heap memory not cleared before release | Uncleared sensitive data in
stack | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

13 Security Defects

13-54

https://cwe.mitre.org/data/definitions/532.html
https://cwe.mitre.org/data/definitions/534.html
https://cwe.mitre.org/data/definitions/535.html

Sensitive heap memory not cleared before release
Sensitive data not cleared or released by memory routine

Description
This defect occurs when dynamically allocated memory contains sensitive data and you do not clear
the data before you free the memory.

Risk

If the memory zone is reallocated, an attacker can still inspect the sensitive data in the old memory
zone.

Fix

Before calling free, clear out the sensitive data using memset or SecureZeroMemory.

Examples
Sensitive Buffer Freed, Not Cleared

#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <pwd.h>

void sensitiveheapnotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char* buf = (char*) malloc(1024);
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 free(buf);
}

In this example, the function uses a buffer of passwords and frees the memory before the end of the
function. However, the data in the memory is not cleared by using the free command.

Correction — Nullify Data

One possible correction is to write over the data to clear out the sensitive information. This example
uses memset to write over the data with zeros.

#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <pwd.h>
#include <assert.h>

#define isNull(arr) for(int i=0;i<(sizeof(arr)/sizeof(arr[0]));i++) assert(arr[i]==0)

void sensitiveheapnotcleared(const char * my_user) {

 Sensitive heap memory not cleared before release

13-55

 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char* buf = (char*) malloc(1024);

 if (buf) {
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 memset(buf, 0, (size_t)1024);
 isNull(buf);
 free(buf);
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: SENSITIVE_HEAP_NOT_CLEARED
Impact: Medium
CWE ID: 244, 312, 316

See Also
Uncleared sensitive data in stack | Sensitive data printed out | Find defects (-
checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

13 Security Defects

13-56

https://cwe.mitre.org/data/definitions/244.html
https://cwe.mitre.org/data/definitions/312.html
https://cwe.mitre.org/data/definitions/316.html

Umask used with chmod-style arguments
Argument to umask allows external user too much control

Description
This defect occurs when umask commands have arguments specified in the style of arguments to
chmod and provide possibly unintended permissions. For instance:

• The umask command provides more permissions to the group than the current user.
• The umask command provides more permissions to other users than the group.

For new files, the umask argument or the mask value specifies which permissions not to set, in other
words, which permissions to remove. The mask is bitwise-negated and then applied to new file
permissions. In contrast, chmod sets the permissions as you specify them.

Risk

If you use chmod-style arguments, you specify opposite permissions of what you want. This mistake
can give external users unintended read/write access to new files and folders.

Fix

Set the mask value so that the user (u) has fewer permissions turned off than the group (g) and the
group has fewer permissions turned off than other users (o), or u <= g <= o.

You can see the umask value by calling,

umask

or the symbolic value by calling,

umask -S

Examples
Setting the Default Mask

#include <stdio.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/stat.h>

typedef mode_t (*umask_func)(mode_t);

const mode_t default_mode = (
 S_IRUSR /* 00400 */
 | S_IWUSR /* 00200 */
 | S_IRGRP /* 00040 */
 | S_IWGRP /* 00020 */
 | S_IROTH /* 00004 */
 | S_IWOTH /* 00002 */
); /* 00666 (i.e. -rw-rw-rw-) */

 Umask used with chmod-style arguments

13-57

static void my_umask(mode_t mode)
{
 umask(mode);
}

int umask_use(mode_t m)
{
 my_umask(default_mode);
 return 0;
}

This example uses a function called my_umask to set the default mask mode. However, the
default_mode variable gives the permissions 666 or -rw-rw-rw. umask negates this value.
However, this negation means the default mask mode turns off read/write permissions for the user,
group users, and other outside users.

Correction — Negate Preferred Permissions

One possible correction is to negate the default_mode argument to my_umask. This correction
nullifies the negation umask for new files.

#include <stdio.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/stat.h>

typedef mode_t (*umask_func)(mode_t);

const mode_t default_mode = (
 S_IRUSR /* 00400 */
 | S_IWUSR /* 00200 */
 | S_IRGRP /* 00040 */
 | S_IWGRP /* 00020 */
 | S_IROTH /* 00004 */
 | S_IWOTH /* 00002 */
); /* 00666 (i.e. -rw-rw-rw-) */

static void my_umask(mode_t mode)
{
 umask(mode);
}

int umask_use(mode_t m)
{
 my_umask(~default_mode);
 return 0;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: BAD_UMASK
Impact: Low
CWE ID: 560, 922

13 Security Defects

13-58

https://cwe.mitre.org/data/definitions/560.html
https://cwe.mitre.org/data/definitions/922.html

See Also
Vulnerable permission assignments | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

External Websites
umask — Linux Manual Page

Introduced in R2015b

 Umask used with chmod-style arguments

13-59

https://man7.org/linux/man-pages/man2/umask.2.html

Uncleared sensitive data in stack
Variable in stack is not cleared and contains sensitive data

Description
This defect occurs when statically allocated memory contains sensitive data and you do not clear the
data before exiting a function or program.

Risk

Leaving sensitive information in your stack, such as passwords or user information, allows an
attacker additional access to the information after your program has ended.

Fix

Before exiting a function or program, clear out the memory zones that contain sensitive data by using
memset or SecureZeroMemory.

Examples
Static Buffer of Password Information

#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>

void bug_sensitivestacknotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
}

In this example, a static buffer is filled with password information. The program frees the stack
memory at the end of the program. However, the data is still accessible from the memory.

Correction — Clear Memory

One possible correction is to write over the memory before exiting the function. This example uses
memset to clear the data from the buffer memory.

#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <pwd.h>
#include <assert.h>

#define isNull(arr) for(int i=0;i<(sizeof(arr)/sizeof(arr[0]));i++) assert(arr[i]==0)

void corrected_sensitivestacknotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";

13 Security Defects

13-60

 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 memset(buf, 0, (size_t)1024);
 isNull(buf);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: SENSITIVE_STACK_NOT_CLEARED
Impact: Medium
CWE ID: 226, 312, 316

See Also
Sensitive heap memory not cleared before release | Sensitive data printed out |
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

 Uncleared sensitive data in stack

13-61

https://cwe.mitre.org/data/definitions/226.html
https://cwe.mitre.org/data/definitions/312.html
https://cwe.mitre.org/data/definitions/316.html

Unsafe call to a system function
Unsanitized command argument has exploitable vulnerabilities

Description
This defect occurs when you use a function that invokes an implementation-defined command
processor. These functions include:

• The C standard system() function.
• The POSIX popen() function.
• The Windows _popen() and _wpopen() functions.

Risk

If the argument of a function that invokes a command processor is not sanitized, it can cause
exploitable vulnerabilities. An attacker can execute arbitrary commands or read and modify data
anywhere on the system.

Fix

Do not use a system-family function to invoke a command processor. Instead, use safer functions
such as POSIX execve() and WinAPI CreateProcess().

Examples
system() Called

include <string.h>
include <stdlib.h>
include <stdio.h>
include <unistd.h>

enum {
SIZE512=512,
SIZE3=3};

void func(char *arg)
{
 char buf[SIZE512];
 int retval=sprintf(buf, "/usr/bin/any_cmd %s", arg);

 if (retval<=0 || retval>SIZE512){
 /* Handle error */
 abort();
 }
 /* Use of system() to pass any_cmd with
 unsanitized argument to command processor */

 if (system(buf) == -1) {
 /* Handle error */
 }
}

13 Security Defects

13-62

In this example, system() passes its argument to the host environment for the command processor
to execute. This code is vulnerable to an attack by command-injection.

Correction — Sanitize Argument and Use execve()

In the following code, the argument of any_cmd is sanitized, and then passed to execve() for
execution. exec-family functions are not vulnerable to command-injection attacks.

include <string.h>
include <stdlib.h>
include <stdio.h>
include <unistd.h>

enum {
SIZE512=512,
SIZE3=3};

void func(char *arg)
{
 char *const args[SIZE3] = {"any_cmd", arg, NULL};
 char *const env[] = {NULL};

 /* Sanitize argument */

 /* Use execve() to execute any_cmd. */

 if (execve("/usr/bin/time", args, env) == -1) {
 /* Handle error */
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: UNSAFE_SYSTEM_CALL
Impact: High
CWE ID: 78, 88

See Also
Command executed from externally controlled path | Execution of externally
controlled command | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017b

 Unsafe call to a system function

13-63

https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/88.html

Unsafe standard encryption function
Function is not reentrant or uses a risky encryption algorithm

Description
This defect occurs when a standard encryption function uses a broken or weak cryptographic
algorithm. For example, crypt is not reentrant and is based on the risky Data Encryption Standard
(DES).

Risk

The use of a broken, weak, or nonstandard algorithm can expose sensitive information to an attacker.
A determined hacker can access the protected data using various techniques.

If the weak function is nonreentrant, when you use the function in concurrent programs, there is an
additional race condition risk.

Fix

Avoid functions that use these encryption algorithms. Instead, use a reentrant function that uses a
stronger encryption algorithm.

Note Some implementations of crypt support additional, possibly more secure, encryption
algorithms.

Examples
Decrypting Password Using crypt

#define _GNU_SOURCE
#include <pwd.h>
#include <string.h>
#include <crypt.h>

volatile int rd = 1;

const char *salt = NULL;
struct crypt_data input, output;

int verif_pwd(const char *pwd, const char *cipher_pwd, int safe)
{
 int r = 0;
 char *decrypted_pwd = NULL;

 switch(safe)
 {
 case 1:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;

 case 2:

13 Security Defects

13-64

 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;

 default:
 decrypted_pwd = crypt(pwd, cipher_pwd);
 break;
 }

 r = (strcmp(cipher_pwd, decrypted_pwd) == 0);

 return r;
}

In this example, crypt_r and crypt decrypt a password. However, crypt is nonreentrant and uses
the unsafe Data Encryption Standard algorithm.

Correction — Use crypt_r

One possible correction is to replace crypt with crypt_r.

#define _GNU_SOURCE
#include <pwd.h>
#include <string.h>
#include <crypt.h>

volatile int rd = 1;

const char *salt = NULL;
struct crypt_data input, output;

int verif_pwd(const char *pwd, const char *cipher_pwd, int safe)
{
 int r = 0;
 char *decrypted_pwd = NULL;

 switch(safe)
 {
 case 1:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;

 case 2:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;

 default:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;
 }

 r = (strcmp(cipher_pwd, decrypted_pwd) == 0);

 return r;
}

Result Information
Group: Security

 Unsafe standard encryption function

13-65

Language: C | C++
Default: Off
Command-Line Syntax: UNSAFE_STD_CRYPT
Impact: Medium
CWE ID: 327, 522, 663

See Also
Deterministic random output from constant seed | Predictable random output from
predictable seed | Vulnerable pseudo-random number generator | Find defects (-
checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

13 Security Defects

13-66

https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/522.html
https://cwe.mitre.org/data/definitions/663.html

Unsafe standard function
Function unsafe for security-related purposes

Description
This defect occurs when you use standard functions that are unsafe and must not be used for
security-related programming. Functions can be unsafe for many reasons. Some functions are unsafe
because they are nonreentrant. Other functions change behavior depending on the target or platform,
making some implementations unsafe.

Risk

Some unsafe functions are not reentrant, meaning that the contents of the function are not locked
during a call. So, an attacker can change the values midstream.

getlogin specifically can be unsafe depending on the implementation. Some implementations of
getlogin return only the first eight characters of a log-in name. An attacker can use a different login
with the same first eight characters to gain entry and manipulate the program.

Fix

Avoid unsafe functions for security-related purposes. If you cannot avoid unsafe functions, use a safer
version of the function instead. For getlogin, use getlogin_r.

Examples
Using getlogin

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>
#include <string.h>
#include <stdlib.h>

volatile int rd = 1;

int login_name_check(char *user)
{
 int r = -2;
 char *name = getlogin();
 if (name != NULL)
 {
 if (strcmp(name, user) == 0)
 {
 r = 0;
 }
 else
 r = -1;
 }

 Unsafe standard function

13-67

 return r;
}

This example uses getlogin to compare the user name of the current user to the given user name .
However, getlogin can return something other than the current user name because a parallel
process can change the string.
Correction — Use getlogin_r

One possible correction is to use getlogin_r instead of getlogin. getlogin_r is reentrant, so
you can trust the result.

#define _POSIX_C_SOURCE 199506L // use of getlogin_r
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>
#include <string.h>
#include <stdlib.h>

volatile int rd = 1;

enum { NAME_MAX_SIZE=64 };

int login_name_check(char *user)
{
 int r;
 char name[NAME_MAX_SIZE];

 if (getlogin_r(name, sizeof(name)) == 0)
 {
 if ((strlen(user) < sizeof(name)) &&
 (strncmp(name, user, strlen(user)) == 0))
 {
 r = 0;
 }
 else
 r = -1;
 }
 else
 r = -2;
 return r;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: UNSAFE_STD_FUNC
Impact: Medium
CWE ID: 558, 663

See Also
Use of obsolete standard function | Use of dangerous standard function | Invalid
use of standard library string routine | Find defects (-checkers)

13 Security Defects

13-68

https://cwe.mitre.org/data/definitions/558.html
https://cwe.mitre.org/data/definitions/663.html

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

 Unsafe standard function

13-69

Use of dangerous standard function
Dangerous functions cause possible buffer overflow in destination buffer

Description
This issue occurs when your code uses standard functions that write data to a buffer in a way that can
result in buffer overflows.

The following table lists dangerous standard functions, the risks of using each function, and what
function to use instead. The checker flags:

• Any use of an inherently dangerous function.
• An use of a possibly dangerous function only if the size of the buffer to which data is written can

be determined at compile time. The checker does not flag an use of such a function with a
dynamically allocated buffer.

Dangerous
Function

Risk Level Safer Function

gets Inherently dangerous — You cannot
control the length of input from the
console.

fgets

cin Inherently dangerous — You cannot
control the length of input from the
console.

Avoid or prefaces calls to cin with
cin.width.

strcpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

strncpy

stpcpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

stpncpy

lstrcpy or StrCpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

StringCbCopy, StringCchCopy,
strncpy, strcpy_s, or strlcpy

strcat Possibly dangerous — If the
concatenated result is greater than the
destination, buffer overflow can occur.

strncat, strlcat, or strcat_s

lstrcat or StrCat Possibly dangerous — If the
concatenated result is greater than the
destination, buffer overflow can occur.

StringCbCat, StringCchCat,
strncay, strcat_s, or strlcat

wcpcpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

wcpncpy

wcscat Possibly dangerous — If the
concatenated result is greater than the
destination, buffer overflow can occur.

wcsncat, wcslcat, or wcncat_s

13 Security Defects

13-70

Dangerous
Function

Risk Level Safer Function

wcscpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

wcsncpy

sprintf Possibly dangerous — If the output
length depends on unknown lengths or
values, buffer overflow can occur.

snprintf

vsprintf Possibly dangerous — If the output
length depends on unknown lengths or
values, buffer overflow can occur.

vsnprintf

Risk

These functions can cause buffer overflow, which attackers can use to infiltrate your program.

Fix

The fix depends on the root cause of the defect. See fixes in the table above and code examples with
fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Using sprintf

#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

 if (sprintf(dst, "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

 Use of dangerous standard function

13-71

This example function uses sprintf to copy the string str to dst. However, if str is larger than the
buffer, sprintf can cause buffer overflow.

Correction — Use snprintf with Buffer Size

One possible correction is to use snprintf instead and specify a buffer size.

#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

 if (snprintf(dst, sizeof(dst), "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: DANGEROUS_STD_FUNC
Impact: Low
CWE ID: 242, 676

See Also
Use of obsolete standard function | Unsafe standard function | Invalid use of
standard library string routine | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

13 Security Defects

13-72

https://cwe.mitre.org/data/definitions/242.html
https://cwe.mitre.org/data/definitions/676.html

Use of non-secure temporary file
Temporary generated file name not secure

Description
This defect occurs when you use temporary file routines that are not secure.

Risk

If an attacker guesses the file name generated by a standard temporary file routine, the attacker can:

• Cause a race condition when you generate the file name.
• Precreate a file of the same name, filled with malicious content. If your program reads the file, the

attacker’s file can inject the malicious code.
• Create a symbolic link to a file storing sensitive data. When your program writes to the temporary
file, the sensitive data is deleted.

Fix

To create temporary files, use a more secure standard temporary file routine, such as mkstemp from
POSIX.1-2001.

Also, when creating temporary files with routines that allow flags, such as mkostemp, use the
exclusion flag O_EXCL to avoid race conditions.

Examples
Temp File Created With tempnam
#define _BSD_SOURCE
#define _XOPEN_SOURCE
#define _GNU_SOURCE

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

int test_temp()
{
 char tpl[] = "abcXXXXXX";
 char suff_tpl[] = "abcXXXXXXsuff";
 char *filename = NULL;
 int fd;

 filename = tempnam("/var/tmp", "foo_");

 if (filename != NULL)
 {
 printf("generated tmp name (%s) in (%s:%s:%s)\n",

 Use of non-secure temporary file

13-73

 filename, getenv("TMPDIR") ? getenv("TMPDIR") : "$TMPDIR",
 "/var/tmp", P_tmpdir);

 fd = open(filename, O_CREAT, S_IRWXU|S_IRUSR);
 if (fd != -1)
 {
 close(fd);
 unlink(filename);
 return 1;
 }
 }
 return 0;
}

In this example, Bug Finder flags open because it tries to use an unsecure temporary file. The file is
opened without exclusive privileges. An attacker can access the file causing various risks on page 13-
73.

Correction — Add O_EXCL Flag

One possible correction is to add the O_EXCL flag when you open the temporary file.

#define _BSD_SOURCE
#define _XOPEN_SOURCE
#define _GNU_SOURCE

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

int test_temp()
{
 char tpl[] = "abcXXXXXX";
 char suff_tpl[] = "abcXXXXXXsuff";
 char *filename = NULL;
 int fd;

 filename = tempnam("/var/tmp", "foo_");

 if (filename != NULL)
 {
 printf("generated tmp name (%s) in (%s:%s:%s)\n",
 filename, getenv("TMPDIR") ? getenv("TMPDIR") : "$TMPDIR",
 "/var/tmp", P_tmpdir);

 fd = open(filename, O_CREAT|O_EXCL, S_IRWXU|S_IRUSR);
 if (fd != -1)
 {
 close(fd);
 unlink(filename);
 return 1;
 }
 }
 return 0;
}

13 Security Defects

13-74

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: NON_SECURE_TEMP_FILE
Impact: High
CWE ID: 377, 922

See Also
Data race | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

 Use of non-secure temporary file

13-75

https://cwe.mitre.org/data/definitions/377.html
https://cwe.mitre.org/data/definitions/922.html

Use of obsolete standard function
Obsolete routines can cause security vulnerabilities and portability issues

Description
This defect occurs when you use standard function routines that are considered legacy, removed,
deprecated, or obsolete by C/C++ coding standards.

Obsolete Function Standards Risk Replacement
Function

asctime Deprecated in POSIX.1-2008 Not thread-safe. strftime or
asctime_s

asctime_r Deprecated in POSIX.1-2008 Implementation based on
unsafe function sprintf.

strftime or
asctime_s

bcmp Deprecated in 4.3BSD

Marked as legacy in POSIX.1-2001.

Returns from function
after finding the first
differing byte, making it
vulnerable to timing
attacks.

memcmp

bcopy Deprecated in 4.3BSD

Marked as legacy in POSIX.1-2001.

Returns from function
after finding the first
differing byte, making it
vulnerable to timing
attacks.

memcpy or memmove

brk and sbrk Marked as legacy in SUSv2 and
POSIX.1-2001.

 malloc

bsd_signal Removed in POSIX.1-2008 sigaction
bzero Marked as legacy in POSIX.1-2001.

Removed in POSIX.1-2008.
 memset

ctime Deprecated in POSIX.1-2008 Not thread-safe. strftime or
asctime_s

ctime_r Deprecated in POSIX.1-2008 Implementation based on
unsafe function sprintf.

strftime or
asctime_s

cuserid Removed in POSIX.1-2001. Not reentrant. Precise
functionality not
standardized causing
portability issues.

getpwuid

ecvt and fcvt Marked as legacy in POSIX.1-2001.
Removed in POSIX.1-2008

Not reentrant snprintf

ecvt_r and fcvt_r Marked as legacy in POSIX.1-2001.
Removed in POSIX.1-2008

 snprintf

ftime Removed in POSIX.1-2008 time,
gettimeofday,
clock_gettime

13 Security Defects

13-76

Obsolete Function Standards Risk Replacement
Function

gamma, gammaf,
gammal

Function not specified in any
standard because of historical
variations

Portability issues. tgamma, lgamma

gcvt Marked as legacy in POSIX.1-2001.
Removed in POSIX.1-2008.

 snprintf

getcontext Removed in POSIX.1-2008. Portability issues. Use POSIX thread
instead.

getdtablesize BSD API function not included in
POSIX.1-2001

Portability issues. sysconf(_SC_OPEN
_MAX)

gethostbyaddr Removed in POSIX.1-2008 Not reentrant getaddrinfo
gethostbyname Removed in POSIX.1-2008 Not reentrant getnameinfo
getpagesize BSD API function not included in

POSIX.1-2001
Portability issues. sysconf(_SC_PAGE

SIZE)
getpass Removed in POSIX.1-2001. Not reentrant. getpwuid
getw Not present in POSIX.1-2001. fread
getwd Marked legacy in POSIX.1-2001.

Removed in POSIX.1-2008.
 getcwd

index Marked as legacy in POSIX.1-2001.
Removed in POSIX.1-2008.

 strchr

makecontext Removed in POSIX.1-2008. Portability issues. Use POSIX thread
instead.

memalign Appears in SunOS 4.1.3. Not in 4.4
BSD or POSIX.1-2001

 posix_memalign

mktemp Removed in POSIX.1-2008. Generated names are
predictable and can
cause a race condition.

mkstemp removes
race risk

pthread_attr_
getstackaddr and
pthread_attr_
setstackaddr

 Ambiguities in the
specification of the
stackaddr attribute
cause portability issues

pthread_attr_
getstack and
pthread_attr_
setstack

putw Not present in POSIX.1-2001. Portability issues. fwrite
qecvt and qfcvt Marked as legacy in POSIX.1-2001,

removed in POSIX.1-2008
 snprintf

qecvt_r and qfcvt_r Marked as legacy in POSIX.1-2001,
removed in POSIX.1-2008

 snprintf

rand_r Marked as obsolete in
POSIX.1-2008

re_comp BSD API function Portability issues regcomp
re_exes BSD API function Portability issues regexec
rindex Marked as legacy in POSIX.1-2001.

Removed in POSIX.1-2008.
 strrchr

 Use of obsolete standard function

13-77

Obsolete Function Standards Risk Replacement
Function

scalb Removed in POSIX.1-2008 scalbln, scalblnf,
or scalblnl

sigblock 4.3BSD signal API whose origin is
unclear

 sigprocmask

sigmask 4.3BSD signal API whose origin is
unclear

 sigprocmask

sigsetmask 4.3BSD signal API whose origin is
unclear

 sigprocmask

sigstack Interface is obsolete and not
implemented on most platforms.

Portability issues. sigaltstack

sigvec 4.3BSD signal API whose origin is
unclear

 sigaction

swapcontext Removed in POSIX.1-2008 Portability issues. Use POSIX threads.
tmpnam and tmpnam_r Marked as obsolete in

POSIX.1-2008.
This function generates a
different string each time
it is called, up to
TMP_MAX times. If it is
called more than
TMP_MAX times, the
behavior is
implementation-defined.

mkstemp, tmpfile

ttyslot Removed in POSIX.1-2001.
ualarm Marked as legacy in POSIX.1-2001.

Removed in POSIX.1-2008.
Errors are under-
specified

setitimer or POSIX
timer_create

usleep Removed in POSIX.1-2008. nanosleep
utime SVr4, POSIX.1-2001. POSIX.1-2008

marks as obsolete.

valloc Marked as obsolete in 4.3BSD.

Marked as legacy in SUSv2.

Removed from POSIX.1-2001

 posix_memalign

vfork Removed from POSIX.1-2008 Under-specified in
previous standards.

fork

wcswcs This function was not included in
the final ISO/IEC 9899:1990/
Amendment 1:1995 (E).

 wcsstr

WinExec WinAPI provides this function only
for 16-bit Windows compatibility.

 CreateProcess

LoadModule WinAPI provides this function only
for 16-bit Windows compatibility.

 CreateProcess

13 Security Defects

13-78

Fix

The fix depends on the root cause of the defect. See fixes in the table above and code examples with
fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Printing Out Time

#include <stdio.h>
#include <time.h>

void timecheck_bad(int argc, char *argv[])
{
 time_t ticks;

 ticks = time(NULL);
 printf("%.24s\r\n", ctime(&ticks));
}

In this example, the function ctime formats the current time and prints it out. However, ctime was
removed after C99 because it does not work on multithreaded programs.

Correction — Different Time Function

One possible correction is to use strftime instead because this function uses a set buffer size.

#include <stdio.h>
#include <string.h>
#include <time.h>

void timecheck_good(int argc, char *argv[])
{
 char outBuff[1025];
 time_t ticks;
 struct tm * timeinfo;

 memset(outBuff, 0, sizeof(outBuff));

 ticks = time(NULL);
 timeinfo = localtime(&ticks);
 strftime(outBuff,sizeof(outBuff),"%I:%M%p.",timeinfo);
 fprintf(stdout, outBuff);
}

Result Information
Group: Security

 Use of obsolete standard function

13-79

Language: C | C++
Default: Off
Command-Line Syntax: OBSOLETE_STD_FUNC
Impact: Low
CWE ID: 474, 477
Tags: #deprecatedFunctions

See Also
Use of dangerous standard function | Unsafe standard function | Invalid use of
standard library string routine | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

13 Security Defects

13-80

https://cwe.mitre.org/data/definitions/474.html
https://cwe.mitre.org/data/definitions/477.html

Vulnerable path manipulation
Path argument with /../, /abs/path/, or other unsecure elements

Description
This defect occurs when you create a relative or absolute path from a tainted source and you then use
the path to open/create files.

Risk

Relative path elements, such as ".." can resolve to locations outside the intended folder. Absolute
path elements, such as "/abs/path" can also resolve to locations outside the intended folder.

An attacker can use these types of path traversal elements to traverse to the rest of the file system
and access other files or folders.

Fix

Avoid vulnerable path traversal elements such as /../ and /abs/path/. Use fixed file names and
locations wherever possible.

Examples
Relative Path Traversal

include <stdio.h>
include <string.h>
include <wchar.h>
include <sys/types.h>
include <sys/stat.h>
include <fcntl.h>
include <unistd.h>
include <stdlib.h>
define BASEPATH "/tmp/"
define FILENAME_MAX 512

static void Relative_Path_Traversal(void)
{
 char * data;
 char data_buf[FILENAME_MAX] = BASEPATH;
 char sub_buf[FILENAME_MAX];

 if (fgets(sub_buf, FILENAME_MAX, stdin) == NULL) exit (1);
 data = data_buf;
 strcat(data, sub_buf);

 FILE *file = NULL;
 file = fopen(data, "wb+");
 if (file != NULL) fclose(file);
}

int path_call(void){

 Vulnerable path manipulation

13-81

 Relative_Path_Traversal();
}

This example opens a file from "/tmp/", but uses a relative path to the file. An external user can
manipulate this relative path when fopen opens the file.

Correction — Use Fixed File Name

One possible correction is to use a fixed file name instead of a relative path. This example uses
file.txt.

include <stdio.h>
include <string.h>
include <wchar.h>
include <sys/types.h>
include <sys/stat.h>
include <fcntl.h>
include <unistd.h>
include <stdlib.h>
define BASEPATH "/tmp/"
define FILENAME_MAX 512

static void Relative_Path_Traversal(void)
{
 char * data;
 char data_buf[FILENAME_MAX] = BASEPATH;
 data = data_buf;

 /* FIX: Use a fixed file name */
 strcat(data, "file.txt");
 FILE *file = NULL;
 file = fopen(data, "wb+");
 if (file != NULL) fclose(file);
}

int path_call(void){
 Relative_Path_Traversal();
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: PATH_TRAVERSAL
Impact: Low
CWE ID: 22, 23, 36

See Also
Use of path manipulation function without maximum sized buffer checking | Find
defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”

13 Security Defects

13-82

https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/23.html
https://cwe.mitre.org/data/definitions/36.html

“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

 Vulnerable path manipulation

13-83

Vulnerable permission assignments
Argument gives read/write/search permissions to external users

Description
This defect occurs when functions that can change resource permissions, such as chmod, umask,
creat, or open, specify permissions that allow unintended actors to modify or read the resource.

Risk

If you give outside users or outside groups a wider range or permissions than required, you
potentially expose your sensitive information and your modifications. This defect is especially
dangerous for permissions related to:

• Program configurations
• Program executions
• Sensitive user data

Fix

Set your permissions so that the user (u) has more permissions than the group (g), and so the group
has more permissions than other users (o), or u >= g >= o.

Examples
Create File with Other Permissions
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

void bug_dangerouspermissions(const char * log_path) {
 mode_t mode = S_IROTH | S_IXOTH | S_IWOTH;
 int fd = creat(log_path, mode);

 if (fd) {
 write(fd, "Hello\n", 6);
 }
 close(fd);
 unlink(log_path);
}

In this example, the log_path file is created with more rights for the other outside users, than the
current user. The permissions are ---------rwx.
Correction — Modify User Permissions

One possible correction is to modify the user permissions for the file. In this correction, the user has
read/write/execute permissions, but other users do not.

#include <unistd.h>
#include <sys/types.h>

13 Security Defects

13-84

#include <sys/stat.h>
#include <fcntl.h>

void corrected_dangerouspermissions(const char * log_path) {
 mode_t mode = S_IRUSR | S_IXUSR | S_IWUSR;
 int fd = creat(log_path, mode);

 if (fd) {
 write(fd, "Hello\n", 6);
 }
 close(fd);
 unlink(log_path);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: DANGEROUS_PERMISSIONS
Impact: Medium
CWE ID: 732, 922

See Also
Umask used with chmod-style arguments | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

 Vulnerable permission assignments

13-85

https://cwe.mitre.org/data/definitions/732.html
https://cwe.mitre.org/data/definitions/922.html

Vulnerable pseudo-random number generator
Using a cryptographically weak pseudo-random number generator

Description
This defect occurs when you use cryptographically weak pseudo-random number generator (PRNG)
routines.

The list of cryptographically weak routines flagged by this checker include:

• rand, random
• drand48, lrand48, mrand48, erand48, nrand48, jrand48, and their _r equivalents such as

drand48_r
• RAND_pseudo_bytes

Risk

These cryptographically weak routines are predictable and must not be used for security purposes.
When a predictable random value controls the execution flow, your program is vulnerable to
malicious attacks.

Fix

Use more cryptographically sound random number generators, such as CryptGenRandom (Windows),
OpenSSL/RAND_bytes(Linux/UNIX).

Examples
Random Loop Numbers

#include <stdio.h>
#include <stdlib.h>

volatile int rd = 1;
int main(int argc, char *argv[])
{
 int j, r, nloops;
 struct random_data buf;
 int i = 0;

 nloops = rand();

 for (j = 0; j < nloops; j++) {
 if (random_r(&buf, &i))
 exit(1);
 printf("random_r: %ld\n", (long)i);
 }
 return 0;
}

13 Security Defects

13-86

This example uses rand and random_r to generate random numbers. If you use these functions for
security purposes, these PRNGs can be the source of malicious attacks.

Correction — Use Stronger PRNG

One possible correction is to replace the vulnerable PRNG with a stronger random number generator.

#include <stdio.h>
#include <stdlib.h>
#include <openssl/rand.h>

volatile int rd = 1;
int main(int argc, char* argv[])
{
 int j, r, nloops;
 unsigned char buf;
 unsigned int seed;
 int i = 0;

 if (argc != 3)
 {
 fprintf(stderr, "Usage: %s <seed> <nloops>\n", argv[0]);
 exit(EXIT_FAILURE);
 }

 seed = atoi(argv[1]);
 nloops = atoi(argv[2]);

 for (j = 0; j < nloops; j++) {
 if (RAND_bytes(&buf, i) != 1)
 exit(1);
 printf("RAND_bytes: %u\n", (unsigned)buf);
 }
 return 0;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: VULNERABLE_PRNG
Impact: Medium
CWE ID: 330, 338

See Also
Deterministic random output from constant seed | Predictable random output from
predictable seed | Unsafe standard encryption function | Find defects (-
checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

 Vulnerable pseudo-random number generator

13-87

https://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/338.html

Introduced in R2015b

13 Security Defects

13-88

Cryptography Defects

14

Constant block cipher initialization vector
Initialization vector is constant instead of randomized

Description
This defect occurs when you use a constant for the initialization vector (IV) during encryption.

Risk

Using a constant IV is equivalent to not using an IV. Your encrypted data is vulnerable to dictionary
attacks.

Block ciphers break your data into blocks of fixed size. Block cipher modes such as CBC (Cipher
Block Chaining) protect against dictionary attacks by XOR-ing each block with the encrypted output
from the previous block. To protect the first block, these modes use a random initialization vector
(IV). If you use a constant IV to encrypt multiple data streams that have a common beginning, your
data becomes vulnerable to dictionary attacks.

Fix

Produce a random IV by using a strong random number generator.

For a list of random number generators that are cryptographically weak, see Vulnerable pseudo-
random number generator.

Examples
Constants Used for Initialization Vector

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

/* Using the cryptographic routines */

int func(EVP_CIPHER_CTX *ctx, unsigned char *key){
 unsigned char iv[SIZE16] = {'1', '2', '3', '4','5','6','b','8','9',
 '1','2','3','4','5','6','7'};
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

In this example, the initialization vector iv has constants only. The constant initialization vector
makes your cipher vulnerable to dictionary attacks.
Correction — Use Random Initialization Vector

One possible correction is to use a strong random number generator to produce the initialization
vector. The corrected code here uses the function RAND_bytes declared in openssl/rand.h.

14 Cryptography Defects

14-2

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

/* Using the cryptographic routines */

int func(EVP_CIPHER_CTX *ctx, unsigned char *key){
 unsigned char iv[SIZE16];
 RAND_bytes(iv, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_CONSTANT_IV
Impact: Medium
CWE ID: 310, 326, 329

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017a

 Constant block cipher initialization vector

14-3

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/329.html

Constant cipher key
Encryption or decryption key is constant instead of randomized

Description
This defect occurs when you use a constant for the encryption or decryption key.

Risk

If you use a constant for the encryption or decryption key, an attacker can retrieve your key easily.

You use a key to encrypt and later decrypt your data. If a key is easily retrieved, data encrypted using
that key is not secure.

Fix

Produce a random key by using a strong random number generator.

For a list of random number generators that are cryptographically weak, see Vulnerable pseudo-
random number generator.

Examples
Constants Used for Key

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){
 unsigned char key[SIZE16] = {'1', '2', '3', '4','5','6','b','8','9',
 '1','2','3','4','5','6','7'};
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

In this example, the cipher key, key, has constants only. An attacker can easily retrieve a constant
key.

Correction — Use Random Key

Use a strong random number generator to produce the cipher key. The corrected code here uses the
function RAND_bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){

14 Cryptography Defects

14-4

 unsigned char key[SIZE16];
 RAND_bytes(key, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_CONSTANT_KEY
Impact: Medium
CWE ID: 310, 320, 321, 326, 522

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017a

 Constant cipher key

14-5

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/320.html
https://cwe.mitre.org/data/definitions/321.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/522.html

Context initialized incorrectly for cryptographic
operation
Context used for public key cryptography operation is initialized for a different operation

Description
This defect occurs when you initialize an EVP_PKEY_CTX object for a specific public key cryptography
operation but use the object for a different operation.

For instance, you initialize the context for encryption.

ret = EVP_PKEY_encrypt_init(ctx);

However, you use the context for decryption without reinitializing the context.

ret = EVP_PKEY_decrypt(ctx, out, &out_len, in, in_len);

The checker detects if the context object used in these functions has been initialized by using the
corresponding initialization functions: EVP_PKEY_paramgen, EVP_PKEY_keygen,
EVP_PKEY_encrypt, EVP_PKEY_verify, EVP_PKEY_verify_recover,EVP_PKEY_decrypt,
EVP_PKEY_sign, EVP_PKEY_derive,and EVP_PKEY_derive_set_peer.

Risk

Mixing up different operations on the same context can lead to obscure code. It is difficult to
determine at a glance whether the current object is used for encryption, decryption, signature, or
another operation. The mixup can also lead to a failure in the operation or unexpected ciphertext.

Fix

After you set up a context for a certain family of operations, use the context for only that family of
operations.For instance, use these pairs of functions for initialization and usage of the
EVP_PKEY_CTX context object.

• For encryption with EVP_PKEY_encrypt, initialize the context with EVP_PKEY_encrypt_init.
• For signature verification with EVP_PKEY_verify, initialize the context with

EVP_PKEY_verify_init.
• For key generation with EVP_PKEY_keygen, initialize the context with EVP_PKEY_keygen_init.

If you want to reuse an existing context object for a different family of operations, reinitialize the
context.

Examples
Encryption Using Context Initialized for Decryption

#include <openssl/evp.h>

#define fatal_error() exit(-1)

14 Cryptography Defects

14-6

int ret;
unsigned char *out_buf10;
size_t out_len10;
int func(unsigned char *src, size_t len, EVP_PKEY_CTX *ctx){
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_decrypt_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_encrypt(ctx, out_buf10, &out_len10, src, len);
}

In this example, the context is initialized for decryption but used for encryption.

Correction — Use One Family of Operations

One possible correction is to initialize the object for encryption.

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf10;
size_t out_len10;
int func(unsigned char *src, size_t len, EVP_PKEY_CTX *ctx){
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_encrypt_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_encrypt(ctx, out_buf10, &out_len10, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_PKEY_INCORRECT_INIT
Impact: Medium
CWE ID: 310, 325, 372, 573, 664

See Also
Incorrect key for cryptographic algorithm | Missing data for encryption,
decryption or signing operation | Missing parameters for key generation |
Missing peer key | Missing private key | Missing public key | Nonsecure parameters
for key generation | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

 Context initialized incorrectly for cryptographic operation

14-7

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

Introduced in R2018a

14 Cryptography Defects

14-8

Context initialized incorrectly for digest operation
Context used for digest operation is initialized for a different digest operation

Description
This defect occurs when you initialize an EVP_MD_CTX context object for a specific digest operation
but use the context for a different operation.

For instance, you initialize the context for creating a message digest only.

ret = EVP_DigestInit(ctx, EVP_sha256())

However, you perform a final step for signing:

ret = EVP_SignFinal(&ctx, out, &out_len, pkey);

The error is shown only if the final step is not consistent with the initialization of the context. If the
intermediate update steps are inconsistent, it does not trigger an error because the intermediate
steps do not depend on the nature of the operation. For instance, EVP_DigestUpdate works
identically to EVP_SignUpdate.

Risk

Mixing up different operations on the same context can lead to obscure code. It is difficult to
determine at a glance whether the current object is used for message digest creation, signing, or
verification. The mixup can also lead to a failure in the operation or unexpected message digest.

Fix

After you set up a context for a certain family of operations, use the context for only that family of
operations. For instance, use these pairs of functions for initialization and final steps.

• EVP_DigestInit : EVP_DigestFinal
• EVP_DigestInit_ex : EVP_DigestFinal_ex
• EVP_DigestSignInit : EVP_DigestSignFinal

If you want to reuse an existing context object for a different family of operations, reinitialize the
context.

Examples
Inconsistent Initial and Final Digest Operation

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf16;
unsigned int out_len16;

 Context initialized incorrectly for digest operation

14-9

void func(unsigned char *src, size_t len){
 EVP_MD_CTX* ctx = EVP_MD_CTX_create();

 ret = EVP_SignInit_ex(ctx, EVP_sha256(), NULL);
 if (ret != 1) fatal_error();

 ret = EVP_SignUpdate(ctx, src, len);
 if (ret != 1) fatal_error();

 ret = EVP_DigestSignFinal(ctx, out_buf16, (size_t*) out_len16);

 if (ret != 1) fatal_error();
}

In this example, the context object is initialized for signing only with EVP_SignInit but the final
step attempts to create a signed digest with EVP_DigestSignFinal.

Correction — Use One Family of Operations

One possible correction is to use the context object for signing only. Change the final step to
EVP_SignFinal in keeping with the initialization step.

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf16;
unsigned int out_len16;

void corrected_cryptomdbadfunction(unsigned char *src, size_t len, EVP_PKEY* pkey){
 EVP_MD_CTX* ctx = EVP_MD_CTX_create();

 ret = EVP_SignInit_ex(ctx, EVP_sha256(), NULL);
 if (ret != 1) fatal_error();

 ret = EVP_SignUpdate(ctx, src, len);
 if (ret != 1) fatal_error();

 ret = EVP_SignFinal(ctx, out_buf16, &out_len16, pkey);
 if (ret != 1) fatal_error();
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_MD_BAD_FUNCTION
Impact: Medium
CWE ID: 310, 353, 354, 372, 573, 664

See Also
Nonsecure hash algorithm | Find defects (-checkers)

14 Cryptography Defects

14-10

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/353.html
https://cwe.mitre.org/data/definitions/354.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

 Context initialized incorrectly for digest operation

14-11

Incompatible padding for RSA algorithm operation
Cryptography operation is not supported by the padding type set in context

Description
This defect occurs when you perform an RSA algorithm operation on a context object that is not
compatible with the padding previously associated with the object.

For instance, you associate the OAEP padding scheme with a context object but later use the context
for signature verification, an operation that the padding scheme does not support.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING);
...
ret = EVP_PKEY_verify(ctx, out, out_len, in, in_len);

Risk

Padding schemes remove determinism from the RSA algorithm and protect RSA operations from
certain kinds of attack.

When you use an incorrect padding scheme, the RSA operation can fail or result in unexpected
ciphertext.

Fix

Before performing an RSA operation, associate the context object with a padding scheme that is
compatible with the operation.

• Encryption: Use the OAEP padding scheme.

For instance, use the EVP_PKEY_CTX_set_rsa_padding function with the argument
RSA_PKCS1_OAEP_PADDING or the RSA_padding_add_PKCS1_OAEP function.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING);

You can also use the PKCS#1v1.5 or SSLv23 schemes. Be aware that these schemes are
considered insecure.

You can then use functions such as EVP_PKEY_encrypt / EVP_PKEY_decrypt or
RSA_public_encrypt / RSA_private_decrypt on the context.

• Signature: Use the RSA-PSS padding scheme.

For instance, use the EVP_PKEY_CTX_set_rsa_padding function with the argument
RSA_PKCS1_PSS_PADDING.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PSS_PADDING);

You can also use the ANSI X9.31, PKCS#1v1.5, or SSLv23 schemes. Be aware that these schemes
are considered insecure.

You can then use functions such as the EVP_PKEY_sign-EVP_PKEY_verify pair or the
RSA_private_encrypt-RSA_public_decrypt pair on the context.

14 Cryptography Defects

14-12

If you perform two kinds of operation with the same context, after the first operation, reset the
padding scheme in the context before the second operation.

Examples
OAEP Padding for Signature Operation

#include <stddef.h>
#include <openssl/rsa.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;

int func(unsigned char *src, size_t len, RSA* rsa){
 if (rsa == NULL) fatal_error();
 return RSA_private_encrypt(len, src, out_buf, rsa, RSA_PKCS1_OAEP_PADDING);
}

In this example, the function RSA_private_encrypt performs a signature operation by using the
OAEP padding scheme, which supports encryption operations only.

Correction — Use Padding Scheme That Supports Signature

One possible correction is to use the RSA-PSS padding scheme. The corrected example uses the
function RSA_padding_add_PKCS1_PSS to associate the padding scheme with the context.

#include <stddef.h>
#include <openssl/evp.h>
#include <openssl/rsa.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *msg_pad;
unsigned char *out_buf;

int func(unsigned char *src, size_t len, RSA* rsa){
 if (rsa == NULL) fatal_error();

 ret = RSA_padding_add_PKCS1_PSS(rsa, msg_pad, src, EVP_sha256(), -2);
 if (ret <= 0) fatal_error();

 return RSA_private_encrypt(len, msg_pad, out_buf, rsa, RSA_NO_PADDING);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_RSA_BAD_PADDING
Impact: Medium

 Incompatible padding for RSA algorithm operation

14-13

CWE ID: 310, 372, 573, 664

See Also
Missing blinding for RSA algorithm | Missing padding for RSA algorithm |
Nonsecure RSA public exponent | Weak padding for RSA algorithm | Find defects (-
checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

14 Cryptography Defects

14-14

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

Inconsistent cipher operations
You perform encryption and decryption steps in succession with the same cipher context without a
reinitialization in between

Description
This defect occurs when you perform an encryption and decryption step with the same cipher
context. You do not reinitialize the context in between those steps. The checker applies to symmetric
encryption only.

For instance, you set up a cipher context for decryption using EVP_DecryptInit_ex.

EVP_DecryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

However, you use the context for encryption using EVP_EncryptUpdate.

EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);

Risk

Mixing up encryption and decryption steps can lead to obscure code. It is difficult to determine at a
glance whether the current cipher context is used for encryption or decryption. The mixup can also
lead to race conditions, failed encryption, and unexpected ciphertext.

Fix

After you set up a cipher context for a certain family of operations, use the context for only that
family of operations.

For instance, if you set up a cipher context for decryption using EVP_DecryptInit_ex, use the
context afterward for decryption only.

Examples
Encryption Step Following Decryption Step

#include <openssl/evp.h>
#include <stdlib.h>

/* Using the cryptographic routines */

unsigned char *out_buf;
int out_len;
unsigned char g_key[16];
unsigned char g_iv[16];
void func(unsigned char* src, int len) {

 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 Inconsistent cipher operations

14-15

 /* Cipher context set up for decryption*/
 EVP_DecryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, g_key, g_iv);

 /* Update step for encryption */
 EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

In this example, the cipher context ctx is set up for decryption using EVP_DecryptInit_ex.
However, immediately afterward, the context is used for encryption using EVP_EncryptUpdate.

Correction — Change Setup Step

One possible correction is to change the setup step. If you want to use the cipher context for
encryption, set it up using EVP_EncryptInit_ex.

#include <openssl/evp.h>
#include <stdlib.h>

unsigned char *out_buf;
int out_len;
unsigned char g_key[16];
unsigned char g_iv[16];

void func(unsigned char* src, int len) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 /* Cipher context set up for encryption*/
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, g_key, g_iv);

 /* Update step for encryption */
 EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_BAD_FUNCTION
Impact: Medium
CWE ID: 372, 664

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017a

14 Cryptography Defects

14-16

https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/664.html

Incorrect key for cryptographic algorithm
Public key cryptography operation is not supported by the algorithm used in context initialization

Description
This defect occurs when you initialize a context object with a key for a specific algorithm but perform
an operation that the algorithm does not support.

For instance, you initialize the context with a key for the DSA algorithm.

ret = EVP_PKEY_set1_DSA(pkey,dsa);
ctx = EVP_PKEY_CTX_new(pkey, NULL);

However, you use the context for encrypting data, an operation that the DSA algorithm does not
support.

ret = EVP_PKEY_encrypt(ctx,out, &out_len, in, in_len);

Risk

If the algorithm does not support your cryptographic operation, you do not see the expected results.
For instance, if you use the DSA algorithm for encryption, you might get unexpected ciphertext.

Fix

Use the algorithm that is appropriate for the cryptographic operation that you want to perform:

• Diffie-Hellman (DH): For key derivation.
• Digital Signature Algorithm (DSA): For signature.
• RSA: For encryption and signature.
• Elliptic curve (EC): For key derivation and signature.

Examples
Encryption with DSA Algorithm

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(unsigned char *src, size_t len, DSA * dsa){
 EVP_PKEY_CTX *ctx;
 EVP_PKEY *pkey = NULL;

 pkey = EVP_PKEY_new();
 if(pkey == NULL) fatal_error();

 Incorrect key for cryptographic algorithm

14-17

 ret = EVP_PKEY_set1_DSA(pkey,dsa);
 if (ret <= 0) fatal_error();

 ctx = EVP_PKEY_CTX_new(pkey, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_encrypt_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_encrypt(ctx, out_buf, &out_len, src, len);
}

In this example, the context object is initialized with a key associated with the DSA algorithm.
However, the object is used for encryption, an operation that the DSA algorithm does not support.

Correction — Use RSA Algorithm

One possible correction is to initialize the context object with a key associated with the RSA
algorithm.

#include <openssl/evp.h>
#include <openssl/rsa.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(unsigned char *src, size_t len, RSA * rsa){
 EVP_PKEY_CTX *ctx;
 EVP_PKEY *pkey = NULL;

 pkey = EVP_PKEY_new();
 if(pkey == NULL) fatal_error();

 ret = EVP_PKEY_set1_RSA(pkey,rsa);
 if (ret <= 0) fatal_error();

 ctx = EVP_PKEY_CTX_new(pkey, NULL); /* RSA key is set in the context */
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_encrypt_init(ctx); /* Encryption operation is set in the context */
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_encrypt(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_PKEY_INCORRECT_KEY
Impact: Medium
CWE ID: 310, 325, 573, 664

14 Cryptography Defects

14-18

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

See Also
Context initialized incorrectly for cryptographic operation | Missing data for
encryption, decryption or signing operation | Missing parameters for key
generation | Missing peer key | Missing private key | Missing public key |
Nonsecure parameters for key generation | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

 Incorrect key for cryptographic algorithm

14-19

Missing blinding for RSA algorithm
Context used in decryption or signature verification is not blinded against timing attacks

Description
This defect occurs when you do not enable blinding for an RSA context object before using the object
for decryption or signature verification.

For instance, you do not turn on blinding in the context object rsa before this decryption step:

 ret = RSA_public_decrypt(in_len, in, out, rsa, RSA_PKCS1_PADDING)

Risk

Without blinding, the time it takes for the cryptographic operation to be completed has a correlation
with the key value. An attacker can gather information about the RSA key by measuring the time for
completion. Blinding removes this correlation and protects the decryption or verification operation
against timing attacks.

Fix

Before performing RSA decryption or signature verification, enable blinding.

ret = RSA_blinding_on(rsa, NULL);

Examples
Blinding Disabled Before Decryption

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
int func(unsigned char *src, size_t len, RSA* rsa){
 if (rsa == NULL) fatal_error();

 RSA_blinding_off(rsa);
 return RSA_private_decrypt(len, src, out_buf, rsa, RSA_PKCS1_OAEP_PADDING);
}

In this example, blinding is disabled for the context object rsa. Decryption with this context object
can be vulnerable to timing attacks.

Correction — Enable Blinding Before Decryption

One possible correction is to explicitly enable blinding before decryption. Even if blinding might be
enabled previously or by default, explicitly enabling blinding ensures that the security of the current
decryption step is not reliant on the caller of func.

14 Cryptography Defects

14-20

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
int func(unsigned char *src, size_t len, RSA* rsa){
 if (rsa == NULL) fatal_error();

 ret = RSA_blinding_on(rsa, NULL);
 if (ret <= 0) fatal_error();
 return RSA_private_decrypt(len, src, out_buf, rsa, RSA_PKCS1_OAEP_PADDING);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_RSA_NO_BLINDING
Impact: Medium
CWE ID: 310, 326, 573

See Also
Incompatible padding for RSA algorithm operation | Missing padding for RSA
algorithm | Weak padding for RSA algorithm | Nonsecure RSA public exponent | Find
defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

 Missing blinding for RSA algorithm

14-21

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/573.html

Missing block cipher initialization vector
Context used for encryption or decryption is associated with NULL initialization vector or not
associated with an initialization vector

Description
This defect occurs when you encrypt or decrypt data using a NULL initialization vector (IV).

Note You can initialize your cipher context with a NULL initialization vector (IV). However, if your
algorithm requires an IV, before the encryption or decryption step, you must associate the cipher
context with a non-NULL IV.

Risk

Many block cipher modes use an initialization vector (IV) to prevent dictionary attacks. If you use a
NULL IV, your encrypted data is vulnerable to such attacks.

Block ciphers break your data into blocks of fixed size. Block cipher modes such as CBC (Cipher
Block Chaining) protect against dictionary attacks by XOR-ing each block with the encrypted output
from the previous block. To protect the first block, these modes use a random initialization vector
(IV). If you use a NULL IV, you get the same ciphertext when encrypting the same plaintext. Your data
becomes vulnerable to dictionary attacks.

Fix

Before your encryption or decryption steps

 ret = EVP_EncryptUpdate(&ctx, out_buf, &out_len, src, len)

associate your cipher context ctx with a non-NULL initialization vector.

ret = EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv)

Examples
NULL Initialization Vector Used for Encryption

#include <openssl/evp.h>
#include <stdlib.h>
#define fatal_error() abort()

unsigned char *out_buf;
int out_len;

int func(EVP_CIPHER_CTX *ctx, unsigned char *key, unsigned char *src, int len){
 if (key == NULL)
 fatal_error();

 /* Last argument is initialization vector */

14 Cryptography Defects

14-22

 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, NULL);

 /* Update step with NULL initialization vector */
 return EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

In this example, the initialization vector associated with the cipher context ctx is NULL. If you use
this context to encrypt your data, your data is vulnerable to dictionary attacks.

Correction — Use Random Initialization Vector

Use a strong random number generator to produce the initialization vector. The corrected code here
uses the function RAND_bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define fatal_error() abort()
#define SIZE16 16

unsigned char *out_buf;
int out_len;

int func(EVP_CIPHER_CTX *ctx, unsigned char *key, unsigned char *src, int len){
 if (key == NULL)
 fatal_error();
 unsigned char iv[SIZE16];
 RAND_bytes(iv, 16);

 /* Last argument is initialization vector */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Update step with non-NULL initialization vector */
 return EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_NO_IV
Impact: Medium
CWE ID: 310, 326, 329

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

 Missing block cipher initialization vector

14-23

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/329.html

Introduced in R2017a

14 Cryptography Defects

14-24

Missing certification authority list
Certificate for authentication cannot be trusted

Description
This defect occurs when you use a context to handle TLS/SSL connections with these functions, but
you do not load a certification authority (CA) list into the context.

• SSL_connect
• SSL_accept
• SSL_do_handshake
• SSL_write
• SSL_read
• BIO_do_connect
• BIO_do_accept
• BIO_do_handshake

A CA is a trusted third party entity that issues digital certificates to other entities. The certificate
contains information about its owner. Server or clients use this information to authenticate
connections to the certificate owner.

The checker raises a defect if:

• For server authentication, the client has no CA list to determine whether the server certificate is
from a trusted source.

• For client authentication, the server has no CA list to determine whether the client certificate is
from a trusted source.

Risk

Without a CA list, you cannot determine if the certificate is issued by a trusted CA. The entity that
presents the certificate for authentication might not be the entity described in the certificate. Your
connection is vulnerable to man-in-the-middle (MITM) attacks.

Fix

Load a certification authority list into the context you create to handle TLS/SSL connections.

Examples
Missing CA List When SSL_connect Initiates TLS/SSL Handshake

#include <openssl/ssl.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <openssl/err.h>

unsigned char* buf;

 Missing certification authority list

14-25

int OpenConnection(char* hostname, int port)
{
 /* Open the connection */
}

SSL_CTX* InitCTX(void)
{
 SSL_CTX* ctx;
 OpenSSL_add_all_algorithms();
 ctx = SSL_CTX_new(TLSv1_2_client_method());
 if (ctx == NULL) {
 /*handle errors */
 }
 return ctx;
}

void func()
{
 SSL_CTX* ctx;
 int server;
 SSL* ssl;
 char buf[1024];
 int bytes;
 char* hostname, *portnum;
 int ret;

 SSL_library_init();
 hostname = "localhost";
 portnum = "4433";

 ctx = InitCTX();
 server = OpenConnection(hostname, atoi(portnum));
 ssl = SSL_new(ctx);
 SSL_set_fd(ssl, server);
 ret = SSL_connect(ssl);
 if (SSL_get_error(ssl, ret) <= 0) {
 char* msg = "Hello???";
 printf("Connected with %s encryption\n", SSL_get_cipher(ssl));
 SSL_write(ssl, msg, strlen(msg));
 bytes = SSL_read(ssl, buf, sizeof(buf));
 buf[bytes] = 0;
 printf("Received: \"%s\"\n", buf);
 SSL_free(ssl);
 } else
 ERR_print_errors_fp(stderr);
 close(server);
 SSL_CTX_free(ctx);
}

In this example, a context ctx is initialized to handle TLS/SSL connections. When SSL_connect
initializes the TLS/SSL handshake with the server by using the SSL structure ssl created from ctx,
there is no CA list to check the validity of the server certificate.
Correction — Before Initiating the TLS/SSL Handshake, Load a CA List into the Context

One possible correction is to, before you initialize the SSL structure, specify a list of CA certificates
for the context ctx, for instance with SSL_CTX_load_verify_locations.

14 Cryptography Defects

14-26

#include <openssl/ssl.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <openssl/err.h>

unsigned char* buf;

int OpenConnection(char* hostname, int port)
{
 /* Open the connection */
}

SSL_CTX* InitCTX(void)
{
 SSL_CTX* ctx;
 OpenSSL_add_all_algorithms();
 ctx = SSL_CTX_new(TLSv1_2_client_method());
 if (ctx == NULL) {
 /*handle errors */
 }
 return ctx;
}

void LoadCA(SSL_CTX* ctx, char* CertFile, char* CertPath)
{
 if (SSL_CTX_load_verify_locations(ctx, CertFile, CertPath) <= 0) {
 /* handle errors */
 }
}

void func()
{
 SSL_CTX* ctx;
 int server;
 SSL* ssl;
 char buf[1024];
 int bytes;
 char* hostname, *portnum;
 int ret;

 SSL_library_init();
 hostname = "localhost";
 portnum = "4433";

 ctx = InitCTX();
 LoadCA(ctx, "cacert.pem", "ca/");
 server = OpenConnection(hostname, atoi(portnum));
 ssl = SSL_new(ctx);
 SSL_set_fd(ssl, server);
 ret = SSL_connect(ssl);
 if (SSL_get_error(ssl, ret) <= 0) {
 char* msg = "Hello???";
 printf("Connected with %s encryption\n", SSL_get_cipher(ssl));
 SSL_write(ssl, msg, strlen(msg));
 bytes = SSL_read(ssl, buf, sizeof(buf));
 buf[bytes] = 0;
 printf("Received: \"%s\"\n", buf);

 Missing certification authority list

14-27

 SSL_free(ssl);
 } else
 ERR_print_errors_fp(stderr);
 close(server);
 SSL_CTX_free(ctx);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_SSL_NO_CA
Impact: Medium
CWE ID: 310

See Also
Find defects (-checkers) | Missing X.509 certificate

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2019b

14 Cryptography Defects

14-28

https://cwe.mitre.org/data/definitions/310.html

Missing cipher algorithm
An encryption or decryption algorithm is not associated with the cipher context

Description
This defect occurs when you do not assign a cipher algorithm when setting up your cipher context.

You can initialize your cipher context without an algorithm. However, before you encrypt or decrypt
your data, you must associate the cipher context with a cipher algorithm.

Risk

A missing cipher algorithm can lead to run-time errors or at least, non-secure ciphertext.

Before encryption or decryption, you set up a cipher context that has the information required for
encryption: the cipher algorithm and mode, an encryption or decryption key and an initialization
vector (for modes that require initialization vectors).

ret = EVP_EncryptInit(&ctx, EVP_aes_128_cbc(), key, iv)

The function EVP_aes_128_cbc() specifies that the Advanced Encryption Standard (AES) algorithm
must be used for encryption. The function also specifies a block size of 128 bits and the Cipher Bloch
Chaining (CBC) mode.

Instead of specifying the algorithm, you can use NULL in the initialization step. However, before
using the cipher context for encryption or decryption, you must perform an additional initialization
that associates an algorithm with the context. Otherwise, the update steps for encryption or
decryption can lead to run-time errors.

Fix

Before your encryption or decryption steps

 ret = EVP_EncryptUpdate(&ctx, out_buf, &out_len, src, len)

associate your cipher context ctx with an algorithm.

ret = EVP_EncryptInit(ctx, EVP_aes_128_cbc(), key, iv)

Examples
Algorithm Missing During Context Initialization

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char key[SIZE16];
unsigned char iv[SIZE16];
void func(void) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();

 Missing cipher algorithm

14-29

 EVP_CIPHER_CTX_init(ctx);
 EVP_EncryptInit_ex(ctx, NULL, NULL, key, iv);
}

In this example, an algorithm is not provided when the cipher context ctx is initialized.

Before you encrypt or decrypt your data, you have to provide a cipher algorithm. If you perform a
second initialization to provide the algorithm, the cipher context is completely re-initialized.
Therefore, the current initialization statement using EVP_EncryptInit_ex is redundant.

Correction — Provide Algorithm During Initialization

One possible correction is to provide an algorithm when you initialize the cipher context. In the
corrected code below, the routine EVP_aes_128_cbc invokes the Advanced Encryption Standard
(AES) algorithm. The routine also specifies a block size of 128 bits and the Cipher Block Chaining
(CBC) mode for encryption.

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char key[SIZE16];
unsigned char iv[SIZE16];
void func(unsigned char *src, int len, unsigned char *out_buf, int out_len) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 /* Initialization of cipher context */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Update steps for encryption */
 EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_NO_ALGORITHM
Impact: Medium
CWE ID: 310, 573

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017a

14 Cryptography Defects

14-30

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/573.html

Missing cipher data to process
Final encryption or decryption step is performed without previous update steps

Description
This defect occurs when you perform the final step of a block cipher encryption or decryption
incorrectly.

For instance, you do one of the following:

• You do not perform update steps for encrypting or decrypting the data before performing a final
step.

/* Initialization of cipher context */
ret = EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);
...
/* Missing update step */
...
/* Final step */
ret = EVP_EncryptFinal_ex(ctx, out_buf, &out_len);

• You perform consecutive final steps without intermediate initialization and update steps.

/* Initialization of cipher context */
ret = EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);
...
/* Update step(s) */
ret = EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
...
/* Final step */
ret = EVP_EncryptFinal_ex(ctx, out_buf, &out_len);
...
/* Missing initialization and update */
...
/* Second final step */
ret = EVP_EncryptFinal_ex(ctx, out_buf, &out_len);

• You perform a cleanup of the cipher context and then perform a final step.

/* Initialization of cipher context */
ret = EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);
...
/* Update step(s) */
ret = EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
...
/* Cleanup of cipher context */
EVP_CIPHER_CTX_cleanup(ctx);
...
/* Second final step */
ret = EVP_EncryptFinal_ex(ctx, out_buf, &out_len);

Risk

Block ciphers break your data into blocks of fixed size. During encryption or decryption, the update
step encrypts or decrypts your data in blocks. Any leftover data is encrypted or decrypted by the final

 Missing cipher data to process

14-31

step. The final step adds padding to the leftover data so that it occupies one block, and then encrypts
or decrypts the padded data.

If you perform the final step before performing the update steps, or perform the final step when there
is no data to process, the behavior is undefined. You can also encounter run-time errors.

Fix

Perform encryption or decryption in this sequence:

• Initialization of cipher context
• Update steps
• Final step
• Cleanup of context

Examples
Missing Update Steps for Encryption Before Final Step

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char *out_buf;
int out_len;
unsigned char key[SIZE16];
unsigned char iv[SIZE16];

void func(void) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 /* Initialization of cipher context */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Missing update steps for encryption */

 /* Final encryption step */
 EVP_EncryptFinal_ex(ctx, out_buf, &out_len);
}

In this example, after the cipher context is initialized, there are no update steps for encrypting the
data. The update steps are supposed to encrypt one or more blocks of data, leaving the final step to
encrypt data that is left over in a partial block. If you perform the final step without previous update
steps, the behavior is undefined.

Correction — Perform Update Steps for Encryption Before Final Step

Perform update steps for encryption before the final step. In the corrected code below, the routine
EVP_EncryptUpdate performs the update steps.

14 Cryptography Defects

14-32

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char *out_buf;
int out_len;
unsigned char key[SIZE16];
unsigned char iv[SIZE16];

void func(unsigned char *src, int len) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 /* Initialization of cipher context */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Update steps for encryption */
 EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);

 /* Final encryption step */
 EVP_EncryptFinal_ex(ctx, out_buf, &out_len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_NO_DATA
Impact: Medium
CWE ID: 311, 325, 372, 664

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017a

 Missing cipher data to process

14-33

https://cwe.mitre.org/data/definitions/311.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/664.html

Missing cipher final step
You do not perform a final step after update steps for encrypting or decrypting data

Description
This defect occurs when you do not perform a final step after your update steps for encrypting or
decrypting data.

For instance, you do the following:

/* Initialization of cipher context */
ret = EVP_EncryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, key, iv);
...
/* Update step */
ret = EVP_EncryptUpdate(&ctx, out_buf, &out_len, src, len);
...
/* Missing final step */
...
/* Cleanup of cipher context */
EVP_CIPHER_CTX_cleanup(ctx);

Risk

Block ciphers break your data into blocks of fixed size. During encryption or decryption, the update
step encrypts or decrypts your data in blocks. Any leftover data is encrypted or decrypted by the final
step. The final step adds padding to the leftover data so that it occupies one block, and then encrypts
or decrypts the padded data.

If you do not perform the final step, leftover data remaining in a partial block is not encrypted or
decrypted. You can face incomplete or unexpected output.

Fix

After your update steps for encryption or decryption, perform a final step to encrypt or decrypt
leftover data.

/* Initialization of cipher context */
ret = EVP_EncryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, key, iv);
...
/* Update step(s) */
ret = EVP_EncryptUpdate(&ctx, out_buf, &out_len, src, len);
...
/* Final step */
ret = EVP_EncryptFinal_ex(&ctx, out_buf, &out_len);
...
/* Cleanup of cipher context */
EVP_CIPHER_CTX_cleanup(ctx);

Examples
Cleanup of Cipher Context Before Final Step

14 Cryptography Defects

14-34

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char *out_buf;
int out_len;
unsigned char key[SIZE16];
unsigned char iv[SIZE16];

void func(unsigned char *src, int len) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 /* Initialization of cipher context */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Update steps for encryption */
 EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);

 /* Missing final encryption step */

 /* Cleanup of cipher context */
 EVP_CIPHER_CTX_cleanup(ctx);
}

In this example, the cipher context ctx is cleaned up before a final encryption step. The final step is
supposed to encrypt leftover data. Without the final step, the encryption is incomplete.

Correction — Perform Final Encryption Step

After your update steps for encryption, perform a final encryption step to encrypt leftover data. In the
corrected code below, the routine EVP_EncryptFinal_ex is used to perform this final step.

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char *out_buf;
int out_len;
unsigned char key[SIZE16];
unsigned char iv[SIZE16];

void func(unsigned char *src, int len) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 /* Initialization of cipher context */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Update steps for encryption */
 EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);

 /* Final encryption step */
 EVP_EncryptFinal_ex(ctx, out_buf, &out_len);

 /* Cleanup of cipher context */

 Missing cipher final step

14-35

 EVP_CIPHER_CTX_cleanup(ctx);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_NO_FINAL
Impact: Medium
CWE ID: 311, 325, 372, 664

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017a

14 Cryptography Defects

14-36

https://cwe.mitre.org/data/definitions/311.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/664.html

Missing cipher key
Context used for encryption or decryption is associated with NULL key or not associated with a key

Description
This defect occurs when you encrypt or decrypt data using a NULL encryption or decryption key.

Note You can initialize your cipher context with a NULL key. However, before you encrypt or decrypt
your data, you must associate the cipher context with a non-NULL key.

Risk

Encryption or decryption with a NULL key can lead to run-time errors or at least, non-secure
ciphertext.

Fix

Before your encryption or decryption steps

 ret = EVP_EncryptUpdate(&ctx, out_buf, &out_len, src, len)

associate your cipher context ctx with a non-NULL key.

ret = EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv)

Sometimes, you initialize your cipher context with a non-NULL key

ret = EVP_EncryptInit_ex(&ctx, cipher_algo_1, NULL, key, iv)

but change the cipher algorithm later. When you change the cipher algorithm, you use a NULL key.

 ret = EVP_EncryptInit_ex(&ctx, cipher_algo_2, NULL, NULL, NULL)

The second statement reinitializes the cipher context completely but with a NULL key. To avoid this
issue, every time you initialize a cipher context with an algorithm, associate it with a key.

Examples
NULL Key Used for Encryption

#include <openssl/evp.h>
#include <stdlib.h>
#define fatal_error() abort()

unsigned char *out_buf;
int out_len;

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv, unsigned char *src, int len){
 if (iv == NULL)
 fatal_error();

 Missing cipher key

14-37

 /* Fourth argument is cipher key */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, NULL, iv);

 /* Update step with NULL key */
 return EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

In this example, the cipher key associated with the context ctx is NULL. When you use this context
to encrypt your data, you can encounter run-time errors.

Correction — Use Random Cipher Key

Use a strong random number generator to produce the cipher key. The corrected code here uses the
function RAND_bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define fatal_error() abort()
#define SIZE16 16

unsigned char *out_buf;
int out_len;

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv, unsigned char *src, int len){
 if (iv == NULL)
 fatal_error();
 unsigned char key[SIZE16];
 RAND_bytes(key, 16);

 /* Fourth argument is cipher key */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Update step with non-NULL cipher key */
 return EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_NO_KEY
Impact: Medium
CWE ID: 310, 320, 573, 664

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”

14 Cryptography Defects

14-38

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/320.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017a

 Missing cipher key

14-39

Missing data for encryption, decryption or signing
operation
Data provided for public key cryptography operation is NULL or data length is zero

Description
This defect occurs when the data provided for an encryption, decryption, signing, or authentication
operation is NULL or the data length is zero.

For instance, you unintentionally provide a NULL value for in or a zero value for in_len in this
decryption operation:

ret = EVP_PKEY_decrypt(ctx, out, &out_len, in, in_len);

Or, you provide a NULL value for md or sig, or a zero value for md_len or sig_len in this
verification operation:

ret = EVP_PKEY_verify(ctx, md, mdlen, sig, siglen);

Risk

With NULL data or zero length, the operation does not occur. The redundant operation often
indicates a coding error.

Fix

Check the placement of the encryption, decryption, or signing operation. If the operation is intended
to happen, make sure that the data provided is non-NULL. Set the data length to a nonzero value.

Examples
Zero Data Length for Signing Operation

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
int func(EVP_PKEY_CTX * ctx){
 if (ctx == NULL) fatal_error();
 unsigned char* sig = (unsigned char*) "0123456789";
 unsigned char* md = (unsigned char*) "0123456789";

 ret = EVP_PKEY_verify_init(ctx);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_signature_md(ctx, EVP_sha256());
 if (ret <= 0) fatal_error();
 return EVP_PKEY_verify(ctx, sig, 0, md, 0);
}

14 Cryptography Defects

14-40

In this example, the data lengths (third and fifth arguments to EVP_PKEY_verify) are zero. The
operation fails.

Correction — Use Nonzero Data Length

One possible correction is to use a nonzero length for the signature and the data believed to be
signed.

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
int func(EVP_PKEY_CTX * ctx){
 if (ctx == NULL) fatal_error();
 unsigned char* sig = (unsigned char*) "0123456789";
 unsigned char* md = (unsigned char*) "0123456789";

 ret = EVP_PKEY_verify_init(ctx);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_signature_md(ctx, EVP_sha256());
 if (ret <= 0) fatal_error();
 return EVP_PKEY_verify(ctx, sig, 10, md, 10);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_PKEY_NO_DATA
Impact: Medium
CWE ID: 310, 325, 372, 573

See Also
Context initialized incorrectly for cryptographic operation | Incorrect key for
cryptographic algorithm | Missing parameters for key generation | Missing peer
key | Missing private key | Missing public key | Nonsecure parameters for key
generation | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

 Missing data for encryption, decryption or signing operation

14-41

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/573.html

Missing final step after hashing update operation
Hash is incomplete or non-secure

Description
The defect occurs when, after an update operation on a message digest context, you do not perform a
final step before you clean up or reinitialize the context.

When you use message digest functions, you typically initialize a message digest context and perform
at least one update step to add data into the context. You then sign, verify, or retrieve the data in the
context as a final step.

Risk

A missing final step might indicate that the hash is incomplete or is non-secure.

Fix

Perform a final step to sign, verify, or retrieve date from the message digest context before you clean
up or reinitialize the context.

Examples
Missing Final Step Before Context Cleanup

#include <stdlib.h>
#include <openssl/evp.h>

void func(unsigned char* src, int len, EVP_PKEY* pkey)
{
 int ret;

 EVP_MD_CTX ctx;
 EVP_MD_CTX_init(&ctx);

 ret = EVP_DigestVerifyInit(&ctx, NULL, EVP_sha256(), NULL, pkey);
 if (ret != 1) handle_error();

 ret = EVP_DigestVerifyUpdate(&ctx, src, len);
 if (ret != 1) handle_error();

 EVP_MD_CTX_cleanup(&ctx);
}

In this example, a verification context ctx is initialized and updated with data. The context is then
cleaned up without being verified in a final step. Typically, you create a verification context to validate
a previously signed message. Without the final step the signature on the message cannot be
validated.

14 Cryptography Defects

14-42

Correction — Perform Final Step Before Context Cleanup

One possible correction is to perform a final step to verify the signature of the verification context
before you clean up the context.

#include <stdlib.h>
#include <openssl/evp.h>

unsigned char out_buf[EVP_MAX_MD_SIZE];
unsigned int out_len;

void handle_error()
{
 exit(-1);
}

void func(unsigned char* src, int len, EVP_PKEY* pkey)
{
 int ret;

 EVP_MD_CTX ctx;
 EVP_MD_CTX_init(&ctx);

 ret = EVP_DigestVerifyInit(&ctx, NULL, EVP_sha256(), NULL, pkey);
 if (ret != 1) handle_error();

 ret = EVP_DigestVerifyUpdate(&ctx, src, len);
 if (ret != 1) handle_error();

 ret = EVP_DigestVerifyFinal(&ctx, out_buf, out_len);
 if (ret != 1) handle_error();

 EVP_MD_CTX_cleanup(&ctx);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_MD_NO_FINAL
Impact: Medium
CWE ID: 573

See Also
Find defects (-checkers) | No data added into context | Nonsecure hash algorithm

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

 Missing final step after hashing update operation

14-43

https://cwe.mitre.org/data/definitions/573.html

Introduced in R2020a

14 Cryptography Defects

14-44

Missing hash algorithm
Context in EVP routine is initialized without a hash algorithm

Description
This defect occurs when you use a message digest context in these EVP routines, but you initialize
the context without specifying a hash algorithm.

• EVP_DigestFinal
• EVP_DigestSignFinal
• EVP_SignFinal
• EVP_VerifyFinal

Risk

Using a message digest context that was initialized without an algorithm to perform a hashing
operation might result in a run-time error. Even if the hashing operation is successful, the resulting
digest is not secure.

Fix

Specify a hash algorithm when you initial a message digest context that you use in an EVP routine.

Examples
Context Used in EVP Routine After Context Cleanup

#include <openssl/evp.h>

void func(unsigned char* src, int len)
{
 EVP_MD_CTX ctx;
 EVP_MD_CTX_init(&ctx);

 EVP_VerifyInit(&ctx, EVP_sha256());
 EVP_MD_CTX_cleanup(&ctx);
 EVP_VerifyUpdate(&ctx, src, len);
}

In this example, context ctx is initialized with secure hash algorithm SHA-256. But, ctx is cleaned
up before it is used by EVP_VerifyUpdate. The clean up of ctx frees up its resources and
reinitializes it without a hash algorithm. The hashing operation of EVP_VerifyUpdate might result
in a run-time error.
Correction — Clean Up Context Only After You No Longer Need It

One possible correction is to clean up the digest context only after you no longer need it.

 Missing hash algorithm

14-45

#include <openssl/evp.h>

void func(unsigned char* src, int len)
{
 EVP_MD_CTX ctx;
 EVP_MD_CTX_init(&ctx);

 EVP_VerifyInit(&ctx, EVP_sha256());
 EVP_VerifyUpdate(&ctx, src, len);
 EVP_MD_CTX_cleanup(&ctx);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_MD_NO_ALGORITHM
Impact: Medium
CWE ID: 573

See Also
Find defects (-checkers) | Nonsecure hash algorithm

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2019b

14 Cryptography Defects

14-46

https://cwe.mitre.org/data/definitions/573.html

Missing padding for RSA algorithm
Context used in encryption or signing operation is not associated with any padding

Description
This defect occurs when you perform RSA encryption or signature by using a context object without
associating the object with a padding scheme.

For instance, you perform encryption by using a context object that was initially not associated with a
specific padding.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_NO_PADDING);
...
ret = EVP_PKEY_encrypt(ctx, out, &out_len, in, in_len)

Risk

Padding schemes remove determinism from the RSA algorithm and protect RSA operations from
certain kinds of attack. Padding ensures that a given message does not lead to the same ciphertext
each time it is encrypted. Without padding, an attacker can launch chosen-plaintext attacks against
the cryptosystem.

Fix

Before performing an RSA operation, associate the context object with a padding scheme that is
compatible with the operation.

• Encryption: Use the OAEP padding scheme.

For instance, use the EVP_PKEY_CTX_set_rsa_padding function with the argument
RSA_PKCS1_OAEP_PADDING or the RSA_padding_add_PKCS1_OAEP function.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING);

You can also use the PKCS#1v1.5 or SSLv23 schemes. Be aware that these schemes are
considered insecure.

You can then use functions such as EVP_PKEY_encrypt / EVP_PKEY_decrypt or
RSA_public_encrypt / RSA_private_decrypt on the context.

• Signature: Use the RSA-PSS padding scheme.

For instance, use the EVP_PKEY_CTX_set_rsa_padding function with the argument
RSA_PKCS1_PSS_PADDING.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PSS_PADDING);

You can also use the ANSI X9.31, PKCS#1v1.5, or SSLv23 schemes. Be aware that these schemes
are considered insecure.

You can then use functions such as the EVP_PKEY_sign-EVP_PKEY_verify pair or the
RSA_private_encrypt-RSA_public_decrypt pair on the context.

 Missing padding for RSA algorithm

14-47

If you perform two kinds of operation with the same context, after the first operation, reset the
padding scheme in the context before the second operation.

Examples
Encryption Without Padding

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(unsigned char *src, size_t len){
 EVP_PKEY_CTX *ctx;
 EVP_PKEY* pkey;

 /* Key generation */
 ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA,NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_keygen_init(ctx);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_keygen(ctx, &pkey);
 if (ret <= 0) fatal_error();

 /* Encryption */
 EVP_PKEY_CTX_free(ctx);
 ctx = EVP_PKEY_CTX_new(pkey,NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_encrypt_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_encrypt(ctx, out_buf, &out_len, src, len);
}

In this example, before encryption with EVP_PKEY_encrypt, a specific padding is not associated
with the context object ctx.

Correction — Set Padding in Context Before Encryption

One possible correction is to set the OAEP padding scheme in the context.

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

14 Cryptography Defects

14-48

int ret;
unsigned char *out_buf;
size_t out_len;

int func(unsigned char *src, size_t len){
 EVP_PKEY_CTX *ctx;
 EVP_PKEY* pkey;

 /* Key generation */
 ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA,NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_keygen_init(ctx);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_keygen(ctx, &pkey);
 if (ret <= 0) fatal_error();

 /* Encryption */
 EVP_PKEY_CTX_free(ctx);
 ctx = EVP_PKEY_CTX_new(pkey,NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_encrypt_init(ctx);
 ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING);
 if (ret <= 0) fatal_error();
 if (ret <= 0) fatal_error();
 return EVP_PKEY_encrypt(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_RSA_NO_PADDING
Impact: Medium
CWE ID: 310, 326, 327, 780

See Also
Incompatible padding for RSA algorithm operation | Missing blinding for RSA
algorithm | Nonsecure RSA public exponent | Weak padding for RSA algorithm | Find
defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

 Missing padding for RSA algorithm

14-49

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/780.html

Missing parameters for key generation
Context used for key generation is associated with NULL parameters

Description
This defect occurs when you perform a key generation step with a context object without first
associating the object with required parameters.

For instance, you associate a EVP_PKEY_CTX context object with an empty EVP_PKEY object params
before key generation :

EVP_PKEY * params = EVP_PKEY_new();
...
EVP_PKEY_CTX * ctx = EVP_PKEY_CTX_new(params, NULL);
...
EVP_PKEY_keygen(ctx, &pkey);

Risk

Without appropriate parameters, the key generation step does not occur. The redundant operation
often indicates a coding error.

Fix

Check the placement of the key generation step. If the operation is intended, make sure that the
parameters are set before key generation.

Certain algorithms use default parameters. For instance, if you specify the DSA algorithm when
creating the EVP_PKEY_CTX object, a default key length of 1024 bits is used:

kctx = EVP_PKEY_CTX_new_id(EVP_PKEY_DSA, NULL);

Specifying the algorithm during context creation is sufficient to avoid this defect. Only if you use the
Elliptic Curve (EC) algorithm, you must also specify the curve explicitly before key generation.

However, the default parameters can generate keys that are too weak for encryption. Weak
parameters can trigger another defect. To change default parameters, use functions specific to the
algorithm. For instance, to set parameters, you can use these functions:

• Diffie-Hellman (DH): Use EVP_PKEY_CTX_set_dh_paramgen_prime_len and
EVP_PKEY_CTX_set_dh_paramgen_generator.

• Digital Signature Algorithm (DSA): Use EVP_PKEY_CTX_set_dsa_paramgen_bits.
• RSA: Use EVP_PKEY_CTX_set_rsa_padding, EVP_PKEY_CTX_set_rsa_pss_saltlen,

EVP_PKEY_CTX_set_rsa_rsa_keygen_bits, and EVP_PKEY_CTX_set_rsa_keygen_pubexp.
• Elliptic curve (EC): Use EVP_PKEY_CTX_set_ec_paramgen_curve_nid and

EVP_PKEY_CTX_set_ec_param_enc.

14 Cryptography Defects

14-50

Examples
Empty Parameters During Key Generation

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
int func(EVP_PKEY *pkey){
 EVP_PKEY * params = EVP_PKEY_new();
 if (params == NULL) fatal_error();

 EVP_PKEY_CTX * ctx = EVP_PKEY_CTX_new(params, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_keygen_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_keygen(ctx, &pkey);
}

In this example, the context object ctx is associated with an empty parameter object params. The
context object does not have the required parameters for key generation.

Correction — Specify Algorithm During Context Creation

One possible correction is to specify an algorithm, such as RSA, during context creation. For stronger
encryption, use 2048 bits for key length instead of the default 1024 bits.

#include <openssl/evp.h>
#include <openssl/rsa.h>

#define fatal_error() exit(-1)

int ret;
int func(EVP_PKEY *pkey){
 EVP_PKEY_CTX * ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_keygen_init(ctx);
 if (ret <= 0) fatal_error();

 ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048);
 if (ret <= 0) fatal_error();

 return EVP_PKEY_keygen(ctx, &pkey);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_PKEY_NO_PARAMS
Impact: Medium

 Missing parameters for key generation

14-51

CWE ID: 310, 325, 372, 573

See Also
Context initialized incorrectly for cryptographic operation | Incorrect key for
cryptographic algorithm | Missing data for encryption, decryption or signing |
Missing peer key | Missing private key | Missing public key | Nonsecure parameters
for key generation | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

14 Cryptography Defects

14-52

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/573.html

Missing peer key
Context used for shared secret derivation is associated with NULL peer key or not associated with a
peer key at all

Description
This defect occurs when you use a context object for shared secret derivation but you have not
previously associated the object with a non-NULL peer key.

For instance, you initialize the context object, and then use the object for shared secret derivation
without an intermediate step where the object is associated with a peer key:

EVP_PKEY_derive_init(ctx);
/* Missing step for associating peer key with context */
ret = EVP_PKEY_derive(ctx, out_buf, &out_len);

The counterpart checker Missing private key checks for a private key in shared secret
derivation.

Risk

Without a peer key, the shared secret derivation step does not occur. The redundant operation often
indicates a coding error.

Fix

Check the placement of the shared secret derivation step. If the operation is intended, make sure that
you have completed these steps prior to the operation:

• Generate a non-NULL peer key.

For instance:

EVP_PKEY* peerkey = NULL;
EVP_PKEY_keygen(EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL), &peerkey);

• Associate a non-NULL context object with the peer key.

For instance:

EVP_PKEY_derive_set_peer(ctx,peerkey);

Examples
Missing Step for Associating Peer Key with Context

#include <stddef.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;

 Missing peer key

14-53

unsigned char *out_buf;
size_t out_len;

int func(EVP_PKEY *pkey){
 if (pkey == NULL) fatal_error();

 EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(pkey, NULL);
 if (ctx == NULL) fatal_error();
 ret = EVP_PKEY_derive_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_derive(ctx, out_buf, &out_len);
}

In this example, the context object ctx is associated with a private key but not a peer key. The
EVP_PKEY_derive function uses this context object for shared secret derivation.

Correction — Set Peer Key in Context

One possible correction is to use the function EVP_PKEY_derive_set_peer and associate a peer
key with the context object. Make sure that the peer key is non-NULL.

#include <stddef.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(EVP_PKEY *pkey, EVP_PKEY* peerkey){
 if (pkey == NULL) fatal_error();
 if (peerkey == NULL) fatal_error();

 EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(pkey, NULL);
 if (ctx == NULL) fatal_error();
 ret = EVP_PKEY_derive_init(ctx);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_derive_set_peer(ctx,peerkey);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_derive(ctx, out_buf, &out_len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_PKEY_NO_PEER
Impact: Medium
CWE ID: 310, 320, 573, 664

See Also
Context initialized incorrectly for cryptographic operation | Incorrect key for
cryptographic algorithm | Missing data for encryption, decryption or signing |

14 Cryptography Defects

14-54

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/320.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

Missing parameters for key generation | Missing private key | Missing public key
| Nonsecure parameters for key generation | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

 Missing peer key

14-55

Missing private key
Context used for cryptography operation is associated with NULL private key or not associated with a
private key at all

Description
This defect occurs when you use a context object for decryption, signature, or shared secret
derivation but you have not previously associated the object with a non-NULL private key.

For instance, you initialize the context object with a NULL private key and use the object for
decryption later.

ctx = EVP_PKEY_CTX_new(pkey, NULL);
...
ret = EVP_PKEY_decrypt_init(ctx);
...
ret = EVP_PKEY_decrypt(ctx, out, &out_len, in, in_len);

The counterpart checker Missing public key checks for a public key in encryption and
authentication operations. The checker Missing peer key checks for a peer key in shared secret
derivation.

Risk

Without a private key, the decryption, signature, or shared secret derivation step does not occur. The
redundant operation often indicates a coding error.

Fix

Check the placement of the operation (decryption, signature, or shared secret derivation). If the
operation is intended, make sure you have completed these steps prior to the operation:

• Generate a non-NULL private key.

For instance:

EVP_PKEY *pkey = NULL;
kctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);

EVP_PKEY_keygen_init(kctx);
EVP_PKEY_CTX_set_rsa_keygen_bits(kctx, RSA_2048BITS);
EVP_PKEY_keygen(kctx, &pkey);

• Associate a non-NULL context object with the private key.

For instance:

ctx = EVP_PKEY_CTX_new(pkey, NULL);

Note: If you use EVP_PKEY_CTX_new_id instead of EVP_PKEY_CTX_new, you are not associating
the context object with a private key.

14 Cryptography Defects

14-56

Examples
Missing Step for Associating Private Key with Context

#include <stddef.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(unsigned char *src, size_t len){
 EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_decrypt_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_decrypt(ctx, out_buf, &out_len, src, len);
}

In this example, the context object ctx is initialized with EVP_PKEY_CTX_new_id instead of
EVP_PKEY_CTX_new. The function EVP_PKEY_CTX_new_id does not associate the context object
with a key. However, the EVP_PKEY_decrypt function uses this object for decryption.

Correction — Associate Private Key with Context During Initialization

One possible correction is to use the EVP_PKEY_CTX_new function for context initialization and
associate a private key with the context object. In the following correction, the private key pkey is
obtained from an external source and checked for NULL before use.

#include <stddef.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(unsigned char *src, size_t len, EVP_PKEY *pkey){
 if (pkey == NULL) fatal_error();

 EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(pkey, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_decrypt_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_decrypt(ctx, out_buf, &out_len, src, len);
}

 Missing private key

14-57

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_PKEY_NO_PRIVATE_KEY
Impact: Medium
CWE ID: 310, 320, 573, 664

See Also
Context initialized incorrectly for cryptographic operation | Incorrect key for
cryptographic algorithm | Missing data for encryption, decryption or signing |
Missing parameters for key generation | Missing peer key | Missing public key |
Nonsecure parameters for key generation | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

14 Cryptography Defects

14-58

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/320.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

Missing private key for X.509 certificate
Missing key might result in run-time error or non-secure encryption

Description
The defect occurs when you load a X.509 certificate file into the SSL context but you do not load the
corresponding private key, or the key that you load into the context is null.

Typically, in a TLS/SSL exchange, the server proves its identity during a TLS/SSL handshake by
sending a X.509 certificate that contains information about the server and a public key. The client
that receives the certificate uses the public key to encrypt and send a pre-master secret that can only
be decrypted with the corresponding private key. The server uses the decrypted pre-master secret
and other exchanged messages to generate session keys that are used to encrypt the communication
session.

The checker raises no defect if:

• You pass the SSL context as an argument to the function that calls SSL_new.
• You declare the SSL context outside the scope of the function handling the connection.

Risk

Not loading the private key for a X.509 certificate might result in a run-time error on non-secure
encryption.

Fix

Load the private key of the X.509 certificate into the SSL context by calling
SSL_CTX_use_PrivateKey_file or load the private key into the SSL structure by calling
SSL_use_PrivateKey_file.

Examples
No Private Key Loaded Into SSL Context
#include <stdio.h>
#include <stdlib.h>
#include <openssl/ssl.h>
#define SSL_SERVER_CRT "server.pem"

#define fatal_error() exit(-1)

void load_cert(SSL_CTX* ctx, const char* certfile)
{
 int ret = SSL_CTX_use_certificate_file(ctx, certfile, SSL_FILETYPE_PEM);
 if (ret <= 0) fatal_error();
}

void func()
{
 int ret;
 SSL_CTX* ctx;
 SSL* ssl;

 /* creation context for the SSL protocol */
 ctx = SSL_CTX_new(SSLv23_server_method());
 if (ctx == NULL) fatal_error();

 /* context configuration */

 Missing private key for X.509 certificate

14-59

 load_cert(ctx, SSL_SERVER_CRT);

 /* Handle connection */
 ssl = SSL_new(ctx);
 ret = SSL_accept(ssl);
 if (ret <= 0) fatal_error();

 SSL_free(ssl);
 SSL_CTX_free(ctx);
}

In this example, SSL context ctx is initiated with server role and the function load_cert loads the
server certificate into ctx. The server then waits for a client to initiate a handshake. However, since
the private key is not loaded into the SSL structure, the server cannot decrypt the pre-master secret
that a client sends, and the handshake fails.

Correction — Load Private Key into SSL Context

One possible correction is to load the private key into the SSL context after you load the server
certificate file.
#include <stdio.h>
#include <stdlib.h>
#include <openssl/ssl.h>
#define SSL_SERVER_CRT "server.pem"
#define SSL_SERVER_KEY "server.key"

#define fatal_error() exit(-1)

void load_cert(SSL_CTX* ctx, const char* certfile)
{
 int ret = SSL_CTX_use_certificate_file(ctx, certfile, SSL_FILETYPE_PEM);
 if (ret <= 0) fatal_error();

 ret = SSL_CTX_use_PrivateKey_file(ctx, SSL_SERVER_KEY, SSL_FILETYPE_PEM);
 if (ret <= 0) fatal_error();
}

void func()
{
 int ret;
 SSL_CTX* ctx;
 SSL* ssl;

 /* creation context for the SSL protocol */
 ctx = SSL_CTX_new(SSLv23_server_method());
 if (ctx == NULL) fatal_error();

 /* context configuration */
 load_cert(ctx, SSL_SERVER_CRT);

 /* Handle connection */
 ssl = SSL_new(ctx);
 ret = SSL_accept(ssl);
 if (ret <= 0) fatal_error();

 SSL_free(ssl);
 SSL_CTX_free(ctx);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_SSL_NO_PRIVATE_KEY
Impact: Medium
CWE ID: 573

14 Cryptography Defects

14-60

https://cwe.mitre.org/data/definitions/573.html

See Also
Find defects (-checkers) | Missing certification authority list | Missing X.509
certificate

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020a

 Missing private key for X.509 certificate

14-61

Missing public key
Context used for cryptography operation is associated with NULL public key or not associated with a
public key at all

Description
This defect occurs when you use a context object for encryption or signature authentication but you
have not previously associated the object with a non-NULL public key.

For instance, you initialize the context object with a NULL public key and use the object for
encryption later.

ctx = EVP_PKEY_CTX_new(pkey, NULL);
...
ret = EVP_PKEY_encrypt_init(ctx);
...
ret = EVP_PKEY_encrypt(ctx, out, &out_len, in, in_len);

The counterpart checker Missing private key checks for a private key in decryption and
signature operations.

Risk

Without a public key, the encryption or signature authentication step does not happen. The redundant
operation often indicates a coding error.

Fix

Check the placement of the operation (encryption or signature authentication). If the operation is
intended to happen, make sure you have done these steps prior to the operation:

• You generated a non-NULL public key.

For instance:

EVP_PKEY *pkey = NULL;
kctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);

EVP_PKEY_keygen_init(kctx);
EVP_PKEY_CTX_set_rsa_keygen_bits(kctx, RSA_2048BITS);
EVP_PKEY_keygen(kctx, &pkey);

• You associated a non-NULL context object with the public key.

For instance:

ctx = EVP_PKEY_CTX_new(pkey, NULL);

Note: If you use EVP_PKEY_CTX_new_id instead of EVP_PKEY_CTX_new, you are not associating
the context object with a public key.

14 Cryptography Defects

14-62

Examples
Missing Step for Associating Private Key with Context

#include <stddef.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(unsigned char *src, size_t len){
 EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_encrypt_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_encrypt(ctx, out_buf, &out_len, src, len);
}

In this example, the context object ctx is initialized with EVP_PKEY_CTX_new_id instead of
EVP_PKEY_CTX_new. The function EVP_PKEY_CTX_new_id does not associate the context object
with a key. However, the EVP_PKEY_encrypt function uses this object for decryption.

Correction — Associate Public Key with Context During Initialization

One possible correction is to use the EVP_PKEY_CTX_new function for context initialization and
associate a public key with the context object. In the following correction, the public key pkey is
obtained from an external source and checked for NULL before use.

#include <stddef.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(unsigned char *src, size_t len, EVP_PKEY *pkey){
 if (pkey == NULL) fatal_error();

 EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(pkey, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_encrypt_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_encrypt(ctx, out_buf, &out_len, src, len);
}

 Missing public key

14-63

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_PKEY_NO_PUBLIC_KEY
Impact: Medium
CWE ID: 310, 320, 573, 664

See Also
Context initialized incorrectly for cryptographic operation | Incorrect key for
cryptographic algorithm | Missing data for encryption, decryption or signing |
Missing parameters for key generation | Missing peer key | Missing private key |
Nonsecure parameters for key generation | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

14 Cryptography Defects

14-64

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/320.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

Missing salt for hashing operation
Hashed data is vulnerable to rainbow table attack

Description
This defect occurs when you use a digest context in these functions, but you hash data into the
context only once or you use a null salt in all subsequent hashing operations. A salt is random data
that you use to improve the security of a hashing operation. The hashing operation takes the salt as
an input to produce a more secure hashed value.

• EVP_DigestFinal
• EVP_DigestSignUpdate
• EVP_DigestVerifyUpdate
• SHA*_Final family of functions

Missing salt for hashing operation raises no defect if no information is available about the
context. For instance, if the context is passed as an argument to the function that calls the hashing
operation or if the context is declared outside the scope of the function. For example, no defect is
raised in this code snippet.

EVP_MD_CTX ctx_global;

void foo(EVP_MD_CTX* ctx) {
//ctx passed as argument of func()
 EVP_DigestFinal(ctx, out_buf, &out_len); //no defect
}

void bar() {
// ctx_global declared outside of bar()
 EVP_DigestFinal(&ctx_glob, out_buf, &out_len); //no defect
}

Risk

Hashing the same data without a salt results in the same hashed value. For instance, if you hash user
passwords and two users have the same passwords, the hashed passwords are identical. The hashing
is then vulnerable to precomputed rainbow attacks.

Fix

Provide a salt when you hash data.

Examples
Data Hashed Into Context Only Once

#include <openssl/evp.h>
#include <cstring>

unsigned char* out_buf;

 Missing salt for hashing operation

14-65

unsigned int out_len;

void func()
{
 const char* src = "toto";
 EVP_MD_CTX ctx;

 EVP_DigestInit(&ctx, EVP_sha256());
 EVP_DigestUpdate(&ctx, src, strlen(src));
 EVP_DigestFinal(&ctx, out_buf, &out_len);
 EVP_cleanup();
}

In this example, context ctx is initialized with secure hashing algorithm SHA-256, then
EVP_DigestUpdate hashes src into ctx. Because EVP_DigestUpdate is called only once, no salt
can be provided to improve the security of the hashing operation. The digest value that
EVP_DigestFinal retrieves is then vulnerable to precomputed rainbow attacks.

Correction — Hash Salt Into Context After Initial Data Hash

One possible correction is to hash a salt into the context ctx after the first hashing operation. The
resulting digest value that EVP_DigestFinal retrieves is more secure.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <cstring>

#define BUFF_SIZE_32 32

unsigned char* out_buf;
unsigned int out_len;

void func()
{
 const char* src = "toto";
 const char* salt;

 RAND_bytes((unsigned char*)salt, BUFF_SIZE_32);
 EVP_MD_CTX ctx;

 EVP_DigestInit(&ctx, EVP_sha256());
 EVP_DigestUpdate(&ctx, src, strlen(src));
 EVP_DigestUpdate(&ctx, salt, BUFF_SIZE_32);
 EVP_DigestFinal(&ctx, out_buf, &out_len);
 EVP_cleanup();
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_MD_NO_SALT
Impact: Medium
CWE ID: 759

14 Cryptography Defects

14-66

https://cwe.mitre.org/data/definitions/759.html

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2019b

 Missing salt for hashing operation

14-67

Missing X.509 certificate
Server or client cannot be authenticated

Description
This defect occurs when you use a context to handle TLS/SSL connections with these functions, but
you do not load an X.509 certificate into the context.

• SSL_accept
• SSL_connect
• SSL_do_handshake
• SSL_write
• SSL_read
• BIO_do_accept
• BIO_do_connect
• BIO_do_handshake

An X.509 certificate is a digital certificate that is issued to an entity. It contains information that
identifies the entity. The certificate is used to authenticate connections to the entity identified in the
certificate.

The checker raises a defect if:

• For a server authentication, no certificate is loaded before handling a connection.
• For a client authentication, the client attempts to connect to a server a second time after getting

an SSL_ERROR_WANT_X509_LOOKUP error on the first connection attempt.

Risk

When you do not load an X.509 certificate into the context to handle TLS/SSL connections, the
connection is not secure and is vulnerable to man-in-the-middle (MITM) attacks.

Fix

Load an X.509 certificate into the context you create to handle TLS/SSL connections.

Examples
SSL Structure Created From Context with Missing Certificate

#include <openssl/ssl.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <openssl/err.h>

unsigned char* buf;
int len;

SSL_CTX* InitServerCTX(void)
{
 SSL_CTX* ctx;

14 Cryptography Defects

14-68

 OpenSSL_add_all_algorithms();
 ctx = SSL_CTX_new(SSLv23_server_method());
 SSL_CTX_set_options(ctx, SSL_OP_NO_SSLv2 | SSL_OP_NO_SSLv3 | SSL_OP_NO_TLSv1);
 if (ctx == NULL) {
 /*handle errors */
 }
 return ctx;
}

int OpenListener(int port)
{
 /* Create server socket */
}

void func()
{
 SSL_CTX* ctx;
 int server, port;
 int ret;
 SSL_library_init();

 ctx = InitServerCTX();
 server = OpenListener(port);
 while (1) {
 struct sockaddr_in addr;
 socklen_t len = sizeof(addr);
 SSL* ssl;

 int client = accept(server, (struct sockaddr*)&addr, &len);
 printf("Connection: %s:%d\n", inet_ntoa(addr.sin_addr), ntohs(addr.sin_port));
 ssl = SSL_new(ctx);
 SSL_set_fd(ssl, client);
 ret = SSL_accept(ssl);
 if (SSL_get_error(ssl, ret) <= 0)
 /* Serve connection */;
 else
 SSL_free(ssl);
 }
 close(server);
 SSL_CTX_free(ctx);
}

In this example, InitServerCTX() initializes context ctx for TLS/SSL connections, but no
certificate is loaded into ctx. When SSL_accept checks the TLS/SLL handshake for the SSL
structure created from ctx, there is no certificate available to authenticate the server.

Correction — Before Creating a SSL Structure, Load Certificate Into Context

One possible correction is to, before you create a SSL structure, load a certificate into the context
you create for TLS/SSL connections, for instance with SSL_CTX_use_certificate_file.

#include <openssl/ssl.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <openssl/err.h>

unsigned char* buf;
int len;

SSL_CTX* InitServerCTX(void)
{
 SSL_CTX* ctx;
 OpenSSL_add_all_algorithms();
 ctx = SSL_CTX_new(SSLv23_server_method());
 SSL_CTX_set_options(ctx, SSL_OP_NO_SSLv2 | SSL_OP_NO_SSLv3 | SSL_OP_NO_TLSv1);
 if (ctx == NULL) {
 /*handle errors */
 }
 return ctx;
}

void LoadCertificates(SSL_CTX* ctx, char* CertFile, char* KeyFile)
{
 if (SSL_CTX_use_certificate_file(ctx, CertFile, SSL_FILETYPE_PEM) <= 0) {
 /* Handle errors */
 }

 Missing X.509 certificate

14-69

}

int OpenListener(int port)
{
 /* Create server socket */
}

void func()
{
 SSL_CTX* ctx;
 int server, port;
 int ret;
 SSL_library_init();

 ctx = InitServerCTX();
 LoadCertificates(ctx, "mycert.pem", "mycert.pem");
 server = OpenListener(port);
 while (1) {
 struct sockaddr_in addr;
 socklen_t len = sizeof(addr);
 SSL* ssl;

 int client = accept(server, (struct sockaddr*)&addr, &len);
 printf("Connection: %s:%d\n", inet_ntoa(addr.sin_addr), ntohs(addr.sin_port));
 ssl = SSL_new(ctx);
 SSL_set_fd(ssl, client);
 ret = SSL_accept(ssl);
 if (SSL_get_error(ssl, ret) <= 0)
 /* Serve connection */;
 else
 SSL_free(ssl);
 }
 close(server);
 SSL_CTX_free(ctx);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_SSL_NO_CERTIFICATE
Impact: Medium
CWE ID: 310

See Also
Find defects (-checkers) | Missing certification authority list

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2019b

14 Cryptography Defects

14-70

https://cwe.mitre.org/data/definitions/310.html

No data added into context
Performing hash operation on empty context might cause run-time errors

Description
The defect occurs when you only update a message digest context with null data, or you perform a
final step on a message digest context without performing any update step.

When you use message digest functions, you typically initialize a message digest context and perform
at least one update step to add data into the context. You then sign, verify, or retrieve the data in the
context as a final step.

The checker raises no defect if no information is available about the context. For instance, if the
context is passed as an argument to the function that calls the hashing operation or if the context is
declared outside the scope of the function. For example, no defect is raised in this code snippet.

void bar(unsigned char* src, int len, EVP_MD_CTX *ctx) {
 //ctx passed as argument of bar()
 EVP_DigestFinal(ctx, out_buf, &out_len); //no defect
}
EVP_MD_CTX glob_ctx;
void foo(unsigned char* src, int len) {
 //glob_ctx declared outside scope of foo()
 EVP_DigestFinal(&glob_ctx, out_buf, &out_len); //no defect
}

Risk

Performing an update step on a context with null data might result in a run-time error.

Performing a final step on a context with no data might result in unexpected behavior.

Fix

Perform at least one update operation with non-null data on a message digest context before you
sign, verify, or retrieve the data in the context.

Examples
No Update Step Before Final Step

#include <openssl/evp.h>
#include <stdio.h>

unsigned char out_buf[EVP_MAX_MD_SIZE];
unsigned int out_len;

void func(unsigned char* src, int len)
{
 EVP_MD_CTX ctx;
 EVP_MD_CTX_init(&ctx);

 No data added into context

14-71

 EVP_DigestInit(&ctx, EVP_sha256());
 EVP_DigestUpdate(&ctx, src, len);
 EVP_MD_CTX_init(&ctx);
 EVP_DigestFinal(&ctx, out_buf, &out_len);
}

In this example, the message digest context ctx is initialized and an update operation is performed to
add data src into the context. The context is then reinitialized but no data is added to ctx before
EVP_DigestFinal attempts to retrieve data from ctx, which results in an error.

Correction — Perform Final Step Before Reinitializing Context

One possible correction is to perform the final step that retrieves data from the context before you
reinitialize the context.

#include <openssl/evp.h>
#include <stdio.h>

unsigned char out_buf[EVP_MAX_MD_SIZE];
unsigned int out_len;

void func(unsigned char* src, int len)
{
 EVP_MD_CTX ctx;
 EVP_MD_CTX_init(&ctx);

 EVP_DigestInit(&ctx, EVP_sha256());
 EVP_DigestUpdate(&ctx, src, len);
 EVP_DigestFinal(&ctx, out_buf, &out_len);
 EVP_MD_CTX_init(&ctx);
}

No Data Added to Context

#include <openssl/evp.h>
#include <stdio.h>

unsigned char out_buf[EVP_MAX_MD_SIZE];
unsigned int out_len;

void func(unsigned char* src, int len)
{
 EVP_MD_CTX ctx;
 EVP_MD_CTX_init(&ctx);
 size_t cnt = 0;

 EVP_DigestInit(&ctx, EVP_sha256());
 EVP_DigestUpdate(&ctx, src, cnt);
 EVP_DigestFinal(&ctx, out_buf, &out_len);
}

In this example, zero bytes of data is hashed into the message digest context during the update
operation. Retrieving data from the context in the final step results in unexpected behavior.

14 Cryptography Defects

14-72

Correction — Add non-Null Data Into Context

A possible correction is to add data into the context during the update step before you retrieve data
from the context.

#include <openssl/evp.h>
#include <stdio.h>

unsigned char out_buf[EVP_MAX_MD_SIZE];
unsigned int out_len;

void func(unsigned char* src, int len)
{
 EVP_MD_CTX ctx;
 EVP_MD_CTX_init(&ctx);

 EVP_DigestInit(&ctx, EVP_sha256());
 EVP_DigestUpdate(&ctx, src, len);
 EVP_DigestFinal(&ctx, out_buf, &out_len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_MD_NO_DATA
Impact: Medium
CWE ID: 325

See Also
Find defects (-checkers) | Missing final step after hashing update operation

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020a

 No data added into context

14-73

https://cwe.mitre.org/data/definitions/325.html

Nonsecure hash algorithm
Context used for message digest creation is associated with weak algorithm

Description
This defect occurs when you use a cryptographic hash function that is proven to be weak against
certain forms of attack.

The hash functions flagged by this checker include SHA-0, SHA-1, MD4, MD5, and RIPEMD-160. The
checker detects the use of these hash functions in:

• Functions from the EVP API such as EVP_DigestUpdate or EVP_SignUpdate.
• Functions from the low level API such as SHA1_Update or MD5_Update.

Risk

You use a hash function to create a message digest from input data and thereby ensure integrity of
your data. The hash functions flagged by this checker use algorithms with known weaknesses that an
attacker can exploit. The attacks can comprise the integrity of your data.

Fix

Use a more secure hash function. For instance, use the later SHA functions such as SHA-224,
SHA-256, SHA-384, and SHA-512.

Examples
Use of MD5 Algorithm

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
unsigned int out_len;

void func(unsigned char *src, size_t len, EVP_PKEY* pkey){
 EVP_MD_CTX* ctx = EVP_MD_CTX_create();

 ret = EVP_SignInit_ex(ctx, EVP_md5(), NULL);
 if (ret != 1) fatal_error();

 ret = EVP_DigestUpdate(ctx,src,len);

 if (ret != 1) fatal_error();

 ret = EVP_SignFinal(ctx, out_buf, &out_len, pkey);
 if (ret != 1) fatal_error();
}

14 Cryptography Defects

14-74

In this example, during initialization with EVP_SignInit_ex, the context object is associated with
the weak hash function MD5. The checker flags the usage of this context in the update step with
EVP_DigestUpdate.

Correction — Use SHA-2 Family Function

One possible correction is to use a hash function from the SHA-2 family, such as SHA-256.

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
unsigned int out_len;

void func(unsigned char *src, size_t len, EVP_PKEY* pkey){
 EVP_MD_CTX* ctx = EVP_MD_CTX_create();

 ret = EVP_SignInit_ex(ctx, EVP_sha256(), NULL);
 if (ret != 1) fatal_error();

 ret = EVP_SignUpdate(ctx, src, len);
 if (ret != 1) fatal_error();

 ret = EVP_SignFinal(ctx, out_buf, &out_len, pkey);
 if (ret != 1) fatal_error();
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_MD_WEAK_HASH
Impact: Medium
CWE ID: 310, 327, 328, 353, 522

See Also
Context initialized incorrectly for digest operation | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

 Nonsecure hash algorithm

14-75

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/328.html
https://cwe.mitre.org/data/definitions/353.html
https://cwe.mitre.org/data/definitions/522.html

Nonsecure parameters for key generation
Context used for key generation is associated with weak parameters

Description
This defect occurs when you attempt key generation by using an EVP_PKEY_CTX context object that
is associated with weak parameters. What constitutes a weak parameter depends on the public key
algorithm used. In the DSA algorithm, a weak parameter can be the result of setting an insufficient
parameter length.

For instance, you set the number of bits used for DSA parameter generation to 512 bits, and then use
the parameters for key generation:

EVP_PKEY_CTX *pctx,*kctx;
EVP_PKEY *params, *pkey;

/* Initializations for parameter generation */
pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_DSA, NULL);
params = EVP_PKEY_new();

/* Parameter generation */
ret = EVP_PKEY_paramgen_init(pctx);
ret = EVP_PKEY_CTX_set_dsa_paramgen_bits(pctx, KEYLEN_512BITS);
ret = EVP_PKEY_paramgen(pctx, ¶ms);

/* Initializations for key generation */
kctx = EVP_PKEY_CTX_new(params, NULL);
pkey = EVP_PKEY_new();

/* Key generation */
ret = EVP_PKEY_keygen_init(kctx);
ret = EVP_PKEY_keygen(kctx, &pkey);

Risk

Weak parameters lead to keys that are not sufficiently strong for encryption and expose sensitive
information to known ways of attack.

Fix

Depending on the algorithm, use these parameters:

• Diffie-Hellman (DH): Set the length of the DH prime parameter to 2048 bits.

ret = EVP_PKEY_CTX_set_dh_paramgen_prime_len(pctx, 2048);

Set the DH generator to 2 or 5.

ret = EVP_PKEY_CTX_set_dh_paramgen_generator(pctx, 2);

• Digital Signature Algorithm (DSA): Set the number of bits used for DSA parameter generation to
2048 bits.

ret = EVP_PKEY_CTX_set_dsa_paramgen_bits(pctx, 2048);

14 Cryptography Defects

14-76

• RSA: Set the RSA key length to 2048 bits.

ret = EVP_PKEY_CTX_set_rsa_keygen_bits(kctx, 2048);

• Elliptic curve (EC): Avoid using curves that are known to be broken, for instance,
X9_62_prime256v1. Use, for instance, sect239k1.

ret = EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx, NID_sect239k1);

Examples
Insufficient Bits for RSA Key Generation

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
int func(EVP_PKEY *pkey){
 EVP_PKEY_CTX * ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_keygen_init(ctx);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 512);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_keygen(ctx, &pkey);
}

In this example, the RSA key generation uses 512 bits, which makes the generated key vulnerable to
attacks.

Correction — Use 2048 bits

Use 2048 bits for RSA key generation.

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
int func(EVP_PKEY *pkey){
 EVP_PKEY_CTX * ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_keygen_init(ctx);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_keygen(ctx, &pkey);
}

 Nonsecure parameters for key generation

14-77

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_PKEY_WEAK_PARAMS
Impact: Medium
CWE ID: 310, 326, 327, 522

See Also
Context initialized incorrectly for cryptographic operation | Incorrect key for
cryptographic algorithm | Missing data for encryption, decryption or signing |
Missing parameters for key generation | Missing peer key | Missing private key |
Missing public key | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

External Websites
https://safecurves.cr.yp.to/
https://csrc.nist.gov/publications/detail/fips/186/4/final

Introduced in R2018a

14 Cryptography Defects

14-78

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/522.html
https://safecurves.cr.yp.to/
https://csrc.nist.gov/publications/detail/fips/186/4/final

Nonsecure RSA public exponent
Context used in key generation is associated with low exponent value

Description
This defect occurs when you attempt RSA key generation by using a context object that is associated
with a low public exponent.

For instance, you set a public exponent of 3 in the context object, and then use it for key generation.

/* Set public exponent */
ret = BN_dec2bn(&pubexp, "3");

/* Initialize context */
ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
pkey = EVP_PKEY_new();
ret = EVP_PKEY_keygen_init(kctx);

/* Set public exponent in context */
ret = EVP_PKEY_CTX_set_rsa_keygen_pubexp(ctx, pubexp);

/* Generate key */
ret = EVP_PKEY_keygen(kctx, &pkey);

Risk

A low RSA public exponent makes certain kinds of attacks more damaging, especially when a weak
padding scheme is used or padding is not used at all.

Fix

It is recommended to use a public exponent of 65537. Using a higher public exponent can make the
operations slower.

Examples
Using RSA Public Exponent of 3

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
int func(EVP_PKEY *pkey){
 BIGNUM* pubexp;
 EVP_PKEY_CTX* ctx;

 pubexp = BN_new();
 if (pubexp == NULL) fatal_error();
 ret = BN_set_word(pubexp, 3);

 Nonsecure RSA public exponent

14-79

 if (ret <= 0) fatal_error();

 ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_keygen_init(ctx);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_keygen_pubexp(ctx, pubexp);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_keygen(ctx, &pkey);
}

In this example, an RSA public exponent of 3 is associated with the context object ctx. The low
exponent makes operations that use the generated key vulnerable to certain attacks.

Correction — Use Public Exponent of 65537

One possible correction is to use the recommended public exponent 65537.

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
int func(EVP_PKEY *pkey){
 BIGNUM* pubexp;
 EVP_PKEY_CTX* ctx;

 pubexp = BN_new();
 if (pubexp == NULL) fatal_error();
 ret = BN_set_word(pubexp, 65537);
 if (ret <= 0) fatal_error();

 ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_keygen_init(ctx);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_keygen_pubexp(ctx, pubexp);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_keygen(ctx, &pkey);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_RSA_LOW_EXPONENT
Impact: Medium

14 Cryptography Defects

14-80

CWE ID: 310, 326, 327, 522

See Also
Incompatible padding for RSA algorithm operation | Missing padding for RSA
algorithm | Missing blinding for RSA algorithm | Weak padding for RSA algorithm |
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

 Nonsecure RSA public exponent

14-81

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/522.html

Nonsecure SSL/TLS protocol
Context used for handling SSL/TLS connections is associated with weak protocol

Description
This defect occurs when you do not disable nonsecure protocols in an SSL_CTX or SSL context object
before using the object for handling SSL/TLS connections.

For instance, you disable the protocols SSL2.0 and TLS1.0 but forget to disable the protocol SSL3.0,
which is also considered weak.

/* Create and configure context */
ctx = SSL_CTX_new(SSLv23_method());
SSL_CTX_set_options(ctx, SSL_OP_NO_SSLv2|SSL_OP_NO_TLSv1);

/* Use context to handle connection */
ssl = SSL_new(ctx);
SSL_set_fd(ssl, NULL);
ret = SSL_connect(ssl);

Risk

The protocols SSL2.0, SSL3.0, and TLS1.0 are considered weak in the cryptographic community.
Using one of these protocols can expose your connections to cross-protocol attacks. The attacker can
decrypt an RSA ciphertext without knowing the RSA private key.

Fix

Disable the nonsecure protocols in the context object before using the object to handle connections.

/* Create and configure context */
ctx = SSL_CTX_new(SSLv23_method());
SSL_CTX_set_options(ctx, SSL_OP_NO_SSLv2|SSL_OP_NO_SSLv3|SSL_OP_NO_TLSv1);

Examples
Nonsecure Protocols Not Disabled

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <openssl/ssl.h>
#include <openssl/err.h>

#define fatal_error() exit(-1)

int ret;
int func(){
 SSL_CTX *ctx;

14 Cryptography Defects

14-82

 SSL *ssl;

 SSL_library_init();

 /* context configuration */
 ctx = SSL_CTX_new(SSLv23_client_method());
 if (ctx==NULL) fatal_error();

 ret = SSL_CTX_use_certificate_file(ctx, "cert.pem", SSL_FILETYPE_PEM);
 if (ret <= 0) fatal_error();

 ret = SSL_CTX_load_verify_locations(ctx, NULL, "ca/path");
 if (ret <= 0) fatal_error();

 /* Handle connection */
 ssl = SSL_new(ctx);
 if (ssl==NULL) fatal_error();
 SSL_set_fd(ssl, NULL);

 return SSL_connect(ssl);
}

In this example, the protocols SSL2.0, SSL3.0, and TLS1.0 are not disabled in the context object
before the object is used for a new connection.

Correction — Disable Nonsecure Protocols

Disable nonsecure protocols before using the objects for a new connection. Use the function
SSL_CTX_set_options to disable the protocols SSL2.0, SSL3.0, and TLS1.0.

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <openssl/ssl.h>
#include <openssl/err.h>

#define fatal_error() exit(-1)

int ret;
int func(){
 SSL_CTX *ctx;
 SSL *ssl;

 SSL_library_init();

 /* context configuration */
 ctx = SSL_CTX_new(SSLv23_client_method());
 if (ctx==NULL) fatal_error();

 SSL_CTX_set_options(ctx, SSL_OP_NO_SSLv2|SSL_OP_NO_SSLv3|SSL_OP_NO_TLSv1);

 ret = SSL_CTX_use_certificate_file(ctx, "cert.pem", SSL_FILETYPE_PEM);
 if (ret <= 0) fatal_error();

 Nonsecure SSL/TLS protocol

14-83

 ret = SSL_CTX_load_verify_locations(ctx, NULL, "ca/path");
 if (ret <= 0) fatal_error();

 /* Handle connection */
 ssl = SSL_new(ctx);
 if (ssl==NULL) fatal_error();
 SSL_set_fd(ssl, NULL);

 return SSL_connect(ssl);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_SSL_WEAK_PROTOCOL
Impact: Medium
CWE ID: 310, 327, 522, 693

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

14 Cryptography Defects

14-84

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/522.html
https://cwe.mitre.org/data/definitions/693.html

Predictable block cipher initialization vector
Initialization vector is generated from a weak random number generator

Description
This defect occurs when you use a weak random number generator for the block cipher initialization
vector.

Risk

If you use a weak random number generator for the initiation vector, your data is vulnerable to
dictionary attacks.

Block ciphers break your data into blocks of fixed size. Block cipher modes such as CBC (Cipher
Block Chaining) protect against dictionary attacks by XOR-ing each block with the encrypted output
from the previous block. To protect the first block, these modes use a random initialization vector
(IV). If you use a weak random number generator for your IV, your data becomes vulnerable to
dictionary attacks.

Fix

Use a strong pseudo-random number generator (PRNG) for the initialization vector. For instance, use:

• OS-level PRNG such as /dev/random on UNIX or CryptGenRandom() on Windows
• Application-level PRNG such as Advanced Encryption Standard (AES) in Counter (CTR) mode,

HMAC-SHA1, etc.

For a list of random number generators that are cryptographically weak, see Vulnerable pseudo-
random number generator.

Examples
Predictable Initialization Vector

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *key){
 unsigned char iv[SIZE16];
 RAND_pseudo_bytes(iv, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

In this example, the function RAND_pseudo_bytes declared in openssl/rand.h produces the
initialization vector. The byte sequences that RAND_pseudo_bytes generates are not necessarily
unpredictable.

 Predictable block cipher initialization vector

14-85

Correction — Use Strong Random Number Generator

Use a strong random number generator to produce the initialization vector. The corrected code here
uses the function RAND_bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *key){
 unsigned char iv[SIZE16];
 RAND_bytes(iv, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_PREDICTABLE_IV
Impact: Medium
CWE ID: 310, 329, 330, 338

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017a

14 Cryptography Defects

14-86

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/329.html
https://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/338.html

Predictable cipher key
Encryption or decryption key is generated from a weak random number generator

Description
This defect occurs when you use a weak random number generator for the encryption or decryption
key.

Risk

If you use a weak random number generator for the encryption or decryption key, an attacker can
retrieve your key easily.

You use a key to encrypt and later decrypt your data. If a key is easily retrieved, data encrypted using
that key is not secure.

Fix

Use a strong pseudo-random number generator (PRNG) for the key. For instance:

• Use an OS-level PRNG such as /dev/random on UNIX or CryptGenRandom() on Windows
• Use an application-level PRNG such as Advanced Encryption Standard (AES) in Counter (CTR)

mode, HMAC-SHA1, etc.

For a list of random number generators that are cryptographically weak, see Vulnerable pseudo-
random number generator.

Examples
Predictable Cipher Key

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){
 unsigned char key[SIZE16];
 RAND_pseudo_bytes(key, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

In this example, the function RAND_pseudo_bytes declared in openssl/rand.h produces the
cipher key. However, the byte sequences that RAND_pseudo_bytes generates are not necessarily
unpredictable.

Correction — Use Strong Random Number Generator

One possible correction is to use a strong random number generator to produce the cipher key. The
corrected code here uses the function RAND_bytes declared in openssl/rand.h.

 Predictable cipher key

14-87

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){
 unsigned char key[SIZE16];
 RAND_bytes(key, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_PREDICTABLE_KEY
Impact: Medium
CWE ID: 310, 326, 330, 338

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017a

14 Cryptography Defects

14-88

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/338.html

Server certificate common name not checked
Attacker might use valid certificate to impersonate trusted host

Description
The defect occurs when you do not check the common name provided in the server certificate against
the domain name of the server.

Typically, when a client connects to a server, the server sends a digital certificate to the client that
identifies the server as a trusted entity. The certificate contains information about the server,
including the common name of the server. The common name matches the server domain name that
the certificate identifies as a trusted entity.

The checker raises no defect if:

• You pass the SSL context as an argument to the function that calls SSL_new.
• You declare the SSL context outside the scope of the function handling the connection.

Risk

A malicious attacker might use a valid certificate to impersonate a trusted host, resulting in the client
interacting with an untrusted server.

Fix

Use one of these functions to specify the server domain name that the program checks against the
common name provided in the server certificate.

• SSL_set_tlsext_host_name
• SSL_set1_host
• SSL_add1_host

Examples
Client Checks Server Certificate but not Server Domain Name

#include <stdio.h>
#include <stdlib.h>
#include <openssl/ssl.h>

#define fatal_error() exit(-1)

void check_certificate(SSL_CTX* ctx, SSL* ssl)
{
 /* Check for Client authentication error */
 if (!SSL_get_peer_certificate(ssl)) {
 printf("SSL Client Authentication error\n");
 SSL_free(ssl);
 SSL_CTX_free(ctx);

 Server certificate common name not checked

14-89

 exit(0);
 }
 /* Check for Client authentication error */
 if (SSL_get_verify_result(ssl) != X509_V_OK) {
 printf("SSL Client Authentication error\n");
 SSL_free(ssl);
 SSL_CTX_free(ctx);
 exit(0);
 }
}

void func()
{
 int ret;
 SSL_CTX* ctx;
 SSL* ssl;

 /* creation context for the SSL protocol */
 ctx = SSL_CTX_new(SSLv23_client_method());
 if (ctx == NULL) fatal_error();

 /* Handle connection */
 ssl = SSL_new(ctx);
 SSL_set_connect_state(ssl);
 check_certificate(ctx, ssl);
 ret = SSL_connect(ssl);
 if (ret <= 0) fatal_error();

 SSL_free(ssl);
 SSL_CTX_free(ctx);
}

In this example, an SSL structure is initiated with a client connection method. The client validates the
server certificate with check_certificate. However, the client does not check that the certificate
common name matches the domain name of the server. An attacker might use the valid certificate to
impersonate the trusted server.

Correction — Specify a Domain Name to Check Against the Certificate Common Name

One possible correction is to use SSL_set1_host to specify the expected domain name that the
program checks against the server certificate common name.

#include <stdio.h>
#include <stdlib.h>
#include <openssl/ssl.h>

#define fatal_error() exit(-1)

void check_certificate(SSL_CTX* ctx, SSL* ssl)
{
 /* Check for Client authentication error */
 if (!SSL_get_peer_certificate(ssl)) {
 printf("SSL Client Authentication error\n");
 SSL_free(ssl);
 SSL_CTX_free(ctx);
 exit(0);

14 Cryptography Defects

14-90

 }
 /* Check for Client authentication error */
 if (SSL_get_verify_result(ssl) != X509_V_OK) {
 printf("SSL Client Authentication error\n");
 SSL_free(ssl);
 SSL_CTX_free(ctx);
 exit(0);
 }
}

void func()
{
 int ret;
 SSL_CTX* ctx;
 SSL* ssl;

 /* creation context for the SSL protocol */
 ctx = SSL_CTX_new(SSLv23_client_method());
 if (ctx == NULL) fatal_error();

 /* Handle connection */
 ssl = SSL_new(ctx);
 SSL_set_connect_state(ssl);
 check_certificate(ctx, ssl);
 ret = SSL_set1_host(ssl, "www.mysite.com");
 if (ret <= 0) fatal_error();
 ret = SSL_connect(ssl);
 if (ret <= 0) fatal_error();

 SSL_free(ssl);
 SSL_CTX_free(ctx);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_SSL_HOSTNAME_NOT_CHECKED
Impact: Medium
CWE ID: 297

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020a

 Server certificate common name not checked

14-91

https://cwe.mitre.org/data/definitions/297.html

TLS/SSL connection method not set
Program cannot determine whether to call client or server routines

Description
The defect occurs when you call one of these functions without explicitly setting the connection
method of the TLS/SSL context.

• SSL_read
• SSL_write
• SSL_do_handshake

The communication between server and client entities that use a TLS/SSL connection begins with a
handshake. During the handshake, the parties exchange information and establish the encryption
algorithm and session keys the parties use during the session. The connection methods for the server
and client use different routines for the handshake.

The checker raises no defect if:

• You use SSL_connect (client) and SSL_accept (server) functions. These functions set the
correct handshake routines automatically.

• You pass the SSL context as an argument to the function that calls SSL_new.
• You declare the SSL context outside the scope of the function handling the connection.

Risk

You cannot begin a handshake if the SSL engine does not know which connection method routines to
call.

Fix

• For client handshake routines, call SSL_set_connect_state before you begin the handshake.
• For server handshake routines, call SSL_set_accept_state before you begin the handshake.

Examples
Server Connection Method Not Set Explicitly

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <openssl/ssl.h>

#define fatal_error() exit(-1)

int len;
unsigned char buf;
volatile int rd;

const SSL_METHOD* set_method()

14 Cryptography Defects

14-92

{
 return SSLv23_server_method();
}

void func()
{
 int ret;
 SSL_CTX* ctx;
 SSL* ssl;
 const SSL_METHOD* method = set_method();
 ctx = SSL_CTX_new(method);
 ssl = SSL_new(ctx);

 switch (rd) {
 case 1:
 ret = SSL_read(ssl, (void*)buf, len);
 if (ret <= 0) fatal_error();
 break;
 case 2:
 ret = SSL_do_handshake(ssl);
 if (ret <= 0) fatal_error();
 break;
 default:
 ret = SSL_write(ssl, (void*)buf, len);
 if (ret <= 0) fatal_error();
 break;
 }
}

In this example, the SSL context ctx is generated with server connection method
SSLv23_server_method. However, the connection method is not set explicitly for the SSL structure
ssl before the attempt to read from the connection, initiate a handshake, or write to the connection.

Correction — Set Server Connection Method Explicitly

One possible correction is to call SSL_set_accept_state to set the server role for the SSL
structure ssl before you begin the handshake.

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <openssl/ssl.h>

#define fatal_error() exit(-1)

int len;
unsigned char buf;
volatile int rd;

const SSL_METHOD* set_method()
{
 return SSLv23_server_method();
}

void func()
{
 int ret;
 SSL_CTX* ctx;

 TLS/SSL connection method not set

14-93

 SSL* ssl;
 const SSL_METHOD* method = set_method();
 ctx = SSL_CTX_new(method);
 ssl = SSL_new(ctx);
 SSL_set_accept_state(ssl);

 switch (rd) {
 case 1:
 ret = SSL_read(ssl, (void*)buf, len);
 if (ret <= 0) fatal_error();
 break;
 case 2:
 ret = SSL_do_handshake(ssl);
 if (ret <= 0) fatal_error();
 break;
 default:
 ret = SSL_write(ssl, (void*)buf, len);
 if (ret <= 0) fatal_error();
 break;
 }
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_SSL_NO_ROLE
Impact: Medium
CWE ID: 304, 322, 573

See Also
Find defects (-checkers) | Missing X.509 certificate | Missing certification
authority list

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020a

14 Cryptography Defects

14-94

https://cwe.mitre.org/data/definitions/304.html
https://cwe.mitre.org/data/definitions/322.html
https://cwe.mitre.org/data/definitions/573.html

TLS/SSL connection method set incorrectly
Program calls functions that do not match role set by connection method

Description
The defect occurs when you call functions that do not match the role set by the connection method
that you specified for the SSL context.

The functions that you call when handling a TLS/SSL connection between client and server entities
are different, depending on the role of the entity. For instance, the connection between a server and a
client begins with a handshake. The client always initiates the handshake. You use SSL_accept with
a server entity to wait for a client to initiate the handshake.

Typically, you set a connection method when you initiate the SSL context. The method specifies the
role of the entity.

The checker flags the use of functions that do not match the connection method specified for the SSL
context. See the Event column in the Results Details pane to view connection method specified for
the SSL context.

Risk

If you set the TLS/SSL connection method incorrectly, the functions you use to handle the connection
might not match the role specified by the method. For instance, you use SSL_accept with a client
entity to wait for a client to initiate a handshake instead of SSL_connect to initiate the handshake
with a server.

Fix

Make sure that you use functions that match the TLS/SSL connection method to handle the
connection.

Examples
Client Waiting for Client to Initiate Handshake

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <openssl/ssl.h>

#define fatal_error() exit(-1)

const SSL_METHOD* set_method()
{
 return SSLv23_client_method();
}

void set_method_1(SSL* ssl)
{
 SSL_set_connect_state(ssl);
}

 TLS/SSL connection method set incorrectly

14-95

void func()
{
 int ret;
 SSL_CTX* ctx;
 SSL* ssl;
 const SSL_METHOD* method = set_method();
 ctx = SSL_CTX_new(method);
 ssl = SSL_new(ctx);
 set_method_1(ssl);
 ret = SSL_accept(ssl);
 if (ret <= 0) fatal_error();
}

In this example, the SSL context ctx is initialized with a client role. The SSL structure is also
explicitly set to client role through the call to set_method_1. To establish a connection with the
server, the client should initiate a handshake with the server. Instead, SSL_accept causes the client
to wait for another client to initiate a handshake.

Correction — Use SSL_connect to Initiate Handshake with Server

One possible correction is to use SSL_connect to initiate the TLS/SSL handshake with the server.

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <openssl/ssl.h>

#define fatal_error() exit(-1)

const SSL_METHOD* set_method()
{
 return SSLv23_client_method();
}

void set_method_1(SSL* ssl)
{
 SSL_set_connect_state(ssl);
}
void func()
{
 int ret;
 SSL_CTX* ctx;
 SSL* ssl;
 const SSL_METHOD* method = set_method();
 ctx = SSL_CTX_new(method);
 ssl = SSL_new(ctx);
 set_method_1(ssl);
 ret = SSL_connect(ssl);
 if (ret <= 0) fatal_error();
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_SSL_BAD_ROLE

14 Cryptography Defects

14-96

Impact: Medium
CWE ID: 573

See Also
Find defects (-checkers) | Missing certification authority list | TLS/SSL
connection method not set | Missing X.509 certificate

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020a

 TLS/SSL connection method set incorrectly

14-97

https://cwe.mitre.org/data/definitions/573.html

Weak cipher algorithm
Encryption algorithm associated with the cipher context is weak

Description
This defect occurs when you associate a weak encryption algorithm with the cipher context.

Risk

Some encryption algorithms have known flaws. Though the OpenSSL library still supports the
algorithms, you must avoid using them.

If your cipher algorithm is weak, an attacker can decrypt your data by exploiting a known flaw or
brute force attacks.

Fix

Use algorithms that are well-studied and widely acknowledged as secure.

For instance, the Advanced Encryption Standard (AES) is a widely accepted cipher algorithm.

Examples
Use of DES Algorithm

#include <openssl/evp.h>
#include <stdlib.h>

void func(unsigned char *key, unsigned char *iv) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);
 const EVP_CIPHER * ciph = EVP_des_cbc();
 EVP_EncryptInit_ex(ctx, ciph, NULL, key, iv);
}

In this example, the routine EVP_des_cbc() invokes the Data Encryption Standard (DES) algorithm,
which is now considered as non-secure and relatively slow.

Correction — Use AES Algorithm

One possible correction is to use the faster and more secure Advanced Encryption Standard (AES)
algorithm instead.

#include <openssl/evp.h>
#include <stdlib.h>

void func(unsigned char *key, unsigned char *iv) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

14 Cryptography Defects

14-98

 const EVP_CIPHER * ciph = EVP_aes_128_cbc();
 EVP_EncryptInit_ex(ctx, ciph, NULL, key, iv);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_WEAK_CIPHER
Impact: Medium
CWE ID: 310, 326, 327

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017a

 Weak cipher algorithm

14-99

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/327.html

Weak cipher mode
Encryption mode associated with the cipher context is weak

Description
This defect occurs when you associate a weak block cipher mode with the cipher context.

The cipher mode that is especially flagged by this defect is the Electronic Code Book (ECB) mode.

Risk

The ECB mode does not support protection against dictionary attacks.

An attacker can decrypt your data even using brute force attacks.

Fix

Use a cipher mode more secure than ECB.

For instance, the Cipher Block Chaining (CBC) mode protects against dictionary attacks by:

• XOR-ing each block of data with the encrypted output from the previous block.
• XOR-ing the first block of data with a random initialization vector (IV).

Examples
Use of ECB Mode

#include <openssl/evp.h>
#include <stdlib.h>

void func(unsigned char *key, unsigned char *iv) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);
 const EVP_CIPHER * ciph = EVP_aes_128_ecb();
 EVP_EncryptInit_ex(ctx, ciph, NULL, key, iv);
}

In this example, the routine EVP_aes_128_ecb() invokes the Advanced Encryption Standard (AES)
algorithm in the Electronic Code Book (ECB) mode. The ECB mode does not support protection
against dictionary attacks.
Correction — Use CBC Mode

One possible correction is to use the Cipher Block Chaining (CBC) mode instead.

#include <openssl/evp.h>
#include <stdlib.h>

14 Cryptography Defects

14-100

void func(unsigned char *key, unsigned char *iv) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);
 const EVP_CIPHER * ciph = EVP_aes_128_cbc();
 EVP_EncryptInit_ex(ctx, ciph, NULL, key, iv);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_WEAK_MODE
Impact: Medium
CWE ID: 310, 326, 327

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2017a

 Weak cipher mode

14-101

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/327.html

Weak padding for RSA algorithm
Context used in encryption or signing operation is associated with insecure padding type

Description
This defect occurs when you perform RSA encryption or signature by using a context object that was
previously associated with a weak padding scheme.

For instance, you perform encryption by using a context object that is associated with the
PKCS#1v1.5 padding scheme. The scheme is considered insecure and has already been broken.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PADDING);
...
ret = EVP_PKEY_encrypt(ctx, out, &out_len, in, in_len)

Risk

Padding schemes remove determinism from the RSA algorithm and protect RSA operations from
certain kinds of attacks. Padding schemes such as PKCS#1v1.5, ANSI X9.31, and SSLv23 are known
to be vulnerable. Do not use these padding schemes for encryption or signature operations.

Fix

Before performing an RSA operation, associate the context object with a strong padding scheme.

• Encryption: Use the OAEP padding scheme.

For instance, use the EVP_PKEY_CTX_set_rsa_padding function with the argument
RSA_PKCS1_OAEP_PADDING or the RSA_padding_add_PKCS1_OAEP function.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING);

You can then use functions such as EVP_PKEY_encrypt / EVP_PKEY_decrypt or
RSA_public_encrypt / RSA_private_decrypt on the context.

• Signature: Use the RSA-PSS padding scheme.

For instance, use the EVP_PKEY_CTX_set_rsa_padding function with the argument
RSA_PKCS1_PSS_PADDING.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PSS_PADDING);

You can then use functions such as the EVP_PKEY_sign-EVP_PKEY_verify pair or the
RSA_private_encrypt-RSA_public_decrypt pair on the context.

Examples
Encryption with PKCS#1v1.5 Padding

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

14 Cryptography Defects

14-102

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;

int func(unsigned char *src, size_t len, RSA* rsa){
 if (rsa == NULL) fatal_error();

 return RSA_public_encrypt(len, src, out_buf, rsa, RSA_PKCS1_PADDING);
}

In this example, the PKCS#1v1.5 padding scheme is used in the encryption step.

Correction — Use OAEP Padding Scheme

Use the OAEP padding scheme for stronger encryption.

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;

int func(unsigned char *src, size_t len, RSA* rsa){
 if (rsa == NULL) fatal_error();

 return RSA_public_encrypt(len, src, out_buf, rsa, RSA_PKCS1_OAEP_PADDING);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_RSA_WEAK_PADDING
Impact: Medium
CWE ID: 310, 326, 327, 780

See Also
Incompatible padding for RSA algorithm operation | Missing padding for RSA
algorithm | Missing blinding for RSA algorithm | Nonsecure RSA public exponent |
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018a

 Weak padding for RSA algorithm

14-103

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/780.html

X.509 peer certificate not checked
Connection might be vulnerable to man-in-the-middle attacks

Description
The defect occurs when you do not properly check the X.509 certificate used to authenticate the
TLS/SSL connection when handling the connection. To properly check the certificate, you must call
these two functions together to obtain and verify the certificate.

• SSL_get_peer_certificate: Obtains a certificate from the client or server you are trying to
authenticate. The function returns NULL if no certificate is present. Even if the function returns a
certificate, the certificate must still be checked.

• SSL_get_verify_result: Verifies the certificate presented by the client or server. If you do not
obtain a certificate before calling this function, there are no verification errors and the function
returns successfully.

The checker raises a defect on the functions SSL_read or SSL_write when you attempt to read
from or write to the TLS/SSL connection.

The checker raises no defect if:

• You declare the SSL context outside the scope of the function handling the connection.
• You use anonymous cypher suites.

Risk

If you do not properly check the validity of the certificate of the peer you are attempting to
authenticate, your connection is vulnerable to man-in-the-middle attacks.

Fix

To properly check the validity of the certificate, call both SSL_get_peer_certificate and
SSL_get_verify_result.

Examples
Client Certificate Obtained But Not Verified

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <openssl/ssl.h>

#define fatal_error() exit(-1)

int len;
unsigned char buf;

void func()

14 Cryptography Defects

14-104

{
 int ret;
 SSL_CTX* ctx;
 SSL* ssl;

 /* creation context for the SSL protocol */
 ctx = SSL_CTX_new(SSLv23_client_method());
 if (ctx == NULL) fatal_error();

 /* Set to require peer (client) certificate */
 SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER, NULL);

 /* Handle connection */
 ssl = SSL_new(ctx);
 if (ssl == NULL) fatal_error();
 ret = SSL_set_fd(ssl, NULL);
 if (!ret) fatal_error();
 ret = SSL_connect(ssl);
 if (ret <= 0) fatal_error();

 /* Check for Client authentication error */
 if (!SSL_get_peer_certificate(ssl)) {
 printf("SSL Client Authentication error\n");
 SSL_free(ssl);
 SSL_CTX_free(ctx);
 exit(0);
 }

 /*Read message from the client.*/
 ret = SSL_read(ssl, (void*)buf, len);
 if (ret <= 0) fatal_error();

 /* Close connection */
 SSL_free(ssl);
 SSL_CTX_free(ctx);
}

In this example, a TLS/SSL context is created for a server connection method. The function
SSL_get_peer_certificate then requests the client certificate to authenticate the connection.
However, the server then attempts to read from the connection without checking the validity of the
returned certificate. The certificate might be invalid, and the connection could be vulnerable to a
man-in-the-middle attack.
Correction — Check the Validity of the Returned Certificate

One possible correction is to check the validity of the returned certificate by calling
SSL_get_verify_result.

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <openssl/ssl.h>

#define fatal_error() exit(-1)

int len;

 X.509 peer certificate not checked

14-105

unsigned char buf;

void func()
{
 int ret;
 SSL_CTX* ctx;
 SSL* ssl;

 /* creation context for the SSL protocol */
 ctx = SSL_CTX_new(SSLv23_client_method());
 if (ctx == NULL) fatal_error();

 /* Set to require peer (client) certificate */
 SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER, NULL);

 /* Handle connection */
 ssl = SSL_new(ctx);
 if (ssl == NULL) fatal_error();
 ret = SSL_set_fd(ssl, NULL);
 if (!ret) fatal_error();
 ret = SSL_connect(ssl);
 if (ret <= 0) fatal_error();

 /* Check for Client authentication error */
 if (!SSL_get_peer_certificate(ssl)) {
 printf("SSL Client Authentication error\n");
 SSL_free(ssl);
 SSL_CTX_free(ctx);
 exit(0);
 }

 if (SSL_get_verify_result(ssl) != X509_V_OK) {
 printf("SSL Client Authentication error\n");
 SSL_free(ssl);
 SSL_CTX_free(ctx);
 exit(0);
 }

 /*Read message from the client.*/
 ret = SSL_read(ssl, (void*)buf, len);
 if (ret <= 0) fatal_error();

 /* Close connection */
 SSL_free(ssl);
 SSL_CTX_free(ctx);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_SSL_CERT_NOT_CHECKED
Impact: Medium
CWE ID: 287

14 Cryptography Defects

14-106

https://cwe.mitre.org/data/definitions/287.html

See Also
Find defects (-checkers) | Missing certification authority list | Missing X.509
certificate

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020a

 X.509 peer certificate not checked

14-107

Tainted Data Defects

15

Array access with tainted index
Array index from unsecure source possibly outside array bounds

Description
This defect occurs when you access an array by using an index that is obtained from unsecure
sources and which has not been validated. To consider all input from outside the current analysis
perimeter as unsecure, use -consider-analysis-perimeter-as-trust-boundary.

Risk

The index might be outside the valid array range. If the tainted index is outside the array range, it
can cause:

• Buffer underflow/underwrite — writing to memory before the beginning of the buffer.
• Buffer overflow — writing to memory after the end of a buffer.
• Over-reading a buffer — accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted buffer.

An attacker can use an invalid read or write operation create to problems in your program.

Fix

Before using the index to access the array, validate the index value to make sure that it is inside the
array range.

Examples
Use Index to Return Buffer Value

#include <stdlib.h>
#include <stdio.h>
#define SIZE100 100
extern int tab[SIZE100];
static int tainted_int_source(void) {
 return strtol(getenv("INDEX"),NULL,10);
}
int taintedarrayindex(void) {
 int num = tainted_int_source();
 return tab[num];//Noncompliant
}

In this example, the index num accesses the array tab. The index num is obtained from an unsecure
source and the function taintedarrayindex does not check to see if num is inside the range of tab.
Correction — Check Range Before Use

One possible correction is to check that num is in range before using it.

#include <stdlib.h>
#include <stdio.h>
#define SIZE100 100

15 Tainted Data Defects

15-2

extern int tab[SIZE100];
static int tainted_int_source(void) {
 return strtol(getenv("INDEX"),NULL,10);
}
int taintedarrayindex(void) {
 int num = tainted_int_source();
 if (num >= 0 && num < SIZE100) {
 return tab[num];
 } else {
 return -1;
 }
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_ARRAY_INDEX
Impact: Medium
CWE ID: 121, 124, 125, 129

See Also
Loop bounded with tainted value | Pointer dereference with tainted offset |
Tainted size of variable length array | Find defects (-checkers) | -consider-
analysis-perimeter-as-trust-boundary

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Sources of Tainting in a Polyspace Analysis”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2015b

 Array access with tainted index

15-3

https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/129.html

Command executed from externally controlled
path
Path argument from an unsecure source

Description
This defect occurs when the path to a command executed in the program is constructed from external
sources. To consider all input from outside the current analysis perimeter as unsecure, use -
consider-analysis-perimeter-as-trust-boundary.

Risk

An attacker can:

• Change the command that the program executes, possibly to a command that only the attack can
control.

• Change the environment in which the command executes, by which the attacker controls what the
command means and does.

Fix

Before calling the command, validate the path to make sure that it is the intended location.

Examples
Executing Path from Environment Variable

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void bug_taintedpathcmd() {
 char cmd[SIZE128] = "";
 char* userpath = getenv("MYAPP_PATH");

 strncpy(cmd, userpath, SIZE100);//Noncompliant
 strcat(cmd, "/ls *");
 /* Launching command */
 system(cmd);//Noncompliant
}

This example obtains a path from an environment variable MYAPP_PATH. The path string is tainted.
Polyspace flags its use in the strncopy function. system runs a command from the tainted path
without checking the value of the path. If the path is not the intended path, your program executes in
the wrong location.

15 Tainted Data Defects

15-4

Correction — Use Trusted Path

One possible correction is to use a list of allowed paths to match against the environment variable
path.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

/* Function to sanitize a string */
/* Any defect is localized here */
int sanitize_str(char* s, size_t n) {
 int res = 0;
 /* String is ok if */
 if (s && n>0 && n<SIZE128) {
 /* - string is not null */
 /* - string has a positive and limited size */
 s[n-1] = '\0'; /* Add a security \0 char at end of string *///Noncompliant
 /* Tainted pointer detected above, used as "firewall" */
 res = 1;
 }
 return res;
}

/* Authorized path ids */
enum { PATH0=1, PATH1, PATH2 };

void taintedpathcmd() {
 char cmd[SIZE128] = "";

 char* userpathid = getenv("MYAPP_PATH_ID");
 if (sanitize_str(userpathid, SIZE100)) {
 int pathid = atoi(userpathid);

 char path[SIZE128] = "";
 switch(pathid) {
 case PATH0:
 strcpy(path, "/usr/local/my_app0");
 break;
 case PATH1:
 strcpy(path, "/usr/local/my_app1");
 break;
 case PATH2:
 strcpy(path, "/usr/local/my_app2");
 break;
 default:
 /* do nothing */
 break;
 }
 if (strlen(path)>0) {
 strncpy(cmd, path, SIZE100);

 Command executed from externally controlled path

15-5

 strcat(cmd, "/ls *");
 system(cmd);
 }
 }
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_PATH_CMD
Impact: Medium
CWE ID: 114, 426

See Also
Execution of externally controlled command | Use of externally controlled
environment variable | Host change using externally controlled elements |
Library loaded from externally controlled path | Find defects (-checkers) | -
consider-analysis-perimeter-as-trust-boundary

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Sources of Tainting in a Polyspace Analysis”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2015b

15 Tainted Data Defects

15-6

https://cwe.mitre.org/data/definitions/114.html
https://cwe.mitre.org/data/definitions/426.html

Execution of externally controlled command
Command argument from an unsecure source vulnerable to operating system command injection

Description
This defect occurs when commands are fully or partially constructed from externally controlled input.
To consider all input from outside the current analysis perimeter as unsecure, use -consider-
analysis-perimeter-as-trust-boundary.

Risk

Attackers can use the externally controlled input as operating system commands, or arguments to the
application. An attacker could read or modify sensitive data can be read or modified, execute
unintended code, or gain access to other aspects of the program.

Fix

Validate the inputs to allow only intended input values. For example, create a whitelist of acceptable
inputs and compare the input against this list.

Examples
Call External Command

#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "unistd.h"
#include "dlfcn.h"
#include "limits.h"
#define MAX 128

void taintedexternalcmd(void)
{
 char* usercmd;
 fgets(usercmd,MAX,stdin);
 char cmd[MAX] = "/usr/bin/cat ";
 strcat(cmd, usercmd);
 system(cmd);//Noncompliant
}

This example function calls a command from a user input without checking the command variable.
Correction — Use a Predefined Command

One possible correction is to use a switch statement to run a predefined command, using the user
input as the switch variable.

#define _XOPEN_SOURCE
#define _GNU_SOURCE

#include "stdlib.h"

 Execution of externally controlled command

15-7

#include "stdio.h"
#include "string.h"
#include "unistd.h"
#include "dlfcn.h"
#include "limits.h"

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
enum { CMD0 = 1, CMD1, CMD2 };

void taintedexternalcmd(void)
{
 int usercmd = strtol(getenv("cmd"),NULL,10);
 char cmd[SIZE128] = "/usr/bin/cat ";

 switch(usercmd) {
 case CMD0:
 strcat(cmd, "*.c");
 break;
 case CMD1:
 strcat(cmd, "*.h");
 break;
 case CMD2:
 strcat(cmd, "*.cpp");
 break;
 default:
 strcat(cmd, "*.c");
 }
 system(cmd);
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_EXTERNAL_CMD
Impact: Medium
CWE ID: 77, 78, 88, 114

See Also
Use of externally controlled environment variable | Host change using
externally controlled elements | Command executed from externally controlled
path | Library loaded from externally controlled path | Execution of a binary
from a relative path can be controlled by an external actor | Find defects (-
checkers) | -consider-analysis-perimeter-as-trust-boundary

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

15 Tainted Data Defects

15-8

https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/88.html
https://cwe.mitre.org/data/definitions/114.html

“Sources of Tainting in a Polyspace Analysis”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2015b

 Execution of externally controlled command

15-9

Host change using externally controlled elements
Changing host ID from an unsecure source

Description
This defect occurs when routines that change the host ID, such as sethostid (Linux) or
SetComputerName (Windows), use arguments that are externally controlled. To consider all input
from outside the current analysis perimeter as unsecure, use -consider-analysis-perimeter-
as-trust-boundary.

Risk

The tainted host ID value can allow external control of system settings. This control can disrupt
services, cause unexpected application behavior, or cause other malicious intrusions.

Fix

Use caution when changing or editing the host ID. Do not allow user-provided values to control
sensitive data.

Examples
Change Host ID from Function Argument

#include <unistd.h>
#include <stdlib.h>

void bug_taintedhostid(void) {
 long userhid = strtol(getenv("HID"),NULL,10);
 sethostid(userhid);//Noncompliant
}

This example sets a new host ID using the argument passed to the function. Before using the host ID,
check the value passed in.
Correction — Predefined Host ID

One possible correction is to change the host ID to a predefined ID. This example uses the host
argument as a switch variable to choose between the different, predefined host IDs.

#include <unistd.h>
#include <stdlib.h>

extern long called_taintedhostid_sanitize(long);
enum { HI0 = 1, HI1, HI2, HI3 };

void taintedhostid(void) {
 long host = strtol(getenv("HID"),NULL,10);
 long hid = 0;
 switch(host) {
 case HI0:
 hid = 0x7f0100;
 break;

15 Tainted Data Defects

15-10

 case HI1:
 hid = 0x7f0101;
 break;
 case HI2:
 hid = 0x7f0102;
 break;
 case HI3:
 hid = 0x7f0103;
 break;
 default:
 /* do nothing */
 break;
 }
 if (hid > 0) {
 sethostid(hid);
 }
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_HOSTID
Impact: Medium
CWE ID: 15

See Also
Execution of externally controlled command | Use of externally controlled
environment variable | Host change using externally controlled elements |
Command executed from externally controlled path | Library loaded from
externally controlled path | Find defects (-checkers) | -consider-analysis-
perimeter-as-trust-boundary

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Sources of Tainting in a Polyspace Analysis”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2015b

 Host change using externally controlled elements

15-11

https://cwe.mitre.org/data/definitions/15.html

Library loaded from externally controlled path
Using a library argument from an externally controlled path

Description
This defect occurs when libraries are loaded from fixed or externally controlled unsecure paths and
unintended actors can control one or more locations on the paths. To consider all input from outside
the current analysis perimeter as unsecure, use -consider-analysis-perimeter-as-trust-
boundary.

Risk

If an attacker knows or controls the path that you use to load a library, the attacker can change:

• The library that the program loads, replacing the intended library and commands.
• The environment in which the library executes, giving unintended permissions and capabilities to

the attacker.

Fix

When possible, use hard-coded or fully qualified path names to load libraries. It is possible the hard-
coded paths do not work on other systems. Use a centralized location for hard-coded paths, so that
you can easily modify the path within the source code.

Another solution is to use functions that require explicit paths. For example, system() does not
require a full path because it can use the PATH environment variable. However, execl() and
execv() do require the full path.

Examples
Call Custom Library

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <dlfcn.h>
#include <limits.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void* taintedpathlib() {
 void* libhandle = NULL;
 char lib[SIZE128] = "";
 char* userpath = getenv("LD_LIBRARY_PATH");
 strncpy(lib, userpath, SIZE128);//Noncompliant- userpath is tainted
 strcat(lib, "/libX.so");
 libhandle = dlopen(lib, 0x00001);//Noncompliant

15 Tainted Data Defects

15-12

 return libhandle;
}

This example loads the library libX.so from an environment variable LD_LIBRARY_PATH. An
attacker can change the library path in this environment variable. The actual library you load could
be a different library from the one that you intend.

Correction — Change and Check Path

One possible correction is to change how you get the library path and check the path of the library
before opening the library. This example receives the path as an input argument but then performs
the following checks on the path:

• The function sanitize_str protects against possible buffer overflows.
• The function identified_safe_libX_folder checks if the path belongs to a list of whitelisted

paths.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <dlfcn.h>
#include <limits.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

/* Use white list */
static const char *libX_safe_folder[] = {
 "/usr/",
 "/usr/lib",
 "/lib"
};

/* Return the index if the input is in the white list */
int identified_safe_libX_folder(const char* path)
{
 for (int i = 0; i < sizeof(libX_safe_folder) / sizeof(libX_safe_folder[0]); i ++)
 {
 if (strcmp(path, libX_safe_folder[i]) == 0)
 return i;
 }
 return -1;
}

/* Function to sanitize a string */
char *sanitize_str(char* s, size_t n) {
 /* strlen is used here as a kind of firewall for tainted string errors */
 if (strlen(s) > 0 && strlen(s) < n)
 return s;
 else
 return NULL;
}

 Library loaded from externally controlled path

15-13

void* taintedpathlib(char* userpath) {
 void* libhandle = NULL;
 const char *const checked_userpath = sanitize_str(userpath, SIZE128);
 if (checked_userpath != NULL) {
 int index = identified_safe_libX_folder(checked_userpath);
 if (index > 0) {
 char lib[SIZE128] = "";
 strncpy(lib, libX_safe_folder[index], SIZE128);
 strcat(lib, "/libX.so");
 libhandle = dlopen(lib, RTLD_LAZY);
 }
 }
 return libhandle;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_PATH_LIB
Impact: Medium
CWE ID: 114, 426

See Also
Execution of externally controlled command | Use of externally controlled
environment variable | Command executed from externally controlled path | Find
defects (-checkers) | -consider-analysis-perimeter-as-trust-boundary

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Sources of Tainting in a Polyspace Analysis”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2015b

15 Tainted Data Defects

15-14

https://cwe.mitre.org/data/definitions/114.html
https://cwe.mitre.org/data/definitions/426.html

Loop bounded with tainted value
Loop controlled by a value from an unsecure source

Description
This defect occurs when a loop is bounded by values obtained from unsecure sources. To consider all
input from outside the current analysis perimeter as unsecure, use -consider-analysis-
perimeter-as-trust-boundary.

Risk

A tainted value can cause over looping or infinite loops. Attackers can use this vulnerability to
terminate your program or cause other unintended behavior.

Fix

Before starting the loop, validate unknown boundary and iterator values by validating their low
bounds and high bounds. Execute the loop only when both the lower bound and upper bound of the
tainted values are validated. Explicitly check that both the lower and upper bound of the tainted
value is acceptable. Alternatively, saturate or clamp the tainted value.

Examples
Loop Boundary From User Input
#include<stdio.h>
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedloopboundary(void) {
 int count;
 scanf("%d", &count);
 int res = 0;
 for (int i=0 ; i < count; ++i) {//Noncompliant
 res += i;
 }
 return res;
}

In this example, the function uses a user input to loop count times. count could be any number
because the value is not checked before starting the for loop.
Correction: Clamp Tainted Loop Control

One possible correction is to clamp the tainted loop control. To validate the tainted loop variable
count, this example limits count to a minimum value and a maximum value by using inline functions
min and max. Regardless of the user input, the value of count remains within a known range.

#include<stdio.h>
#include<algorithm>

 Loop bounded with tainted value

15-15

#define MIN 50
#define MAX 128
static inline int max(int a, int b) { return a > b ? a : b;}
static inline int min(int a, int b) { return a < b ? a : b; }

int taintedloopboundary(void) {
 int count;
 scanf("%d", &count);
 int res = 0;
 count = max(MIN, min(count, MAX));
 for (int i=0 ; i<count ; ++i) {
 res += i;
 }
 return res;
}

Correction — Check Tainted Loop Control

Another possible correction is to check the low bound and the high bound of the tainted loop
boundary variable before starting the for loop. This example checks the low and high bounds of
count and executes the loop only when count is between 0 and 127.

#include<stdio.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedloopboundary(void) {
 int count;
 scanf("%d", &count);
 int res = 0;

 if (count>=0 && count<SIZE128) {
 for (int i=0 ; i<count ; ++i) {
 res += i;
 }
 }
 return res;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_LOOP_BOUNDARY
Impact: Medium
CWE ID: 606

See Also
Array access with tainted index | Pointer dereference with tainted offset | Find
defects (-checkers) | -consider-analysis-perimeter-as-trust-boundary

15 Tainted Data Defects

15-16

https://cwe.mitre.org/data/definitions/606.html

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Sources of Tainting in a Polyspace Analysis”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2015b

 Loop bounded with tainted value

15-17

Memory allocation with tainted size
Size argument to memory function is from an unsecure source

Description
This defect occurs when a memory allocation function, such as calloc or malloc, uses a size
argument from an unsecure source. To consider all input from outside the current analysis perimeter
as unsecure, use -consider-analysis-perimeter-as-trust-boundary.

Risk

Uncontrolled memory allocation can cause your program to request too much system memory. This
consequence can lead to a crash due to an out-of-memory condition, or assigning too many resources.

Fix

Before allocating memory, check the value of your arguments to check that they do not exceed the
bounds.

Examples
Allocate Memory Using Input From User
#include<stdio.h>
#include <stdlib.h>

int* bug_taintedmemoryallocsize(void) {
 size_t size;
 scanf("%zu", &size);
 int* p = (int*)malloc(size);//Noncompliant
 return p;
}

In this example, malloc allocates size bytes of memory for the pointer p. The variable size comes
from the user of the program. Its value is not checked, and it could be larger than the amount of
available memory. If size is larger than the number of available bytes, your program could crash.
Correction — Check Size of Memory to be Allocated

One possible correction is to check the size of the memory that you want to allocate before
performing the malloc operation. This example checks to see if size is positive and less than the
maximum size.

#include<stdio.h>
#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int* corrected_taintedmemoryallocsize(void) {

15 Tainted Data Defects

15-18

 size_t size;
 scanf("%zu", &size);
 int* p = NULL;
 if (size>0 && size<SIZE128) { /* Fix: Check entry range before use */
 p = (int*)malloc((unsigned int)size);
 }
 return p;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_MEMORY_ALLOC_SIZE
Impact: Medium
CWE ID: 128, 131, 789

See Also
Unprotected dynamic memory allocation | Find defects (-checkers) | -consider-
analysis-perimeter-as-trust-boundary

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Sources of Tainting in a Polyspace Analysis”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2015b

 Memory allocation with tainted size

15-19

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/789.html

Pointer dereference with tainted offset
Offset is from an unsecure source and dereference might be out of bounds

Description
This defect occurs when a pointer dereference uses an offset variable from an unknown or unsecure
source. To consider all input from outside the current analysis perimeter as unsecure, use -
consider-analysis-perimeter-as-trust-boundary.

This check focuses on dynamically allocated buffers. For static buffer offsets, see Array access
with tainted index.

Risk

The index might be outside the valid array range. If the tainted index is outside the array range, it
can cause:

• Buffer underflow/underwrite, or writing to memory before the beginning of the buffer.
• Buffer overflow, or writing to memory after the end of a buffer.
• Over reading a buffer, or accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted buffer.

An attacker can use an invalid read or write to compromise your program.

Fix

Validate the index before you use the variable to access the pointer. Check to make sure that the
variable is inside the valid range and does not overflow.

Examples
Dereference Pointer Array

#include <stdio.h>
#include <stdlib.h>
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(void) {
 int offset;
 scanf("%d",&offset);
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if(pint) {
 /* Filling array */
 read_pint(pint);
 c = pint[offset];//Noncompliant

15 Tainted Data Defects

15-20

 free(pint);
 }
 return c;
}

In this example, the function initializes an integer pointer pint. The pointer is dereferenced using
the input index offset. The value of offset could be outside the pointer range, causing an out-of-
range error.

Correction — Check Index Before Dereference

One possible correction is to validate the value of offset. Continue with the pointer dereferencing
only if offset is inside the valid range.

#include <stdlib.h>
#include <stdio.h>
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(void) {
 int offset;
 scanf("%d",&offset);
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if (pint) {
 /* Filling array */
 read_pint(pint);
 if (offset>0 && offset<SIZE10) {
 c = pint[offset];
 }
 free(pint);
 }
 return c;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_PTR_OFFSET
Impact: Low
CWE ID: 122, 124, 129, 823

See Also
Array access with tainted index | Find defects (-checkers) | -consider-analysis-
perimeter-as-trust-boundary

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”

 Pointer dereference with tainted offset

15-21

https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/129.html
https://cwe.mitre.org/data/definitions/823.html

“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Sources of Tainting in a Polyspace Analysis”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2015b

15 Tainted Data Defects

15-22

Tainted division operand
Operands of division operation (/) come from an unsecure source

Description
This defect occurs when one or both integer operands in a division operation comes from unsecure
sources. To consider all input from outside the current analysis perimeter as unsecure, use -
consider-analysis-perimeter-as-trust-boundary.

Risk

• If the numerator is the minimum possible value and the denominator is -1, your division operation
overflows because the result cannot be represented by the current variable size.

• If the denominator is zero, your division operation fails possibly causing your program to crash.

These risks can be used to execute arbitrary code. This code is usually outside the scope of a
program's implicit security policy.

Fix

Before performing the division, validate the values of the operands. Check for denominators of 0 or
-1, and numerators of the minimum integer value.

Examples
Division of Function Arguments

#include <limits.h>
#include <stdio.h>

extern void print_int(int);

int taintedintdivision(void) {
 long num, denum;
 scanf("%lf %lf", &num, &denum);
 int r = num/denum; //Noncompliant
 print_int(r);
 return r;
}

This example function divides two argument variables, then prints and returns the result. The
argument values are unknown and can cause division by zero or integer overflow.

Correction — Check Values

One possible correction is to check the values of the numerator and denominator before performing
the division.

#include <limits.h>
#include <stdio.h>

extern void print_long(long);

 Tainted division operand

15-23

int taintedintdivision(void) {
 long num, denum;
 scanf("%lf %lf", &num, &denum);
 long res= 0;
 if (denum!=0 && !(num==INT_MIN && denum==-1)) {
 res = num/denum;
 }
 print_long(res);
 return res;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_INT_DIVISION
Impact: Low
CWE ID: 189, 190, 369

See Also
Integer division by zero | Float division by zero | Tainted modulo operand | Find
defects (-checkers) | -consider-analysis-perimeter-as-trust-boundary

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Sources of Tainting in a Polyspace Analysis”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2015b

15 Tainted Data Defects

15-24

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/369.html

Tainted modulo operand
Operands of remainder operation (%) come from an unsecure source

Description
This defect occurs when one or both integer operands in a remainder operation (%) comes from
unsecure sources. To consider all input from outside the current analysis perimeter as unsecure, use
-consider-analysis-perimeter-as-trust-boundary.

Risk

• If the second remainder operand is zero, your remainder operation fails, causing your program to
crash.

• If the second remainder operand is -1, your remainder operation can overflow if the remainder
operation is implemented based on the division operation that can overflow.

• If one of the operands is negative, the operation result is uncertain. For C89, the modulo operation
is not standardized, so the result from negative operands is implementation-defined.

These risks can be exploited by attackers to gain access to your program or the target in general.

Fix

Before performing the modulo operation, validate the values of the operands. Check the second
operand for values of 0 and -1. Check both operands for negative values.

Examples
Modulo with User Input
#include <stdio.h>
extern void print_int(int);

int taintedintmod(void) {
 int userden;
 scanf("%d", &userden);
 int rem = 128%userden; //Noncompliant
 print_int(rem);
 return rem;
}

In this example, the function performs a modulo operation by using a user input. The input is not
checked before calculating the remainder for values that can crash the program, such as 0 and -1.
Correction — Check Operand Values

One possible correction is to check the values of the operands before performing the modulo
operation. In this corrected example, the modulo operation continues only if the second operand is
greater than zero.

#include<stdio.h>
extern void print_int(int);

 Tainted modulo operand

15-25

int taintedintmod(void) {
 int userden;
 scanf("%d", &userden);
 int rem = 0;
 if (userden > 0) {
 rem = 128 % userden;
 }
 print_int(rem);
 return rem;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_INT_MOD
Impact: Low
CWE ID: 369, 682

See Also
Integer division by zero | Tainted division operand | Find defects (-checkers) | -
consider-analysis-perimeter-as-trust-boundary

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Sources of Tainting in a Polyspace Analysis”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2015b

15 Tainted Data Defects

15-26

https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/682.html

Tainted NULL or non-null-terminated string
Argument is from an unsecure source and might be NULL or not NULL-terminated

Description
This defect occurs when strings from unsecure sources are used in string manipulation routines that
implicitly dereference the string buffer, for instance, strcpy or sprintf. To consider all input from
outside the current analysis perimeter as unsecure, use -consider-analysis-perimeter-as-
trust-boundary.

Tainted NULL or non-null-terminated string raises no defect for a string returned from a call to
scanf-family variadic functions. Similarly, no defect is raised when you pass the string with a %s
specifier to printf-family variadic functions.

Risk

If a string is from an unsecure source, it is possible that an attacker manipulated the string or pointed
the string pointer to a different memory location.

If the string is NULL, the string routine cannot dereference the string, causing the program to crash.
If the string is not null-terminated, the string routine might not know when the string ends. This error
can cause you to write out of bounds, causing a buffer overflow.

Fix

Validate the string before you use it. Check that:

• The string is not NULL.
• The string is null-terminated
• The size of the string matches the expected size.

Examples
Getting String from Input
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define SIZE128 128
#define MAX 40
extern void print_str(const char*);
void warningMsg(void)
{
 char userstr[MAX];
 read(0,userstr,MAX);
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));//Noncompliant
 print_str(str);
}

 Tainted NULL or non-null-terminated string

15-27

In this example, the string str is concatenated with the argument userstr. The value of userstr is
unknown. If the size of userstr is greater than the space available, the concatenation overflows.

Correction — Validate the Data

One possible correction is to check the size of userstr and make sure that the string is null-
terminated before using it in strncat. This example uses a helper function, sansitize_str, to
validate the string. The defects are concentrated in this function.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define SIZE128 128
#define MAX 40
extern void print_str(const char*);
int sanitize_str(char* s) {
 int res = 0;
 if (s && (strlen(s) > 0)) { // Noncompliant-TAINTED_STRING only flagged here
 // - string is not null
 // - string has a positive and limited size
 // - TAINTED_STRING on strlen used as a firewall
 res = 1;
 }
 return res;
}
void warningMsg(void)
{
 char userstr[MAX];
 read(0,userstr,MAX);
 char str[SIZE128] = "Warning: ";
 if (sanitize_str(userstr))
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

Correction — Validate the Data

Another possible correction is to call function errorMsg and warningMsg with specific strings.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";

15 Tainted Data Defects

15-28

 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

int manageSensorValue(int sensorValue) {
 int ret = sensorValue;
 if (sensorValue < 0) {
 errorMsg("sensor value should be positive");
 exit(1);
 } else if (sensorValue > 50) {
 warningMsg("sensor value greater than 50 (applying threshold)...");
 sensorValue = 50;
 }

 return sensorValue;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_STRING
Impact: Low
CWE ID: 120, 170, 476, 690, 822

See Also
Tainted string format | Find defects (-checkers) | -consider-analysis-perimeter-
as-trust-boundary

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Sources of Tainting in a Polyspace Analysis”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2015b

 Tainted NULL or non-null-terminated string

15-29

https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/170.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/690.html
https://cwe.mitre.org/data/definitions/822.html

Tainted sign change conversion
Value from an unsecure source changes sign

Description
This defect occurs when values from unsecure sources are converted, implicitly or explicitly, from
signed to unsigned values.

For example, functions that use size_t as arguments implicitly convert the argument to an unsigned
integer. Some functions that implicitly convert size_t are:

bcmp
memcpy
memmove
strncmp
strncpy
calloc
malloc
memalign

To consider all input from outside the current analysis perimeter as unsecure, use -consider-
analysis-perimeter-as-trust-boundary.

Risk

If you convert a small negative number to unsigned, the result is a large positive number. The large
positive number can create security vulnerabilities. For example, if you use the unsigned value in:

• Memory size routines — causes allocating memory issues.
• String manipulation routines — causes buffer overflow.
• Loop boundaries — causes infinite loops.

Fix

To avoid converting unsigned negative values, check that the value being converted is within an
acceptable range. For example, if the value represents a size, validate that the value is not negative
and less than the maximum value size.

Examples
Set Memory Value with Size Argument

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

15 Tainted Data Defects

15-30

void bug_taintedsignchange(void) {
 int size;
 scanf("%d",&size);
 char str[SIZE128] = "";
 if (size<SIZE128) {
 memset(str, 'c', size); //Noncompliant
 }
}

In this example, a char buffer is created and filled using memset. The size argument to memset is an
input argument to the function.

The call to memset implicitly converts size to unsigned integer. If size is a large negative number,
the absolute value could be too large to represent as an integer, causing a buffer overflow.

Correction — Check Value of size

One possible correction is to check if size is inside the valid range. This correction checks if size is
greater than zero and less than the buffer size before calling memset.

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void corrected_taintedsignchange(void) {
 int size;
 scanf("%d",&size);
 char str[SIZE128] = "";
 if (size>0 && size<SIZE128) {
 memset(str, 'c', size);
 }
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_SIGN_CHANGE
Impact: Medium
CWE ID: 128, 131, 192, 194, 195

See Also
Sign change integer conversion overflow | Find defects (-checkers) | -consider-
analysis-perimeter-as-trust-boundary

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”

 Tainted sign change conversion

15-31

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/192.html
https://cwe.mitre.org/data/definitions/194.html
https://cwe.mitre.org/data/definitions/195.html

“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Sources of Tainting in a Polyspace Analysis”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2015b

15 Tainted Data Defects

15-32

Tainted string format
Input format argument is from an unsecure source

Description
This defect occurs when printf-style functions use a format specifier constructed from unsecure
sources. To consider all input from outside the current analysis perimeter as unsecure, use -
consider-analysis-perimeter-as-trust-boundary.

Risk

If you use externally controlled elements to format a string, you can cause buffer overflow or data-
representation problems. An attacker can use these string formatting elements to view the contents
of a stack using %x or write to a stack using %n.

Fix

Pass a static string to format string functions. This fix ensures that an external actor cannot control
the string.

Another possible fix is to allow only the expected number of arguments. If possible, use functions that
do not support the vulnerable %n operator in format strings.

Examples
Get Elements from User Input
#include <stdio.h>
#include <unistd.h>
#define MAX 40
void taintedstringformat(void) {
 char userstr[MAX];
 read(0,userstr,MAX);
 printf(userstr);//Noncompliant
}

This example prints the input argument userstr. The string is unknown. If it contains elements such
as %, printf can interpret userstr as a string format instead of a string, causing your program to
crash.
Correction — Print as String

One possible correction is to print userstr explicitly as a string so that there is no ambiguity.

#include "stdio.h"
#include <unistd.h>
#define MAX 40

void taintedstringformat(void) {
 char userstr[MAX];
 read(0,userstr,MAX);
 printf("%.20s", userstr);
}

 Tainted string format

15-33

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_STRING_FORMAT
Impact: Low
CWE ID: 134

See Also
Tainted NULL or non-null-terminated string | Find defects (-checkers) | -
consider-analysis-perimeter-as-trust-boundary

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Sources of Tainting in a Polyspace Analysis”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2015b

15 Tainted Data Defects

15-34

https://cwe.mitre.org/data/definitions/134.html

Tainted size of variable length array
Size of the variable-length array (VLA) is from an unsecure source and might be zero, negative, or too
large

Description
This defect occurs when the size of a variable length array (VLA) is obtained from an unsecure
source. To consider all input from outside the current analysis perimeter as unsecure, use -
consider-analysis-perimeter-as-trust-boundary.

Risk

If an attacker changed the size of your VLA to an unexpected value, it can cause your program to
crash or behave unexpectedly.

If the size is non-positive, the behavior of the VLA is undefined. Your program does not perform as
expected.

If the size is unbounded, the VLA can cause memory exhaustion or stack overflow.

Fix

Validate your VLA size to make sure that it is positive and less than a maximum value.

Examples
Example — User Input Argument Used as Size of VLA
#include<stdio.h>
#inclule<stdlib.h>
#define LIM 40

long squaredSum(int size) {

 int tabvla[size];
 long res = 0;
 for (int i=0 ; i<LIM-1 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 return res;
}
int main(){
 int size;
 scanf("%d",&size);
 //...
 long result = squaredSum(size);
 //...
 return 0;
}

In this example, a variable length array size is based on an input argument. Because this input
argument value is not checked, the size may be negative or too large.

 Tainted size of variable length array

15-35

Correction — Check VLA Size

One possible correction is to check the size variable before creating the variable length array. This
example checks if the size is larger than 0 and less than 40, before creating the VLA

#include <stdio.h>
#include <stdlib.h>
#define LIM 40

long squaredSum(int size) {
 long res = 0;
 if (size>0 && size<LIM){
 int tabvla[size];
 for (int i=0 ; i<size || i<LIM-1 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 }else{
 res = -1;
 }
 return res;
}
int main(){
 int size;
 scanf("%d",&size);
 //...
 long result = squaredSum(size);
 //...
 return 0;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_VLA_SIZE
Impact: Medium
CWE ID: 128, 131, 770, 789

See Also
Memory allocation with tainted size | Find defects (-checkers) | -consider-
analysis-perimeter-as-trust-boundary

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Sources of Tainting in a Polyspace Analysis”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2015b

15 Tainted Data Defects

15-36

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/789.html

Use of externally controlled environment variable
Value of environment variable is from an unsecure source

Description
This defect occurs when functions that add or change environment variables, such as putenv and
setenv, obtain new environment variable values from unsecure sources. To consider all input from
outside the current analysis perimeter as unsecure, use -consider-analysis-perimeter-as-
trust-boundary.

Risk

If the environment variable is tainted, an attacker can control your system settings. This control can
disrupt an application or service in potentially malicious ways.

Fix

Before using the new environment variable, check its value to avoid giving control to external users.

Examples
Set Path in Environment

#define _XOPEN_SOURCE
#define _GNU_SOURCE
#include "stdlib.h"

void taintedenvvariable(void)
{
 char* path = getenv("APP_PATH");
 putenv(path); //Noncompliant
}

In this example, putenv changes an environment variable. The path path has not been checked to
make sure that it is the intended path.

Correction — Sanitize Path

One possible correction is to sanitize the path, checking that it matches what you expect.

#define _POSIX_C_SOURCE
#include <stdlib.h>
#include <string.h>

/* Function to sanitize a path */
const char * sanitize_path(const char* str) {
 /* secure white list of paths */
 static const char *const authorized_paths[] = {
 "/bin",
 "/usr/bin"
 };
 if (str != NULL) {
 for (int i = 0; i < sizeof(authorized_paths) / sizeof(authorized_paths[0]); i++)

 Use of externally controlled environment variable

15-37

 if (strcmp(authorized_paths[i], str) == 0) {
 return authorized_paths[i];
 }
 }
 return NULL;
}

void taintedenvvariable(void)
{
 const char* path = getenv("APP_PATH");
 path = sanitize_path(path);
 if (path != NULL) {
 if (setenv("PATH", path, /* overwrite = */1) != 0) {
 /* fatal error */
 exit(1);
 }
 }
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_ENV_VARIABLE
Impact: Medium
CWE ID: 15

See Also
Execution of externally controlled command | Host change using externally
controlled elements | Command executed from externally controlled path | Library
loaded from externally controlled path | Find defects (-checkers) | -consider-
analysis-perimeter-as-trust-boundary

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Sources of Tainting in a Polyspace Analysis”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2015b

15 Tainted Data Defects

15-38

https://cwe.mitre.org/data/definitions/15.html

Use of tainted pointer
Pointer from an unsecure source may be NULL or point to unknown memory

Description
This defect occurs when:

• Tainted NULL pointer — the pointer obtained from an unsecure source is not validated against
NULL.

• Tainted size pointer — the size of the memory zone that an unsecure pointer points to is not
validated.

Note On a single pointer, your code can have instances of Use of tainted pointer, Pointer
dereference with tainted offset, and Tainted NULL or non-null-terminated string. Bug Finder
raises only the first tainted pointer defect that it finds.

To consider all input from outside the current analysis perimeter as unsecure, use -consider-
analysis-perimeter-as-trust-boundary.

Risk

An attacker can give your program a pointer that points to unexpected memory locations. If the
pointer is dereferenced to write, the attacker can:

• Modify the state variables of a critical program.
• Cause your program to crash.
• Execute unwanted code.

If the pointer is dereferenced to read, the attacker can:

• Read sensitive data.
• Cause your program to crash.
• Modify a program variable to an unexpected value.

Fix

Avoid use of pointers from external sources.

Alternatively, if you trust the external source, sanitize the pointer before dereference. In a separate
sanitization function:

• Check that the pointer is not NULL.
• Check the size of the memory location (if possible). This second check validates whether the size

of the data the pointer points to matches the size your program expects.

The defect still appears in the body of the sanitization function. However, if you use a sanitization
function, instead of several occurrences, the defect appears only once. You can justify the defect and
hide it in later reviews by using code annotations. See:

 Use of tainted pointer

15-39

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Function That Dereferences an External Pointer

#include<stdlib.h>
void taintedptr(void) {
 char *p = getenv("ARG");
 char x = *(p+10);//Noncompliant
}

In this example, the pointer *p points to an string of unknown size. During the dereferencing
operation, the pointer might be null or point to unknown memory, which can result in segmentation
fault.

Correction — Check Pointer

One possible correction is to sanitize the pointer before using it. This example checks whether the
pointer is nullptr before it is dereferenced.
#include<stdlib.h>
#include <string.h>
void taintedptr(void) {
 char *p = getenv("ARG");
 if(p!=NULL && strlen(p)>10)
 {
 char x = *(p+10);
 }
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_PTR
Impact: Low
CWE ID: 690, 822

See Also
Pointer dereference with tainted offset | Find defects (-checkers) | -consider-
analysis-perimeter-as-trust-boundary

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Sources of Tainting in a Polyspace Analysis”
“Modify Default Behavior of Bug Finder Checkers”

15 Tainted Data Defects

15-40

https://cwe.mitre.org/data/definitions/690.html
https://cwe.mitre.org/data/definitions/822.html

Introduced in R2015b

 Use of tainted pointer

15-41

Concurrency Defects

16

Asynchronously cancellable thread
Calling thread might be cancelled in an unsafe state

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when you use pthread_setcanceltype with argument
PTHREAD_CANCEL_ASYNCHRONOUS to set the cancellability type of a calling thread to asynchronous
(or immediate) . An asynchronously cancellable thread can be cancelled at any time, usually
immediately upon receiving a cancellation request.

Risk

The calling thread might be cancelled in an unsafe state that could result in a resources leak, a
deadlock, a data race, data corruption, or unpredictable behavior.

Fix

Remove the call to pthread_setcanceltype with argument PTHREAD_CANCEL_ASYNCHRONOUS to
use the default cancellability type PTHREAD_CANCEL_DEFERRED instead. With the default
cancellability type, the thread defers cancellation requests until it calls a function that is a
cancellation point.

Examples
Cancellability Type of Thread Set to Asynchronous
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

static int fatal_error(void)
{
 exit(1);
}

volatile int a = 5;
volatile int b = 10;

pthread_mutex_t global_lock = PTHREAD_MUTEX_INITIALIZER;

void* swap_values_thread(void* dummy)
{
 int i;
 int c;
 int result;
 if ((result =
 pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &i)) != 0) {
 /* handle error */
 fatal_error();
 }
 while (1) {
 if ((result = pthread_mutex_lock(&global_lock)) != 0) {
 /* handle error */
 fatal_error();
 }
 c = b;
 b = a;
 a = c;

16 Concurrency Defects

16-2

 if ((result = pthread_mutex_unlock(&global_lock)) != 0) {
 /* handle error */
 fatal_error();
 }
 }
 return NULL;
}

int main(void)
{
 int result;
 pthread_t worker;

 if ((result = pthread_create(&worker, NULL, swap_values_thread, NULL)) != 0) {
 /* handle error */
 fatal_error();
 }

 /* Additional code */

 if ((result = pthread_cancel(worker)) != 0) {
 /* handle error */
 fatal_error();
 }

 if ((result = pthread_join(worker, 0)) != 0) {
 /* handle error */
 fatal_error();
 }

 if ((result = pthread_mutex_lock(&global_lock)) != 0) {
 /* handle error */
 fatal_error();
 }
 printf("a: %i | b: %i", a, b);
 if ((result = pthread_mutex_unlock(&global_lock)) != 0) {
 /* handle error */
 fatal_error();
 }

 return 0;
}

In this example, the cancellability type of the worker thread is set to asynchronous. The mutex
global_lock helps ensure that the worker and main threads do not access variables a and b at the
same time. However, the worker thread might be cancelled while holding global_lock, and the
main thread will never acquire global_lock, which results in a deadlock.
Correction — Use the Default Cancellability Type

One possible correction is to remove the call to pthread_setcanceltype. By default, the
cancellability type of a new thread is set to PTHREAD_CANCEL_DEFERRED. The worker thread defers
cancellation requests until it calls a function that is a cancellation point.
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

static int fatal_error(void)
{
 exit(1);
}

volatile int a = 5;
volatile int b = 10;

pthread_mutex_t global_lock = PTHREAD_MUTEX_INITIALIZER;

void* swap_values_thread(void* dummy)
{
 int i;
 int c;
 int result;
 while (1) {
 if ((result = pthread_mutex_lock(&global_lock)) != 0) {

 Asynchronously cancellable thread

16-3

 /* handle error */
 fatal_error();
 }
 c = b;
 b = a;
 a = c;
 if ((result = pthread_mutex_unlock(&global_lock)) != 0) {
 /* handle error */
 fatal_error();
 }
 }
 return NULL;
}

int main(void)
{
 int result;
 pthread_t worker;

 if ((result = pthread_create(&worker, NULL, swap_values_thread, NULL)) != 0) {
 /* handle error */
 fatal_error();
 }

 /* Additional code */

 if ((result = pthread_cancel(worker)) != 0) {
 /* handle error */
 fatal_error();
 }

 if ((result = pthread_join(worker, 0)) != 0) {
 /* handle error */
 fatal_error();
 }

 if ((result = pthread_mutex_lock(&global_lock)) != 0) {
 /* handle error */
 fatal_error();
 }
 printf("a: %i | b: %i", a, b);
 if ((result = pthread_mutex_unlock(&global_lock)) != 0) {
 /* handle error */
 fatal_error();
 }

 return 0;
}

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: ASYNCHRONOUSLY_CANCELLABLE_THREAD
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

External Websites
POS47-C

16 Concurrency Defects

16-4

https://wiki.sei.cmu.edu/confluence/x/qtYxBQ

Introduced in R2020a

 Asynchronously cancellable thread

16-5

Atomic load and store sequence not atomic
Variable accessible between load and store operations

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when you use these functions to load, and then store an atomic variable.

• C functions:

• atomic_load()
• atomic_load_explicit()
• atomic_store()
• atomic_store_explicit()

• C++ functions:

• std::atomic_load()
• std::atomic_load_explicit()
• std::atomic_store()
• std::atomic_store_explicit()
• std::atomic::load()
• std::atomic::store()

A thread cannot interrupt an atomic load or an atomic store operation on a variable, but a thread can
interrupt a store, and then load sequence.

Risk

A thread can modify a variable between the load and store operations, resulting in a data race
condition.

Fix

To read, modify, and store a variable atomically, use a compound assignment operator such as +=,
atomic_compare_exchange() or atomic_fetch_*-family functions.

Examples
Loading Then Storing an Atomic Variable

#include <stdatomic.h>
#include <stdbool.h>

static atomic_bool flag = ATOMIC_VAR_INIT(false);

16 Concurrency Defects

16-6

void init_flag(void)
{
 atomic_init(&flag, false);
}

void toggle_flag(void)
{
 bool temp_flag = atomic_load(&flag);
 temp_flag = !temp_flag;
 atomic_store(&flag, temp_flag);
}

bool get_flag(void)
{
 return atomic_load(&flag);
}

In this example, variable flag of type atomic_bool is referenced twice inside the toggle_flag()
function. The function loads the variable, negates its value, then stores the new value back to the
variable. If two threads call toggle_flag(), the second thread can access flag between the load
and store operations of the first thread. flag can end up in an incorrect state.

Correction — Use Compound Assignment to Modify Variable

One possible correction is to use a compound assignment operator to toggle the value of flag. The C
standard defines the operation by using ^= as atomic.

#include <stdatomic.h>
#include <stdbool.h>

static atomic_bool flag = ATOMIC_VAR_INIT(false);

void toggle_flag(void)
{
 flag ^= 1;
}

bool get_flag(void)
{
 return flag;
}

Result Information
Group: Concurrency
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: ATOMIC_VAR_SEQUENCE_NOT_ATOMIC
Impact: Medium

See Also
Atomic variable accessed twice in an expression | Data race | Data race
including atomic operations | Find defects (-checkers)

 Atomic load and store sequence not atomic

16-7

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018b

16 Concurrency Defects

16-8

Atomic variable accessed twice in an expression
Variable can be modified between accesses

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when C atomic types or C++ std::atomic class variables appear twice in an
expression and there are:

• Two atomic read operations on the variable.
• An atomic read and a distinct atomic write operation on the variable.

The C standard defines certain operations on atomic variables that are thread safe and do not cause
data race conditions. Unlike individual operations, a pair of operations on the same atomic variable in
an expression is not thread safe.

Risk

A thread can modify the atomic variable between the pair of atomic operations, which can result in a
data race condition.

Fix

Do not reference an atomic variable twice in the same expression.

Examples
Referencing Atomic Variable Twice in an Expression

#include <stdatomic.h>

atomic_int n = ATOMIC_VAR_INIT(0);

int compute_sum(void)
{
 return n * (n + 1) / 2;
}

In this example, the global variable n is referenced twice in the return statement of compute_sum().
The value of n can change between the two distinct read operations. compute_sum() can return an
incorrect value.

Correction — Pass Variable as Function Argument

One possible correction is to pass the variable as a function argument n. The variable is copied to
memory and the read operations on the copy guarantee that compute_sum() returns a correct
result. If you pass a variable of type int instead of type atomic_int, the correction is still valid.

 Atomic variable accessed twice in an expression

16-9

https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/cpp/atomic/atomic

#include <stdatomic.h>

int compute_sum(atomic_int n)
{
 return n * (n + 1) / 2;
}

Result Information
Group: Concurrency
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: ATOMIC_VAR_ACCESS_TWICE
Impact: Medium

See Also
Atomic load and store sequence not atomic | Data race | Data race including
atomic operations | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018b

16 Concurrency Defects

16-10

Automatic or thread local variable escaping from a
thread
Variable is passed from one thread to another without ensuring that variable stays alive through
duration of latter thread

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when an automatic or thread local variable is passed by address from one thread
to another thread without ensuring that the variable stays alive through the duration of the latter
thread.

The defect checker applies to both C11 and POSIX threads.

Risk

An automatic or thread local variable is allocated on the stack at the beginning of a thread and its
lifetime extends till the end of the thread. The variable is not guaranteed to be alive when a different
thread accesses it.

For instance, consider the start function of a C11 thread with these lines:

int start_thread(thrd_t *tid) {
 int aVar = 0;
 if(thrd_success != thrd_create(tid, start_thread_child, &aVar) {
 ...
 }
}

The thrd_create function creates a child thread with start function start_thread_child and
passes the address of the automatic variable aVar to this function. When this child thread accesses
aVar, the parent thread might have completed execution and aVar is no longer on the stack. The
access might result in reading unpredictable values.

Fix

When you pass a variable from one thread to another, make sure that the variable lifetime matches or
exceeds the lifetime of both threads. You can achieve this synchronization in one of these ways:

• Declare the variable static so that it does not go out of stack when the current thread completes
execution.

• Dynamically allocate the storage for the variable so that it is allocated on the heap instead of the
stack and must be explicitly deallocated. Make sure that the deallocation happens after both
threads complete execution.

These solutions require you to create a variable in nonlocal memory. Instead, you can use other
solutions such as the shared keyword with OpenMP's threading interface that allows you to safely
share local variables across threads.

 Automatic or thread local variable escaping from a thread

16-11

Examples
Automatic or Thread-Local Variable Escaping Thread

#include <threads.h>
#include <stdio.h>

int create_child_thread(void *childVal) {
 int *res = (int *)childVal;
 printf("Result: %d\n", *res);
 return 0;
}

void create_parent_thread(thrd_t *tid, int *parentPtr) {
 if (thrd_success != thrd_create(tid, create_child_thread, parentPtr)) {
 /* Handle error */
 }
}

int main(void) {
 thrd_t tid;
 int parentVal = 1;

 create_parent_thread(&tid, &parentVal);

 if (thrd_success != thrd_join(tid, NULL)) {
 /* Handle error */
 }
 return 0;
}

In this example, the value parentVal is local to the parent thread that starts in main and continues
into the function create_parent_thread. However, in the body of create_parent_thread, the
address of this local variable is passed to a child thread (the thread with start routine
create_child_thread). The parent thread might have completed execution and the variable
parentVal might have gone out of scope when the child thread accesses this variable.

The same issue appears if the variable is declared as thread-local, for instance with the C11 keyword
_Thread_local (or thread_local):

_Thread_local int parentVal = 1;

Correction – Use Static Variables

One possible correction is to declare the variable parentVal as static so that the variable is on the
stack for the entire duration of the program.

#include <threads.h>
#include <stdio.h>

int create_child_thread(void *childVal) {
 int *res = (int *)childVal;
 printf("Result: %d\n", *res);
 return 0;

16 Concurrency Defects

16-12

}

void create_parent_thread(thrd_t *tid, int *parentPtr) {
 if (thrd_success != thrd_create(tid, create_child_thread, parentPtr)) {
 /* Handle error */
 }
}

int main(void) {
 thrd_t tid;
 static int parentVal = 1;

 create_parent_thread(&tid, &parentVal);

 if (thrd_success != thrd_join(tid, NULL)) {
 /* Handle error */
 }
 return 0;
}

Correction – Use Dynamic Memory Allocation

Another possible correction is to dynamically allocate storage for variables to be shared across
threads and explicitly free the storage after the threads complete execution.

#include <threads.h>
#include <stdio.h>

int create_child_thread(void *childVal) {
 int *res = (int *)childVal;
 printf("Result: %d\n", *res);
 return 0;
}

void create_parent_thread(thrd_t *tid, int *parentPtr) {
 if (thrd_success != thrd_create(tid, create_child_thread, parentPtr)) {
 /* Handle error */
 }
}

int main(void) {
 thrd_t tid;
 int parentPtr = (int*) malloc(sizeof(int));

 if(parentPtr) {
 create_parent_thread(&tid, parentPtr);

 if (thrd_success != thrd_join(tid, NULL)) {
 /* Handle error */
 }
 free(parentPtr);
 }
 return 0;
}

 Automatic or thread local variable escaping from a thread

16-13

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: LOCAL_ADDR_ESCAPE_THREAD
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020a

16 Concurrency Defects

16-14

Blocking operation while holding lock
Task performs lengthy operation while holding a lock

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when a task (thread) performs a potentially lengthy operation while holding a lock.

The checker considers calls to these functions as potentially lengthy:

• Functions that access a network such as recv
• System call functions such as fork, pipe and system
• Functions for I/O operations such as getchar and scanf
• File handling functions such as fopen, remove and lstat
• Directory manipulation functions such as mkdir and rmdir

The checker automatically detects certain primitives that hold and release a lock, for instance,
pthread_mutex_lock and pthread_mutex_unlock. For the full list of primitives that are
automatically detected, see “Auto-Detection of Thread Creation and Critical Section in Polyspace”.

Risk

If a thread performs a lengthy operation when holding a lock, other threads that use the lock have to
wait for the lock to be available. As a result, system performance can slow down or deadlocks can
occur.

Fix

Perform the blocking operation before holding the lock or after releasing the lock.

Some functions detected by this checker can be called in a way that does not make them potentially
lengthy. For instance, the function recv can be called with the parameter O_NONBLOCK which causes
the call to fail if no message is available. When called with this parameter, recv does not wait for a
message to become available.

Examples
Network I/O Operations with recv While Holding Lock

#include <pthread.h>
#include <sys/socket.h>

pthread_mutexattr_t attr;
pthread_mutex_t mutex;

void thread_foo(void *ptr) {
 unsigned int num;
 int result;

 Blocking operation while holding lock

16-15

 int sock;

 /* sock is a connected TCP socket */

 if ((result = pthread_mutex_lock(&mutex)) != 0) {
 /* Handle Error */
 }

 if ((result = recv(sock, (void *)&num, sizeof(unsigned int), 0)) < 0) {
 /* Handle Error */
 }

 /* ... */

 if ((result = pthread_mutex_unlock(&mutex)) != 0) {
 /* Handle Error */
 }
}

int main() {
 pthread_t thread;
 int result;

 if ((result = pthread_mutexattr_settype(
 &attr, PTHREAD_MUTEX_ERRORCHECK)) != 0) {
 /* Handle Error */
 }

 if ((result = pthread_mutex_init(&mutex, &attr)) != 0) {
 /* Handle Error */
 }

 if (pthread_create(&thread, NULL,(void*(*)(void*))& thread_foo, NULL) != 0) {
 /* Handle Error */
 }

 /* ... */

 pthread_join(thread, NULL);

 if ((result = pthread_mutex_destroy(&mutex)) != 0) {
 /* Handle Error */
 }

 return 0;
}

In this example, in each thread created with pthread_create, the function thread_foo performs a
network I/O operation with recv after acquiring a lock with pthread_mutex_lock. Other threads
using the same lock variable mutex have to wait for the operation to complete and the lock to
become available.

Correction — Perform Blocking Operation Before Acquiring Lock

One possible correction is to call recv before acquiring the lock.

#include <pthread.h>
#include <sys/socket.h>

16 Concurrency Defects

16-16

pthread_mutexattr_t attr;
pthread_mutex_t mutex;

void thread_foo(void *ptr) {
 unsigned int num;
 int result;
 int sock;

 /* sock is a connected TCP socket */
 if ((result = recv(sock, (void *)&num, sizeof(unsigned int), 0)) < 0) {
 /* Handle Error */
 }

 if ((result = pthread_mutex_lock(&mutex)) != 0) {
 /* Handle Error */
 }

 /* ... */

 if ((result = pthread_mutex_unlock(&mutex)) != 0) {
 /* Handle Error */
 }
}

int main() {
 pthread_t thread;
 int result;

 if ((result = pthread_mutexattr_settype(
 &attr, PTHREAD_MUTEX_ERRORCHECK)) != 0) {
 /* Handle Error */
 }

 if ((result = pthread_mutex_init(&mutex, &attr)) != 0) {
 /* Handle Error */
 }

 if (pthread_create(&thread, NULL,(void*(*)(void*))& thread_foo, NULL) != 0) {
 /* Handle Error */
 }

 /* ... */

 pthread_join(thread, NULL);

 if ((result = pthread_mutex_destroy(&mutex)) != 0) {
 /* Handle Error */
 }

 return 0;
}

Result Information
Group: Concurrency
Language: C | C++

 Blocking operation while holding lock

16-17

Default: Off
Command-Line Syntax: BLOCKING_WHILE_LOCKED
Impact: Low
CWE ID: 667

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018b

16 Concurrency Defects

16-18

https://cwe.mitre.org/data/definitions/667.html

Multiple threads waiting on same condition
variable
Using cnd_signal to wake up one of the threads might result in indefinite blocking

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when you use cnd_signal family functions to wake up one of at least two threads
that are concurrently waiting on the same condition variable. For threads with the same priority
level, cnd_signal family functions cause the thread scheduler to arbitrarily wake up on of the
threads waiting on the condition variable that you signal with the cnd_signal family function.

The checkers flags the cnd_signal family function call. See the Event column in the Results
Details pane to view the threads waiting on the same condition variable.

Risk

The thread that is woken up with a cnd_signal family function usually tests for a condition
predicate. While the condition predicate is false, the thread waits again on the condition variable
until it is woken up by another thread that signals the condition variable. It is possible that the
program ends up in a state where no thread is available to signal the condition variable, which results
in indefinite blocking.

Fix

Use cnd_broadcast family functions instead to wake all threads waiting on the condition variable,
or use a different condition variable for each thread.

Examples
Use of cnd_signal to Wake Up One of Many Threads Waiting on Condition Variable

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <threads.h>

typedef int thrd_return_t;

static void fatal_error(void)
{
 exit(1);
}

enum { NTHREADS = 5 };

mtx_t mutex;
cnd_t cond;

 Multiple threads waiting on same condition variable

16-19

thrd_return_t next_step(void* t)
{
 static size_t current_step = 0;
 size_t my_step = *(size_t*)t;

 if (thrd_success != mtx_lock(&mutex)) {
 /* Handle error */
 fatal_error();
 }

 printf("Thread %zu has the lock\n", my_step);
 while (current_step != my_step) {
 printf("Thread %zu is sleeping...\n", my_step);
 if (thrd_success !=
 cnd_wait(&cond, &mutex)) {
 /* Handle error */
 fatal_error();
 }
 printf("Thread %zu woke up\n", my_step);
 }
 /* Do processing ... */
 printf("Thread %zu is processing...\n", my_step);
 current_step++;

 /* Signal a waiting task */
 if (thrd_success !=
 cnd_signal(&cond)) {
 /* Handle error */
 fatal_error();
 }

 printf("Thread %zu is exiting...\n", my_step);

 if (thrd_success != mtx_unlock(&mutex)) {
 /* Handle error */
 fatal_error();
 }
 return (thrd_return_t)0;
}

int main(void)
{
 thrd_t threads[NTHREADS];
 size_t step[NTHREADS];

 if (thrd_success != mtx_init(&mutex, mtx_plain)) {
 /* Handle error */
 fatal_error();
 }
 if (thrd_success != cnd_init(&cond)) {
 /* Handle error */
 fatal_error();
 }
 /* Create threads */
 for (size_t i = 0; i < NTHREADS; ++i) {
 step[i] = i;
 if (thrd_success != thrd_create(&threads[i],
 next_step,

16 Concurrency Defects

16-20

 &step[i])) {
 /* Handle error */
 fatal_error();
 }
 }
 /* Wait for all threads to complete */
 for (size_t i = NTHREADS; i != 0; --i) {
 if (thrd_success != thrd_join(threads[i - 1], NULL)) {
 /* Handle error */
 fatal_error();
 }
 }
 (void)mtx_destroy(&mutex);
 (void)cnd_destroy(&cond);
 return 0;
}

In this example, multiple threads are created and assigned step level. Each thread checks if its
assigned step level matches the current step level (condition predicate). If the predicate is false, the
thread goes back to waiting on the condition variable cond. The use of cnd_signal to signal the
cond causes the thread scheduler to arbitrarily wake up one of the threads waiting on cond. This can
result in indefinite blocking when the condition predicate of woken up thread is false and no other
thread is available to signal cond.
Correction — Use cnd_broadcast to Wake up All the Threads

One possible correction is to use cnd_broadcast instead to signal cond. The function cnd_signal
wakes up all the thread that are waiting on cond.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <threads.h>

typedef int thrd_return_t;

static void fatal_error(void)
{
 exit(1);
}

enum { NTHREADS = 5 };

mtx_t mutex;
cnd_t cond;

thrd_return_t next_step(void* t)
{
 static size_t current_step = 0;
 size_t my_step = *(size_t*)t;

 if (thrd_success != mtx_lock(&mutex)) {
 /* Handle error */
 fatal_error();
 }

 printf("Thread %zu has the lock\n", my_step);
 while (current_step != my_step) {

 Multiple threads waiting on same condition variable

16-21

 printf("Thread %zu is sleeping...\n", my_step);
 if (thrd_success !=
 cnd_wait(&cond, &mutex)) {
 /* Handle error */
 fatal_error();
 }
 printf("Thread %zu woke up\n", my_step);
 }
 /* Do processing ... */
 printf("Thread %zu is processing...\n", my_step);
 current_step++;

 /* Signal a waiting task */
 if (thrd_success !=
 cnd_broadcast(&cond)) {
 /* Handle error */
 fatal_error();
 }

 printf("Thread %zu is exiting...\n", my_step);

 if (thrd_success != mtx_unlock(&mutex)) {
 /* Handle error */
 fatal_error();
 }
 return (thrd_return_t)0;
}

int main_test_next_step(void)
{
 thrd_t threads[NTHREADS];
 size_t step[NTHREADS];

 if (thrd_success != mtx_init(&mutex, mtx_plain)) {
 /* Handle error */
 fatal_error();
 }
 if (thrd_success != cnd_init(&cond)) {
 /* Handle error */
 fatal_error();
 }
 /* Create threads */
 for (size_t i = 0; i < NTHREADS; ++i) {
 step[i] = i;
 if (thrd_success != thrd_create(&threads[i],
 next_step,
 &step[i])) {
 /* Handle error */
 fatal_error();
 }
 }
 /* Wait for all threads to complete */
 for (size_t i = NTHREADS; i != 0; --i) {
 if (thrd_success != thrd_join(threads[i - 1], NULL)) {
 /* Handle error */
 fatal_error();
 }
 }

16 Concurrency Defects

16-22

 (void)mtx_destroy(&mutex);
 (void)cnd_destroy(&cond);
 return 0;
}

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: SIGNALED_COND_VAR_NOT_UNIQUE
Impact: Low

See Also
Find defects (-checkers) | Function that can spuriously fail not wrapped in
loop | Function that can spuriously wake up not wrapped in loop | Data race |
Missing unlock | Missing lock | Deadlock | Multiple mutexes with one conditional
variable

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

External Websites
CON38-C

Introduced in R2020a

 Multiple threads waiting on same condition variable

16-23

https://wiki.sei.cmu.edu/confluence/x/l9UxBQ

Data race
Multiple tasks perform unprotected nonatomic operations on shared variable

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when:

1 Multiple tasks perform unprotected operations on a shared variable.
2 At least one task performs a write operation.
3 At least one operation is nonatomic. For data race on both atomic and nonatomic operations, see

Data race including atomic operations.

See “Define Atomic Operations in Multitasking Code”.

To find this defect, you must specify the multitasking options before analysis. To specify these options,
on the Configuration pane, select Multitasking. For more information, see “Configuring Polyspace
Multitasking Analysis Manually”.

Risk

Data race can result in unpredictable values of the shared variable because you do not control the
order of the operations in different tasks.

Data races between two write operations are more serious than data races between a write and read
operation. Two write operations can interfere with each other and result in indeterminate values. To
identify write-write conflicts, use the filters on the Detail column of the Results List pane. For these
conflicts, the Detail column shows the additional line:

 Variable value may be altered by write-write concurrent access.

See also “Filter and Group Results in Polyspace Desktop User Interface” or “Filter and Sort Results in
Polyspace Access Web Interface”.

Fix

To fix this defect, protect the operations on the shared variable using critical sections, temporal
exclusion or another means. See “Protections for Shared Variables in Multitasking Code”.

To identify existing protections that you can reuse, see the table and graphs associated with the
result. The table shows each pair of conflicting calls. The Access Protections column shows existing

protections on the calls. To see the function call sequence leading to the conflicts, click the icon.
For an example, see below.

16 Concurrency Defects

16-24

Examples
Unprotected Operation on Global Variable from Multiple Tasks

int var;
void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 var++;
}

void task1(void) {
 increment();
}

void task2(void) {
 increment();
}

void task3(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

In this example, to emulate multitasking behavior, specify the following options:

Option Specification
Configure multitasking
manually
Tasks (-entry-points) task1

task2

task3
Critical section details
(-critical-section-begin
-critical-section-end)

Starting routine Ending routine
begin_critical_section end_critical_section

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2,task3
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

In this example, the tasks task1, task2, and task3 call the function increment. increment
contains the operation var++ that can involve multiple machine instructions including:

• Reading var.

 Data race

16-25

• Writing an increased value to var.

These machine instructions, when executed from task1 and task2, can occur concurrently in an
unpredictable sequence. For example, reading var from task1 can occur either before or after
writing to var from task2. Therefore the value of var can be unpredictable.

Though task3 calls increment inside a critical section, other tasks do not use the same critical
section. The operations in the critical section of task3 are not mutually exclusive with operations in
other tasks.

Therefore, the three tasks are operating on a shared variable without common protection. In your
result details, you see each pair of conflicting function calls.

If you click the icon, you see the function call sequence starting from the entry point to the read
or write operation. You also see that the operation starting from task3 is in a critical section. The
Access Protections entry shows the lock and unlock function that begin and end the critical section.
In this example, you see the functions begin_critical_section and end_critical_section.

Correction — Place Operation in Critical Section

One possible correction is to place the operation in critical section. You can implement the critical
section in multiple ways. For instance:

• You can place var++ in a critical section. When task1 enters its critical section, the other tasks
cannot enter their critical sections until task1 leaves its critical section. The operation var++
from the three tasks cannot interfere with each other.

16 Concurrency Defects

16-26

To implement the critical section, in the function increment, place the operation var++ between
calls to begin_critical_section and end_critical_section.

int var;

void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 begin_critical_section();
 var++;
 end_critical_section();
}

void task1(void) {
 increment();
}

void task2(void) {
 increment();
}

void task3(void) {
 increment();
}

• You can place the call to increment in the same critical section in the three tasks. When task1
enters its critical section, the other tasks cannot enter their critical sections until task1 leaves its
critical section. The calls to increment from the three tasks cannot interfere with each other.

To implement the critical section, in each of the three tasks, call increment between calls to
begin_critical_section and end_critical_section.

int var;

void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 var++;
}

void task1(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

void task2(void) {
 begin_critical_section();
 increment();
 end_critical_section();

 Data race

16-27

}

void task3(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

Correction — Make Tasks Temporally Exclusive

Another possible correction is to make the tasks, task1, task2 and task3, temporally exclusive.
Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

Option Value
Temporally exclusive
tasks (-temporal-
exclusions-file)

task1 task2 task3

On the command-line, you can use the following:

 polyspace-bug-finder
 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

task1 task2 task3

Unprotected Operation in Threads Created with pthread_create

#include <pthread.h>

pthread_mutex_t count_mutex;
long long count;

void* increment_count(void* args)
{
 count = count + 1;
 return NULL;
}

void* set_count(void *args)
{
 long long c;
 c = count;
 return NULL;
}

int main(void)
{
 pthread_t thread_increment;
 pthread_t thread_get;

 pthread_create(&thread_increment, NULL, increment_count, NULL);
 pthread_create(&thread_get, NULL, set_count, NULL);

16 Concurrency Defects

16-28

 pthread_join(thread_get, NULL);
 pthread_join(thread_increment, NULL);

 return 1;
}

In this example, Bug Finder detects the creation of separate threads with pthread_create. The
Data race defect is raised because the operation count = count + 1 in the thread with id
thread_increment conflicts with the operation c = count in the thread with id thread_get. The
variable count is accessed in multiple threads without a common protection.

The two conflicting operations are nonatomic. The operation c = count is nonatomic on 32-bit
targets. See “Define Atomic Operations in Multitasking Code”.

Correction — Protect Operations with pthread_mutex_lock and pthread_mutex_unlock Pair

To prevent concurrent access on the variable count, protect operations on count with a critical
section. Use the functions pthread_mutex_lock and pthread_mutex_unlock to implement the
critical section.

#include <pthread.h>

pthread_mutex_t count_mutex;
long long count;

void* increment_count(void* args)
{
 pthread_mutex_lock(&count_mutex);
 count = count + 1;
 pthread_mutex_unlock(&count_mutex);
 return NULL;
}

void* set_count(void *args)
{
 long long c;
 pthread_mutex_lock(&count_mutex);
 c = count;
 pthread_mutex_unlock(&count_mutex);
 return NULL;
}

int main(void)
{
 pthread_t thread_increment;
 pthread_t thread_get;

 pthread_create(&thread_increment, NULL, increment_count, NULL);
 pthread_create(&thread_get, NULL, set_count, NULL);

 pthread_join(thread_get, NULL);
 pthread_join(thread_increment, NULL);

 return 1;
}

 Data race

16-29

Result Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: DATA_RACE
Impact: High
CWE ID: 366, 413

See Also
Disabling all interrupts (-routine-disable-interrupts -routine-enable-
interrupts) | Temporally exclusive tasks (-temporal-exclusions-file) | Critical
section details (-critical-section-begin -critical-section-end) | Tasks (-
entry-points) | Configure multitasking manually | Target processor type (-
target) | Find defects (-checkers) | Data race including atomic operations | Data
race through standard library function call | Deadlock | Destruction of locked
mutex | Double lock | Double unlock | Missing lock | Missing unlock

Topics
“Analyze Multitasking Programs in Polyspace”
“Protections for Shared Variables in Multitasking Code”
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Define Atomic Operations in Multitasking Code”
“Extend Concurrency Defect Checkers to Unsupported Multithreading Environments”

Introduced in R2014b

16 Concurrency Defects

16-30

https://cwe.mitre.org/data/definitions/366.html
https://cwe.mitre.org/data/definitions/413.html

Data race on adjacent bit fields
Multiple threads perform unprotected operations on adjacent bit fields of a shared data structure

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when:

1 Multiple tasks perform unprotected operations on bit fields that are part of the same structure.

For instance, a task operates on field errorFlag1 and another task on field errorFlag2 in a
variable of this type:

struct errorFlags {
 unsigned int errorFlag1 : 1;
 unsigned int errorFlag2 : 1;
 ...
}

Suppose that the operations are not atomic with respect to each other. In other words, you have
not implemented protection mechanisms to ensure that one operation is completed before
another operation begins.

2 At least one of the unprotected operations is a write operation.

To find this defect, before analysis, you must specify the multitasking options. To specify these
options, on the Configuration pane, select Multitasking. For more information, see “Configuring
Polyspace Multitasking Analysis Manually”.

Risk

Adjacent bit fields that are part of the same structure might be stored in one byte in the same
memory location. Read or write operations on all variables including bit fields occur one byte or word
at a time. To modify only specific bits in a byte, steps similar to these steps occur in sequence:

1 The byte is loaded into RAM.
2 A mask is created so that only specific bits are modified to the intended value and the remaining

bits remain unchanged.
3 A bitwise OR operation is performed between the copy of the byte in RAM and the mask.
4 The byte with specific bits modified is copied back from RAM.

When you access two different bit fields, these four steps have to be performed for each bit field. If
the accesses are not protected, all four steps for one bit field might not be completed before the four
steps for the other bit field begin. As a result, the modification of one bit field might undo the
modification of an adjacent bit field. For instance, in the preceding example, the modification of
errorFlag1 and errorFlag2 can occur in the following sequence. Steps 1,2 and 5 relate to
modification of errorFlag1 and while steps 3,4 and 6 relate to that of errorFlag2.

1 The byte with both errorFlag1 and errorFlag2 unmodified is copied into RAM, for purposes
of modifying errorFlag1.

 Data race on adjacent bit fields

16-31

2 A mask that modifies only errorFlag1 is bitwise OR-ed with this copy.
3 The byte containing both errorFlag1 and errorFlag2 unmodified is copied into RAM a second

time, for purposes of modifying errorFlag2.
4 A mask that modifies only errorFlag2 is bitwise OR-ed with this second copy.
5 The version with errorFlag1 modified is copied back. This version has errorFlag2

unmodified.
6 The version with errorFlag2 modified is copied back. This version has errorFlag1 unmodified

and overwrites the previous modification.

Fix

To fix this defect, protect the operations on bit fields that are part of the same structure by using
critical sections, temporal exclusion, or another means. See “Protections for Shared Variables in
Multitasking Code”.

To identify existing protections that you can reuse, see the table and graphs associated with the
result. The table shows each pair of conflicting calls. The Access Protections column shows existing

protections on the calls. To see the function call sequence leading to the conflicts, click the icon.

Examples
Unprotected Operation on Global Variable from Multiple Tasks

typedef struct
{
 unsigned int IOFlag :1;
 unsigned int InterruptFlag :1;
 unsigned int Register1Flag :1;
 unsigned int SignFlag :1;
 unsigned int SetupFlag :1;
 unsigned int Register2Flag :1;
 unsigned int ProcessorFlag :1;
 unsigned int GeneralFlag :1;
} InterruptConfigbits_t;

InterruptConfigbits_t InterruptConfigbitsProc12;

void task1 (void) {
 InterruptConfigbitsProc12.IOFlag = 0;
}

void task2 (void) {
 InterruptConfigbitsProc12.SetupFlag = 0;
}

In this example, task1 and task2 access different bit fields IOFlag and SetupFlag, which belong
to the same structured variable InterruptConfigbitsProc12.

To emulate multitasking behavior, specify the options listed in this table.

16 Concurrency Defects

16-32

Option Specification
Configure multitasking
manually on page 2-115
Tasks on page 2-119 task1

task2

At the command-line, use:

 polyspace-bug-finder
 -entry-points task1,task2

Correction – Use Critical Sections

One possible correction is to wrap the bit field access in a critical section. A critical section lies
between a call to a lock function and an unlock function. In this correction, the critical section lies
between the calls to functions begin_critical_section and end_critical_section.

typedef struct
{
 unsigned int IOFlag :1;
 unsigned int InterruptFlag :1;
 unsigned int Register1Flag :1;
 unsigned int SignFlag :1;
 unsigned int SetupFlag :1;
 unsigned int Register2Flag :1;
 unsigned int ProcessorFlag :1;
 unsigned int GeneralFlag :1;
} InterruptConfigbits_t;

InterruptConfigbits_t InterruptConfigbitsProc12;

void begin_critical_section(void);
void end_critical_section(void);

void task1 (void) {
 begin_critical_section();
 InterruptConfigbitsProc12.IOFlag = 0;
 end_critical_section();
}

void task2 (void) {
 begin_critical_section();
 InterruptConfigbitsProc12.SetupFlag = 0;
 end_critical_section();
}

In this example, to emulate multitasking behavior, specify options listed in this table.

Option Specification
Configure multitasking
manually on page 2-115

 Data race on adjacent bit fields

16-33

Option Specification
Tasks on page 2-119 task1

task2
Critical section details on
page 2-130

Starting routine Ending routine
begin_critical_section end_critical_section

At the command-line, use:

 polyspace-bug-finder
 -entry-points task1,task2
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

Correction – Avoid Bit Fields

If you do not have memory constraints, use the char data type instead of bit fields. The char
variables in a structure occupy at least one byte and do not have the thread-safety issues that come
from bit manipulations in a byte-sized operation. Data races do not result from unprotected
operations on different char variables that are part of the same structure.

typedef struct
{
 unsigned char IOFlag;
 unsigned char InterruptFlag;
 unsigned char Register1Flag;
 unsigned char SignFlag;
 unsigned char SetupFlag;
 unsigned char Register2Flag;
 unsigned char ProcessorFlag;
 unsigned char GeneralFlag;
} InterruptConfigbits_t;

InterruptConfigbits_t InterruptConfigbitsProc12;

void task1 (void) {
 InterruptConfigbitsProc12.IOFlag = 0;
}

void task2 (void) {
 InterruptConfigbitsProc12.SetupFlag = 0;
}

Though the checker does not flag this correction, do not use this correction for C99 or earlier. Only
from C11 and later does the C Standard mandate that distinct char variables cannot be accessed
using the same word.
Correction – Insert Bit Field of Size 0

You can enter a non-bit field member or an unnamed bit field member of size 0 between two adjacent
bit fields that might be accessed concurrently. A non-bit field member or size 0 bit field member
ensures that the subsequent bit field starts from a new memory location. In this corrected example,
the size 0 bit field member ensures that IOFlag and SetupFlag are stored in distinct memory
locations.

typedef struct
{

16 Concurrency Defects

16-34

 unsigned int IOFlag :1;
 unsigned int InterruptFlag :1;
 unsigned int Register1Flag :1;
 unsigned int SignFlag :1;
 unsigned int : 0;
 unsigned int SetupFlag :1;
 unsigned int Register2Flag :1;
 unsigned int ProcessorFlag :1;
 unsigned int GeneralFlag :1;
} InterruptConfigbits_t;

InterruptConfigbits_t InterruptConfigbitsProc12;

void task1 (void) {
 InterruptConfigbitsProc12.IOFlag = 0;
}

void task2 (void) {
 InterruptConfigbitsProc12.SetupFlag = 0;
}

Result Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: DATA_RACE_BIT_FIELDS
Impact: High

See Also
Data race | Disabling all interrupts (-routine-disable-interrupts -routine-
enable-interrupts) | Temporally exclusive tasks (-temporal-exclusions-file) |
Critical section details (-critical-section-begin -critical-section-end) |
Tasks (-entry-points) | Configure multitasking manually | Target processor type
(-target) | Find defects (-checkers) | Data race including atomic operations |
Data race through standard library function call

Topics
“Analyze Multitasking Programs in Polyspace”
“Protections for Shared Variables in Multitasking Code”
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Define Atomic Operations in Multitasking Code”
“Extend Concurrency Defect Checkers to Unsupported Multithreading Environments”

Introduced in R2020b

 Data race on adjacent bit fields

16-35

Data race including atomic operations
Multiple tasks perform unprotected operations on shared variable

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when:

1 Multiple tasks perform unprotected operations on a shared variable.
2 At least one task performs a write operation.

If you check for this defect, you can see data races on both atomic and non-atomic operations. To see
data races on non-atomic operations alone, select Data race. Bug Finder considers an operation as
atomic if it can be performed in one machine instruction. For instance:

• The operation:

int var = 0;

can be performed in one machine instruction on targets where the size of int is less than the
word size on the target (or pointer size).

• The operation:

MYREG = (u32dma0_chbit << 8UL) | u32dma0_chbit;

takes more than one cycle to be performed and is therefore non-atomic.

See “Define Atomic Operations in Multitasking Code”. If you do not want to use this definition of
atomic operations, turn on this checker.

To find this defect, you must specify the multitasking options before analysis. See “Multitasking”. If
your code does not use critical sections at all, to avoid flagging too many operations, this checker is
disabled. To flag data races involving only atomic operations, use the option -force-data-races.

Risk

Data race can result in unpredictable values of the shared variable because you do not control the
order of the operations in different tasks.

Fix

To fix this defect, protect the operations on the shared variable using critical sections, temporal
exclusion or another means. See “Protections for Shared Variables in Multitasking Code”.

To identify existing protections that you can reuse, see the table and graphs associated with the
result. The table shows each pair of conflicting calls. The Access Protections column shows existing

protections on the calls. To see the function call sequence leading to the conflicts, click the icon.
For an example, see below.

16 Concurrency Defects

16-36

Examples
Unprotected Atomic Operation on Global Variable from Multiple Tasks

#include<stdio.h>

int var;

void begin_critical_section(void);
void end_critical_section(void);

void task1(void) {
 var = 1;
}

void task2(void) {
 int local_var;
 local_var = var;
 printf("%d", local_var);
}

void task3(void) {
 begin_critical_section();
 /* Operations in task3 */
 end_critical_section();
}

In this example, to emulate multitasking behavior, specify the following options:

Option Specification
Configure multitasking
manually
Tasks (-entry-points) task1

task2

task3
Critical section details
(-critical-section-begin
-critical-section-end)

Starting routine Ending routine
begin_critical_section end_critical_section

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2,task3
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

In this example, the write operation var=1; in task task1 executes concurrently with the read
operation local_var=var; in task task2.

task3 uses a critical section that can be reused for the other tasks.

 Data race including atomic operations

16-37

Correction — Place Operations in Critical Section

One possible correction is to place these operations in the same critical section:

• var=1; in task1
• local_var=var; in task2

When task1 enters its critical section, the other tasks cannot enter their critical sections until task1
leaves its critical section. Therefore, the two operations cannot execute concurrently.

To implement the critical section, reuse the already existing critical section in task3. Place the two
operations between calls to begin_critical_section and end_critical_section.

#include<stdio.h>

int var;

void begin_critical_section();
void end_critical_section();

void task1(void) {
 begin_critical_section();
 var = 1;
 end_critical_section();
}

void task2(void) {
 int local_var;
 begin_critical_section();
 local_var = var;
 end_critical_section();
 printf("%d", local_var);
}

void task3(void) {
 begin_critical_section();
 /* Operations in task3 */
 end_critical_section();
}

Correction — Make Tasks Temporally Exclusive

Another possible correction is to make the tasks task1 and task2 temporally exclusive. Temporally
exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

Option Value
Temporally exclusive
tasks (-temporal-
exclusions-file)

task1 task2

On the command-line, use the following:

16 Concurrency Defects

16-38

 polyspace-bug-finder
 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

task1 task2

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: DATA_RACE_ALL
Impact: Medium
CWE ID: 366, 413

See Also
Disabling all interrupts (-routine-disable-interrupts -routine-enable-
interrupts) | Temporally exclusive tasks (-temporal-exclusions-file) | Critical
section details (-critical-section-begin -critical-section-end) | Tasks (-
entry-points) | Configure multitasking manually | Find defects (-checkers) | Data
race | Data race through standard library function call | Deadlock | Destruction
of locked mutex | Double lock | Double unlock | Missing lock | Missing unlock

Topics
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Define Atomic Operations in Multitasking Code”

Introduced in R2014b

 Data race including atomic operations

16-39

https://cwe.mitre.org/data/definitions/366.html
https://cwe.mitre.org/data/definitions/413.html

Data race through standard library function call
Multiple tasks make unprotected calls to thread-unsafe standard library function

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when:

1 Multiple tasks call the same standard library function.

For instance, multiple tasks call the strerror function.
2 The calls are not protected using a common protection.

For instance, the calls are not protected by the same critical section.

Functions flagged by this defect are not guaranteed to be reentrant. A function is reentrant if it can
be interrupted and safely called again before its previous invocation completes execution. If a
function is not reentrant, multiple tasks calling the function without protection can cause
concurrency issues. For the list of functions that are flagged, see CON33-C: Avoid race conditions
when using library functions.

To find this defect, you must specify the multitasking options before analysis. To specify these options,
on the Configuration pane, select Multitasking. For more information, see “Configuring Polyspace
Multitasking Analysis Manually”.

Risk

The functions flagged by this defect are nonreentrant because their implementations can use global
or static variables. When multiple tasks call the function without protection, the function call from
one task can interfere with the call from another task. The two invocations of the function can
concurrently access the global or static variables and cause unpredictable results.

The calls can also cause more serious security vulnerabilities, such as abnormal termination, denial-
of-service attack, and data integrity violations.

Fix

To fix this defect, do one of the following:

• Use a reentrant version of the standard library function if it exists.

For instance, instead of strerror(), use strerror_r() or strerror_s(). For alternatives to
functions flagged by this defect, see the documentation for CON33-C.

• Protect the function calls using common critical sections or temporal exclusion.

See Critical section details (-critical-section-begin -critical-section-
end) and Temporally exclusive tasks (-temporal-exclusions-file).

To identify existing protections that you can reuse, see the table and graphs associated with the
result. The table shows each pair of conflicting calls. The Access Protections column shows

16 Concurrency Defects

16-40

https://wiki.sei.cmu.edu/confluence/display/c/CON33-C.+Avoid+race+conditions+when+using+library+functions
https://wiki.sei.cmu.edu/confluence/display/c/CON33-C.+Avoid+race+conditions+when+using+library+functions
https://wiki.sei.cmu.edu/confluence/display/c/CON33-C.+Avoid+race+conditions+when+using+library+functions

existing protections on the calls. To see the function call sequence leading to the conflicts, click

the icon. For an example, see below.

Examples
Unprotected Call to Standard Library Function from Multiple Tasks

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin_critical_section(void);
void end_critical_section(void);

FILE *getFilePointer(void);

void func(FILE *fp) {
 fpos_t pos;
 errno = 0;
 if (0 != fgetpos(fp, &pos)) {
 char *errmsg = strerror(errno);
 printf("Could not get the file position: %s\n", errmsg);
 }
}

void task1(void) {
 FILE* fptr1 = getFilePointer();
 func(fptr1);
}

void task2(void) {
 FILE* fptr2 = getFilePointer();
 func(fptr2);
}

void task3(void) {
 FILE* fptr3 = getFilePointer();
 begin_critical_section();
 func(fptr3);
 end_critical_section();
}

In this example, to emulate multitasking behavior, specify the following options:

Option Specification
Configure multitasking
manually
Tasks (-entry-points) task1

task2

task3

 Data race through standard library function call

16-41

Option Specification
Critical section details
(-critical-section-begin
-critical-section-end)

Starting routine Ending routine
begin_critical_section end_critical_section

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2,task3
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

In this example, the tasks, task1, task2 and task3, call the function func. func calls the
nonreentrant standard library function, strerror.

Though task3 calls func inside a critical section, other tasks do not use the same critical section.
Operations in the critical section of task3 are not mutually exclusive with operations in other tasks.

These three tasks are calling a nonreentrant standard library function without common protection. In
your result details, you see each pair of conflicting function calls.

If you click the icon, you see the function call sequence starting from the entry point to the
standard library function call. You also see that the call starting from task3 is in a critical section.
The Access Protections entry shows the lock and unlock function that begin and end the critical
section. In this example, you see the functions begin_critical_section and
end_critical_section.

16 Concurrency Defects

16-42

Correction — Use Reentrant Version of Standard Library Function

One possible correction is to use a reentrant version of the standard library function strerror. You
can use the POSIX version strerror_r which has the same functionality but also guarantees thread-
safety.

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin_critical_section(void);
void end_critical_section(void);

FILE *getFilePointer(void);
enum { BUFFERSIZE = 64 };

void func(FILE *fp) {
 fpos_t pos;
 errno = 0;
 if (0 != fgetpos(fp, &pos)) {
 char errmsg[BUFFERSIZE];
 if (strerror_r(errno, errmsg, BUFFERSIZE) != 0) {
 /* Handle error */
 }
 printf("Could not get the file position: %s\n", errmsg);
 }
}

void task1(void) {
 FILE* fptr1 = getFilePointer();
 func(fptr1);
}

void task2(void) {
 FILE* fptr2 = getFilePointer();
 func(fptr2);
}

void task3(void) {
 FILE* fptr3 = getFilePointer();

 Data race through standard library function call

16-43

 begin_critical_section();
 func(fptr3);
 end_critical_section();
}

Correction — Place Function Call in Critical Section

One possible correction is to place the call to strerror in critical section. You can implement the
critical section in multiple ways.

For instance, you can place the call to the intermediate function func in the same critical section in
the three tasks. When task1 enters its critical section, the other tasks cannot enter their critical
sections until task1 leaves its critical section. The calls to func and therefore the calls to strerror
from the three tasks cannot interfere with each other.

To implement the critical section, in each of the three tasks, call func between calls to
begin_critical_section and end_critical_section.

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin_critical_section(void);
void end_critical_section(void);

FILE *getFilePointer(void);

void func(FILE *fp) {
 fpos_t pos;
 errno = 0;
 if (0 != fgetpos(fp, &pos)) {
 char *errmsg = strerror(errno);
 printf("Could not get the file position: %s\n", errmsg);
 }
}

void task1(void) {
 FILE* fptr1 = getFilePointer();
 begin_critical_section();
 func(fptr1);
 end_critical_section();
}

void task2(void) {
 FILE* fptr2 = getFilePointer();
 begin_critical_section();
 func(fptr2);
 end_critical_section();
}

void task3(void) {
 FILE* fptr3 = getFilePointer();
 begin_critical_section();
 func(fptr3);
 end_critical_section();
}

16 Concurrency Defects

16-44

Correction — Make Tasks Temporally Exclusive

Another possible correction is to make the tasks, task1, task2 and task3, temporally exclusive.
Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

Option Value
Temporally exclusive
tasks (-temporal-
exclusions-file)

task1 task2 task3

On the command-line, you can use the following:

 polyspace-bug-finder
 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

task1 task2 task3

Result Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: DATA_RACE_STD_LIB
Impact: High
CWE ID: 366, 413

See Also
Temporally exclusive tasks (-temporal-exclusions-file) | Critical section
details (-critical-section-begin -critical-section-end) | Tasks (-entry-points)
| Configure multitasking manually | Find defects (-checkers) | Data race
including atomic operations | Data race | Destruction of locked mutex | Double
lock | Double unlock | Missing lock | Missing unlock

Topics
“Analyze Multitasking Programs in Polyspace”
“Protections for Shared Variables in Multitasking Code”
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2016b

 Data race through standard library function call

16-45

https://cwe.mitre.org/data/definitions/366.html
https://cwe.mitre.org/data/definitions/413.html

Deadlock
Call sequence to lock functions cause two tasks to block each other

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when multiple tasks are stuck in their critical sections (CS) because:

• Each CS waits for another CS to end.
• The critical sections (CS) form a closed cycle. For example:

• CS #1 waits for CS #2 to end, and CS #2 waits for CS #1 to end.
• CS #1 waits for CS #2 to end, CS #2 waits for CS #3 to end and CS #3 waits for CS #1 to

end.

Polyspace expects critical sections of code to follow a specific format. A critical section lies between a
call to a lock function and a call to an unlock function. When a task my_task calls a lock function
my_lock, other tasks calling my_lock must wait until my_task calls the corresponding unlock
function. Both lock and unlock functions must have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify these options,
on the Configuration pane, select Multitasking.

Risk

Each task waits for a critical section in another task to end and is unable to proceed. The program
can freeze indefinitely.

Fix

The fix depends on the root cause of the defect. You can try to break the cyclic order between the
tasks in one of these ways:

• Write down all critical sections involved in the deadlock in a certain sequence. Whenever you call
the lock functions of the critical sections within a task, respect the order in that sequence. See an
example below.

• If one of the critical sections involved in a deadlock occurs in an interrupt, try to disable all
interrupts during critical sections in all tasks. See Disabling all interrupts (-routine-
disable-interrupts -routine-enable-interrupts).

Reviewing this defect is an opportunity to check if all operations in your critical section are really
meant to be executed as an atomic block. It is a good practice to keep critical sections at a bare
minimum.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

16 Concurrency Defects

16-46

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Deadlock with Two Tasks

void task1(void);
void task2(void);

int var;
void perform_task_cycle(void) {
 var++;
}

void begin_critical_section_1(void);
void end_critical_section_1(void);

void begin_critical_section_2(void);
void end_critical_section_2(void);

void task1() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

void task2() {
 while(1) {
 begin_critical_section_2();
 begin_critical_section_1();
 perform_task_cycle();
 end_critical_section_1();
 end_critical_section_2();
 }
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure
multitasking
manually
Tasks (-entry-
points)

task1

task2

 Deadlock

16-47

Option Specification
Critical section
details (-
critical-section-
begin -critical-
section-end)

Starting routine Ending routine
begin_critical_section_1 end_critical_section_1
begin_critical_section_2 end_critical_section_2

A Deadlock occurs because the instructions can execute in the following sequence:

1 task1 calls begin_critical_section_1.
2 task2 calls begin_critical_section_2.
3 task1 reaches the instruction begin_critical_section_2();. Since task2 has already

called begin_critical_section_2, task1 waits for task2 to call
end_critical_section_2.

4 task2 reaches the instruction begin_critical_section_1();. Since task1 has already
called begin_critical_section_1, task2 waits for task1 to call
end_critical_section_1.

Correction-Follow Same Locking Sequence in Both Tasks

One possible correction is to follow the same sequence of calls to lock and unlock functions in both
task1 and task2.

void task1(void);
void task2(void);
void perform_task_cycle(void);

void begin_critical_section_1(void);
void end_critical_section_1(void);

void begin_critical_section_2(void);
void end_critical_section_2(void);

void task1() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

void task2() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

16 Concurrency Defects

16-48

Deadlock with More Than Two Tasks

int var;
void performTaskCycle() {
 var++;
}

void lock1(void);
void lock2(void);
void lock3(void);

void unlock1(void);
void unlock2(void);
void unlock3(void);

void task1() {
 while(1) {
 lock1();
 lock2();
 performTaskCycle();
 unlock2();
 unlock1();
 }
}

void task2() {
 while(1) {
 lock2();
 lock3();
 performTaskCycle();
 unlock3();
 unlock2();
 }
}

void task3() {
 while(1) {
 lock3();
 lock1();
 performTaskCycle();
 unlock1();
 unlock3();
 }
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure multitasking
manually

 Deadlock

16-49

Option Specification
Entry points task1

task2

task3
Critical section details Starting routine Ending routine

lock1 unlock1
lock2 unlock2
lock3 unlock3

A Deadlock occurs because the instructions can execute in the following sequence:

1 task1 calls lock1.
2 task2 calls lock2.
3 task3 calls lock3.
4 task1 reaches the instruction lock2();. Since task2 has already called lock2, task1 waits

for call to unlock2.
5 task2 reaches the instruction lock3();. Since task3 has already called lock3, task2 waits

for call to unlock3.
6 task3 reaches the instruction lock1();. Since task1 has already called lock1, task3 waits

for call to unlock1.

Correction — Break Cyclic Order

To break the cyclic order between critical sections, note every lock function in your code in a certain
sequence, for example:

1 lock1
2 lock2
3 lock3

If you use more than one lock function in a task, use them in the order in which they appear in the
sequence. For example, you can use lock1 followed by lock2 but not lock2 followed by lock1.

int var;
void performTaskCycle() {
 var++;
}

void lock1(void);
void lock2(void);
void lock3(void);

void unlock1(void);
void unlock2(void);
void unlock3(void);

16 Concurrency Defects

16-50

void task1() {
 while(1) {
 lock1();
 lock2();
 performTaskCycle();
 unlock2();
 unlock1();
 }
}

void task2() {
 while(1) {
 lock2();
 lock3();
 performTaskCycle();
 unlock3();
 unlock2();
 }
}

void task3() {
 while(1) {
 lock1();
 lock3();
 performTaskCycle();
 unlock3();
 unlock1();
 }
}

Result Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: DEADLOCK
Impact: High
CWE ID: 833

See Also
Temporally exclusive tasks (-temporal-exclusions-file) | Critical section
details (-critical-section-begin -critical-section-end) | Tasks (-entry-points)
| Configure multitasking manually | Find defects (-checkers) | Data race
including atomic operations | Data race | Data race through standard library
function call | Destruction of locked mutex | Double lock | Double unlock | Missing
lock | Missing unlock

Topics
“Analyze Multitasking Programs in Polyspace”
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Extend Concurrency Defect Checkers to Unsupported Multithreading Environments”

 Deadlock

16-51

https://cwe.mitre.org/data/definitions/833.html

Introduced in R2014b

16 Concurrency Defects

16-52

Destruction of locked mutex
Task tries to destroy a mutex in the locked state

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when a task destroys a mutex after it is locked (and before it is unlocked). The
locking and destruction can happen in the same task or different tasks.

Risk

A mutex is locked to protect shared variables from concurrent access. If a mutex is destroyed in the
locked state, the protection does not apply.

Fix

To fix this defect, destroy the mutex only after you unlock it. It is a good design practice to:

• Initialize a mutex before creating the threads where you use the mutex.
• Destroy a mutex after joining the threads that you created.

On the Result Details pane, you see two events, the locking and destruction of the mutex, and the
tasks that initiated the events. To navigate to the corresponding line in your source code, click the
event.

Examples
Locking and Destruction in Different Tasks

#include <pthread.h>

pthread_mutex_t lock1;
pthread_mutex_t lock2;
pthread_mutex_t lock3;

void t0 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);
 pthread_mutex_lock (&lock3);
 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
 pthread_mutex_unlock (&lock3);
}

void t1 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);
 pthread_mutex_destroy (&lock3);

 Destruction of locked mutex

16-53

 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

In this example, after task t0 locks the mutex lock3, task t1 can destroy it. The destruction occurs if
the following events happen in sequence:

1 t0 acquires lock3.
2 t0 releases lock2.
3 t0 releases lock1.
4 t1 acquires the lock lock1 released by t0.
5 t1 acquires the lock lock2 released by t0.
6 t1 destroys lock3.

For simplicity, this example uses a mix of automatic and manual concurrency detection. The tasks t0
and t1 are manually specified as entry points by using the option Tasks (-entry-points). The
critical sections are implemented through primitives pthread_mutex_lock and
pthread_mutex_unlock that the software detects automatically. In practice, for entry point
specification (thread creation), you will use primitives such as pthread_create. The next example
shows how the defect can appear when you use pthread_create.

Correction — Place Lock-Unlock Pair Together in Same Critical Section as Destruction

The locking and destruction of lock3 occurs inside the critical section imposed by lock1 and lock2,
but the unlocking occurs outside. One possible correction is to place the lock-unlock pair in the same
critical section as the destruction of the mutex. Use one of these critical sections:

• Critical section imposed by lock1 alone.
• Critical section imposed by lock1 and lock2.

In this corrected code, the lock-unlock pair and the destruction is placed in the critical section
imposed by lock1 and lock2. When t0 acquires lock1 and lock2, t1 has to wait for their release
before it executes the instruction pthread_mutex_destroy (&lock3);. Therefore, t1 cannot
destroy mutex lock3 in the locked state.

#include <pthread.h>

pthread_mutex_t lock1;
pthread_mutex_t lock2;
pthread_mutex_t lock3;

void t0 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);

 pthread_mutex_lock (&lock3);
 pthread_mutex_unlock (&lock3);

 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

16 Concurrency Defects

16-54

void t1 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);

 pthread_mutex_destroy (&lock3);

 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

Locking and Destruction in Start Routine of Thread

#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 4
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
void atomic_operation(void);

void *do_create(void *arg) {
 /* Creation thread */
 pthread_mutex_init(&lock, NULL);
 pthread_exit((void*) 0);
}

void *do_work(void *arg) {
 /* Worker thread */
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_exit((void*) 0);
}

void *do_destroy(void *arg) {
 /* Destruction thread */
 pthread_mutex_destroy(&lock);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;
 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Thread that initializes mutex */
 pthread_create(&callThd[0], &attr, do_create, NULL);

 /* Threads that use mutex for atomic operation*/
 for(i=0; i<NUMTHREADS-1; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);

 Destruction of locked mutex

16-55

 }

 /* Thread that destroys mutex */
 pthread_create(&callThd[NUMTHREADS -1], &attr, do_destroy, NULL);

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 pthread_exit(NULL);
}

In this example, four threads are created. The threads are assigned different actions.

• The first thread callThd[0] initializes the mutex lock.
• The second and third threads, callThd[1] and callThd[2], perform an atomic operation

protected by the mutex lock.
• The fourth thread callThd[3] destroys the mutex lock.

The threads can interrupt each other. Therefore, immediately after the second or third thread locks
the mutex, the fourth thread can destroy it.

Correction — Initialize and Destroy Mutex Outside Start Routine

One possible correction is to initialize and destroy the mutex in the main function outside the start
routine of the threads. The threads perform only the atomic operation. You need two fewer threads
because the mutex initialization and destruction threads are not required.

#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 2
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
void atomic_operation(void);

void *do_work(void *arg) {
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;
 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Initialize mutex */

16 Concurrency Defects

16-56

 pthread_mutex_init(&lock, NULL);

 for(i=0; i<NUMTHREADS; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 /* Destroy mutex */
 pthread_mutex_destroy(&lock);

 pthread_exit(NULL);
}

Correction — Use A Second Mutex To Protect Lock-Unlock Pair and Destruction

Another possible correction is to use a second mutex and protect the lock-unlock pair from the
destruction. This corrected code uses the mutex lock2 to achieve this protection. The second mutex
is initialized in the main function outside the start routine of the threads.

#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 4
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
pthread_mutex_t lock2;
void atomic_operation(void);

void *do_create(void *arg) {
 /* Creation thread */
 pthread_mutex_init(&lock, NULL);
 pthread_exit((void*) 0);
}

void *do_work(void *arg) {
 /* Worker thread */
 pthread_mutex_lock (&lock2);
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_mutex_unlock (&lock2);
 pthread_exit((void*) 0);
}

void *do_destroy(void *arg) {
 /* Destruction thread */
 pthread_mutex_lock (&lock2);
 pthread_mutex_destroy(&lock);
 pthread_mutex_unlock (&lock2);
 pthread_exit((void*) 0);
}

 Destruction of locked mutex

16-57

int main (int argc, char *argv[]) {
 int i;
 void *status;
 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Initialize second mutex */
 pthread_mutex_init(&lock2, NULL);

 /* Thread that initializes first mutex */
 pthread_create(&callThd[0], &attr, do_create, NULL);

 /* Threads that use first mutex for atomic operation */
 /* The threads use second mutex to protect first from destruction in locked state*/
 for(i=0; i<NUMTHREADS-1; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 /* Thread that destroys first mutex */
 /* The thread uses the second mutex to prevent destruction of locked mutex */
 pthread_create(&callThd[NUMTHREADS -1], &attr, do_destroy, NULL);

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 /* Destroy second mutex */
 pthread_mutex_destroy(&lock2);

 pthread_exit(NULL);
}

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: DESTROY_LOCKED
Impact: Medium
CWE ID: 667, 826

See Also
Tasks (-entry-points) | Configure multitasking manually | Target processor type
(-target) | Find defects (-checkers) | Data race including atomic operations |
Data race | Data race through standard library function call | Deadlock | Double
lock | Double unlock | Missing lock | Missing unlock

16 Concurrency Defects

16-58

https://cwe.mitre.org/data/definitions/667.html
https://cwe.mitre.org/data/definitions/826.html

Topics
“Analyze Multitasking Programs in Polyspace”
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2016b

 Destruction of locked mutex

16-59

Double lock
Lock function is called twice in a task without an intermediate call to unlock function

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when:

• A task calls a lock function my_lock.
• The task calls my_lock again before calling the corresponding unlock function.

In multitasking code, a lock function begins a critical section of code and an unlock function ends it.
When a task task1 calls a lock function lock, other tasks calling lock must wait until task calls the
corresponding unlock function. Polyspace requires that both lock and unlock functions must have the
form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify these options,
on the Configuration pane, select Multitasking.

Risk

A call to a lock function begins a critical section so that other tasks have to wait to enter the same
critical section. If the same lock function is called again within the critical section, the task blocks
itself.

Fix

The fix depends on the root cause of the defect. A double lock defect often indicates a coding error.
Perhaps you omitted the call to an unlock function to end a previous critical section and started the
next critical section. Perhaps you wanted to use a different lock function for the second critical
section.

Identify each critical section of code, that is, the section that you want to be executed as an atomic
block. Call a lock function at the beginning of the section. Within the critical section, make sure that
you do not call the lock function again. At the end of the section, call the unlock function that
corresponds to the lock function.

See examples of fixes below. To avoid the issue, you can follow the practice of calling the lock and
unlock functions in the same module at the same level of abstraction. For instance, in this example,
func calls the lock and unlock function at the same level but func2 does not.

void func() {
 my_lock();
 {
 ...
 }
 my_unlock();
}

void func2() {

16 Concurrency Defects

16-60

 {
 my_lock();
 ...
 }
 my_unlock();
}

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Double Lock

int global_var;

void lock(void);
void unlock(void);

void task1(void)
{
 lock();
 global_var += 1;
 lock();
 global_var += 1;
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Value
Configure multitasking
manually
Tasks (-entry-points) task1

task2

 Double lock

16-61

Option Value
Critical section details
(-critical-section-begin
-critical-section-end)

Starting routine Ending routine
lock unlock

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2
 -critical-section-begin lock:cs1
 -critical-section-end unlock:cs1

task1 enters a critical section through the call lock();. task1 calls lock again before it leaves the
critical section through the call unlock();.

Correction — Remove First Lock

If you want the first global_var+=1; to be outside the critical section, one possible correction is to
remove the first call to lock. However, if other tasks are using global_var, this code can produce a
Data race error.

int global_var;

void lock(void);
void unlock(void);

void task1(void)
{
 global_var += 1;
 lock();
 global_var += 1;
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

Correction — Remove Second Lock

If you want the first global_var+=1; to be inside the critical section, one possible correction is to
remove the second call to lock.

int global_var;

void lock(void);
void unlock(void);

16 Concurrency Defects

16-62

void task1(void)
{
 lock();
 global_var += 1;
 global_var += 1;
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

Correction — Add Another Unlock

If you want the second global_var+=1; to be inside a critical section, another possible correction is
to add another call to unlock.

int global_var;

void lock(void);
void unlock(void);

void task1(void)
{
 lock();
 global_var += 1;
 unlock();
 lock();
 global_var += 1;
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

Double Lock with Function Call

int global_var;

void lock(void);
void unlock(void);

void performOperation(void) {
 lock();
 global_var++;

 Double lock

16-63

}

void task1(void)
{
 lock();
 global_var += 1;
 performOperation();
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure multitasking
manually
Tasks (-entry-points) task1

task2
Critical section details
(-critical-section-begin
-critical-section-end)

Starting routine Ending routine
lock unlock

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2
 -critical-section-begin lock:cs1
 -critical-section-end unlock:cs1

task1 enters a critical section through the call lock();. task1 calls the function
performOperation. In performOperation, lock is called again even though task1 has not left
the critical section through the call unlock();.

In the result details for the defect, you see the sequence of instructions leading to the defect. For
instance, you see that following the first entry into the critical section, the execution path:

• Enters function performOperation.
• Inside performOperation, attempts to enter the same critical section once again.

16 Concurrency Defects

16-64

You can click each event to navigate to the corresponding line in the source code.

Correction — Remove Second Lock

One possible correction is to remove the call to lock in task1.

int global_var;

void lock(void);
void unlock(void);

void performOperation(void) {
 global_var++;
}

void task1(void)
{
 lock();
 global_var += 1;
 performOperation();
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

Result Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: DOUBLE_LOCK
Impact: High
CWE ID: 764

 Double lock

16-65

https://cwe.mitre.org/data/definitions/764.html

See Also
Temporally exclusive tasks (-temporal-exclusions-file) | Critical section
details (-critical-section-begin -critical-section-end) | Tasks (-entry-points)
| Configure multitasking manually | Find defects (-checkers) | Data race
including atomic operations | Data race | Data race through standard library
function call | Deadlock | Destruction of locked mutex | Double unlock | Missing
lock | Missing unlock

Topics
“Analyze Multitasking Programs in Polyspace”
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Extend Concurrency Defect Checkers to Unsupported Multithreading Environments”

Introduced in R2014b

16 Concurrency Defects

16-66

Double unlock
Unlock function is called twice in a task without an intermediate call to lock function

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when:

• A task calls a lock function my_lock.
• The task calls the corresponding unlock function my_unlock.
• The task calls my_unlock again. The task does not call my_lock a second time between the two

calls to my_unlock.

In multitasking code, a lock function begins a critical section of code and an unlock function ends it.
When a task task1 calls a lock function my_lock, other tasks calling my_lock must wait until task1
calls the corresponding unlock function. Polyspace requires that both lock and unlock functions must
have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify these options,
on the Configuration pane, select Multitasking.

Risk

A double unlock defect can indicate a coding error. Perhaps you wanted to call a different unlock
function to end a different critical section. Perhaps you called the unlock function prematurely the
first time and only the second call indicates the end of the critical section.

Fix

The fix depends on the root cause of the defect.

Identify each critical section of code, that is, the section that you want to be executed as an atomic
block. Call a lock function at the beginning of the section. Only at the end of the section, call the
unlock function that corresponds to the lock function. Remove any other redundant call to the unlock
function.

See examples of fixes below. To avoid the issue, you can follow the practice of calling the lock and
unlock functions in the same module at the same level of abstraction. For instance, in this example,
func calls the lock and unlock function at the same level but func2 does not.

void func() {
 my_lock();
 {
 ...
 }
 my_unlock();
}

void func2() {

 Double unlock

16-67

 {
 my_lock();
 ...
 }
 my_unlock();
}

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Double Unlock

int global_var;

void BEGIN_CRITICAL_SECTION(void);
void END_CRITICAL_SECTION(void);

void task1(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

void task2(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Value
Configure multitasking
manually
Tasks (-entry-points) task1

task2

16 Concurrency Defects

16-68

Option Value
Critical section details
(-critical-section-begin
-critical-section-end)

Starting routine Ending routine
BEGIN_CRITICAL_SECTION END_CRITICAL_SECTION

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2
 -critical-section-begin BEGIN_CRITICAL_SECTION:cs1
 -critical-section-end END_CRITICAL_SECTION:cs1

task1 enters a critical section through the call BEGIN_CRITICAL_SECTION();. task1 leaves the
critical section through the call END_CRITICAL_SECTION();. task1 calls END_CRITICAL_SECTION
again without an intermediate call to BEGIN_CRITICAL_SECTION.

Correction — Remove Second Unlock

If you want the second global_var+=1; to be outside the critical section, one possible correction is
to remove the second call to END_CRITICAL_SECTION. However, if other tasks are using
global_var, this code can produce a Data race error.

int global_var;

void BEGIN_CRITICAL_SECTION(void);
void END_CRITICAL_SECTION(void);

void task1(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
 global_var += 1;
}

void task2(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

Correction — Remove First Unlock

If you want the second global_var+=1; to be inside the critical section, one possible correction is
to remove the first call to END_CRITICAL_SECTION.

int global_var;

void BEGIN_CRITICAL_SECTION(void);
void END_CRITICAL_SECTION(void);

 Double unlock

16-69

void task1(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 global_var += 1;
 END_CRITICAL_SECTION();
}

void task2(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

Correction — Add Another Lock

If you want the second global_var+=1; to be inside a critical section, another possible correction is
to add another call to BEGIN_CRITICAL_SECTION.

int global_var;

void BEGIN_CRITICAL_SECTION(void);
void END_CRITICAL_SECTION(void);

void task1(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

void task2(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

Result Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: DOUBLE_UNLOCK
Impact: High
CWE ID: 765

16 Concurrency Defects

16-70

https://cwe.mitre.org/data/definitions/765.html

See Also
Temporally exclusive tasks (-temporal-exclusions-file) | Critical section
details (-critical-section-begin -critical-section-end) | Tasks (-entry-points)
| Configure multitasking manually | Find defects (-checkers) | Data race
including atomic operations | Data race | Data race through standard library
function call | Deadlock | Destruction of locked mutex | Double lock | Missing lock
| Missing unlock

Topics
“Analyze Multitasking Programs in Polyspace”
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Extend Concurrency Defect Checkers to Unsupported Multithreading Environments”

Introduced in R2014b

 Double unlock

16-71

Function that can spuriously fail not wrapped in
loop
Loop checks failure condition after possible spurious failure

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when the following atomic compare and exchange functions that can fail
spuriously are called from outside a loop.

• C atomic functions:

• atomic_compare_exchange_weak()
• atomic_compare_exchange_weak_explicit()

• C++ atomic functions:

• std::atomic<T>::compare_exchange_weak(T* expected, T desired)
• std::atomic<T>::compare_exchange_weak_explicit(T* expected, T desired,

std::memory_order succ, std::memory_order fail)
• std::atomic_compare_exchange_weak(std::atomic<T>* obj, T* expected, T

desired)
• std::atomic_compare_exchange_weak_explicit(volatile std::atomic<T>* obj,

T* expected, T desired, std::memory_order succ, std::memory_order fail)

The functions compare the memory contents of the object representations pointed to by obj and
expected. The comparison can spuriously return false even if the memory contents are equal. This
spurious failure makes the functions faster on some platforms.

Risk

An atomic compare and exchange function that spuriously fails can cause unexpected results and
unexpected control flow.

Fix

Wrap atomic compare and exchange functions that can spuriously fail in a loop. The loop checks the
failure condition after a possible spurious failure.

Examples
atomic_compare_exchange_weak() Not Wrapped in Loop

#include <stdatomic.h>

extern void reset_count(void);
atomic_int count = ATOMIC_VAR_INIT(0);

void increment_count(void)

16 Concurrency Defects

16-72

{
 int old_count = atomic_load(&count);
 int new_count;
 new_count = old_count + 1;
 if (!atomic_compare_exchange_weak(&count, &old_count, new_count))
 reset_count();

}

In this example, increment_count() uses atomic_compare_exchange_weak() to compare
count and old_count. If the counts are equal, count is incremented to new_count. If they are not
equal, the count is reset. When atomic_compare_exchange_weak() fails spuriously, the count is
reset unnecessarily.

Correction — Wrap atomic_compare_exchange_weak() in a while Loop

One possible correction is to wrap the call to atomic_compare_exchange_weak() in a while loop.
The loop checks the failure condition after a possible spurious failure.

#include <stdatomic.h>

extern void reset_count(void);
atomic_int count = ATOMIC_VAR_INIT(0);

void increment_count(void)
{
 int old_count = atomic_load(&count);
 int new_count;
 new_count = old_count + 1;

 do {
 reset_count();

 } while (!atomic_compare_exchange_weak(&count, &old_count, new_count));

}

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: SPURIOUS_FAILURE_NOT_WRAPPED_IN_LOOP
Impact: Low

See Also
Function that can spuriously wake up not wrapped in loop | Returned value of a
sensitive function not checked | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018b

 Function that can spuriously fail not wrapped in loop

16-73

Function that can spuriously wake up not wrapped
in loop
Loop checks wake-up condition after possible spurious wake-up

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when the following wait-on-condition functions are called from outside a loop:

• C functions:

• cnd_wait()
• cnd_timedwait()

• POSIX functions:

• pthread_cond_wait()
• pthread_cond_timedwait()

• C++ std::condition_variable and std::condition_variable_any class member
functions:

• wait()
• wait_until()
• wait_for()

Wait-on-condition functions pause the execution of the calling thread when a specified condition is
met. The thread wakes up and resumes once another thread notifies it with cnd_broadcast() or an
equivalent function. The wake-up notification can be spurious or malicious.

Risk

If a thread receives a spurious wake-up notification and the condition of the wait-on-condition
function is not checked, the thread can wake up prematurely. The wake-up can cause unexpected
control flow, indefinite blocking of other threads, or denial of service.

Fix

Wrap wait-on-condition functions that can wake up spuriously in a loop. The loop checks the wake-up
condition after a possible spurious wake-up notification.

Examples
cnd_wait() Not Wrapped in Loop

#include <stdio.h>
#include <stddef.h>
#include <threads.h>

16 Concurrency Defects

16-74

#define THRESHOLD 100

static mtx_t lock;
static cnd_t cond;

void func(int input)
{
 if (thrd_success != mtx_lock(&lock)) {
 /* Handle error */
 }
 /* test condition to pause thread */
 if (input > THRESHOLD) {
 if (thrd_success != cnd_wait(&cond, &lock)) {
 /* Handle error */
 }
 }
 /* Proceed if condition to pause does not hold */

 if (thrd_success != mtx_unlock(&lock)) {
 /* Handle error */
 }
}

In this example, the thread uses cnd_wait() to pause execution when input is greater than
THRESHOLD. The paused thread can resume if another thread uses cnd_broadcast(), which notifies
all the threads. This notification causes the thread to wake up even if the pause condition is still true.

Correction — Wrap cnd_wait() in a while Loop

One possible correction is to wrap cnd_wait() in a while loop. The loop checks the pause condition
after the thread receives a possible spurious wake-up notification.

#include <stdio.h>
#include <stddef.h>
#include <threads.h>

#define THRESHOLD 100

static mtx_t lock;
static cnd_t cond;

void func(int input)
{
 if (thrd_success != mtx_lock(&lock)) {
 /* Handle error */
 }
 /* test condition to pause thread */
 while (input > THRESHOLD) {
 if (thrd_success != cnd_wait(&cond, &lock)) {
 /* Handle error */
 }
 }
 /* Proceed if condition to pause does not hold */

 Function that can spuriously wake up not wrapped in loop

16-75

 if (thrd_success != mtx_unlock(&lock)) {
 /* Handle error */
 }
}

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: SPURIOUS_WAKEUP_NOT_WRAPPED_IN_LOOP
Impact: Low

See Also
Function that can spuriously fail not wrapped in loop | Returned value of a
sensitive function not checked | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018b

16 Concurrency Defects

16-76

Join or detach of a joined or detached thread
Thread that was previously joined or detached is joined or detached again

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when:

• You try to join a thread that was previously joined or detached.
• You try to detach a thread that was previously joined or detached.

The Result Details pane describes if the thread was previously joined or detached and also shows
previous related events.

For instance, a thread joined with thrd_join is then detached with thrd_detach:

thrd_t id;
...
thrd_join(id, NULL);
thrd_detach(id);

Note that a thread is considered as joined only if a previous thread joining is successful. For instance,
the thread is not considered as joined in the if branch here:

thrd_t t;
...
if (thrd_success != thrd_join(t, 0)) {
 /* Thread not considered joined */
}

The analysis cannot detect cases where a joined thread detaches itself using, for instance, the
thrd_current() function.

Risk

The C11 standard (clauses 7.26.5.3 and 7.26.5.6) states that a thread shall not be joined or detached
once it was previously joined or detached. Violating these clauses of the standard results in undefined
behavior.

Fix

Avoid joining a thread that was already joined or detached previously. Avoid detaching a thread that
was already joined or detached.

Examples
Joining a Thread Followed by Detaching the Thread

#include <stddef.h>

 Join or detach of a joined or detached thread

16-77

#include <threads.h>
#include <stdlib.h>

extern int thread_func(void *arg);

int main (void)
{
 thrd_t t;

 if (thrd_success != thrd_create (&t, thread_func, NULL)) {
 /* Handle error */
 return 0;
 }

 if (thrd_success != thrd_join (t, 0)) {
 /* Handle error */
 return 0;
 }

 if (thrd_success != thrd_detach (t)) {
 /* Handle error */
 return 0;
 }

 return 0;
}

In this example, the use of thrd_detach on a thread that was previously joined with thrd_join
leads to undefined behavior.

To avoid compilation errors when running Bug Finder on this example, specify the C11 standard with
the option C standard version (-c-version).

Correction – Avoid Detaching a Joined Thread

Remove the prior thrd_join or the subsequent thrd_detach statement. In this corrected version,
the thrd_detach statement is removed.

#include <stddef.h>
#include <threads.h>
#include <stdlib.h>

extern int thread_func(void *arg);

int main (void)
{
 thrd_t t;

 if (thrd_success != thrd_create (&t, thread_func, NULL)) {
 /* Handle error */
 return 0;
 }

 if (thrd_success != thrd_join (t, 0)) {
 /* Handle error */

16 Concurrency Defects

16-78

 return 0;
 }

 return 0;
}

Joining Thread Created in Detached State

#include <stddef.h>
#include <pthread.h>
#define thread_success 0

extern void *thread_func(void *arg);

int main() {
 pthread_t id;
 pthread_attr_t attr;

 if(thread_success != pthread_attr_init(&attr)) {
 return 0;
 }

 if(thread_success != pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED)) {
 return 0;
 }

 if(thread_success != pthread_create(&id, &attr, thread_func, NULL)) {
 return 0;
 }

 if(thread_success != pthread_join(id, NULL)) {
 return 0;
 }

 return 0;
}

In this example, the thread attribute is assigned the state PTHREAD_CREATE_DETACHED. A thread
created using this attribute is then joined.

Correction – Create Threads as Joinable

One possible correction is to create a thread with thread attribute assigned to the state
PTHREAD_CREATE_JOINABLE and then join the thread.

#include <stddef.h>
#include <pthread.h>
#define thread_success 0

extern void *thread_func(void *arg);

int main() {
 pthread_t id;
 pthread_attr_t attr;

 if(thread_success != pthread_attr_init(&attr)) {

 Join or detach of a joined or detached thread

16-79

 return 0;
 }

 if(thread_success != pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE)) {
 return 0;
 }

 if(thread_success != pthread_create(&id, &attr, thread_func, NULL)) {
 return 0;
 }

 if(thread_success != pthread_join(id, NULL)) {
 return 0;
 }

 return 0;
}

Result Information
Group: Concurrency
Language: C
Default: Off
Command-Line Syntax: DOUBLE_JOIN_OR_DETACH
Impact: Medium

See Also
Use of undefined thread ID | Missing or double initialization of thread
attribute

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2019b

16 Concurrency Defects

16-80

Missing lock
Unlock function without lock function

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when a task calls an unlock function before calling the corresponding lock
function.

In multitasking code, a lock function begins a critical section of code and an unlock function ends it.
When a task my_task calls a lock function my_lock, other tasks calling my_lock must wait till
my_task calls the corresponding unlock function. Polyspace requires that both lock and unlock
functions must have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify these options,
on the Configuration pane, select Multitasking.

Risk

A call to an unlock function without a corresponding lock function can indicate a coding error. For
instance, perhaps the unlock function does not correspond to the lock function that begins the critical
section.

Fix

The fix depends on the root cause of the defect. For instance, if the defect occurs because of a
mismatch between lock and unlock function, check the lock-unlock function pair in your Polyspace
analysis configuration and fix the mismatch.

See examples of fixes below. To avoid the issue, you can follow the practice of calling the lock and
unlock functions in the same module at the same level of abstraction. For instance, in this example,
func calls the lock and unlock function at the same level but func2 does not.

void func() {
 my_lock();
 {
 ...
 }
 my_unlock();
}

void func2() {
 {
 my_lock();
 ...
 }
 my_unlock();
}

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

 Missing lock

16-81

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Missing lock

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset(void)
{
 begin_critical_section();
 global_var = 0;
 end_critical_section();
}

void my_task(void)
{
 global_var += 1;
 end_critical_section();
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure multitasking
manually
Tasks (-entry-points) my_task, reset
Critical section details
(-critical-section-begin
-critical-section-end)

Starting routine Ending routine
begin_critical_section end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder
 -entry-points my_task,reset
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset. my_task calls end_critical_section
before calling begin_critical_section.

16 Concurrency Defects

16-82

Correction — Provide Lock

One possible correction is to call the lock function begin_critical_section before the
instructions in the critical section.

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset(void)
{
 begin_critical_section();
 global_var = 0;
 end_critical_section();
}

void my_task(void)
{
 begin_critical_section();
 global_var += 1;
 end_critical_section();
}

Lock in Condition

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset() {
 begin_critical_section();
 global_var=0;
 end_critical_section();
}

void my_task(void) {
 int index=0;
 volatile int numCycles;

 while(numCycles) {
 if(index%10==0) {
 begin_critical_section();
 global_var ++;
 }
 end_critical_section();
 index++;
 }
}

In this example, to emulate multitasking behavior, you must specify the following options:

 Missing lock

16-83

Option Specification
Configure multitasking
manually
Tasks (-entry-points) my_task, reset
Critical section details
(-critical-section-begin
-critical-section-end)

Starting routine Ending routine
begin_critical_section end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder
 -entry-points my_task,reset
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset.

In the while loop, my_task leaves a critical section through the call end_critical_section();.
In an iteration of the while loop:

• If my_task enters the if condition branch, the critical section begins through a call to
begin_critical_section.

• If my_task does not enter the if condition branch and leaves the while loop, the critical section
does not begin. Therefore, a Missing lock defect occurs.

• If my_task does not enter the if condition branch and continues to the next iteration of the
while loop, the unlock function end_critical_section is called again. A Double unlock
defect occurs.

Because numCycles is a volatile variable, it can take any value. Any of the cases above are
possible. Therefore, a Missing lock defect and a Double unlock defect appear on the call
end_critical_section.

Result Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: BAD_UNLOCK
Impact: Medium
CWE ID: 832

See Also
Temporally exclusive tasks (-temporal-exclusions-file) | Critical section
details (-critical-section-begin -critical-section-end) | Tasks (-entry-points)
| Configure multitasking manually | Find defects (-checkers) | Data race
including atomic operations | Data race | Data race through standard library
function call | Deadlock | Destruction of locked mutex | Double lock | Double
unlock | Missing unlock

Topics
“Configuring Polyspace Multitasking Analysis Manually”

16 Concurrency Defects

16-84

https://cwe.mitre.org/data/definitions/832.html

“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Extend Concurrency Defect Checkers to Unsupported Multithreading Environments”

Introduced in R2014b

 Missing lock

16-85

Missing or double initialization of thread attribute
Duplicated initialization of thread attributes or noninitialized thread attribute used in functions that
expect initialized attributes

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs during one of these situations:

• You initialize a thread attribute twice with a function such as pthread_attr_init without an
intermediate call to a function such as pthread_attr_destroy.

The function pthread_attr_destroy destroys a thread attribute object and enables the system
to reclaim resources associated with the object.

• You use a noninitialized thread attribute in a function such as pthread_create, which expects an
initialized attribute. A thread attribute might be noninitialized because it was never initialized
previously or destroyed with the pthread_attr_destroy function.

Noninitialized thread attributes are detected for all functions in the POSIX standard.

The Result Details pane describes whether the attribute is doubly initialized or noninitialized and
also shows previous related events.

Note that a thread attribute is considered initialized only if the call to pthread_attr_init is
successful. For instance, the thread attribute is not initialized in the if branch here:

pthread_attr_t attr;
int thread_success;

thread_success = pthread_attr_init(&attr);
if(thread_success != 0) {
 /* Thread attribute considered noninitialized */
}

The issue is also flagged if you do not check the return value from a call to pthread_attr_init.

Risk

Initializing a thread attribute without destroying the previously initialized attribute or using
noninitialized thread attributes leads to undefined behavior.

Fix

Before using a thread attribute, initialize the attribute by using the pthread_attr_init function.

pthread_attr_t attr;
int thread_success;

/* Initialize attribute */
thread_success = pthread_attr_init(&attr);
if(thread_success != 0) {

16 Concurrency Defects

16-86

 /* Handle initialization error */
}
...
/* Use attribute */
thread_sucess = pthread_create(&thr, &attr, &thread_start, NULL);

After initialization, destroy a thread attribute by using pthread_attr_destroy before initializing
again:

pthread_attr_t attr;
int thread_success;

/* Destroy attribute */
thread_success = pthread_attr_destroy(&attr);
if(thread_success != 0) {
 /* Handle destruction error */
}
...
/* Reinitialize attribute */
thread_success = pthread_attr_init(&attr);

Examples
Use of Noninitialized Thread Attribute
#include <stddef.h>
#include <pthread.h>
#define thread_success 0

extern void *thread_func(void *arg);

int main() {
 pthread_t id;
 pthread_attr_t attr;

 if(thread_success == pthread_create(&id, &attr, thread_func, NULL)) {
 }

 return 0;
}

In this example, the attribute attr is not initialized before its use in the pthread_create call.
Correction – Initialize Thread Attribute Before Use

Before using a thread attribute in the pthread_create function, initialize the attribute with the
pthread_attr_init function.

#include <stddef.h>
#include <pthread.h>
#define thread_success 0

extern void *thread_func(void *arg);

int main() {
 pthread_t id;
 pthread_attr_t attr;

 Missing or double initialization of thread attribute

16-87

 if(thread_success != pthread_attr_init(&attr)) {
 return 0;
 }

 if(thread_success == pthread_create(&id, &attr, thread_func, NULL)) {
 }

 return 0;
}

Return Value from Thread Attribute Initialization Not Checked
#include <stddef.h>
#include <pthread.h>
#define thread_success 0

extern void *thread_func(void *arg);

int main() {
 pthread_t id;
 pthread_attr_t attr;

 pthread_attr_init(&attr);

 if(thread_success == pthread_create(&id, &attr, thread_func, NULL)) {
 }

 return 0;
}

In this example, the return value of pthread_attr_init is not checked. If the thread attribute
initialization fails, the error does not get handled. A possibly undefined thread attribute is later used
in the pthread_create function.
Correction – Handle Errors from Thread Attribute Initialization

One possible correction is to use the thread attribute only if the return value from
pthread_attr_init indicates successful initialization.

#include <stddef.h>
#include <pthread.h>
#define thread_success 0

extern void *thread_func(void *arg);

int main() {
 pthread_t id;
 pthread_attr_t attr;

 if(thread_success != pthread_attr_init(&attr)) {
 return 0;
 }

 if(thread_success == pthread_create(&id, &attr, thread_func, NULL)) {
 }

 return 0;
}

16 Concurrency Defects

16-88

Result Information
Group: Concurrency
Language: C
Default: Off
Command-Line Syntax: BAD_THREAD_ATTRIBUTE
Impact: Medium

See Also
Use of undefined thread ID | Join or detach of a joined or detached thread

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2019b

 Missing or double initialization of thread attribute

16-89

Missing unlock
Lock function without unlock function

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when:

• A task calls a lock function.
• The task ends without a call to an unlock function.

In multitasking code, a lock function begins a critical section of code and an unlock function ends it.
When a task, my_task, calls a lock function, my_lock, other tasks calling my_lock must wait until
my_task calls the corresponding unlock function. Polyspace requires that both lock and unlock
functions must have the form void func(void).

To find this defect, before analysis, you must specify the multitasking options. On the Configuration
pane, select Multitasking.

Risk

An unlock function ends a critical section so that other waiting tasks can enter the critical section. A
missing unlock function can result in tasks blocked for an unnecessary length of time.

Fix

Identify the critical section of code, that is, the section that you want to be executed as an atomic
block. At the end of this section, call the unlock function that corresponds to the lock function used at
the beginning of the section.

There can be other reasons and corresponding fixes for the defect. Perhaps you called the incorrect
unlock function. Check the lock-unlock function pair in your Polyspace analysis configuration and fix
the mismatch.

See examples of fixes below. To avoid the issue, you can follow the practice of calling the lock and
unlock functions in the same module at the same level of abstraction. For instance, in this example,
func calls the lock and unlock function at the same level but func2 does not.

void func() {
 my_lock();
 {
 ...
 }
 my_unlock();
}

void func2() {
 {
 my_lock();
 ...

16 Concurrency Defects

16-90

 }
 my_unlock();
}

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Missing Unlock

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset()
{
 begin_critical_section();
 global_var = 0;
 end_critical_section();
}

void my_task(void)
{
 begin_critical_section();
 global_var += 1;
}

In this example, to emulate multitasking behavior, specify the following options:

Option Value
Configure multitasking
manually
Tasks (-entry-points) my_task, reset
Critical section details
(-critical-section-begin
-critical-section-end)

Starting routine Ending routine
begin_critical_section end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder
 -entry-points my_task,reset
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

 Missing unlock

16-91

The example has two entry points, my_task and reset. my_task enters a critical section through
the call begin_critical_section();. my_task ends without calling end_critical_section.

Correction — Provide Unlock

One possible correction is to call the unlock function end_critical_section after the instructions
in the critical section.

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset(void)
{
 begin_critical_section();
 global_var = 0;
 end_critical_section();
}

void my_task(void)
{
 begin_critical_section();
 global_var += 1;
 end_critical_section();
}

Unlock in Condition

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset() {
 begin_critical_section();
 global_var=0;
 end_critical_section();
}

void my_task(void) {
 int index=0;
 volatile int numCycles;

 while(numCycles) {
 begin_critical_section();
 global_var ++;
 if(index%10==0) {
 global_var = 0;
 end_critical_section();
 }
 index++;

16 Concurrency Defects

16-92

 }
}

In this example, to emulate multitasking behavior, specify the following options.

Option Specification
Configure multitasking
manually
Tasks (-entry-points) my_task, reset
Critical section details
(-critical-section-begin
-critical-section-end)

Starting routine Ending routine
begin_critical_section end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder
 -entry-points my_task,reset
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset.

In the while loop, my_task enters a critical section through the call
begin_critical_section();. In an iteration of the while loop:

• If my_task enters the if condition branch, the critical section ends through a call to
end_critical_section.

• If my_task does not enter the if condition branch and leaves the while loop, the critical section
does not end. Therefore, a Missing unlock defect occurs.

• If my_task does not enter the if condition branch and continues to the next iteration of the
while loop, the lock function begin_critical_section is called again. A Double lock defect
occurs.

Because numCycles is a volatile variable, it can take any value. Any of the cases above is possible.
Therefore, a Missing unlock defect and a Double lock defect appear on the call
begin_critical_section.

Correction — Place Unlock Outside Condition

One possible correction is to call the unlock function end_critical_section outside the if
condition.

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset() {
 begin_critical_section();
 global_var=0;

 Missing unlock

16-93

 end_critical_section();
}

void my_task(void) {
 int index=0;
 volatile int numCycles;

 while(numCycles) {
 begin_critical_section();
 global_var ++;
 if(index%10==0) {
 global_var=0;
 }
 end_critical_section();
 index++;
 }
}

Correction — Place Unlock in Every Conditional Branch

Another possible correction is to call the unlock function end_critical_section in every branches
of the if condition.

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset() {
 begin_critical_section();
 global_var=0;
 end_critical_section();
}

void my_task(void) {
 int index=0;
 volatile int numCycles;

 while(numCycles) {
 begin_critical_section();
 global_var ++;
 if(index%10==0) {
 global_var=0;
 end_critical_section();
 }
 else
 end_critical_section();
 index++;
 }
}

Result Information
Group: Concurrency
Language: C | C++

16 Concurrency Defects

16-94

Default: On
Command-Line Syntax: BAD_LOCK
Impact: High
CWE ID: 667

See Also
Temporally exclusive tasks (-temporal-exclusions-file) | Critical section
details (-critical-section-begin -critical-section-end) | Tasks (-entry-points)
| Configure multitasking manually | Find defects (-checkers) | Data race
including atomic operations | Data race | Data race through standard library
function call | Deadlock | Destruction of locked mutex | Double lock | Double
unlock | Missing lock

Topics
“Configuring Polyspace Multitasking Analysis Manually”
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Extend Concurrency Defect Checkers to Unsupported Multithreading Environments”

Introduced in R2014b

 Missing unlock

16-95

https://cwe.mitre.org/data/definitions/667.html

Multiple mutexes used with same condition
variable
Threads using different mutexes when concurrently waiting on the same condition variable is
undefined behavior

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when multiple threads use more than one mutex to concurrently wait on the same
condition variable. A thread waits on a condition variable by calling the functions
pthread_cond_timedwait or pthread_cond_wait. These functions take a condition variable and
a locked mutex as arguments, and the condition variable is bound to that mutex when the thread
waits on the condition variable.

The checkers flags the use of pthread_cond_timedwait or pthread_cond_wait in one of the
threads. See the Event column in the Results Details pane to view the threads waiting on the same
condition variable and using a different mutex.

Risk

When a thread waits on a condition variable using a mutex, the condition variable is bound to that
mutex. Any other thread using a different mutex to wait on the same condition variable is undefined
behavior according to the POSIX standard.

Fix

Use the same mutex argument for pthread_cond_timedwait or pthread_cond_wait when
threads are concurrently waiting on the same condition variable, or use separate condition variables
for each mutex.

Examples
Concurrent Waiting on Condition Variable with Multiple Mutexes
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
#define Thrd_return_t void *
#define __USE_XOPEN2K8

#define COUNT_LIMIT 5

static void fatal_error(void)
{
 exit(1);
}

pthread_mutex_t mutex1;
pthread_mutex_t mutex2;
pthread_mutex_t mutex3;
pthread_cond_t cv;

16 Concurrency Defects

16-96

int count1 = 0, count2 = 0, count3 = 0;
#define DELAY 8

Thrd_return_t waiter1(void* arg)
{
 int ret;
 while (count1 < COUNT_LIMIT) {
 if ((ret = pthread_mutex_lock(&mutex1)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret =
 pthread_cond_wait(&cv, &mutex1)) != 0) {
 /* Handle error */
 fatal_error();
 }
 sleep(random() % DELAY);
 printf("count1 = %d\n", ++count1);
 if ((ret = pthread_mutex_unlock(&mutex1)) != 0) {
 /* Handle error */
 fatal_error();
 }
 }
 return (Thrd_return_t)0;
}

Thrd_return_t waiter2(void* arg)
{
 int ret;
 while (count2 < COUNT_LIMIT) {
 if ((ret = pthread_mutex_lock(&mutex2)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret =
 pthread_cond_wait(&cv, &mutex2)) != 0) {
 /* Handle error */
 fatal_error();
 }
 sleep(random() % DELAY);
 printf("count2 = %d\n", ++count2);
 if ((ret = pthread_mutex_unlock(&mutex2)) != 0) {
 /* Handle error */
 fatal_error();
 }
 }
 return (Thrd_return_t)0;
}

Thrd_return_t signaler(void* arg)
{
 int ret;
 while ((count1 < COUNT_LIMIT) || (count2 < COUNT_LIMIT)) {
 sleep(1);
 printf("signaling\n");
 if ((ret = pthread_cond_broadcast(&cv)) != 0) {
 /* Handle error */
 fatal_error();
 }
 }
 return (Thrd_return_t)0;
}

Thrd_return_t waiter3(void* arg)
{
 int ret;
 while (count3 % COUNT_LIMIT != 0) {
 if ((ret = pthread_mutex_lock(&mutex3)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret =
 pthread_cond_wait(&cv, &mutex3)) != 0) {
 /* Handle error */
 fatal_error();
 }
 sleep(random() % DELAY);
 printf("count3 = %d\n", ++count3);
 if ((ret = pthread_mutex_unlock(&mutex3)) != 0) {
 /* Handle error */

 Multiple mutexes used with same condition variable

16-97

 fatal_error();
 }
 }
 return (Thrd_return_t)0;
}

int main(void)
{
 int ret;
 pthread_t thread1, thread2, thread3;

 pthread_mutexattr_t attr;

 if ((ret = pthread_mutexattr_init(&attr)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK)) != 0) {
 /* Handle error */
 fatal_error();
 }

 if ((ret = pthread_mutex_init(&mutex1, &attr)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_mutex_init(&mutex2, &attr)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_mutex_init(&mutex3, &attr)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_cond_init(&cv, NULL)) != 0) {
 /* handle error */
 fatal_error();
 }
 if ((ret = pthread_create(&thread1, NULL, &waiter1, NULL))) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_create(&thread2, NULL, &waiter2, NULL))) {
 /* handle error */
 fatal_error();
 }
 if ((ret = pthread_create(&thread3, NULL, &signaler, NULL))) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_join(thread1, NULL)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_join(thread2, NULL)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_join(thread3, NULL)) != 0) {
 /* Handle error */
 fatal_error();
 }

 while (1) { ; }

 return 0;
}

In this example, a different mutex is used to protect each count variable. Since all three waiter
functions wait on the same condition variable cv with different mutexes, the call to
pthread_cond_wait will succeed for one of the threads and the call will be undefined for the other
two.

The checker raises a defect for function waiter3 even though the function is not invoked directly or
indirectly by a thread, entry-point, or interrupt. The analysis considers function waiter3 called by

16 Concurrency Defects

16-98

the main program through its function address or an unidentified thread whose creation is the
missing source code.
Correction — Use the Same Mutex for All Threads Waiting on Same Condition Variable

One possible correction is to pass the same mutex argument to all the call to pthread_cond_wait
that are used to wait on the same condition variable.
 #include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
#define Thrd_return_t void *
#define __USE_XOPEN2K8

#define COUNT_LIMIT 5

static void fatal_error(void)
{
 exit(1);
}

pthread_mutex_t mutex;

pthread_cond_t cv;

int count1 = 0, count2 = 0, count3 = 0;
#define DELAY 8

Thrd_return_t waiter1(void* arg)
{
 int ret;
 while (count1 < COUNT_LIMIT) {
 if ((ret = pthread_mutex_lock(&mutex)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret =
 pthread_cond_wait(&cv, &mutex)) != 0) {
 /* Handle error */
 fatal_error();
 }
 sleep(random() % DELAY);
 printf("count1 = %d\n", ++count1);
 if ((ret = pthread_mutex_unlock(&mutex)) != 0) {
 /* Handle error */
 fatal_error();
 }
 }
 return (Thrd_return_t)0;
}

Thrd_return_t waiter2(void* arg)
{
 int ret;
 while (count2 < COUNT_LIMIT) {
 if ((ret = pthread_mutex_lock(&mutex)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret =
 pthread_cond_wait(&cv, &mutex)) != 0) {
 /* Handle error */
 fatal_error();
 }
 sleep(random() % DELAY);
 printf("count2 = %d\n", ++count2);
 if ((ret = pthread_mutex_unlock(&mutex)) != 0) {
 /* Handle error */
 fatal_error();
 }
 }
 return (Thrd_return_t)0;
}

Thrd_return_t signaler(void* arg)

 Multiple mutexes used with same condition variable

16-99

{
 int ret;
 while ((count1 < COUNT_LIMIT) || (count2 < COUNT_LIMIT)) {
 sleep(1);
 printf("signaling\n");
 if ((ret = pthread_cond_broadcast(&cv)) != 0) {
 /* Handle error */
 fatal_error();
 }
 }
 return (Thrd_return_t)0;
}

Thrd_return_t waiter3(void* arg)
{
 int ret;
 while (count3 % COUNT_LIMIT != 0) {
 if ((ret = pthread_mutex_lock(&mutex)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret =
 pthread_cond_wait(&cv, &mutex)) != 0) {
 /* Handle error */
 fatal_error();
 }
 sleep(random() % DELAY);
 printf("count3 = %d\n", ++count3);
 if ((ret = pthread_mutex_unlock(&mutex)) != 0) {
 /* Handle error */
 fatal_error();
 }
 }
 return (Thrd_return_t)0;
}
/*
void user_task(void)
{
 (void)waiter3(NULL);
} */

int main(void)
{
 int ret;
 pthread_t thread1, thread2, thread3;

 pthread_mutexattr_t attr;

 if ((ret = pthread_mutexattr_init(&attr)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK)) != 0) {
 /* Handle error */
 fatal_error();
 }

 if ((ret = pthread_mutex_init(&mutex, &attr)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_mutex_init(&mutex, &attr)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_mutex_init(&mutex, &attr)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_cond_init(&cv, NULL)) != 0) {
 /* handle error */
 fatal_error();
 }
 if ((ret = pthread_create(&thread1, NULL, &waiter1, NULL))) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_create(&thread2, NULL, &waiter2, NULL))) {
 /* handle error */
 fatal_error();
 }

16 Concurrency Defects

16-100

 if ((ret = pthread_create(&thread3, NULL, &signaler, NULL))) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_join(thread1, NULL)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_join(thread2, NULL)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_join(thread3, NULL)) != 0) {
 /* Handle error */
 fatal_error();
 }

 while (1) { ; }

 return 0;
}

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: MULTI_MUTEX_WITH_ONE_COND_VAR
Impact: Medium

See Also
Find defects (-checkers) | Function that can spuriously fail not wrapped in
loop | Function that can spuriously wake up not wrapped in loop | Data race |
Missing unlock | Missing lock | Deadlock | Multiple threads waiting on same
condition variable

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

External Websites
POS53-C

Introduced in R2020a

 Multiple mutexes used with same condition variable

16-101

https://wiki.sei.cmu.edu/confluence/x/cNUxBQ

Signal call in multithreaded program
Program with multiple threads uses signal function

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when you use the signal() function in a program with multiple threads.

Risk

According to the C11 standard (Section 7.14.1.1), use of the signal() function in a multithreaded
program is undefined behavior.

Fix

Depending on your intent, use other ways to perform an asynchronous action on a specific thread.

Examples
Use of signal() Function to Terminate Loop in Thread

#include <signal.h>
#include <stddef.h>
#include <threads.h>

volatile sig_atomic_t flag = 0;

void handler(int signum) {
 flag = 1;
}

/* Runs until user sends SIGUSR1 */
int func(void *data) {
 while (!flag) {
 /* ... */
 }
 return 0;
}

int main(void) {
 signal(SIGINT, handler); /* Undefined behavior */
 thrd_t tid;

 if (thrd_success != thrd_create(&tid, func, NULL)) {
 /* Handle error */
 }
 /* ... */
 return 0;
}

16 Concurrency Defects

16-102

In this example, the signal function is used to terminate a while loop in the thread created with
thrd_create.

Correction — Use atomic_bool Variable to Terminate Loop

One possible correction is to use an atomic_bool variable that multiple threads can access. In the
corrected example, the child thread evaluates this variable before every loop iteration. After
completing the program, you can modify this variable so that the child thread exits the loop.

#include <stdatomic.h>
#include <stdbool.h>
#include <stddef.h>
#include <threads.h>

atomic_bool flag = ATOMIC_VAR_INIT(false);

int func(void *data) {
 while (!flag) {
 /* ... */
 }
 return 0;
}

int main(void) {
 thrd_t tid;

 if (thrd_success != thrd_create(&tid, func, NULL)) {
 /* Handle error */
 }
 /* ... */
 /* Set flag when done */
 flag = true;

 return 0;
}

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: SIGNAL_USE_IN_MULTITHREADED_PROGRAM
Impact: Low

See Also
Function called from signal handler not asynchronous-safe | Signal call from
within signal handler | MISRA C:2012 Rule 21.5 | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

 Signal call in multithreaded program

16-103

Introduced in R2018b

16 Concurrency Defects

16-104

Thread-specific memory leak
Dynamically allocated thread-specific memory not freed before end of thread

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when you do not free thread-specific dynamically allocated memory before the end
of a thread.

To create thread-specific storage, you generally do these steps:

1 You create a key for thread-specific storage.
2 You create the threads.
3 In each thread, you allocate storage dynamically and then associate the key with this storage.

After the association, you can read the stored data later using the key.
4 Before the end of the thread, you free the thread-specific memory using the key.

The checker flags execution paths in the thread where the last step is missing.

The checker works on these families of functions:

• tss_get and tss_set (C11)
• pthread_getspecific and pthread_setspecific (POSIX)

Risk

The data stored in the memory is available to other processes even after the threads end (memory
leak). Besides security vulnerabilities, memory leaks can shrink the amount of available memory and
reduce performance.

Fix

Free dynamically allocated memory before the end of a thread.

You can explicitly free dynamically allocated memory with functions such as free.

Alternatively, when you create a key, you can associate a destructor function with the key. The
destructor function is called with the key value as argument at the end of a thread. In the body of the
destructor function, you can free any memory associated with the key. If you use this method, Bug
Finder still flags a defect. Ignore this defect with appropriate comments. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

 Thread-specific memory leak

16-105

Examples
Memory Not Freed at End of Thread
#include <threads.h>
#include <stdlib.h>

/* Global key to the thread-specific storage */
tss_t key;
enum { MAX_THREADS = 3 };

int add_data(void) {
 int *data = (int *)malloc(2 * sizeof(int));
 if (data == NULL) {
 return -1; /* Report error */
 }
 data[0] = 0;
 data[1] = 1;

 if (thrd_success != tss_set(key, (void *)data)) {
 /* Handle error */
 }
 return 0;
}

void print_data(void) {
 /* Get this thread's global data from key */
 int *data = tss_get(key);

 if (data != NULL) {
 /* Print data */
 }
}

int func(void *dummy) {
 if (add_data() != 0) {
 return -1; /* Report error */
 }
 print_data();
 return 0;
}

int main(void) {
 thrd_t thread_id[MAX_THREADS];

 /* Create the key before creating the threads */
 if (thrd_success != tss_create(&key, NULL)) {
 /* Handle error */
 }

 /* Create threads that would store specific storage */
 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_create(&thread_id[i], func, NULL)) {
 /* Handle error */
 }
 }

16 Concurrency Defects

16-106

 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_join(thread_id[i], NULL)) {
 /* Handle error */
 }
 }

 tss_delete(key);
 return 0;
}

In this example, the start function of each thread func calls two functions:

• add_data: This function allocates storage dynamically and associates the storage with a key
using the tss_set function.

• print_data: This function reads the stored data using the tss_get function.

At the points where func returns, the dynamically allocated storage has not been freed.

Correction — Free Dynamically Allocated Memory Explicitly

One possible correction is to free dynamically allocated memory explicitly before leaving the start
function of a thread. See the highlighted change in the corrected version.

In this corrected version, a defect still appears on the return statement in the error handling section
of func. The defect cannot occur in practice because the error handling section is entered only if
dynamic memory allocation fails. Ignore this remaining defect with appropriate comments. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

#include <threads.h>
#include <stdlib.h>

/* Global key to the thread-specific storage */
tss_t key;
enum { MAX_THREADS = 3 };

int add_data(void) {
 int *data = (int *)malloc(2 * sizeof(int));
 if (data == NULL) {
 return -1; /* Report error */
 }
 data[0] = 0;
 data[1] = 1;

 if (thrd_success != tss_set(key, (void *)data)) {
 /* Handle error */
 }
 return 0;
}

void print_data(void) {

 Thread-specific memory leak

16-107

 /* Get this thread's global data from key */
 int *data = tss_get(key);

 if (data != NULL) {
 /* Print data */
 }
}

int func(void *dummy) {
 if (add_data() != 0) {
 return -1; /* Report error */
 }
 print_data();
 free(tss_get(key));
 return 0;
}

int main(void) {
 thrd_t thread_id[MAX_THREADS];

 /* Create the key before creating the threads */
 if (thrd_success != tss_create(&key, NULL)) {
 /* Handle error */
 }

 /* Create threads that would store specific storage */
 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_create(&thread_id[i], func, NULL)) {
 /* Handle error */
 }
 }

 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_join(thread_id[i], NULL)) {
 /* Handle error */
 }
 }

 tss_delete(key);
 return 0;
}

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: THREAD_MEM_LEAK
Impact: Medium
CWE ID: 401, 404

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”

16 Concurrency Defects

16-108

https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/404.html

“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018b

 Thread-specific memory leak

16-109

Use of signal to kill thread
Uncaught signal kills entire process instead of specific thread

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when you use an uncaught signal to kill a thread. For instance, you use the POSIX
function pthread_kill and send the signal SIGTERM to kill a thread.

Risk

Sending a signal kills the entire process instead of just the thread that you intend to kill.

For instance, the pthread_kill specifications state that if the disposition of a signal is to terminate,
this action affects the entire process.

Fix

Use other mechanisms that are intended to kill specific threads.

For instance, use the POSIX function pthread_cancel to terminate a specific thread.

Examples
Use of pthread_kill to Terminate Threads

#include <signal.h>
#include <pthread.h>

void* func(void *foo) {
 /* Execution of thread */
}

int main(void) {
 int result;
 pthread_t thread;

 if ((result = pthread_create(&thread, NULL, func, 0)) != 0) {
 }
 if ((result = pthread_kill(thread, SIGTERM)) != 0) {
 }

 /* This point is not reached because the process terminates in pthread_kill() */

 return 0;
}

In this example, the pthread_kill function sends the signal SIGTERM to kill a thread. The signal
kills the entire process instead of the thread previously created with pthread_create.

16 Concurrency Defects

16-110

https://man7.org/linux/man-pages/man3/pthread_kill.3.html

Correction — Use pthread_cancel to Terminate Threads

One possible correction is to use the pthread_cancel function. The pthread_cancel terminates a
thread specified by its first argument at a specific cancellation point or immediately, depending on the
thread's cancellation type.

#include <signal.h>
#include <pthread.h>

void* func(void *foo) {
 /* Execution of thread */
}

int main(void) {
 int result;
 pthread_t thread;

 if ((result = pthread_create(&thread, NULL, func, 0)) != 0) {
 /* Handle Error */
 }
 if ((result = pthread_cancel(thread)) != 0) {
 /* Handle Error */
 }

 /* Continue executing */

 return 0;
}

See also:

• pthread_cancel for more information on cancellation types.
• Pthreads for functions that are allowed to be cancellation points.

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: THREAD_KILLED_WITH_SIGNAL
Impact: Low

See Also
Signal call in multithreaded program | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018b

 Use of signal to kill thread

16-111

https://man7.org/linux/man-pages/man3/pthread_cancel.3.html
https://man7.org/linux/man-pages/man7/pthreads.7.html

Use of undefined thread ID
Thread ID from failed thread creation used in subsequent thread functions

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

This defect occurs when a thread creation function such as pthread_create fails but you continue
to use the ID from the thread creation.

For instance, pthread_join uses an undefined thread ID after the previous thread creation failed.
The nonzero return value from pthread_create indicates the failed thread creation.

pthread_t id;
if(0! = pthread_create(&id, attr, start_func, NULL)) {
 ...
 phread_join(id, NULL);
 ...
}

The issue is also flagged if you do not check the return value from a call to pthread_create.

Risk

According to the POSIX standard, if thread creation fails, the contents of the thread ID are undefined.
The use of an undefined thread ID can lead to unpredictable results.

The issue often indicates a programming error. For instance, it is possible that you tested for nonzero
values to determine successful thread creation:

if(0 != pthread_create(&id, attr, start_func, NULL))

instead of zero:

if(0 == pthread_create(&id, attr, start_func, NULL))

Fix

If the use of an undefined thread ID comes from a programming error, fix the error. Otherwise,
remove the thread functions that are using the undefined ID.

Examples
Threads Joined After Failed Thread Creation

#include <stddef.h>
#include <pthread.h>
#define thread_success 0

extern void *thread_func(void *arg);

16 Concurrency Defects

16-112

int main() {
 pthread_t id;
 if(thread_success != pthread_create(&id, NULL, thread_func, NULL)) {
 if(thread_success == pthread_join(id, NULL)) {
 }
 }

 return 0;
}

In this example, if pthread_create returns a nonzero value, thread creation has failed. The value of
*id is undefined. The subsequent call to pthread_join uses this undefined value.

Correction – Join Threads After Successful Thread Creation

One possible correction is to call pthread_join with the thread ID as argument only if
pthread_create returns zero.

#include <stddef.h>
#include <pthread.h>
#define thread_success 0

extern void *thread_func(void *arg);

int main() {
 pthread_t id;
 if(thread_success == pthread_create(&id, NULL, thread_func, NULL)) {
 if(thread_success == pthread_join(id, NULL)) {
 }
 }

 return 0;
}

Return Value from Thread Creation Not Checked

#include <stddef.h>
#include <pthread.h>
#define thread_success 0

extern void *thread_func(void *arg);

int main() {
 pthread_t id;
 pthread_create(&id, NULL, thread_func, NULL);
 if(thread_success == pthread_join(id, NULL)) {
 }

 return 0;
}

In this example, the return value of pthread_create is not checked. If thread creation fails, the
error does not get handled. A possibly undefined thread ID is later used in the pthread_join
function.

 Use of undefined thread ID

16-113

Correction – Handle Errors from Thread Creation

One possible correction is to use the ID from thread creation only if the return value from
pthread_create indicates successful thread creation.

#include <stddef.h>
#include <pthread.h>
#define thread_success 0

extern void *thread_func(void *arg);

int main() {
 pthread_t id;
 if(thread_success == pthread_create(&id, NULL, thread_func, NULL)) {
 if(thread_success == pthread_join(id, NULL)) {
 }
 }

 return 0;
}

Result Information
Group: Concurrency
Language: C
Default: Off
Command-Line Syntax: UNDEFINED_THREAD_ID
Impact: Medium

See Also
Missing or double initialization of thread attribute | Join or detach of a
joined or detached thread

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2019b

16 Concurrency Defects

16-114

Object Oriented Defects

17

*this not returned in copy assignment operator
operator= method does not return a pointer to the current object

Description
This defect occurs when assignment operators such as operator= and operator+= do not return a
reference to *this, where this is a pointer to the current object. If the operator= method does not
return *this, it means that a=b or a.operator=(b) is not returning the assignee a following the
assignment.

For instance:

• The operator returns its parameter instead of a reference to the current object.

That is, the operator has a form MyClass & operator=(const MyClass & rhs) { ...
return rhs; } instead of MyClass & operator=(const MyClass & rhs) { ... return
*this; }.

• The operator returns by value and not reference.

That is, the operator has a form MyClass operator=(const MyClass & rhs) { ...
return *this; } instead of MyClass & operator=(const MyClass & rhs) { ...
return *this; }.

Risk

Users typically expect object assignments to behave like assignments between built-in types and
expect an assignment to return the assignee. For instance, a right-associative chained assignment
a=b=c requires that b=c return the assignee b following the assignment. If your assignment operator
behaves differently, users of your class can face unexpected consequences.

The unexpected consequences occur when the assignment is part of another statement. For instance:

• If the operator= returns its parameter instead of a reference to the current object, the
assignment a=b returns b instead of a. If the operator= performs a partial assignment of data
members, following an assignment a=b, the data members of a and b are different. If you or
another user of your class read the data members of the return value and expect the data
members of a, you might have unexpected results. For an example, see “Return Value of
operator= Same as Argument” on page 17-2.

• If the operator= method returns *this by value and not reference, a copy of *this is returned.
If you expect to modify the result of the assignment using a statement such as
(a=b).modifyValue(), you modify a copy of a instead of a itself.

Fix

Return *this from your assignment operators.

Examples
Return Value of operator= Same as Argument
class MyClass {
 public:

17 Object Oriented Defects

17-2

 MyClass(bool b, int i): m_b(b), m_i(i) {}
 const MyClass& operator=(const MyClass& obj) {
 if (&obj!=this) {
 /* Note: Only m_i is copied. m_b retains its original value. */
 m_i = obj.m_i;
 }
 return obj;
 }
 bool isOk() const { return m_b;}
 int getI() const { return m_i;}
 private:
 bool m_b;
 int m_i;
};

void main() {
 MyClass r0(true, 0), r1(false, 1);
 /* Object calling isOk is r0 and the if block executes. */
 if ((r1 = r0).isOk()) {
 /* Do something */
 }
}

In this example, the operator operator= returns its current argument instead of a reference to
*this.

Therefore, in main, the assignment r1 = r0 returns r0 and not r1. Because the operator= does
not copy the data member m_b, the value of r0.m_b and r1.m_b are different. The following
unexpected behavior occurs.

What You Might Expect What Actually Happens
• The statement (r1 = r0).isOk() returns

r1.m_b which has value false
• The if block does not execute.

• The statement (r1 = r0).isOk() returns
r0.m_b which has value true

• The if block executes.

Correction — Return *this

One possible correction is to return *this from operator=.

class MyClass {
 public:
 MyClass(bool b, int i): m_b(b), m_i(i) {}
 const MyClass& operator=(const MyClass& obj) {
 if (&obj!=this) {
 /* Note: Only m_i is copied. m_b retains its original value. */
 m_i = obj.m_i;
 }
 return *this;
 }
 bool isOk() const { return m_b;}
 int getI() const { return m_i;}
 private:
 bool m_b;
 int m_i;
};

 *this not returned in copy assignment operator

17-3

void main() {
 MyClass r0(true, 0), r1(false, 1);
 /* Object calling isOk is r0 and the if block executes. */
 if ((r1 = r0).isOk()) {
 /* Do something */
 }
}

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: RETURN_NOT_REF_TO_THIS
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

17 Object Oriented Defects

17-4

Base class assignment operator not called
Copy assignment operator does not call copy assignment operators of base subobjects

Description
This defect occurs when a derived class copy assignment operator does not call the copy assignment
operator of its base class.

Risk

If this defect occurs, unless you are initializing the base class data members explicitly in the derived
class assignment operator, the operator initializes the members implicitly by using the default
constructor of the base class. Therefore, it is possible that the base class data members do not get
assigned the right values.

If users of your class expect your assignment operator to perform a complete assignment between
two objects, they can face unintended consequences.

Fix

Call the base class copy assignment operator from the derived class copy assignment operator.

Even if the base class data members are not private, and you explicitly initialize the base class data
members in the derived class copy assignment operator, replace this explicit initialization with a call
to the base class copy assignment operator. Otherwise, determine why you retain the explicit
initialization.

Examples
Base Class Copy Assignment Operator Not Called

class Base0 {
public:
 Base0();
 virtual ~Base0();
 Base0& operator=(const Base0&);
private:
 int _i;
};

class Base1 {
public:
 Base1();
 virtual ~Base1();
 Base1& operator=(const Base1&);
private:
 int _i;
};

class Derived: public Base0, Base1 {
public:
 Derived();

 Base class assignment operator not called

17-5

 ~Derived();
 Derived& operator=(const Derived& d) {
 if (&d == this) return *this;
 Base0::operator=(d);
 _j = d._j;
 return *this;
 }
private:
 int _j;
};

In this example, the class Derived is derived from two classes Base0 and Base1. In the copy
assignment operator of Derived, only the copy assignment operator of Base0 is called. The copy
assignment operator of Base1 is not called.

The defect appears on the copy assignment operator of the derived class. Following are some tips for
navigating in the source code:

• To find the derived class definition, right-click the derived class name and select Go To
Definition.

• To find the base class definition, first navigate to the derived class definition. In the derived class
definition, right-click the base class name and select Go To Definition.

• To find the definition of the base class copy assignment operator, first navigate to the base class
definition. In the base class definition, right-click the operator name and select Go To Definition.

Correction — Call Base Class Copy Assignment Operator

If you want your copy assignment operator to perform a complete assignment, one possible
correction is to call the copy assignment operator of class Base1.

class Base0 {
public:
 Base0();
 virtual ~Base0();
 Base0& operator=(const Base0&);
private:
 int _i;
};

class Base1 {
public:
 Base1();
 virtual ~Base1();
 Base1& operator=(const Base1&);
private:
 int _i;
};

class Derived: public Base0, Base1 {
public:
 Derived();
 ~Derived();
 Derived& operator=(const Derived& d) {
 if (&d == this) return *this;
 Base0::operator=(d);
 Base1::operator=(d);
 _j = d._j;

17 Object Oriented Defects

17-6

 return *this;
 }
private:
 int _j;
};

Result Information
Group: Object oriented
Language: C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: MISSING_BASE_ASSIGN_OP_CALL
Impact: High

See Also
Find defects (-checkers) | Copy constructor not called in initialization list

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

 Base class assignment operator not called

17-7

Base class destructor not virtual
Class cannot behave polymorphically for deletion of derived class objects

Description
This defect occurs when a class has virtual functions but not a virtual destructor.

Risk

The presence of virtual functions indicates that the class is intended for use as a base class.
However, if the class does not have a virtual destructor, it cannot behave polymorphically for
deletion of derived class objects.

If a pointer to this class refers to a derived class object, and you use the pointer to delete the object,
only the base class destructor is called. Additional resources allocated in the derived class are not
released and can cause a resource leak.

Fix

One possible fix is to always use a virtual destructor in a class that contains virtual functions.

Examples
Base Class Destructor Not Virtual

class Base {
 public:
 Base(): _b(0) {};
 virtual void update() {_b += 1;};
 private:
 int _b;
};

class Derived: public Base {
 public:
 Derived(): _d(0) {};
 ~Derived() {_d = 0;};
 virtual void update() {_d += 1;};
 private:
 int _d;
};

In this example, the class Base does not have a virtual destructor. Therefore, if a Base* pointer
points to a Derived object that is allocated memory dynamically, and the delete operation is
performed on that Base* pointer, the Base destructor is called. The memory allocated for the
additional member _d is not released.

The defect appears on the base class definition. Following are some tips for navigating in the source
code:

• To find classes derived from the base class, right-click the base class name and select Search For
All References. Browse through each search result to find derived class definitions.

17 Object Oriented Defects

17-8

• To find if you are using a pointer or reference to a base class to point to a derived class object,
right-click the base class name and select Search For All References. Browse through search
results that start with Base* or Base& to locate pointers or references to the base class. You can
then see if you are using a pointer or reference to point to a derived class object.

Correction — Make Base Class Destructor Virtual

One possible correction is to declare a virtual destructor for the class Base.

class Base {
 public:
 Base(): _b(0) {};
 virtual ~Base() {_b = 0;};
 virtual void update() {_b += 1;};
 private:
 int _b;
};

class Derived: public Base {
 public:
 Derived(): _d(0) {};
 ~Derived() {_d = 0;};
 virtual void update() {_d += 1;};
 private:
 int _d;
};

Result Information
Group: Object oriented
Language: C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: DTOR_NOT_VIRTUAL
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

External Websites
CERT C++ OOP52-CPP

Introduced in R2015b

 Base class destructor not virtual

17-9

https://wiki.sei.cmu.edu/confluence/display/cplusplus/OOP52-CPP.+Do+not+delete+a+polymorphic+object+without+a+virtual+destructor

Bytewise operations on nontrivial class object
Value representations may be improperly initialized or compared

Description
This defect occurs when you use C Standard library functions to perform bytewise operation on non-
trivial or non-standard layout class type objects. For definitions of trivial and standard layout classes,
see the C++ Standard, [class], paragraphs 6 and 7 respectively.

The checker raises a defect when:

• You initialize or copy non-trivial class type objects using these functions:

• std::memset
• std::memcpy
• std::strcpy
• std::memmove

• You compare non-standard layout class type objects using these functions:

• std::memcmp
• std::strcmp

Note that an incomplete class can be potentially nontrivial.

The checker does not raise a defect if the bytewise operation is performed through an alias. For
example no defect is raised in the bytewise comparison and copy operations in this code. The
bytewise operations use dptr and sptr, the aliases of non-trivial or non-standard layout class objects
d and s.
void func(NonTrivialNonStdLayout *d, const NonTrivialNonStdLayout *s)
{
 void* dptr = (void*)d;
 const void* sptr = (void*)s;
 // ...
 // ...
 // ...
 if (!std::memcmp(dptr, sptr, sizeof(NonTrivialNonStdLayout))) {
 (void)std::memcpy(dptr, sptr, sizeof(NonTrivialNonStdLayout));
 // ...
 }
}

Risk

Performing bytewise comparison operations by using C Standard library functions on non-trivial or
non-standard layout class type object might result in unexpected values due to implementation
details. The object representation depends on the implementation details, such as the order of private
and public members, or the use of virtual function pointer tables to represent the object.

Performing bytewise setting operations by using C Standard library functions on non-trivial or non-
standard layout class type object can change the implementation details. The operation might result
in abnormal program behavior or a code execution vulnerability. For instance, if the address of a
member function is overwritten, the call to this function invokes an unexpected function.

17 Object Oriented Defects

17-10

https://www.iso.org/standard/68564.html

Fix

To perform bytewise operations non-trivial or non-standard layout class type object, use these C++
special member functions instead of C Standard library functions.

C Standard Library Functions C++ Member Functions
std::memset Class constructor
std::memcpy

std::strcpy

std::memmove

Class copy constructor

Class move constructor

Copy assignment operator

Move assignment operator
std::memcmp

std::strcmp

operator<()

operator>()

operator==()

operator!=()

Examples
Using memset with non-trivial class object
#include <cstring>
#include <iostream>
#include <utility>

class nonTrivialClass
{
 int scalingFactor;
 int otherData;
public:
 nonTrivialClass() : scalingFactor(1) {}
 void set_other_data(int i);
 int f(int i)
 {
 return i / scalingFactor;
 }
 // ...
};

void func()
{
 nonTrivialClass c;
 // ... Code that mutates c ...
 std::memset(&c, 0, sizeof(nonTrivialClass));
 std::cout << c.f(100) << std::endl;
}

In this example, func() uses std::memset to reinitialize non-trivial class object c after it is first
initialized with its default constructor. This bytewise operation might not properly initialize the value
representation of c.

 Bytewise operations on nontrivial class object

17-11

Correction — Define Function Template That Uses std::swap

One possible correction is to define a function template clear() that uses std::swap to perform a
swap operation. The call to clear()properly reinitializes object c by swapping the contents of c and
default initialized object empty.

 #include <cstring>
#include <iostream>
#include <utility>

class nonTrivialClass
{
 int scalingFactor;
 int otherData;
public:
 nonTrivialClass() : scalingFactor(1) {}
 void set_other_data(int i);
 int f(int i)
 {
 return i / scalingFactor;
 }
 // ...
};

template <typename T>
T& clear(T& o)
{
 using std::swap;
 T empty;
 swap(o, empty);
 return o;
}

void func()
{
 nonTrivialClass c;
 // ... Code that mutates c ...

 clear(c);
 std::cout << c.f(100) << std::endl;
}

Result Information
Group: Object Oriented
Language: C++
Default: Off
Command-Line Syntax: MEMOP_ON_NONTRIVIAL_OBJ
Impact: Medium

See Also
Find defects (-checkers) | Memory comparison of padding data | Memory comparison
of strings | Copy of overlapping memory

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”

17 Object Oriented Defects

17-12

“Address Polyspace Results Through Bug Fixes or Justifications”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2019b

 Bytewise operations on nontrivial class object

17-13

Conversion or deletion of incomplete class pointer
You delete or cast to a pointer to an incomplete class

Description
This defect occurs when you delete or cast to a pointer to an incomplete class. An incomplete class is
one whose definition is not visible at the point where the class is used.

For instance, the definition of class Body is not visible when the delete operator is called on a
pointer to Body:

class Handle {
 class Body *impl;
public:
 ~Handle() { delete impl; }
 // ...
};

Risk

When you delete a pointer to an incomplete class, it is not possible to call any nontrivial destructor
that the class might have. If the destructor performs cleanup activities such as memory deallocation,
these activities do not happen.

A similar problem happens, for instance, when you downcast to a pointer to an incomplete class
(downcasting is casting from a pointer to a base class to a pointer to a derived class). At the point of
downcasting, the relationship between the base and derived class is not known. In particular, if the
derived class inherits from multiple classes, at the point of downcasting, this information is not
available. The downcasting cannot make the necessary adjustments for multiple inheritance and the
resulting pointer cannot be dereferenced.

A similar statement can be made for upcasting (casting from a pointer to derived class to a pointer to
a base class).

Fix

When you delete or downcast to a pointer to a class, make sure that the class definition is visible.

Alternatively, you can perform one of these actions:

• Instead of a regular pointer, use the std::shared_ptr type to point to the incomplete class.
• When downcasting, make sure that the result is valid. Write error-handling code for invalid

results.

Examples
Deletion of Pointer to Incomplete Class

class Handle {
 class Body *impl;
public:

17 Object Oriented Defects

17-14

 ~Handle() { delete impl; }
 // ...
};

In this example, the definition of class Body is not visible when the pointer to Body is deleted.

Correction — Define Class Before Deletion

One possible correction is to make sure that the class definition is visible when a pointer to the class
is deleted.

class Handle {
 class Body *impl;
public:
 ~Handle();
 // ...
};

// Elsewhere
class Body { /* ... */ };

Handle::~Handle() {
 delete impl;
}

Correction — Use std::shared_ptr

Another possible correction is to use the std::shared_ptr type instead of a regular pointer.

#include <memory>

class Handle {
 std::shared_ptr<class Body> impl;
 public:
 Handle();
 ~Handle() {}
 // ...
};

Downcasting to Pointer to Incomplete Class

File1.h:

class Base {
protected:
 double var;
public:
 Base() : var(1.0) {}
 virtual void do_something();
 virtual ~Base();
};

File2.h:

void funcprint(class Derived *);
class Base *get_derived();

File1.cpp:

 Conversion or deletion of incomplete class pointer

17-15

#include "File1.h"
#include "File2.h"

void getandprint() {
 Base *v = get_derived();
 funcprint(reinterpret_cast<class Derived *>(v));
}

File2.cpp:

#include "File2.h"
#include "File1.h"
#include <iostream>

class Base2 {
protected:
 short var2;
public:
 Base2() : var2(12) {}
};

class Derived : public Base2, public Base {
 float var_derived;
public:
 Derived() : Base2(), Base(), var_derived(1.2f) {}
 void do_something()
 {
 std::cout << "var_derived: "
 << var_derived << ", var : " << var
 << ", var2: " << var2 << std::endl;
 }
 };

void funcprint(Derived *d) {
 d->do_something();
}

Base *get_derived() {
 return new Derived;
}

In this example, the definition of class Derived is not visible in File1.cpp when a Base* pointer to
downcast to a Derived* pointer.

In File2.cpp, class Derived derives from two classes, Base and Base2. This information about
multiple inheritance is not available at the point of downcasting in File1.cpp. The result of
downcasting is passed to the function funcprint and dereferenced in the body of funcprint.
Because the downcasting was done with incomplete information, the dereference can be invalid.
Correction — Define Class Before Downcasting

One possible correction is to define the class Derived before downcasting a Base* pointer to a
Derived* pointer.

In this corrected example, the downcasting is done in File2.cpp in the body of funcprint at a
point where the definition of class Derived is visible. The downcasting is not done in File1.cpp
where the definition of Derived is not visible. The changes from the previous incorrect example are
highlighted.

17 Object Oriented Defects

17-16

File1_corr.h:

class Base {
protected:
 double var;
public:
 Base() : var(1.0) {}
 virtual void do_something();
 virtual ~Base();
};

File2_corr.h:

void funcprint(class Base *);
class Base *get_derived();

File1.cpp:

#include "File1_corr.h"
#include "File2_corr.h"

void getandprint() {
 Base *v = get_derived();
 funcprint(v);
}

File2.cpp:

#include "File2_corr.h"
#include "File1_corr.h"
#include <iostream>

class Base2 {
protected:
 short var2;
public:
 Base2() : var2(12) {}
};

class Derived : public Base2, public Base {
 float var_derived;

public:
 Derived() : Base2(), Base(), var_derived(1.2f) {}
 void do_something()
 {
 std::cout << "var_derived: "
 << var_derived << ", var : " << var
 << ", var2: " << var2 << std::endl;
 }
};

void funcprint(Base *d) {
 Derived *temp = dynamic_cast<Derived*>(d);
 if(temp) {
 d->do_something();
 }
 else {

 Conversion or deletion of incomplete class pointer

17-17

 //Handle error
 }
}

Base *get_derived() {
 return new Derived;
}

Result Information
Group: Object Oriented
Language: C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: INCOMPLETE_CLASS_PTR
Impact: Medium

See Also
Delete of void pointer | MISRA C++:2008 Rule 5-2-4 | MISRA C++:2008 Rule 5-2-7 |
MISRA C++:2008 Rule 5-2-8 | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018b

17 Object Oriented Defects

17-18

Copy constructor not called in initialization list
Copy constructor does not call copy constructors of some members or base classes

Description
This defect occurs when the copy constructor of a class does not call the copy constructor of the
following in its initialization list:

• One or more of its members.
• Its base classes when applicable.

The defect occurs even when a base class constructor is called instead of the base class copy
constructor.

Risk

The calls to the copy constructors can be done only from the initialization list. If the calls are missing,
it is possible that an object is only partially copied.

• If the copy constructor of a member is not called, it is possible that the member is not copied.
• If the copy constructor of a base class is not called, it is possible that the base class members are

not copied.

Fix

If you want your copy constructor to perform a complete copy, call the copy constructor of all
members and all base classes in its initialization list.

Examples
Base Class Copy Constructor Not Called

class Base {
public:
 Base();
 Base(int);
 Base(const Base&);
 virtual ~Base();
private:
 int ib;
};

class Derived:public Base {
public:
 Derived();
 ~Derived();
 Derived(const Derived& d): Base(), i(d.i) { }
private:
 int i;
};

 Copy constructor not called in initialization list

17-19

In this example, the copy constructor of class Derived calls the default constructor, but not the copy
constructor of class Base.

The defect appears on the : symbol in the copy constructor definition. Following are some tips for
navigating in the source code:

• To navigate to the class definition, right-click a member that is initialized in the constructor. Select
Go To Definition. In the class definition, you see the class members, including those members
whose copy constructors are not called.

• To navigate to a base class definition, first navigate to the derived class definition. In the derived
class definition, where the derived class inherits from a base class, right-click the base class name
and select Go To Definition.

Correction — Call Base Class Copy Constructor

One possible correction is to call the copy constructor of class Base from the initialization list of the
Derived class copy constructor.

class Base {
public:
 Base();
 Base(int);
 Base(const Base&);
 virtual ~Base();
private:
 int ib;
};

class Derived:public Base {
public:
 Derived();
 ~Derived();
 Derived(const Derived& d): Base(d), i(d.i) { }
private:
 int i;
};

Result Information
Group: Object oriented
Language: C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: MISSING_COPY_CTOR_CALL
Impact: High

See Also
Find defects (-checkers) | Base class assignment operator not called

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

17 Object Oriented Defects

17-20

Introduced in R2015b

 Copy constructor not called in initialization list

17-21

Copy operation modifying source operand
Copy operation modifies data member of source object

Description
This defect occurs when a copy constructor or copy assignment operator modifies a mutable data
member of its source operand.

For instance, this copy constructor A modifies the data member m of its source operand other:

class A {
 mutable int m;

public:
 ...
 A(const A &other) : m(other.m) {
 other.m = 0; //Modification of source
 }
}

Risk

A copy operation with a copy constructor (or copy assignment operator):

className new_object = old_object; //Calls copy constructor of className

copies its source operand old_object to its destination operand new_object. After the operation,
you expect the destination operand to be a copy of the unmodified source operand. If the source
operand is modified during copy, this assumption is violated.

Fix

Do not modify the source operand in the copy operation.

If you are modifying the source operand in a copy constructor to implement a move operation, use a
move constructor instead. Move constructors are defined in the C++11 standard and later.

Examples
Copy Constructor Modifying Source

#include <algorithm>
#include <vector>

class A {
 mutable int m;

public:
 A() : m(0) {}
 explicit A(int m) : m(m) {}

 A(const A &other) : m(other.m) {

17 Object Oriented Defects

17-22

 other.m = 0;
 }

 A& operator=(const A &other) {
 if (&other != this) {
 m = other.m;
 other.m = 0;
 }
 return *this;
 }

 int get_m() const { return m; }
};

void f() {
 std::vector<A> v{10};
 A obj(12);
 std::fill(v.begin(), v.end(), obj);
}

In this example, a vector of ten objects of type A is created. The std::fill function copies an object
of type A, which has a data member with value 12, to each of the ten objects. After this operation, you
might expect that all ten objects in the vector have a data member with value 12.

However, the first copy modifies the data member of the source to the value 0. The remaining nine
copies copy this value. After the std::fill call, the first object in the vector has a data member
with value 12 and the remaining objects have data members with value 0.
Correction — Use Move Constructor for Modifying Source

Do not modify data members of the source operand in a copy constructor or copy assignment
operator. If you want your class to have a move operation, use a move constructor instead of a copy
constructor.

In this corrected example, the copy constructor and copy assignment operator of class A do not
modify the data member m. A separate move constructor modifies the source operand.

#include <algorithm>
#include <vector>

class A {
 int m;

public:
 A() : m(0) {}
 explicit A(int m) : m(m) {}

 A(const A &other) : m(other.m) {}
 A(A &&other) : m(other.m) { other.m = 0; }

 A& operator=(const A &other) {
 if (&other != this) {
 m = other.m;
 }
 return *this;
 }

 Copy operation modifying source operand

17-23

 //Move constructor
 A& operator=(A &&other) {
 m = other.m;
 other.m = 0;
 return *this;
 }

 int get_m() const { return m; }
};

void f() {
 std::vector<A> v{10};
 A obj(12);
 std::fill(v.begin(), v.end(), obj);
}

Result Information
Group: Object Oriented
Language: C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: COPY_MODIFYING_SOURCE
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

External Websites
Move constructors (C++11 and beyond)

Introduced in R2018b

17 Object Oriented Defects

17-24

https://en.cppreference.com/w/cpp/language/move_constructor

Incompatible types prevent overriding
Derived class method hides a virtual base class method instead of overriding it

Description
This defect occurs when a derived class method has the same name and number of parameters as a
virtual base class method but:

• The parameter lists differ in at least one parameter type.
• The parameter lists differ in the presence or absence of qualifiers such as const.

The derived class method hides the virtual base class method instead of overriding it.

Risk

• You might inadvertently hide the base class method instead of overriding it with the derived class
method.

• If the base class method is hidden and you use a derived class object to call the method with the
base class parameters, the derived class method is called instead. For the parameters whose types
do not match the arguments that you pass, a cast takes place if possible. Otherwise, a compilation
failure occurs.

Fix

To override a base class virtual method with a derived class method, declare the methods by using
identical parameter lists. For instance, change the parameter type or add a const qualifier if
required.

In C++11 and later, you can declare intended overriding methods in the derived class by using the
specifier override. When you declare the derived class methods by using the specifier override,
the compilation fails if the parameter lists of the base class method and the derived class method are
different. The derived class methods cannot hide base class methods inadvertently and overriding of
the base class virtual methods is ensured.

Otherwise, add the line using Base_class_name::method_name to the derived class declaration.
You can then access the base class method using an object of the derived class.

Examples
typedef Causing Virtual Function Hiding in Derived Class

class Base {
public:
 Base();
 virtual ~Base();
 virtual void func(float i);
 virtual void funcp(float* i);
 virtual void funcr(float& i);
};

 Incompatible types prevent overriding

17-25

typedef double Float;

class Derived: public Base {
public:
 Derived();
 ~Derived();
 void func(Float i);
 void funcp(Float* i);
 void funcr(Float& i);
};

In this example, because of the statement typedef double Float;, the Derived class methods
func, funcp, and funcr have double arguments while the Base class methods with the same name
have float arguments. Therefore, you cannot access the Base class methods using a Derived class
object.

The defect appears on the method that hides a base class method. To find which base class method is
hidden:

1 Navigate to the base class definition. On the Source pane, right-click the base class name and
select Go To Definition.

2 In the base class definition, identify the virtual method that has the same name as the derived
class method name.

Correction — Unhide Base Class Method

One possible correction is to use the same argument type for the base and derived class methods to
enable overriding. Otherwise, if you want to call the Base class methods with the float arguments
using a Derived class object, add the line using Base::method_name to the Derived class
declaration.

class Base {
public:
 Base();
 virtual ~Base();
 virtual void func(float i);
 virtual void funcp(float* i);
 virtual void funcr(float& i);
};

typedef double Float;

class Derived: public Base {
public:
 Derived();
 ~Derived();
 using Base::func;
 using Base::funcp;
 using Base::funcr;
 void func(Float i);
 void funcp(Float* i);
 void funcr(Float& i);
};

Correction — Specify Derived Class Method by using override

Another correction is to explicitly specify the derived class methods as overriding methods by using
the specifier override. This way, it is clear that you intend to override the base class methods in the

17 Object Oriented Defects

17-26

derived class. If the overriding methods have different parameter lists than their base class
counterparts, the code does not compile. As a result, the derived class methods cannot hide the base
class methods.

class Base {
public:
 Base();
 virtual ~Base();
 virtual void func(float i);
 virtual void funcp(float* i);
 virtual void funcr(float& i);
};

typedef double Float;

class Derived: public Base {
public:
 Derived();
 ~Derived();
// Compilation error
// void func(Float i) override;
// void funcp(Float* i) override;
// void funcr(Float& i) override;

 void func(float i) override;
 void funcp(float* i) override;
 void funcr(float& i) override;
};

The commented out method definitions have different parameter lists compared to their base class
counterparts. Because the derived class methods are declared by using the specifier override, the
differing parameter lists do not hide the base class methods. Instead, the code fails to compile. Using
the override specifier enforces the rule that virtual methods in base and derived classes must have
identical parameter lists.

const Qualifier Missing in Derived Class Method

namespace Missing_Const {
class Base {
public:
 virtual void func(int) const ;
 virtual ~Base() ;
} ;

class Derived : public Base {
public:
 virtual void func(int) ;

} ;
}

In this example, Derived::func does not have a const qualifier but Base::func does. Therefore,
Derived::func does not override Base::func.

Correction — Add const Qualifier to Derived Class Method

To enable overriding, add the const qualifier to the derived class method declaration.

 Incompatible types prevent overriding

17-27

namespace Missing_Const {
class Base {
public:
 virtual void func(int) const ;
 virtual ~Base() ;
} ;

class Derived : public Base {
public:
 virtual void func(int) const;

} ;
}

To avoid hiding base class methods or turning virtual methods into nonvirtual methods
unintentionally:

• Declare virtual methods in the base class by using the specifier virtual.
• Declare virtual methods in a nonfinal derived base class by using the specifier override.
• Declare virtual methods in the final class by using the specifier final.

Value Instead of Reference in Derived Class Method

namespace Missing_Ref {

class Obj {
 int data;
};

class Base {
public:
 virtual void func(Obj& o);
 virtual ~Base() ;
} ;

class Derived : public Base {
public:
 virtual void func(Obj o) ;

} ;
}

In this example, Derived::func accepts an Obj parameter by value but Base::func accepts an
Obj parameter by reference. Therefore, Derived::func does not override Base::func.

Correction — Use Reference for Parameter of Derived Class Method

To enable overriding, pass the derived class method parameter by reference.

namespace Missing_Ref {

class Obj {
 int data;
};

class Base {
public:

17 Object Oriented Defects

17-28

 virtual void func(Obj& o);
 virtual ~Base() ;
} ;

class Derived : public Base {
public:
 virtual void func(Obj& o) ;

} ;
}

To avoid hiding base class methods or turning virtual methods into nonvirtual methods
unintentionally:

• Declare virtual methods in the base class by using the specifier virtual.
• Declare virtual methods in a nonfinal derived base class by using the specifier override.
• Declare virtual methods in the final class by using the specifier final.

Result Information
Group: Object oriented
Language: C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: VIRTUAL_FUNC_HIDING
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

 Incompatible types prevent overriding

17-29

Lambda used as typeid operand
typeid is used on lambda expression

Description
This defect occurs when you use typeid on a lambda expression.

Risk

According to the C++ Standard, the type of a lambda expression is a unique, unnamed class type.
Because the type is unique, another variable or expression cannot have the same type. Use of typeid
on a lambda expression indicates that you expect a second variable or expression to have the same
type as the operand lambda expression. Using the type of a lambda expression in this way can lead to
unexpected results.

typeid returns the data type of its operand. Typically the operator is used to compare the types of
two variables. For instance:

(typeid(var1) == typeid(var2))

compares the types of var1 and var2. This use does not apply to a lambda expression, which has a
unique type.

Fix

Avoid using the typeid operator on lambda expressions.

Examples
Use of typeid on Lambda Expressions

#include <cstdint>
#include <typeinfo>

 void func()
 {
 auto lambdaFirst = []() -> std::int8_t { return 1; };
 auto lambdaSecond = []() -> std::int8_t { return 1; };

 if (typeid(lambdaFirst) == typeid(lambdaSecond))
 {
 // ...
 }
 }

The use of typeid on lambda expressions can lead to unexpected results. The comparison above is
false even though lambdaFirst and lambdaSecond appear to have the same body.
Correction – Assign Lambda Expression to Function Object Before Using typeid

One possible correction is to assign the lambda expression to a function object and then use the
typeid operator on the function objects for comparison.

17 Object Oriented Defects

17-30

#include <cstdint>
#include <functional>
#include <typeinfo>

 void func()
 {
 std::function<std::int8_t()> functionFirst = []() { return 1; };
 std::function<std::int8_t()> functionSecond = []() { return 1; };

 if (typeid(functionFirst) == typeid(functionSecond))
 {
 // ...
 }
 }

Result Information
Group: Object Oriented
Language: C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: LAMBDA_TYPE_MISUSE
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2019b

 Lambda used as typeid operand

17-31

Member not initialized in constructor
Constructor does not initialize some members of a class

Description
This defect occurs when a class constructor has at least one execution path on which it does not
initialize some data members of the class.

The defect does not appear in the following cases:

• Empty constructors.
• The non-initialized member is not used in the code.

Risk

The members that the constructor does not initialize can have unintended values when you read them
later.

Initializing all members in the constructor makes it easier to use your class. If you call a separate
method to initialize your members and then read them, you can avoid uninitialized values. However,
someone else using your class can read a class member before calling your initialization method.
Because a constructor is called when you create an object of the class, if you initialize all members in
the constructor, they cannot have uninitialized values later on.

Fix

The best practice is to initialize all members in your constructor, preferably in an initialization list.

Examples
Non-Initialized Member

class MyClass {
public:
 explicit MyClass(int);
private:
 int _i;
 char _c;
};

MyClass::MyClass(int flag) {
 if(flag == 0) {
 _i = 0;
 _c = 'a';
 }
 else {
 _i = 1;
 }
}

In this example, if flag is not 0, the member _c is not initialized.

17 Object Oriented Defects

17-32

The defect appears on the closing brace of the constructor. Following are some tips for navigating in
the source code:

• On the Result Details pane, see which members are not initialized.
• To navigate to the class definition, right-click a member that is initialized in the constructor. Select

Go To Definition. In the class definition, you can see all the members, including those members
that are not initialized in the constructor.

Correction — Initialize All Members on All Execution Paths

One possible correction is to initialize all members of the class MyClass for all values of flag.

class MyClass {
public:
 explicit MyClass(int);
private:
 int _i;
 char _c;
};

MyClass::MyClass(int flag) {
 if(flag == 0) {
 _i = 0;
 _c = 'a';
 }
 else {
 _i = 1;
 _c = 'b';
 }
}

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: NON_INIT_MEMBER
Impact: Medium
CWE ID: 456, 457, 908

See Also
Find defects (-checkers) | Copy constructor not called in initialization list

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

 Member not initialized in constructor

17-33

https://cwe.mitre.org/data/definitions/456.html
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/908.html

Missing explicit keyword
Constructor or user-defined conversion operator missing the explicit specifier

Description
This defect occurs when the declaration or in-class definition of a constructor or user-defined
conversion operator does not use the explicit specifier. The explicit specifier prevents implicit
conversion from a variable of another type to the current class type.

The defect applies to:

• One-parameter constructors.
• Constructors where all but one parameters have default values.

For instance, MyClass::MyClass(float f, bool b=true){}.
• User-defined conversation operators.

For instance, operator int() {} converts a variable of the current class type to an int
variable.

Risk

If you do not declare a constructor or conversion operator explicit, compilers can perform implicit
and often unintended type conversions to or from the class type with possibly unexpected results.

The implicit conversion using a constructor can occur, for instance, when a function accepts a
parameter of the class type but you call the function with an argument of a different type. The call to
func here causes an implicit conversion from type int to myClass:

class myClass {}{
 ...
 myClass(int) {...}
};
void func(myClass);
func(0);

The reverse implicit conversion can occur when using a user-defined conversion operator. For
instance, you pass the class type as argument but the function has a parameter of a different type.
The call to func here causes an implicit conversion from type myClass to int:

class myClass {} {
 ...
 operator int() {...}
};
myClass myClassObject;

void func(int) {...}
func(myClassObject);

17 Object Oriented Defects

17-34

Fix

For better readability of your code and to prevent implicit conversions, in the declaration or in-class
definition of the constructor or conversion operator, place the explicit keyword before the
constructor or operator name. You can then detect all implicit conversions as compilation errors and
convert them to explicit conversions.

Examples
Missing explicit Keyword on Constructor

class MyClass {
public:
 MyClass(int val);
private:
 int val;
};

void func(MyClass);

void main() {
 MyClass MyClassObject(0);

 func(MyClassObject); // No conversion
 func(MyClass(0)); // Explicit conversion
 func(0); // Implicit conversion
}

In this example, the constructor of MyClass is not declared explicit. Therefore, the call func(0)
can perform an implicit conversion from int to MyClass.

Correction — Use explicit Keyword

One possible correction is to declare the constructor of MyClass as explicit. If an operation in
your code performs an implicit conversion, the compiler generates an error. Therefore, using the
explicit keyword, you detect unintended type conversions in the compilation stage.

For instance, in function main below, if you add the statement func(0); that performs implicit
conversion, the code does not compile.

class MyClass {
public:
 explicit MyClass(int val);
private:
 int val;
};

void func(MyClass);

void main() {
 MyClass MyClassObject(0);

 func(MyClassObject); // No conversion
 func(MyClass(0)); // Explicit conversion
}

 Missing explicit keyword

17-35

Incorrect Argument Order Preventable Through explicit Keyword

class Month {
 int val;
public:
 Month(int m): val(m) {}
 ~Month() {}
};

class Day {
 int val;
public:
 Day(int d): val(d) {}
 ~Day() {}
};

class Year {
 int val;
public:
 Year(int y): val(y) {}
 ~Year() {}
};

class Date {
 Month mm;
 Day dd;
 Year yyyy;
public:
 Date(const Month & m, const Day & d, const Year & y):mm(m), dd(d), yyyy(y) {}
};

void main() {
 Date(20,1,2000); //Implicit conversion, wrong argument order undetected
}

In this example, the constructors for classes Month, Day and Year do not have an explicit
keyword. They allow implicit conversion from int variables to Month, Day and Year variables.

When you create a Date variable and use an incorrect argument order for the Date constructor,
because of the implicit conversion, your code compiles. You might not detect that you have switched
the month value and the day value.

Correction — Use explicit Keyword

If you use the explicit keyword for the constructors of classes Month, Day and Year, you cannot
call the Date constructor with an incorrect argument order.

• If you call the Date constructor with int variables, your code does not compile because the
explicit keyword prevents implicit conversion from int variables.

• If you call the Date constructor with the arguments explicitly converted to Month, Day and Year,
and have the wrong argument order, your code does not compile because of the argument type
mismatch.

class Month {
 int val;
public:
 explicit Month(int m): val(m) {}

17 Object Oriented Defects

17-36

 ~Month() {}
};

class Day {
 int val;
public:
 explicit Day(int d): val(d) {}
 ~Day() {}
};

class Year {
 int val;
public:
 explicit Year(int y): val(y) {}
 ~Year() {}
};

class Date {
 Month mm;
 Day dd;
 Year yyyy;
public:
 Date(const Month & m, const Day & d, const Year & y):mm(m), dd(d), yyyy(y) {}
};

void main() {
 Date(Month(1),Day(20),Year(2000));
 // Date(20,1,2000); - Does not compile
 // Date(Day(20), Month(1), Year(2000)); - Does not compile
}

Missing explicit Keyword on Conversion Operator

#include <cstdint>

class MyClass {
public:
 explicit MyClass(int32_t arg): val(arg) {};
 operator int32_t() const { return val; }
 explicit operator bool() const {
 if (val>0) {
 return true;
 }
 return false;
 }
private:
 int32_t val;
};

void useIntVal(int32_t);
void useBoolVal(bool);

void func() {
 MyClass MyClassObject{0};
 useIntVal(MyClassObject);
 useBoolVal(static_cast<bool>(MyClassObject));
}

 Missing explicit keyword

17-37

In this example, the conversion operator operator int32_t() is not defined with the explicit
specifier and allows implicit conversions. The conversion operator operator bool() is defined
explicit.

When converting to a bool variable, for instance, in the call to useBoolVal, the explicit keyword
in the conversion operator ensures that you have to perform an explicit conversion from the type
MyClass to bool. There is no such requirement when converting to an int32_t variable. In the call
to useIntVal, an implicit conversion is performed.

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: MISSING_EXPLICIT_KEYWORD
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

17 Object Oriented Defects

17-38

Missing virtual inheritance
A base class is inherited virtually and nonvirtually in the same hierarchy

Description
This defect occurs when:

• A class is derived from multiple base classes, and some of those base classes are themselves
derived from a common base class.

For instance, a class Final is derived from two classes, Intermediate_left and
Intermediate_right. Both Intermediate_left and Intermediate_right are derived from
a common class, Base.

• At least one of the inheritances from the common base class is virtual and at least one is not
virtual.

For instance, the inheritance of Intermediate_right from Base is virtual. The inheritance of
Intermediate_left from Base is not virtual.

Risk

If this defect appears, multiple copies of the base class data members appear in the final derived
class object. To access the correct copy of the base class data member, you have to qualify the
member and method name appropriately in the final derived class. The development is error-prone.

For instance, when the defect occurs, two copies of the base class data members appear in an object
of class Final. If you do not qualify method names appropriately in the class Final, you can assign a
value to a Base data member but not retrieve the same value.

• You assign the value using a Base method accessed through Intermediate_left. Therefore,
you assign the value to one copy of the Base member.

• You retrieve the value using a Base method accessed through Intermediate_right. Therefore,
you retrieve a different copy of the Base member.

Fix

Declare all the intermediate inheritances as virtual when a class is derived from multiple base
classes that are themselves derived from a common base class.

If you indeed want multiple copies of the Base data members as represented in the intermediate
derived classes, use aggregation instead of inheritance. For instance, declare two objects of class
Intermediate_left and Intermediate_right in the Final class.

Examples
Missing Virtual Inheritance

#include <stdio.h>
class Base {
public:

 Missing virtual inheritance

17-39

 explicit Base(int i): m_b(i) {};
 virtual ~Base() {};
 virtual int get() const {
 return m_b;
 }
 virtual void set(int b) {
 m_b = b;
 }
private:
 int m_b;
};

class Intermediate_left: virtual public Base {
public:
 Intermediate_left():Base(0), m_d1(0) {};
private:
 int m_d1;
};

class Intermediate_right: public Base {
public:
 Intermediate_right():Base(0), m_d2(0) {};
private:
 int m_d2;
};

class Final: public Intermediate_left, Intermediate_right {
public:
 Final(): Base(0), Intermediate_left(), Intermediate_right() {};
 int get() const {
 return Intermediate_left::get();
 }
 void set(int b) {
 Intermediate_right::set(b);
 }
 int get2() const {
 return Intermediate_right::get();
 }
};

int main(int argc, char* argv[]) {
 Final d;
 int val = 12;
 d.set(val);
 int res = d.get();
 printf("d.get=%d\n",res); // Result: d.get=0
 printf("d.get2=%d\n",d.get2()); // Result: d.get2=12
 return res;
}

In this example, Final is derived from both Intermediate_left and Intermediate_right.
Intermediate_left is derived from Base in a non-virtual manner and Intermediate_right is
derived from Base in a virtual manner. Therefore, two copies of the base class and the data
member m_b are present in the final derived class,

Both derived classes Intermediate_left and Intermediate_right do not override the Base
class methods get and set. However, Final overrides both methods. In the overridden get method,

17 Object Oriented Defects

17-40

it calls Base::get through Intermediate_left. In the overridden set method, it calls
Base::set through Intermediate_right.

Following the statement d.set(val), Intermediate_right’s copy of m_b is set to 12. However,
Intermediate_left’s copy of m_b is still zero. Therefore, when you call d.get(), you obtain a
value zero.

Using the printf statements, you can see that you retrieve a value that is different from the value
that you set.

The defect appears in the final derived class definition and on the name of the class that are derived
virtually from the common base class. Following are some tips for navigating in the source code:

• To find the definition of a class, on the Source pane, right-click the class name and select Go To
Definition.

• To navigate up the class hierarchy, first navigate to the intermediate class definition. In the
intermediate class definition, right-click a base class name and select Go To Definition.

Correction — Make Both Inheritances Virtual

One possible correction is to declare both the inheritances from Base as virtual.

Even though the overridden get and set methods in Final still call Base::get and Base::set
through different classes, only one copy of m_b exists in Final.

#include <stdio.h>
class Base {
public:
 explicit Base(int i): m_b(i) {};
 virtual ~Base() {};
 virtual int get() const {
 return m_b;
 }
 virtual void set(int b) {
 m_b = b;
 }
private:
 int m_b;
};

class Intermediate_left: virtual public Base {
public:
 Intermediate_left():Base(0), m_d1(0) {};
private:
 int m_d1;
};

class Intermediate_right: virtual public Base {
public:
 Intermediate_right():Base(0), m_d2(0) {};
private:
 int m_d2;
};

class Final: public Intermediate_left, Intermediate_right {
public:
 Final(): Base(0), Intermediate_left(), Intermediate_right() {};

 Missing virtual inheritance

17-41

 int get() const {
 return Intermediate_left::get();
 }
 void set(int b) {
 Intermediate_right::set(b);
 }
 int get2() const {
 return Intermediate_right::get();
 }
};

int main(int argc, char* argv[]) {
 Final d;
 int val = 12;
 d.set(val);
 int res = d.get();
 printf("d.get=%d\n",res); // Result: d.get=12
 printf("d.get2=%d\n",d.get2()); // Result: d.get2=12
 return res;
}

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: MISSING_VIRTUAL_INHERITANCE
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

17 Object Oriented Defects

17-42

Object slicing
Derived class object passed by value to function with base class parameter

Description
This defect occurs when you pass a derived class object by value to a function, but the function
expects a base class object as parameter.

Risk

If you pass a derived class object by value to a function, you expect the derived class copy constructor
to be called. If the function expects a base class object as parameter:

1 The base class copy constructor is called.
2 In the function body, the parameter is considered as a base class object.

In C++, virtual methods of a class are resolved at run time according to the actual type of the
object. Because of object slicing, an incorrect implementation of a virtual method can be called.
For instance, the base class contains a virtual method and the derived class contains an
implementation of that method. When you call the virtual method from the function body, the base
class method is called, even though you pass a derived class object to the function.

Fix

One possible fix is to pass the object by reference or pointer. Passing by reference or pointer does not
cause invocation of copy constructors. If you do not want the object to be modified, use a const
qualifier with your function parameter.

Another possible fix is to overload the function with another function that accepts the derived class
object as parameter.

Examples
Function Call Causing Object Slicing
#include <iostream>

class Base {
public:
 explicit Base(int b) {
 _b = b;
 }
 virtual ~Base() {}
 virtual int update() const;
protected:
 int _b;
};

class Derived: public Base {
public:
 explicit Derived(int b):Base(b) {}

 Object slicing

17-43

 int update() const;
};

//Class methods definition

int Base::update() const {
 return (_b + 1);
}

int Derived::update() const {
 return (_b -1);
}

//Other function definitions
void funcPassByValue(const Base bObj) {
 std::cout << "Updated _b=" << bObj.update() << std::endl;
}

int main() {
 Derived dObj(0);
 funcPassByValue(dObj); //Function call slices object
 return 0;
 }

In this example, the call funcPassByValue(dObj) results in the output Updated _b=1 instead of
the expected Updated _b=-1. Because funcPassByValue expects a Base object parameter, it calls
the Base class copy constructor.

Therefore, even though you pass the Derived object dObj, the function funcPassByValue treats its
parameter b as a Base object. It calls Base::update() instead of Derived::update().

Correction — Pass Object by Reference or Pointer

One possible correction is to pass the Derived object dObj by reference or by pointer. In the
following, corrected example, funcPassByReference and funcPassByPointer have the same
objective as funcPassByValue in the preceding example. However, funcPassByReference
expects a reference to a Base object and funcPassByPointer expects a pointer to a Base object.

Passing the Derived object d by a pointer or by reference does not slice the object. The calls
funcPassByReference(dObj) and funcPassByPointer(&dObj) produce the expected result
Updated _b=-1.

#include <iostream>

class Base {
public:
 explicit Base(int b) {
 _b = b;
 }
 virtual ~Base() {}
 virtual int update() const;
protected:
 int _b;
};

17 Object Oriented Defects

17-44

class Derived: public Base {
public:
 explicit Derived(int b):Base(b) {}
 int update() const;
};

//Class methods definition

int Base::update() const {
 return (_b + 1);
}

int Derived::update() const {
 return (_b -1);
}

//Other function definitions
void funcPassByReference(const Base& bRef) {
 std::cout << "Updated _b=" << bRef.update() << std::endl;
}

void funcPassByPointer(const Base* bPtr) {
 std::cout << "Updated _b=" << bPtr->update() << std::endl;
}

int main() {
 Derived dObj(0);
 funcPassByReference(dObj); //Function call does not slice object
 funcPassByPointer(&dObj); //Function call does not slice object
 return 0;
 }

Note If you pass by value, because a copy of the object is made, the original object is not modified.
Passing by reference or by pointer makes the object vulnerable to modification. If you are concerned
about your original object being modified, add a const qualifier to your function parameter, as in the
preceding example.

Result Information
Group: Object oriented
Language: C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: OBJECT_SLICING
Impact: High

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

 Object slicing

17-45

Introduced in R2015b

17 Object Oriented Defects

17-46

Operator new not overloaded for possibly
overaligned class
Allocated storage might be smaller than object alignment requirement

Description
This defect occurs when you do not adequately overload operator new/new[] and you use this
operator to create an object with an alignment requirement specified with alignas. The checker
raises a defect for these versions of throwing and non-throwing operator new/new[].

• void* operator new(std::size_t size)
• void* operator new(std::size_t size, const std::nothrow_t&)
• void* operator new[](std::size_t size)
• void* operator new[](std::size_t size, const std::nothrow_t&)

The use of alignas indicates that you do not expect the default operator new/new[] to satisfy the
alignment requirement or the object, and that the object is possibly over aligned. A type is over
aligned if you use alignas to make the alignment requirement of the type larger than
std::max_align_t. For instance, foo is over aligned in this code snippet because its alignment
requirement is 32 bytes, but std::max_align_t has an alignment of 16 bytes in most
implementations.

struct alignas(32) foo {
 char elems[32];
}

Operator new not overloaded for possibly overaligned class raises no defect if you do not
overload the operator new/new[] and you use version C++17 or later of the Standard. The default
operator new/new[] in C++17 or later supports over alignment by passing the alignment
requirement as an argument of type std::align_val_t, for instance void* operator
new(std::size_t size, std::align_val_t alignment).

Risk

The default operator new/new[] allocates storage with the alignment requirement of
std::align_val_t at most. If you do not overload the operator when you create an object with
over aligned type, the resulting object may be misaligned. Accessing this object might cause illegal
access errors or abnormal program terminations.

Fix

If you use version C++14 or earlier of the Standard, pass the alignment requirement of over aligned
types to the operator new/new[] by overloading the operator.

Examples
Allocated Memory Is Smaller Than Alignment Requirement of Type foo

#include <new>

 Operator new not overloaded for possibly overaligned class

17-47

#include <cstdlib>
#include <iostream>

struct alignas(64) foo {
 char elems[32];
};

foo* func()
{
 foo* bar = 0x0;
 try {
 bar = new foo ;
 } catch (...) { return nullptr; }
 delete bar;
}

In this example, structure foo is declared with an alignment requirement of 32 bytes. When you use
the default operator new to create object bar, the allocated memory for bar is smaller than the
alignment requirement of type foo and bar might be misaligned.

Correction — Define Overloaded Operator new to Handle Alignment Requirement of Type foo

One possible correction, if you use C11 stdlib.h or POSIX-C malloc.h, is to define an overloaded
operator new that uses aligned_alloc() or posix_memalign() or to obtain storage with the
correct alignment.

#include <new>
#include <cstdlib>
#include <iostream>

struct alignas(64) foo {
 char elems[32];
 static void* operator new (size_t nbytes)
 {
 if (void* p =
 ::aligned_alloc(alignof(foo), nbytes)) {
 return p;
 }
 throw std::bad_alloc();
 }
 static void operator delete(void *p) {
 free(p);
 }
};

foo* func()
{
 foo* bar = 0x0;
 try {
 bar = new foo ;
 } catch (...) { return nullptr; }
 delete bar;
}

Result Information
Group: Object Oriented
Language: C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: MISSING_OVERLOAD_NEW_FOR_ALIGNED_OBJ
Impact: Medium

See Also
Find defects (-checkers) | Missing overload of allocation or deallocation
function

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”

17 Object Oriented Defects

17-48

“Address Polyspace Results Through Bug Fixes or Justifications”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2019b

 Operator new not overloaded for possibly overaligned class

17-49

Partial override of overloaded virtual functions
Class overrides fraction of inherited virtual functions with a given name

Description
This defect occurs when:

• A base class has multiple virtual methods with the same name but different signatures
(overloading).

• A class derived from the base class overrides at least one of those virtual methods, but not all of
them.

Risk

The virtual methods that the derived class does not override are hidden. You cannot call those
methods using an object of the derived class.

Fix

See if the overloads in the base class are required. If they are needed, possible solutions include:

• In your derived class, if you override one virtual method, override all virtual methods from
the base class with the same name as that method.

• Otherwise, add the line using Base_class_name::method_name to the derived class
declaration. In this way, you can call the base class methods using an object of the derived class.

Examples
Partial Override
class Base {
public:
 explicit Base(int b);
 virtual ~Base() {};
 virtual void set() {
 _b = (int)0;
 };
 virtual void set(short i) {
 _b = (int)i;
 };
 virtual void set(int i) {
 _b = (int)i;
 };
 virtual void set(long i) {
 _b = (int)i;
 };
 virtual void set(float i) {
 _b = (int)i;
 };
 virtual void set(double i) {
 _b = (int)i;
 };

17 Object Oriented Defects

17-50

private:
 int _b;
};

class Derived: public Base {
 public:
 Derived(int b, int d): Base(b), _d(d) {};
 void set(int i) { Base::set(i); _d = (int)i; };
 private:
 int _d;
};

In this example, the class Derived overrides the function set that takes an int argument. It does
not override other functions that have the same name set but take arguments of other types.

The defect appears on the derived class name in the derived class definition. To find which base class
method is overridden:

1 Navigate to the base class definition. On the Source pane, right-click the base class name and
select Go To Definition.

2 In the base class definition, identify the method that has the same name and signature as a
derived class method name.

Correction — Unhide Base Class Method

One possible correction is add the line using Base::set to the Derived class declaration.

class Base {
public:
 explicit Base(int b);
 virtual ~Base() {};
 virtual void set() {
 _b = (int)0;
 };
 virtual void set(short i) {
 _b = (int)i;
 };
 virtual void set(int i) {
 _b = (int)i;
 };
 virtual void set(long i) {
 _b = (int)i;
 };
 virtual void set(float i) {
 _b = (int)i;
 };
 virtual void set(double i) {
 _b = (int)i;
 };
private:
 int _b;
};

class Derived: public Base {
 public:
 Derived(int b, int d): Base(b), _d(d) {};
 using Base::set;

 Partial override of overloaded virtual functions

17-51

 void set(int i) { Base::set(i); _d = (int)i; };
 private:
 int _d;
};

Result Information
Group: Object oriented
Language: C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: PARTIAL_OVERRIDE
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

17 Object Oriented Defects

17-52

Return of non const handle to encapsulated data
member
Method returns pointer or reference to internal member of object

Description
This defect occurs when:

• A class method returns a handle to a data member. Handles include pointers and references.
• The method is more accessible than the data member. For instance, the method has access
specifier public, but the data member is private or protected.

Risk

The access specifier determines the accessibility of a class member. For instance, a class member
declared with the private access specifier cannot be accessed outside a class. Therefore,
nonmember, nonfriend functions cannot modify the member.

When a class method returns a handle to a less accessible data member, the member accessibility
changes. For instance, if a public method returns a pointer to a private data member, the data
member is effectively not private anymore. A nonmember, nonfriend function calling the public
method can use the returned pointer to view and modify the data member.

Also, if you assign the pointer to a data member of an object to another pointer, when you delete the
object, the second pointer can be left dangling. The second pointer points to the part of an object that
does not exist anymore.

Fix

One possible fix is to avoid returning a handle to a data member from a class method. Return a data
member by value so that a copy of the member is returned. Modifying the copy does not change the
data member.

If you must return a handle, use a const qualifier with the method return type so that the handle
allows viewing, but not modifying, the data member.

Examples
Return of Pointer to private Data Member

#include <string>
#define NUM_RECORDS 100

struct Date {
 int dd;
 int mm;
 int yyyy;
};

 Return of non const handle to encapsulated data member

17-53

struct Period {
 Date startDate;
 Date endDate;
};

class DataBaseEntry {
private:
 std::string employeeName;
 Period employmentPeriod;
public:
 Period* getPeriod(void);
};

Period* DataBaseEntry::getPeriod(void) {
 return &employmentPeriod;
}

void use(Period*);
void reset(Period*);

int main() {
 DataBaseEntry dataBase[NUM_RECORDS];
 Period* tempPeriod;
 for(int i=0;i < NUM_RECORDS;i++) {
 tempPeriod = dataBase[i].getPeriod();
 use(tempPeriod);
 reset(tempPeriod);
 }
 return 0;
}

void reset(Period* aPeriod) {
 aPeriod->startDate.dd = 1;
 aPeriod->startDate.mm = 1;
 aPeriod->startDate.yyyy = 2000;
}

In this example, employmentPeriod is private to the class DataBaseEntry. It is therefore
immune from modification by nonmember, nonfriend functions. However, returning a pointer to
employmentPeriod breaks this encapsulation. For instance, the nonmember function reset
modifies the member startDate of employmentPeriod.
Correction: Return Member by Value

One possible correction is to return the data member employmentPeriod by value instead of
pointer. Modifying the return value does not change the data member because the return value is a
copy of the data member.

#include <string>
#define NUM_RECORDS 100

struct Date {
 int dd;
 int mm;
 int yyyy;
};

17 Object Oriented Defects

17-54

struct Period {
 Date startDate;
 Date endDate;
};

class DataBaseEntry {
private:
 std::string employeeName;
 Period employmentPeriod;
public:
 Period getPeriod(void);
};

Period DataBaseEntry::getPeriod(void) {
 return employmentPeriod;
}

void use(Period*);
void reset(Period*);

int main() {
 DataBaseEntry dataBase[NUM_RECORDS];
 Period tempPeriodVal;
 Period* tempPeriod;
 for(int i=0;i < NUM_RECORDS;i++) {
 tempPeriodVal = dataBase[i].getPeriod();
 tempPeriod = &tempPeriodVal;
 use(tempPeriod);
 reset(tempPeriod);
 }
 return 0;
}

void reset(Period* aPeriod) {
 aPeriod->startDate.dd = 1;
 aPeriod->startDate.mm = 1;
 aPeriod->startDate.yyyy = 2000;
}

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: BREAKING_DATA_ENCAPSULATION
Impact: Medium
CWE ID: 375, 767

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”

 Return of non const handle to encapsulated data member

17-55

https://cwe.mitre.org/data/definitions/375.html
https://cwe.mitre.org/data/definitions/767.html

“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

17 Object Oriented Defects

17-56

Self assignment not tested in operator
Copy assignment operator does not test for self-assignment

Description
This defect occurs when you do not test if the argument to the copy assignment operator of an object
is the object itself.

Risk

Self-assignment causes unnecessary copying. Though it is unlikely that you assign an object to itself,
because of aliasing, you or users of your class cannot always detect a self-assignment.

Self-assignment can cause subtle errors if a data member is a pointer and you allocate memory
dynamically to the pointer. In your copy assignment operator, you typically perform these steps:

1 Deallocate the memory originally associated with the pointer.

delete ptr;
2 Allocate new memory to the pointer. Initialize the new memory location with contents obtained

from the operator argument.

 ptr = new ptrType(*(opArgument.ptr));

If the argument to the operator, opArgument, is the object itself, after your first step, the pointer
data member in the operator argument, opArgument.ptr, is not associated with a memory location.
*opArgument.ptr contains unpredictable values. Therefore, in the second step, you initialize the
new memory location with unpredictable values.

Fix

Test for self-assignment in the copy assignment operator of your class. Only after the test, perform
the assignments in the copy assignment operator.

Examples
Missing Test for Self-Assignment

class MyClass1 { };
class MyClass2 {
public:
 MyClass2() : p_(new MyClass1()) { }
 MyClass2(const MyClass2& f) : p_(new MyClass1(*f.p_)) { }
 ~MyClass2() {
 delete p_;
 }
 MyClass2& operator= (const MyClass2& f)
 {
 delete p_;
 p_ = new MyClass1(*f.p_);
 return *this;
 }

 Self assignment not tested in operator

17-57

private:
 MyClass1* p_;
};

In this example, the copy assignment operator in MyClass2 does not test for self-assignment. If the
parameter f is the current object, after the statement delete p_, the memory allocated to pointer
f.p_ is also deallocated. Therefore, the statement p_ = new MyClass1(*f.p_) initializes the
memory location that p_ points to with unpredictable values.

Correction — Test for Self-Assignment

One possible correction is to test for self-assignment in the copy assignment operator.

class MyClass1 { };
class MyClass2 {
public:
 MyClass2() : p_(new MyClass1()) { }
 MyClass2(const MyClass2& f) : p_(new MyClass1(*f.p_)) { }
 ~MyClass2() {
 delete p_;
 }
 MyClass2& operator= (const MyClass2& f)
 {
 if(&f != this) {
 delete p_;
 p_ = new MyClass1(*f.p_);
 }
 return *this;
 }
private:
 MyClass1* p_;
};

Result Information
Group: Object oriented
Language: C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: MISSING_SELF_ASSIGN_TEST
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

17 Object Oriented Defects

17-58

Performance Defects

18

A move operation may throw
Throwing move operations might result in STL containers using the corresponding copy operations

Description
This defect occurs when a class explicitly declares a move constructor that is missing a noexcept
specifier or has a noexcept specifier whose argument evaluates to false. The defect also occurs if
an explicitly declared move constructor has the throw(type) exception specification (deprecated in
C++11 and removed in C++17).

The checker does not raise a flag if the move constructor is implicitly declared or explicitly declared
as =default.

Risk

If a move operation can throw exceptions, some STL containers will use the copy operations instead
and not get the performance benefits of a move operation. For instance, the implementation of the
std::vector::resize method uses std::move_if_noexcept and performs a move operation for
resizing a vector only if the move operation is declared noexcept.

Fix

Add a noexcept specifier to the declaration of the move constructor.

If the move constructor contains expressions that might throw, fix those expressions. To detect
violations of the noexcept exception specification, use the checker Noexcept function exits
with exception.

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Examples
Move Constructors Without noexcept Specifier

#include <string>

class Database {
 private:
 std::string* initEntry;
 int size;
 public:
 //Copy constructor
 Database (const Database& other);
 //Move constructor
 Database (Database&& other): initEntry{other.initEntry}, size{other.size} {
 other.initEntry = nullptr;
 other.size = 0;
 }
};

In this example, the Database move constructor does not have a noexcept specification.

18 Performance Defects

18-2

Correction – Add noexcept Specifier

Add the noexcept specifier to the move constructor.

#include <string>

class Database {
 private:
 std::string* initEntry;
 int size;
 public:
 //Copy constructor
 Database (const Database& other);
 //Move constructor
 Database (Database&& other) noexcept: initEntry{other.initEntry}, size{other.size} {
 other.initEntry = nullptr;
 other.size = 0;
 }
};

Result Information
Group: Performance
Language: C++
Default: Off
Command-Line Syntax: MOVE_OPERATION_MAY_THROW
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020b

 A move operation may throw

18-3

Const parameter values may cause unnecessary
data copies
Const parameter values may prevent a move operation resulting in a more performance-intensive
copy operation

Description
This defect occurs when const objects as function parameters may prevent a move operation
resulting in a more performance-intensive copy operation.

The checker does not check if a move operation is possible in a given function call. The checker
simply highlights const function parameters that have class types with a nontrivial copy operation
and a move operation. You can determine for yourself if the parameter can be moved to the called
function.

Risk

If the function argument is an rvalue, the resources associated with the argument are no longer
required and can be moved to parameters in the called function. Compilers ensure that the move
operation is used in this situation since they are generally less expensive than copy operations. If you
use a const object as function parameter, you explicitly prevent this compiler optimization.

Fix

If you think that the parameter can be moved to the called function, remove the const qualifier from
the flagged function parameter.

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Examples
const Parameter Value Preventing Move Operation

#include <string>

std::string getStringFromUser() {
 //Get a string of arbitrary length
}

void countWordsInString(const std::string str) {
 //Count number of words in string
}

void main() {
 std::string aString = getStringFromUser();
 std::string anotherString = getStringFromUser();

 std::string joinedString = aString + anotherString;

 countWordsInString(joinedString);

18 Performance Defects

18-4

 countWordsInString(aString + anotherString);
}

In this example, the checker flags the const str::string parameter str. In situations where a
move operation is possible, for example in the call:

countWordsInString(aString + anotherString);

the const parameter forces a copy operation, which can be significantly more expensive.

Result Information
Group: Performance
Language: C++
Default: Off
Command-Line Syntax: CONST_PARAMETER_VALUE
Impact: Low

See Also
Find defects (-checkers) | Const return values may cause unnecessary data
copies | Const rvalue reference parameter may cause unnecessary data copies

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020a

 Const parameter values may cause unnecessary data copies

18-5

Const return values may cause unnecessary data
copies
Const return values may prevent a move operation resulting in a more performance-intensive copy
operation

Description
This defect occurs when const objects as return values may prevent a move operation resulting in a
more performance-intensive copy operation.

The checker does not check if a move operation is possible for any calling function. The checker
simply highlights const function return values that have class types with a nontrivial copy operation
and a move operation.

Risk

The resources associated with the function return value are no longer required and can be moved to
objects in the calling function. Compilers ensure that the move operation is used in this situation
since they are generally less expensive than copy operations. If you use a const object as return
value, you explicitly prevent this compiler optimization.

In addition, the calling function can store the return value in a non-const object. The const-ness of
the return value does not prevent any operation on the non-const object.

Fix

Remove const qualifiers from function return values.

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Examples
const Return Value Preventing Move Operation

#include <string>

class stringPair {
 std::string str1;
 std::string str2;

 public:
 stringPair& operator=(const stringPair & aPair){
 if(&aPair != this) {
 str1 = aPair.str1;
 str2 = aPair.str2;
 }
 return *this;
 }

 const std::string getJoinedString(void) {

18 Performance Defects

18-6

 return (str1 + str2);
 }
};

In this example, the const specifier on the return value of getJoinedString forces a copy
operation instead of move operations.

Result Information
Group: Performance
Language: C++
Default: Off
Command-Line Syntax: CONST_RETURN_VALUE
Impact: Low

See Also
Find defects (-checkers) | Const parameter values may cause unnecessary data
copies | Const rvalue reference parameter may cause unnecessary data copies

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020a

 Const return values may cause unnecessary data copies

18-7

Const rvalue reference parameter may cause
unnecessary data copies
The const-ness of an rvalue reference prevents intended move operation

Description
This defect occurs when a function takes a const rvalue reference as parameter. For instance, this
move constructor takes a const rvalue reference:

class aClass {
 public:
 aClass (const aClass&& anotherClass);
}

Risk

The const nature of the rvalue reference parameter prevents the expected move operation.

For instance, this issue can happen when you write a move constructor by copy-paste from a copy
constructor with a const parameter, for instance:

aClass (const aClass& anotherClass);

After the copy-paste, you might modify the & to && but forget to omit the const in the reference or
the copy operations in the constructor body. In this case, the move constructor with the const rvalue
reference compiles without errors but leads to an inefficient move constructor that actually copies
the data.

Fix

Remove the const qualifier from the rvalue reference parameter.

For instance, the move constructor in the preceding section can be rewritten as:

class aClass {
 public:
 aClass (aClass&& anotherClass);
}

You might also want to check the move constructor body and make sure that you are actually moving
the data and not copying.

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Examples
Move Constructors with const Rvalue Reference Parameters

#include <string>
#include <utility>

18 Performance Defects

18-8

class Task {
 public:
 Task(const Task&) = delete;
 Task(const Task&& other) noexcept;
 private:
 std::string m_name;
 bool m_is_pending = false;
};

In this example, the move constructor has a const rvalue reference, which causes the defect.

The defect could have been introduced because the move constructor was created by copy-paste from
the copy constructor that is deleted here.

Correction – Remove const from Parameter

Remove the const qualifier from the move constructor parameter to allow mutation of the parameter
within the constructor body.

#include <string>
#include <utility>

class Task {
 public:
 Task(const Task&) = delete;
 Task(Task&& other) noexcept;
 private:
 std::string m_name;
 bool m_is_pending = false;
};

Result Information
Group: Performance
Language: C++
Default: Off
Command-Line Syntax: CONST_RVALUE_REFERENCE_PARAMETER
Impact: Low

See Also
Find defects (-checkers) | Const parameter values may cause unnecessary data
copies | Const return values may cause unnecessary data copies | std::move
called on an unmovable type

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2021a

 Const rvalue reference parameter may cause unnecessary data copies

18-9

Const std::move input may cause a more
expensive object copy
Const std::move input cannot be moved and results in more expensive copy operation

Description
This defect occurs when you use std::move on a const object, resulting in a more expensive copy
operation.

The checker raises a violation only for class types with a nontrivial copy operation and a move
operation.

Risk

A const object cannot be modified and therefore cannot be moved. An std::move on a const object
silently falls back to a copy operation without compilation errors. Your code might suffer from poorer
performance without you noticing the issue.

Fix

Remove the const qualifier from the object being moved.

If you want a copy operation instead, remove the redundant std::move call.

Note that this issue also triggers the checker Move operation on const object, which applies
to all move operations on const objects irrespective of whether the class type has a move operation
and a nontrivial copy operation. If you decide to justify the issue, you can use the same justification
for both results.

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Examples
std::move on const Object

#include <string>

#include <string>

class MyClass {
public:
 void setName(const std::string& name) {
 m_name = std::move(name);
 }
private:
 std::string m_name;
};

In this example, std::move is called on a const objects, name. Instead of a move assignment, a
possibly more expensive copy assignment takes place.

18 Performance Defects

18-10

Remove const Qualifiers

If you want move operations, remove the const qualifier from the definitions of the objects being
moved.

#include <string>

#include <string>

class MyClass {
public:
 void setName(std::string& name) {
 m_name = std::move (name);
 }
private:
 std::string m_name;
};

Result Information
Group: Performance
Language: C++
Default: Off
Command-Line Syntax: EXPENSIVE_STD_MOVE_CONST_OBJECT
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020b

 Const std::move input may cause a more expensive object copy

18-11

Empty destructors may cause unnecessary data
copies
User-declared empty destructors prevent autogeneration of move constructors and move assignment
operators

Description
This defect occurs when a class definition contains a user-defined destructor that has an empty or
=default implementation and does not declare both a move constructor and move assignment
operator. For instance:

class aClass
{
public:
 ~aClass() noexcept
 {} // Empty body
};
class bClass
{
public:
 ~bClass() = default;
};

The destructors above are exactly the same as the compiler provided version, but they prevent
automatic generation of the move operators. As a result, the class type is not movable.

An empty destructor is not flagged if:

• The destructor is private or protected.
• The destructor is declared final.
• The destructor is declared virtual and does not override a base class destructor.
• The destructor overrides a base class pure virtual destructor.
• The class has a trivial copy constructor (and therefore a copy operation is not more expensive than

a move operation).

Risk

Instances of this class might be unnecessarily copied in situations where a move operation would
have been possible. Copy operations are more expensive than move operations and might impact
performance.

Fix

Try one of these solutions:

• Remove the empty destructor if possible. If a class does not have a destructor, the compiler
generates a destructor, which is essentially the empty destructor that you explicitly declared.

See also Rule of Zero.

18 Performance Defects

18-12

https://en.cppreference.com/w/cpp/language/rule_of_three#Rule_of_zero

• If you cannot remove the destructor, add an explicit move constructor and move assignment
operator to the class definition. Use the =default syntax to clarify that the compiler definitions of
move constructors and move assignment operators are used.

class aClass
{
public:
 ~aClass() noexcept = default;
 aClass(aClass&&) = default;
 aClass& operator=(aClass&&) = default;
};

See also Rule of Five.

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Result Information
Group: Performance
Language: C++
Default: Off
Command-Line Syntax: EMPTY_DESTRUCTOR_DEFINED
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020a

 Empty destructors may cause unnecessary data copies

18-13

https://en.cppreference.com/w/cpp/language/rule_of_three#Rule_of_five

Expensive constant std::string construction
A constant string object is constructed from constant data resulting in inefficient code

Description
This defect is raised when both of these conditions are true:

• You construct a std::string object from constant data such as a string literal or the output of a
constexpr function.

• The std::string object remains constant or unmodified after the construction.

This checker does not flag class member variables, and string literals that are function arguments.

Risk

Consider an std::string objects in a code block that contains constant data which remains
unmodified after construction. Every time the code block executes, a new std::string object is
constructed with no change in its content. Repeated construction of such an std::string object
with no modification of the content is inefficient and difficult to detect. Consider this code:

#include <string>
constexpr char* getStrPtr() {
 return "abcd";
}
void foo(){
 std::string s1 = "abcd";
 std::string s2{"abcd"};
 std::string s3 = getStrPtr();
}
int main(){
//...
for(int i = 0; i<10000; ++i)
 foo();
}

In this code, the function foo is called 10000 times. Each time foo is called, s1, s2, and s3 are
constructed from the same constant string literal abcd, resulting in inefficient code. Because such
inefficient and confusing code compiles and functions correctly, the inefficient construction of
std::string objects from constant data might not be noticed.

Fix

The fix for this defect depends on the intended use of the constant data.

• You can store the constant data in a static string object if you need the functionalities of
std::string class.

• You can use the constant data directly as temporary literals if you do not need to reuse the data.
• You can store the constant data by using a const character array or an std::string_view

object if you do not need the functionalities of the std::string class. std::string_view is
supported by C++17 and later.

Consider this code:

18 Performance Defects

18-14

constexpr char* getStrPtr() {
 return "abcd";
}
void foo(){
 static std::string s3 = getStrPtr();
 std::string_view s3a{s3};
}
int main(){
//...
for(int i = 0; i<10000; ++i)
 foo();
}

The std::string object s3 is declared as static. Because s3 is static, it is constructed only
once even if foo is called 10000 times. The std::string_view object s2 shows the content of s3
and avoids constructing an std::string object every time foo is called. By using
std::string_view and static objects, you avoid unnecessary construction of constant
std::string objects. This method also clarifies that the objects s3 and s3a represent the same
data.

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Examples
Reconstructing Constant std::string Object

#include <string>
constexpr char* getStrPtr() {
 return "abcd";
}
constexpr size_t FOUR(){
 return 4;
}
size_t getCount();
void CallFunc(std::string s);
void foo(){
 std::string s1 = "abcd";
 std::string s2{"abcd"};
 std::string s3 = getStrPtr();
 std::string s4("abcd", FOUR());
 std::string s5("abcd"), s6("abcd");
}

void bar(){
 std::string s3a("abcd", getCount());
 char *p = "abcd";
 std::string s_p = p;
 CallFunc("message");
}

In this example, several const std::string objects are declared.

• Polyspace flags the std::string objects s1,s2, s5, and s6 because if these strings are
constructed from constant data every time foo is called but remains unmodified after
construction.

 Expensive constant std::string construction

18-15

• Polyspace flagss4 and s3 because they are constructed from compile-time constants, such as the
constant literal abcd and the output of a constexpr function. The object s3a is not flagged
because the output of getCount is not a compile-time constant.

• Polyspace does not flag these objects when they are constructed from constant data:

• An object that is not an std::string, such as *p.
• Temporary objects that are constructed as a function argument, such as the object containing

the string literal message in the argument of CallFunc.

Correction

You can fix this defect in several ways. For instance:

• You can declare the std::string objects as static. When the object is static, the compiler
does not reconstruct it in different scopes. When you need the functionalities of an std::string
class, this declaration is a good fix.

• You can store the constant data in a character array or character pointer. These objects are less
expensive compared to an std::string.

• You can declare the constant strings as std::string_view objects. These objects do not contain
a copy of the constant strings, which makes these objects efficient.

#include <string>
#include <string_view>
constexpr char* getStrPtr() {
 return "abcd";
}
constexpr size_t FOUR(){
 return 4;
}

void foo(){
 static std::string s1 = "abcd";
 std::string_view s2{s1};
 const char *p = getStrPtr();
 std::string s3 = p;
 static std::string s4("abcd", FOUR());
 std::string_view s5{s1}, s6{s4};
}

The checks on s1 and s4 are fixed by declaring them as static. The checks on s2, s5 and s6 are
fixed by declaring them as std::string_view objects. The check on s3 is fixed by storing the
constant data in a character pointer.

Result Information
Group: Performance
Language: C++
Default: Off
Command-Line Syntax: EXPENSIVE_CONSTANT_STD_STRING
Impact: Medium

See Also
Find defects (-checkers)

18 Performance Defects

18-16

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020b

 Expensive constant std::string construction

18-17

Unnecessary use of std::string::c_str() or
equivalent string methods
Instead of a std::string object, a string operation uses the C-string obtained from std::string
functions including std::string::c_str, std::string::data(), std::string::at(), or
std::string::operator[], resulting in inefficient code

Description
This defect occurs when a string operation is performed by using a C-string pointer obtained from
string functions such as std::string::c_str, std::string::data(), std::string::at(),
and std::string::operator[]. For instance, this checker is raised when:

• A new std::string or std::wstring is implicitly or explicitly constructed from the C-string
obtained from a string function. This situation arises when a function expecting a const reference
to the string encounters a const char* instead.

• A new copy of a string object is created explicitly from the C-string obtained from a string
function. Using the copy constructor is the more efficient way of copying the string object.

• Certain std::string member functions are invoked by using the C-string obtained from a string
function. Flagged functions include replace, append, assign, compare, and find. Using an
std::string object directly to invoke std::string member functions is more efficient.

• A user-defined function that is overloaded to accept either of the const char* or const
std::string arguments is invoked by using a C-string pointer. It is more efficient to invoke the
std::string overload of such a function. When a function is overloaded in this way, calling the
const char* overload from the body of the const std::string overload by using the C-string
pointer does not raise the defect.

Risk

It is expensive and inefficient to use the C-string output of a std::string function when you can
use an std::string object instead. An std::string object contains the length of the string. When
you use a C-string instead of an std::string object, the constructor determines the length of the C-
string by a linear search, resulting in inefficient code. Using the C-string is also often unnecessary.
Consider this code:

void set_prop1(const char* str);
void set_prop2(const std::string& str);
void foo(std::string& str){
 //...
 set_prop1(str.c_str()); // Necessary
 //...
 set_prop2(str.c_str()); // Inefficient
}

The function foo calls two different functions. Because the function set_prop1 requires a C-string
as the input, using the str.c_str function is necessary to form the input to set_prop1. The
function set_prop2 takes an std::string as an input. Instead of directly using str as an input to
set_prop2, str.c_str is used, perhaps as a copy-paste mistake. The compiler implicitly constructs
a new std::string object, which is identical to str, by using the output of str.c_str.
Constructing a new std::string object in this case is unnecessary and inefficient. Because this
code compiles and functions correctly, this inefficient code might not be noticed.

18 Performance Defects

18-18

Fix

To fix this defect, eliminate calls to std::string functions that produce a C-sting. Use
std::string instead. Choose appropriate function overloads when you use a string object instead of
a C-string. Consider this code:

void set_prop1(const char* str);
void set_prop2(const std::string& str);
void foo(std::string& input){
 //...
 set_prop1(str.c_str()); // Necessary
 //...
 set_prop2(str); // Efficient
}

Using str instead of str.c_str as input to set_prop2 makes the code more efficient and fixes the
defect.

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Examples
Implicit Construction of std::string Objects by Using C-String

#include <string>
#include <utility>

class A
{
public:
 A(char const*);
 char const* c_str() const;
};
void CppLibFuncA(const std::string&);
void CppLibFuncB(std::string &&);
void bar(A const&);
std::string make_string();
bool contains(std::string const& str1, std::string const& str2)
{
 return str1.find(str2.data()) == std::string::npos;
}

void foo(const std::string& s, std::string&& rs, A& other){
 CppLibFuncA(s.data());
 CppLibFuncB(std::move(rs).c_str());
 CppLibFuncA(make_string().data());
 bar(other.c_str());
 if(contains(s,make_string())){
 //...
 }

}

In this example, Polyspace flags the implicit construction of a string object by using a C-string that
is obtained from a string function.

 Unnecessary use of std::string::c_str() or equivalent string methods

18-19

• The function CppLibFuncA takes a const std::string& as input. When the function
CppLibFunc is called by using s.data(), the compiler cannot pass a reference to the object s to
the function. Instead, the compiler implicitly constructs a new std::string object from the C-
string pointer and passes the new object to the function,which is inefficient. Polyspace flags the
call to std::string::data.

• Because calling CppLibFuncB by using the output of std::string::c_str also implicitly
constructs a new str::string object, Polyspace flags the call to std::string::c_str.

• A call to the function bar is not flagged because a const char* is not implicitly converted to a
new std::string object.

• In the function contain, Polyspace flags the call to std::string::find(), where the output of
std::string::data is used instead of an std::string object.

Correction

To fix this issue, avoid implicit construction of new std::string objects from the outputs of the
std::string::c_str or std::string::data functions. Use the existing std::string objects
instead.

#include <string>
#include <utility>
void CppLibFuncA(std::string const &);
void CppLibFuncB(std::string &&);
std::string make_string();
bool contains(std::string const& str1, std::string const& str2)
{
 return str1.find(str2) == std::string::npos;
}
void foo(std::string const & s, std::string&& rs){
 CppLibFuncA(s);
 CppLibFuncB(std::move(rs));
 CppLibFuncA(make_string());
 if(contains(s,make_string())){
 //...
 }
}

Fix calls to the functions CppLibFunc, CppLibFuncB, and CppLibFuncC by using the existing
std::string objects as input.

Explicit Construction of std::string Objects by Using C-String

#include <string>
#include <utility>
std::string make_string(void);
void bar(const std::string& s){
 std::string s1 = s.c_str(); // Inefficient
 std::string s2 = make_string();
 s2.append(s1.data());
}

In this example, Polyspace flags the explicit use of a C-string when:

• The std::string object s is copied to s1 by calling s.c_str().
• The std::string object s1 is appended calling s1.data().

18 Performance Defects

18-20

.

Correction

To fix this issue, avoid using a C-string when you can use an std::string object.

#include <string>
#include <string>
#include <utility>
std::string make_string(void);
void bar(const std::string& s){
 std::string s1 = s; // Efficient
 std::string s2 = make_string();
 s2.append(s1);
}

Invoking std::string Member Functions by Using C-String

#include <string>
#include <utility>
std::string make_string(void);
void bar2(std::string& s1){
 std::string s2 = make_string();
 s1.replace(1, 1, &s2[0]);
 s1.replace(s1.begin(), s1.end(), &s2.at(0));
 s1.append(s2.c_str());
 s1.assign(s2.data());
 s1.compare(s2.data());
 const char* p = s2.c_str();
 s1.find(p);
}

In this example, Polyspace flags the explicit use of a C-string to invoke member functions of the
std::string class.

Correction

To fix this issue, avoid using C-strings when you can use an std::string object instead.

#include <string>
#include <string>
#include <utility>
std::string make_string(void);
void bar(std::string& s1){
 std::string s2 = make_string();
 s1.replace(1, 1, s2);
 s1.replace(s1.begin(), s1.end(), s2);
 s1.append(s2);
 s1.assign(s2);
 s1.compare(s2);
 s1.find(s2);
}

Invoking User-Defined Functions by Using C-String

#include <string>
#include <utility>

 Unnecessary use of std::string::c_str() or equivalent string methods

18-21

void userDefined(const char* p){
 //...
}
void userDefined(const std::string& s){
 //...
 userDefined(s.c_str());//Compliant
 //userDefined(s);//Infinite recursion
}
void bar(const std::string& s){
 const char* p = s.data();
 userDefined(p);
 userDefined(s.c_str());
}

In this example, the user-defined function userDefined is overloaded to accept either a const
char* or a const std::string parameter. Polyspace flags the use of a C-string instead of an
std::string object to call the function. Polyspace does not flag calls to std::string::c_str or
std::string::data when they are used for calling the const char* overload of userDefined
from the body of the std::string overload of userDefined. In this case, using std::string
instead of a C-string results in an unintended infinite recursion.

Correction

To fix this issue, avoid using C-strings when you can use an std::string object instead.

#include <string>
#include <string>
#include <utility>
extern void userDefined(const char *);
extern void userDefined(const std::string &);
void bar(const std::string& s){
 userDefined(s);
}

Result Information
Group: Performance
Language: C++
Default: Off
Command-Line Syntax: EXPENSIVE_C_STR_STD_STRING_OPERATION
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020b

18 Performance Defects

18-22

Expensive local variable copy
Local variable is created by copy from a const reference and not modified later

Description
This defect occurs when a local variable is created by copy from a const reference but not modified
later.

For instance, the variable name is created by copy from a const reference returned from the
get_name function:

const std::string& get_name();
...
void func {
 std::string name = get_name();
}

The defect is raised only if the local variable has a non-trivially copyable type or a trivially copyable
type with size greater than 2 * sizeof(void *).

Risk

If a variable is created from a const reference and not modified later, the variable itself can be
defined as a const reference. Creating a const reference avoids a potentially expensive copy
operation.

Fix

Avoid creating a new local variable by copy from a const reference if you do not intend to modify the
variable later. Create a const reference instead.

For instance, in the preceding section, you can redefine the variable name as:

const std::string& get_name();
...
void func {
 const std::string& name = get_name();
}

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Examples
Expensive String Created from const Reference
#include <string>

class Task
{
public:
 // ...
 const std::string& get_name() const;

 Expensive local variable copy

18-23

 // ...
private:
 // ...
};

void inspect(const Task& task)
{
 // ...
 const std::string name = task.get_name();
 // ...
}

In this example, the variable name is created by copy from a const reference but not modified later.

Correction – Use const Reference

To avoid a potentially expensive copy operation, avoid creating a new local variable if you do not
intend to modify the variable later. Instead, assign the const-reference return value to another
const reference.

#include <string>

class Task
{
public:
 // ...
 const std::string& get_name() const;
 // ...
private:
 // ...
};

void inspect(const Task& task)
{
 // ...
 const std::string& name = task.get_name();
 // ...
}

Result Information
Group: Performance
Language: C++
Default: Off
Command-Line Syntax: EXPENSIVE_LOCAL_VARIABLE
Impact: Medium

See Also
Find defects (-checkers) | Expensive pass by value | Expensive return by value |
Expensive copy in a range-based for loop iteration | Unmodified variable not
const-qualified

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”

18 Performance Defects

18-24

“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2021a

 Expensive local variable copy

18-25

Expensive logical operation
A logical operation requires the evaluation of both operands because of their order, resulting in
inefficient code

Description
This defect occurs when all of these conditions are true:

• Left and right operands have no side effects.
• The right operand does not contain any calls to const member functions.
• The left operand contains one or more calls to const member functions.

When assessing possible side effects of an operand:

• Polyspace assumes that const member functions of a class do not have side effects. Nonmember
functions are assumed to have side effects.

• Polyspace treats floating-point operations in accordance to the C++ standard. In C++03 or
earlier, floating-point operations have no side effects. In C++11 or later, floating-point operations
might have side effects, such as modifying the floating-point status flags to indicate abnormal
results or auxiliary information. See Floating-point environment.

• Polyspace treats the bool conversion operator and logical NOT operators of a struct or a class as
built-in operators. These operations are not treated as member function calls. The standard
template library contains many classes that define such a bool conversion operator or a logical
NOT operator.

Risk

When evaluating logical operation, the compiler evaluates the left argument first, and then evaluates
the right argument only when necessary. In a logical operation, it is inefficient to put function calls as
the left argument while putting constant and variables as the right argument. Consider this code:

if(Object.attribute()|| var1){
//...
}

In the logical expression inside the if statement, the compiler always evaluates the function call
Object.attribute(). Evaluating the function is not always necessary. For instance, if var1
evaluates to true, then the logical expression always evaluates to true. Because var1 is the right
operand, not the left operand, the compiler unnecessarily evaluates a function call, which is
inefficient. Because the inefficient code compiles and behaves correctly, this defect might go
unnoticed.

Fix

To fix this defect, flip the order of the operands in a logical expression if the left operand does not
perform an operation that must be performed before the right operand in order to evaluate the right
operand safely and correctly.

If this condition is not true, then the code relies on the exact order in which the compiler evaluates
the flagged logical expression. The best practice is not to rely on the evaluation order of an

18 Performance Defects

18-26

https://en.cppreference.com/w/cpp/numeric/fenv

expression. Consider refactoring your code so that the order of evaluation has no impact. If
refactoring the code is not possible, justify the defect by using annotation or review information. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Examples
Member Function Call as Left Operand

#include <string>
bool updateNewProperty(const std::string& name);
void updateNewMetaProperty(const std::string& name);
volatile char externalFlag;

void updateProperty(const std::string& name)
{
 bool is_new_property = updateNewProperty(name);

 if(name.compare("meta") == 0 && is_new_property) //Noncompliant
 {
 updateNewMetaProperty(name);
 }
 if(name.compare("meta") == 0 && externalFlag) //Compliant
 {
 updateNewMetaProperty(name);
 }

}

In the first if statement, the variable is_new_property is the right operand of a logical operand.
The member function std::string::compare is called as the left argument. The compiler
evaluates the function call regardless of the value of is_new_property, which is inefficient.
Polyspace flags the logical operation.

In the second if statement, the volatile variable externalFlag is the right operand. Because the
variable is volatile, Polyspace assumes it might cause a side effect. Because the volatile
variable might have a side effect, Polyspace does not flag the logical operation.

Correction

Determine if the order of the operands needs to be maintained to evaluate the expression safely and
correctly. In this case, the two operands is_new_property and name.compare("meta") == 0
are independent and changing their order does not change the value of the logical expression. To fix
this defect, use is_new_property as the left operand.

#include <string>
bool updateNewProperty(const std::string& name);
void updateNewMetaProperty(const std::string& name);

 Expensive logical operation

18-27

volatile char externalFlag;

void updateProperty(const std::string& name)
{
 bool is_new_property = updateNewProperty(name);
 if(is_new_property && name.compare("meta") == 0) //Compliant
 {
 updateNewMetaProperty(name);
 }
 if(name.compare("meta") == 0 && externalFlag) //Compliant
 {
 updateNewMetaProperty(name);
 }
}

The compiler evaluates the call to std::string::compare in the first if statement only when
is_new_property is true.

Floating-Point Operation in Logical Expression

When you use floating-point operations in a logical expression, Polyspace estimates the side effects of
the operands differently based on the version of C++ that you use. In C++03 or earlier versions,
floating-point operations do not have any side effects by themselves. In C++11 or later, floating-point
operations themselves might have side effects.

class A{
 //...
 float makeFloat() const{
 //..
 }
 void testfloat(){
 if(makeFloat() == 0.1f && fp==0.2f) //Noncompliant
 {
 //...
 }
 }

private:
 float fp;
};

In this code, if you use C++03, neither of the operands has side effects. Because the left operand
invokes a member function call, Polyspace flags the expression.

If you use C++11 or later, the floating-point operations might have side effects. In this case,
Polyspace does not flag the logical expression.
Correction

Determine if the order of the operands needs to be maintained to evaluate the expression safely and
correctly. In this case, the two operands fp==0.2f and makeFloat() == 0.1f are independent
and changing their order does not change the value of the logical expression. To fix this defect, use
fp==0.2f as the left operand.

class A{
 //...
 float makeFloat() const{
 //..

18 Performance Defects

18-28

 }
 void testfloat(){
 if(fp==0.2f && makeFloat() == 0.1f) //Compliant
 {
 //...
 }
 }

private:
 float fp;
};

The compiler evaluates the call to makeFloat() only when fp==0.2f evaluates to true.

Logical Expression that Requires Specific Evaluation Order
#include<cstdlib>
class A{
 //...
 bool isLoaded() const { return p != NULL; }
 int get() {
 if(isLoaded() && *p > 0) { // Noncompliant
 return *p;
 }
 }

private:
 int* p;
};

In the expression (isLoaded() && *p > 0), the dereferencing of *p in the right argument is safe
only when the left argument is true. Polyspace does not check when logical expression require such
specific evaluation order. Because neither operands have side effects and the member function call is
the left operand, Polyspace flags the operation.
Correction

In this case, the order if the operands in the logical expression needs to be maintained to evaluate the
expression safely and correctly. To fix this defect, refactor your code. The best practice is not to rely
on the order of evaluation of an expression.

#include<cstdlib>
class A{
 //...
 bool isLoaded() const { return p != NULL; }
 int get() {
 if(isLoaded()== true) { // Compliant
 if(*p > 0){
 return *p;
 }

 }
 }

private:
 int* p;
};

 Expensive logical operation

18-29

This code checks the two conditions separately and does not rely on the order of evaluation. If such
refactoring is not feasible, justify the defect by using annotations or review information.

Result Information
Group: Performance
Language: C++
Default: Off
Command-Line Syntax: EXPENSIVE_LOGICAL_OPERATION
Impact: Medium

See Also
Find defects (-checkers) | CERT C: Rule EXP30-C

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
List of Classes in STL with bool Conversion Operator

Introduced in R2021a

18 Performance Defects

18-30

https://en.cppreference.com/mwiki/index.php?title=Special%3ASearch&search=%22operator+bool%22

Expensive pass by value
Parameter might be expensive to copy

Description
This defect occurs when you pass a parameter by value instead of by reference or pointer, but the
parameter is unmodified and either:

• The parameter is a non-trivially copyable type. For more on non-trivially copyable types, see
is_trivially_copyable.

• The parameter is a trivially copyable type that is above a certain size. For example, an object
greater than 2 * sizeof(void *) is more expensive to pass by value than by reference or
pointer.

Polyspace flags unmodified parameters that meet the preceding conditions even if the parameters are
not declared const.

Polyspace raises no defect if:

• The passed by value parameter is a move-only type. For instance, std::unique_ptr can be
moved-from but cannot be copied.

• The passed by value parameter is modified.

For example, no defect is raised in this code where a large trivially copyable Buffer and a move-only
unique_ptr are passed by value.

#include<memory>

typedef struct Buffer {
 unsigned char bytes[20];
} Buffer;

void func1(Buffer modified_param)
{
 ++modified_param.bytes[0];
}

void func2(std::unique_ptr<Buffer> move_only_param);

Risk

Passing a parameter by value creates a copy of the parameter which is inefficient if the parameter is
expensive to copy. Even if your intent is to pass by reference or pointer, you might forget the const&
or const* in your function signature and inadvertently run an inefficient version of the function.

Fix

Convert the parameter to a const pointer (const*) for C code, or to a const reference (const&) for C
++ code.

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

 Expensive pass by value

18-31

https://en.cppreference.com/w/cpp/types/is_trivially_copyable

Examples
Expensive Pass by Value in C++ Setter Function

#include<string>

class Player
{
public:
 void setName(std::string const str)
 {
 name = str;
 }
 void setRank(size_t r)
 {
 rank = r;
 }
 // getter functions implementation
private:
 std::string name;
 size_t rank;

};

In this example, Polyspace flags the parameter of setter function setName which is passed by value
and results in an expensive copy. The type std::string is not trivially copyable. The passed by
value parameter of setRank is not flagged because size_t is a small trivially copyable type.

Correction — Pass std::string Parameter by const Reference

To avoid an inefficient copy operation, use a const& to pass the parameter.

#include<string>

class Player
{
public:
 void set_name(std::string const& s)
 {
 name = s;
 }
 void set_rank(size_t r)
 {
 rank = r;
 }
 // getter functions implementation
private:
 std::string name;
 size_t rank;

};

Expensive Pass by Value in C Function

#include<stdio.h>
#include<string.h>

typedef struct _Player {

18 Performance Defects

18-32

 char name[50];
 size_t rank;
} Player;

void printPlayer(Player const player)
{

 printf("Player name: %s\n", player.name);
 printf("Player rank: %zu\n", player.rank);
}

In this example, Polyspace flags the parameter of printPlayer which is passed by value and results
in an expensive copy.

Correction — Pass Large Struct by const Pointer

To avoid an inefficient copy operation, use a const* to pass the parameter, then use the appropriate
notation to read the structure elements.

#include<stdio.h>
#include<string.h>

typedef struct _Player {
 char name[50];
 size_t rank;
} Player;

void printPlayer(Player const* player)
{

 printf("Player name: %s\n", player->name);
 printf("Player rank: %zu\n", player->rank);
}

Result Information
Group: Performance
Language: C | C++
Default: Off
Command-Line Syntax: EXPENSIVE_PASS_BY_VALUE
Impact: Medium

See Also
Find defects (-checkers) | Expensive return by value | Expensive copy in a
range-based for loop iteration | Expensive local variable copy

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020b

 Expensive pass by value

18-33

Expensive copy in a range-based for loop iteration
The loop variable of a range-based for loop is copied from the range elements instead of being
referenced resulting in inefficient code

Description
This defect occurs when the loop variable of a range-based for loop is copied from the range
elements instead of reading the range elements by reference. Copy the range elements only when its
necessary because copying them might result in inefficient code. This defect is raised when the loop
variable is unmodified and any of these conditions are true:

• The copied loop variable is a large trivially copyable type variable. Copying a trivially copyable
object is more expensive than referencing it when the object is large.

• The copied loop variable is a nontrivially copyable type. Copying such an object might require an
external function call, which is more expensive than referencing it. To check whether an object is
nontrivially copyable, use the function std::is_trivially_copyable. For more details about
this function, see std::is_trivially_copyable in the C++ reference.

Risk

Range-based for loops can become inefficient when an expensive copy of the loop variable is made in
each iteration of the loop. Consider this code:

void foo(std::map<std::string, std::string> const& property_map)
{
 for(std::pair< const std::string, std::string > const property: property_map)
 {}
}

The loop variable property is declared as a const instead of const&. In each iteration of the for
loop, an std::pair object is copied from the map property_maps to the loop variable property.
Because of the missing & in the declaration of propert, an expensive copy operation is done in each
iteration instead of a referencing operation, resulting in inefficient code. Because this code compiles
and functions correctly, the inefficient for loops might not be noticed. For similar source of
inefficiencies, see Expensive pass by value and Expensive return by value.

Fix

To fix this defect, declare the loop variable of a range-based for loop as a const&. Consider this
code:

void foo(std::map<std::string, std::string> const& property_map)
{
 for(std::pair< const std::string, std::string > const& property: property_map)
 {}
}

Because the loop variable property is declared as a const&, the variable references a different
element of the map property_map in each loop iteration, without copying any resource. By
preventing an expensive copy in each iteration, the code becomes more efficient.

18 Performance Defects

18-34

https://en.cppreference.com/w/cpp/types/is_trivially_copyable

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Examples
Expensive Copy in Loop Iterations

#include <initializer_list>
#include <unordered_map>
#include <vector>
struct Small_Trivial_Type
{
 unsigned char values[sizeof(void*)];
};

struct Large_Trivial_Type
{
 unsigned char values[4u * sizeof(void*)];
};

class Nontrivial_Type
{
 Nontrivial_Type() noexcept;
 Nontrivial_Type(Nontrivial_Type const&);
 Nontrivial_Type& operator=(Nontrivial_Type const&);
 ~Nontrivial_Type() noexcept;
 int read() const;
 void modify(int);
};
extern std::vector< Nontrivial_Type > getNtts();

void foo(std::vector< Nontrivial_Type > const& ntts)
{
 for(Nontrivial_Type ntt: ntts)
 {}
}

void foo_auto(std::vector< Nontrivial_Type > const& ntts)
{
 for(auto ntt: ntts)
 {}
}
void foo_c_array(Nontrivial_Type const (& ntts)[10])
{
 for(Nontrivial_Type ntt: ntts)
 {}
}
void foo_large(std::vector< Large_Trivial_Type > const& ltts)
{
 for(Large_Trivial_Type ltt: ltts)
 {}
}
void foo_small(std::vector< Small_Trivial_Type > const& stts)
{
 for(Small_Trivial_Type const stt: stts)
 {}
}

 Expensive copy in a range-based for loop iteration

18-35

void modify_elem(std::vector< Nontrivial_Type > const& ntts)
{
 for(Nontrivial_Type ntt: ntts)
 {
 ntt.modify(42);//Modification
 }
}

In this example, range-based for loops that have different types of loop variables are shown.

• Polyspace flags the nontrivially copyable loop variable ntt in foo() due to an expensive copy
operation that is unnecessary because the loop variable is not modified. For the same reason, the
loop variables in foo_auto() and foo_c_array() are flagged.

• Polyspace flags the large loop variable ltt in foo_large() because it is more expensive to copy
the elements of ltts into ltt than to reference elements of ltts, even though ltt is a trivially
copyable type.

• Polyspace does not flag the loop variable stt in foo_small() because copying the elements of
stts into stt is not more expensive than referencing the elements of stts.

• Polyspace does not flag the loop variable ntt in modify_elem() because the loop variable is
modified in the loop.

Correction

To fix this issue, use constant references (const&) as loop variables in range-based for loops. Using
const& loop variables prevents expensive copying and produces efficient code.

#include <initializer_list>
#include <unordered_map>
#include <vector>
struct Small_Trivial_Type
{
 unsigned char values[sizeof(void*)];
};

struct Large_Trivial_Type
{
 unsigned char values[4u * sizeof(void*)];
};

class Nontrivial_Type
{
 Nontrivial_Type() noexcept;
 Nontrivial_Type(Nontrivial_Type const&);
 Nontrivial_Type& operator=(Nontrivial_Type const&);
 ~Nontrivial_Type() noexcept;
 int read() const;
 void modify(int);
};
extern std::vector< Nontrivial_Type > getNtts();
// Test iterating over a const vector.
void foo(std::vector< Nontrivial_Type > const& ntts)
{
 for(Nontrivial_Type const& ntt: ntts) // NC2C
 {}
}

18 Performance Defects

18-36

void foo_auto(std::vector< Nontrivial_Type > const& ntts)
{
 for(auto const& ntt: ntts) //NC2C
 {}
}
void foo_c_array(Nontrivial_Type const (& ntts)[10])
{
 for(Nontrivial_Type const& ntt: ntts) // NC2C
 {}
}
void foo_large(std::vector< Large_Trivial_Type > const& ltts)
{
 for(Large_Trivial_Type const& ltt: ltts)
 {}
}

Result Information
Group: Performance
Language: C++
Default: Off
Command-Line Syntax: EXPENSIVE_RANGE_BASED_FOR_LOOP_ITERATION
Impact: Medium

See Also
Find defects (-checkers) | Expensive pass by value | Expensive return by value |
Expensive local variable copy

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020b

 Expensive copy in a range-based for loop iteration

18-37

Expensive return by value
Functions return large output by value instead of by reference or pointer

Description
This defect occurs when functions return large output objects by value instead of the object being
returned by reference or pointer.

This checker is raised if both of these conditions are true:

• The address of the returned object remains valid after the return statement.
• The returned object is any of these:

• A nontrivially copyable object. Returning such an object by value might require an external
function call, which is more expensive than returning it by reference. To check whether an
object is nontrivially copyable, use the function std::is_trivially_copyable. For more
details about this function, see std::is_trivially_copyable in the C++ reference.

• A large trivially copyable object. Returning a trivially copyable object by value is more
expensive when the object is large.

This defect is not raised if the returned object is:

• Inexpensive to copy.
• A temporary object or a nonstatic local object.

Risk

It is inefficient to return a large object by value when you can return the object by reference or
pointer. Functions might inadvertently return a large object by value because of a missing & or *.
Such inefficient return statements might not be noticed. Consider this code:

#include<string>
class Buffer{
public:
 //..
 const std::string getName() {
 return m_names;
 }
 //...
private:
 std::string m_names;
};

The class Buffer contains a large private object m_names. It is common to have a public getter
function for such a private object, such as getName, which returns the large object m_names.
Because the return type of getNames is set as const std::string instead of const
std::string&, the function returns the large object by value instead of by reference. The expensive
return by copy might not be noticed because this code compiles and functions correctly despite the
missing &. For similar sources of inefficiency, see Expensive pass by value and Expensive
copy in a range-based for loop iteration.

18 Performance Defects

18-38

https://en.cppreference.com/w/cpp/types/is_trivially_copyable

Fix

To fix this defect, return objects by using references. When using C code, use pointers to avoid
returning objects by value.

• To return objects from a C++ function by reference, set the return type of the function as a
reference. For instance:

#include<string>
class Buffer{
public:
 //..
 const std::string& getName() {
 return m_name;
 }
 //...
private:
 std::string m_name;
};

The function getName() returns the large object m_names by reference because the return type
of the function is const std::string&, which is a reference.

• Alternatively, use pointers to avoid returning objects by value. For instance, set the return type of
getName() to const std::string*, and then return the address of m_names as &m_names.

#include<string>
class Buffer{
public:
 //..
 const std::string* getName() {
 return &m_name;
 }
 //...
private:
 std::string m_name;
};

By using a pointer, the function getName() avoids returning m_names by value. This method is
useful in C code where references are not available.

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Examples
Expensive Return by Value in C++ Code

#include<string>
#include<memory>
#include<array>
#include<cstdint>
class Buffer{
private:
 static const size_t SIZE = 10;
 std::string m_name; //Nontrivially copyable type
 std::array<uint8_t,SIZE> m_byteArray; // Large trivially copyable type

 Expensive return by value

18-39

 size_t m_currentSize; // Small trivially copyable
public:
 //...
 const std::string getName(){
 return m_name;
 }
 const std::array<uint8_t,SIZE> getByteArray(){
 return m_byteArray;
 }
 size_t getCurrentSize(){
 return m_currentSize;
 }
};

In this example, various private objects in the class Buffer are accessed by their getter functions.

• The large object m_name is returned by the getter functions getName by value. Returning this
nontrivially copyable object by value is inefficient when it can be returned by reference instead.
Polyspace flags the unction.

• The object m_byteArray is returned by the getter function getByteArray by value. Returning
this large object by value is inefficient when it can be returned by reference instead. Polyspace
flags the function.

• The function getCurrentSize returns the integer m_currentSize by value. Copying this small
object is not inefficient. Polyspace does not flag the function.

Correction

To fix these defects, return large objects by using references as return types of the getter functions.
For instance, set the return type of getName to const std::string& instead of const
std::string.

#include<string>
#include<memory>
#include<array>
#include<cstdint>
class Buffer{
private:
 static const size_t SIZE = 10;
 std::string m_name; //Nontrivially copyable type
 std::array<uint8_t,SIZE> m_byteArray; // Large trivially copyable type
 size_t m_currentSize; // Small trivially copyable
public:
 //...
 const std::string& getName(){
 return m_name;
 }
 const std::array<uint8_t,SIZE>& getByteArray(){
 return m_byteArray;
 }
 size_t getCurrentSize(){
 return m_currentSize;
 }
};

18 Performance Defects

18-40

Expensive Return by Value in C Code

typedef struct _Circle{
 double Origin_abscissa;
 double Origin_ordinate;
 double Radius;
 char name[10];
}Circle;

const Circle getCircle(){
 static Circle SpecificCircle;
 //...
 return SpecificCircle;
}

In this example, the function getCircle returns the large static object SpecificCircle by
value. Polyspace flags the function.

Correction

To fix this issue, return the object SpecificCircle by using a pointer. Declare the return type of the
function getCircle as const Circle* instead of const Circle, and then return the address of
the object, that is, &SpecificCircle.

typedef struct _Circle{
 double O_abscissa;
 double O_ordinate;
 double Radius;
 char name[10];
}Circle;

const Circle* getCircle(){
 static Circle SpecificCircle;
 //...
 return &SpecificCircle;
}

Result Information
Group: Performance
Language: C | C++
Default: Off
Command-Line Syntax: EXPENSIVE_RETURN_BY_VALUE
Impact: Medium

See Also
Find defects (-checkers) | Expensive pass by value | Expensive copy in a range-
based for loop iteration | Expensive local variable copy

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

 Expensive return by value

18-41

Introduced in R2020b

18 Performance Defects

18-42

Expensive use of non-member std::string
operator+() instead of a simple append
The non-member std::string operator+() function is called when the append (or +=) method
would have been more efficient

Description
This defect occurs when you append to a string using the non-member function std::string
operator+(), for instance:

std::string s1;
s1 = s1 + "Other";

Risk

The operation:

s1 = s1 + "Other";

invokes the non-member function std::string operator+() for the string concatenation on the
right-hand side of the assignment. The function returns a temporary string, which is then assigned to
s1.

Directly calling the member function operator+=() avoids the creation of this temporary string and
is more efficient.

Fix

To append to a string, use the member function operator+=(), for instance:

std::string s1;
s1 += "Other";

or the member function append, for instance:

std::string s1;
s1.append("Other");

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Examples
Appending to String Using std::string operator+()

#include <string>

void addJunior(std::string &name) {
 name = name + ", Jr.";
}

void addSenior(std::string &name) {

 Expensive use of non-member std::string operator+() instead of a simple append

18-43

 name += ", Sr.";
}

void addDoctor(std::string &name) {
 name.append(", MD");
}

In this example, the checker flags the string append in the addJunior function, but not the ones in
the other two functions. If the function addJunior is called several times in a loop, creation of a
temporary string each time can be a significant performance issue.

Result Information
Group: Performance
Language: C++
Default: Off
Command-Line Syntax: EXPENSIVE_STD_STRING_APPEND
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020b

18 Performance Defects

18-44

Expensive use of std::string methods instead of
more efficient overload
An std::string method is called with a string literal of known length, instead of a single quoted
character

Description
This defect occurs when you invoke certain std::string methods with a string literal of known
length instead of a single quoted character. When certain std::string methods are called with a
string literal, the method must compute the length of the literal even though the information is known
at compile time. Polyspace flags such calls as inefficient. For instance, Polyspace flags the first two
calls to std::string::find:

std::string str;
//...
str.find("A");//Inefficient
//...
str.find("ABC",offset,1);//Inefficient
str.find('A');//Efficient

In the first two calls, the compiler computes the length of the string literal "A" when it is already
known before runtime. In the third call, the compiler does not compute the length of the input,
making the call more efficient than the first two. Polyspace raises this defect when these
std::string methods are invoked by using a string literal of known length instead of a single
quoted character:

• find
• rfind
• find_first_of
• find_last_of
• find_first_not_of
• find_last_not_of
• replace
• operator=
• operator+=
• starts_with (C++20)
• ends_with (C++20)

Risk

In some cases, you can call std::string methods with either a string literal or a single quoted
character. In these cases, it is inefficient to call the std::string methods with string literal because
such calls force the compiler to compute the lengths of the string literals, which is already known
before runtime. Because std::string methods are frequently used, inefficient calls to these
methods might result in expensive and inefficient code.

 Expensive use of std::string methods instead of more efficient overload

18-45

Fix

To fix this issue, call the std::string methods by using single quoted characters instead of a string
literal when appropriate. For instance, you might use a single quoted character as an input instead of
a string literal consisting of a single character or a repetition of a single character. You might need to
use a different overload of the method that accepts a single quoted character.

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Examples
Use Single Quoted Characters to Invoke std::string Methods

#include <string>
#include <set>
constexpr size_t ONE(){ return 1; }
void foo(std::string& str){
 int pos, count;
 str += "A";
 str += "\0";
 str.find("AA", 0, ONE());
 str.find("A");
 str.find_first_of("A");
 str.find_last_of("A");
 str.find_first_not_of("A");
 str.find_last_not_of("A");
 str.replace(0, 1, "A");
 str.rfind("AA", 0,1);
 str.replace(0, count, "AAAAA");
 str.replace(pos, count, "AB", 1);
}

In this example, several methods and operators of the std::string class are invoked to perform
string operations. For these calls, you already know the length of the string literals before program
runtime. Because the input is passed as a string object, the compiler performs a linear search to find
its length, which is redundant. Polyspace flags such inefficient invocation of string operations.

Correction – Use Overloads that Accepts char as Input

To fix this issue, use a single quoted character instead of a string literal. For methods such as
replace, rewrite the function call and use the overload that accepts char type variables when the
input is a single character.

#include <string>
#include <set>
constexpr size_t ONE(){ return 1; }
void foo(std::string& str){
 int pos, count;
 str += 'A';
 str += '\0';
 str.find('A');
 str.find_first_of('A');
 str.find_last_of('A');
 str.find_first_not_of('A');

18 Performance Defects

18-46

 str.find_last_not_of('A');
 str.replace(0, 1, 1,'A');//Rewritten call that accepts a single char
 str.rfind('A');
 str.replace(0, count, 5,'A');//Rewritten call that accepts a single char
 str.replace(pos, count, 1,'A');
}

Result Information
Group: Performance
Language: C++
Default: Off
Command-Line Syntax: EXPENSIVE_USE_OF_STD_STRING_METHODS
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2021a

 Expensive use of std::string methods instead of more efficient overload

18-47

Expensive use of std::string with empty string
literal
Use of std::string with empty string literal can be replaced by less expensive calls to
std::basic_string member functions

Description
In your C/C++ code, the checker flags these operations:

• Constructing an instance of std::string by using an empty string literal
• Assigning an empty string literal to an instance of std::string
• Comparing an instance of std::string to an empty string literal

Usage notes and limitations:

• The checker does not track the origin of const char pointer variables that are empty and are
eventually used with std::string.

• This checker is partially obsolete when you use current compilers. Compilers such as GCC 5.1 and
Visual Studio 2015 optimize out construction from an empty string literal and treat it as identical
to the default construction.

Risk

The preceding operations can be replaced by calls to the default constructor and the empty and
clear member functions of the std::basic_string class template. Certain compilers might
generate additional instructions for the explicit operations compared to the use of the built-in
member functions. The use of these operations might reduce the performance of the compiled code.

Fix

Replace explicit operations involving empty string literals by these calls to the default constructor
and member functions of std::basic_string.

Do not Use Use
std::string s(""); std::string s;
std::string s = ""; std::string s;
s = ""; s.clear();
if (s == "") if (s.empty())
return ""; return {};
void foo(const std::string& s = ""); void foo(const std::string& s = {});(C

++11) or foo(const std::string &str2 =
std::string())

foo(""); foo({}) (C++11) or foo(std::string())
Class::Class() : str("") {//...} Class::Class() : str() {//...}

18 Performance Defects

18-48

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Examples
Comparison With Empty String Literal

#include <iostream>
#include <string>

void compareString(const std::string &str1, const std::string &str2="")//Noncompliant
{
 if (str1 == "")//Noncompliant
 {
 std::cout << "The string is empty" << std::endl;
 }
 else
 {
 if (str1.compare(str2) != 0)
 std::cout << str1 << " is not " << str2 << '\n';
 }
}

void bar(){
 compareString("String1");
 compareString("String1","");//Noncompliant
}

In this example, three string operations are performed by using empty string literals. Polyspace flags
these operations as inefficient.

Correction — Use Member Functions of std::string

To fix the flagged issues, replace string operations with empty string literals with calls to member
functions of std::string. For instance:

• Replace const std::string &str2="" with const std::string &str2={}
• Replace if(str1 == "") with if(str1.empty())
• Replace compareString("String1","") with compareString("String1",{})

#include <iostream>
#include <string>

void compareString(const std::string &str1, const std::string &str2 = {})//Compliant
{
 if (str1.empty())//Cmpliant
 {
 std::cout << "The string is empty" << std::endl;
 }
 else
 {
 if (str1.compare(str2) != 0)
 std::cout << str1 << " is not " << str2 << '\n';

 Expensive use of std::string with empty string literal

18-49

 }
}

void bar(){
 compareString("String1");
 compareString("String1",{});//Compliant
}

Result Information
Group: Performance
Language: C++
Default: Off
Command-Line Syntax: UNNECESSARY_EMPTY_STRING_LITERAL
Impact: Low

See Also
Find defects (-checkers) | Expensive constant std::string construction |
Expensive std::string::c_str() use in a std::string operation

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2021a

18 Performance Defects

18-50

Inefficient string length computation
String length calculated by using string length functions on return from
std::basic_string::c_str() instead of using std::basic_string::length()

Description
This defect occurs when the length of a std::basic_string string is calculated by using string
length functions on the pointer returned from std::basic_string::c_str() instead of using the
method std::basic_string::length().

The checker flags string length functions such as strlen, wcslen and char_traits::length.

Risk

std::basic_string::c_str() returns a pointer to a null-terminated character array that stores
the same data as the data stored in the string. Using a string length function such as strlen on this
character array is expected to return the string length. This approach might seem superficially
equivalent to using the std::basic_string::length() method for the string length.

However, the function strlen(str) is of linear complexity O(N) where N is the length of string str.
If str is of type std::basic_string, this complexity is unnecessary since calling the
std::basic_string::length() method returns the length more efficiently (with complexity
O(1)).

Fix

If a string is of type std::basic_string, to get the string length, instead of using string length
functions such as strlen, for instance:

std::string s;
auto len = strlen(s.ctr());

use the std::basic_string::length() method, for instance:

std::string s;
auto len = s.length();

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Result Information
Group: Performance
Language: C++
Default: Off
Command-Line Syntax: INEFFICIENT_BASIC_STRING_LENGTH
Impact: Medium

See Also
Find defects (-checkers)

 Inefficient string length computation

18-51

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020a

18 Performance Defects

18-52

Missing constexpr specifier
constexpr specifier can be used on variable or function for compile-time evaluation

Description
This defect identifies potential constexpr variables and functions. For instance, the defect occurs if:

• You omit the constexpr specifier when a variable is initialized by using an expression that can be
evaluated at compile time.

The defect checker flags a local variable definition without the constexpr specifier if the variable
is initialized with one of the following and not modified subsequently in the code:

• An expression involving compile-time constants only.
• Calls to a function with compile-time constants as parameters, provided the function is itself

constexpr or the function contains only a return statement involving its parameters.
• A constructor call with a compile-time constant, provided all member functions of the class

including the constructor are themselves constexpr.

The checker does not flag local, static variables.
• You omit the constexpr specifier from functions with a single return statement that could

potentially be evaluated at compile time (given compile-time constants as arguments).

Risk

If a variable value is computed from an expression that involves compile-time constants only, using
constexpr before the variable definition, like this:

constexpr double eValSquared = 2.718*2.718;

ensures that the expression is evaluated at compile time. The compile-time evaluation saves on run-
time overheads. Sometimes, the performance gains at run time can be significant.

If the expression cannot be evaluated at compile time, the constexpr keyword ensures that you get
a compilation error. You can then fix the underlying issue if possible.

Note that the const keyword does not guarantee compile-time evaluation. The const keyword
simply forbids direct modification of the variable value after initialization. Depending on how the
variable is initialized, the initialization can happen at compile time or run time.

Fix

Add the constexpr specifier to the variable or function definition.

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

 Missing constexpr specifier

18-53

Examples
Potential constexpr Variables and Functions

double squareIfPositive(double val) {
 return val > 0? (val * val): 0;
}

void initialize(void) {
 double eVal = 2.718;
 double eValSquare = squareIfPositive(2.718);
}

In this example, the checker flags the definition of squareIfPositive because the function
contains a single return statement involving only its parameter val. Therefore, if val is a compile-
time constant, the function can be evaluated at compile-time and can be a constexpr function.

The checker also flags the definition of eValSquare because it is initialized with a potentially
constexpr function that takes a compile-time constant as argument.

Correction – Add constexpr Specifier

Add constexpr specifiers to the variable and function definitions.

constexpr double squareIfPositive(double val) {
 return val > 0? (val * val): 0;
}

void initialize(void) {
 constexpr double eVal = 2.718;
 constexpr double eValSquare = squareIfPositive(2.718);
}

Result Information
Group: Performance
Language: C++
Default: Off
Command-Line Syntax: MISSING_CONSTEXPR
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020b

18 Performance Defects

18-54

std::endl may cause an unnecessary flush
std::endl is used instead of the more efficient \n

Description
This defect flags uses of std::endl in I/O operations and allows you to use the more efficient
alternative, \n.

Risk

std::endl inserts a newline (\n) followed by a flush operation. For instance:

std::cout << "Some content" << std::endl;

is equivalent to:

std::cout << "Some content" << '\n' << std::flush;

The implicit flush operation might not be necessary or intended. If your program has many I/O
operations that use std::endl, the implicit flush operation can significantly reduce program
performance. Since the flush operation is implicit, in case of a performance issue, it will be difficult to
track the root cause of the issue.

Fix

Use \n to enter a newline wherever possible.

If you require a flush operation, instead of std::endl, use \n followed by an explicit flush operation,
for instance:

std::cout << "Some content" << '\n' << std::flush;

In this case, the analysis considers your use of a flush operation as deliberate and does not flag the
use.

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Examples
Possible Performance Impact from std::endl Use

#include <fstream>
using namespace std;

int main()
{
 ofstream aFile("file.txt");
 for (int i = 0; i < 100000; i++) {
 aFile << "Hello World " << std::endl ;
 }
 aFile.close();

 std::endl may cause an unnecessary flush

18-55

 return 0;
}

In this example, an std::endl is used in a loop during a write operation on a file. Since the loop has
100000 iterations, the slight delay from each implicit flush operation can add up to a significant
reduction of performance.

Use \n and Avoid Flush

In a loop with several iterations, avoid the performance reduction in I/O operations by using \n
instead of std::endl.

#include <fstream>
using namespace std;

int main()
{
 ofstream aFile("file.txt");
 for (int i = 0; i < 100000; i++) {
 aFile << "Hello World \n" ;
 }
 aFile.close();
 return 0;
}

Result Information
Group: Performance
Language: C++
Default: Off
Command-Line Syntax: STD_ENDL_USE
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020a

18 Performance Defects

18-56

std::move called on an unmovable type
std::move used on a class type with no move constructor or move assignment operator

Description
This defect occurs when you use std::move to move an object of a class type that does not have a
move constructor or move assignment operator.

Risk

The use of std::move in statements such as:

Obj objTo {std::move(objFrom)};
objTo = std::move(objFrom);

indicates that you want to benefit from the performance gains of a move operation. However, because
of the missing move constructor or move assignment operator, a copy operation happens instead.

If the class is expensive to copy, the unintended copy operation can cause a loss of performance.

Fix

To make an object of type T movable, add a move constructor:

T (T&&);

and move assignment operator:

T& operator=(T&&);

to the class T. If the class does not have to directly manage a resource, you can use compiler-
generated move operators using the =default syntax, for instance:

T (T&&) = default;

Otherwise, if a move operation is not required, remove the std::move call and directly copy the
object.

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Examples
std::move Used with Unmovable Types

#include <utility>
#include <string>

class stringPair {
 std::string str1;
 std::string str2;

 std::move called on an unmovable type

18-57

 public:
 stringPair(const stringPair & aPair); //Copy constructor
 stringPair& operator=(const stringPair & aPair); //Copy assignment operator
};

void exchangePairs (stringPair& first, stringPair& second) {
 stringPair tempPair {std::move(first)};
 first = std::move(second);
 second = std::move(tempPair);
}

In this example, the type stringPair does not have a move constructor or move assignment
operator. Uses of std::move on objects of this type result in copy operations instead.
Correction – Add Move Constructor and Move Assignment Operator

Make the type stringPair movable by adding a move constructor or move assignment operator.

#include <utility>
#include <string>

class stringPair {
 std::string str1;
 std::string str2;

 public:
 stringPair(const stringPair & aPair); //Copy constructor
 stringPair(stringPair && aPair) noexcept; //Move constructor
 stringPair& operator=(const stringPair & aPair); //Copy assignment operator
 stringPair& operator=(stringPair && aPair) noexcept; //Move assignment operator
};

void exchangePairs (stringPair& first, stringPair& second) {
 stringPair tempPair {std::move(first)};
 first = std::move(second);
 second = std::move(tempPair);
}

Correction –- Remove std::move call

If you do not want to make the type stringPair movable, omit the std::move calls.

#include <utility>
#include <string>

class stringPair {
 std::string str1;
 std::string str2;

 public:
 stringPair(const stringPair & aPair); //Copy constructor
 stringPair& operator=(const stringPair & aPair); //Copy assignment operator
};

void exchangePairs (stringPair& first, stringPair& second) {
 stringPair tempPair {first};
 first = second;
 second = tempPair;
}

18 Performance Defects

18-58

Result Information
Group: Performance
Language: C++
Default: Off
Command-Line Syntax: STD_MOVE_UNMOVABLE_TYPE
Impact: Medium

See Also
Find defects (-checkers) | Const std::move input may cause a more expensive
object copy | Const rvalue reference parameter may cause unnecessary data
copies

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020b

 std::move called on an unmovable type

18-59

Use of new or make_unique instead of more
efficient make_shared
Using new or make_unique to initialize or reset shared_ptr results in additional memory allocation

Description
This defect occurs when you use:

• new or make_unique to initialize a shared_ptr instance. For example:

std::shared_ptr<T> p1(new T());
std::shared_ptr<T> p2(make_unique<T>());

• new to reset a shared_ptr instance. For example:

std::shared_ptr<T> p1;
//...
p1.reset(new T);

You use shared_ptr instances when you want multiple smart pointers to own and manage the same
object. The instances also share a control block that holds a count of the number of instances that
own the managed object.

Polyspace does not flag the use of new to initialize a shared_ptr instance in private or protected
constructors. For example, no defect is raised on the use of new in this code snippet:

class PrivateCTor
{
public:
 static std::shared_ptr<PrivateCTor> makeOne()
 {
 return std::shared_ptr<PrivateCTor>(new PrivateCTor);
 }
private:
 PrivateCTor();
};

Risk

When you use new or make_unique to initialize a shared_ptr instance, an additional allocation
operation creates storage for the control block. The address of the additional allocation might be in a
different memory page or outside the data-cache compared to the address of the managed object.

Fix

Use std::make_shared to initialize a shared_ptr instance. The function performs a single
allocation operation with enough memory to store the managed object and the control block.

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

18 Performance Defects

18-60

Examples
Use of new to Initialize a shared_ptr

#include <memory>
#include <string>

struct Profile {
 virtual ~Profile() = default;
};

struct Player : public Profile {
 std::string name;
 std::int8_t rank;

 Player();
 Player(const std::string& name_, const std::int8_t& rank_) :
 name{ name_ }, rank{ rank_ } {}
};

void func()
{

 std::shared_ptr<Player> player1(new Player("Serena Williams", 1));
 std::shared_ptr<Player> top_rank(player1);

}

In this example, Polyspace flags the use of new to initialize player1. The program performs an
additional allocation operation for the control block that holds the counter of all instances of
shared_ptr that own the managed Player object.

Correction — Use std::make_shared to Initialize shared_ptr

One possible correction is to use std::make_shared to initialize player1.

#include <memory>
#include <string>

struct Profile {
 virtual ~Profile() = default;
};

struct Player : public Profile {
 std::string name;
 std::int8_t rank;

 Player();
 Player(const std::string& name_, const std::int8_t& rank_) :
 name{ name_ }, rank{ rank_ } {}
};

void func()
{

 auto player1 = std::make_shared<Player>("Serena Williams", 1);
 std::shared_ptr<Player> top_rank(player1);

}

Result Information
Group: Performance

 Use of new or make_unique instead of more efficient make_shared

18-61

Language: C++
Default: Off
Command-Line Syntax: MISSING_MAKE_SHARED
Impact: Low

See Also
Find defects (-checkers) | AUTOSAR C++14 Rule A20-8-6 | AUTOSAR C++14 Rule
A18-5-2

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2021a

18 Performance Defects

18-62

Expensive use of a standard algorithm when a
more efficient method exists
Functions from the algorithm library are misused with inappropriate inputs, resulting in inefficient
code

Description
This checker is raised when you use functions in the algorithm library inefficiently or with
inappropriate inputs. You might be recalculating known or constant information about the container
or you might be using a function that is inappropriate for the container. The scenarios that trigger
this checker include:

• Using lookup functions such as std::find, std::equal_range, std::upper_bound,
std::binary_search and std::lower_bound on associative containers such as std::set,
std::map, std::multiset, and std::mutimap.

• Using std::count to check if a container contains certain key. That is, the output of
std::count is converted to a bool or compared to either 0 or 1.

• Using std::is_sorted on an associative container.
• Using std::distance to calculate the size of an associative container.
• Using std::adjacent_find on unique-value containers such as std::set or std::map.

Risk

Misusing the functions from the algorithm library or using them with inappropriate sets of input
might result in inefficient code or unexpected behavior. For instance:

• Functions such as std::find and std::binary_search perform linear search, which is
inefficient for associative containers.

• The function std::count performs a linear search to count all the matching keys in the
container. When checking if a key exists in a container, performing an exhaustive search for every
instance of the key by calling std::count is unnecessary and inefficient.

• The output of std::is_sorted is constant when called on a sorted container. The output is
indeterminate when the function is called on an unsorted container. Because the result is known
beforehand, the call is unnecessary. The indeterminate output might result in unexpected
behavior.

• Associative containers have their own size method, which is more efficient than using
std::distance.

• The output of std::adjacent_find when it is used on a unique value container is end(). The
compiler produces the same output after an exhaustive binary search. Because the output is
known beforehand, the call is inefficient.

Fix

To fix this defect, refactor your code to use the standard algorithm functions more efficiently. The
specific fix might depend on your use case. For instance:

• When using associative containers, call their member methods, such as std::set::find,
instead of std functions, such as std::find.

 Expensive use of a standard algorithm when a more efficient method exists

18-63

• To check containment, use the member find or contains (C++20) functions instead of
std::count. For containers without these member functions, use std::find instead of
std::count.

• Avoid using std::is_sorted or std::adjacent_find on associative containers.
• To check the size of an associative container, use its member size function, such as

std::vector::size. Avoid using std::distance to calculate size.

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Examples
Use of std Lookup Functions on Associative Containers

#include <unordered_set>
#include <unordered_map>
#include <forward_list>
#include <array>
#include <set>
#include <map>
#include <vector>
#include <deque>
#include <list>
#include <algorithm>
#include <string>

typedef std::string V;
typedef std::string K;

void lookup()
{
 std::string key;
 std::pair<const K, V> kv;

 std::set<V> s;
 std::multiset<V> ms;
 std::map<K, V> m;
 std::multimap<K, V> mm;
 std::vector<V> v;
 std::list<V> l;
 std::deque<V> d;
 std::string str;
 std::unordered_map<K, V> um;

 std::find(s.begin(), s.end(), key); //Noncompliant
 std::equal_range(m.begin(), m.end(), kv); //Noncompliant
 std::lower_bound(mm.begin(), mm.end(), kv); //Noncompliant
 std::upper_bound(ms.begin(), ms.end(), key); //Noncompliant
 std::count(um.begin(), um.end(), kv); //Noncompliant
 if(std::binary_search(s.begin(), s.end(), key)==0){ //Noncompliant
 //....
 }

18 Performance Defects

18-64

 std::find(v.begin(),v.end(), key); //Compliant
 std::equal_range(l.begin(),l.end(), key); //Compliant
 std::lower_bound(d.begin(),d.end(), key); //Compliant

}

In this example, Polyspace flags the use of std lookup functions, such as std::find or
std::count, on associative containers when the containers have equivalent member functions.
Using these std functions with containers that do not have equivalent member functions is compliant
with this rule. For instance, Polyspace flags the use of std::find on a set because
std::set::find is more efficient. Using find on a vector is compliant because the class vector
has no equivalent member function.
Correction

To fix this defect, use the member function of the associative containers instead of the std functions.
If there is no equivalent member function, then refactor your code to use the existing member
functions. For instance, replace std::binary_search with std::set::find:

#include <unordered_set>
#include <unordered_map>
#include <forward_list>
#include <array>
#include <set>
#include <map>
#include <vector>
#include <deque>
#include <list>
#include <algorithm>
#include <string>

typedef std::string V;
typedef std::string K;

void lookup()
{
 std::string key;
 std::pair<const K, V> kv;

 std::unordered_map<K, V> um;
 std::set<V> s;
 std::multiset<V> ms;
 std::map<K, V> m;
 std::multimap<K, V> mm;
 std::vector<V> v;
 std::list<V> l;
 std::deque<V> d;
 std::string str;

 s.find(key); //Compliant
 m.equal_range(key); //Compliant
 mm.lower_bound(key); //Compliant
 ms.upper_bound(key); //Compliant
 if(s.find(key)==s.end()){ //Compliant

 Expensive use of a standard algorithm when a more efficient method exists

18-65

 //....
 }
 um.count(key);//Compliant

}

Inefficient Containment Check

#include <unordered_set>
#include <unordered_map>
#include <forward_list>
#include <array>
#include <set>
#include <map>
#include <vector>
#include <deque>
#include <list>
#include <algorithm>
#include <string>

typedef std::string V;
typedef std::string K;

void conatins()
{
 std::string key;
 std::pair<const K, V> kv;

 std::set<V> s;
 std::multiset<V> ms;
 std::vector<V> v;
 std::unordered_map<K, V> um;

 //Check containment
 bool b_v = std::count(v.begin(), v.end(), key);//Noncompliant
 bool b_um = std::count(um.begin(), um.end(), kv);//Noncompliant
 bool b_s = std::count(s.begin(), s.end(), key);//Noncompliant
 bool b_ms = std::count(ms.begin(), ms.end(), key);//Noncompliant

 if(std::count(v.begin(), v.end(), key)==2){ //Compliant
 //...
 }

}

In this example, Polyspace flags the use of std::count to check if a container contains a particular
member. It is more efficient to use the member find function or the std::find function for
containment checking.

Using std::count to count instances of a member does not raise a defect if the container does not
have an equivalent member. For instance, Polyspace does not raise a defect when std::count is
used for checking if v contains two instances of key.

18 Performance Defects

18-66

Correction — Use find to Check Containment

To fix these defects, use the member find functions such as std::set::find to check for
containment. When checking containment in a container that does not have a member find function,
use std::find instead of std::count.

#include <unordered_set>
#include <unordered_map>
#include <forward_list>
#include <array>
#include <set>
#include <map>
#include <vector>
#include <deque>
#include <list>
#include <algorithm>
#include <string>

typedef std::string V;
typedef std::string K;

void conatins()
{
 std::string key;
 std::pair<const K, V> kv;

 std::set<V> s;
 std::multiset<V> ms;
 std::vector<V> v;
 std::unordered_map<K, V> um;

 //Check containment
 bool b_v = (std::find(v.begin(), v.end(), key)!=v.end());//Compliant
 bool b_um = (um.find(key)!=um.end());//Compliant
 bool b_s = (s.find(key)!=s.end());//Compliant
 bool b_ms = (ms.find(key)!=ms.end());//Compliant

}

Inappropriate Use of std Functions

#include <unordered_set>
#include <unordered_map>
#include <forward_list>
#include <array>
#include <set>
#include <map>
#include <vector>
#include <deque>
#include <list>
#include <algorithm>
#include <string>

typedef std::string V;
typedef std::string K;

 Expensive use of a standard algorithm when a more efficient method exists

18-67

void conatins()
{
 std::string key;
 std::pair<const K, V> kv;
 std::map<K, V> m;
 std::set<V> s;
 std::multiset<V> ms;
 std::vector<V> v;
 std::unordered_set< V> us;

 // Expression always returns same value
 bool b1 = std::is_sorted(s.begin(), s.end()); //NonCompliant

 // Result might be indeterminate
 bool b2 = std::is_sorted(us.begin(), us.end());//NonCompliant

 // std::set never has duplicates
 std::adjacent_find(s.begin(), s.end());//NonCompliant

 // std::map never has duplicates
 std::adjacent_find(m.begin(), m.end()); //NonCompliant

 //Inefficient use
 std::distance(s.begin(), s.end());//NonCompliant
}

In this example, Polyspace flags several inappropriate and inefficient uses of algorithm functions.
For instance:

• The function std::is_sorted returns a known constant when it is called on a set object. The
function returns an indeterminate value when called on an unoerderd_set. Polyspace flags these
usages.

• A set or map cannot contain duplicate elements by definition. Calling std::adjacent_find on
these types of containers always returns end(). Polyspace flags such usage.

• Associative containers have their own size function. Polyspace flags the use of std::distance
to measure the size of an associative container.

Result Information
Group: Performance
Language: C++
Default: Off
Command-Line Syntax: EXPENSIVE_USE_OF_STD_ALGORITHM
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

18 Performance Defects

18-68

Introduced in R2021b

 Expensive use of a standard algorithm when a more efficient method exists

18-69

Expensive use of container's count method
The function member count() of a container is used for checking if a key is present, leading to
inefficient code

Description
This defect is raised when the function member count() of these containers is called for checking if
a key is present:

• std::multimap
• std::multiset
• std::unordered_multiset
• std::unordered_multimap

When checking containment, you convert the output of the container's count() method to a bool, or
compare it to either 0 or 1.

Risk

The count function of the preceding containers performs a linear search and finds all the instances
of a key in the container. When checking if a key is present in a container, performing an exhaustive
search for every instance of the key is unnecessary and inefficient.

Fix

To fix this defect, call the member find or contains function of a container when checking for
containment. These functions stop searching for a key as soon as one instance of the key is found.
These functions check containment more efficiently compared to the count function.

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Examples
Inefficient Containment Check

#include <unordered_set>
#include <unordered_map>
#include <set>
#include <map>
#include <algorithm>
#include <string>

typedef std::string V;
typedef std::string K;

void conatins()
{
 std::string key;

18 Performance Defects

18-70

 std::pair<const K, V> kv;

 std::multiset<V> ms;
 std::multimap<K, V> mm;
 std::unordered_multimap<K, V> umm;
 std::unordered_multiset<K> ums;

 //Check containment

 bool b_ms = (ms.count(key)==0); //Noncompliant
 bool b_mm = (mm.count(key)==0);//Noncompliant
 bool b_ums = (ums.count(key)==0);//Noncompliant
 bool b_umm = (umm.count(key)==0);//Noncompliant

}

In this example, Polyspace flags the use of the member count function to check containment in
various containers. These count functions are inefficient because they continue searching for key
even after the first instance is found.

Correction

To fix this defect, use the member find function to check for containment. For instance, use
std::multimap::find instead of std::multimap::count. The find functions are more efficient
because they stop searching as soon as the first instance of key is found.

#include <unordered_set>
#include <unordered_map>
#include <set>
#include <map>
#include <algorithm>
#include <string>

typedef std::string V;
typedef std::string K;

void conatins()
{
 std::string key;
 std::pair<const K, V> kv;

 std::multiset<V> ms;
 std::multimap<K, V> mm;
 std::unordered_multimap<K, V> umm;
 std::unordered_multiset<K> ums;

 //Check containment

 bool b_ms = (ms.find(key)== ms.end()); //Compliant
 bool b_mm = (mm.find(key)== mm.end());//Compliant
 bool b_ums = (ums.find(key)==ums.end());//Compliant
 bool b_umm = (umm.find(key)==umm.end());//Compliant

}

 Expensive use of container's count method

18-71

Result Information
Group: Performance
Language: C++
Default: Off
Command-Line Syntax: EXPENSIVE_CONTAINER_COUNT
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2021b

18 Performance Defects

18-72

Unnecessary padding
Members of a struct are padded to fulfill alignment requirement when rearranging the members to
fulfill this requirement saves memory

Description
This checker flags a struct object where the arrangement of its members necessitates additional
padding to fulfill alignment requirement. Rearranging the members of such a struct object might
fulfill the alignment requirement without requiring any additional padding. Because the padding is
unnecessary for alignment purposes, eliminating the padding saves memory. Consider this struct in
a 64bit system:

 struct A {
 uint32_t m1;// 4 bytes
 uint64_t m2;// 8 bytes
 uint32_t m3;// 4 bytes
 };

To maximize speed, C/C++ requires that a variable be read in one cycle if possible. In this system, 8
bytes can be read during one cycle. If m1 and m2 are placed consecutively, the machine requires two
cycles to read m2. Instead, the variable m1 is placed in a 8 byte slot by itself after padding it by 4
bytes. Then m2 is placed in its own 8 byte slot. The variable m3 is also padded to fulfill alignment
requirement for the struct A. Because of the padding, the size of A is 24 bytes even though the
combined size of m1, m2, and m3 is 16.

Polyspace raises this defect when alignment requirement can be fulfilled by rearranging the members
of a struct. For instance, rearranging the members of A can eliminate padding:

 struct A {
 uint64_t m2;// 8 bytes
 uint32_t m1;// 4 bytes
 uint32_t m3;// 4 bytes
 };

Here, m2 is placed first in a 8 byte slot. Then m1 and m3 are placed together in another 8 byte slot.
This rearrangement eliminates the padding.

Risk

Unnecessary padding wastes memory, which can have several adverse impacts:

• Using more memory than necessary might exhaust the available memory, resulting in paging fault.
• Functions such as memcpy and memcmp might take longer.

Fix

To fix this defect, rearrange the members of the struct to eliminate the unnecessary padding.
Declare the largest struct members first, and then keep the declarations of same-sized members
together. You might also use pragma directives to eliminate padding.

 Unnecessary padding

18-73

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Examples
Unnecessary Padding in C-Style struct

#include <stdint.h>
struct GlobalStructA { //Noncompliant
 uint32_t m1;
 uint64_t m2;
 uint32_t m3;
};

// Using pragma pack to eliminate padding
//
#pragma pack(push, 1)
struct GlobalStructPragmaPack {//Compliant
 uint8_t m1;
 uint64_t m2;
 uint8_t m3;
};
#pragma pack(pop)
struct Array //Noncompliant
{
 uint8_t m1[5];
 uint64_t m2;
 uint8_t m3[3];
};
struct StructWithBitField //Noncompliant
{
 uint8_t m1 : 1;
 uint8_t : 1;
 uint8_t : 1;
 uint8_t m2 : 1;

 uint64_t m3;

 uint8_t m4 : 1;
 uint8_t : 1;
 uint8_t : 1;
 uint8_t m5 : 1;
};

In this example, Polyspace flags C style struct objects that contain unnecessary padding. Polyspace
assumes that the processor has a 32-bit word length by default. Use the option -target x86_64 to
run this example.

• Because the 32-bit variable m1 is declared first in the GlobalStructA object, it is padded to 64
bit. Polyspace flags the object because the padding can be eliminated by declaring m1 after m2.

• The object GlobalStructPragmaPack has a similar issue with the order of its member
declaration, but the padding is eliminated by a pragma directive. Polyspace does not flag this
object.

18 Performance Defects

18-74

• In the object Array, because m1[5] is declared before m2, the 40-bit array is padded to 64 bit.
The 24-bit array m3 is padded to 64 bit. These paddings can be eliminated by declaring m2 first.
Because Array contains unnecessary padding, Polyspace flags the object.

• In the object StructWithBitField, there are two bit-fields, each consisting of 4 bits. Because
m3 is declared between these two bitfields, they are padded. Polyspace flags the object.

Correction

To fix this defect, change the order of the declaration to eliminate padding. For instance:

#include <stdint.h>
struct GlobalStructA { //Compliant
 uint64_t m2;
 uint32_t m1;
 uint32_t m3;
};

// Using pragma pack to eliminate padding
//
#pragma pack(push, 1)
struct GlobalStructPragmaPack {//Compliant
 uint64_t m2;
 uint8_t m1;
 uint8_t m3;
};
#pragma pack(pop)
struct Array //Compliant
{
 uint64_t m2;
 uint8_t m1[5];
 uint8_t m3[3];
};
struct StructWithBitField //Compliant
{
 uint64_t m3;

 uint8_t m1 : 1;
 uint8_t : 1;
 uint8_t : 1;
 uint8_t m2 : 1;

 uint8_t m4 : 1;
 uint8_t : 1;
 uint8_t : 1;
 uint8_t m5 : 1;
};

Unnecessary Padding in class

#include <string>
#include<stdint.h>
class GlobalClassWithString {//Noncompliant
 uint32_t m1;
 std::string m2;
 uint32_t m3;

 Unnecessary padding

18-75

};
class GlobalClassC {//Noncompliant
 public:
 uint32_t m1;
 protected:
 uint64_t m2;
 private:
 uint32_t m3;
};

Polyspace assumes that the processor has a 32-bit word length by default. Use the option -target
x86_64 to run this example. Because of the order in which the members of the preceding classes are
declared, the classes contain unnecessary padding. Polyspace flags these classes. The public,
private, or protected labels of the members do not impact how they are organized in the memory.

Correction

To fix this defect, change the order of the declaration to eliminate padding. For instance:

#include <string>
#include<stdint.h>
class GlobalClassWithString{//Compliant
 std::string m2;
 uint32_t m1;
 uint32_t m3;
};
class GlobalClassC {//Compliant
 protected:
 uint64_t m2;
 public:
 uint32_t m1;
 private:
 uint32_t m3;
};

Unnecessary Padding in 16-Bit Processor

#include <stdint.h>
struct SmallPadding { //Noncompliant in 16-bit, compliant in 32-bit
 uint8_t m1;
 uint8_t m2;
 uint8_t m3;
 uint8_t m4;
 uint8_t m5;
 uint8_t m6;
 uint8_t m7;
 uint32_t m8;
 uint8_t m9;
 uint8_t m10;
 uint8_t m11;
 uint8_t m12;
 uint8_t m13;
 uint8_t m14;
 uint8_t m15;
};

18 Performance Defects

18-76

This example shows the sensitivity of this checker to the processor word length. In the object
SmallPadding, there are 16 bits of padding, which is small compared to the total size of the
struct. When the processor word length is large, the small padding is unlikely to cause inefficiency.
For instance, reading SmallPadding requires three cycles regardless of the padding if the processor
has a 64-bit alignment. Polyspace does not flag the object in this case. When the processor word
length is smaller, the padding can lead to inefficiency. For instance, if the processor alignment is 16
bit, the added padding might cause inefficiency in reading the object. Polyspace flags SmallPadding
in this case. To set the alignment of processor to 16 bit in a Polyspace analysis, use the options -
target mcpu -align 16. See Generic target options on page 2-43.

Result Information
Group: Performance
Language: C | C++
Default: Off
Command-Line Syntax: UNNECESSARY_STRUCT_PADDING
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2021b

 Unnecessary padding

18-77

Inefficient use of sprintf
The function sprintf copies strings instead of the more efficient strcpy

Description
This checker is triggered when you use the function sprintf to copy strings.

Risk

The function sprintf is a complex function with a variable argument list. Before executing the
function, the compiler parses the argument list to determine the argument types, which adds
overhead to the code. Handling the different input formats that sprintf supports makes the function
difficult to optimize. For instance, even if you want to copy only strings by using sprintf, the
function must still support copying integers. The versatility of sprintf makes it less efficient and
difficult to optimize. Using sprintf for copying strings make your code inefficient.

Fix

To fix this defect, refactor your code and use dedicated functions such as strcpy and strcat or
their variants to copy strings.

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Examples
Inefficient Copying of C-Style Strings

#include <string.h>
#include <stdio.h>

void foo(char* p1, const char* p2, const char* p3){
 //...
 sprintf(p1, "%s", p2); //Noncompliant
 sprintf(p1, "%s", "String");//Noncompliant
 sprintf(p1, "NoFormatting"); //Noncompliant
 sprintf(p1, ""); //Noncompliant
 sprintf(p1, "%s%s", p2, p3);//Noncompliant
}
void bar(char* p1, const char* p2, const char* p3){
 sprintf(p1, "%d", 5);//Compliant
 sprintf(p1, "%s%d", "String", 123);//Compliant
 int n = sprintf(p1, "%s", p2);//Compliant
}

In this example, the C strings p2 and p3 are copied into p1 by calling sprintf. Because sprintf is
used for copying strings in foo, Polyspace flags these inefficient calls. In the function bar, sprintf
is called for formatting strings. When you use sprintf for formatting strings or use the return value
of the function, Polyspace does not flag the call as inefficient.

18 Performance Defects

18-78

Correction

To fix this defect, use dedicated string copying functions such as strcpy and strcat instead of
sprintf when you copy strings.

#include <string.h>
#include <stdio.h>

void foo(char* p1, const char* p2, const char* p3){
 //...
 strcpy(p1, p2); //Compliant
 strcpy(p1, "String");//Compliant
 strcpy(p1, "NoFormatting"); //Compliant
 *p1 = '\0';//Compliant
 strcpy(p1, p2); //Compliant
 strcat(p1, p3);
}

Result Information
Group: Performance
Language:C | C++
Default: Off
Command-Line Syntax: inefficient_sprintf
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2021b

 Inefficient use of sprintf

18-79

Expensive post-increment operation
Object is post-incremented when pre-incrementing is faster

Description
This defect is raised when you use the post-increment or post-decrement operation instead of a more
efficient pre-increment or pre-decrement operation. The pre-increment operation is equally or more
efficient when all of these conditions are true:

• Pre and post increment or decrement operations are defined for the object.
• The return type of post-increment or decrement operation is expensive to copy.
• The returned value is unused.
• The return type of pre-increment or decrement operation is not expensive to copy, such as a

reference.

The efficiencies of pre-increment and pre-decrement operations depends on the version and
implementation of the C++ standard that you use. If you switch C++ version or the library
implementation, you might see a change in the number of violation of this check.

Risk

Post-increment or decrement operations create a copy of the object, increment or decrement the
original, and then return the copied object. When the object is expensive to copy and you do not use
the returned copy of the object, the post-increment or post-decrement operation is inefficient. Use a
pre-increment or pre-decrement operation, which does not copy the object and typically returns a
reference to the incremented or decrement object. Inadvertently using post-increment instead of pre-
increment with a large object might make the code inefficient. Code that uses inefficient post-
increment or post-decrement operations compiles and behaves correctly. The inefficient operations
might remain undetected.

Fix

When you do not use the returned object from a decrement or increment operation, use a pre-
increment operation.

When iterating over each element of a container, you might want to use loops that do not require
increment or decrement operations, such as std::for_each or the range-based for loop. These
loops are optimized for such iterations. They do not require manual increment or decrement
operations.

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Examples
Avoid Using Post-Increment Operation Instead of Pre-Increment Operation

// Using C++ 03
#include <complex>

18 Performance Defects

18-80

#include <iterator> // istream_iterator
#include <sstream> // istringstream
#include <string>
#include <vector>

std::vector< std::complex< double > > deserialize(const std::string& s)
{
 std::vector< std::complex< double > > v;
 std::stringstream iss(s);
 for(std::istream_iterator< std::complex< double > > it(iss);
 it != std::istream_iterator< std::complex< double > >(); it++) //Noncompliant
 { v.push_back(*it); }
 return v;
}

In this example, post-increment operations are performed on expensive iterators. Polyspace assumes
that the C++ version is C++03. Use the analysis option -cpp-version by using the value cpp03.

In the function deserialize, the for loops iterate over a std::istream_iterator<
std::complex< double > > iterator it. Because these iterators are expensive to copy, the post-
increment operation is more expensive than the pre-increment operation. The expensive post-
increment is unnecessary and inefficient because the incremented iterator is not used. Polyspace
flags the post-increment operations.
Correction

You can fix these defects in several ways. For instance, replace the post-increment operations by pre-
increment operations. If C++11 is available, you might want to use range-based for loops when you
iterate over each element of a container.

#include <complex>
#include <iterator> // istream_iterator
#include <sstream> // istringstream
#include <string>
#include <vector>

std::vector< std::complex< double > > deserialize(const std::string& s)
{
 std::vector< std::complex< double > > v;
 std::stringstream iss(s);
 for(std::istream_iterator< std::complex< double > > it(iss);
 it != std::istream_iterator< std::complex< double > >(); ++it) //Compliant
 { v.push_back(*it); }
 return v;
}

Result Information
Group: Performance
Language: C++
Default: Off
Command-Line Syntax: EXPENSIVE_POST_INCREMENT
Impact: Low

See Also
Find defects (-checkers) | C++ standard version (-cpp-version) | Compiler (-
compiler)

 Expensive post-increment operation

18-81

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2021b

18 Performance Defects

18-82

Expensive dynamic cast
Expensive dynamic_cast is used instead of more efficient static_cast or const_cast

Description
This defect is raised when dynamic_cast is used on a pointer, which is then immediately
dereferenced. For instance:

std::iostream* iostream_ptr;
//...
std::string str = dynamic_cast< std::stringstream* >(iostream_ptr)->str();

The iostream pointer iosreeam_ptr is cast into a stringstream pointer, and then immediately
dereferenced. Such use implies that the casting always succeeds. When you know that a casting
operation succeeds, static_cast or const_cast are a more efficient choice.

Risk

When casting one class to another in a polymorphic hierarchy, you might want to use dynamic_cast
when run-time type of the most derived class in the hierarchy is unknown. The dynamic_cast is
more powerful because it checks the type of the argument at run time and reports error if the check
fails. This additional functionalities make dynamic_cast a more expensive operation than either of
static_cast or const_cast. Because dynamic_cast is versatile, its use might make the code
more difficult to understand. Using dynamic_cast when cheaper or more explicit casting operations
might be more appropriate results in code that is inefficient and more difficult to maintain. Because
such code compiles and runs correctly, the inefficiency might remain undetected.

Fix

To fix this defect, replace the dynamic_cast with a more appropriate cheaper option. For instance:

• When calling virtual functions in a polymorphic base class, remove any casting operation.
• When downcasting from a base class to derived class, use static_cast if the casting operation

succeeds in all conditions.
• When sidecasting from one base class to another base class, use static_cast if the casting

operation succeeds in all conditions.
• When upcasting from a derived class to a base class, use static_cast.
• To modify the const or volatile qualifiers of an object, use const_cast.
• Refactor your code to remove inappropriate casting such as casting between unrelated classes.

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Examples
Casting a Base Class into a Derived Class

#include <cstddef>

 Expensive dynamic cast

18-83

#include <sstream>
#include <string>
// downcast using `dynamic_cast` with pointer,
// and unconditionally call member function
void Downcast_NC(std::iostream* iostream_ptr)
{
 // ...
 std::string str = dynamic_cast< std::stringstream* >(iostream_ptr)->str(); //Noncompliant
 // ...
}

In this example, an std::iostream* object is cast into a std::stringstream* object by calling
dynamic_cast. After the casting, the cast pointer is immediately dereferenced. Polyspace flags the
dynamic_cast.

Correction

To fix this defect, replace dynamic_cast by using static_cast. Because static_cast does not
check whether a casting operation might fail, consider adding an assert statement to check if the
conversion fails. After completing the development and debugging, you might remove the assert
statement.

#include <cstddef>
#include <sstream>
#include <string>
void Downcast_C(std::iostream* iostream_ptr)
// if `dynamic_cast` may fail
{
 // ...
 assert(dynamic_cast< std::stringstream* >(iostream_ptr) != NULL);//Only for debugging
 std::string str = static_cast< std::stringstream* >(iostream_ptr)->str(); //Compliant
 // ...
}

Sidecasting and Upcasting Classes in a Polymorphic Hierarchy

class A{
 //...
public:
 virtual void func_A() ;
};
class B{
 //...
public:
 virtual void func_B() ;
};
class C: public A, public B{/**/};
void foo(A& a){

 dynamic_cast<B*> (&a)->func_B();//Noncompliant
}
void bar(C& c){

 dynamic_cast<B*> (&c)->func_B();//Noncompliant
}

18 Performance Defects

18-84

In this example, the class C is derived from A and B. The function foo casts the A& object a into a B*
type to access the member function B::func_B. The casting operation calls dynamic_cast, which is
inefficient. Polyspace flags this conversion.

The casting from the C& object to its base class, as shown in the function bar, always succeeds. Using
dynamic_cast for this operation is unnecessary and Polyspace flags the conversion.
Correction

Sidecasting through an unknown most derived class is a unique capability of dynamic_cast. If your
code cannot function properly without a sidecast, use dynamic_cast and justify the defect. See
“Annotate Code and Hide Known or Acceptable Results”.

In some cases, it might be more efficient to replace a sidecast with a downcast. For instance, the
function foo uses sidecasting for the explicit purpose of accessing the members of another branch in
a class hierarchy. In such cases, it might be more efficient to perform the casting through the most
derived class. Instead of using dynamic_cast to cast a into a B* object, you might use
static_cast to cast a into a C* object. Such a downcast enables access to B::func_B while
making the code more efficient. To check if the static conversion succeeds in all conditions, use
assert statements during development and debugging.

Upcasting from a derived class to a base class, as shown in the function bar, always succeeds. Use
static_cast for such conversions. In the preceding code, because func_B is a public virtual
function, invoke the function directly by using the pointer to the class C. Casting is not necessary in
this case.

class A{
 //...
public:
 virtual void func_A() ;
};
class B{
 //...
public:
 virtual void func_B() ;
};
class C: public A, public B{/**/};
void foo(A& a){

 static_cast<C*> (&a)->func_B();//Compliant
}
void bar(C& c){

 c.func_B();//Compliant
}

Result Information
Group: Performance
Language: C++
Default: Off
Command-Line Syntax: EXPENSIVE_DYNAMIC_CAST
Impact: Medium

See Also
Find defects (-checkers)

 Expensive dynamic cast

18-85

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2021b

18 Performance Defects

18-86

Move operation uses copy
A move constructor or move assignment operator uses copy operations on base classes or data
members

Description
This defect is raised if all of these conditions are true:

• A move constructor or a move assignment operator of a class copies a base class or data member.
• Move operations for the base class or data members are available.
• The base class or data members are more expensive to copy than to move.

For instance, in this code the move constructor copies the data member data. Polyspace flags the
copy operation.

class wrapper{
 //...
 wrapper(wrapper&& rhs): data(rhs.data){
 //...
 }

 private:
 std::string data;
}

Risk

Developers often assume that move operations are cheaper than copy operations. They use move
operations when dealing with large resources that are expensive to copy. Inadvertently omitting calls
to std::move might cause a move constructor or a move assignment operator to copy data members
and base classes, making the code inefficient. Because such unexpected move operations compile and
run correctly, the inefficiency inducing omission of std::move might be difficult to detect.

Fix

To fix this defect, use std::move to move base classes and data members of a class. As a best
practice, use the default implicit move constructor and move assignment operator by setting them as
=default. Instead of managing raw resources, use smart containers to enable the default move
operations to move the resources correctly.

Performance improvements might vary based on the compiler, library implementation, and
environment that you are using.

Examples
Avoid Copying Base Classes and Data Members in Move Operations

#include <memory>
#include <string>
#include <utility>

 Move operation uses copy

18-87

class ManagerInterface;
// ...
class UtilInterface
{
public:
 // ...
 UtilInterface(UtilInterface&& other)
 : m_name(other.m_name), //Noncompliant
 m_manager(other.m_manager) //Noncompliant
 {/**/}
 UtilInterface& operator=(UtilInterface&& other)
 {
 m_name = other.m_name; //Noncompliant
 m_manager = other.m_manager; //Noncompliant
 return *this;
 }
 // ...
private:
 // ...
 std::string m_name;
 std::shared_ptr< ManagerInterface > m_manager;
 // ...
};

In this example, the move operations of the class UtilInterface copy the data member instead of
moving them by using std::move. Polyspace flags the unexpected copy operations.

Correction

To fix the defect, use std::move to move the data members.

#include <memory>
#include <string>
#include <utility>

class ManagerInterface;
// ...
class UtilInterface
{
public:
 // ...
 UtilInterface(UtilInterface&& other)
 : m_name(std::move(other.m_name)), //Compliant
 m_manager(std::move(other.m_manager)) //Compliant
 {}
 UtilInterface& operator=(UtilInterface&& other)
 {
 m_name = std::move(other.m_name); //Compliant
 m_manager = std::move(other.m_manager); //Compliant
 return *this;
 }
 // ...
private:
 // ...
 std::string m_name;
 std::shared_ptr< ManagerInterface > m_manager;

18 Performance Defects

18-88

 // ...
};

Correction

Another method of fixing this defect is to declare the move assignment operator and the move
constructor as =default.

#include <memory>
#include <string>
#include <utility>

class ManagerInterface;
// ...
class UtilInterface
{
public:
 // ...
 UtilInterface(UtilInterface&& other) = default;//Compliant
 UtilInterface& operator=(UtilInterface&& other) = default;//Compliant
 // ...
private:
 // ...
 std::string m_name;
 std::shared_ptr< ManagerInterface > m_manager;
 // ...
};

Result Information
Group: Performance
Language: C++
Default: Off
Command-Line Syntax: MOVE_OPERATION_USES_COPY
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2021b

 Move operation uses copy

18-89

Resource Management Defects

19

Closing a previously closed resource
Function closes a previously closed stream

Description
This defect occurs when a function attempts to close a stream that was closed earlier in your code
and not reopened later.

Risk

The standard states that the value of a FILE* pointer is indeterminate after you close the stream
associated with it. Performing the close operation on the FILE* pointer again can cause unwanted
behavior.

Fix

Remove the redundant close operation.

Examples
Closing Previously Closed Resource

#include <stdio.h>

void func(char* data) {
 FILE* fp = fopen("file.txt", "w");
 if(fp!=NULL) {
 if(data)
 fputc(*data,fp);
 else
 fclose(fp);
 }
 fclose(fp);
}

In this example, if fp is not NULL and data is NULL, the fclose operation occurs on fp twice in
succession.

Correction — Remove Close Operation

One possible correction is to remove the last fclose operation. To avoid a resource leak, you must
also place an fclose operation in the if(data) block.

#include <stdio.h>

void func(char* data) {
 FILE* fp = fopen("file.txt", "w");
 if(fp!=NULL) {
 if(data) {
 fputc(*data,fp);
 fclose(fp);
 }
 else

19 Resource Management Defects

19-2

 fclose(fp);
 }
}

Result Information
Group: Resource management
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: DOUBLE_RESOURCE_CLOSE
Impact: High
CWE ID: 672, 826, 910

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

 Closing a previously closed resource

19-3

https://cwe.mitre.org/data/definitions/672.html
https://cwe.mitre.org/data/definitions/826.html
https://cwe.mitre.org/data/definitions/910.html

Opening previously opened resource
Opening an already opened file

Description
This defect occurs when a file handling function such as fopen opens a file that was previously
opened and not closed subsequently.

Risk

If you open a resource multiple times, you can encounter:

• A race condition when accessing the file.
• Undefined or unexpected behavior for that file.
• Portability issues when you run your program on different targets.

Fix

Once a resource is open, close the resource before reopening.

Examples
File Reopened With New Permissions

#include <stdio.h>
const char* logfile = "my_file.log";

void doubleresourceopen()
{
 FILE* fpa = fopen(logfile, "w");
 if (fpa == NULL) {
 return;
 }
 (void)fprintf(fpa, "Writing");
 FILE* fpb = fopen(logfile, "r");
 (void)fclose(fpa);
 (void)fclose(fpb);
}

In this example, a logfile is opened in the first line of this function with write privileges. Halfway
through the function, the logfile is opened again with read privileges.

Correction — Close Before Reopening

One possible correction is to close the file before reopening the file with different privileges.

#include <stdio.h>
const char* logfile = "my_file.log";

void doubleresourceopen()
{
 FILE* fpa = fopen(logfile, "w");

19 Resource Management Defects

19-4

 if (fpa == NULL) {
 return;
 }
 (void)fprintf(fpa, "Writing");
 (void)fclose(fpa);
 FILE* fpb = fopen(logfile, "r");
 (void)fclose(fpb);
}

Result Information
Group: Resource management
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: DOUBLE_RESOURCE_OPEN
Impact: Medium
CWE ID: 362, 413, 675

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2016b

 Opening previously opened resource

19-5

https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/413.html
https://cwe.mitre.org/data/definitions/675.html

Resource leak
File stream not closed before FILE pointer scope ends or pointer is reassigned

Description
This defect occurs when you open a file stream by using a FILE pointer but do not close it before:

• The end of the pointer’s scope.
• Assigning the pointer to another stream.

Risk

If you do not release file handles explicitly as soon as possible, a failure can occur due to exhaustion
of resources.

Fix

Close a FILE pointer before the end of its scope, or before you assign the pointer to another stream.

Examples
FILE Pointer Not Released Before End of Scope

#include <stdio.h>

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");
 fclose (fp1);
}

In this example, the file pointer fp1 is pointing to a file data1.txt. Before fp1 is explicitly
dissociated from the file stream of data1.txt, it is used to access another file data2.txt.

Correction — Release FILE Pointer

One possible correction is to explicitly dissociate fp1 from the file stream of data1.txt.

#include <stdio.h>

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");
 fclose(fp1);

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");

19 Resource Management Defects

19-6

 fclose (fp1);
}

Result Information
Group: Resource management
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: RESOURCE_LEAK
Impact: High
CWE ID: 772

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

 Resource leak

19-7

https://cwe.mitre.org/data/definitions/772.html

Use of previously closed resource
Function operates on a previously closed stream

Description
This defect occurs when a function operates on a stream that you closed earlier in your code.

Risk

The standard states that the value of a FILE* pointer is indeterminate after you close the stream
associated with it. Operations using the FILE* pointer can produce unintended results.

Fix

One possible fix is to close the stream only at the end of operations. Another fix is to reopen the
stream before using it again.

Examples
Use of FILE* Pointer After Closing Stream

#include <stdio.h>

void func(void) {
 FILE *fp;
 void *ptr;

 fp = fopen("tmp","w");
 if(fp != NULL) {
 fclose(fp);
 fprintf(fp,"text");
 }
}

In this example, fclose closes the stream associated with fp. When you use fprintf on fp after
fclose, the Use of previously closed resource defect appears.

Correction — Close Stream After All Operations

One possible correction is to reverse the order of the fprintf and fclose operations.

#include <stdio.h>

void func(void) {
 FILE *fp;
 void *ptr;

 fp = fopen("tmp","w");
 if(fp != NULL) {
 fprintf(fp,"text");
 fclose(fp);
 }
}

19 Resource Management Defects

19-8

Result Information
Group: Resource management
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: CLOSED_RESOURCE_USE
Impact: High
CWE ID: 672, 826, 910

See Also
Find defects (-checkers) | MISRA C:2012 Rule 22.6

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

 Use of previously closed resource

19-9

https://cwe.mitre.org/data/definitions/672.html
https://cwe.mitre.org/data/definitions/826.html
https://cwe.mitre.org/data/definitions/910.html

Writing to read-only resource
File initially opened as read only is modified

Description
This defect occurs when you attempt to write to a file that you have opened earlier in read-only mode.

For instance, you open a file using fopen with the access mode argument r. You write to that file
with a function in the fprintf family.

Risk

Writing to a read-only file causes undefined behavior.

Fix

If you want to write to the file, open the file in a mode that is suitable for writing.

Examples
Writing to Read-Only File

#include <stdio.h>

void func(void) {
 FILE* fp ;

 fp = fopen("file.txt", "r");
 fprintf(fp, "Some data");
 fclose(fp);
}

In this example, the file file.txt is opened in read-only mode. When the FILE pointer associated
with file.txt is used as an argument of fprintf, a Writing to read-only resource defect occurs.

Correction — Open File as Writable

One possible correction is to use the access specifier "a" instead of "r". file.txt is now open for
output at the end of the file.

#include <stdio.h>

void func(void) {
 FILE* fp ;

 fp = fopen("file.txt", "a");
 fprintf(fp, "Some data");
 fclose(fp);
}

Result Information
Group: Resource management

19 Resource Management Defects

19-10

Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: READ_ONLY_RESOURCE_WRITE
Impact: High

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

 Writing to read-only resource

19-11

Good Practice Defects

20

Ambiguous declaration syntax
Declaration syntax can be interpreted as object declaration or part of function declaration

Description
This defect occurs when it is not clear from a declaration whether an object declaration or function/
parameter declaration is intended. The ambiguity is often referred to as most vexing parse.

For instance, these declarations are ambiguous:

• ResourceType aResource();

It is not immediately clear if aResource is a function returning a variable of type ResourceType
or an object of type ResourceType.

• TimeKeeper aTimeKeeper(Timer());

It is not immediately clear if aTimeKeeper is an object constructed with an unnamed object of
type Timer or a function with an unnamed function pointer type as parameter. The function
pointer refers to a function with no argument and return type Timer.

The checker does not flag ambiguous declarations with global scope. For instance, the analysis does
not flag declarations with global scope using the format Type a() where Type is a class type with a
default constructor. The analysis interprets a as a function returning the type Type.

Risk

In case of an ambiguous declaration, the C++ Standard chooses a specific interpretation of the
syntax. For instance:

• ResourceType aResource();

is interpreted as a declaration of a function aResource.
• TimeKeeper aTimeKeeper(Timer());

is interpreted as a declaration of a function aTimeKeeper with an unnamed parameter of function
pointer type.

If you or another developer or code reviewer expects a different interpretation, the results can be
unexpected.

For instance, later you might face a compilation error that is difficult to understand. Since the default
interpretation indicates a function declaration, if you use the function as an object, compilers might
report a compilation error. The compilation error indicates that a conversion from a function to an
object is being attempted without a suitable constructor.

Fix

Make the declaration unambiguous. For instance, fix these ambiguous declarations as follows:

• ResourceType aResource();

Object declaration:

20 Good Practice Defects

20-2

If the declaration refers to an object initialized with the default constructor, rewrite it as:

ResourceType aResource;

prior to C++11, or as:

ResourceType aResource{};

after C++11.

Function declaration:

If the declaration refers to a function, use a typedef for the function.

typedef ResourceType(*resourceFunctionType)();
resourceFunctionType aResource;

• TimeKeeper aTimeKeeper(Timer());

Object declaration:

If the declaration refers to an object aTimeKeeper initialized with an unnamed object of class
Timer, add an extra pair of parenthesis:

TimeKeeper aTimeKeeper((Timer()));

prior to C++11, or use braces:

TimeKeeper aTimeKeeper{Timer{}};

after C++11.

Function declaration:

If the declaration refers to a function aTimeKeeper with a unnamed parameter of function
pointer type, use a named parameter instead.

typedef Timer(*timerType)();
TimeKeeper aTimeKeeper(timerType aTimer);

Examples
Function or Object Declaration

class ResourceType {
 int aMember;
 public:
 int getMember();
};

void getResource() {
 ResourceType aResource();
}

In this example, aResource might be used as an object but the declaration syntax indicates a
function declaration.

 Ambiguous declaration syntax

20-3

Correction — Use {} for Object Declaration

One possible correction (after C++11) is to use braces for object declaration.

class ResourceType {
 int aMember;
 public:
 int getMember();
};

void getResource() {
 ResourceType aResource{};
}

Unnamed Object or Unnamed Function Parameter Declaration

class MemberType {};

class ResourceType {
 MemberType aMember;
 public:
 ResourceType(MemberType m) {aMember = m;}
 int getMember();
};

void getResource() {
 ResourceType aResource(MemberType());
}

In this example, aResource might be used as an object initialized with an unnamed object of type
MemberType but the declaration syntax indicates a function with an unnamed parameter of function
pointer type. The function pointer points to a function with no arguments and type MemberType.
Correction — Use {} for Object Declaration

One possible correction (after C++11) is to use braces for object declaration.

class MemberType {};

class ResourceType {
 MemberType aMember;
 public:
 ResourceType(MemberType m) {aMember = m;}
 int getMember();
};

void getResource() {
 ResourceType aResource{MemberType()};
}

Unnamed Object or Named Function Parameter Declaration

class Integer {
 int aMember;
public:

20 Good Practice Defects

20-4

 Integer(int d) {aMember = d;}
 int getMember();
};

int aInt = 0;
void foo(){
 Integer aInteger(Integer(aInt));
}

In this example, aInteger might be an object constructed with an unnamed object Integer(aInt)
(an object of class Integer which itself is constructed using the variable aInt). However, the
declaration syntax indicates that aInteger is a function with a named parameter aInt of type
Integer (the superfluous parenthesis is ignored).

Correction — Use of {} for Object Declaration

One possible correction (after C++11) is to use {} for object declaration.

class Integer {
 int aMember;
public:
 Integer(int d) {aMember = d;}
 int getMember();
};

int aInt = 0;
void foo(){
 Integer aInteger(Integer{aInt});
}

Correction — Remove Superfluous Parenthesis for Named Parameter Declaration

If aInteger is a function with a named parameter aInt, remove the superfluous () around aInt.

class Integer {
 int aMember;
public:
 Integer(int d) {aMember = d;}
 int getMember();
};

int aInt = 0;
void foo(){
 Integer aInteger(Integer aInt);
}

Result Information
Group: Good practice
Language: C++
Default: Off
Command-Line Syntax: MOST_VEXING_PARSE
Impact: Low

 Ambiguous declaration syntax

20-5

See Also
Variable shadowing | Non-initialized variable | Write without a further read |
Improper array initialization | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2019a

20 Good Practice Defects

20-6

Bitwise and arithmetic operation on the same data
Statement with mixed bitwise and arithmetic operations

Description
This defect occurs when bitwise and arithmetic operations are performed in the same expression.

Risk

Mixed bitwise and arithmetic operations do compile. However, the size of integer types affects the
result of these mixed operations. For instance, the arithmetic equivalent of a left shift (<<) by a
certain number of bits depends on the number of bits in the variable being shifted and therefore on
the internal representation of its data type. With a mix of bitwise and arithmetic operations, the same
expression can produce different results on different targets.

Mixed operations also reduce readability and maintainability.

Fix

Separate bitwise and arithmetic operations, or use only one type of operation per statement.

Examples
Shift and Addition

unsigned int bitwisearithmix()
{
 unsigned int var = 50;
 var += (var << 2) + 1;
 return var;
}

This example shows bitwise and arithmetic operations on the variable var. var is shifted by two
(bitwise), then increased by 1 and added to itself (arithmetic).

Correction — Arithmetic Operations Only

You can reduce this expression to arithmetic-only operations: var + (var << 2) is equivalent to
var * 5.

unsigned int bitwisearithmix()
{
 unsigned int var = 50;
 var = var * 5 +1;
 return var;
}

Result Information
Group: Good Practice
Language: C | C++
Default: Off

 Bitwise and arithmetic operation on the same data

20-7

Command-Line Syntax: BITWISE_ARITH_MIX
Impact: Low
CWE ID: 710

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2016b

20 Good Practice Defects

20-8

https://cwe.mitre.org/data/definitions/710.html

C++ reference to const-qualified type with
subsequent modification
Reference to const-qualified type is subsequently modified

Description
This defect occurs when a variable that refers to a const-qualified type is modified after declaration.

For instance, in this example, refVal has a type const int &, but its value is modified in a
subsequent statement.

using constIntRefType = const int &;
void func(constIntRefType refVal, int val){
 ...
 refVal = val; //refVal is modified
 ...
}

Risk

The const qualifier on a reference type implies that a variable of the type is initialized at declaration
and will not be subsequently modified.

Compilers can detect modification of references to const-qualified types as a compilation error. If the
compiler does not detect the error, the behavior is undefined.

Fix

Avoid modification of const-qualified reference types. If the modification is required, remove the
const qualifier from the reference type declaration.

Examples
Modification of const-qualified Reference Types

typedef const int cint;
typedef cint& ref_to_cint;

void func(ref_to_cint refVal, int initVal){
 refVal = initVal;
}

In this example, ref_to_cint is a reference to a const-qualified type. The variable refVal of type
ref_to_cint is supposed to be initialized when func is called and not modified subsequently. The
modification violates the contract implied by the const qualifier.

Correction — Avoid Modification of const-qualified Reference Types

One possible correction is to avoid the const in the declaration of the reference type.

typedef int& ref_to_int;

 C++ reference to const-qualified type with subsequent modification

20-9

void func(ref_to_int refVal, int initVal){
 refVal = initVal;
}

Result Information
Group: Good practice
Language: C++
Default: Off
Command-Line Syntax: WRITE_REFERENCE_TO_CONST_TYPE
Impact: Low

See Also
C++ reference type qualified with const or volatile | Qualifier removed in
conversion | Writing to const qualified object | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2019a

20 Good Practice Defects

20-10

C++ reference type qualified with const or volatile
Reference type declared with a redundant const or volatile qualifier

Description
This defect occurs when a variable with reference type is declared with the const or volatile
qualifier, for instance:

char &const c;

Risk

The C++14 Standard states that const or volatile qualified references are ill formed (unless they
are introduced through a typedef, in which case they are ignored). For instance, a reference to one
variable cannot be made to refer to another variable. Therefore, using the const qualifier is not
required for a variable with a reference type.

Often the use of these qualifiers indicate a coding error. For instance, you meant to declare a
reference to a const-qualified type:

char const &c;

but instead declared a const-qualified reference:

char &const c;

If your compiler does not detect the error, you can see unexpected results. For instance, you might
expect c to be immutable but see a different value of c compared to its value at declaration.

Fix

See if the const or volatile qualifier is incorrectly placed. For instance, see if you wanted to refer
to a const-qualified type and entered:

char &const c;

instead of:

char const &c;

If the qualifier is incorrectly placed, fix the error. Place the const or volatilequalifier before the &
operator. Otherwise, remove the redundant qualifier.

Examples
const-Qualified Reference Type
int func (int &const iRef) {
 iRef++;
 return iRef%2;
}

In this example, iRef is a const-qualified reference type. Since iRef cannot refer to another
variable, the const qualifier is redundant.

 C++ reference type qualified with const or volatile

20-11

Correction — Remove const Qualifier

Remove the redundant const qualifier. Since iRef is modified in func, it is not meant to refer to a
const-qualified variable. Moving the const qualifier before & will cause a compilation error.

int func (int &iRef) {
 iRef++;
 return iRef%2;
}

Correction — Fix Placement of const Qualifier

If you do not identify to modify iRef in func, declare iRef as a reference to a const-qualified
variable. Place the const qualifier before the & operator. Make sure you do not modify iRef in func.

int func (int const &iRef) {
 return (iRef+1)%2;
}

Result Information
Group: Good practice
Language: C++
Default: Off
Command-Line Syntax: CV_QUALIFIED_REFERENCE_TYPE
Impact: Low

See Also
Qualifier removed in conversion | Unreliable cast of pointer | Unreliable cast
of function pointer | C++ reference to const-qualified type with subsequent
modification | Writing to const qualified object | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2019a

20 Good Practice Defects

20-12

Delete of void pointer
delete operates on a void* pointer pointing to an object

Description
This defect occurs when the delete operator operates on a void* pointer.

Risk

Deleting a void* pointer is undefined according to the C++ Standard.

If the object is of type MyClass and the delete operator operates on a void* pointer pointing to the
object, the MyClass destructor is not called.

If the destructor contains cleanup operations such as release of resources or decreasing a counter
value, the operations do not take place.

Fix

Cast the void* pointer to the appropriate type. Perform the delete operation on the result of the
cast.

For instance, if the void* pointer points to a MyClass object, cast the pointer to MyClass*.

Examples
Delete of void* Pointer

#include <iostream>

class MyClass {
public:
 explicit MyClass(int i):m_i(i) {}
 ~MyClass() {
 std::cout << "Delete MyClass(" << m_i << ")" << std::endl;
 }
private:
 int m_i;
};

void my_delete(void* ptr) {
 delete ptr;
}

int main() {
 MyClass* pt = new MyClass(0);
 my_delete(pt);
 return 0;
}

 Delete of void pointer

20-13

In this example, the function my_delete is designed to perform the delete operation on any type.
However, in the function body, the delete operation acts on a void* pointer, ptr. Therefore, when
you call my_delete with an argument of type MyClass, the MyClass destructor is not called.

Correction — Cast void* Pointer to MyClass*

One possible solution is to use a function template instead of a function for my_delete.

#include <iostream>

class MyClass {
public:
 explicit MyClass(int i):m_i(i) {}
 ~MyClass() {
 std::cout << "Delete MyClass(" << m_i << ")" << std::endl;
 }
private:
 int m_i;
};

template<typename T> void safe_delete(T*& ptr) {
 delete ptr;
 ptr = NULL;
}

int main() {
 MyClass* pt = new MyClass(0);
 safe_delete(pt);
 return 0;
}

Result Information
Group: Good practice
Language: C++
Default: Off
Command-Line Syntax: DELETE_OF_VOID_PTR
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

20 Good Practice Defects

20-14

Hard-coded buffer size
Size of memory buffer is a numerical value instead of symbolic constant

Description
This defect occurs when you use a numerical value instead of a symbolic constant when declaring a
memory buffer such as an array.

Risk

Hard-coded buffer size causes the following issues:

• Hard-coded buffer size increases the likelihood of mistakes and therefore maintenance costs. If a
policy change requires developers to change the buffer size, they must change every occurrence
of the buffer size in the code.

• Hard-constant constants can be exposed to attack if the code is disclosed.

Fix

Use a symbolic name instead of a hard-coded constant for buffer size. Symbolic names include
const-qualified variables, enum constants, or macros.

enum constants are recommended.

• Macros are replaced by their constant values after preprocessing. Therefore, they can expose the
loop boundary.

• enum constants are known at compilation time. Therefore, compilers can optimize the loops more
efficiently.

const-qualified variables are usually known at run time.

Examples
Hard-Coded Buffer Size

int table[100];

void read(int);

void func(void) {
 for (int i=0; i<100; i++)
 read(table[i]);
}

In this example, the size of the array table is hard-coded.

Correction — Use Symbolic Name

One possible correction is to replace the hard-coded size with a symbolic name.

const int MAX_1 = 100;
#define MAX_2 100

 Hard-coded buffer size

20-15

enum { MAX_3 = 100 };

int table_1[MAX_1];
int table_2[MAX_2];
int table_3[MAX_3];

void read(int);

void func(void) {
 for (int i=0; i < MAX_1; i++)
 read(table_1[i]);
 for (int i=0; i < MAX_2; i++)
 read(table_2[i]);
 for (int i=0; i < MAX_3; i++)
 read(table_3[i]);
}

Result Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: HARD_CODED_BUFFER_SIZE
Impact: Low
CWE ID: 547

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

20 Good Practice Defects

20-16

https://cwe.mitre.org/data/definitions/547.html

Hard-coded loop boundary
Loop boundary is a numerical value instead of symbolic constant

Description
This defect occurs when you use a numerical value instead of symbolic constant for the boundary of a
for, while or do-while loop.

Risk

Hard-coded loop boundary causes the following issues:

• Hard-coded loop boundary makes the code vulnerable to denial of service attacks when the loop
involves time-consuming computation or resource allocation.

• Hard-coded loop boundary increases the likelihood of mistakes and maintenance costs. If a policy
change requires developers to change the loop boundary, they must change every occurrence of
the boundary in the code.

For instance, the loop boundary is 10000 and represents the maximum number of client
connections supported in a network server application. If the server supports more clients, you
must change all instances of the loop boundary in your code. Even if the loop boundary occurs
once, you have to search for a numerical value of 10000 in your code. The numerical value can
occur in places other than the loop boundary. You must browse through those places before you
find the loop boundary.

Fix

Use a symbolic name instead of a hard-coded constant for loop boundary. Symbolic names include
const-qualified variables, enum constants or macros.enum constants are recommended because:

• Macros are replaced by their constant values after preprocessing. Therefore, they can expose the
buffer size.

• enum constants are known at compilation time. Therefore, compilers can allocate storage for them
more efficiently.

const-qualified variables are usually known at run time.

Examples
Hard-Coded Loop Boundary

void performOperation(int);

void func(void) {
 for (int i=0; i<100; i++)
 performOperation(i);
}

In this example, the boundary of the for loop is hard-coded.

 Hard-coded loop boundary

20-17

Correction — Use Symbolic Name

One possible correction is to replace the hard-coded loop boundary with a symbolic name.

const int MAX_1 = 100;
#define MAX_2 100
enum { MAX_3 = 100 };

void performOperation_1(int);
void performOperation_2(int);
void performOperation_3(int);

void func(void) {
 for (int i=0; i<MAX_1; i++)
 performOperation_1(i);
 for (int i=0; i<MAX_2; i++)
 performOperation_2(i);
 for (int i=0; i<MAX_3; i++)
 performOperation_3(i);
}

Result Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: HARD_CODED_LOOP_BOUNDARY
Impact: Low
CWE ID: 547

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

20 Good Practice Defects

20-18

https://cwe.mitre.org/data/definitions/547.html

Hard-coded object size used to manipulate
memory
Memory manipulation with hard-coded size instead of sizeof

Description
This defect occurs on constants that are memory size arguments for memory functions such as
malloc or memset.

Risk

If you hard code object size, your code is not portable to architectures with different type sizes. If the
constant value is not the same as the object size, the buffer might or might not overflow.

Fix

For the size argument of memory functions, use sizeof(object).

Examples
Assume 4-Byte Integer Pointers

#include <stddef.h>
#include <stdlib.h>
enum {
 SIZE3 = 3,
 SIZE20 = 20
};
extern void fill_ints(int **matrix, size_t nb, size_t s);

void bug_hardcodedmemsize()
{
 size_t i, s;

 s = 4;
 int **matrix = (int **)calloc(SIZE20, s);
 if (matrix == NULL) {
 return; /* Indicate calloc() failure */
 }
 fill_ints(matrix, SIZE20, s);
 free(matrix);
}

In this example, the memory allocation function calloc is called with a memory size of 4. The
memory is allocated for an integer pointer, which can be a more or less than 4 bytes depending on
your target. If the integer pointer is not 4 bytes, your program can fail.

Correction — Use sizeof(int *)

When calling calloc, replace the hard-coded size with a call to sizeof. This change makes your
code more portable.

 Hard-coded object size used to manipulate memory

20-19

#include <stddef.h>
#include <stdlib.h>
enum {
 SIZE3 = 3,
 SIZE20 = 20
};
extern void fill_ints(int **matrix, size_t nb, size_t s);

void corrected_hardcodedmemsize()
{
 size_t i, s;

 s = sizeof(int *);
 int **matrix = (int **)calloc(SIZE20, s);
 if (matrix == NULL) {
 return; /* Indicate calloc() failure */
 }
 fill_ints(matrix, SIZE20, s);
 free(matrix);
}

Result Information
Group: Good Practice
Language: C | C++
Default: Off
Command-Line Syntax: HARD_CODED_MEM_SIZE
Impact: Low
CWE ID: 805

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2016b

20 Good Practice Defects

20-20

https://cwe.mitre.org/data/definitions/805.html

Incorrect syntax of flexible array member size
Flexible array member defined with size zero or one

Description
This defect occurs when you do not use the standard C syntax to define a structure with a flexible
array member.

Since C99, you can define a flexible array member with an unspecified size. For instance, desc is a
flexible array member in this example:

struct record {
 size_t len;
 double desc[];
};

Prior to C99, you might have used compiler-specific methods to define flexible arrays. For instance,
you used arrays of size one or zero:

struct record {
 size_t len;
 double desc[0];
};

This usage is not compliant with the C standards following C99.

Risk

If you define flexible array members by using size zero or one, your implementation is compiler-
dependent. For compilers that do not recognize the syntax, an int array of size one has buffer for
one int variable. If you try to write beyond this buffer, you can run into issues stemming from array
access out of bounds.

If you use the standard C syntax to define a flexible array member, your implementation is portable
across all compilers conforming with the standard.

Fix

To implement a flexible array member in a structure, define an array of unspecified size. The
structure must have one member besides the array and the array must be the last member of the
structure.

Examples
Flexible Array Member Defined with Size One

#include <stdlib.h>

struct flexArrayStruct {
 int num;
 int data[1];
};

 Incorrect syntax of flexible array member size

20-21

unsigned int max_size = 100;

void func(unsigned int array_size) {
 if(array_size<= 0 || array_size > max_size)
 exit(1);
 /* Space is allocated for the struct */
 struct flexArrayStruct *structP
 = (struct flexArrayStruct *)
 malloc(sizeof(struct flexArrayStruct)
 + sizeof(int) * (array_size - 1));
 if (structP == NULL) {
 /* Handle malloc failure */
 exit(2);
 }

 structP->num = array_size;

 /*
 * Access data[] as if it had been allocated
 * as data[array_size].
 */
 for (unsigned int i = 0; i < array_size; ++i) {
 structP->data[i] = 1;
 }

 free(structP);
}

In this example, the flexible array member data is defined with a size value of one. Compilers that do
not recognize this syntax treat data as a size-one array. The statement structP->data[i] = 1;
can write to data beyond the first array member and cause out of bounds array issues.

Correction — Use Standard C Syntax to Define Flexible Array

Define flexible array members with unspecified size.

#include <stdlib.h>

struct flexArrayStruct{
 int num;
 int data[];
};

unsigned int max_size = 100;

void func(unsigned int array_size) {
 if(array_size<=0 || array_size > max_size)
 exit(1);

 /* Allocate space for structure */
 struct flexArrayStruct *structP
 = (struct flexArrayStruct *)
 malloc(sizeof(struct flexArrayStruct)
 + sizeof(int) * array_size);

 if (structP == NULL) {
 /* Handle malloc failure */

20 Good Practice Defects

20-22

 exit(2);
 }

 structP->num = array_size;

 /*
 * Access data[] as if it had been allocated
 * as data[array_size].
 */
 for (unsigned int i = 0; i < array_size; ++i) {
 structP->data[i] = 1;
 }

 free(structP);
}

Result Information
Group: Good Practice
Language:C (checker disabled if the analysis runs on C90 code indicated by the option -c-version
c90)
Default: Off
Command-Line Syntax: FLEXIBLE_ARRAY_MEMBER_INCORRECT_SIZE
Impact: Low

See Also
Hard-coded buffer size | Misuse of structure with flexible array member |
Unprotected dynamic memory allocation | Pointer access out of bounds | Memory
leak | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2018b

 Incorrect syntax of flexible array member size

20-23

Incorrectly indented statement
Statement indentation incorrectly makes it appear as part of a block

Description
This defect occurs when the indentation of a statement makes it appear as part of an if, else or
another block but the arrangement or lack of braces actually keeps the statement outside the block.

Risk

A developer or reviewer might incorrectly associate the statement with a block based on its
indentation, leading to an incorrect assumption about the program logic.

For instance, in this example:

if(credentialsOK())
 login=1;
 setCookies();

the line setCookies(); is not part of the if block, but the indentation suggests otherwise.

Fix

If you want a statement to be part of a block, make sure that the statement is within the braces
associated with the block. To identify the extent of a block, on the Source pane, click the opening
brace.

If an if, else or while statement has no braces following the condition, only the next line on an
execution path up to a semicolon is considered part of the if, else or while block. If you want
subsequent lines to be included in the block, wrap the lines in braces.

For instance, in the preceding example, to include both statements in the if block, use:

if(credentialsOK()) {
 login=1;
 setCookies();
}

Examples
else Statement Incorrectly Indented

int switch1, switch2;

void doSomething(void);
void doSomethingElse(void);

void func() {
 if(switch1)
 if(switch2)
 doSomething();
 else

20 Good Practice Defects

20-24

 doSomethingElse();
}

In this example, the else is indented as if it is associated with the first if. However, the else is
actually associated with the second if. The indentation does not match the actual association and
might lead to incorrect assumptions about the program logic.

Correction – Use Braces Appropriately

If you want the else to be associated with the first if, use braces to mark the boundaries of the first
if block.

int switch1, switch2;

void doSomething(void);
void doSomethingElse(void);

void func() {
 if(switch1) {
 if(switch2)
 doSomething();
 }
 else
 doSomethingElse();
}

Result Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: INCORRECT_INDENTATION
Impact: Low

See Also
Find defects (-checkers) | Semicolon on same line as if, for or while statement
| Line with more than one statement

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020a

 Incorrectly indented statement

20-25

Macro terminated with a semicolon
Macro definition ends with a semicolon

Description
This defect occurs when a macro that is invoked at least once has a definition ending with a
semicolon.

Risk

If a macro definition ends with a semicolon, the macro expansion can lead to unintended program
logic in certain contexts, such as within an expression.

For instance, consider the macro:

#define INC_BY_ONE(x) ++x;

If used in the expression:

res = INC_BY_ONE(x)%2;

the expression resolves to:

res = ++x; %2;

The value of x+1 is assigned to res, which is probably unintended. The leftover standalone statement
%2; is valid C code and can only be detected by enabling strict compiler warnings.

Fix

Do not end macro definitions with a semicolon. Leave it up to users of the macro to add a semicolon
after the macro when needed.

Alternatively, use inline functions in preference to function-like macros that involve statements
ending with semicolon.

Examples
Spurious Semicolon in Macro Definition

#define WHILE_LOOP(n) while(n>0);

void performAction(int timeStep);

void main() {
 int loopIter = 100;
 WHILE_LOOP(loopIter) {
 performAction(loopIter);
 loopIter--;
 }
}

20 Good Practice Defects

20-26

In this example, the defect occurs because the definition of the macro WHILE_LOOP(n) ends with a
semicolon. As a result of the semicolon, the while loop has an empty body and the subsequent
statements in the block run only once. It was probably intended that the loop must iterate 100 times.

Correction – Remove Semicolon from Macro Definition

Remove the trailing semicolon from the macro definition. Users of the macro can add a semicolon
after the macro when needed. In this example, a semicolon is not required.

#define WHILE_LOOP(n) while(n>0)

void performAction(int timeStep);

void main() {
 int loopIter = 100;
 WHILE_LOOP(loopIter) {
 performAction(loopIter);
 loopIter--;
 }
}

Result Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: SEMICOLON_TERMINATED_MACRO
Impact: Low

See Also
Find defects (-checkers) | Incorrectly indented statement | Semicolon on same
line as if, for or while statement | Macro with multiple statements

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020a

 Macro terminated with a semicolon

20-27

Line with more than one statement
Multiple statements on a line

Description
This defect occurs when, before preprocessing starts, the analysis detects additional text after the
semicolon (;) on a line. A defect is not raised for comments, for-loop definitions, braces, or
backslashes.

Risk

Use of one statement per line improves readability of the code. Since most statements in your code
appear on a new line, use of multiple statements per line in a few cases within this arrangement can
make code review difficult.

Fix

Write one statement per line.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Examples
Single-Line Initialization

int multi_init(void){
int abc = 4; int efg = 0; //defect

 return abc*efg;
}

In this example, abc and efg are initialized on the second line of the function as separate statements.

Correction — Comma-Separated Initialization

One possible correction is to use a comma instead of a semicolon to declare multiple variables on the
same line.

int multi_init(void){
 int a = 4, b = 0;

 return a*b;
}

20 Good Practice Defects

20-28

Correction — New Line for Each Initialization

One possible correction is to separate each initialization. By putting the initialization of b on the next
line, the code longer raises a defect.

int multi_init(void){
 int a = 4;
 int b = 0;

 return a*b;
}

Single-Line Loops
int multi_loop(void){
 int a, b = 0;
 int index = 1;
 int tab[9] = {1,1,2,3,5,8,13,21};

 for(a=0; a < 3; a++) {b+=a;} // no defect

for(b=0; b < 3; b++) {a+=b; index=b;} //defect

while (index < 7) {index++; tab[index] = index * index;} //defect
 return a*b;
}

In this example, there are three loops coded on single lines, each with multiple semicolons.

• The first for loop has multiple semicolons. Polyspace does not raise a defect for multiple
statements within a for loop declaration.

• Polyspace does raise a defect on the second for loop because there are multiple statements after
the for loop declaration.

• The while loop also has multiple statements after the loop declaration. Polyspace raises a defect
on this line.

Correction — New Line for Each Loop Statement

One possible correction is to use a new line for each statement after the loop declaration.

int multi_loop(void){
 int a, b = 0;
 int index = 1;
 int tab[9] = {1,1,2,3,5,8,13,21};

 for(a=0; a < 3; a++) {b+=a;}

 for(b=0; b < 3; b++){
 a+=b;
 index=b;
 }

 while (index < 7){
 index++;
 tab[index] = index * index;
 }
 return a*b;
}

 Line with more than one statement

20-29

Single-line Conditionals

int multi_if(void){

 int a, b = 1;
 if(a == 0) { a++;} // no defect
else if(b == 1) {b++; a *= b;} //defect
}

In this example, there are two conditional statements an: if and an else if. The if line does not
raise a defect because only one statement follows the condition. The else if statement does raise a
defect because two statements follow the condition.

Correction — New Lines for Multi-Statement Conditionals

One possible correction is to use a new line for conditions with multiple statements.

int multi_if(void){
 int a, b = 1;

 if(a == 0) a++;
 else if(b == 1){
 b++;
 a *= b;
 }
}

Result Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: MORE_THAN_ONE_STATEMENT
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2013b

20 Good Practice Defects

20-30

Missing break of switch case
No comments at the end of switch case without a break statement

Description
This defect occurs when a switch case does not end in a break statement.

If the last entry in the case block is a code comment, for instance:

switch (wt)
 {
 case WE_W:
 do_something_for_WE_W();
 do_something_else_for_WE_W();
 /* fall through to WE_X*/
 case WE_X:
 ...
 }

Polyspace assumes that the missing break is intentional and does not raise a defect.

Risk

Switch cases without break statements fall through to the next switch case. If this fall-through is not
intended, the switch case can unintentionally execute code and end the switch with unexpected
results.

Fix

If you do not want a break for the highlighted switch case, add a comment to your code to document
why this case falls through to the next case. This comment removes the defect from your results and
makes your code more maintainable.

If you forgot the break, add it before the end of the switch case.

Examples
Switch Without Break Statements

enum WidgetEnum { WE_W, WE_X, WE_Y, WE_Z } widget_type;

extern void demo_do_something_for_WE_W(void);
extern void demo_do_something_for_WE_X(void);
extern void demo_report_error(void);

void bug_missingswitchbreak(enum WidgetEnum wt)
{
 /*
 In this non-compliant code example, the case where widget_type is WE_W lacks a
 break statement. Consequently, statements that should be executed only when
 widget_type is WE_X are executed even when widget_type is WE_W.
 */
 switch (wt)

 Missing break of switch case

20-31

 {
 case WE_W:
 demo_do_something_for_WE_W();
 case WE_X:
 demo_do_something_for_WE_X();
 default:
 /* Handle error condition */
 demo_report_error();
 }
}

In this example, there are two cases without break statements. When wt is WE_W, the statements for
WE_W, WE_X, and the default case execute because the program falls through the two cases without
a break. No defect is raised on the default case or last case because it does not need a break
statement.
Correction — Add a Comment or break

To fix this example, either add a comment after the last statement in the case block and before the
next case block to mark and document the acceptable fall-through or add a break statement to avoid
fall-through. In this example, case WE_W is supposed to fall through, so a comment is added to
explicitly state this action. For the second case, a break statement is added to avoid falling through to
the default case.

enum WidgetEnum { WE_W, WE_X, WE_Y, WE_Z } widget_type;

extern void demo_do_something_for_WE_W(void);
extern void demo_do_something_for_WE_X(void);
extern void demo_report_error(void);

void corrected_missingswitchbreak(enum WidgetEnum wt)
{
 switch (wt)
 {
 case WE_W:
 demo_do_something_for_WE_W();
 /* fall through to WE_X*/
 case WE_X:
 demo_do_something_for_WE_X();
 break;
 default:
 /* Handle error condition */
 demo_report_error();
 }
}

Result Information
Group: Good Practice
Language: C | C++
Default: Off
Command-Line Syntax: MISSING_SWITCH_BREAK
Impact: Low
CWE ID: 484

See Also
Missing case for switch condition | Find defects (-checkers)

20 Good Practice Defects

20-32

https://cwe.mitre.org/data/definitions/484.html

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2016b

 Missing break of switch case

20-33

Missing overload of allocation or deallocation
function
Only one function in an allocation-deallocation function pair is overloaded

Description
This defect occurs when you overload operator new but do not overload the corresponding
operator delete, or vice versa.

Risk

You typically overload operator new to perform some bookkeeping in addition to allocating memory
on the free store. Unless you overload the corresponding operator delete, it is likely that you
omitted some corresponding bookkeeping when deallocating the memory.

The defect can also indicate a coding error. For instance, you overloaded the placement form of
operator new[]:

void *operator new[](std::size_t count, void *ptr);

but the non-placement form of operator delete[]:

void operator delete[](void *ptr);

instead of the placement form:

void operator delete[](void *ptr, void *p);

Fix

When overloading operator new, make sure that you overload the corresponding operator
delete in the same scope, and vice versa.

For instance, in a class, if you overload the placement form of operator new:

class MyClass {
 void* operator new (std::size_t count, void* ptr){
 ...
 }
};

Make sure that you also overload the placement form of operator delete:

class MyClass {
 void operator delete (void* ptr, void* place){
 ...
 }
};

To find the operator delete corresponding to an operator new, see the reference pages for
operator new and operator delete.

20 Good Practice Defects

20-34

https://en.cppreference.com/w/cpp/memory/new/operator_new
https://en.cppreference.com/w/cpp/memory/new/operator_delete

Examples
Mismatch Between Overloaded operator new and operator delete

#include <new>
#include <cstdlib>

int global_store;

void update_bookkeeping(void *allocated_ptr, bool alloc) {
 if(alloc)
 global_store++;
 else
 global_store--;
}

void *operator new(std::size_t size, const std::nothrow_t& tag);
void *operator new(std::size_t size, const std::nothrow_t& tag) {
 void *ptr = (void*)malloc(size);
 if (ptr != nullptr)
 update_bookkeeping(ptr, true);
 return ptr;
}

void operator delete[](void *ptr, const std::nothrow_t& tag);
void operator delete[](void* ptr, const std::nothrow_t& tag) {
 update_bookkeeping(ptr, false);
 free(ptr);
}

In this example, the operators operator new and operator delete[] are overloaded but there
are no overloads of the corresponding operator delete and operator new[] operators.

The overload of operator new calls a function update_bookkeeping to change the value of a
global variable global_store. If the default operator delete is called, this global variable is
unaffected, which might defy developer's expectations.
Correction — Overload the Correct Form of operator delete

If you want to overload operator new, overload the corresponding form of operator delete in
the same scope.

#include <new>
#include <cstdlib>

int global_store;

void update_bookkeeping(void *allocated_ptr, bool alloc) {
 if(alloc)
 global_store++;
 else
 global_store--;
}

 Missing overload of allocation or deallocation function

20-35

void *operator new(std::size_t size, const std::nothrow_t& tag);
void *operator new(std::size_t size, const std::nothrow_t& tag) {
 void *ptr = (void*)malloc(size);
 if (ptr != nullptr)
 update_bookkeeping(ptr, true);
 return ptr;
}

void operator delete(void *ptr, const std::nothrow_t& tag);
void operator delete(void* ptr, const std::nothrow_t& tag) {
 update_bookkeeping(ptr, false);
 free(ptr);
}

Result Information
Group: Good practice
Language: C++
Default: Off
Command-Line Syntax: MISSING_OVERLOAD_NEW_DELETE_PAIR
Impact: Low

See Also
Invalid free of pointer | Invalid deletion of pointer | Memory leak | Mismatched
alloc/dealloc functions on Windows | Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2019a

20 Good Practice Defects

20-36

Missing reset of a freed pointer
Pointer free not followed by a reset statement to clear leftover data

Description
This defect occurs when a pointer is freed and not reassigned another value. After freeing a pointer,
the memory data is still accessible. To clear this data, the pointer must also be set to NULL or
another value.

Risk

Not resetting pointers can cause dangling pointers. Dangling pointers can cause:

• Freeing already freed memory.
• Reading from or writing to already freed memory.
• Hackers executing code stored in freed pointers or with vulnerable permissions.

Fix

After freeing a pointer, if it is not immediately assigned to another valid address, set the pointer to
NULL.

Examples
Free Without Reset
#include <stdlib.h>
enum {
 SIZE3 = 3,
 SIZE20 = 20
};

void missingfreedptrreset()
{
 static char *str = NULL;

 if (str == NULL)
 str = (char *)malloc(SIZE20);

 if (str != NULL)
 free(str);
}

In this example, the pointer str is freed at the end of the program. The next call to
bug_missingfreedptrrese can fail because str is not NULL and the initialization to NULL can
be invalid.
Correction — Redefine free to Free and Reset

One possible correction is to customize free so that when you free a pointer, it is automatically reset.

#include <stdlib.h>
enum {

 Missing reset of a freed pointer

20-37

 SIZE3 = 3,
 SIZE20 = 20
};

static void sanitize_free(void **p)
{
 if ((p != NULL) && (*p != NULL))
 {
 free(*p);
 *p = NULL;
 }
}

#define free(X) sanitize_free((void **)&X)

void missingfreedptrreset()
{
 static char *str = NULL;

 if (str == NULL)
 str = (char *)malloc(SIZE20);

 if (str != ((void *)0))
 {
 free(str);
 }
}

Result Information
Group: Good Practice
Language: C | C++
Default: Off
Command-Line Syntax: MISSING_FREED_PTR_RESET
Impact: Low
CWE ID: 415, 416, 825

See Also
Use of previously freed pointer | Invalid free of pointer | Find defects (-
checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2016b

20 Good Practice Defects

20-38

https://cwe.mitre.org/data/definitions/415.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/825.html

Macro with multiple statements
Macro consists of multiple semicolon-terminated statements, enclosed in braces or not

Description
This defect occurs when a macro contains multiple semicolon-terminated statements, irrespective of
whether the statements are enclosed in braces.

Risk

The macro expansion, in certain contexts such as an if condition or a loop, can lead to unintended
program logic.

For instance, consider the macro:

#define RESET(x,y) \
 x=0; \
 y=0;

In an if statement such as:

if(checkSomeCondition)
 RESET(x,y);

the macro expands to:

if(checkSomething)
 x=0;
y=0;

which might be unexpected if you want both statements to be executed in an if block.

Fix

In a macro definition, wrap multiple statements in a do...while(0) loop.

For instance, in the preceding example, use the definition:

#define RESET(x,y) \
 do { \
 x=0; \
 y=0; \
 } while(0)

This macro is appropriate to expand in all contexts. The while(0) ensures that the statements are
executed only once.

Alternatively, use inline functions in preference to function-like macros that involve multiple
statements.

Note that the loop is required for the correct solution and wrapping the statements in braces alone
does not fix the issue. The macro expansion can still lead to unintended code.

 Macro with multiple statements

20-39

Examples
Macro with Multiple Statements

#define RESET(x,y) \
 x=0; \
 y=0;

void func(int *x, int *y, int resetFlag){
 if(resetFlag)
 RESET(x,y);
}

In this example, the defect occurs because the macro RESET consists of multiple statements.

Correction – Wrap Multiple Statements of Macro in do-while Loop

Wrap the statements of the macro in a do..while(0) loop in the macro definition.

#define RESET(x,y) \
 do { \
 x=0; \
 y=0; \
 } while(0)

void func(int *x, int *y, int resetFlag){
 if(resetFlag)
 RESET(x,y);
}

Result Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: MULTI_STMT_MACRO
Impact: Low

See Also
Find defects (-checkers) | Macro terminated with a semicolon | Incorrectly
indented statement | Semicolon on same line as if, for or while statement

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020a

20 Good Practice Defects

20-40

Possibly inappropriate data type for switch
expression
switch expression has a data type other than char, short, int or enum

Description
This defect occurs when a switch expression has a data type other than char, short, int or enum.

The checker flags other integer data types such as boolean types, bit fields, or long.

Risk

It is preferred to use char, short, int or enum in switch expressions instead of:

• Boolean types, because a switch expression with a boolean type can be replaced with an if
condition that evaluates the same expression. A switch expression is too heavy for a simple
control flow based on a boolean condition.

• Bit field types, because bit field types imply memory restrictions. If you just want to specify a
variable with a finite number of values, enumerations are preferred since they enable a more
readable code.

• Types with size greater than int because a switch expression that requires a type with size
greater than int implies too many case labels and can be possibly redesigned.

Non-integer types are not supported in switch expressions.

Fix

Use variables of char, short, int or enum data types in switch expressions.

Examples
Use of Inappropriate Types in switch Expressions

#ifndef __cplusplus
#include <stdbool.h>
#endif

void func(bool s) {
 switch(s) {
 case 0: //Perform some operation
 break;
 case 1: //Perform another operation
 break;
 }
}

In this C++ example, the checker flags the use of a bool variable in a switch expression.
Correction – Use if Condition Instead of switch

If the switch expression indeed requires two values, use an if statement instead.

 Possibly inappropriate data type for switch expression

20-41

#ifndef __cplusplus
#include <stdbool.h>
#endif

void func(bool s) {
 if(s) {
 //Perform some operation
 }
 else {
 //Perform another operation
 }
}

Correction – Use Different Data Type

If you anticipate adding more labels to the switch expression later, use a data type that can
accommodate larger values.

void func(char s) {
 switch(s) {
 case 0: //Perform some operation
 break;
 case 1: //Perform another operation
 break;
 default: //Default behavior
 }
}

Result Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: INAPPROPRIATE_TYPE_IN_SWITCH
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020a

20 Good Practice Defects

20-42

Semicolon on same line as if, for or while
statement
Semicolon on same line results in empty body of if, for or while statement

Description
This defect occurs when a semicolon on the same line as the last token of an if, for or while
statement results in an empty body.

The checker makes an exception for the case where the if statement is immediately followed by an
else statement:

if(condition);
else {
 ...
}

Risk

The semicolon following the if, for or while statement often indicates a programming error. The
spurious semicolon changes the execution flow and leads to unintended results.

Fix

If you want an empty body for the if, for or while statement, wrap the semicolon in a block and
place the block on a new line to explicitly indicate your intent:

if(condition)
 {;}

Otherwise, remove the spurious semicolon.

Examples
Spurious Semicolon
int credentialsOK(void);

void login () {
 int loggedIn = 0;
 if(credentialsOK());
 loggedIn = 1;
}

In this example, the spurious semicolon results in an empty if body. The assignment loggedIn=1 is
always performed. However, the assignment was probably to be performed only under a condition.
Correction – Remove Spurious Semicolon

If the semicolon was unintended, remove the semicolon.

int credentialsOK(void);

 Semicolon on same line as if, for or while statement

20-43

void login () {
 int loggedIn = 0;
 if(credentialsOK())
 loggedIn = 1;
}

Result Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: SEMICOLON_CTRL_STMT_SAME_LINE
Impact: Low

See Also
Find defects (-checkers) | Macro terminated with a semicolon | Incorrectly
indented statement | Macro with multiple statements

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020a

20 Good Practice Defects

20-44

Unmodified variable not const-qualified
Variable not const-qualified but variable value not modified during lifetime

Description
This defect occurs when a local variable is not const-qualified and one of the following statements is
true during the variable lifetime:

• You do not perform write operations on the variable after initialization.
• When you perform write operations, you reassign the same constant value to the variable.

The checker considers a variable as modified if its address is assigned to a pointer or reference
(unless it is a pointer or reference to a const variable), passed to another function, or otherwise
used. In these situations, the checker does not suggest adding a const qualifier.

The checker flags arrays as candidates for const-qualification only if you do not perform write
operations on the array elements at all after initialization.

Risk

const-qualifying a variable avoids unintended modification of the variable during later code
maintenance. The const qualifier also indicates to a developer that the variable retains its initial
value in the remainder of the code.

Fix

If you do not expect to modify a variable value during its lifetime, add the const qualifier to the
variable declaration and initialize the variable at declaration.

If you expect the variable to be modified, see if the absence of a modification indicates a
programming omission and fix the issue.

Examples
Missing const Qualification on Pointer

#include <string.h>

char returnNthCharacter (int n) {
 char* pwd = "aXeWdf10fg" ;
 char nthCharacter;

 for(int i=0; i < strlen(pwd); i++) {
 if(i==n)
 nthCharacter = pwd[i];
 }
 return nthCharacter;
}

In this example, the pointer pwd is not const-qualified. However, beyond initialization with a
constant, it is not reassigned anywhere in the returnNthCharacter function.

 Unmodified variable not const-qualified

20-45

Correction – Add const at Variable Declaration

If the variable is not intended to be modified, add the const qualifier at declaration. In this example,
both the pointer and the pointed variable are not modified. Add a const qualifier to both the pointer
and the pointed variable. Later modifications cannot reassign the pointer pwd to point at a different
variable nor modify the value at the pointed location.

#include <string.h>

char returnNthCharacter (int n) {
 const char* const pwd = "aXeWdf10fg" ;
 char nthCharacter;

 for(int i=0; i < strlen(pwd); i++) {
 if(i==n)
 nthCharacter = pwd[i];
 }
 return nthCharacter;
}

Note that the checker only flags the missing const from the pointer declaration. The checker does
not determine if the pointed location also merits a const qualifier.

Reassignment of Variable to Initial Value

void resetBuffer(int aCondition) {
 int addr = 0xff;
 if(aCondition){
 addr = 0xff;
 }
 else {
 addr = 0xff;
 }
}

In this example, the variable addr is initialized to a value and reassigned the same value twice. In
larger code examples, such issues can easily arise from copy-paste errors.

Correction – Fix Programming Error

The reassignment in this example indicates a possible programming error. One possible correction is
to fix the programming error and thereby avoid reassigning the same value.

void resetBuffer(int aCondition) {
 int addr = 0xff;
 if(aCondition){
 addr = 0x00;
 }
}

Result Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: UNMODIFIED_VAR_NOT_CONST
Impact: Low

20 Good Practice Defects

20-46

See Also
Find defects (-checkers) | Expensive local variable copy

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020a

 Unmodified variable not const-qualified

20-47

Unused parameter
Function prototype has parameters not read or written in function body

Description
This defect occurs when a function parameter is neither read nor written in the function body. The
checker does not flag unused parameters in functions with empty bodies.

Risk

Unused parameters can indicate that the code is possibly incomplete. The parameter is possibly
intended for an operation that you forgot to code.

If the copied objects are large, redundant copies can slow down performance.

Fix

Determine if you intend to use the parameters. Otherwise, remove parameters that you do not use in
the function body.

You can intentionally have unused parameters. For instance, you have parameters that you intend to
use later when you add enhancements to the function. Add a code comment indicating your intention
for later use. The code comment helps you or a code reviewer understand why your function has
unused parameters.

Alternatively, add a statement such as (void)var; in the function body. var is the unused
parameter. You can define a macro that expands to this statement and add the macro to the function
body.

Examples
Unused Parameter

void func(int* xptr, int* yptr, int flag) {
 if(flag==1) {
 *xptr=0;
 }
 else {
 *xptr=1;
 }
}

int main() {
 int x,y;
 func(&x,&y,1);
 return 0;
}

In this example, the parameter yptr is not used in the body of func.

20 Good Practice Defects

20-48

Correction — Use Parameter

One possible correction is to check if you intended to use the parameter. Fix your code if you
intended to use the parameter.

void func(int* xptr, int* yptr, int flag) {
 if(flag==1) {
 *xptr=0;
 *yptr=1;
 }
 else {
 *xptr=1;
 *yptr=0;
 }
}

int main() {
 int x,y;
 func(&x,&y,1);
 return 0;
}

Correction — Explicitly Indicate Unused Parameter

Another possible correction is to explicitly indicate that you are aware of the unused parameter.

#define UNUSED(x) (void)x

void func(int* xptr, int* yptr, int flag) {
 UNUSED(yptr);
 if(flag==1) {
 *xptr=0;
 }
 else {
 *xptr=1;
 }
}

int main() {
 int x,y;
 func(&x,&y,1);
 return 0;
}

Result Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: UNUSED_PARAMETER
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”

 Unused parameter

20-49

“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2015b

20 Good Practice Defects

20-50

Use of a forbidden function
Function appears in a blacklist of forbidden functions

Description
This defect occurs when you use a function that appears in a blacklist of forbidden functions. To
create the blacklist:

• List functions in an XML file in a specific syntax.

Copy the template file code-behavior-specifications-template.xml from the folder
polyspaceroot\polyspace\verifier\cxx to a writable location and modify the file. Enter
each function in the file using the following syntax after existing similar entries:

<function name="funcname" behavior="FORBIDDEN_FUNC"/>

where funcname is the name of the function you want to blacklist.
• Specify this XML file as argument for the option -code-behavior-specifications.

Even if you enable this checker using the option Find defects (-checkers), unless you specify a
blacklist of functions, this checker stays disabled.

Risk

A function might be blacklisted for one of these reasons:

• The function can lead to many situations where the behavior is undefined leading to security
vulnerabilities, and a more secure function exists.

You can blacklist functions that are not explicitly checked by existing checkers such as Use of
dangerous standard function or Use of obsolete standard function.

• The function is being deprecated as part of a migration, for instance, from C++98 to C++11.

As part of a migration, you can make a list of functions that need to be replaced and use this
checker to identify their use.

Fix

Replace the blacklisted function with an approved function.

When rolling out this checker to a group, project or organization, create a list of blacklist functions
and their replacements so that results reviewers can consult the list and make appropriate
replacements.

Examples
Use of Blacklisted Function

#include <csignal>
#include <iostream>

 Use of a forbidden function

20-51

namespace
{
 volatile std::sig_atomic_t gSignalStatus;
}

void signal_handler(int signal)
{
 gSignalStatus = signal;
}

int main()
{
 // Install a signal handler
 std::signal(SIGINT, signal_handler);

 std::cout << "SignalValue: " << gSignalStatus << '\n';
 std::cout << "Sending signal " << SIGINT << '\n';
 std::raise(SIGINT);
 std::cout << "SignalValue: " << gSignalStatus << '\n';
}

Suppose you want to deprecate the std::signal function. Add the following to the template XML
file after similar existing entries:

<function name="std::signal" behavior="FORBIDDEN_FUNC"/>

and specify the XML file with the option -code-behavior-specifications.

In the analysis results, all uses of the std::signal function are flagged by this checker.

Blacklisting C++ Overloaded Operators

class orderedPair {
 int var1;
 int var2;
 public:
 orderedPair() {
 var1 = 0;
 var2 = 0;
 }
 orderedPair(int arg1, int arg2) {
 var1 = arg1;
 var2 = arg2;
 }
 orderedPair& operator=(const orderedPair& rhs) {
 var1 = rhs.var1;
 var2 = rhs.var2;
 return *this;
 }
 orderedPair& operator+(orderedPair& rhs) {
 var1 += rhs.var1;
 var2 += rhs.var2;
 return *this;
 }
};

void main() {

20 Good Practice Defects

20-52

 int one=1, zero=0, sum;
 orderedPair firstOrderedPair(one, one);
 orderedPair secondOrderedPair(zero, one);
 orderedPair sumPair;

 sum = zero + one;
 sumPair = firstOrderedPair + secondOrderedPair;
}

Suppose you want to identify all the locations where operator overloads in the orderedPair class
are used. Add the overloaded operators to the template XML file:

 <function name="orderedPair::operator=" behavior="FORBIDDEN_FUNC"/>
 <function name="orderedPair::operator+" behavior="FORBIDDEN_FUNC"/>

and specify the XML file with the option -code-behavior-specifications.

The analysis identifies all calls to the overloaded operators and flags their use. Using this method,
you can distinguish specific overloads of an operator instead of searching for and browsing through
all instances of the operator.

Result Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: FORBIDDEN_FUNC
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”
“Flag Deprecated or Unsafe Functions Using Bug Finder Checkers”

Introduced in R2020a

 Use of a forbidden function

20-53

Use of setjmp/longjmp
setjmp and longjmp cause deviation from normal control flow

Description
This defect occurs when you use a combination of setjmp and longjmp or sigsetjmp and
siglongjmp to deviate from normal control flow and perform non-local jumps in your code.

Risk

Using setjmp and longjmp, or sigsetjmp and siglongjmp has the following risks:

• Nonlocal jumps are vulnerable to attacks that exploit common errors such as buffer overflows.
Attackers can redirect the control flow and potentially execute arbitrary code.

• Resources such as dynamically allocated memory and open files might not be closed, causing
resource leaks.

• If you use setjmp and longjmp in combination with a signal handler, unexpected control flow can
occur. POSIX does not specify whether setjmp saves the signal mask.

• Using setjmp and longjmp or sigsetjmp and siglongjmp makes your program difficult to
understand and maintain.

Fix

Perform nonlocal jumps in your code using setjmp/longjmp or sigsetjmp/siglongjmp only in
contexts where such jumps can be performed securely. Alternatively, use POSIX threads if possible.

In C++, to simulate throwing and catching exceptions, use standard idioms such as throw
expressions and catch statements.

Examples
Use of setjmp and longjmp

#include <setjmp.h>
#include <signal.h>

extern int update(int);
extern void print_int(int);

static jmp_buf env;
void sighandler(int signum) {
 longjmp(env, signum);
}
void func_main(int i) {
 signal(SIGINT, sighandler);
 if (setjmp(env)==0) {
 while(1) {
 /* Main loop of program, iterates until SIGINT signal catch */
 i = update(i);
 }
 } else {

20 Good Practice Defects

20-54

 /* Managing longjmp return */
 i = -update(i);
 }

 print_int(i);
 return;
}

In this example, the initial return value of setjmp is 0. The update function is called in an infinite
while loop until the user interrupts it through a signal.

In the signal handling function, the longjmp statement causes a jump back to main and the return
value of setjmp is now 1. Therefore, the else branch is executed.
Correction — Use Alternative to setjmp and longjmp

To emulate the same behavior more securely, use a volatile global variable instead of a
combination of setjmp and longjmp.

#include <setjmp.h>
#include <signal.h>

extern int update(int);
extern void print_int(int);

volatile sig_atomic_t eflag = 0;

void sighandler(int signum) {
 eflag = signum; /* Fix: using global variable */
}

void func_main(int i) {
 /* Fix: Better design to avoid use of setjmp/longjmp */
 signal(SIGINT, sighandler);
 while(!eflag) { /* Fix: using global variable */
 /* Main loop of program, iterates until eflag is changed */
 i = update(i);
 }

 print_int(i);
 return;
}

Result Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: SETJMP_LONGJMP_USE
Impact: Low
CWE ID: 691

See Also
Find defects (-checkers)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”

 Use of setjmp/longjmp

20-55

https://cwe.mitre.org/data/definitions/691.html

“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

External Websites
Linux man page for setjmp

Introduced in R2015b

20 Good Practice Defects

20-56

https://man7.org/linux/man-pages/man3/setjmp.3.html

Redundant expression in sizeof operand
sizeof operand contains expression that is not evaluated

Description
This defect occurs when a sizeof operand contains expressions whose evaluation does not affect the
sizeof result. In place of the current expression in the sizeof operand, a data type, a variable or a
simpler expression could have been used without any loss of functionality.

Risk

In situations flagged by this defect, the expression in the sizeof operand is needlessly complicated,
reduces the code readability and adds to maintainability costs. The expression might also give a false
impression about the result of the sizeof operand.

For instance, consider the expression:

sizeof(void (*[n])(int arr[U+V]))

The operand of sizeof is an array of n function pointers, each of type void () (int*). The
additional U+V, which is not evaluated, makes the full expression needlessly complicated. The
expression also gives the false impression that the function pointer argument being an array of size U
+V matters for the sizeof result.

Fix

The first event in the defect traceback shows where the redundant subexpression of the sizeof
operand begins.

Simplify or completely remove the redundant expression. When possible, use a data type as the
sizeof operand. For instance, in the preceding example, a simpler equivalent sizeof operation is:

sizeof(void (*[n])(int*))

If you want the expression to be evaluated, perform the evaluation in a separate statement.

Examples
Unnecessarily Complex Expression in sizeof Operand
void func() {
 int size1, size2, size3;
 char x = 0;
 short y = 0;
 int z = 0, w = 0;

 size1 = sizeof(x + y);
 size2 = sizeof(x + z);
 size3 = sizeof(z + w);
}

In this example, the defect checker flags the second and third sizeof operation because the
expressions in the sizeof operand can be simplified without changing the sizeof result.

 Redundant expression in sizeof operand

20-57

The checker does not flag the first operation because the expression in the sizeof operand cannot
be simplified further without affecting the sizeof result.

Correction – Simplify Expression in sizeof Operand

Simplify the expression in the sizeof operand. In the following corrections, the sizeof results are
the same as with the preceding expressions.

void func() {
 int size1, size2, size3;
 char x = 0;
 short y = 0;
 int z = 0, w = 0;

 size1 = sizeof(x + y);
 size2 = sizeof(z);
 size3 = sizeof(z);
}

Result Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: SIZEOF_USELESS_OP
Impact: Low

See Also
Find defects (-checkers) | Side effect of expression ignored

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2020a

20 Good Practice Defects

20-58

File does not compile
File has a compilation error

Description
This defect occurs when Polyspace cannot analyze a file because of compilation errors. The defect is
located on the first line and column of the file, and indicates that the file has one or more compilation
errors.

To find the actual compilation errors, see the analysis log. For information on how to investigate
further in:

• Polyspace Bug Finder or Polyspace Bug Finder Server, see “View Error Information When Analysis
Stops”.

• Polyspace as You Code, see how to follow the progress of analysis in your IDE. See steps in Visual
Studio, Visual Studio Code or Eclipse.

Use this checker to find out at a glance whether you have files with compilation issues in an
integration analysis (Polyspace Bug Finder or Polyspace Bug Finder Server) or whether the current
file being analyzed does not compile yet (Polyspace as You Code). Using this checker saves you from
opening the analysis log each time to find out if there are compilation issues. You can determine from
your analysis results if a file did not compile.

Risk

Typically, your compiler can also find the issues that this defect checker finds.

If your file compiles with your compiler but the compilation phase of a Polyspace analysis fails, it
means that your analysis configuration does not emulate your compiler accurately. For instance, if the
analysis fails because a standard library function appears to be undefined, you might have to
explicitly specify the folders containing your compiler headers, use the polyspace-configure
command to extract the paths, or otherwise improve your configuration.

Fix

Identify all compilation errors from the analysis log and fix them.

Examples
Undefined Identifier

int nthFib (int n) {
 int i=0, sum=1;
 for (int iter = 0; iter < n; iter++) {
 int t = i;
 i = sum;
 sum += t;
 }
 return iter;
}

 File does not compile

20-59

In this example, the variable iter is defined only in the for loop. But the return statement outside
the loop refers to the variable, causing an undefined identifier error. (The compilation error here also
indicates a logical error since the intent was to return the variable sum.)

(C++ Only) Missing Header

#include <cstdio>
#include <cstdlib>

void func() {
 char* message = malloc (strlen ("Hello, World\n"));
 strcpy (message, "Hello, World\n");
 printf ("%s", message);
 free (message);
}

In this example, the string functions strlen and strcpy are used but the header file cstring is not
included. This leads to the functions appearing as undefined.

Result Information
Group: Good Practice
Language: C | C++
Default: Off
Command-Line Syntax: file_does_not_compile
Impact: Low

See Also
Find defects (-checkers) | Stop analysis if a file does not compile (-stop-if-
compile-error)

Topics
“Interpret Bug Finder Results in Polyspace Desktop User Interface”
“Interpret Bug Finder Results in Polyspace Access Web Interface”
“Address Polyspace Results Through Bug Fixes or Justifications”
“Address Results in Polyspace Access Through Bug Fixes or Justifications”

Introduced in R2021a

20 Good Practice Defects

20-60

Polyspace Results: Coding
Standards

61

MISRA C 2012

21

MISRA C:2012 Dir 1.1
Any implementation-defined behavior on which the output of the program depends shall be
documented and understood

Description
Directive Definition

Any implementation-defined behavior on which the output of the program depends shall be
documented and understood.

Rationale

A code construct has implementation-defined behavior if the C standard allows compilers to choose
their own specifications for the construct. The full list of implementation-defined behavior is available
in Annex J.3 of the standard ISO/IEC 9899:1999 (C99) and in Annex G.3 of the standard ISO/IEC
9899:1990 (C90).

If you understand and document all implementation-defined behavior, you can be assured that all
output of your program is intentional and not produced by chance.

Polyspace Implementation

The analysis detects the following possibilities of implementation-defined behavior in C99 and their
counterparts in C90. If you know the behavior of your compiler implementation, justify the analysis
result with appropriate comments. To justify a result, assign one of these statuses: Justified, No
action planned, or Not a defect.

Tip To mass-justify all results that indicate the same implementation-defined behavior, use the Detail
column on the Results List pane. Click the column header so that all results with the same entry are
grouped together. Select the first result and then select the last result while holding the Shift key.
Assign a status to one of the results. If you do not see the Detail column, right-click any other column
header and enable this column.

C99 Standard
Annex Ref

Behavior to Be
Documented

How Polyspace Helps

J.3.2: Environment An alternative
manner in which
main function may
be defined.

The analysis flags main with arguments and return types
other than:

int main(void) { ... }

or

int main(int argc, char *argv[]) { ... }

See section 5.1.2.2.1 of the C99 Standard.

21 MISRA C 2012

21-2

C99 Standard
Annex Ref

Behavior to Be
Documented

How Polyspace Helps

J.3.2: Environment The set of
environment names
and the method for
altering the
environment list
used by the getenv
function.

The analysis flags uses of the getenv function. For this
function, you need to know the list of environment
variables and how the list is modified.

See section 7.20.4.5 of the C99 Standard.

J.3.6: Floating
Point

The rounding
behaviors
characterized by
non-standard values
of FLT_ROUNDS.

The analysis flags the include of float.h if values of
FLT_ROUNDS are outside the set, {-1, 0, 1, 2, 3}. Only the
values in this set lead to well-defined rounding behavior.

See section 5.2.4.2.2 of the C99 Standard.
J.3.6: Floating
Point

The evaluation
methods
characterized by
non-standard
negative values of
FLT_EVAL_METHOD.

The analysis flags the include of float.h if values of
FLT_EVAL_METHOD are outside the set, {-1, 0, 1, 2}. Only
the values in this set lead to well-defined behavior for
floating-point operations.

See section 5.2.4.2.2 of the C99 Standard.
J.3.6: Floating
Point

The direction of
rounding when an
integer is converted
to a floating-point
number that cannot
exactly represent
the original value.

The analysis flags conversions from integer to floating-
point data types of smaller size (for example, 64-bit int to
32-bit float).

See section 6.3.1.4 of the C99 Standard.

J.3.6: Floating
Point

The direction of
rounding when a
floating-point
number is
converted to a
narrower floating-
point number.

The analysis flags these conversions:

• double to float
• long double to double or float

See section 6.3.1.5 of the C99 Standard.

J.3.6: Floating
Point

The default state for
the FENV_ACCESS
pragma.

The analysis flags use of the pragma other than:

#pragma STDC FENV_ACCESS ON

or

#pragma STDC FENV_ACCESS OFF

See section 7.6.1 of the C99 Standard.

 MISRA C:2012 Dir 1.1

21-3

C99 Standard
Annex Ref

Behavior to Be
Documented

How Polyspace Helps

J.3.6: Floating
Point

The default state for
the FP_CONTRACT
pragma.

The analysis flags use of the pragma other than:

#pragma STDC FP_CONTRACT ON

or

#pragma STDC FP_CONTRACT OFF

See section 7.12.2 of the C99 Standard.
J.3.11:
Preprocessing
Directives

The behavior on
each recognized
non-STDC #pragma
directive.

The analysis flags the pragma usage:

#pragma pp-tokens

where the processing token STDC does not immediately
followpragma. For instance:

#pragma FENV_ACCESS ON

See section 6.10.6 of the C99 Standard.
J.3.12: Library
Functions

Whether the
feraiseexcept
function raises the
‘‘inexact’’ floating-
point exception in
addition to the
‘‘overflow’’ or
‘‘underflow’’
floating-point
exception.

The analysis flags calls to the feraiseexcept function.

See section 7.6.2.3 of the C99 Standard.

J.3.12: Library
Functions

Strings other than
"C" and "" that
may be passed as
the second
argument to the
setlocale
function.

The analysis flags calls to the setlocale function when
its second argument is not "C" or "".

See section 7.11.1.1 of the C99 Standard.

J.3.12: Library
Functions

The types defined
for float_t and
double_t when the
value of the
FLT_EVAL_METHOD
macro is less than 0
or greater than 2.

The analysis flags the include of math.h if
FLT_EVAL_METHOD has values outside the set {0,1,2}.

See section 7.12 of the C99 Standard.

21 MISRA C 2012

21-4

C99 Standard
Annex Ref

Behavior to Be
Documented

How Polyspace Helps

J.3.12: Library
Functions

The base-2
logarithm of the
modulus used by
the remquo
functions in
reducing the
quotient.

The analysis flags calls to the remquo, remquof and
remquol function.

See section 7.12.10.3 of the C99 Standard.

J.3.12: Library
Functions

The termination
status returned to
the host
environment by the
abort, exit, or
_Exit function.

The analysis flags calls to the abort, exit, or _Exit
function.

See sections 7.20.4.1, 7.20.4.3 or 7.20.4.4 of the C99
Standard.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: The implementation
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017b

 MISRA C:2012 Dir 1.1

21-5

MISRA C:2012 Dir 2.1
All source files shall compile without any compilation errors

Description
Directive Definition

All source files shall compile without any compilation errors.

Rationale

A conforming compiler is permitted to produce an object module despite the presence of compilation
errors. However, execution of the resulting program can produce unexpected behavior.

Polyspace Implementation

The software raises a violation of this directive if it finds a compilation error. Because Code Prover is
more strict about compilation errors compared to Bug Finder, the coding rules checking in the two
products can produce different results for this directive.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Compilation and build
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 1.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

21 MISRA C 2012

21-6

MISRA C:2012 Dir 4.1
Run-time failures shall be minimized

Description
Directive Definition

Run-time failures shall be minimized.

Rationale

Some areas to concentrate on are:

• Arithmetic errors
• Pointer arithmetic
• Array bound errors
• Function parameters
• Pointer dereferencing
• Dynamic memory

Polyspace Implementation

This directive is checked through the Polyspace analysis. For more information, see “Defects”.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The analyses can
produce different results.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Code design
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Dir 4.11 | MISRA C:2012 Rule 1.3 | MISRA C:2012 Rule 18.1 | MISRA
C:2012 Rule 18.2 | MISRA C:2012 Rule 18.3 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Dir 4.1

21-7

MISRA C:2012 Dir 4.3
Assembly language shall be encapsulated and isolated

Description
Directive Definition

Assembly language shall be encapsulated and isolated.

Rationale

Encapsulating assembly language is beneficial because:

• It improves readability.
• The name, and documentation, of the encapsulating macro or function makes the intent of the

assembly language clear.
• All uses of assembly language for a given purpose can share encapsulation, which improves

maintainability.
• You can easily substitute the assembly language for a different target or for purposes of static

analysis.

Polyspace Implementation

Polyspace does not raise a warning on assembly language code encapsulated in the following:

• asm functions or asm pragmas
• Macros

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Assembly Language Code in C Function

enum boolVal {TRUE, FALSE};
enum boolVal isTaskActive;
void taskHandler(void);

void taskHandler(void) {
 isTaskActive = FALSE;
 // Software interrupt for task switching
 asm volatile /* Non-compliant */
 (
 "SWI &02" /* Service #1: calculate run-time */
);
 return;
}

21 MISRA C 2012

21-8

In this example, the rule violation occurs because the assembly language code is embedded directly
in a C function taskHandler that contains other C language statements.

Correction: Encapsulate Assembly Code in Macro

One possible correction is to encapsulate the assembly language code in a macro and invoke the
macro in the function taskHandler.

#define RUN_TIME_CALC \
asm volatile \
 (\
 "SWI &02" /* Service #1: calculate run-Time */ \
)\

enum boolVal {TRUE, FALSE};
enum boolVal isTaskActive;
void taskHandler(void);

void taskHandler(void) {
 isTaskActive = FALSE;
 RUN_TIME_CALC;
 return;
}

Check Information
Group: Code design
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 1.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Dir 4.3

21-9

MISRA C:2012 Dir 4.4
Sections of code should not be "commented out"

Description
Directive Definition

Sections of code should not be "commented out".

Rationale

C comments enclosed in /* */ do not support nesting. A comment beginning with /* ends at the
first */ even when the */ is intended as the end of a later nested comment. If a section of code that is
commented out already contains comments, you can encounter compilation errors (or at least
comment out less code than you intend).

Commenting out code is not a good practice. The commented out code can remain out of sync with
the surrounding code without causing compilation errors. Later, if you uncomment the code, you can
encounter unexpected issues.

Use comments only to explain aspects of the code that are not apparent from the code itself.

Polyspace Implementation

The checker uses internal heuristics to detect commented out code. For instance, characters such as
#, ;, { or } indicate comments that might potentially contain code. These comments are then
evaluated against other metrics to determine the likelihood of code masquerading as comment. For
instance, several successive words without a symbol in between reduces this likelihood.

The checker does not flag the following comments even if they contain code:

• Doxygen comments beginning with /**, /*!, /// or //!.
• Comments that repeat the same symbol more than five times, for instance, the symbol = here:

/* =====================================
 * A comment
 * =====================================*/

• Comments on the first line of a file.
• Comments that mix the C style (/* */) and C++ style (//).
• Comments that contain one or more @ symbol. If the @ symbol is placed in a nested comment that

contains code, Polyspace flags it. For instance:.

int* q;
//@Error int foo(void);
//...
void bar(void){
 /*
 int*p = (int*) malloc(int); // Error @allocation
 */
}

21 MISRA C 2012

21-10

In the preceding code, Polyspace flags the second comment block containing the commented out
malloc operation, and ignores the first comment.

The checker considers that these comments are meant for documentation purposes or entered
deliberately with some forethought.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Code Commented Out

#include <stdlib.h>
/* =====================================
 * usage:print32_tInteger();
 * =====================================*/
int32_t getRandInt();
void print32_t(int32_t);

//Error@ int32_t val = getRandInt();
void print32_tInteger() {
 /* int32_t val = getRandInt(); //Noncompliant
 * val++; // contact support @..
 * print32_t(val); */
 print32_t(getRandInt());
}

This example contains several comments that contains code.

• The first comment block documents the usage of the function print32_tInteger(). Because
the comment uses the symbol = more than five times, Polyspace does not flag this comment.

• The second comment documents the source of error in the code. Because the code contains the
symbol @, Polyspace ignores the comment.

• The third comment block comments out code that might contain errors. This comment does not
document anything and simply excludes code from compilation. Polyspace flags this code block.
Because the @ symbol is in a nested comment, Polyspace does not ignore the comment.

Check Information
Group: Code design
Category: Advisory
AGC Category: Advisory

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Dir 4.4

21-11

Introduced in R2020b

21 MISRA C 2012

21-12

MISRA C:2012 Dir 4.5
Identifiers in the same name space with overlapping visibility should be typographically unambiguous

Description
Directive Definition

Identifiers in the same name space with overlapping visibility should be typographically
unambiguous.

Rationale

What “unambiguous” means depends on the alphabet and language in which source code is written.
When you use identifiers that are typographically close, you can confuse between them.

For the Latin alphabet as used in English words, at a minimum, the identifiers should not differ by:

• The interchange of a lowercase letter with its uppercase equivalent.
• The presence or absence of the underscore character.
• The interchange of the letter O and the digit 0.
• The interchange of the letter I and the digit 1.
• The interchange of the letter I and the letter l.
• The interchange of the letter S and the digit 5.
• The interchange of the letter Z and the digit 2.
• The interchange of the letter n and the letter h.
• The interchange of the letter B and the digit 8.
• The interchange of the letters rn and the letter m.

Polyspace Implementation

The checker flags identifiers in the same scope that differ from each other only in the above
characters.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Typographically Ambiguous Identifiers

void func(void) {
 int id1_numval;
 int id1_num_val; /* Non-compliant */

 int id2_numval;
 int id2_numVal; /* Non-compliant */

 MISRA C:2012 Dir 4.5

21-13

 int id3_lvalue;
 int id3_Ivalue; /* Non-compliant */

 int id4_xyZ;
 int id4_xy2; /* Non-compliant */

 int id5_zerO;
 int id5_zer0; /* Non-compliant */

 int id6_rn;
 int id6_m; /* Non-compliant */
}

In this example, the rule is violated when identifiers that can be confused for each other are used.

Check Information
Group: Code design
Category: Advisory
AGC Category: Readability

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

21 MISRA C 2012

21-14

MISRA C:2012 Dir 4.6
typedefs that indicate size and signedness should be used in place of the basic numerical types

Description
Directive Definition

typedefs that indicate size and signedness should be used in place of the basic numerical types.

Rationale

When the amount of memory being allocated is important, using specific-length types makes it clear
how much storage is being reserved for each object.

Polyspace Implementation

The rule checker flags use of basic data types in variable or function declarations and definitions. The
rule enforces use of typedefs instead.

The rule checker does not flag the use of basic types in the typedef statements themselves.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Direct Use of Basic Types in Definitions

typedef unsigned int uint32_t;

int x = 0; /* Non compliant */
uint32_t y = 0; /* Compliant */

In this example, the declaration of x is noncompliant because it uses a basic type directly.

Check Information
Group: Code design
Category: Advisory
AGC Category: Advisory

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Dir 4.6

21-15

Introduced in R2014b

21 MISRA C 2012

21-16

MISRA C:2012 Dir 4.7
If a function returns error information, then that error information shall be tested

Description
Directive Definition

If a function returns error information, then that error information shall be tested.

Rationale

If you do not check the return value of functions that indicate error information through their return
values, your program can behave unexpectedly. Errors from these functions can propagate
throughout the program causing incorrect output, security vulnerabilities, and possibly system
failures.

Polyspace Implementation

The checker raises a violation when you call sensitive standard functions that return information
about possible errors and you do one of the following:

• Ignore the return value.

You simply do not assign the return value to a variable, or explicitly cast the return value to void.
• Use an output from the function (return value or argument passed by reference) without testing

the return value for errors.

The checker considers a function as sensitive if the function call is prone to failure because of reasons
such as:

• Exhausted system resources (for example, when allocating resources).
• Changed privileges or permissions.
• Tainted sources when reading, writing, or converting data from external sources.
• Unsupported features despite an existing API.

The checker only considers functions where the return value indicates if the function completed
without errors.

Some of these functions can perform critical tasks such as:

• Set privileges (for example, setuid)
• Create a jail (for example, chroot)
• Create a process (for example, fork)
• Create a thread (for example, pthread_create)
• Lock or unlock mutex (for example, pthread_mutex_lock)
• Lock or unlock memory segments (for example, mlock)

For functions that are not critical, the checker allows casting the function return value to void.

 MISRA C:2012 Dir 4.7

21-17

This directive is only partially supported.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Sensitive Function Return Ignored

#include <pthread.h>
#include <string.h>
#include <stddef.h>
#include <stdio.h>
#include <cstdlib>
#define fatal_error() abort()

void initialize_1() {
 pthread_attr_t attr;
 pthread_attr_init(&attr); //Noncompliant
}

void initialize_2() {
 pthread_attr_t attr;
 (void)pthread_attr_init(&attr); //Compliant
}

void initialize_3() {
 pthread_attr_t attr;
 int result;
 result = pthread_attr_init(&attr); //Compliant
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

int read_file_1(int argc, char *argv[])
{
 FILE *in;
 if (argc != 2) {
 /* Handle error */
 }

 in = fmemopen (argv[1], strlen (argv[1]), "r");
 return 0; //Noncompliant

}
int read_file_2(int argc, char *argv[])
{
 FILE *in;
 if (argc != 2) {
 /* Handle error */
 }

 in = fmemopen (argv[1], strlen (argv[1]), "r"); //Compliant

21 MISRA C 2012

21-18

 if (in==NULL){
 // Handle error
 }
 return 0;
}

This example shows a call to the sensitive functions pthread_attr_init and fmemopen. Polyspace
raises a flag if:

• You implicitly ignore the return of the sensitive function. Explicitly ignoring the output of sensitive
functions is not flagged.

• You obtain the return value of a sensitive function but do not test the value before exiting the
relevant scope. The violation is raised on the exit statement.

To be compliant, you can explicitly cast their return value to void or test the return values to check
for errors.

Critical Function Return Ignored

#include <pthread.h>
extern void *start_routine(void *);

void returnnotchecked_1() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;

 (void)pthread_attr_init(&attr);
 (void)pthread_create(&thread_id, &attr, &start_routine, ((void *)0)); //Noncompliant
 pthread_join(thread_id, &res); //Noncompliant
}

void returnnotchecked_2() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;
 int result;

 (void)pthread_attr_init(&attr);
 result = pthread_create(&thread_id, &attr, &start_routine, NULL); //Compliant
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }

 result = pthread_join(thread_id, &res); //Compliant
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

In this example, two critical functions are called: pthread_create and pthread_join. The return
value of the pthread_create is ignored by casting to void, but because pthread_create is a
critical function (not just a sensitive function), the rule checker still raises a violation. The other
critical function, pthread_join, returns a value that is ignored implicitly.

 MISRA C:2012 Dir 4.7

21-19

To be compliant, check the return value of these critical functions to verify the function performed as
expected.

Check Information
Group: Code design
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

21 MISRA C 2012

21-20

MISRA C:2012 Dir 4.8
If a pointer to a structure or union is never dereferenced within a translation unit, then the
implementation of the object should be hidden

Description
Rule Definition

If a pointer to a structure or union is never dereferenced within a translation unit, then the
implementation of the object should be hidden.

Rationale

If a pointer to a structure or union is not dereferenced in a file, the implementation details of the
structure or union need not be available in the translation unit for the file. You can hide the
implementation details such as structure members and protect them from unintentional changes.

Define an opaque type that can be referenced via pointers but whose contents cannot be accessed.

Polyspace Implementation

If a structure or union is defined in a file or a header file included in the file, a pointer to this
structure or union declared but the pointer never dereferenced in the file, the checker flags a coding
rule violation. The structure or union definition should not be visible to this file.

If you see a violation of this rule on a structure definition, identify if you have defined a pointer to the
structure in the same file or in a header file included in the file. Then check if you dereference the
pointer anywhere in the file. If you do not dereference the pointer, the structure definition should be
hidden from this file and included header files.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Object Implementation Revealed

file.h: Contains structure implementation.

#ifndef TYPE_GUARD
#define TYPE_GUARD

typedef struct {
 int a;
} myStruct;

#endif

file.c: Includes file.h but does not dereference structure.

 MISRA C:2012 Dir 4.8

21-21

#include "file.h"

myStruct* getObj(void);
void useObj(myStruct*);

void func() {
 myStruct *sPtr = getObj();
 useObj(sPtr);
}

In this example, the pointer to the type myStruct is not dereferenced. The pointer is simply obtained
from the getObj function and passed to the useObj function.

The implementation of myStruct is visible in the translation unit consisting of file.c and file.h.
Correction — Define Opaque Type

One possible correction is to define an opaque data type in the header file file.h. The opaque data
type ptrMyStruct points to the myStruct structure without revealing what the structure contains.
The structure myStruct itself can be defined in a separate translation unit, in this case, consisting of
the file file2.c. The common header file file.h must be included in both file.c and file2.c for
linking the structure definition to the opaque type definition.

file.h: Does not contain structure implementation.

#ifndef TYPE_GUARD
#define TYPE_GUARD

typedef struct myStruct *ptrMyStruct;

ptrMyStruct getObj(void);
void useObj(ptrMyStruct);

#endif

file.c: Includes file.h but does not dereference structure.

#include "file.h"

void func() {
 ptrMyStruct sPtr = getObj();
 useObj(sPtr);
}

file2.c: Includes file.h and dereferences structure.

#include "file.h"

struct myStruct {
 int a;
};

void useObj(ptrMyStruct ptr) {
 (ptr->a)++;
}

21 MISRA C 2012

21-22

Check Information
Group: Code design
Category: Advisory
AGC Category: Advisory

See Also
Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2018a

 MISRA C:2012 Dir 4.8

21-23

MISRA C:2012 Dir 4.9
A function should be used in preference to a function-like macro where they are interchangeable

Description
Directive Definition

A function should be used in preference to a function-like macro where they are interchangeable.

Rationale

In most circumstances, use functions instead of macros. Functions perform argument type-checking
and evaluate their arguments once, avoiding problems with potential multiple side effects.

Polyspace Implementation

Polyspace considers all function-like macro definitions.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Code design
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 13.2 | MISRA C:2012 Rule 20.7 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-24

MISRA C:2012 Dir 4.12
Dynamic memory allocation shall not be used

Description
Rule Definition

Dynamic memory allocation shall not be used.

Rationale

Using dynamic memory allocation and deallocation routines provided by the Standard Library or
third-party libraries can cause undefined behavior. For instance:

• You use free to deallocate memory that you did not allocate with malloc, calloc, or realloc.
• You use a pointer that points to a freed memory location.
• You access allocated memory that has no value stored into it.

Dynamic memory allocation and deallocation routines from third-party libraries are likely to exhibit
similar undefined behavior.

If you choose to use dynamic memory allocation and deallocation routines, ensure that your program
behavior is predictable. For example, ensure that you safely handle allocation failure due to
insufficient memory.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of malloc, calloc, realloc and free
#include <stdlib.h>

static int foo(void);

typedef struct struct_1 {
 int a;
 char c;
} S_1;

static int foo(void) {

 S_1 * ad_1;
 int * ad_2;
 int * ad_3;

 ad_1 = (S_1*)calloc(100U, sizeof(S_1)); /* Non-compliant */
 ad_2 = malloc(100U * sizeof(int)); /* Non-compliant */
 ad_3 = realloc(ad_3, 60U * sizeof(long)); /* Non-compliant */

 MISRA C:2012 Dir 4.12

21-25

 free(ad_1); /* Non-compliant */
 free(ad_2); /* Non-compliant */
 free(ad_3); /* Non-compliant */

 return 1;
}

In this example, the rule is violated when the functions malloc, calloc, realloc and free are
used.

Check Information
Group: Code Design
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2019b

21 MISRA C 2012

21-26

MISRA C:2012 Dir 4.10
Precautions shall be taken in order to prevent the contents of a header file being included more than
once

Description
Directive Definition

Precautions shall be taken in order to prevent the contents of a header file being included more than
once.

Rationale

When a translation unit contains a complex hierarchy of nested header files, it is possible for a
particular header file to be included more than once, leading to confusion. If this multiple inclusion
produces multiple or conflicting definitions, then your program can have undefined or erroneous
behavior.

For instance, suppose that a header file contains:

#ifdef _WIN64
 int env_var;
#elseif
 long int env_var;
#endif

If the header file is contained in two inclusion paths, one that defines the macro _WIN64 and another
that undefines it, you can have conflicting definitions of env_var.

Polyspace Implementation

If you include a header file whose contents are not guarded from multiple inclusion, the analysis
raises a violation of this directive. The violation is shown at the beginning of the header file.

You can guard the contents of a header file from multiple inclusion by using one of the following
methods:

<start-of-file>
#ifndef <control macro>
#define <control macro>
 /* Contents of file */
#endif
<end-of-file>

or

<start-of-file>
#ifdef <control macro>
#error ...
#else
#define <control macro>

 MISRA C:2012 Dir 4.10

21-27

 /* Contents of file */
#endif
<end-of-file>

Unless you use one of these methods, Polyspace flags the header file inclusion as noncompliant.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Code After Macro Guard

#ifndef __MY_MACRO__
#define __MY_MACRO__
 void func(void);
#endif
void func2(void);

If a header file contains this code, it is noncompliant because the macro guard does not cover the
entire content of the header file. The line void func2(void) is outside the guard.

Note You can have comments outside the macro guard.

Code Before Macro Guard

void func(void);
#ifndef __MY_MACRO__
#define __MY_MACRO__
 void func2(void);
#endif

If a header file contains this code, it is noncompliant because the macro guard does not cover the
entire content of the header file. The line void func(void) is outside the guard.

Note You can have comments outside the macro guard.

Mismatch in Macro Guard

#ifndef __MY_MACRO__
#define __MY_MARCO__
 void func(void);
 void func2(void);
#endif

If a header file contains this code, it is noncompliant because the macro name in the #ifndef
statement is different from the name in the following #define statement.

21 MISRA C 2012

21-28

Check Information
Group: Code Design
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Dir 4.10

21-29

MISRA C:2012 Dir 4.11
The validity of values passed to library functions shall be checked

Description
Directive Definition

The validity of values passed to library functions shall be checked.

Rationale

Many Standard C functions do not check the validity of parameters passed to them. Even if checks
are performed by a compiler, there is no guarantee that the checks are adequate. For example, you
should not pass negative numbers to sqrt or log.

Polyspace Implementation

Polyspace raises a violation result for library function arguments if the following are all true:

• Argument is a local variable.
• Local variable is not tested between last assignment and call to the library function.
• Corresponding parameter of the library function has a restricted input domain.
• Library function is one of the following common mathematical functions:

• sqrt
• tan
• pow
• log
• log10
• fmod
• acos
• asin
• acosh
• atanh
• or atan2

Bug Finder and Code Prover check this rule differently. The analysis can produce different results.

Tip To mass-justify all results related to the same library function, use the Detail column on the
Results List pane. Click the column header so that all results with the same entry are grouped
together. Select the first result and then select the last result while holding the Shift key. Assign a
status to one of the results. If you do not see the Detail column, right-click any other column header
and enable this column.

21 MISRA C 2012

21-30

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Code design
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Dir 4.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Dir 4.11

21-31

MISRA C:2012 Dir 4.13
Functions which are designed to provide operations on a resource should be called in an appropriate
sequence

Description
Directive Definition

Functions which are designed to provide operations on a resource should be called in an appropriate
sequence.

Rationale

You typically use functions operating on a resource in the following way:

1 You allocate the resource.

For example, you open a file or critical section.
2 You use the resource.

For example, you read from the file or perform operations in the critical section.
3 You deallocate the resource.

For example, you close the file or critical section.

For your functions to operate as you expect, perform the steps in sequence. For instance, if you call a
resource allocation function on a certain execution path, you must call a deallocation function on that
path.

Polyspace Implementation

Polyspace Bug Finder detects a violation of this rule if you specify multitasking options and your code
contains one of these defects:

• Missing lock: A task calls an unlock function before calling the corresponding lock function.
• Missing unlock: A task calls a lock function but ends without a call to the corresponding unlock

function.
• Double lock: A task calls a lock function twice without an intermediate call to an unlock

function.
• Double unlock: A task calls an unlock function twice without an intermediate call to a lock

function.

For more information on the multitasking options, see “Multitasking”.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

21 MISRA C 2012

21-32

Examples
Multitasking: Lock Function That Is Missing Unlock Function

typedef signed int int32_t;
typedef signed short int16_t;

typedef struct tag_mutex_t {
 int32_t value;
} mutex_t;

extern mutex_t mutex_lock (void);
extern void mutex_unlock (mutex_t m);

extern int16_t x;
void func(void);

void task1(void) {
 func();
}

void task2(void) {
 func();
}

void func (void) {
 mutex_t m = mutex_lock (); /* Non-compliant */

 if (x > 0) {
 mutex_unlock (m);
 } else {
 /* Mutex not unlocked on this path */
 }
}

In this example, the rule is violated when:

• You specify that the functions mutex_lock and mutex_unlock are paired.

mutex_lock begins a critical section and mutex_unlock ends it.
• The function mutex_lock is called. However, if x <= 0, the function mutex_unlock is not

called.

To enable detection of this rule violation, you must specify these analysis options.

Option Specification
Configure multitasking
manually
Entry points task1

task2
Critical section details Starting routine Ending routine

 MISRA C:2012 Dir 4.13

21-33

Option Specification
mutex_lock mutex_unlock

For more information on the options, see:

• Tasks (-entry-points)
• Critical section details (-critical-section-begin -critical-section-end)

Check Information
Group: Code design
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 22.1 | MISRA C:2012 Rule 22.2 | MISRA C:2012 Rule 22.6 | Check
MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

21 MISRA C 2012

21-34

MISRA C:2012 Dir 4.14
The validity of values received from external sources shall be checked

Description
Directive Definition

The validity of values received from external sources shall be checked.

This rule comes from MISRA C: 2012 Amendment 1.

Rationale

The values originating from external sources can be invalid because of errors or deliberate
modification by attackers. Before using the data, you must check the data for validity.

For instance:

• Before using an external input as array index, you must check if it can potentially cause an array
bounds error.

• Before using a variable to control a loop, you must check if it can potentially result in an infinite
loop.

Polyspace Implementation

The checker for this rule looks for the same issues as these defect checkers:

• Array access with tainted index
• Command executed from externally controlled path
• Execution of externally controlled command
• Host change using externally controlled elements
• Library loaded from externally controlled path
• Loop bounded with tainted value
• Memory allocation with tainted size
• Pointer dereference with tainted offset
• Tainted division operand
• Tainted modulo operand
• Tainted NULL or non-null-terminated string
• Tainted sign change conversion
• Tainted size of variable length array
• Tainted string format
• Use of externally controlled environment variable
• Use of tainted pointer

 MISRA C:2012 Dir 4.14

21-35

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Validity of External Values Not Checked

#include <stdio.h>

void f1(char from_user[])
{
 char input [128];
 (void) sscanf (from_user, "%128c", input);
 (void) sprintf ("%s", input);/*Noncompliant*/
}

In this example, the sscanf statement is noncompliant as there is no check to ensure that the user
input is null terminated. The subsequent sprintf statement that outputs the string can potentially
lead to an array bounds error (buffer overrun).

Check Information
Group: Code design
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

21 MISRA C 2012

21-36

MISRA C:2012 Rule 1.1
The program shall contain no violations of the standard C syntax and constraints, and shall not
exceed the implementation’s translation limits

Description
Rule Definition

The program shall contain no violations of the standard C syntax and constraints, and shall not
exceed the implementation’s translation limits.

Polyspace Implementation

The rule checker checks for the issues below. Note that:

• The specifications can depend on the version of the C standard used in the analysis. See C
standard version (-c-version).

• You can change some of the limits used by the checker using the option -code-behavior-
specifications. See -code-behavior-specifications.

Issue C Standard Dependence Additional Information
An integer constant falls outside
the range of long int (if the
constant is signed) or unsigned
long int (if the constant is
unsigned).

Checked for C90 only. The rule checker uses your
specifications for the size of a
long int variable (typically 32
bits). See also Target
processor type (-target).

An array of size zero is used. Checked for C90 only.
The number of macros defined
in a translation unit exceeds the
limit specified in the standard.

Number of macro definitions
allowed:

• C90: 1024
• C99 and later: 4095

The rule checker considers a
translation unit as a source file
and header files included
directly or indirectly in the
source file.

The depth of nesting in control
flow statements (like if, while,
etc.) exceeds the limit specified
in the standard.

Maximum nesting depth
allowed:

• C90: 15
• C99 and later: 127

The number of levels of
inclusion using include files
exceeds the limit specified in
the standard.

Maximum number of levels of
inclusion allowed:

• C90: 8
• C99 and later: 15

 MISRA C:2012 Rule 1.1

21-37

Issue C Standard Dependence Additional Information
The number of members of a
structure or union exceeds the
limit specified in the standard.

Maximum number of members
in a structure or union:

• C90: 127
• C99 and later: 1023

The number of levels of nesting
in a structure exceeds the limit
specified in the standard.

Maximum depth of nesting:

• C90: 15
• C99 and later: 63

The number of constants in a
single enumeration exceeds the
limit specified in the standard.

Maximum number of
enumeration constants allowed:

• C90: 127
• C99 and later: 1023

An assembly language
statement is used.

Checked for all C standards.

A nonstandard preprocessor
directive is used.

Checked for all C standards. The rule checker flags uses of
preprocessor directives that are
not found in the C standard, for
instance, #ident, #alias and
#assert.

Unrecognized text follows a
preprocessor directive.

Checked for all C standards. The rule checker flags
extraneous text following a
preprocessor directive (line
beginning with #). For instance:

#include <header> code

Standard compilation error messages do not lead to a violation of this MISRA rule.

Tip To mass-justify all results that come from the same cause, use the Detail column on the Results
List pane. Click the column header so that all results with the same entry are grouped together.
Select the first result and then select the last result while holding the Shift key. Assign a status to
one of the results. If you do not see the Detail column, right-click any other column header and
enable this column.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Nonstandard C Syntax
#include <stdio.h>
#ident "@(#) Hello World"//noncompliant
extern int func(void);

21 MISRA C 2012

21-38

void foo(void){
 int n = 2;
 asm ("leal (%0,%0,4),%0"
 : "=r" (n)
 : "0" (n));

 // standard inline assembly
 asm ("movq $60, %rax\n\t"
 "movq $2, %rdi\n\t"
 "syscall");
}

The translation unit uses the nonstandard preprocessor directive #ident. Polyspace Flags the
nonstandard syntax.

Check Information
Group: Standard C Environment
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 1.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 1.1

21-39

MISRA C:2012 Rule 1.2
Language extensions should not be used

Description
Rule Definition

Language extensions should not be used.

Rationale

If a program uses language extensions, its portability is reduced. Even if you document the language
extensions, the documentation might not describe the behavior in all circumstances.

Polyspace Implementation

The rule checker flags these language extensions, depending on the version of the C standard used in
the analysis. See C standard version (-c-version).

• C90:

• long long int type including constants
• long double type
• inline keyword
• _Bool keyword
• short long int type
• Hexadecimal floating-point constants
• Universal character names
• Designated initializers
• Local label declarations
• typeof operator
• Casts to union
• Compound literals
• Statements and declarations in expressions
• __func__ predefined identifier
• _Pragma preprocessing operator
• Macros with variable arguments list

• C99:

• short long int type
• Local label declarations
• typeof operator
• Casts to union
• Statements and declarations in expressions

21 MISRA C 2012

21-40

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Standard C Environment
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 1.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 1.2

21-41

MISRA C:2012 Rule 1.3
There shall be no occurrence of undefined or critical unspecified behaviour

Description
Rule Definition

There shall be no occurrence of undefined or critical unspecified behaviour.

Rationale

C code that results in undefined or critical unspecified behavior might produce unexpected or
incorrect results. Such code might behave differently in different implementations. Issues caused by
undefined behavior in the code might be difficult to analyze because compilers might optimize the
code assuming that undefined behavior does not occur.

Many MISRA C:2012 rules address specific undefined or critical unspecified behaviors. This rule
applies to any undefined or critical unspecified behavior that is not addressed in any other rule.

Polyspace Implementation

Polyspace flags these instances of undefined or critical undefined behavior:

• Use of offsetof on bit fields.
• Use of offsetof when the second argument is not a struct field of the first argument.
• Use of defined without an identifier.
• Use of an array of incomplete types.
• Use of a function like macros by using incorrect number of arguments.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Undefined Behaviors

#include <stddef.h> /* offsetof */

struct str {
 char a:8;
 char b[10];
 char c;
};
void foo() {

 offsetof(struct str, a);//Noncompliant
 offsetof(struct str, d);//Noncompliant
}

21 MISRA C 2012

21-42

In this example, the function foo uses the macro offsetof on the bit field str.a. This behavior is
undefined. Polyspace flags it. The function then calls offsetof on str.d. Because d is not a field of
str, Polyspace flags it. These issues might cause compilation errors.

Check Information
Group: Standard C Environment
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Dir 4.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 1.3

21-43

MISRA C:2012 Rule 1.4
Emergent language features shall not be used

Description
Rule Definition

Emergent language features shall not be used.

Rationale

Some new language features in the C11 Standard have undefined, unspecified or implementation-
defined behavior. These features might also exhibit well-defined behavior that defies developer
expectations. Though rule 1.3 and directive 1.1 prohibits undefined and implementation-defined
behavior, to avoid well-defined behavior that defies expectations, some language features are
summarily discouraged using rule 1.4.

Polyspace Implementation

The rule forbids use of the following language features:

• The _Generic operator.
• The _Noreturn function specifier and the <stdnoreturn.h> header file
• The _Atomic type specifier and the facilities provided by <stdatomic.h> (for instance, the

macros beginning with ATOMIC_ and functions beginning with atomic_ implemented as macros
in <stdatomic.h>).

• The _Thread_local storage class specifier and the facilities provided by <threads.h> (for
instance, types such as thrd_t and functions such as thrd_create).

• The _Alignas alignment specifier, the _Alignof operator and the <stdalign.h> header file,
and facilities therein (such as the alignas and alignof macros).

• All facilities in Annex K of the C11 Standard about 'Bound-checking interfaces', other than
defining __STDC_WANT_LIB_EXT1__ to '0'

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of Facilities in Annex K of C11 Standard

#define __STDC_WANT_LIB_EXT1__ 1 //Noncompliant
#include <string.h>

void Copying_functions(void) {
 char buf1[10];
 char buf2[10];
 errno_t e; //Noncompliant

21 MISRA C 2012

21-44

 e = memcpy_s(buf1,sizeof(buf1),buf2,5); //Noncompliant
 e = memmove_s(buf1,sizeof(buf1),buf2,5); //Noncompliant
 e = strcpy_s(buf1,sizeof(buf1),buf2); //Noncompliant
 e = strncpy_s(buf1,sizeof(buf1),buf2,5); //Noncompliant
}

In this example, the macro __STDC_WANT_LIB_EXT1__ is set to 1 so that the type errno_t as
defined in the header stdlib.h can be used (in accordance with Annex K of the C11 Standard).

The checker flags both the setting of the macro to 1 and the definition of the errno_t variable, along
with other functions from Annex K.

Check Information
Group: Standard C Environment
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Dir 4.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 1.4

21-45

MISRA C:2012 Rule 2.1
A project shall not contain unreachable code

Description
Rule Definition

A project shall not contain unreachable code.

Rationale

Unless a program exhibits any undefined behavior, unreachable code cannot execute. The
unreachable code cannot affect the program output. The presence of unreachable code can indicate
an error in the program logic. Unreachable code that the compiler does not remove wastes resources,
for example:

• It occupies space in the target machine memory.
• Its presence can cause a compiler to select longer, slower jump instructions when transferring

control around the unreachable code.
• Within a loop, it can prevent the entire loop from residing in an instruction cache.

Polyspace Implementation

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The analyses can
produce different results.

The Code Prover run-time check for unreachable code shows more cases than the MISRA checker for
rule 2.1. See also Unreachable code (Polyspace Code Prover). The run-time check performs a more
exhaustive analysis. In the process, the check can show some instances that are not strictly
unreachable code but unreachable only in the context of the analysis. For instance, in the following
code, the run-time check shows a potential division by zero in the first line and then removes the zero
value of flag for the rest of the analysis. Therefore, it considers the if block unreachable.

val=1.0/flag;
if(!flag) {}

The MISRA checker is designed to prevent these kinds of results.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Code Following return Statement

enum light { red, amber, red_amber, green };

enum light next_light (enum light color)
{

21 MISRA C 2012

21-46

 enum light res;

 switch (color)
 {
 case red:
 res = red_amber;
 break;
 case red_amber:
 res = green;
 break;
 case green:
 res = amber;
 break;
 case amber:
 res = red;
 break;
 default:
 {
 error_handler ();
 break;
 }
 }

 res = color;
 return res;
 res = color; /* Non-compliant */
}

In this example, the rule is violated because there is an unreachable operation following the return
statement.

Check Information
Group: Unused Code
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 14.3 | MISRA C:2012 Rule 16.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 2.1

21-47

MISRA C:2012 Rule 2.2
There shall be no dead code

Description
Rule Definition

There shall be no dead code.

Rationale

If an operation is reachable but removing the operation does not affect program behavior, the
operation constitutes dead code.

The presence of dead code can indicate an error in the program logic. Because a compiler can
remove dead code, its presence can cause confusion for code reviewers.

Operations involving language extensions such as __asm ("NOP"); are not considered dead
code.

Polyspace Implementation

Polyspace Bug Finder detects useless write operations during analysis.

Polyspace Code Prover does not detect useless write operations. For instance, if you assign a value to
a local variable but do not read it later, Polyspace Code Prover does not detect this useless
assignment. Use Polyspace Bug Finder to detect such useless write operations.

In Code Prover, you can also see a difference in results based on your choice for the option
Verification level (-to). See “Check for Coding Standard Violations”.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Redundant Operations

extern volatile unsigned int v;
extern char *p;

void f (void) {
 unsigned int x;

 (void) v; /* Compliant - Exception*/
 (int) v; /* Non-compliant */
 v >> 3; /* Non-compliant */

 x = 3; /* Non-compliant - Detected in Bug Finder only */

21 MISRA C 2012

21-48

 p++; / Non-compliant */
 (*p)++; /* Compliant */
}

In this example, the rule is violated when an operation is performed on a variable, but the result of
that operation is not used. For instance,

• The operations (int) and >> on the variable v are redundant because the results are not used.
• The operation = is redundant because the local variable x is not read after the operation.
• The operation * on p++ is redundant because the result is not used.

The rule is not violated when:

• A variable is cast to void. The cast indicates that you are intentionally not using the value.
• The result of an operation is used. For instance, the operation * on p is not redundant, because *p

is incremented.

Redundant Function Call

void g (void) {
 /* Compliant */
}

void h (void) {
 g(); /* Non-compliant */
}

In this example, g is an empty function. Though the function itself does not violate the rule, a call to
the function violates the rule.

Check Information
Group: Unused Code
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 17.7 | Write without a further read | Check MISRA C:2012 (-
misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 2.2

21-49

MISRA C:2012 Rule 2.3
A project should not contain unused type declarations

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

Rule Definition

A project should not contain unused type declarations.

Rationale

If a type is declared but not used, a reviewer does not know if the type is redundant or if it is unused
by mistake.

Additional Message in Report

A project should not contain unused type declarations: type XX is not used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Unused Local Type

signed short unusedType (void){

 typedef signed short myType; /* Non-compliant */
 return 67;

}

signed short usedType (void){

 typedef signed short myType; /* Compliant */
 myType tempVar = 67;
 return tempVar;

}

In this example, in function unusedType, the typedef statement defines a new local type myType.
However, this type is never used in the function. Therefore, the rule is violated.

The rule is not violated in the function usedType because the new type myType is used.

21 MISRA C 2012

21-50

Check Information
Group: Unused Code
Category: Advisory
AGC Category: Readability

See Also
MISRA C:2012 Rule 2.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 2.3

21-51

MISRA C:2012 Rule 2.4
A project should not contain unused tag declarations

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

Rule Definition

A project should not contain unused tag declarations.

Rationale

If a tag is declared but not used, a reviewer does not know if the tag is redundant or if it is unused by
mistake.

Additional Message in Report

A project should not contain unused tag declarations: tag tag_name is not used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Tag Defined in Function but Not Used

void unusedTag (void)
{
 enum state1 { S_init, S_run, S_sleep }; /* Non-compliant */
}

void usedTag (void)
{
 enum state2 { S_init, S_run, S_sleep }; /* Compliant */
 enum state2 my_State = S_init;
}

In this example, in the function unusedTag, the tag state1 is defined but not used. Therefore, the
rule is violated.

Tag Used in typedef Only

typedef struct record_t /* Non-compliant */
{
 unsigned short key;
 unsigned short val;
} record1_t;

21 MISRA C 2012

21-52

typedef struct /* Compliant */
{
 unsigned short key;
 unsigned short val;
} record2_t;

record1_t myRecord1_t;
record2_t myRecord2_t;

In this example, the tag record_t appears only in the typedef of record1_t. In the rest of the
translation unit, the type record1_t is used. Therefore, the rule is violated.

Check Information
Group: Unused Code
Category: Advisory
AGC Category: Readability

See Also
MISRA C:2012 Rule 2.3 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 2.4

21-53

MISRA C:2012 Rule 2.5
A project should not contain unused macro declarations

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

Rule Definition

A project should not contain unused macro declarations.

Rationale

If a macro is declared but not used, a reviewer does not know if the macro is redundant or if it is
unused by mistake.

Additional Message in Report

A project should not contain unused macro declarations: macro macro_name is not used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Unused Macro Definition

void use_macro (void)
{
 #define SIZE 4
 #define DATA 3

 use_int16(SIZE);
}

In this example, the macro DATA is never used in the use_macro function.

Check Information
Group: Unused Code
Category: Advisory
AGC Category: Readability

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”

21 MISRA C 2012

21-54

“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 2.5

21-55

MISRA C:2012 Rule 2.6
A function should not contain unused label declarations

Description
Rule Definition

A function should not contain unused label declarations.

Rationale

If you declare a label but do not use it, it is not clear to a reviewer of your code if the label is
redundant or unused by mistake.

Additional Message in Report

A function should not contain unused label declarations.

Label label_name is not used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Unused Label Declarations

void use_var(signed short);

void unused_label (void)
{
 signed short x = 6;

label1: /* Non-compliant - label1 not used */
 use_var (x);
}

void used_label (void)
{
 signed short x = 6;

 for (int i=0; i < 5; i++) {
 if (i==2) goto label1;
 }

label1: /* Compliant - label1 used */
 use_var (x);
}

In this example, the rule is violated when the label label1 in function unused_label is not used.

21 MISRA C 2012

21-56

Check Information
Group: Unused code
Category: Advisory
AGC Category: Readability

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Rule 2.6

21-57

MISRA C:2012 Rule 2.7
There should be no unused parameters in functions

Description
Rule Definition

There should be no unused parameters in functions.

Rationale

If a parameter is unused, it is possible that the implementation of the function does not match its
specifications. This rule can highlight such mismatches.

Additional Message in Report

There should be no unused parameters in functions.

Parameter parameter_name is not used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Unused Function Parameters

double func(int param1, int* param2) { /* Non-compliant */
 return (param1/2.0);
}

In this example, the rule is violated because the parameter param2 is not used.

Check Information
Group: Unused code
Category: Advisory
AGC Category: Readability

See Also
Unused parameter | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

21 MISRA C 2012

21-58

MISRA C:2012 Rule 3.1
The character sequences /* and // shall not be used within a comment

Description
Rule Definition

The character sequences /* and // shall not be used within a comment.

Rationale

These character sequences are not allowed in code comments because:

• If your code contains a /* or a // in a /* */ comment, it typically means that you have
inadvertently commented out code.

• If your code contains a /* in a // comment, it typically means that you have inadvertently
uncommented a /* */ comment.

Polyspace Implementation

You cannot annotate this rule in the source code.

For information on annotations, see “Annotate Code and Hide Known or Acceptable Results”.

Additional Message in Report

The character sequence /* shall not appear within a comment.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
/* Used in // Comments

int x;
int y;
int z;

void non_compliant_comments (void)
{
 x = y // /* Non-compliant
 + z
 // */
 ;
 z++; // Compliant with exception: // permitted within a // comment
}

void compliant_comments (void)
{

 MISRA C:2012 Rule 3.1

21-59

 x = y /* Compliant
 + z
 */
 ;
 z++; // Compliant with exception: // is permitted within a // comment
}

In this example, in the non_compliant_comments function, the /* character occurs in what
appears to be a // comment, violating the rule. Because of the comment structure, the operation that
takes place is x = y + z;. However, without the two //-s, an entirely different operation x=y;
takes place. It is not clear which operation is intended.

Use a comment format that makes your intention clear. For instance, in the compliant_comments
function, it is clear that the operation x=y; is intended.

Check Information
Group: Comments
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-60

MISRA C:2012 Rule 3.2
Line-splicing shall not be used in // comments

Description
Rule Definition

Line-splicing shall not be used in // comments.

Rationale

Line-splicing occurs when the \ character is immediately followed by a new-line character. Line
splicing is used for statements that span multiple lines.

If you use line-splicing in a // comment, the following line can become part of the comment. In most
cases, the \ is spurious and can cause unintentional commenting out of code.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Line Splicing in // Comment

#include <stdbool.h>

extern _Bool b;

void func (void)
{
 unsigned short x = 0; // Non-compliant - Line-splicing \
 if (b)
 {
 ++b;
 }
}

Because of line-splicing, the statement if (b) is a part of the previous // comment. Therefore,
the statement b++ always executes, making the if block redundant.

Check Information
Group: Comments
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

 MISRA C:2012 Rule 3.2

21-61

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”

Introduced in R2014b

21 MISRA C 2012

21-62

MISRA C:2012 Rule 4.1
Octal and hexadecimal escape sequences shall be terminated

Description
Rule Definition

Octal and hexadecimal escape sequences shall be terminated.

Rationale

There is potential for confusion if an octal or hexadecimal escape sequence is followed by other
characters. For example, the character constant '\x1f' consists of a single character, whereas the
character constant '\x1g' consists of the two characters '\x1' and 'g'. The manner in which
multi-character constants are represented as integers is implementation-defined.

If every octal or hexadecimal escape sequence in a character constant or string literal is terminated,
you reduce potential confusion.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Compliant and Noncompliant Escape Sequences

const char *s1 = "\x41g"; /* Non-compliant */
const char *s2 = "\x41" "g"; /* Compliant - Terminated by end of literal */
const char *s3 = "\x41\x67"; /* Compliant - Terminated by another escape sequence*/

int c1 = '\141t'; /* Non-compliant */
int c2 = '\141\t'; /* Compliant - Terminated by another escape sequence*/

In this example, the rule is violated when an escape sequence is not terminated with the end of string
literal or another escape sequence.

Check Information
Group: Character Sets and Lexical Conventions
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 4.1

21-63

Introduced in R2014b

21 MISRA C 2012

21-64

MISRA C:2012 Rule 4.2
Trigraphs should not be used

Description
Rule Definition

Trigraphs should not be used.

Rationale

You denote trigraphs with two question marks followed by a specific third character (for
instance,'??-' represents a '~' (tilde) character and '??)' represents a ']'). These trigraphs can
cause accidental confusion with other uses of two question marks.

Note Digraphs (<: :>, <% %>, %:, %:%:) are permitted because they are tokens.

Polyspace Implementation

The Polyspace analysis converts trigraphs to the equivalent character for the defect analysis.
However, Polyspace also raises a MISRA violation.

The standard requires that trigraphs must be transformed before comments are removed during
preprocessing. Therefore, Polyspace raises a violation of this rule even if a trigraph appears in code
comments.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Character Sets and Lexical Conventions
Category: Advisory
AGC Category: Advisory

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 4.2

21-65

MISRA C:2012 Rule 5.1
External identifiers shall be distinct

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

Rule Definition

External identifiers shall be distinct.

Rationale

External identifiers are ones declared with global scope or storage class extern.

If the difference between two names occurs far later in the names, they can be easily mistaken for
each other. The readability of the code is reduced.

Polyspace Implementation

Polyspace considers two names as distinct if there is a difference between their first 31 characters.
For C90, the difference must occur between the first 6 characters. To use the C90 rules checking, use
the value c90 for the option C standard version (-c-version). You can change the number of
characters compared using the option -code-behavior-specifications. See -code-behavior-
specifications.

Additional Message in Report

External %s %s conflicts with the external identifier XX in file YY.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
C90: First Six Characters of Identifiers Not Unique

int engine_temperature_raw;
int engine_temperature_scaled; /* Non-compliant */
int engin2_temperature; /* Compliant */

In this example, the identifier engine_temperature_scaled has the same first six characters as a
previous identifier, engine_temperature_raw.

C99: First 31 Characters of Identifiers Not Unique

int engine_exhaust_gas_temperature_raw;

21 MISRA C 2012

21-66

int engine_exhaust_gas_temperature_scaled; /* Non-compliant */

int eng_exhaust_gas_temp_raw;
int eng_exhaust_gas_temp_scaled; /* Compliant */

In this example, the identifier engine_exhaust_gas_temperature_scaled has the same first 31
characters as a previous identifier, engine_exhaust_gas_temperature_raw.

C90: First Six Characters Identifiers in Different Translation Units Differ in Case Alone

/* file1.c */
int abc = 0;

/* file2.c */
int ABC = 0; /* Non-compliant */

In this example, the implementation supports 6 significant case-insensitive characters in external
identifiers. The identifiers in the two translation are different but are not distinct in their significant
characters.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.4 | MISRA C:2012 Rule 5.5 | Check
MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.1

21-67

MISRA C:2012 Rule 5.2
Identifiers declared in the same scope and name space shall be distinct

Description
Rule Definition

Identifiers declared in the same scope and name space shall be distinct.

Rationale

If the difference between two names occurs far later in the names, they can be easily mistaken for
each other. The readability of the code is reduced.

Polyspace Implementation

Polyspace considers two names as distinct if there is a difference between their first 63 characters. In
C90, the difference must occur between the first 31 characters. To use the C90 rules checking, use
the value c90 for the option C standard version (-c-version). You can change the number of
characters compared using the option -code-behavior-specifications. See -code-behavior-
specifications.

Additional Message in Report

Identifier XX has same significant characters as identifier YY.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
C90: First 31 Characters of Identifiers Not Unique

extern int engine_exhaust_gas_temperature_raw;
static int engine_exhaust_gas_temperature_scaled; /* Non-compliant */

extern double raw_engine_exhaust_gas_temperature;
static double scaled_engine_exhaust_gas_temperature; /* Compliant */

void func (void)
{
 /* Not in the same scope */
 int engine_exhaust_gas_temperature_local; /* Compliant */
}

In this example, the identifier engine_exhaust_gas_temperature_scaled has the same 31
characters as a previous identifier, engine_exhaust_gas_temperature_raw.

21 MISRA C 2012

21-68

The rule does not apply if the two identifiers have the same 31 characters but have different scopes.
For instance, engine_exhaust_gas_temperature_local has the same 31 characters as
engine_exhaust_gas_temperature_raw but different scope.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 5.1 | MISRA C:2012 Rule 5.3 | MISRA C:2012 Rule 5.4 | MISRA
C:2012 Rule 5.5 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.2

21-69

MISRA C:2012 Rule 5.3
An identifier declared in an inner scope shall not hide an identifier declared in an outer scope

Description
Rule Definition

An identifier declared in an inner scope shall not hide an identifier declared in an outer scope.

Rationale

If two identifiers have the same name but different scope, the identifier in the inner scope hides the
identifier in the outer scope. All uses of the identifier name refers to the identifier in the inner scope.
This behavior forces the developer to keep track of the scope and reduces code readability.

Polyspace Implementation

Polyspace considers two names as distinct if there is a difference between their first 63 characters. In
C90, the difference must occur between the first 31 characters. To use the C90 rules checking, use
the value c90 for the option C standard version (-c-version). You can change the number of
characters compared using the option -code-behavior-specifications. See -code-behavior-
specifications.

If the identifier that is hidden is declared in a Standard Library header and you do not provide the
header for the analysis, the issue is not shown. To see potential conflicts with identifiers declared in a
Standard Library header, provide your compiler implementation of the headers for the Polyspace
analysis. See “Provide Standard Library Headers for Polyspace Analysis”.

Additional Message in Report

Variable XX hides variable XX (FILE line LINE column COLUMN).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Local Variable Hidden by Another Local Variable in Inner Block

typedef signed short int16_t;

void func(void)
{
 int16_t i;
 {
 int16_t i; /* Non-compliant */
 i = 3;
 }
}

21 MISRA C 2012

21-70

In this example, the identifier i defined in the inner block in func hides the identifier i with function
scope.

It is not immediately clear to a reader which i is referred to in the statement i=3.

Global Variable Hidden by Function Parameter

typedef signed short int16_t;

struct astruct
{
 int16_t m;
};

extern void g (struct astruct *p);
int16_t xyz = 0;

void func (struct astruct xyz) /* Non-compliant */
{
 g (&xyz);
}

In this example, the parameter xyz of function func hides the global variable xyz.

It is not immediately clear to a reader which xyz is referred to in the statement g (&xyz).

Check Information
Group: Identifiers
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.8 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.3

21-71

MISRA C:2012 Rule 5.4
Macro identifiers shall be distinct

Description
Rule Definition

Macro identifiers shall be distinct.

Rationale

The names of macro identifiers must be distinct from both other macro identifiers and their
parameters.

Polyspace Implementation

The checker raises a violation if two macros that have the same first 63 characters are defined with
different values. The checker does not raise a violation if:

• Two macros with the same first 63 characters are defined with the same value (even an empty
value).

• The same macro is defined with different values but the macro is undefined in between.

The cutoff of 63 characters applies to a C99-based analysis. In C90, the cutoff is 31 characters. In
other words, the checker considers two macros as effectively the same if there is no difference in
their first 31 characters. To use the C90 rules checking, use the value c90 for the option C
standard version (-c-version). You can change the number of characters compared using the
option -code-behavior-specifications. See -code-behavior-specifications.

Additional Message in Report

• Macro identifiers shall be distinct. Macro XX has same significant characters as macro YY.
• Macro identifiers shall be distinct. Macro parameter XX has same significant characters as macro

parameter YY in macro ZZ.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
C90: First 31 Characters of Macro Names Not Unique

#define engine_exhaust_gas_temperature_raw egt_r
#define engine_exhaust_gas_temperature_scaled egt_s /* Non-compliant */

#define engine_exhaust_gas_temp_raw egt_r
#define engine_exhaust_gas_temp_scaled egt_s /* Compliant */

21 MISRA C 2012

21-72

In this example, the macro engine_exhaust_gas_temperature_scaled egt_s has the same
first 31 characters as a previous macro engine_exhaust_gas_temperature_scaled.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 5.1 | MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.5 | Check
MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.4

21-73

MISRA C:2012 Rule 5.5
Identifiers shall be distinct from macro names

Description
Rule Definition

Identifiers shall be distinct from macro names.

Rationale

The rule requires that macro names that exist only prior to processing must be different from
identifier names that also exist after preprocessing. Keeping macro names and identifiers distinct
help avoid confusion.

Polyspace Implementation

Polyspace considers two names as distinct if there is a difference between their first 63 characters. In
C90, the difference must occur between the first 31 characters. To use the C90 rules checking, use
the value c90 for the option C standard version (-c-version). You can change the number of
characters compared using the option -code-behavior-specifications. See -code-behavior-
specifications.

Additional Message in Report

Identifier XX has same significant characters as macro YY.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Macro Names Same as Identifier Names

#define Sum_1(x, y) ((x) + (y))
short Sum_1; /* Non-compliant */

#define Sum_2(x, y) ((x) + (y))
short x = Sum_2 (1, 2); /* Compliant */

In this example, Sum_1 is both the name of an identifier and a macro. Sum_2 is used only as a macro.

C90: First 31 Characters of Macro Name Same as Identifier Name

#define low_pressure_turbine_temperature_1 lp_tb_temp_1
static int low_pressure_turbine_temperature_2; /* Non-compliant */

In this example, the identifier low_pressure_turbine_temperature_2 has the same first 31
characters as a previous macro low_pressure_turbine_temperature_1.

21 MISRA C 2012

21-74

Check Information
Group: Identifiers
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 5.1 | MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.4 | Check
MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.5

21-75

MISRA C:2012 Rule 5.6
A typedef name shall be a unique identifier

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

Rule Definition

A typedef name shall be a unique identifier.

Rationale

Reusing a typedef name as another typedef or as the name of a function, object or enum constant
can cause developer confusion.

Additional Message in Report

XX conflicts with the typedef name YY.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
typedef Names Reused

void func (void){
 {
 typedef unsigned char u8_t;
 }
 {
 typedef unsigned char u8_t; /* Non-compliant */
 }
}

typedef float mass;
void func1 (void){
 float mass = 0.0f; /* Non-compliant */
}

In this example, the typedef name u8_t is used twice. The typedef name mass is also used as an
identifier name.

typedef Name Same as Structure Name

typedef struct list{ /* Compliant - exception */
 struct list *next;
 unsigned short element;
} list;

21 MISRA C 2012

21-76

typedef struct{
 struct chain{ /* Non-compliant */
 struct chain *list2;
 unsigned short element;
 } s1;
 unsigned short length;
} chain;

In this example, the typedef name list is the same as the original name of the struct type. The
rule allows this exceptional case.

However, the typedef name chain is not the same as the original name of the struct type. The
name chain is associated with a different struct type. Therefore, it clashes with the typedef
name.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 5.7 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.6

21-77

MISRA C:2012 Rule 5.7
A tag name shall be a unique identifier

Description
Rule Definition

A tag name shall be a unique identifier.

Rationale

Reusing a tag name can cause developer confusion.

Additional Message in Report

XX conflicts with the tag name YY.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 5.6 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-78

MISRA C:2012 Rule 5.8
Identifiers that define objects or functions with external linkage shall be unique

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

Rule Definition

Identifiers that define objects or functions with external linkage shall be unique.

Rationale

External identifiers are those declared with global scope or with storage class extern. Reusing an
external identifier name can cause developer confusion.

Identifiers defined within a function have smaller scope. Even if names of such identifiers are not
unique, they are not likely to cause confusion.

Additional Message in Report

• Object XX conflicts with the object name YY.
• Function XX conflicts with the function name YY.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 5.3 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.8

21-79

MISRA C:2012 Rule 5.9
Identifiers that define objects or functions with internal linkage should be unique

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

Rule Definition

Identifiers that define objects or functions with internal linkage should be unique.

Rationale

Identifiers that have internal linkage are accessible only in the translation unit where they are
declared. These identifiers are typically declared as static. If such identifiers are nonunique, the
code might become difficult to understand and lead to unexpected results.

Polyspace Implementation

Polyspace flags the static variable names that are nonunique within the same translation unit.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Nonunique Identifiers

#include<stdint.h>
#include <assert.h>
static int testGlobal;
void foo(){
static char testGlobal;//Noncompliant
if(1){
 static char testGlobal;//Noncompliant
}
}

In this example, the identifier testGlobal is used for declaring three variables in three different
scopes. Because the identifiers are static and share a nonunique name, Polyspace flags the
repetitions of the identifier.

Check Information
Group: Identifiers
Category: Advisory
AGC Category: Readability

21 MISRA C 2012

21-80

See Also
MISRA C:2012 Rule 8.10 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.9

21-81

MISRA C:2012 Rule 6.1
Bit-fields shall only be declared with an appropriate type

Description
Rule Definition

Bit-fields shall only be declared with an appropriate type.

Rationale

Using int for a bit-field type is implementation-defined because bit-fields of type int can be either
signed or unsigned.

The use of enum, short char, or any other type of bit-field is not permitted in C90 because the
behavior is undefined.

In C99, the implementation can potentially define other integer types that are permitted in bit-field
declarations.

Polyspace Implementation

The checker flags data types for bit-fields other than these allowed types:

• C90: signed int or unsigned int (or typedef-s that resolve to these types)
• C99: signed int, unsigned int or _Bool (or typedef-s that resolve to these types)

The results depend on the version of the C standard used in the analysis. See C standard version
(-c-version).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Types
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-82

MISRA C:2012 Rule 6.2
Single-bit named bit fields shall not be of a signed type

Description
Rule Definition

Single-bit named bit fields shall not be of a signed type.

Rationale

According to the C99 Standard Section 6.2.6.2, a single-bit signed bit-field has one sign bit and no
value bits. In any representation of integers, zero value bits cannot specify a meaningful value.

A single-bit signed bit-field is therefore unlikely to behave in a useful way. Its presence is likely to
indicate programmer confusion.

Although the C90 Standard does not provide much detail regarding the representation of types, the
same single-bit bit-field considerations apply.

Polyspace Implementation

This rule does not apply to unnamed bit fields because their values cannot be accessed.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Types
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 6.2

21-83

MISRA C:2012 Rule 7.1
Octal constants shall not be used

Description
Rule Definition

Octal constants shall not be used.

Rationale

Octal constants are denoted by a leading zero. Developers can mistake an octal constant as a decimal
constant with a redundant leading zero.

Polyspace Implementation

If you use octal constants in a macro definition, the rule checker flags the issue even if the macro is
not used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of octal constants

#define CST 021 /* Non-Compliant - decimal 17 */
#define VALUE 010 /* Compliant - constant not used */
#if 010 == 01 /* Non-Compliant - constant used */
#define CST 021 /* Non-Compliant - constant not used */
#endif

extern short code[5];
static char* str2 = "abcd\0efg"; /* Compliant */

void main(void) {
 int value1 = 0; /* Compliant */
 int value2 = 01; /* Non-Compliant - decimal 01 */
 int value3 = 1; /* Compliant */
 int value4 = '\109'; /* Compliant */

 code[1] = 109; /* Compliant - decimal 109 */
 code[2] = 100; /* Compliant - decimal 100 */
 code[3] = 052; /* Non-Compliant - decimal 42 */
 code[4] = 071; /* Non-Compliant - decimal 57 */

 if (value1 != CST) {
 value1 = !(value1 != 0); /* Compliant */
 }
}

21 MISRA C 2012

21-84

In this example, the rule is not violated when octal constants are used to define macros CST and
VALUE. The rule is violated only when the macros are used.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Advisory

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 7.1

21-85

MISRA C:2012 Rule 7.2
A “u” or “U” suffix shall be applied to all integer constants that are represented in an unsigned type

Description
Rule Definition

A “u” or “U” suffix shall be applied to all integer constants that are represented in an unsigned type.

Rationale

The signedness of a constant is determined from:

• Value of the constant.
• Base of the constant: octal, decimal or hexadecimal.
• Size of the various types.
• Any suffixes used.

Unless you use a suffix u or U, another developer looking at your code cannot determine easily
whether a constant is signed or unsigned.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use Suffix to Specify Unsigned Type

const unsigned long C[] = {
 0x9421FFD0, /*Noncompliant*/
 0x5322E762,
 0x80000000, /*Noncompliant*/
 0x7FFFFFFF,
 0x00000001,
 0x83241947, /*Noncompliant*/
 0x57112957,
 0x2640EA23
};

const unsigned long D[] = {
 0x9421FFD0U, /*Compliant*/
 0x80000000U, /*Compliant*/
 0x83241947U, /*Compliant*/
};

In this example, Polyspace flags the unsigned members of C. For instance, 0x9421FFD0 is an
unsigned number in a 32 bit environment because it exceeds the capacity of a signed integer.
Because the unsigned number lacks the suffix u or U, Polyspace flags it. In D, the unsigned numbers
use the suffix and are not flagged.

21 MISRA C 2012

21-86

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Readability

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 7.2

21-87

MISRA C:2012 Rule 7.3
The lowercase character “l” shall not be used in a literal suffix

Description
Rule Definition

The lowercase character “l” shall not be used in a literal suffix.

Rationale

The lowercase character “l” can be confused with the digit “1”. Use the uppercase “L” instead.

Polyspace Implementation

Polyspace reports a violation if you use the lowercase character "l" in a literal suffix. Violations of this
rule are not reported on unused macros.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Lowercase "l" in Literal Suffix

#define PI 3.14159l// Compliant- Not flagged because
 // the macro is unused
#define EULERNUM 2.71828l//Noncompliant- Flagged because
 // macro is used
void func(long);
void foo(void){
 long a = 10l;//Noncompliant
 long b = 10L;//Compliant
 long c = 10lL;//Noncompliant
 func(EULERNUM);
}

In this example, Polyspace flags the literals that have a lowercase "l" in their suffix. Polyspace does
not flag unused macros that have "l" in their suffix.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Readability

See Also
Check MISRA C:2012 (-misra3)

21 MISRA C 2012

21-88

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 7.3

21-89

MISRA C:2012 Rule 7.4
A string literal shall not be assigned to an object unless the object’s type is “pointer to const-qualified
char”

Description
Rule Definition

A string literal shall not be assigned to an object unless the object’s type is “pointer to const-qualified
char”.

Rationale

This rule prevents assignments that allow modification of a string literal.

An attempt to modify a string literal can result in undefined behavior. For example, some
implementations can store string literals in read-only memory. An attempt to modify the string literal
can result in an exception or crash.

Polyspace Implementation

The rule checker flags assignment of string literals to:

• Pointers with data type other than const char*.
• Arrays with data type other than const char.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Incorrect Assignment of String Literal

char *str1 = "xxxxxx"; // Non-Compliant
const char *str2 = "xxxxxx"; // Compliant

void checkSystem1(char*);
void checkSystem2(const char*);

void main() {
 checkSystem1("xxxxxx"); // Non-Compliant
 checkSystem2("xxxxxx"); // Compliant
}

In this example, the rule is not violated when string literals are assigned to const char* pointers,
either directly or through copy of function arguments. The rule is violated only when the const
qualifier is not used.

21 MISRA C 2012

21-90

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 11.4 | MISRA C:2012 Rule 11.8 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 7.4

21-91

MISRA C:2012 Rule 8.1
Types shall be explicitly specified

Description
Rule Definition

Types shall be explicitly specified.

Rationale

In some circumstances, you can omit types from the C90 standard. In those cases, the int type is
implicitly specified. However, the omission of an explicit type can lead to confusion. For example, in
the declaration extern void foo (char c, const k);, the type of k is const int, but you
might expect const char.

You might be using an implicit type in:

• Object declarations
• Parameter declarations
• Member declarations
• typedef declarations
• Function return types

Polyspace Implementation

The rule checker flags situations where a function parameter or return type is not explicitly specified.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Implicit Types
static foo(int a); /* Non compliant */
static void bar(void); /* Compliant */

In this example, the rule is violated because the return type of foo is implicit.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 8.2 | Check MISRA C:2012 (-misra3)

21 MISRA C 2012

21-92

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.1

21-93

MISRA C:2012 Rule 8.2
Function types shall be in prototype form with named parameters

Description
Rule Definition

Function types shall be in prototype form with named parameters.

Rationale

The rule requires that you specify names and data types for all the parameters in a declaration. The
parameter names provide useful information regarding the function interface. A mismatch between a
declaration and definition can indicate a programming error. For instance, you mixed up parameters
when defining the function. By insisting on parameter names, the rule allows a code reviewer to
detect this mismatch.

Polyspace Implementation

The rule checker shows a violation if the parameters in a function declaration or definition are
missing names or data types.

Additional Message in Report

• Too many arguments to function_name.
• Too few arguments to function_name.
• Function types shall be in prototype form with named parameters.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Function Prototype Without Named Parameters

extern int func(int); /* Non compliant */
extern int func2(int n); /* Compliant */

extern int func3(); /* Non compliant */
extern int func4(void); /* Compliant */

In this example, the declarations of func and func3 are noncompliant because the parameters are
missing or do not have names.

Check Information
Group: Declarations and Definitions
Category: Required

21 MISRA C 2012

21-94

AGC Category: Required

See Also
MISRA C:2012 Rule 8.1 | MISRA C:2012 Rule 8.4 | MISRA C:2012 Rule 17.3 | Check
MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.2

21-95

MISRA C:2012 Rule 8.3
All declarations of an object or function shall use the same names and type qualifiers

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

Rule Definition

All declarations of an object or function shall use the same names and type qualifiers.

Rationale

Consistently using parameter names and types across declarations of the same object or function
encourages stronger typing. It is easier to check that the same function interface is used across all
declarations.

Polyspace Implementation

The rule checker detects situations where parameter names or data types are different between
multiple declarations or the declaration and the definition. The checker considers declarations in all
translation units and flags issues that are not likely to be detected by a compiler.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The analyses can
produce different results.

Additional Message in Report

• Definition of function function_name incompatible with its declaration.
• Global declaration of function_name function has incompatible type with its definition.
• Global declaration of variable_name variable has incompatible type with its definition.
• All declarations of an object or function shall use the same names and type qualifiers.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Mismatch in Parameter Names

extern int div (int num, int den);

int div(int den, int num) { /* Non compliant */
 return(num/den);
}

In this example, the rule is violated because the parameter names in the declaration and definition
are switched.

21 MISRA C 2012

21-96

Mismatch in Parameter Data Types

typedef unsigned short width;
typedef unsigned short height;
typedef unsigned int area;

extern area calculate(width w, height h);

area calculate(width w, width h) { /* Non compliant */
 return w*h;
}

In this example, the rule is violated because the second argument of the calculate function has
data type:

• height in the declaration.
• width in the definition.

The rule is violated even though the underlying type of height and width are identical.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 8.4 | Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.3

21-97

MISRA C:2012 Rule 8.4
A compatible declaration shall be visible when an object or function with external linkage is defined

Description
Rule Definition

A compatible declaration shall be visible when an object or function with external linkage is defined.

Rationale

If a declaration is visible when an object or function is defined, it allows the compiler to check that
the declaration and the definition are compatible.

This rule with MISRA C:2012 Rule 8.5 enforces the practice of declaring an object (or function) in
a header file and including the header file in source files that define or use the object (or function).

Polyspace Implementation

The rule checker detects situations where:

• An object or function is defined without a previous declaration.
• There is a data type mismatch between the object or function declaration and definition. Such a

mismatch also causes a compilation error.

The checker now flags tentative definitions (variables declared without an extern specifier and not
explicitly defined). To avoid the rule violation, declare the variable static (defined in one file only),
or declare the variable extern and follow the declaration with a definition.

Additional Message in Report

• Global definition of variable_name variable has no previous declaration.
• Function function_name has no visible compatible prototype at definition.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Definition Without Previous Declaration

Header file:

/* file.h */
extern int var2;
void func2(void);

Source file:

21 MISRA C 2012

21-98

/* file.c */
#include "file.h"

int var1 = 0; /* Non compliant */
int var2 = 0; /* Compliant */

void func1(void) { /* Non compliant */
}

void func2(void) { /* Compliant */
}

In this example, the definitions of var1 and func1 are noncompliant because they are not preceded
by declarations.

Mismatch in Parameter Data Types

void func(int param1, int param2);

void func(int param1, unsigned int param2) { /* Non compliant */
}

In this example, the definition of func has a different parameter type from its declaration. The
declaration mismatch might cause a compilation error. Polyspace flags the mismatch.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 8.2 | MISRA C:2012 Rule 8.3 | MISRA C:2012 Rule 8.5 | MISRA
C:2012 Rule 17.3 | Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.4

21-99

MISRA C:2012 Rule 8.5
An external object or function shall be declared once in one and only one file

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

Rule Definition

An external object or function shall be declared once in one and only one file.

Rationale

If you declare an identifier in a header file, you can include the header file in any translation unit
where the identifier is defined or used. In this way, you ensure consistency between:

• The declaration and the definition.
• The declarations in different translation units.

The rule enforces the practice of declaring external objects or functions in header files.

Polyspace Implementation

The rule checker checks only explicit extern declarations (tentative definitions are ignored). The
checker flags variables or functions:

• Declared extern in a non-header file
• Declared multiple times, for instance, once in a header and once in a non-header file.

The checker ignores compiler-specific non-portable ways of overriding function declarations such as
pragma weak or __attribute__((weak)). If you declare a weak symbol in your code and then
redeclare the symbol later, the checker considers the redeclaration as a rule violation. If you do not
want to fix the issue, add a comment to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The analyses can
produce different results.

Additional Message in Report

• Object object_name has external declarations in multiple files.
• Function function_name has external declarations in multiple files.

21 MISRA C 2012

21-100

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Extern Declaration in Non-Header File

Header file:

/* file.h */
extern int var;
extern void func1(void); /* Compliant */

Source file:

/* file.c */
#include "file.h"

extern void func2(void); /* Non compliant */

/* Definitions */
int var = 0;
void func1(void) {}

In this example, the declaration of external function func2 is noncompliant because it occurs in a
non-header file. The other external object and function declarations occur in a header file and comply
with this rule.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 8.4 | Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.5

21-101

MISRA C:2012 Rule 8.6
An identifier with external linkage shall have exactly one external definition

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

Rule Definition

An identifier with external linkage shall have exactly one external definition.

Rationale

If you use an identifier for which multiple definitions exist in different files or no definition exists, the
behavior is undefined.

Multiple definitions in different files are not permitted by this rule even if the definitions are the
same.

Polyspace Implementation

The checker flags multiple definitions only if the definitions occur in different files.

The checker does not consider tentative definitions as definitions. For instance, the following code
does not violate the rule:

int val;
int val=1;

The checker does not show a violation if a function is not defined at all but declared with external
linkage and called in the source code.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The analyses can
produce different results.

Additional Message in Report

• Forbidden multiple definitions for function function_name.
• Forbidden multiple tentative definitions for object object_name.
• Global variable variable_name multiply defined.
• Function function_name multiply defined.
• Global variable has multiple tentative definitions.
• Undefined global variable variable_name.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

21 MISRA C 2012

21-102

Examples
Variable Multiply Defined

First source file:

/* file1.c */
extern int var = 1;

Second source file:

/* file2.c */
int var = 0; /* Non compliant */

In this example, the global variable var is multiply defined. Unless explicitly specified with the
static qualifier, the variables have external linkage.

Function Multiply Defined

Header file:

/* file.h */
int func(int param);

First source file:

/* file1.c */
#include "file.h"

int func(int param) {
 return param+1;
}

Second source file:

/* file2.c */
#include "file.h"

int func(int param) { /* Non compliant */
 return param-1;
}

In this example, the function func is multiply defined. Unless explicitly specified with the static
qualifier, the functions have external linkage.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required

 MISRA C:2012 Rule 8.6

21-103

See Also
Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-104

MISRA C:2012 Rule 8.7
Functions and objects should not be defined with external linkage if they are referenced in only one
translation unit

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

Rule Definition

Functions and objects should not be defined with external linkage if they are referenced in only one
translation unit.

Rationale

Compliance with this rule avoids confusion between your identifier and an identical identifier in
another translation unit or library. If you restrict or reduce the visibility of an object by giving it
internal linkage or no linkage, you or someone else is less likely to access the object inadvertently.

Polyspace Implementation

The rule checker flags:

• Objects that are defined at file scope without the static specifier but used only in one file.
• Functions that are defined without the static specifier but called only in one file.

If you intend to use the object or function in one file only, declare it static.

If your code does not contain a main function and you use options such as Variables to
initialize (-main-generator-writes-variables) with value custom to explicitly specify a
set of variables to initialize, the checker does not flag those variables. The checker assumes that in a
real application, the file containing the main must initialize the variables in addition to any file that
currently uses them. Therefore, the variables are used in more than one translation unit.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The analyses can
produce different results.

Additional Message in Report

• Variable variable_name should have internal linkage.
• Function function_name should have internal linkage.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

 MISRA C:2012 Rule 8.7

21-105

Examples
Variable with External Linkage Used in One File

Header file:

/* file.h */
extern int var;

First source file:

/* file1.c */
#include "file.h"

int var; /* Compliant */
int var2; /* Non compliant */
static int var3; /* Compliant */

void reset(void);

void reset(void) {
 var = 0;
 var2 = 0;
 var3 = 0;
}

Second source file:

/* file2.c */
#include "file.h"

void increment(int var2);

void increment(int var2) {
 var++;
 var2++;
}

In this example:

• The declaration of var is compliant because var is declared with external linkage and used in
multiple files.

• The declaration of var2 is noncompliant because var2 is declared with external linkage but used
in one file only.

It might appear that var2 is defined in both files. However, in the second file, var2 is a parameter
with no linkage and is not the same as the var2 in the first file.

• The declaration of var3 is compliant because var3 is declared with internal linkage (with the
static specifier) and used in one file only.

Function with External Linkage Used in One File

Header file:

21 MISRA C 2012

21-106

/* file.h */
extern int var;
extern void increment1 (void);

First source file:

/* file1.c */
#include "file.h"

int var;

void increment2(void);
static void increment3(void);
void func(void);

void increment2(void) { /* Non compliant */
 var+=2;
}

static void increment3(void) { /* Compliant */
 var+=3;
}

void func(void) {
 increment1();
 increment2();
 increment3();
}

Second source file:

/* file2.c */
#include "file.h"

void increment1(void) { /* Compliant */
 var++;
}

In this example:

• The definition of increment1 is compliant because increment1 is defined with external linkage
and called in a different file.

• The declaration of increment2 is noncompliant because increment2 is defined with external
linkage but called in the same file and nowhere else.

• The declaration of increment3 is compliant because increment3 is defined with internal
linkage (with the static specifier) and called in the same file and nowhere else.

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory

 MISRA C:2012 Rule 8.7

21-107

See Also
Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-108

MISRA C:2012 Rule 8.8
The static storage class specifier shall be used in all declarations of objects and functions that have
internal linkage

Description
Rule Definition

The static storage class specifier shall be used in all declarations of objects and functions that have
internal linkage.

Rationale

If you do not use the static specifier consistently in all declarations of objects with internal linkage,
you might declare the same object with external and internal linkage.

In this situation, the linkage follows the earlier specification that is visible (C99 Standard, Section
6.2.2). For instance, if the earlier specification indicates internal linkage, the object has internal
linkage even though the latter specification indicates external linkage. If you notice the latter
specification alone, you might expect otherwise.

Polyspace Implementation

The rule checker detects situations where:

• The same object is declared multiple times with different storage specifiers.
• The same function is declared and defined with different storage specifiers.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Linkage Conflict Between Variable Declarations
static int foo = 0;
extern int foo; /* Non-compliant */

extern int hhh;
static int hhh; /* Non-compliant */

In this example, the first line defines foo with internal linkage. The first line is compliant because the
example uses the static keyword. The second line does not use static in the declaration, so the
declaration is noncompliant. By comparison, the third line declares hhh with an extern keyword
creating external linkage. The fourth line declares hhh with internal linkage, but this declaration
conflicts with the first declaration of hhh.
Correction — Consistent static and extern Use

One possible correction is to use static and extern consistently:

 MISRA C:2012 Rule 8.8

21-109

static int foo = 0;
static int foo;

extern int hhh;
extern int hhh;

Linkage Conflict Between Function Declaration and Definition

static int fee(void); /* Compliant - declaration: internal linkage */
int fee(void){ /* Non-compliant */
 return 1;
}

static int ggg(int); /* Compliant - declaration: internal linkage */
extern int ggg(int x){ /* Non-compliant */
 return 1 + x;
}

This example shows two internal linkage violations. Because fee and ggg have internal linkage, you
must use a static class specifier in the definition to be compliant with MISRA.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-110

MISRA C:2012 Rule 8.9
An object should be defined at block scope if its identifier only appears in a single function

Description
Rule Definition

An object should be defined at block scope if its identifier only appears in a single function.

Rationale

If you define an object at block scope, you or someone else is less likely to access the object
inadvertently outside the block.

Polyspace Implementation

The rule checker flags static objects that are accessed in one function only but declared at file
scope.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Object Declared at File Scope but Used in One Function

static int ctr; /* Non compliant */

int checkStatus(void);
void incrementCount(void);

void incrementCount(void) {
 ctr=0;
 while(1) {
 if(checkStatus())
 ctr++;
 }
}

In this example, the declaration of ctr is noncompliant because it is declared at file scope but used
only in the function incrementCount. Declare ctr in the body of incrementCount to be MISRA C-
compliant.

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory

 MISRA C:2012 Rule 8.9

21-111

See Also
Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-112

MISRA C:2012 Rule 8.10
An inline function shall be declared with the static storage class

Description
Rule Definition

An inline function shall be declared with the static storage class.

Rationale

If you call an inline function that is declared with external linkage but not defined in the same
translation unit, the function might not be inlined. You might not see the reduction in execution time
that you expect from inlining.

If you want to make an inline function available to several translation units, you can still define it with
the static specifier. In this case, place the definition in a header file. Include the header file in all
the files where you want the function inlined.

Polyspace Implementation

The rule checker flags definitions that contain the inline specifier without an accompanying
static specifier.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Inlining Functions with External Linkage

inline double mult(int val);
inline double mult(int val) { /* Non compliant */
 return val * 2.0;
}

static inline double div(int val);
static inline double div(int val) { /* Compliant */
 return val / 2.0;
}

In this example, the definition of mult is noncompliant because it is inlined without the static
storage specifier.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required

 MISRA C:2012 Rule 8.10

21-113

See Also
MISRA C:2012 Rule 5.9 | Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-114

MISRA C:2012 Rule 8.11
When an array with external linkage is declared, its size should be explicitly specified

Description
Rule Definition

When an array with external linkage is declared, its size should be explicitly specified.

Rationale

Although it is possible to declare an array with an incomplete type and access its elements, it is safer
to state the size of the array explicitly. If you provide size information for each declaration, a code
reviewer can check multiple declarations for their consistency. With size information, a static analysis
tool can perform array bounds analysis without analyzing more than one unit.

Polyspace Implementation

The rule checker flags arrays declared with the extern specifier if the declaration does not explicitly
specify the array size.

Additional Message in Report

Size of array array_name should be explicitly stated. When an array with external linkage is
declared, its size should be explicitly specified.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Array Declarations

#include <stdint.h>

extern int32_t array1[10]; /* Compliant */
extern int32_t array2[]; /* Non-compliant */

In this example, two arrays are declared array1 and array2. array1 has external linkage (the
extern keyword) and a size of 10. array2 also has external linkage, but no specified size. array2 is
noncompliant because for arrays with external linkage, you must explicitly specify a size.

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory

 MISRA C:2012 Rule 8.11

21-115

See Also
Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-116

MISRA C:2012 Rule 8.12
Within an enumerator list, the value of an implicitly-specified enumeration constant shall be unique

Description
Rule Definition

Within an enumerator list, the value of an implicitly-specified enumeration constant shall be unique.

Rationale

An implicitly specified enumeration constant has a value one greater than its predecessor. If the first
enumeration constant is implicitly specified, then its value is 0. An explicitly specified enumeration
constant has the specified value.

If implicitly and explicitly specified constants are mixed within an enumeration list, it is possible for
your program to replicate values. Such replications can be unintentional and can cause unexpected
behavior.

Polyspace Implementation

The rule checker flags an enumeration if it has an implicitly specified enumeration constant with the
same value as another enumeration constant.

Additional Message in Report

The constant constant1 has same value as the constant constant2.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Replication of Value in Implicitly Specified Enum Constants

enum color1 {red_1, blue_1, green_1}; /* Compliant */
enum color2 {red_2 = 1, blue_2 = 2, green_2 = 3}; /* Compliant */
enum color3 {red_3 = 1, blue_3, green_3}; /* Compliant */
enum color4 {red_4, blue_4, green_4 = 1}; /* Non Compliant */
enum color5 {red_5 = 2, blue_5, green_5 = 2}; /* Compliant */
enum color6 {red_6 = 2, blue_6, green_6 = 2, yellow_6}; /* Non Compliant */

Compliant situations:

• color1: All constants are implicitly specified.
• color2: All constants are explicitly specified.
• color3: Though there is a mix of implicit and explicit specification, all constants have unique

values.

 MISRA C:2012 Rule 8.12

21-117

• color5: The implicitly specified constants have unique values.

Noncompliant situations:

• color4: The implicitly specified constant blue_4 has the same value as green_4.
• color6: The implicitly specified constant blue_6 has the same value as yellow_6.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-118

MISRA C:2012 Rule 8.13
A pointer should point to a const-qualified type whenever possible

Description
Rule Definition

A pointer should point to a const-qualified type whenever possible.

Rationale

This rule ensures that you do not inadvertently use pointers to modify objects.

Polyspace Implementation

The rule checker flags a pointer to a non-const function parameter if the pointer does not modify the
addressed object. The assumption is that the pointer is not meant to modify the object and so must
point to a const-qualified type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Pointer That Should Point to const-Qualified Types
#include <string.h>

typedef unsigned short uint16_t;

uint16_t ptr_ex(uint16_t *p) { /* Non-compliant */
 return *p;
}

char last_char(char * const s){ /* Non-compliant */
 return s[strlen(s) - 1u];
}

uint16_t first(uint16_t a[5]){ /* Non-compliant */
 return a[0];
}

This example shows three different noncompliant pointer parameters.

• In the ptr_ex function, p does not modify an object. However, the type to which p points is not
const-qualified, so it is noncompliant.

• In last_char, the pointer s is const-qualified but the type it points to is not. This parameter is
noncompliant because s does not modify an object.

• The function first does not modify the elements of the array a. However, the element type is not
const-qualified, so a is also noncompliant.

 MISRA C:2012 Rule 8.13

21-119

Correction — Use const Keywords

One possible correction is to add const qualifiers to the definitions.

#include <string.h>

typedef unsigned short uint16_t;

uint16_t ptr_ex(const uint16_t *p){ /* Compliant */
 return *p;
}

char last_char(const char * const s){ /* Compliant */
 return s[strlen(s) - 1u];
}

uint16_t first(const uint16_t a[5]) { /* Compliant */
 return a[0];
}

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory

See Also
Check MISRA C:2012 (-misra3)

Topics
“Avoid Violations of MISRA C:2012 Rules 8.x”
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-120

MISRA C:2012 Rule 8.14
The restrict type qualifier shall not be used

Description
Rule Definition

The restrict type qualifier shall not be used.

Rationale

When you use a restrict qualifier carefully, it improves the efficiency of code generated by a
compiler. It can also improve static analysis. However, when using the restrict qualifier, it is
difficult to make sure that the memory areas operated on by two or more pointers do not overlap.

Polyspace Implementation

The rule checker flags all uses of the restrict qualifier.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of restrict Qualifier

void f(int n, int * restrict p, int * restrict q)/*Noncompliant*/
{
}

In this example, both uses of the restrict qualifier are flagged.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Advisory

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.14

21-121

MISRA C:2012 Rule 9.1
The value of an object with automatic storage duration shall not be read before it has been set

Description
Message in Report:

Rule Definition

The value of an object with automatic storage duration shall not be read before it has been set.

Rationale

A variable with an automatic storage duration is allocated memory at the beginning of an enclosing
code block and deallocated at the end. All non-global variables have this storage duration, except
those declared static or extern.

Variables with automatic storage duration are not automatically initialized and have indeterminate
values. Therefore, you must not read such a variable before you have set its value through a write
operation.

Polyspace Implementation

The Polyspace analysis checks some of the violations as non-initialized variables. For more
information, see Non-initialized variable.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The analyses can
produce different results. In Code Prover, you can also see a difference in results based on your
choice for the option Verification level (-to). See “Check for Coding Standard Violations”.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Initialization
Category: Mandatory
AGC Category: Mandatory

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.3 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-122

MISRA C:2012 Rule 9.2
The initializer for an aggregate or union shall be enclosed in braces

Description
Rule Definition

The initializer for an aggregate or union shall be enclosed in braces.

Rationale

The rule applies to both objects and subobjects. For example, when initializing a structure that
contains an array, the values assigned to the structure must be enclosed in braces. Within these
braces, the values assigned to the array must be enclosed in another pair of braces.

Enclosing initializers in braces improves clarity of code that contains complex data structures such as
multidimensional arrays and arrays of structures.

Tip To avoid nested braces for subobjects, use the syntax {0}, which sets all values to zero.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Initialization of Two-dimensional Arrays

void initialize(void) {
 int x[4][2] = {{0,0},{1,0},{0,1},{1,1}}; /* Compliant */
 int y[4][2] = {{0},{1,0},{0,1},{1,1}}; /* Compliant */
 int z[4][2] = {0}; /* Compliant */
 int w[4][2] = {0,0,1,0,0,1,1,1}; /* Non-compliant */
}

In this example, the rule is not violated when:

• Initializers for each row of the array are enclosed in braces.
• The syntax {0} initializes all elements to zero.

The rule is violated when a separate pair of braces is not used to enclose the initializers for each row.

Check Information
Group: Initialization
Category: Required
AGC Category: Readability

 MISRA C:2012 Rule 9.2

21-123

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-124

MISRA C:2012 Rule 9.3
Arrays shall not be partially initialized

Description
Rule Definition

Arrays shall not be partially initialized.

Rationale

Providing an explicit initialization for each array element makes it clear that every element has been
considered.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Partial and Complete Initializations

void func(void) {
 int x[3] = {0,1,2}; /* Compliant */
 int y[3] = {0,1}; /* Non-compliant */
 int z[3] = {0}; /* Compliant - exception */
 int a[30] = {[1] = 1,[15]=1}; /* Compliant - exception */
 int b[30] = {[1] = 1, 1}; /* Non-compliant */
 char c[20] = "Hello World"; /* Compliant - exception */
}

In this example, the rule is not violated when each array element is explicitly initialized.

The rule is violated when some elements of the array are implicitly initialized. Exceptions include the
following:

• The initializer has the form {0}, which initializes all elements to zero.
• The array initializer consists only of designated initializers. Typically, you use this approach for

sparse initialization.
• The array is initialized using a string literal.

Check Information
Group: Initialization
Category: Required
AGC Category: Readability

See Also
Check MISRA C:2012 (-misra3)

 MISRA C:2012 Rule 9.3

21-125

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-126

MISRA C:2012 Rule 9.4
An element of an object shall not be initialized more than once

Description
Rule Definition

An element of an object shall not be initialized more than once.

Rationale

Designated initializers allow explicitly initializing elements of objects such as arrays in any order.
However, using designated initializers, one can inadvertently initialize the same element twice and
therefore overwrite the first initialization.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Array Initialization Using Designated Initializers

void func(void) {
 int a[5] = {-2,-1,0,1,2}; /* Compliant */
 int b[5] = {[0]=-2, [1]=-1, [2]=0, [3]=1, [4]=2}; /* Compliant */
 int c[5] = {[0]=-2, [1]=-1, [1]=0, [3]=1, [4]=2}; /* Non-compliant */

}

In this example, the rule is violated when the array element c[1] is initialized twice using a
designated initializer.

Structure Initialization Using Designated Initializers

struct myStruct {
 int a;
 int b;
 int c;
 int d;
};

void func(void) {
 struct myStruct struct1 = {-4,-2,2,4}; /* Compliant */
 struct myStruct struct2 = {.a=-4, .b=-2, .c=2, .d=4}; /* Compliant */
 struct myStruct struct3 = {.a=-4, .b=-2, .b=2, .d=4}; /* Non-compliant */
}

In this example, the rule is violated when struct3.b is initialized twice using a designated
initializer.

 MISRA C:2012 Rule 9.4

21-127

Check Information
Group: Initialization
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-128

MISRA C:2012 Rule 9.5
Where designated initializers are used to initialize an array object the size of the array shall be
specified explicitly

Description
Rule Definition

Where designated initializers are used to initialize an array object the size of the array shall be
specified explicitly.

Rationale

If the size of an array is not specified explicitly, it is determined by the highest index of the elements
that are initialized. When using long designated initializers, it might not be immediately apparent
which element has the highest index.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Using Designated Initializers Without Specifying Array Size

int a[5] = {[0]= 1, [2] = 1, [4]= 1, [1] = 1}; /* Compliant */
int b[] = {[0]= 1, [2] = 1, [4]= 1, [1] = 1}; /* Non-compliant */
int c[] = {[0]= 1, [1] = 1, [2]= 1, [3]=0, [4] = 1}; /* Non-compliant */

void display(int);

void main() {
 func(a,5);
 func(b,5);
 func(c,5);
}

void func(int* arr, int size) {
 for(int i=0; i<size; i++)
 display(arr[i]);
}

In this example, the rule is violated when the arrays b and c are initialized using designated
initializers but the array size is not specified.

Check Information
Group: Initialization
Category: Required
AGC Category: Readability

 MISRA C:2012 Rule 9.5

21-129

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-130

MISRA C:2012 Rule 10.1
Operands shall not be of an inappropriate essential type

Description
Rule Definition

Operands shall not be of an inappropriate essential type.

Rationale
What Are Essential Types?

An essential type category defines the essential type of an object or expression.

Essential type category Standard types
Essentially Boolean bool or _Bool (defined in stdbool.h)

You can also define types that are essentially Boolean using the
option Effective boolean types (-boolean-types).

Essentially character char
Essentially enum named enum
Essentially signed signed char, signed short, signed int, signed long, signed long

long
Essentially unsigned unsigned char, unsigned short, unsigned int, unsigned long,

unsigned long long
Essentially floating float, double, long double

Amplification and Rationale

For operands of some operators, you cannot use certain essential types. In the table below, each row
represents an operator/operand combination. If the essential type column is not empty for that row,
there is a MISRA restriction when using that type as the operand. The number in the table
corresponds to the rationale list after the table.

Operation Essential type category of arithmetic operand
Operator Operand Boolean character enum signed unsigned floating

[] integer 3 4 1
+ (unary) 3 4 5
- (unary) 3 4 5 8

+ - either 3 5
* / either 3 4 5
% either 3 4 5 1

< > <= >= either 3

 MISRA C:2012 Rule 10.1

21-131

Operation Essential type category of arithmetic operand
== != either
! && || any 2 2 2 2 2
<< >> left 3 4 5,6 6 1
<< >> right 3 4 7 7 1
~ & | ^ any 3 4 5,6 6 1

?: 1st 2 2 2 2 2
?: 2nd and 3rd

1 An expression of essentially floating type for these operands is a constraint violation.
2 When an operand is interpreted as a Boolean value, use an expression of essentially Boolean

type.
3 When an operand is interpreted as a numeric value, do not use an operand of essentially Boolean

type.
4 When an operand is interpreted as a numeric value, do not use an operand of essentially

character type. The numeric values of character data are implementation-defined.
5 In an arithmetic operation, do not use an operand of essentially enum type. An enum object uses

an implementation-defined integer type. An operation involving an enum object can therefore
yield a result with an unexpected type.

6 Perform only shift and bitwise operations on operands of essentially unsigned type. When you use
shift and bitwise operations on essentially signed types, the resulting numeric value is
implementation-defined.

7 To avoid undefined behavior on negative shifts, use an essentially unsigned right-hand operand.
8 For the unary minus operator, do not use an operand of essentially unsigned type. The

implemented size of int determines the signedness of the result.

Note that for a bit-field type, if the bit-field is implemented as:

• A Boolean, the bit-field is essentially Boolean.
• Signed or unsigned type, the bit-field is essentially signed or unsigned respectively.

The type of the bit-field is the smallest type that can represent the bit-field. For instance, the type
stmp here is essentially 8 bits integer:

typedef signed int mybitfield;
typedef struct { mybitfield f1 : 1; } stmp;

Additional Message in Report

The operand_name operand of the operator_name operator is of an inappropriate essential type
category category_name.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

21 MISRA C 2012

21-132

Examples
Violation of Rule 10.1, Rationale 2: Inappropriate Operand Types for Operators That Take
Essentially Boolean Operands
#include<stdbool.h>
extern float f32a;
extern char cha;
extern signed char s8a;
extern unsigned char u8a,u8b,ru8a;
enum enuma { a1, a2, a3 } ena, enb;
extern bool bla, blb, rbla;
void foo(void) {

 rbla = cha && bla; /* Non-compliant: cha is essentially char */
 enb = ena ? a1 : a2; /* Non-compliant: ena is essentially enum */
 rbla = s8a && bla; /* Non-compliant: s8a is essentially signed char */
 ena = u8a ? a1 : a2; /* Non-compliant: u8a is essentially unsigned char */
 rbla = f32a && bla; /* Non-compliant: f32a is essentially float */
 rbla = bla && blb; /* Compliant */
 ru8a = bla ? u8a : u8b; /* Compliant */
}

In the noncompliant examples, rule 10.1 is violated because:

• The operator && expects only essentially Boolean operands. However, at least one of the operands
used has a different type.

• The first operand of ?: is expected to be essentially Boolean. However, a different operand type is
used.

Note For Polyspace to detect the rule violation, you must define the type name boolean as an
effective Boolean type. For more information, see Effective boolean types (-boolean-
types).

Violation of Rule 10.1, Rationale 3: Inappropriate Boolean Operands
#include<stdbool.h>
enum enuma { a1, a2, a3 } ena;
enum { K1 = 1, K2 = 2 }; /* Essentially signed */
extern char cha, chb;
extern bool bla, blb, rbla;
extern signed char rs8a, s8a;
extern unsigned char u8a;

void foo(void) {

 rbla = bla * blb; /* Non-compliant - Boolean used as a numeric value */
 rbla = bla > blb; /* Non-compliant - Boolean used as a numeric value */

 rbla = bla && blb; /* Compliant */
 rbla = cha > chb; /* Compliant */
 rbla = ena > a1; /* Compliant */
 rbla = u8a > 0U; /* Compliant */
 rs8a = K1 * s8a; /* Compliant - K1 obtained from anonymous enum */

}

In the noncompliant examples, rule 10.1 is violated because the operators * and > do not expect
essentially Boolean operands. However, the operands used here are essentially Boolean.

Note For Polyspace to detect the rule violation, you must define the type name boolean as an
effective Boolean type. For more information, see Effective boolean types (-boolean-
types).

 MISRA C:2012 Rule 10.1

21-133

Violation of Rule 10.1, Rationale 4: Inappropriate Character Operands
extern char rcha, cha, chb;
extern unsigned char ru8a, u8a;

void foo(void) {

 rcha = cha & chb; /* Non-compliant - char type used as a numeric value */
 rcha = cha << 1; /* Non-compliant - char type used as a numeric value */

 ru8a = u8a & 2U; /* Compliant */
 ru8a = u8a << 2U; /* Compliant */

}

In the noncompliant examples, rule 10.1 is violated because the operators & and << do not expect
essentially character operands. However, at least one of the operands used here has essentially
character type.

Violation of Rule 10.1, Rationale 5: Inappropriate Enum Operands
typedef unsigned char boolean;

enum enuma { a1, a2, a3 } rena, ena, enb;

void foo(void) {

 ena--; /* Non-Compliant - arithmetic operation with enum type*/
 rena = ena * a1; /* Non-Compliant - arithmetic operation with enum type*/
 ena += a1; /* Non-Compliant - arithmetic operation with enum type*/

}

In the noncompliant examples, rule 10.1 is violated because the arithmetic operators --, * and += do
not expect essentially enum operands. However, at least one of the operands used here has
essentially enum type.

Violation of Rule 10.1, Rationale 6: Inappropriate Signed Operand for Bitwise Operations
extern signed char s8a;
extern unsigned char ru8a, u8a;

void foo(void) {

 ru8a = s8a & 2; /* Non-compliant - bitwise operation on signed type */
 ru8a = 2 << 3U; /* Non-compliant - shift operation on signed type */

 ru8a = u8a << 2U; /* Compliant */

}

In the noncompliant examples, rule 10.1 is violated because the & and << operations must not be
performed on essentially signed operands. However, the operands used here are signed.

Violation of Rule 10.1, Rationale 7: Inappropriate Signed Right Operand for Shift
Operations
extern signed char s8a;
extern unsigned char ru8a, u8a;

void foo(void) {

 ru8a = u8a << s8a; /* Non-compliant - shift magnitude uses signed type */
 ru8a = u8a << -1; /* Non-compliant - shift magnitude uses signed type */

 ru8a = u8a << 2U; /* Compliant */
 ru8a = u8a << 1; /* Compliant - exception */

}

In the noncompliant examples, rule 10.1 is violated because the operation << does not expect an
essentially signed right operand. However, the right operands used here are signed.

21 MISRA C 2012

21-134

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 10.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C:2012 Rules 10.x”

 MISRA C:2012 Rule 10.1

21-135

MISRA C:2012 Rule 10.2
Expressions of essentially character type shall not be used inappropriately in addition and subtraction
operations

Description
Rule Definition

Expressions of essentially character type shall not be used inappropriately in addition and subtraction
operations.

Rationale

Essentially character type expressions are char variables. Do not use char in arithmetic operations
because the data does not represent numeric values.

It is appropriate to use char with addition and subtraction operations only in the following cases:

• When one operand of the addition (+) operation is a char and the other is a signed or unsigned
char, short, int, long or long long. In this case, the operation returns a char.

• When the first operand of the subtraction (-) operation is a char and the second is a signed or
unsigned char, short, int, long or long long. If both operands are char, the operation
returns a standard type. Otherwise, the operation returns a char.

The above uses allow manipulation of character data such as conversion between lowercase and
uppercase characters or conversion between digits and their ordinal values.

For more information on essential types, see MISRA C:2012 Rule 10.1.

Additional Message in Report

• The operand_name operand of the + operator applied to an expression of essentially character
type shall have essentially signed or unsigned type.

• The right operand of the - operator applied to an expression of essentially character type shall
have essentially signed or unsigned or character type.

• The left operand of the - operator shall have essentially character type if the right operand has
essentially character type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Inappropriate use of char with Addition and Subtraction Operators

#include<stdint.h>
typedef double float64_t;
extern uint8_t u8a;

21 MISRA C 2012

21-136

extern int8_t s8a;
extern int16_t s16a;
extern int32_t s32a;
extern float64_t fla;

void foo (void)
{
 char cha;

 s16a = s16a - 'a'; /* Noncompliant*/

 cha = '0' + fla; /* Noncompliant*/

 cha = cha + ':'; /* Noncompliant*/
}

• You cannot subtract a char-type variable from an integer. When you subtract 'a' from the integer
s16a, Polyspace raises a violation.

• In addition operations, char type variables can only be added to integer type variables. When you
add the floating point number fla to '0', Polyspace raises a violation.

• The arithmetic operation cha+':' is not a conversion from upper to lower case or from digit to
cardinal value. Polyspace raises a violation when char variables are used in arithmetic
expressions.

Permissible use of char in Arithmetic Operation

#include<stdint.h>
typedef double float64_t;
extern uint8_t u8a;
extern int8_t s8a;
extern int16_t s16a;
extern int32_t s32a;
void foo (void)
{
 char cha;

 cha = '0' + u8a; /* Compliant*/

 cha = s8a + '0'; /* Compliant*/

 s32a = cha - '0'; /* Compliant*/

 cha = '0' - s8a; /* Compliant*/

 cha++; /* Compliant*/
}

char type variables can be used in certain addition or subtraction operations to perform char data
manipulations. For instance:

• You can add an unsigned integer u8a to the char type data '0' to convert from '0' to a different
character.

• Similarly, you can add the signed integer s8a to '0' to perform a desired character conversion.
• You can also subtract s8a from the char data '0'.
• Incrementing and decrementing char data is also permissible.

 MISRA C:2012 Rule 10.2

21-137

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 10.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C:2012 Rules 10.x”

21 MISRA C 2012

21-138

MISRA C:2012 Rule 10.3
The value of an expression shall not be assigned to an object with a narrower essential type or of a
different essential type category

Description
Rule Definition

The value of an expression shall not be assigned to an object with a narrower essential type or of a
different essential type category.

Rationale

The use of implicit conversions between types can lead to unintended results, including possible loss
of value, sign, or precision.

For more information on essential types, see MISRA C:2012 Rule 10.1.

Polyspace Implementation

The checker raises a violation if an expression is assigned to a variable with a narrower essential type
or a different essential type category.

The checker does not raise a violation of this rule:

• If an object is assigned the constant zero corresponding to its essential type. This acceptable zero
value is 0 for integral types, 0.0 for a double, and '\0' for char.

• If the macros TRUE/true and FALSE/false with the corresponding boolean value is assigned to a
bool variable.

• If a signed constant is assigned to an unsigned variable but the signed constant has the same
representation as its unsigned equivalent. For instance, the checker does not flag statements such
as:

unsigned int u = 1;

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Initializing Variables to Zero

#include<stdint.h>
#include <stdbool.h>
#define FALSE 0
#define TRUE 1
void init_integer(){
 int8_t a1= 0;
 int16_t a2= 0;

 MISRA C:2012 Rule 10.3

21-139

 int32_t a3= 0;
 uint8_t a4= 0;
 uint16_t a5= 0;
 uint32_t a6= 0;
}
void initiate(){
 float b = 0.0/*Noncompliant*/;
 double c = 0.0;
 bool flag1 = FALSE;
 bool flag2 = FALSE;
 char ch = 0 /*Noncompliant*/;
 char ch2 = '\0';
 unsigned char uch = 0;
}

This example shows how to initiate variables with a zero constant.

• For integral types of various sizes, initiating the variables with 0 is compliant with this rule.
• Initiating the double with 0.0 and the char with '\0' are also compliant with this rule.
• Because the essential type of a char is not integral, initiating the char object ch with 0 is not

compliant with this rule.
• The essential type of an unsigned char is integral. Initiating the unsigned char uch with 0 is

compliant with this rule.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 10.4 | MISRA C:2012 Rule 10.5 | MISRA C:2012 Rule 10.6 | Check
MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C:2012 Rules 10.x”

21 MISRA C 2012

21-140

MISRA C:2012 Rule 10.4
Both operands of an operator in which the usual arithmetic conversions are performed shall have the
same essential type category

Description
Rule Definition

Both operands of an operator in which the usual arithmetic conversions are performed shall have the
same essential type category.

Rationale

The use of implicit conversions between types can lead to unintended results, including possible loss
of value, sign, or precision.

For more information on essential types, see MISRA C:2012 Rule 10.1.

Polyspace Implementation

The checker raises a violation of this rule if the two operands of an operation have different essential
types. The checker message states the types detected on the two sides of the operation.

The checker does not raise a violation of this rule:

• If one of the operands is the constant zero.
• If one of the operands is a signed constant and the other operand is unsigned, and the signed

constant has the same representation as its unsigned equivalent.

For instance, the statement u8b = u8a + 3;, where u8a and u8b are unsigned char
variables, does not violate the rule because the constants 3 and 3U have the same representation.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Operands with Different Essential Types
#define S64_MAX (9223372036854775807LL)
#define S64_MIN (-9223372036854775808LL)
long long input_s64_a, input_s64_b, result_s64;

void my_func(void){
 if (input_s64_a < S64_MIN + input_s64_b) { //Noncompliant: 2 violations
 result_s64 = S64_MIN;
 }
}

In this example, the type of S64_MIN is essentially unsigned. The value 9223372036854775808LL is
one more than the largest value that can be represented by a 64-bit variable. Therefore, the value

 MISRA C:2012 Rule 10.4

21-141

overflows and the result wraps around to a negative value, so -9223372036854775808LL is
essentially unsigned.

The operation input_s64_a < S64_MIN + input_s64_b violates the rule twice.

• The + operation violates the rule. The left operand is essentially unsigned and the right operand is
signed.

• The < operation also violates the rule. As a result of type promotion, the result of the + operation
is essentially unsigned. Now, the left operand of the < operation is essentially signed but the right
operand is essentially unsigned.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 10.3 | MISRA C:2012 Rule 10.7 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C:2012 Rules 10.x”

21 MISRA C 2012

21-142

MISRA C:2012 Rule 10.5
The value of an expression should not be cast to an inappropriate essential type

Description
Rule Definition

The value of an expression should not be cast to an inappropriate essential type.

Rationale

Converting Between Variable Types

 From
Boolean character enum signed unsigned floating

To Boolean Avoid Avoid Avoid Avoid Avoid
character Avoid Avoid

enum Avoid Avoid Avoid Avoid Avoid Avoid
signed Avoid

unsigned Avoid
floating Avoid Avoid

Some inappropriate explicit casts are:

• In C99, the result of a cast of assignment to _Bool is always 0 or 1. This result is not necessarily
the case when casting to another type which is defined as essentially Boolean.

• A cast to an essential enum type may result in a value that does not lie within the set of
enumeration constants for that type.

• A cast from essential Boolean to any other type is unlikely to be meaningful.
• Converting between floating and character types is not meaningful as there is no precise mapping

between the two representations.

Some acceptable explicit casts are:

• To change the type in which a subsequent arithmetic operation is performed.
• To truncate a value deliberately.
• To make a type conversion explicit in the interests of clarity.

For more information on essential types, see MISRA C:2012 Rule 10.1.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

 MISRA C:2012 Rule 10.5

21-143

Check Information
Group: The Essential Type Model
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 10.3 | MISRA C:2012 Rule 10.8 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C:2012 Rules 10.x”

21 MISRA C 2012

21-144

MISRA C:2012 Rule 10.6
The value of a composite expression shall not be assigned to an object with wider essential type

Description
Rule Definition

The value of a composite expression shall not be assigned to an object with wider essential type.

Rationale

A composite expression is a nonconstant expression using a composite operator. In the Essential Type
Model, composite operators are:

• Multiplicative (*, /, %)
• Additive (binary +, binary -)
• Bitwise (&, |, ^)
• Shift (<<, >>)
• Conditional (?, :)

Unary operators such as ~ and unary + or - are also considered composite operators.

If you assign the result of a composite expression to a larger type, the implicit conversion can result
in loss of value, sign, precision, or layout.

For more information on essential types, see MISRA C:2012 Rule 10.1.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 10.3 | MISRA C:2012 Rule 10.7 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C:2012 Rules 10.x”

 MISRA C:2012 Rule 10.6

21-145

MISRA C:2012 Rule 10.7
If a composite expression is used as one operand of an operator in which the usual arithmetic
conversions are performed then the other operand shall not have wider essential type

Description
Rule Definition

If a composite expression is used as one operand of an operator in which the usual arithmetic
conversions are performed, then the other operand shall not have wider essential type.

Rationale

A composite expression is a nonconstant expression using a composite operator. In the Essential Type
Model, composite operators are:

• Multiplicative (*, /, %)
• Additive (binary +, binary -)
• Bitwise (&, |, ^)
• Shift (<<, >>)
• Conditional (?, :)

Restricting implicit conversion on composite expressions mean that sequences of arithmetic
operations within expressions must use the same essential type. This restriction reduces confusion
and avoids loss of value, sign, precision, or layout. However, this rule does not imply that all operands
in an expression are of the same essential type.

For more information on essential types, see MISRA C:2012 Rule 10.1.

Additional Message in Report

• The right operand shall not have wider essential type than the left operand which is a composite
expression.

• The left operand shall not have wider essential type than the right operand which is a composite
expression.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory

See Also
Check MISRA C:2012 (-misra3)

21 MISRA C 2012

21-146

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C:2012 Rules 10.x”

 MISRA C:2012 Rule 10.7

21-147

MISRA C:2012 Rule 10.8
The value of a composite expression shall not be cast to a different essential type category or a wider
essential type

Description
Rule Definition

The value of a composite expression shall not be cast to a different essential type category or a wider
essential type.

Rationale

A composite expression is a non-constant expression using a composite operator. In the Essential
Type Model, composite operators are:

• Multiplicative (*, /, %)
• Additive (binary +, binary -)
• Bitwise (&, |, ^)
• Shift (<<, >>)
• Conditional (?, :)

Unary operators such as ~ and unary + or - are also considered composite operators.

Casting to a wider type is not permitted because the result may vary between implementations.
Consider this expression:

(uint32_t) (u16a +u16b);

On a 16-bit machine the addition is performed in 16 bits. The result is wrapped before it is cast to 32
bits. On a 32-bit machine, the addition takes place in 32 bits and preserves high-order bits that are
lost on a 16-bit machine. Casting to a narrower type with the same essential type category is
acceptable as the explicit truncation of the results always leads to the same loss of information.

For more information on essential types, see MISRA C:2012 Rule 10.1.

Polyspace Implementation

The rule checker raises a defect only if the result of a composite expression is cast to a different or
wider essential type. Unary operators are not considered as composite operators.

For instance, in this example, a violation is shown in the first assignment to i but not the second. In
the first assignment, a composite expression i+1 is directly cast from a signed to an unsigned type. In
the second assignment, the composite expression is first cast to the same type and then the result is
cast to a different type.

typedef int int32_T;
typedef unsigned char uint8_T;
...
...
int32_T i;

21 MISRA C 2012

21-148

i = (uint8_T)(i+1); /* Noncompliant */
i = (uint8_T)((int32_T)(i+1)); /* Compliant */

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Casting to Different or Wider Essential Type

extern unsigned short ru16a, u16a, u16b;
extern unsigned int u32a, ru32a;
extern signed int s32a, s32b;

void foo(void)
{
 ru16a = (unsigned short) (u32a + u32a);/* Compliant */
 ru16a += (unsigned short) s32a; /* Compliant - s32a is not composite */
 ru32a = (unsigned int) (u16a + u16b); /* Noncompliant - wider essential type */
}

In this example, rule 10.8 is violated in the following cases:

• s32a and s32b are essentially signed variables. However, the result (s32a + s32b) is cast
to an essentially unsigned type.

• u16a and u16b are essentially unsigned short variables. However, the result (s32a +
s32b) is cast to a wider essential type, unsigned int.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 10.5 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 10.8

21-149

MISRA C:2012 Rule 11.1
Conversions shall not be performed between a pointer to a function and any other type

Description
Rule Definition

Conversions shall not be performed between a pointer to a function and any other type.

Rationale

The rule forbids the following two conversions:

• Conversion from a function pointer to any other type. This conversion causes undefined behavior.
• Conversion from a function pointer to another function pointer, if the function pointers have
different argument and return types.

The conversion is forbidden because calling a function through a pointer with incompatible type
results in undefined behavior.

Polyspace Implementation

Polyspace considers both explicit and implicit casts when checking this rule. However, casts from
NULL or (void*)0 do not violate this rule.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Cast between two function pointers

typedef void (*fp16) (short n);
typedef void (*fp32) (int n);

#include <stdlib.h> /* To obtain macro NULL */

void func(void) { /* Exception 1 - Can convert a null pointer
 * constant into a pointer to a function */
 fp16 fp1 = NULL; /* Compliant - exception */
 fp16 fp2 = (fp16) fp1; /* Compliant */
 fp32 fp3 = (fp32) fp1; /* Non-compliant */
 if (fp2 != NULL) {} /* Compliant - exception */
 fp16 fp4 = (fp16) 0x8000; /* Non-compliant - integer to
 * function pointer */}

In this example, the rule is violated when:

• The pointer fp1 of type fp16 is cast to type fp32. The function pointer types fp16 and fp32
have different argument types.

21 MISRA C 2012

21-150

• An integer is cast to type fp16.

The rule is not violated when function pointers fp1 and fp2 are cast to NULL.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 11.1

21-151

MISRA C:2012 Rule 11.2
Conversions shall not be performed between a pointer to an incomplete type and any other type

Description
Rule Definition

Conversions shall not be performed between a pointer to an incomplete type and any other type.

Rationale

An incomplete type is a type that does not contain sufficient information to determine its size. For
example, the statement struct s; describes an incomplete type because the fields of s are not
defined. The size of a variable of type s cannot be determined.

Conversions to or from a pointer to an incomplete type result in undefined behavior. Typically, a
pointer to an incomplete type is used to hide the full representation of an object. This encapsulation
is broken if another pointer is implicitly or explicitly cast to such a pointer.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Casts from incomplete type

#include <stdio.h>
struct s *sp;
struct t *tp;
short *ip;
struct ct *ctp1;
struct ct *ctp2;

void foo(void) {

 ip = (short *) sp; /* Non-compliant */
 sp = (struct s *) 1234; /* Non-compliant */
 tp = (struct t *) sp; /* Non-compliant */
 ctp1 = (struct ct *) ctp2; /* Compliant */

 /* You can convert a null pointer constant to
 * a pointer to an incomplete type */
 sp = NULL; /* Compliant - exception */

 /* A pointer to an incomplete type may be converted into void */
 struct s *f(void);
 (void) f(); /* Compliant - exception */

}

21 MISRA C 2012

21-152

In this example, types s, t and ct are incomplete. The rule is violated when:

• The variable sp with an incomplete type is cast to a basic type.
• The variable sp with an incomplete type is cast to a different incomplete type t.

The rule is not violated when:

• The variable ctp2 with an incomplete type is cast to the same incomplete type.
• The NULL pointer is cast to the variable sp with an incomplete type.
• The return value of f with incomplete type is cast to void.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 11.5 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 11.2

21-153

MISRA C:2012 Rule 11.3
A cast shall not be performed between a pointer to object type and a pointer to a different object type

Description
Rule Definition

A cast shall not be performed between a pointer to object type and a pointer to a different object
type.

Rationale

If a pointer to an object is cast into a pointer to a different object, the resulting pointer can be
incorrectly aligned. The incorrect alignment causes undefined behavior.

Even if the conversion produces a pointer that is correctly aligned, the behavior can be undefined if
the pointer is used to access an object.

Exception: You can convert a pointer to object type into a pointer to one of the following types:

• char
• signed char
• unsigned char

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Noncompliant: Cast to Pointer Pointing to Object of Wider Type

signed char *p1;
unsigned int *p2;

void foo(void){
 p2 = (unsigned int *) p1; /* Non-compliant */
}

In this example, p1 can point to a signed char object. However, p1 is cast to a pointer that points
to an object of wider type, unsigned int.

Noncompliant: Cast to Pointer Pointing to Object of Narrower Type

extern unsigned int read_value (void);
extern void display (unsigned int n);

void foo (void){
 unsigned int u = read_value ();
 unsigned short *hi_p = (unsigned short *) &u; /* Non-compliant */
 *hi_p = 0;

21 MISRA C 2012

21-154

 display (u);
}

In this example, u is an unsigned int variable. &u is cast to a pointer that points to an object of
narrower type, unsigned short.

On a big-endian machine, the statement *hi_p = 0 attempts to clear the high bits of the memory
location that &u points to. But, from the result of display(u), you might find that the high bits have
not been cleared.

Noncompliant: Implicit Casting

typedef struct {
 int iNum1;
}A;

typedef struct {
 int iNum2;
}B;

void bar(A*);

void foo() {
 B wrappedNum2;
 bar(&wrappedNum2); /* Noncompliant*/

}

In this example, the B type struct object wrappedNum2 is implicitly cast into an A type struct
object in the call to bar. Polyspace flags the implicit casting.

Compliant: Cast Adding a Type Qualifier

const short *p;
const volatile short *q;
void foo (void){
 q = (const volatile short *) p; /* Compliant */
}

In this example, both p and q can point to short objects. The cast between them adds a volatile
qualifier only and is therefore compliant.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 11.4 | MISRA C:2012 Rule 11.5 | MISRA C:2012 Rule 11.8 | Check
MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 11.3

21-155

Introduced in R2014b

21 MISRA C 2012

21-156

MISRA C:2012 Rule 11.4
A conversion should not be performed between a pointer to object and an integer type

Description
Rule Definition

A conversion should not be performed between a pointer to object and an integer type.

Rationale

Conversion between integers and pointers can cause errors or undefined behavior.

• If an integer is cast to a pointer, the resulting pointer can be incorrectly aligned. The incorrect
alignment causes undefined behavior.

• If a pointer is cast to an integer, the resulting value can be outside the allowed range for the
integer type.

Polyspace Implementation

Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Casts between pointer and integer

#include <stdbool.h>

typedef unsigned char uint8_t;
typedef char char_t;
typedef unsigned short uint16_t;
typedef signed int int32_t;

typedef _Bool bool_t;
uint8_t *PORTA = (uint8_t *) 0x0002; /* Non-compliant */

void foo(void) {

 char_t c = 1;
 char_t *pc = &c; /* Compliant */

 uint16_t ui16 = 7U;
 uint16_t *pui16 = &ui16; /* Compliant */
 pui16 = (uint16_t *) ui16; /* Non-compliant */

 MISRA C:2012 Rule 11.4

21-157

 uint16_t *p;
 int32_t addr = (int32_t) p; /* Non-compliant */
 bool_t b = (bool_t) p; /* Non-compliant */
 enum etag { A, B } e = (enum etag) p; /* Non-compliant */
}

In this example, the rule is violated when:

• The integer 0x0002 is cast to a pointer.

If the integer defines an absolute address, it is more common to assign the address to a pointer in
a header file. To avoid the assignment being flagged, you can then exclude headers files from
coding rules checking. For more information, see Do not generate results for (-do-not-
generate-results-for).

• The pointer p is cast to integer types such as int32_t, bool_t or enum etag.

The rule is not violated when the address &ui16 is assigned to a pointer.

Check Information
Group: Pointer Type Conversions
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 11.3 | MISRA C:2012 Rule 11.7 | MISRA C:2012 Rule 11.9 | Check
MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-158

MISRA C:2012 Rule 11.5
A conversion should not be performed from pointer to void into pointer to object

Description
Rule Definition

A conversion should not be performed from pointer to void into pointer to object.

Rationale

If a pointer to void is cast into a pointer to an object, the resulting pointer can be incorrectly
aligned. The incorrect alignment causes undefined behavior. However, such a cast can sometimes be
necessary, for example, when using memory allocation functions.

Polyspace Implementation

Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Cast from Pointer to void

void foo(void) {

 unsigned int u32a = 0;
 unsigned int *p32 = &u32a;
 void *p;
 unsigned int *p16;

 p = p32; /* Compliant - pointer to uint32_t
 * into pointer to void */
 p16 = p; /* Non-compliant */

 p = (void *) p16; /* Compliant */
 p32 = (unsigned int *) p; /* Non-compliant */
}

In this example, the rule is violated when the pointer p of type void* is cast to pointers to other
types.

The rule is not violated when p16 and p32, which are pointers to non-void types, are cast to void*.

Check Information
Group: Pointer Type Conversions
Category: Advisory

 MISRA C:2012 Rule 11.5

21-159

AGC Category: Advisory

See Also
MISRA C:2012 Rule 11.2 | MISRA C:2012 Rule 11.3 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-160

MISRA C:2012 Rule 11.6
A cast shall not be performed between pointer to void and an arithmetic type

Description
Rule Definition

A cast shall not be performed between pointer to void and an arithmetic type.

Rationale

Conversion between integer types and pointers to void can cause errors or undefined behavior.

• If an integer type is cast to a pointer, the resulting pointer can be incorrectly aligned. The
incorrect alignment causes undefined behavior.

• If a pointer is cast to an arithmetic type, the resulting value can be outside the allowed range for
the type.

Conversion between non-integer arithmetic types and pointers to void is undefined.

Polyspace Implementation

Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Casts Between Pointer to void and Arithmetic Types

void foo(void) {

 void *p;
 unsigned int u;
 unsigned short r;

 p = (void *) 0x1234u; /* Non-compliant - undefined */
 u = (unsigned int) p; /* Non-compliant - undefined */

 p = (void *) 0; /* Compliant - Exception */

}

In this example, p is a pointer to void. The rule is violated when:

• An integer value is cast to p.
• p is cast to an unsigned int type.

The rule is not violated if an integer constant with value 0 is cast to a pointer to void.

 MISRA C:2012 Rule 11.6

21-161

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-162

MISRA C:2012 Rule 11.7
A cast shall not be performed between pointer to object and a non-integer arithmetic type

Description
Rule Definition

A cast shall not be performed between pointer to object and a non-integer arithmetic type.

Rationale

This rule covers types that are essentially Boolean, character, enum or floating.

• If an essentially Boolean, character or enum variable is cast to a pointer, the resulting pointer can
be incorrectly aligned. The incorrect alignment causes undefined behavior. If a pointer is cast to
one of those types, the resulting value can be outside the allowed range for the type.

• Casts to or from a pointer to a floating type results in undefined behavior.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Casts from Pointer to Non-Integer Arithmetic Types

int foo(void) {

 short *p;
 float f;
 long *l;

 f = (float) p; /* Non-compliant */
 p = (short *) f; /* Non-compliant */

 l = (long *) p; /* Compliant */
}

In this example, the rule is violated when:

• The pointer p is cast to float.
• A float variable is cast to a pointer to short.

Casting between a pointer and a non-integerer variable might cause a compilation failure. Polyspace
flags such casts.

The rule is not violated when the pointer p is cast to long*.

 MISRA C:2012 Rule 11.7

21-163

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 11.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-164

MISRA C:2012 Rule 11.8
A cast shall not remove any const or volatile qualification from the type pointed to by a pointer

Description
Rule Definition

A cast shall not remove any const or volatile qualification from the type pointed to by a pointer.

Rationale

This rule forbids:

• Casts from a pointer to a const object to a pointer that does not point to a const object.
• Casts from a pointer to a volatile object to a pointer that does not point to a volatile object.

Such casts violate type qualification. For example, the const qualifier indicates the read-only status
of an object. If a cast removes the qualifier, the object is no longer read-only.

Polyspace Implementation

Polyspace flags both implicit and explicit conversions that violate this rule.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Casts That Remove Qualifiers
void foo(void) {

 /* Cast on simple type */
 unsigned short x;
 unsigned short * const cpi = &x; /* const pointer */
 unsigned short * const *pcpi; /* pointer to const pointer */
 unsigned short **ppi;
 const unsigned short *pci; /* pointer to const */
 volatile unsigned short *pvi; /* pointer to volatile */
 unsigned short *pi;

 pi = cpi; /* Compliant - no cast required */
 pi = (unsigned short *) pci; /* Non-compliant */
 pi = (unsigned short *) pvi; /* Non-compliant */
 ppi = (unsigned short **)pcpi; /* Non-compliant */
}

In this example:

• The variables pci and pcpi have the const qualifier in their type. The rule is violated when the
variables are cast to types that do not have the const qualifier.

 MISRA C:2012 Rule 11.8

21-165

• The variable pvi has a volatile qualifier in its type. The rule is violated when the variable is
cast to a type that does not have the volatile qualifier.

Even though cpi has a const qualifier in its type, the rule is not violated in the statement p=cpi;.
The assignment does not cause a type conversion because both p and cpi have type unsigned
short.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 11.3 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-166

MISRA C:2012 Rule 11.9
The macro NULL shall be the only permitted form of integer null pointer constant

Description
Rule Definition

The macro NULL shall be the only permitted form of integer null pointer constant.

Rationale

The following expressions allow the use of a null pointer constant:

• Assignment to a pointer
• The == or != operation, where one operand is a pointer
• The ?: operation, where one of the operands on either side of : is a pointer

Using NULL rather than 0 makes it clear that a null pointer constant was intended.

Polyspace Implementation

The checker flags the assignment of the constant zero to pointers, equalities (or inequalities)
comparing pointers with the constant zero, and other similar expressions listed in the MISRA C: 2012
documentation.

Following the updates in MISRA C: 2012 Technical Corrigendum 1, the checker allows the use of {0}
to initialize aggregates containing only pointers, for instance, arrays of pointers or structures (or
unions) with only a pointer field. If an aggregate contains multiple fields, the initialization is still
flagged. In these cases, you should use the macro NULL for pointer fields and 0 for integer fields to
distinguish between them.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Using 0 in Pointer Assignments and Comparisons

void main(void) {

 int *p1 = 0; /* Non-compliant */
 int *p2 = (void *) 0; /* Compliant */

#define MY_NULL_1 0 /* Non-compliant */
#define MY_NULL_2 (void *) 0

 if (p1 == MY_NULL_1)
 { }
 if (p2 == MY_NULL_2) /* Compliant */

 MISRA C:2012 Rule 11.9

21-167

 { }

}

In this example, the rule is violated when the constant 0 is used instead of (void*) 0 for pointer
assignments and comparisons.

Initialization of Aggregates with Pointer Members Using {0}

void init () {
 int *myArray[5] = {0}; //Compliant

 struct structPtr {
 int *ptr;
 } structPtr = {0}; //Compliant

 struct StructIntPtr {
 int data;
 int *ptr;
 } StructIntPtr = {0,0}; //Non-compliant
}

Following the updates in MISRA C: 2012 Technical Corrigendum 1, the checker allows the use of {0}
to initialize aggregates containing only pointers such as:

• Arrays of pointers, for instance, myArray
• Structures with one pointer field only, for instance, structPtr

If an aggregate contains multiple fields, such as StructIntPtr, the initialization is still flagged. In
these cases, you should use the macro NULL for pointer fields and 0 for integer fields to distinguish
between them.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Readability

See Also
MISRA C:2012 Rule 11.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-168

MISRA C:2012 Rule 12.1
The precedence of operators within expressions should be made explicit

Description
Rule Definition

The precedence of operators within expressions should be made explicit.

Rationale

The C language has a large number of operators and their precedence is not intuitive. Inexperienced
programmers can easily make mistakes. Remove any ambiguity by using parentheses to explicitly
define operator precedence.

The following table list the MISRA C definition of operator precedence for this rule.

Description Operator and Operand Preceden
ce

Primary identifier, constant, string literal, (expression) 16
Postfix [] () (function call) . -> ++(post-increment) --(post-

decrement) () {}(C99: compound literals)
15

Unary ++(pre-increment) --(pre-decrement) & * + - ~ ! sizeof
_Alignof defined (preprocessor)

14

Cast () 13
Multiplicative * / % 12
Additive + - 11
Bitwise shift << >> 10
Relational <> <= >= 9
Equality == != 8
Bitwise AND & 7
Bitwise XOR ^ 6
Bitwise OR | 5
Logical AND && 4
Logical OR || 3
Conditional ?: 2
Assignment = *= /= += -= <<= >>= &= ^= |= 1
Comma , 0

Additional Message in Report

Operand of logical %s is not a primary expression. The precedence of operators within expressions
should be made explicit.

 MISRA C:2012 Rule 12.1

21-169

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Ambiguous Precedence in Multi-Operation Expressions
int a, b, c, d, x;

void foo(void) {
 x = sizeof a + b; /* Non-compliant - MISRA-12.1 */

 x = a == b ? a : a - b; /* Non-compliant - MISRA-12.1 */

 x = a << b + c ; /* Non-compliant - MISRA-12.1 */

 if (a || b && c) { } /* Non-compliant - MISRA-12.1 */

 if ((a>x) && (b>x) || (c>x)) { } /* Non-compliant - MISRA-12.1 */
}

This example shows various violations of MISRA rule 12.1. In each violation, if you do not know the
order of operations, the code could execute unexpectedly.
Correction — Clarify With Parentheses

To comply with this MISRA rule, add parentheses around individual operations in the expressions.
One possible solution is shown here.

int a, b, c, d, x;

void foo(void) {
 x = sizeof(a) + b;

 x = (a == b) ? a : (a - b);

 x = a << (b + c);

 if ((a || b) && c) { }

 if (((a>x) && (b>x)) || (c>x)) { }
}

Ambiguous Precedence In Preprocessing Expressions
if defined X && X + Y > Z /* Non-compliant - MISRA-12.1 */
endif

In this example, a violation of MISRA rule 12.1 is shown in preprocessing code. In this violation, if
you do not know the correct order of operations, the results can be unexpected and cause problems.
Correction — Clarify with Parentheses

To comply with this MISRA rule, add parentheses around individual operations in the expressions.
One possible solution is shown here.

21 MISRA C 2012

21-170

if defined (X) && ((X + Y) > Z)
endif

Compliant Expressions Without Parentheses

int a, b, c, x,i = 0;
struct {int a; } s, *ps, *pp[2];

void foo(void) {
 ps = &s;
 pp[i]-> a; /* Compliant - no need to write (pp[i])->a */
 ps++; / Compliant - no need to write *(p++) */

 x = f (a + b, c); /* Compliant - no need to write f ((a+b),c) */

 x = a, b; /* Compliant - parsed as (x = a), b */

 if (a && b && c){ /* Compliant - all operators have
 * the same precedence */
 }
}

In this example, the expressions shown have multiple operations. However, these expressions are
compliant because operator precedence is already clear.

Check Information
Group: Expressions
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 12.2 | MISRA C:2012 Rule 12.3 | MISRA C:2012 Rule 12.4 | Check
MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 12.1

21-171

MISRA C:2012 Rule 12.2
The right hand operand of a shift operator shall lie in the range zero to one less than the width in bits
of the essential type of the left hand operand

Description
Rule Definition

The right hand operand of a shift operator shall lie in the range zero to one less than the width in bits
of the essential type of the left hand operand.

Rationale

Consider this statement:

var = abc << num;

If abc is a 16-bit integer, then num must be in the range 0–15, (nonnegative and less than 16). If num
is negative or greater than 16, then the shift behavior is undefined.

Polyspace Implementation

Polyspace raises a violation when the right operand of a shift operator exceeds the range defined in
this rule. When the right operand is a variable, the violation is raised unless all possible value of the
operand remains within the range defined in this rule.

When a preprocessor directive performs a shift operation on a number literal, Polyspace assumes that
the number is 64 bits wide. The valid shift range for such a number is between 0 and 63. For
instance:

#if (1 << 64) //Noncompliant
//...
#endif

When bitfields are within a complex expression, Polyspace extends this check onto the bitfield field
width or the width of the base type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Shift Operations That Have Unacceptable Right Operand

void foo(void) {
 int i;
 unsigned int BitPack = 0U;

 for (i = 0; i < 32; i++) {
 BitPack |= (1U << ((unsigned int)i)); //Noncompliant

21 MISRA C 2012

21-172

 }
}

In this example, the left operand 1U of the shift operator has an essential type unsigned char.
Acceptable values for the right operand lies in the range from zero to seven. Because the right
operand i ranges from zero to 31, Polyspace flags the shift operation.

Check Information
Group: Expressions
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 12.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 12.2

21-173

MISRA C:2012 Rule 12.3
The comma operator should not be used

Description
Rule Definition

The comma operator should not be used.

Rationale

The comma operator can be detrimental to readability. You can often write the same code in another
form.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Comma Usage in C Code

typedef signed int abc, xyz, jkl;
static void func1 (abc, xyz, jkl); /* Compliant - case 1 */
int foo(void)
{
 volatile int rd = 1; /* Compliant - case 2*/
 int var=0, foo=0, k=0, n=2, p, t[10]; /* Compliant - case 3*/
 int abc = 0, xyz = abc + 1; /* Compliant - case 4*/
 int jkl = (abc + xyz, abc + xyz); /* Noncompliant - case 1*/
 var = 1, foo += var, n = 3; /* Noncompliant - case 2*/
 var = (n = 1, foo = 2); /* Noncompliant - case 3*/
 for (int *ptr = &t[0],var = 0 ;
 var < n; ++var, ++ptr){} /* Noncompliant - case 4*/
 if ((abc,xyz)<0) { return 1; } /* Noncompliant - case 5*/
}

In this example, the code shows various uses of commas in C code.

Noncompliant Cases

Case Reason for noncompliance
1 When reading the code, it is not immediately obvious what jkl is

initialized to. For example, you could infer that jkl has a value abc+xyz,
(abc+xyz)*(abc+xyz), f((abc+xyz),(abc+xyz)), and so on.

2 When reading the code, it is not immediately obvious whether foo has a
value 0 or 1 after the statement.

3 When reading the code, it is not immediately obvious what value is
assigned to var.

21 MISRA C 2012

21-174

Case Reason for noncompliance
4 When reading the code, it is not immediately obvious which values control

the for loop.
5 When reading the code, it is not immediately obvious whether the if

statement depends on abc, xyz, or both.

Compliant Cases

Case Reason for compliance
1 Using commas to call functions with variables is allowed.
2 Comma operator is not used.
3 & 4 When using the comma for initialization, the variables and their values

are immediately obvious.

Check Information
Group: Expressions
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 12.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 12.3

21-175

MISRA C:2012 Rule 12.4
Evaluation of constant expressions should not lead to unsigned integer wrap-around

Description
Rule Definition

Evaluation of constant expressions should not lead to unsigned integer wrap-around.

Rationale

Unsigned integer expressions do not strictly overflow, but instead wraparound. Although there may
be good reasons to use modulo arithmetic at run time, intentional use at compile time is less likely.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 12.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

21 MISRA C 2012

21-176

MISRA C:2012 Rule 12.5
The sizeof operator shall not have an operand which is a function parameter declared as “array of
type”

Description
Rule Definition

The sizeof operator shall not have an operand which is a function parameter declared as “array of
type”.

This rule comes from MISRA C: 2012 Amendment 1.

Rationale

The sizeof operator acting on an array normally returns the array size in bytes. For instance, in the
following code, sizeof(arr) returns the size of arr in bytes.

int32_t arr[4];
size_t numberOfElements = sizeof (arr) / sizeof(arr[0]);

However, when the array is a function parameter, it degenerates to a pointer. The sizeof operator
acting on the array returns the corresponding pointer size and not the array size.

The use of sizeof operator on an array that is a function parameter typically indicates an
unintended programming error.

Additional Message in Report

The sizeof operator shall not have an operand which is a function parameter declared as “array of
type”.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Incorrect Use of sizeof Operator

#include <stdint.h>
int32_t glbA[] = { 1, 2, 3, 4, 5 };
void f (int32_t A[4])
{
 uint32_t numElements = sizeof(A) / sizeof(int32_t); /* Non-compliant */
 uint32_t numElements_glbA = sizeof(glbA) / sizeof(glbA[0]); /* Compliant */
}

In this example, the variable numElements always has the same value of 1, irrespective of the
number of members that appear to be in the array (4 in this case), because A has type int32_t *
and not int32_t[4].

 MISRA C:2012 Rule 12.5

21-177

The variable numElements_glbA has the expected vale of 5 because the sizeof operator acts on
the global array glbA.

Check Information
Group: Expressions
Category: Mandatory
AGC Category: Mandatory

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

21 MISRA C 2012

21-178

MISRA C:2012 Rule 13.1
Initializer lists shall not contain persistent side effects

Description
Rule Definition

Initializer lists shall not contain persistent side effects.

Rationale

C99 permits initializer lists with expressions that can be evaluated only at run-time. However, the
order in which elements of the list are evaluated is not defined. If one element of the list modifies the
value of a variable which is used in another element, the ambiguity in order of evaluation causes
undefined values. Therefore, this rule requires that expressions occurring in an initializer list cannot
modify the variables used in them.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Initializers with Persistent Side Effect

volatile int v;
int x;
int y;

void f(void) {
 int arr[2] = {x+y,x-y}; /* Compliant */
 int arr2[2] = {v,v}; /* Non-compliant */
 int arr3[2] = {x++,x+y}; /* Non-compliant */
}

In this example, the rule is not violated in the first initialization because the initializer does not
modify either x or y. The rule is violated in the other initializations.

• In the second initialization, because v is volatile, the initializer can modify v. The initialization of
arr2 is different depending on which array element is initialized first.

• In the third initialization, the initializer modifies the variable x. The initialization of arr3 is
different depending on whether x++ is evaluated earlier or later.

Check Information
Group: Side Effects
Category: Required
AGC Category: Required

 MISRA C:2012 Rule 13.1

21-179

See Also
MISRA C:2012 Rule 13.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-180

MISRA C:2012 Rule 13.2
The value of an expression and its persistent side effects shall be the same under all permitted
evaluation orders

Description
Rule Definition

The value of an expression and its persistent side effects shall be the same under all permitted
evaluation orders.

Rationale

If an expression results in different values depending on the order of evaluation, its value becomes
implementation-defined.

Polyspace Implementation

Polyspace raises a violation if an expression satisfies any of these conditions:

• The same variable is modified more than once in the expression or it is both read and written.
• The expression allows more than one order of evaluation.
• The expression contains a single volatile object that occurs multiple times.
• The expression contains more than one volatile object.

Because volatile objects can change their value at anytime, an expression containing multiple
volatile variables or multiple instances of the same volatile variable might have different
results depending on the order of evaluation.

Additional Message in Report

The value of 'XX' depends on the order of evaluation. The value of volatile 'XX' depends on the order
of evaluation because of multiple accesses.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Variable Modified More Than Once in Expression

int a[10], b[10];
#define COPY_ELEMENT(index) (a[(index)]=b[(index)])

void main () {
 int i=0, k=0;

 COPY_ELEMENT (k); /* Compliant */

 MISRA C:2012 Rule 13.2

21-181

 COPY_ELEMENT (i++); /* Noncompliant */
}

In this example, the rule is violated by the statement COPY_ELEMENT(i++) because i++ occurs twice
and the order of evaluation of the two expressions is unspecified.

Variable Modified and Used in Multiple Function Arguments

void f (unsigned int param1, unsigned int param2) {}

void main () {
 unsigned int i=0;
 f (i++, i); /* Non-compliant */
}

In this example, the rule is violated because it is unspecified whether the operation i++ occurs before
or after the second argument is passed to f. The call f(i++,i) can translate to either f(0,0) or
f(0,1).

Multiple volatile Variables in Expression

struct {
 volatile float x;
 volatile float y;
} volData;

float xCopy;
float yCopy;
float res, res2;

void function4(void) {
 res = volData.x + volData.y; //Noncompliant
 res = volData.x * volData.x; //Noncompliant
 xCopy = volData.x;
 yCopy = volData.y;
 res = xCopy + yCopy; //Compliant
}

In this example, the expression volData.x + volData.y is noncompliant because the expression
involves multiple volatile objects. The expression consists of three operations: accessing the value of
volData.x, accessing the value of volData.y, and the addition. The values of the volatile fields x
and y in the volData structure might change at any time. The value of res might vary depending on
which variable is read first. Because the C standard does not specify the order in which the variables
are read, the value of res might depend on the hardware and software that you use. Polyspace flags
one of the volatile objects in the expression. Similarly, Polyspace flags one of the volatile
objects in the expression volData.x * volData.x.

To avoid the violation, assign the volatile variables to nonvolatile temporary variables and use these
temporary variables in the expression.

Check Information
Group: Side Effects
Category: Required
AGC Category: Required

21 MISRA C 2012

21-182

See Also
MISRA C:2012 Dir 4.9 | MISRA C:2012 Rule 13.1 | MISRA C:2012 Rule 13.3 | MISRA
C:2012 Rule 13.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.2

21-183

MISRA C:2012 Rule 13.3
A full expression containing an increment (++) or decrement (--) operator should have no other
potential side effects other than that caused by the increment or decrement operator

Description
Rule Definition

A full expression containing an increment (++) or decrement (--) operator should have no other
potential side effects other than that caused by the increment or decrement operator.

Rationale

The rule is violated if the following happens in the same line of code:

• The increment or decrement operator acts on a variable.
• Another read or write operation is performed on the variable.

For example, the line y=x++ violates this rule. The ++ and = operator both act on x.

Although the operator precedence rules determine the order of evaluation, placing the ++ and
another operator in the same line can reduce the readability of the code.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Increment Operator Used in Expression with Other Side Effects

int input(void);
int choice(void);
int operation(int, int);

int func() {
 int x = input(), y = input(), res;
 int ch = choice();
 if (choice == -1)
 return(x++); /* Non-compliant */
 if (choice == 0) {
 res = x++ + y++; /* Non-compliant */
 return(res);
 }
 else if (choice == 1) {
 x++; /* Compliant */
 y++; /* Compliant */
 return (x+y);
 }
 else {
 res = operation(x++,y); /* Non-compliant */

21 MISRA C 2012

21-184

 return(res);
 }
}

In this example, the rule is violated when the expressions containing the ++ operator have side effects
other than that caused by the operator. For example, in the expression return(x++), the other side-
effect is the return operation.

Check Information
Group: Side Effects
Category: Advisory
AGC Category: Readability

See Also
MISRA C:2012 Rule 13.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.3

21-185

MISRA C:2012 Rule 13.4
The result of an assignment operator should not be used

Description
Rule Definition

The result of an assignment operator should not be used.

Rationale

The rule is violated if the following happens in the same line of code:

• The assignment operator acts on a variable.
• Another read or operation is performed on the result of the assignment.

For example, the line a[x]=a[x=y]; violates this rule. The [] operator acts on the result of the
assignment x=y.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Result of Assignment Used

int x, y, b, c, d;
int a[10];
unsigned int bool_var, false=0, true=1;

int foo(void) {

 x = y; /* Compliant - x is not used */

 a[x] = a[x = y]; /* Non-compliant - Value of x=y is used */

 if (bool_var = false)/* Non-compliant - bool_var=false is used */
{}

 if (bool_var == false) {} /* Compliant */

 if ((0u == 0u) || (bool_var = true))/* Non-compliant */
 /*- even though (bool_var=true) is not evaluated */
 {}

 if ((x = f ()) != 0)/* Non-compliant - value of x=f() is used */
 {}
 a[b += c] = a[b];/* Non-compliant - value of b += c is used */

21 MISRA C 2012

21-186

 b = c = d = 0; /* Non-compliant - value of d=0 and c=d=0 are used */

}

In this example, the rule is violated when the result of an assignment is used.

Check Information
Group: Side Effects
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 13.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.4

21-187

MISRA C:2012 Rule 13.5
The right hand operand of a logical && or || operator shall not contain persistent side effects

Description
Rule Definition

The right hand operand of a logical && or || operator shall not contain persistent side effects.

Rationale

The right operand of an || operator is not evaluated if the left operand is true. The right operand of
an && operator is not evaluated if the left operand is false. In these cases, if the right operand
modifies the value of a variable, the modification does not take place. Following the operation, if you
expect a modified value of the variable, the modification might not always happen.

Polyspace Implementation

• For this rule, Polyspace considers that a function call does not have a persistent side effect if the
function body is not present in the same file as the function call.

If a call to a pure function is flagged, before ignoring this rule violation, make sure that the
function has no side effects. For instance, floating-point functions such as abs() seem to only
return a value and have no other side effect. However, these functions make use of the FPU
Register Stack and can have side-effects in certain architectures, for instance, certain Intel®
architectures.

• If the right operand is a volatile variable, Polyspace does not flag this as a rule violation.

Additional Message in Report

The right hand operand of a && operator shall not contain side effects. The right hand operand of a ||
operator shall not contain side effects.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Right Operand of Logical Operator with Persistent Side Effects

int check (int arg) {
 static int count;
 if(arg > 0) {
 count++; /* Persistent side effect */
 return 1;
 }
 else
 return 0;
}

21 MISRA C 2012

21-188

int getSwitch(void);
int getVal(void);

void main(void) {
 int val = getVal();
 int mySwitch = getSwitch();
 int checkResult;

 if(mySwitch && check(val)) { /* Non-compliant */
 }

 checkResult = check(val);
 if(checkResult && mySwitch) { /* Compliant */
 }

 if(check(val) && mySwitch) { /* Compliant */
 }
}

In this example, the rule is violated when the right operand of the && operation contains a function
call. The function call has a persistent side effect because the static variable count is modified in the
function body. Depending on mySwitch, this modification might or might not happen.

The rule is not violated when the left operand contains a function call. Alternatively, to avoid the rule
violation, assign the result of the function call to a variable. Use this variable in the logical operation
in place of the function call.

In this example, the function call has the side effect of modifying a static variable. Polyspace flags
all function calls when used on the right-hand side of a logical && or || operator, even when the
function does not have a side effect. Manually inspect your function body to see if it has side effects.
If the function does not have side effects, add a comment and justification in your Polyspace result
explaining why you retained your code.

Check Information
Group: Side Effects
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.5

21-189

MISRA C:2012 Rule 13.6
The operand of the sizeof operator shall not contain any expression which has potential side effects

Description
Rule Definition

The operand of the sizeof operator shall not contain any expression which has potential side effects.

Rationale

The argument of a sizeof operator is usually not evaluated at run time. If the argument is an
expression, you might wrongly expect that the expression is evaluated.

Polyspace Implementation

The rule is not violated if the argument is a volatile variable.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Expressions in sizeof Operator

#include <stddef.h>
int x;
int y[40];
struct S {
 int a;
 int b;
};
struct S myStruct;

void main() {
 size_t sizeOfType;
 sizeOfType = sizeof(x); /* Compliant */
 sizeOfType = sizeof(y); /* Compliant */
 sizeOfType = sizeof(myStruct); /* Compliant */
 sizeOfType = sizeof(x++); /* Non-compliant */
}

In this example, the rule is violated when the expression x++ is used as argument of sizeof
operator.

Check Information
Group: Side Effects
Category: Mandatory
AGC Category: Mandatory

21 MISRA C 2012

21-190

See Also
MISRA C:2012 Rule 18.8 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.6

21-191

MISRA C:2012 Rule 14.1
A loop counter shall not have essentially floating type

Description
Rule Definition

A loop counter shall not have essentially floating type.

Rationale

When using a floating-point loop counter, accumulation of rounding errors can result in a mismatch
between the expected and actual number of iterations. This rounding error can happen when a loop
step that is not a power of the floating point radix is rounded to a value that can be represented by a
float.

Even if a loop with a floating-point loop counter appears to behave correctly on one implementation,
it can give a different number of iteration on another implementation.

Polyspace Implementation

If the for index is a variable symbol, Polyspace checks that it is not a float.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
for Loop Counters

int main(void){
 unsigned int counter = 0u;
 int result = 0;
 float foo;

 // Float loop counters
 for(float foo = 0.0f; foo < 1.0f; foo +=0.001f){/* Non-compliant*/
 ++counter;
 }

 float fff = 0.0f;
 for(fff = 0.0f; fff <12.0f; fff += 1.0f){/* Non-compliant*/
 result++;
 }

 // Integer loop count
 for(unsigned int count = 0u; count < 1000u; ++count){/* Compliant */
 foo = (float) count * 0.001f;
 }
}

21 MISRA C 2012

21-192

In this example, the three for loops show three different loop counters. The first and second for
loops use float variables as loop counters, and therefore are not compliant. The third loop uses the
integer count as the loop counter. Even though count is used as a float inside the loop, the variable
remains an integer when acting as the loop index. Therefore, this for loop is compliant.

while Loop Counters

int main(void){
 unsigned int u32a;
 float foo;

 foo = 0.0f;
 while (foo < 1.0f){/* Non-compliant - foo used as a loop counter */
 foo += 0.001f;
 }

 foo = read_float32();
 do{
 u32a = read_u32();
 }while(((float)u32a - foo) > 10.0f);
 /* Compliant - foo doesn't change in the loop */
 /* so cannot be a counter */
 return 1;
}

This example shows two while loops both of which use foo in the while-loop conditions.

The first while loop uses foo in the condition and inside the loop. Because foo changes, floating-
point rounding errors can cause unexpected behavior.

The second while loop does not use foo inside the loop, but does use foo inside the while-
condition. So foo is not the loop counter. The integer u32a is the loop counter because it changes
inside the loop and is part of the while condition. Because u32a is an integer, the rounding error
issue is not a concern, making this while loop compliant.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 14.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 14.1

21-193

MISRA C:2012 Rule 14.2
A for loop shall be well-formed

Description
Rule Definition

A for loop shall be well-formed.

Rationale

The for loop provides a flexible looping facility. You can perform other operations besides the loop
counter initialization, termination, and increment in the control statement, and increment the loop
counter anywhere inside the loop body. However, using a restricted loop format makes your code
easier to review and to analyze.

Polyspace Implementation

A for loop consists of a control statement with three clauses and a loop body. The checker raises a
violation if:

• The first clause does not contain an initialization (except for when the clause is empty). The
checker considers the last assigned variable of the first for-loop clause as the loop counter. If the
first clause is empty, the checker considers the variable incremented or decremented in the third
clause as the loop counter.

• The second clause does not contain a comparison operation involving the loop counter.
• The third clause contains an operation other than incrementing or decrementing the loop counter

(separated by a comma from the increment or decrement).
• The loop counter has a data type that is not an integer or a pointer type.
• The loop counter is incremented inside the loop body.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Altering the Loop Counter Inside the Loop

void foo(void){

 for(short index=0; index < 5; index++){ /* Non-compliant */
 index = index + 3; /* Altering the loop counter */
 }
}

In this example, the loop counter index changes inside the for loop. It is hard to determine when
the loop terminates.

21 MISRA C 2012

21-194

Correction — Use Another Variable to Terminate Early

One possible correction is to use an extra flag to terminate the loop early.

In this correction, the second clause of the for loop depends on the counter value, index < 5, and
upon an additional flag, !flag. With the additional flag, the for loop definition and counter remain
readable, and you can escape the loop early.

#define FALSE 0
#define TRUE 1

void foo(void){

 int flag = FALSE;

 for(short index=0; (index < 5) && !flag; index++){ /* Compliant */
 if((index % 4) == 0){
 flag = TRUE; /* allows early termination of loop */
 }
 }
}

for Loops With Empty Clauses

void foo(void){
 for(short index = 0; ; index++) {} /* Non-compliant */

 for(short index = 0; index < 10;) {} /* Non-compliant */

 short index;
 for(; index < 10;) {} /* Non-compliant */

 for(; index < 10; index++) {} /* Compliant */

 for(;;){}
 /* Compliant - Exception all three clauses can be empty */
}

This example shows for loops definitions with a variety of missing clauses. To be compliant, initialize
the first clause variable before the for loop (line 9). However, you cannot have a for loop without
the second or third clause.

The one exception is a for loop with all three clauses empty, so as to allow for infinite loops.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Readability

See Also
MISRA C:2012 Rule 14.1 | MISRA C:2012 Rule 14.3 | MISRA C:2012 Rule 14.4 | Check
MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”

 MISRA C:2012 Rule 14.2

21-195

“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

21 MISRA C 2012

21-196

MISRA C:2012 Rule 14.3
Controlling expressions shall not be invariant

Description
Rule Definition

Controlling expressions shall not be invariant.

Rationale

If the controlling expression, for example an if condition, has a constant value, the non-changing
value can point to a programming error.

Polyspace Implementation

The checker flags conditions in if or while statements or conditions that appear as the first
operands of ternary operators (?:) if the conditions are invariant, for instance, evaluate always to
true or false.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The analyses can
produce different results.

Polyspace Bug Finder flags some violations of MISRA C 14.3 through the Dead code and Useless
if checkers.

Polyspace Code Prover does not use gray code to flag MISRA C 14.3 violations. In Code Prover, you
can also see a difference in results based on your choice for the option Verification level (-
to). See “Check for Coding Standard Violations”.

Additional Message in Report

• Boolean operations whose results are invariant shall not be permitted.
• Expression is always true.
• Expression is always false.
• Controlling expressions shall not be invariant.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 2.1 | MISRA C:2012 Rule 14.2 | Check MISRA C:2012 (-misra3)

 MISRA C:2012 Rule 14.3

21-197

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

21 MISRA C 2012

21-198

MISRA C:2012 Rule 14.4
The controlling expression of an if statement and the controlling expression of an iteration-statement
shall have essentially Boolean type

Description
Rule Definition

The controlling expression of an if statement and the controlling expression of an iteration-statement
shall have essentially Boolean type

Rationale

Strong typing requires the controlling expression on an if statement or iteration statement to have
essentially Boolean type.

Polyspace Implementation

Polyspace does not flag integer constants, for example if(2).

The analysis recognizes the Boolean types, bool or _Bool (defined in stdbool.h)

You can also define types that are essentially Boolean using the option Effective boolean types
(-boolean-types).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Controlling Expression in if, while, and for

#include <stdbool.h>
#include <stdlib.h>

#define TRUE 1

typedef _Bool bool_t;
extern bool_t flag;

void foo(void){
 int *p = 1;
 int *q = 0;
 int i = 0;
 while(p){} /* Non-compliant - p is a pointer */

 while(q != NULL){} /* Compliant */

 while(TRUE){} /* Compliant */

 MISRA C:2012 Rule 14.4

21-199

 while(flag){} /* Compliant */

 if(i){} /* Non-compliant - int32_t is not boolean */

 if(i != 0){} /* Compliant */

 for(int i=-10; i;i++){} /* Non-compliant - int32_t is not boolean */

 for(int i=0; i<10;i++){} /* Compliant */
}

This example shows various controlling expressions in while, if, and for statements.

The noncompliant statements (the first while, if, and for examples), use a single non-Boolean
variable. If you use a single variable as the controlling statement, it must be essentially Boolean (lines
17 and 19). Boolean expressions are also compliant with MISRA.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 14.2 | MISRA C:2012 Rule 20.8 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

21 MISRA C 2012

21-200

MISRA C:2012 Rule 15.1
The goto statement should not be used

Description
Rule Definition

The goto statement should not be used.

Rationale

Unrestricted use of goto statements makes the program unstructured and difficult to understand.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of goto Statements

void foo(void) {
 int i = 0, result = 0;

label1:
 for (i; i < 5; i++) {
 if (i > 2) goto label2; /* Non-compliant */
 }

label2: {
 result++;
 goto label1; /* Non-compliant */
 }
}

In this example, the rule is violated when goto statements are used.

Check Information
Group: Control Flow
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 15.2 | MISRA C:2012 Rule 15.3 | MISRA C:2012 Rule 15.4 | Check
MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”

 MISRA C:2012 Rule 15.1

21-201

“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-202

MISRA C:2012 Rule 15.2
The goto statement shall jump to a label declared later in the same function

Description
Rule Definition

The goto statement shall jump to a label declared later in the same function.

Rationale

Unrestricted use of goto statements makes the program unstructured and difficult to understand.
You can use a forward goto statement together with a backward one to implement iterations.
Restricting backward goto statements ensures that you use only iteration statements provided by the
language such as for or while to implement iterations. This restriction reduces visual complexity of
the code.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of Backward goto Statements

void foo(void) {
 int i = 0, result = 0;

label1:
 for (i; i < 5; i++) {
 if (i > 2) goto label2; /* Compliant */
 }

label2: {
 result++;
 goto label1; /* Non-compliant */
 }
}

In this example, the rule is violated when a goto statement causes a backward jump to label1.

The rule is not violated when a goto statement causes a forward jump to label2.

Check Information
Group: Control Flow
Category: Required
AGC Category: Advisory

 MISRA C:2012 Rule 15.2

21-203

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.3 | MISRA C:2012 Rule 15.4 | Check
MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-204

MISRA C:2012 Rule 15.3
Any label referenced by a goto statement shall be declared in the same block, or in any block
enclosing the goto statement

Description
Rule Definition

Any label referenced by a goto statement shall be declared in the same block, or in any block
enclosing the goto statement.

Rationale

Unrestricted use of goto statements makes the program unstructured and difficult to understand.
Restricting use of goto statements to jump between blocks or into nested blocks reduces visual code
complexity.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
goto Statements Jump Inside Block

void f1(int a) {
 if(a <= 0) {
 goto L2; /* Non-compliant - L2 in different block*/
 }

 goto L1; /* Compliant - L1 in same block*/

 if(a == 0) {
 goto L1; /* Compliant - L1 in outer block*/
 }

 goto L2; /* Non-compliant - L2 in inner block*/

 L1: if(a > 0) {
 L2:;
 }
}

In this example, goto statements cause jumps to different labels. The rule is violated when:

• The label occurs in a block different from the block containing the goto statement.

The block containing the label neither encloses nor is enclosed by the current block.
• The label occurs in a block enclosed by the block containing the goto statement.

The rule is not violated when:

 MISRA C:2012 Rule 15.3

21-205

• The label occurs in the same block as the block containing the goto statement..
• The label occurs in a block that encloses the block containing the goto statement..

goto Statements in switch Block

void f2 (int x, int z) {
 int y = 0;

 switch(x) {
 case 0:
 if(x == y) {
 goto L1; /* Non-compliant - switch-clauses are treated as blocks */
 }
 break;
 case 1:
 y = x;
 L1: ++x;
 break;
 default:
 break;
 }

}

In this example, the label for the goto statement appears to occur in a block that encloses the block
containing the goto statement. However, for the purposes of this rule, the software considers that
each case statement begins a new block. Therefore, the goto statement violates the rule.

Check Information
Group: Control Flow
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.2 | MISRA C:2012 Rule 15.4 | MISRA
C:2012 Rule 16.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-206

MISRA C:2012 Rule 15.4
There should be no more than one break or goto statement used to terminate any iteration statement

Description
Rule Definition

There should be no more than one break or goto statement used to terminate any iteration statement.

Rationale

If you use one break or goto statement in your loop, you have one secondary exit point from the
loop. Restricting number of exits from a loop in this way reduces visual complexity of your code.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
break Statements in Inner and Outer Loops

volatile int stop;

int func(int *arr, int size, int sat) {
 int i,j;
 int sum = 0;
 for (i=0; i< size; i++) { /* Compliant */
 if(sum >= sat)
 break;
 for (j=0; j< i; j++) { /* Compliant */
 if(stop)
 break;
 sum += arr[j];
 }
 }
}

In this example, the rule is not violated in both the inner and outer loop because both loops have one
break statement each.

break and goto Statements in Loop

volatile int stop;

void displayStopMessage();

int func(int *arr, int size, int sat) {
 int i;
 int sum = 0;
 for (i=0; i< size; i++) {
 if(sum >= sat)

 MISRA C:2012 Rule 15.4

21-207

 break;
 if(stop)
 goto L1; /* Non-compliant */
 sum += arr[i];
 }

 L1: displayStopMessage();
}

In this example, the rule is violated because the for loop has one break statement and one goto
statement.

goto Statement in Inner Loop and break Statement in Outer Loop

volatile int stop;

void displayMessage();

int func(int *arr, int size, int sat) {
 int i,j;
 int sum = 0;
 for (i=0; i< size; i++) {
 if(sum >= sat)
 break;
 for (j=0; j< i; j++) { /* Compliant */
 if(stop)
 goto L1; /* Non-compliant */
 sum += arr[i];
 }
 }

 L1: displayMessage();
}

In this example, the rule is not violated in the inner loop because you can exit the loop only through
the one goto statement. However, the rule is violated in the outer loop because you can exit the loop
through either the break statement or the goto statement in the inner loop.

Check Information
Group: Control Flow
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.2 | MISRA C:2012 Rule 15.3 | Check
MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-208

MISRA C:2012 Rule 15.5
A function should have a single point of exit at the end

Description
Rule Definition

A function should have a single point of exit at the end.

Rationale

This rule requires that a return statement must occur as the last statement in the function body.
Otherwise, the following issues can occur:

• Code following a return statement can be unintentionally omitted.
• If a function that modifies some of its arguments has early return statements, when reading the

code, it is not immediately clear which modifications actually occur.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
More Than One return Statement in Function

#define MAX ((unsigned int)2147483647)
#define NULL (void*)0

typedef unsigned int bool_t;
bool_t false = 0;
bool_t true = 1;

bool_t f1(unsigned short n, char *p) { /* Non-compliant */
 if(n > MAX) {
 return false;
 }

 if(p == NULL) {
 return false;
 }

 return true;
}

In this example, the rule is violated because there are three return statements.

Correction — Use Variable to Store Return Value

One possible correction is to store the return value in a variable and return this variable just before
the function ends.

 MISRA C:2012 Rule 15.5

21-209

#define MAX ((unsigned int)2147483647)
#define NULL (void*)0

typedef unsigned int bool_t;
bool_t false = 0;
bool_t true = 1;
bool_t return_value;

bool_t f2 (unsigned short n, char *p) { /* Compliant */
 return_value = true;
 if(n > MAX) {
 return_value = false;
 }

 if(p == NULL) {
 return_value = false;
 }

 return return_value;
}

Check Information
Group: Control Flow
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 17.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-210

MISRA C:2012 Rule 15.6
The body of an iteration-statement or a selection-statement shall be a compound statement

Description
Rule Definition

The body of an iteration-statement or a selection-statement shall be a compound- statement.

Rationale

If the block of code associated with an iteration or selection statement is not contained in braces, you
can make mistakes about the association. For example:

• You can wrongly associate a line of code with an iteration or selection statement because of its
indentation.

• You can accidentally place a semicolon following the iteration or selection statement. Because of
the semicolon, the line following the statement is no longer associated with the statement even
though you intended otherwise.

This checker enforces the practice of adding braces following a selection or iteration statement even
for a single line in the body. Later, when more lines are added, the developer adding them does not
need to note the absence of braces and include them.

Polyspace Implementation

The checker flags for loops where the first token following a for statement is not a left brace, for
instance:

for (i=init_val; i > 0; i--)
 if (arr[i] < 0)
 arr[i] = 0;

Similar checks are performed for if, else if, else, switch, for and do..while statements.

The second line of the message on the Result Details pane indicates which statement is violating the
rule. For instance, in the preceding example, there are two violations. The second line of the message
points to the for loop for one violation and the if condition for another.

Additional Message in Report

• The else keyword shall be followed by either a compound statement, or another if statement.
• An if (expression) construct shall be followed by a compound statement.
• The statement forming the body of a while statement shall be a compound statement.
• The statement forming the body of a do ... while statement shall be a compound statement.
• The statement forming the body of a for statement shall be a compound statement.
• The statement forming the body of a switch statement shall be a compound statement.

 MISRA C:2012 Rule 15.6

21-211

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Iteration Block
int data_available = 1;
void f1(void) {
 while(data_available) /* Non-compliant */
 process_data();

 while(data_available) { /* Compliant */
 process_data();
 }
}

In this example, the second while block is enclosed in braces and does not violate the rule.

Nested Selection Statements
#include<stdbool.h>
void f1(bool flag_1, bool flag_2) {
 if(flag_1) /* Non-compliant */
 if(flag_2) /* Non-compliant */
 action_1();
 else /* Non-compliant */
 action_2();
}

In this example, the rule is violated because the if or else blocks are not enclosed in braces. Unless
indented as above, it is easy to associate the else statement with the inner if.
Correction — Place Selection Statement Block in Braces

One possible correction is to enclose each block associated with an if or else statement in braces.

#include<stdbool.h>
void f1(bool flag_1, bool flag_2) {
 if(flag_1) { /* Compliant */
 if(flag_2) { /* Compliant */
 action_1();
 }
 }
 else { /* Compliant */
 action_2();
 }
}

Spurious Semicolon After Iteration Statement
#include<stdbool.h>
void f1(bool flag_1) {
 while(flag_1); /* Non-compliant */
 {
 flag_1 = action_1();

21 MISRA C 2012

21-212

 }
}

In this example, the rule is violated even though the while statement is followed by a block in
braces. The semicolon following the while statement causes the block to dissociated from the while
statement.

The rule helps detect such spurious semicolons.

Check Information
Group: Control Flow
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 15.6

21-213

MISRA C:2012 Rule 15.7
All if … else if constructs shall be terminated with an else statement

Description
Rule Definition

All if … else if constructs shall be terminated with an else statement.

Rationale

Unless there is a terminating else statement in an if...elseif...else construct, during code
review, it is difficult to tell if you considered all possible results for the if condition.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Missing else Block

#include<stdbool.h>
void action_1(void);
void action_2(void);

void f1(bool flag_1, bool flag_2) {
 if(flag_1) {
 action_1();
 }
 else if(flag_2) {/* Non-compliant */
 action_2();
 }
}

In this example, the rule is violated because the if ... else if construct does not have a
terminating else block.

Correction — Add else Block

To avoid the rule violation, add a terminating else block. This else block can, for instance, handle
exceptions or be empty.

#include<stdbool.h>
bool ERROR = 0;
void action_1(void);
void action_2(void);

void f1(bool flag_1, bool flag_2) {
 if(flag_1) {
 action_1();
 }

21 MISRA C 2012

21-214

 else if(flag_2) {
 action_2();
 }else{
 // Can be empty
 ERROR = 1;
 }
}

Check Information
Group: Control Flow
Category: Required
AGC Category: Readability

See Also
MISRA C:2012 Rule 16.5 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 15.7

21-215

MISRA C:2012 Rule 16.1
All switch statements shall be well-formed

Description
Rule Definition

All switch statements shall be well-formed

Rationale

The syntax for switch statements in C is not particularly rigorous and can allow complex,
unstructured behavior. This rule and other rules impose a simple consistent structure on the switch
statement.

Polyspace Implementation

Following the MISRA specifications, the coding rules checker also raises a violation of rule 16.1 if a
switch statement violates one of these rules: 16.2, 16.3, 16.4, 16.5 or 16.6.

Additional Message in Report

All messages in report file begin with "MISRA-C switch statements syntax normative restriction."

• Initializers shall not be used in switch clauses.
• The child statement of a switch shall be a compound statement.
• All switch clauses shall appear at the same level.
• A switch clause shall only contain switch labels and switch clauses, and no other code.
• A switch statement shall only contain switch labels and switch clauses, and no other code.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 15.3 | MISRA C:2012 Rule 16.2 | MISRA C:2012 Rule 16.3 | MISRA
C:2012 Rule 16.4 | MISRA C:2012 Rule 16.5 | MISRA C:2012 Rule 16.6 | Check MISRA
C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”

21 MISRA C 2012

21-216

“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.1

21-217

MISRA C:2012 Rule 16.2
A switch label shall only be used when the most closely-enclosing compound statement is the body of
a switch statement

Description
Rule Definition

A switch label shall only be used when the most closely-enclosing compound statement is the body of
a switch statement

Rationale

The C Standard permits placing a switch label (for instance, case or default) before any statement
contained in the body of a switch statement. This flexibility can lead to unstructured code. To prevent
unstructured code, make sure a switch label appears only at the outermost level of the body of a
switch statement.

Additional Message in Report

All messages in report file begin with "MISRA-C switch statements syntax normative restriction."

• Initializers shall not be used in switch clauses.
• The child statement of a switch shall be a compound statement.
• All switch clauses shall appear at the same level.
• A switch clause shall only contain switch labels and switch clauses, and no other code.
• A switch statement shall only contain switch labels and switch clauses, and no other code.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 16.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

21 MISRA C 2012

21-218

MISRA C:2012 Rule 16.3
An unconditional break statement shall terminate every switch-clause

Description
Rule Definition

An unconditional break statement shall terminate every switch-clause

Rationale

A switch-clause is a case containing at least one statement. Two consecutive labels without an
intervening statement is compliant with MISRA.

If you fail to end your switch-clauses with a break statement, then control flow “falls” into the next
statement. This next statement can be another switch-clause, or the end of the switch. This behavior
is sometimes intentional, but more often it is an error. If you add additional cases later, an
unterminated switch-clause can cause problems.

Polyspace Implementation

Polyspace raises a warning for each noncompliant case clause.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 16.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.3

21-219

MISRA C:2012 Rule 16.4
Every switch statement shall have a default label

Description
Rule Definition

Every switch statement shall have a default label

Rationale

The requirement for a default label is defensive programming. Even if your switch covers all
possible values, there is no guarantee that the input takes one of these values. Statements following
the default label take some appropriate action. If the default label requires no action, use
comments to describe why there are no specific actions.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Switch Statement Without default

short func1(short xyz){

 switch(xyz){ /* Non-compliant - default label is required */
 case 0:
 ++xyz;
 break;
 case 1:
 case 2:
 break;
 }
 return xyz;
}

In this example, the switch statement does not include a default label, and is therefore
noncompliant.
Correction — Add default With Error Flag

One possible correction is to use the default label to flag input errors. If your switch-clauses cover
all expected input, then the default cases flags any input errors.

short func1(short xyz){
int errorflag = 0;
 switch(xyz){ /* Compliant */
 case 0:
 ++xyz;
 break;
 case 1:

21 MISRA C 2012

21-220

 case 2:
 break;
 default:
 errorflag = 1;
 break;
 }
 if (errorflag == 1)
 return errorflag;
 else
 return xyz;
}

Switch Statement for Enumerated Inputs

enum Colors{
 RED, GREEN, BLUE
};

enum Colors func2(enum Colors color){
 enum Colors next;

 switch(color){ /* Non-compliant - default label is required */
 case RED:
 next = GREEN;
 break;
 case GREEN:
 next = BLUE;
 break;
 case BLUE:
 next = RED;
 break;
 }
 return next;
}

In this example, the switch statement does not include a default label, and is therefore
noncompliant. Even though this switch statement handles all values of the enumeration, there is no
guarantee that color takes one of the those values.

Correction — Add default

To be compliant, add the default label to the end of your switch. You can use this case to flag
unexpected inputs.

enum Colors{
 RED, GREEN, BLUE, ERROR
};

enum Colors func2(enum Colors color){
 enum Colors next;

 switch(color){ /* Compliant */
 case RED:
 next = GREEN;
 break;
 case GREEN:
 next = BLUE;
 break;

 MISRA C:2012 Rule 16.4

21-221

 case BLUE:
 next = RED;
 break;
 default:
 next = ERROR;
 break;
 }

 return next;
}

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 2.1 | MISRA C:2012 Rule 16.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

21 MISRA C 2012

21-222

MISRA C:2012 Rule 16.5
A default label shall appear as either the first or the last switch label of a switch statement

Description
Rule Definition

A default label shall appear as either the first or the last switch label of a switch statement.

Rationale

Using this rule, you can easily locate the default label within a switch statement.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Default Case in switch Statements

void foo(int var){

 switch(var){
 default: /* Compliant - default is the first label */
 case 0:
 ++var;
 break;
 case 1:
 case 2:
 break;
 }

 switch(var){
 case 0:
 ++var;
 break;
 default: /* Non-compliant - default is mixed with the case labels */
 case 1:
 case 2:
 break;
 }

 switch(var){
 case 0:
 ++var;
 break;
 case 1:
 case 2:
 default: /* Compliant - default is the last label */
 break;
 }

 MISRA C:2012 Rule 16.5

21-223

 switch(var){
 case 0:
 ++var;
 break;
 case 1:
 case 2:
 break;
 default: /* Compliant - default is the last label */
 var = 0;
 break;
 }
}

This example shows the same switch statement several times, each with default in a different place.
As the first, third, and fourth switch statements show, default must be the first or last label.
default can be part of a compound switch-clause (for instance, the third switch example), but it
must be the last listed.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 15.7 | MISRA C:2012 Rule 16.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

21 MISRA C 2012

21-224

MISRA C:2012 Rule 16.6
Every switch statement shall have at least two switch-clauses

Description
Rule Definition

Every switch statement shall have at least two switch-clauses.

Rationale

A switch statement with a single path is redundant and can indicate a programming error.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 16.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.6

21-225

MISRA C:2012 Rule 16.7
A switch-expression shall not have essentially Boolean type

Description
Rule Definition

A switch-expression shall not have essentially Boolean type

Rationale

The C Standard requires the controlling expression to a switch statement to have an integer type.
Because C implements Boolean values with integer types, it is possible to have a Boolean expression
control a switch statement. For controlling flow with Boolean types, an if-else construction is
more appropriate.

Polyspace Implementation

The analysis recognizes the Boolean types, bool or _Bool (defined in stdbool.h)

You can also define types that are essentially Boolean using the option Effective boolean types
(-boolean-types).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

21 MISRA C 2012

21-226

MISRA C:2012 Rule 17.1
The features of <stdarg.h> shall not be used

Description
Rule Definition

The features of <stdarg.h> shall not be used..

Rationale

The rule forbids use of va_list, va_arg, va_start, va_end, and va_copy.

You can use these features in ways where the behavior is not defined in the Standard. For instance:

• You invoke va_start in a function but do not invoke the corresponding va_end before the
function block ends.

• You invoke va_arg in different functions on the same variable of type va_list.
• va_arg has the syntax type va_arg (va_list ap, type).

You invoke va_arg with a type that is incompatible with the actual type of the argument
retrieved from ap.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of va_start, va_list, va_arg, and va_end

#include<stdarg.h>
void f2(int n, ...) {
 int i;
 double val;
 va_list vl; /* Non-compliant */

 va_start(vl, n); /* Non-compliant */

 for(i = 0; i < n; i++)
 {
 val = va_arg(vl, double); /* Non-compliant */
 }

 va_end(vl); /* Non-compliant */
}

In this example, the rule is violated because va_start, va_list, va_arg and va_end are used.

 MISRA C:2012 Rule 17.1

21-227

Undefined Behavior of va_arg

#include <stdarg.h>
void h(va_list ap) { /* Non-compliant */
 double y;

 y = va_arg(ap, double); /* Non-compliant */
}

void g(unsigned short n, ...) {
 unsigned int x;
 va_list ap; /* Non-compliant */

 va_start(ap, n); /* Non-compliant */
 x = va_arg(ap, unsigned int); /* Non-compliant */

 h(ap);

 /* Undefined - ap is indeterminate because va_arg used in h () */
 x = va_arg(ap, unsigned int); /* Non-compliant */

}

void f(void) {
 /* undefined - uint32_t:double type mismatch when g uses va_arg () */
 g(1, 2.0, 3.0);
}

In this example, va_arg is used on the same variable ap of type va_list in both functions g and h.
In g, the second argument is unsigned int and in h, the second argument is double. This type
mismatch causes undefined behavior.

Check Information
Group: Function
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-228

MISRA C:2012 Rule 17.2
Functions shall not call themselves, either directly or indirectly

Description
Rule Definition

Functions shall not call themselves, either directly or indirectly.

Rationale

Variables local to a function are stored in the call stack. If a function calls itself directly or indirectly
several times, the available stack space can be exceeded, causing serious failure. Unless the
recursion is tightly controlled, it is difficult to determine the maximum stack space required.

Polyspace Implementation

The checker reports each function that calls itself, directly or indirectly. Even if several functions are
involved in one recursion cycle, each function is individually reported.

You can calculate the total number of recursion cycles using the code complexity metric Number of
Recursions.

Additional Message in Report

Message in Report: Function XX is called indirectly by YY.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Direct and Indirect Recursion
void foo1(void) { /* Non-compliant - Indirect recursion foo1->foo2->foo1... */
 foo2();
 foo1(); /* Non-compliant - Direct recursion */
}

void foo2(void) { /* Non-compliant - Indirect recursion foo2->foo1->foo2... */
 foo1();
}

In this example, the rule is violated because of:

• Direct recursion foo1 → foo1.
• Indirect recursion foo1 → foo2 → foo1.
• Indirect recursion foo2 → foo1 → foo2.

 MISRA C:2012 Rule 17.2

21-229

Check Information
Group: Function
Category: Required
AGC Category: Required

See Also
Number of Recursions | Number of Direct Recursions | Check MISRA C:2012 (-
misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-230

MISRA C:2012 Rule 17.3
A function shall not be declared implicitly

Description
Rule Definition

A function shall not be declared implicitly.

Rationale

An implicit declaration occurs when you call a function before declaring or defining it. When you
declare a function explicitly before calling it, the compiler can match the argument and return types
with the parameter types in the declaration. If an implicit declaration occurs, the compiler makes
assumptions about the argument and return types. For instance, it assumes a return type of int. The
assumptions might not agree with what you expect and cause undesired type conversions.

Additional Message in Report

Function 'XX' has no complete visible prototype at call.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Function Not Declared Before Call
#include <math.h>

extern double power3 (double val, int exponent);
int getChoice(void);

double func() {
 double res;
 int ch = getChoice();
 if(ch == 0) {
 res = power(2.0, 10); /* Non-compliant */
 }
 else if(ch==1) {
 res = power2(2.0, 10); /* Non-compliant */
 }
 else {
 res = power3(2.0, 10); /* Compliant */
 return res;
 }
}

double power2 (double val, int exponent) {
 return (pow(val, exponent));
}

 MISRA C:2012 Rule 17.3

21-231

In this example, the rule is violated when a function that is not declared is called in the code. Even if
a function definition exists later in the code, the rule violation occurs.

The rule is not violated when the function is declared before it is called in the code. If the function
definition exists in another file and is available only during the link phase, you can declare the
function in one of the following ways:

• Declare the function with the extern keyword in the current file.
• Declare the function in a header file and include the header file in the current file.

Check Information
Group: Function
Category: Mandatory
AGC Category: Mandatory

See Also
MISRA C:2012 Rule 8.2 | MISRA C:2012 Rule 8.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-232

MISRA C:2012 Rule 17.4
All exit paths from a function with non-void return type shall have an explicit return statement with
an expression

Description
Rule Definition

All exit paths from a function with non-void return type shall have an explicit return statement with
an expression.

Rationale

If a non-void function does not explicitly return a value but the calling function uses the return
value, the behavior is undefined. To prevent this behavior:

• You must provide return statements with an explicit expression.
• You must ensure that during run time, at least one return statement executes.

Additional Message in Report

Missing return value for non-void function 'XX'.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Missing Return Statement Along Certain Execution Paths

int absolute(int v) {
 if(v < 0) {
 return v;
 }
} // Non-compliant

In this example, the rule is violated because a return statement does not exist on all execution
paths. If v >= 0, then the control returns to the calling function without an explicit return value.

Return Statement Without Explicit Expression

#define SIZE 10
int table[SIZE];

unsigned short lookup(unsigned short v) {
 if((v < 0) || (v > SIZE)) {
 return; // Non-compliant
 }
 return table[v];
}

 MISRA C:2012 Rule 17.4

21-233

In this example, the rule is violated because the return statement in the if block does not have an
explicit expression.

Check Information
Group: Function
Category: Mandatory
AGC Category: Mandatory

See Also
MISRA C:2012 Rule 15.5 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-234

MISRA C:2012 Rule 17.5
The function argument corresponding to a parameter declared to have an array type shall have an
appropriate number of elements

Description
Rule Definition

The function argument corresponding to a parameter declared to have an array type shall have an
appropriate number of elements.

Rationale

If you use an array declarator for a function parameter instead of a pointer, the function interface is
clearer because you can state the minimum expected array size. If you do not state a size, the
expectation is that the function can handle an array of any size. In such cases, the size value is
typically another parameter of the function, or the array is terminated with a sentinel value.

However, it is legal in C to specify an array size but pass an array of smaller size. This rule prevents
you from passing an array of size smaller than the size you declared.

Additional Message in Report

The function argument corresponding to a parameter declared to have an array type shall have an
appropriate number of elements.

The argument type has actual_size elements whereas the parameter type expects
expected_size elements.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Incorrect Array Size Passed to Function

void func(int arr[4]);

int main() {
 int arrSmall[3] = {1,2,3};
 int arr[4] = {1,2,3,4};
 int arrLarge[5] ={1,2,3,4,5};

 func(arrSmall); /* Non-compliant */
 func(arr); /* Compliant */
 func(arrLarge); /* Compliant */

 return 0;
}

 MISRA C:2012 Rule 17.5

21-235

In this example, the rule is violated when arrSmall, which has size 3, is passed to func, which
expects at least 4 elements.

Check Information
Group: Functions
Category: Advisory
AGC Category: Readability

See Also
MISRA C:2012 Rule 17.6 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

21 MISRA C 2012

21-236

MISRA C:2012 Rule 17.6
The declaration of an array parameter shall not contain the static keyword between the []

Description
Rule Definition

The declaration of an array parameter shall not contain the static keyword between the [].

Rationale

If you use the static keyword within [] for an array parameter of a function, you can inform a C99
compiler that the array contains a minimum number of elements. The compiler can use this
information to generate efficient code for certain processors. However, in your function call, if you
provide less than the specified minimum number, the behavior is not defined.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of static Keyword Within [] in Array Parameter
extern int arr1[20];
extern int arr2[10];

unsigned int total (unsigned int n,
 unsigned int arr[static 20]) { // Non-compliant

 unsigned int i;
 unsigned int sum = 0;

 for (i=0U; i < n; i++) {
 sum+= arr[i];
 }

 return sum;
}

void func (void) {
 int res, res2;
 res = total (10U, arr1); //Undefined behavior
 res2 = total (20U, arr2);
}

In this example, the rule is violated when the static keyword is used within [] in the array
parameter of function total. Even if you call total with array arguments where the behavior is
well-defined, the rule violation occurs.

Check Information
Group: Function
Category: Mandatory
AGC Category: Mandatory

 MISRA C:2012 Rule 17.6

21-237

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-238

MISRA C:2012 Rule 17.7
The value returned by a function having non-void return type shall be used

Description
Rule Definition

The value returned by a function having non-void return type shall be used.

Rationale

You can unintentionally call a function with a non-void return type but not use the return value.
Because the compiler allows the call, you might not catch the omission. This rule forbids calls to a
non-void function where the return value is not used. If you do not intend to use the return value of a
function, explicitly cast the return value to void.

Polyspace Implementation

The checker flags functions with non-void return if the return value is not used or not explicitly cast
to a void type.

The checker does not flag the functions memcpy, memset, memmove, strcpy, strncpy, strcat,
strncat because these functions simply return a pointer to their first arguments.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Used and Unused Return Values

unsigned int cutOff(unsigned int val) {
 if (val > 10 && val < 100) {
 return val;
 }
 else {
 return 0;
 }
}

unsigned int getVal(void);

void func2(void) {
 unsigned int val = getVal(), res;
 cutOff(val); /* Non-compliant */
 res = cutOff(val); /* Compliant */
 (void)cutOff(val); /* Compliant */
}

In this example, the rule is violated when the return value of cutOff is not used subsequently.

 MISRA C:2012 Rule 17.7

21-239

The rule is not violated when the return value is:

• Assigned to another variable.
• Explicitly cast to void.

Check Information
Group: Function
Category: Required
AGC Category: Readability

See Also
MISRA C:2012 Rule 2.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-240

MISRA C:2012 Rule 17.8
A function parameter should not be modified

Description
Rule Definition

A function parameter should not be modified.

Rationale

When you modify a parameter, the function argument corresponding to the parameter is not modified.
However, you or another programmer unfamiliar with C can expect by mistake that the argument is
also modified when you modify the parameter.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Function Parameter Modified

int input(void);

void func(int param1, int* param2) {

 param1 = input(); /* Non-compliant */
 param2 = input(); / Compliant */
}

In this example, the rule is violated when the parameter param1 is modified.

The rule is not violated when the parameter is a pointer param2 and *param2 is modified.

Check Information
Group: Functions
Category: Advisory
AGC Category: Readability

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 17.8

21-241

Introduced in R2015b

21 MISRA C 2012

21-242

MISRA C:2012 Rule 18.1
A pointer resulting from arithmetic on a pointer operand shall address an element of the same array
as that pointer operand

Description
Rule Definition

A pointer resulting from arithmetic on a pointer operand shall address an element of the same array
as that pointer operand.

Rationale

Using an invalid array subscript can lead to erroneous behavior of the program. Run-time derived
array subscripts are especially troublesome because they cannot be easily checked by manual review
or static analysis.

The C Standard defines the creation of a pointer to one beyond the end of the array. The rule permits
the C Standard. Dereferencing a pointer to one beyond the end of an array causes undefined behavior
and is noncompliant.

Polyspace Implementation

Polyspace flags this rule during the analysis as:

• Bug Finder — Array access out-of-bounds and Pointer access out-of-bounds.
• Code Prover — Illegally dereferenced pointer and Out of bounds array index.

Bug Finder and Code Prover check this rule differently and can show different results for this rule. In
Code Prover, you can also see a difference in results based on your choice for the option
Verification level (-to). See “Check for Coding Standard Violations”.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Dir 4.1 | MISRA C:2012 Rule 18.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.1

21-243

MISRA C:2012 Rule 18.2
Subtraction between pointers shall only be applied to pointers that address elements of the same
array

Description
Rule Definition

Subtraction between pointers shall only be applied to pointers that address elements of the same
array.

Rationale

This rule applies to expressions of the form pointer_expression1 - pointer_expression2.
The behavior is undefined if pointer_expression1 and pointer_expression2:

• Do not point to elements of the same array,
• Or do not point to the element one beyond the end of the array.

Polyspace Implementation

This rule is raised whenever the analysis detects a Subtraction or comparison between
pointers to different arrays.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Subtracting Pointers

#include <stddef.h>
#include <stdint.h>

void f1 (int32_t *ptr)
{
 int32_t a1[10];
 int32_t a2[10];
 int32_t *p1 = &a1[1];
 int32_t *p2 = &a2[10];
 ptrdiff_t diff1, diff2, diff3;

 diff1 = p1 - a1; // Compliant
 diff2 = p2 - a2; // Compliant
 diff3 = p1 - p2; // Non-compliant
}

In this example, the three subtraction expressions show the difference between compliant and
noncompliant pointer subtractions. The diff1 and diff2 subtractions are compliant because the

21 MISRA C 2012

21-244

pointers point to the same array. The diff3 subtraction is not compliant because p1 and p2 point to
different arrays.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Dir 4.1 | MISRA C:2012 Rule 18.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.2

21-245

MISRA C:2012 Rule 18.3
The relational operators >, >=, < and <= shall not be applied to objects of pointer type except where
they point into the same object

Description
Rule Definition

The relational operators >, >=, <, and <= shall not be applied to objects of pointer type except where
they point into the same object.

Rationale

If two pointers do not point to the same object, comparisons between the pointers produces
undefined behavior.

You can address the element beyond the end of an array, but you cannot access this element.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Pointer and Array Comparisons
void f1(void){
 int arr1[10];
 int arr2[10];
 int *ptr1 = arr1;

 if(ptr1 < arr2){} /* Non-compliant */
 if(ptr1 < arr1){} /* Compliant */
}

In this example, ptr1 is a pointer to arr1. To be compliant with rule 18.3, you can compare only
ptr1 with arr1. Therefore, the comparison between ptr1 and arr2 is noncompliant.

Structure Comparisons
struct limits{
 int lower_bound;
 int upper_bound;
};

void func2(void){
 struct limits lim_1 = { 2, 5 };
 struct limits lim_2 = { 10, 5 };

 if(&lim_1.lower_bound <= &lim_2.upper_bound){} /* Non-compliant *
 if(&lim_1.lower_bound <= &lim_1.upper_bound){} /* Compliant */
}

21 MISRA C 2012

21-246

This example defines two limits structures, lim1 and lim2, and compares the elements. To be
compliant with rule 18.3, you can compare only the structure elements within a structure. The first
comparison compares the lower_bound of lim1 and the upper_bound of lim2. This comparison is
noncompliant because the lim_1.lower_bound and lim_2.upper_bound are elements of two
different structures.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Dir 4.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.3

21-247

MISRA C:2012 Rule 18.4
The +, -, += and -= operators should not be applied to an expression of pointer type

Description
Rule Definition

The +, -, += and -= operators should not be applied to an expression of pointer type.

Rationale

The preferred form of pointer arithmetic is using the array subscript syntax ptr[expr]. This syntax
is clear and less prone to error than pointer manipulation. With pointer manipulation, any explicitly
calculated pointer value has the potential to access unintended or invalid memory addresses. Array
indexing can also access unintended or invalid memory, but it is easier to review.

To a new C programmer, the expression ptr+1 can be mistakenly interpreted as one plus the address
of ptr. However, the new memory address depends on the size, in bytes, of the pointer’s target. This
confusion can lead to unexpected behavior.

When used with caution, pointer manipulation using ++ can be more natural (for instance,
sequentially accessing locations during a memory test).

Polyspace Implementation

Polyspace flags operations on pointers, for example, Pointer + Integer, Integer + Pointer,
Pointer - Integer.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Pointers and Array Expressions

void fun1(void){
 unsigned char arr[10];
 unsigned char *ptr;
 unsigned char index = 0U;

 index = index + 1U; /* Compliant - rule only applies to pointers */

 arr[index] = 0U; /* Compliant */
 ptr = &arr[5]; /* Compliant */
 ptr = arr;
 ptr++; /* Compliant - increment operator not + */
 (ptr + 5) = 0U; / Non-compliant */
 ptr[5] = 0U; /* Compliant */
}

21 MISRA C 2012

21-248

This example shows various operations with pointers and arrays. The only operation in this example
that is noncompliant is using the + operator directly with a pointer (line 12).

Adding Array Elements Inside a for Loop

void fun2(void){
 unsigned char array_2_2[2][2] = {{1U, 2U}, {4U, 5U}};
 unsigned char i = 0U;
 unsigned char j = 0U;
 unsigned char sum = 0U;

 for(i = 0u; i < 2U; i++){
 unsigned char *row = array_2_2[i];

 for(j = 0u; j < 2U; j++){
 sum += row[j]; /* Compliant */
 }
 }
}

In this example, the second for loop uses the array pointer row in an arithmetic expression.
However, this usage is compliant because it uses the array index form.

Pointers and Array Expressions

void fun3(unsigned char *ptr1, unsigned char ptr2[]){
 ptr1++; /* Compliant */
 ptr1 = ptr1 - 5; /* Non-compliant */
 ptr1 -= 5; /* Non-compliant */
 ptr1[2] = 0U; /* Compliant */

 ptr2++; /* Compliant */
 ptr2 = ptr2 + 3; /* Non-compliant */
 ptr2 += 3; /* Non-compliant */
 ptr2[3] = 0U; /* Compliant */
}

This example shows the offending operators used on pointers and arrays. Notice that the same types
of expressions are compliant and noncompliant for both pointers and arrays.

If ptr1 does not point to an array with at least six elements, and ptr2 does not point to an array with
at least 4 elements, this example violates rule 18.1.

Check Information
Group: Pointers and Arrays
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 18.1 | MISRA C:2012 Rule 18.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.4

21-249

MISRA C:2012 Rule 18.5
Declarations should contain no more than two levels of pointer nesting

Description
Rule Definition

Declarations should contain no more than two levels of pointer nesting.

Rationale

The use of more than two levels of pointer nesting can seriously impair the ability to understand the
behavior of the code. Avoid this usage.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Pointer Nesting
typedef char *INTPTR;

void function(char ** arrPar[]) /* Non-compliant - 3 levels */
{
 char ** obj2; /* Compliant */
 char *** obj3; /* Non-compliant */
 INTPTR * obj4; /* Compliant */
 INTPTR * const * const obj5; /* Non-compliant */
 char ** arr[10]; /* Compliant */
 char ** (*parr)[10]; /* Compliant */
 char * (**pparr)[10]; /* Compliant */
}

struct s{
 char * s1; /* Compliant */
 char ** s2; /* Compliant */
 char *** s3; /* Non-compliant */
};

struct s * ps1; /* Compliant */
struct s ** ps2; /* Compliant */
struct s *** ps3; /* Non-compliant */

char ** (*pfunc1)(void); /* Compliant */
char ** (**pfunc2)(void); /* Compliant */
char ** (***pfunc3)(void); /* Non-compliant */
char *** (**pfunc4)(void); /* Non-compliant */

This example shows various pointer declarations and nesting levels. Any pointer with more than two
levels of nesting is considered noncompliant.

21 MISRA C 2012

21-250

Check Information
Group: Pointers and Arrays
Category: Advisory
AGC Category: Readability

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.5

21-251

MISRA C:2012 Rule 18.6
The address of an object with automatic storage shall not be copied to another object that persists
after the first object has ceased to exist

Description
Rule Definition

The address of an object with automatic storage shall not be copied to another object that persists
after the first object has ceased to exist.

Rationale

The address of an object becomes indeterminate when the lifetime of that object expires. Any use of
an indeterminate address results in undefined behavior.

Polyspace Implementation

Polyspace flags a violation when assigning an address to a global variable, returning a local variable
address, or returning a parameter address.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Address of Local Variables

char *func(void){
 char local_auto;
 return &local_auto ; /* Non-compliant
 * &local_auto is indeterminate */
}

In this example, because local_auto is a local variable, after the function returns, the address of
local_auto is indeterminate.

Copying Pointer Addresses to Local Variables

char *sp;

void f(unsigned short u){
 g(&u);
}

void h(void){
 static unsigned short *q;

 unsigned short x =0u;
 q = &x; /* Non-compliant -

21 MISRA C 2012

21-252

 * &x stored in object with greater lifetime */
}

In this example, the function h stores the address of a local variable x in the a static variable q. The
lifetime of the static variable q persists after the lifetime of the local variable x ends. Copying x into q
is noncompliant with this rule and Polyspace flags the variable x.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.6

21-253

MISRA C:2012 Rule 18.7
Flexible array members shall not be declared

Description
Rule Definition

Flexible array members shall not be declared.

Rationale

Flexible array members are usually used with dynamic memory allocation. Dynamic memory
allocation is banned by Directive 4.12 and Rule 21.3 on page 21-285.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 21.3 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

21 MISRA C 2012

21-254

MISRA C:2012 Rule 18.8
Variable-length array types shall not be used

Description
Rule Definition

Variable-length array types shall not be used.

Rationale

When the size of an array declared in a block or function prototype is not an integer constant
expression, you specify variable array types. Variable array types are typically implemented as a
variable size object stored on the stack. Using variable type arrays can make it impossible to
determine statistically the amount of memory for the stack requires.

If the size of a variable-length array is negative or zero, the behavior is undefined.

If a variable-length array must be compatible with another array type, then the size of the array types
must be identical and positive integers. If your array does not meet these requirements, the behavior
is undefined.

If you use a variable-length array type in a sizeof, it is uncertain if the array size is evaluated or not.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 13.6 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.8

21-255

MISRA C:2012 Rule 19.1
An object shall not be assigned or copied to an overlapping object

Description
Rule Definition

An object shall not be assigned or copied to an overlapping object.

Rationale

When you assign an object to another object with overlapping memory, the behavior is undefined. The
exceptions are:

• You assign an object to another object with exactly overlapping memory and compatible type.
• You copy one object to another using memmove.

Additional Message in Report

• An object shall not be assigned or copied to an overlapping object.
• Destination and source of XX overlap, the behavior is undefined.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Assignment of Union Members

void func (void) {
 union {
 short i;
 int j;
 } a = {0}, b = {1};

 a.j = a.i; /* Non-compliant */
 a = b; /* Compliant */
}

In this example, the rule is violated when a.i is assigned to a.j because the two variables have
overlapping regions of memory.

Assignment of Array Segments

#include <string.h>

int arr[10];

void func(void) {
 memcpy (&arr[5], &arr[4], 2u * sizeof(arr[0])); /* Non-compliant */

21 MISRA C 2012

21-256

 memcpy (&arr[5], &arr[4], sizeof(arr[0])); /* Compliant */
 memcpy (&arr[1], &arr[4], 2u * sizeof(arr[0])); /* Compliant */
}

In this example, memory equal to twice sizeof(arr[0]) is the memory space taken up by two array
elements. If that memory space begins from &a[4] and &a[5], the two memory regions overlap. The
rule is violated when the memcpy function is used to copy the contents of these two overlapping
memory regions.

Check Information
Group: Overlapping Storage
Category: Mandatory
AGC Category: Mandatory

See Also
MISRA C:2012 Rule 19.2 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 19.1

21-257

MISRA C:2012 Rule 19.2
The union keyword should not be used

Description
Rule Definition

The union keyword should not be used.

Rationale

If you write to a union member and read the same union member, the behavior is well-defined. But if
you read a different member, the behavior depends on the relative sizes of the members. For
instance:

• If you read a union member with wider memory size, the value you read is unspecified.
• Otherwise, the value is implementation-dependent.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Possible Problems with union Keyword

unsigned int zext(unsigned int s)
{
 union /* Non-compliant */
 {
 unsigned int ul;
 unsigned short us;
 } tmp;

 tmp.us = s;
 return tmp.ul; /* Unspecified value */
}

In this example, the 16-bit short field tmp.us is written but the wider 32-bit int field tmp.ul is
read. Using the union keyword can cause such unspecified behavior. Therefore, the rule forbids
using the union keyword.

Check Information
Group: Overlapping Storage
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 19.1 | Check MISRA C:2012 (-misra3)

21 MISRA C 2012

21-258

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 19.2

21-259

MISRA C:2012 Rule 20.1
#include directives should only be preceded by preprocessor directives or comments

Description
Rule Definition

#include directives should only be preceded by preprocessor directives or comments.

Rationale

For better code readability, group all #include directives in a file at the top of the source file.
Undefined behavior can occur if you use #include to include a standard header file within a
declaration or definition or if you use part of the Standard Library before including the related
standard header files.

Polyspace Implementation

Polyspace flags text that precedes an #include directive. Polyspace ignores preprocessor directives,
comments, spaces, or new line characters. Polyspace also ignores code that is hidden by using
conditional compilation directives such as #if or #ifdef.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Placing Code Before #include Directives

#if DEBUG

assert(0);

#endif

#include<stdlib> //Compliant

int x;

#include <conio> //Noncompliant

In this example, the first #include statement is preceded by an assert statement. Because the
assert statement is hidden by the #if condition, Polyspace does not flag the #include statement.
The second #include statement follows a variable declaration that is not hidden. Polyspace flags the
second #include statement.

21 MISRA C 2012

21-260

Check Information
Group: Preprocessing Directives
Category: Advisory
AGC Category: Advisory

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.1

21-261

MISRA C:2012 Rule 20.2
The ', " or \ characters and the /* or // character sequences shall not occur in a header file name

Description
Rule Definition

The ', " or \ characters and the /* or // character sequences shall not occur in a header file name.

Rationale

The program’s behavior is undefined if:

• You use ', ", \, /* or // between < > delimiters in a header name preprocessing token.
• You use ', \, /* or // between " delimiters in a header name preprocessing token.

Although \ results in undefined behavior, many implementations accept / in its place.

Polyspace Implementation

Polyspace flags the characters ', ", \, /* or // between < and > in #include <filename>.

Polyspace flags the characters ', \, /* or // between " and " in #include "filename".

Additional Message in Report

The ', "or \ characters and the /* or // character sequences shall not occur in a header file name.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

21 MISRA C 2012

21-262

MISRA C:2012 Rule 20.3
The #include directive shall be followed by either a <filename> or "filename" sequence

Description
Rule Definition

The #include directive shall be followed by either a <filename> or "filename" sequence.

Rationale

This rule applies only after macro replacement.

The behavior is undefined if an #include directive does not use one of the following forms:

• #include <filename>
• #include "filename"

Additional Message in Report

• ‘#include' expects "FILENAME" or <FILENAME>
• ‘#include_next' expects "FILENAME" or <FILENAME>
• ‘#include' does not expect string concatenation.
• ‘#include_next' does not expect string concatenation.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.3

21-263

MISRA C:2012 Rule 20.4
A macro shall not be defined with the same name as a keyword

Description
Rule Definition

A macro shall not be defined with the same name as a keyword.

Rationale

Using macros to change the meaning of keywords can be confusing. The behavior is undefined if you
include a standard header while a macro is defined with the same name as a keyword.

Additional Message in Report

• The macro macro_name shall not be redefined.
• The macro macro_name shall not be undefined.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Redefining int keyword
#include <stdlib.h>
#define int some_other_type /* Non-compliant - int keyword behavior altered */

//...

In this example, the #define violates Rule 20.4 because it alters the behavior of the int keyword.
The inclusion of the standard header results in undefined behavior.

Correction — Rename keyword

One possible correction is to use a different keyword:

#include <stdlib.h>
#define int_mine some_other_type

//...

Redefining keywords versus statements

#define while(E) for (; (E) ;) /* Non-compliant - while redefined*/
#define unless(E) if (!(E)) /* Compliant*/

#define seq(S1, S2) do{ S1; S2;} while(false) /* Compliant*/
#define compound(S) {S;} /* Compliant*/
//...

21 MISRA C 2012

21-264

In this example, it is noncompliant to redefine the keyword while, but it is compliant to define a
macro that expands to statements.

Redefining keywords in different standards

#define inline // Non-compliant

In this example, redefining inline is compliant in C90, but not in C99 because inline is not a
keyword in C90.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 21.1 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.4

21-265

MISRA C:2012 Rule 20.5
#undef should not be used

Description
Rule Definition

#undef should not be used.

Rationale

#undef can make the software unclear which macros exist at a particular point within a translation
unit.

Additional Message in Report

#undef shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Preprocessing Directives
Category: Advisory
AGC Category: Readability

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

21 MISRA C 2012

21-266

MISRA C:2012 Rule 20.6
Tokens that look like a preprocessing directive shall not occur within a macro argument

Description
Rule Definition

Tokens that look like a preprocessing directive shall not occur within a macro argument.

Rationale

An argument containing sequences of tokens that otherwise act as preprocessing directives leads to
undefined behavior.

Polyspace Implementation

Polyspace looks for the # character in a macro arguments (outside a string or character constant).

Additional Message in Report

Macro argument shall not look like a preprocessing directive.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Macro Expansion Causing Non-Compliance

#define M(A) printf (#A)

#include <stdio.h>

void foo(void){
 M(
#ifdef SW /* Non-compliant */
 "Message 1"
#else
 "Message 2" /* Compliant - SW not defined */
#endif /* Non-compliant */
);
}

This example shows a macro definition and the macro usage. #ifdef SW and #endif are
noncompliant because they look like a preprocessing directive. Polyspace does not flag #else
"Message 2" because after macro expansion, Polyspace knows SW is not defined. The expanded
macro is printf ("\"Message 2\"");

 MISRA C:2012 Rule 20.6

21-267

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

21 MISRA C 2012

21-268

MISRA C:2012 Rule 20.7
Expressions resulting from the expansion of macro parameters shall be enclosed in parentheses

Description
Rule Definition

Expressions resulting from the expansion of macro parameters shall be enclosed in parentheses.

Rationale

If you do not use parentheses, then it is possible that operator precedence does not give the results
that you want when macro substitution occurs.

If you are not using a macro parameter as an expression, then the parentheses are not necessary
because no operators are involved in the macro.

Additional Message in Report

Expanded macro parameter param shall be enclosed in parentheses.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Macro Expressions

#define mac1(x, y) (x * y)
#define mac2(x, y) ((x) * (y))

void foo(void){
 int r;

 r = mac1(1 + 2, 3 + 4); /* Non-compliant */
 r = mac1((1 + 2), (3 + 4)); /* Compliant */

 r = mac2(1 + 2, 3 + 4); /* Compliant */
}

In this example, mac1 and mac2 are two defined macro expressions. The definition of mac1 does not
enclose the arguments in parentheses. In line 7, the macro expands to r = (1 + 2 * 3 + 4); This
expression can be (1 + (2 * 3) + 4) or (1 + 2) * (3 + 4). However, without parentheses,
the program does not know the intended expression. Line 8 uses parentheses, so the line expands to
(1 + 2) * (3 + 4). This macro expression is compliant.

The definition of mac2 does enclose the argument in parentheses. Line 10 (the same macro
arguments in line 7) expands to (1 + 2) * (3 + 4). This macro and macro expression are
compliant.

 MISRA C:2012 Rule 20.7

21-269

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Dir 4.9 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

21 MISRA C 2012

21-270

MISRA C:2012 Rule 20.8
The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or 1

Description
Rule Definition

The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or 1.

Rationale

Strong typing requires that conditional inclusion preprocessing directives, #if or #elif, have a
controlling expression that evaluates to a Boolean value.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Advisory

See Also
MISRA C:2012 Rule 14.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.8

21-271

MISRA C:2012 Rule 20.9
All identifiers used in the controlling expression of #if or #elif preprocessing directives shall be
#define’d before evaluation

Description
Rule Definition

All identifiers used in the controlling expression of #if or #elif preprocessing directives shall be
#define’d before evaluation.

Rationale

If attempt to use a macro identifier in a preprocessing directive, and you have not defined that
identifier, then the preprocessor assumes that it has a value of zero. This value might not meet
developer expectations.

Additional Message in Report

Identifier is not defined.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Macro Identifiers

#if M == 0 /* Non-compliant - Not defined */
#endif

#if defined (M) /* Compliant - M is not evaluate */
#if M == 0 /* Compliant - M is known to be defined */
#endif
#endif

#if defined (M) && (M == 0) /* Compliant
 * if M defined, M evaluated in (M == 0) */
#endif

This example shows various uses of M in preprocessing directives. The second and third #if clauses
check to see if the software defines M before evaluating M. The first #if clause does not check to see
if M is defined, and because M is not defined, the statement is noncompliant.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required

21 MISRA C 2012

21-272

See Also
MISRA C:2012 Dir 4.9 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.9

21-273

MISRA C:2012 Rule 20.10
The # and ## preprocessor operators should not be used

Description
Rule Definition

The # and ## preprocessor operators should not be used.

Rationale

The order of evaluation associated with multiple #, multiple ##, or a mix of # and ## preprocessor
operators is unspecified. In some cases, it is therefore not possible to predict the result of macro
expansion.

The use of ## can result in obscured code.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Preprocessing Directives
Category: Advisory
AGC Category: Advisory

See Also
MISRA C:2012 Rule 1.3 | MISRA C:2012 Rule 20.11 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

21 MISRA C 2012

21-274

MISRA C:2012 Rule 20.11
A macro parameter immediately following a # operator shall not immediately be followed by a ##
operator

Description
Rule Definition

A macro parameter immediately following a # operator shall not immediately be followed by a ##
operator.

Rationale

The order of evaluation associated with multiple #, multiple ##, or a mix of # and ## preprocessor
operators, is unspecified. Rule 20.10 discourages the use of # and ##. The result of a # operator is a
string literal. It is extremely unlikely that pasting this result to any other preprocessing token results
in a valid token.

Additional Message in Report

The ## preprocessor operator shall not follow a macro parameter following a # preprocessor
operator.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of # and ##

#define A(x) #x /* Compliant */
#define B(x, y) x ## y /* Compliant */
#define C(x, y) #x ## y /* Non-compliant */

In this example, you can see three uses of the # and ## operators. You can use these preprocessing
operators alone (line 1 and line 2), but using # then ## is noncompliant (line 3).

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 20.10 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”

 MISRA C:2012 Rule 20.11

21-275

“Software Quality Objective Subsets (C:2012)”

21 MISRA C 2012

21-276

MISRA C:2012 Rule 20.12
A macro parameter used as an operand to the # or ## operators, which is itself subject to further
macro replacement, shall only be used as an operand to these operators

Description
Rule Definition

A macro parameter used as an operand to the # or ## operators, which is itself subject to further
macro replacement, shall only be used as an operand to these operators.

Rationale

The parameter to # or ## is not expanded prior to being used. The same parameter appearing
elsewhere in the replacement text is expanded. If the macro parameter is itself subject to macro
replacement, its use in mixed contexts within a macro replacement might not meet developer
expectations.

Additional Message in Report

Expanded macro parameter param1 is also an operand of op operator.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.12

21-277

MISRA C:2012 Rule 20.13
A line whose first token is # shall be a valid preprocessing directive

Description
Rule Definition

A line whose first token is # shall be a valid preprocessing directive

Rationale

You typically use a preprocessing directive to conditionally exclude source code until a corresponding
#else, #elif, or #endif directive is encountered. If your compiler does not detect a preprocessing
directive because it is malformed or invalid, you can end up excluding more code than you intended.

If all preprocessing directives are syntactically valid, even in excluded code, this unintended code
exclusion cannot happen.

Additional Message in Report

Directive is not syntactically meaningful.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

21 MISRA C 2012

21-278

MISRA C:2012 Rule 20.14
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if, #ifdef or
#ifndef directive to which they are related

Description
Rule Definition

All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if, #ifdef or
#ifndef directive to which they are related.

Rationale

When conditional compilation directives include or exclude blocks of code and are spread over
multiple files, confusion arises. If you terminate an #if directive within the same file, you reduce the
visual complexity of the code and the chances of an error.

If you terminate #if directives within the same file, you can use #if directives in included files

Additional Message in Report

• '#else' not within a conditional.
• '#elseif' not within a conditional.
• '#endif' not within a conditional.

Unterminated conditional directive.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.14

21-279

MISRA C:2012 Rule 21.1
#define and #undef shall not be used on a reserved identifier or reserved macro name

Description
Rule Definition

#define and #undef shall not be used on a reserved identifier or reserved macro name.

Rationale

Reserved identifiers and reserved macro names are intended for use by the implementation.
Removing or changing the meaning of a reserved macro can result in undefined behavior. This rule
applies to the following:

• Identifiers or macro names beginning with an underscore
• Identifiers in file scope described in the C Standard Library
• Macro names described in the C Standard Library as being defined in a standard header

The rule checker can flag different identifiers or macros depending on the version of the C standard
used in the analysis. See C standard version (-c-version). For instance, if you run a C99
analysis, the reserved identifiers and macros are defined in the ISO/IEC 9899:1999 standard, Section
7, "Library".

Additional Message in Report

• The macro macro_name shall not be redefined.
• The macro macro_name shall not be undefined.
• The macro macro_name shall not be defined.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Defining or Undefining Reserved Identifiers

#undef __LINE__ /* Non-compliant - begins with _ */
#define _Guard_H 1 /* Non-compliant - begins with _ */
#undef _ BUILTIN_sqrt /* Non-compliant - implementation may
 * use _BUILTIN_sqrt for other purposes,
 * e.g. generating a sqrt instruction */
#define defined /* Non-compliant - reserved identifier */
#define errno my_errno /* Non-compliant - library identifier */
#define isneg(x) ((x) < 0) /* Compliant - rule doesn't include
 * future library directions */

21 MISRA C 2012

21-280

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 20.4 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.1

21-281

MISRA C:2012 Rule 21.2
A reserved identifier or reserved macro name shall not be declared

Description
Rule Definition

A reserved identifier or reserved macro name shall not be declared.

Rationale

The Standard allows implementations to treat reserved identifiers specially. If you reuse reserved
identifiers, you can cause undefined behavior.

Polyspace Implementation

• If you define a macro name that corresponds to a standard library macro, object, or function, rule
21.1 is violated.

• The rule considers tentative definitions as definitions.

Additional Message in Report

Identifier 'XX' shall not be reused.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-282

MISRA C:2012 Rule 21.20
The pointer returned by the Standard Library functions asctime, ctime, gmtime, localtime,
localeconv, getenv, setlocale or strerror shall not be used following a subsequent call to the
same function

Description
Rule Definition

The pointer returned by the Standard Library functions asctime, ctime, gmtime, localtime,
localeconv, getenv, setlocale or strerror shall not be used following a subsequent call to the
same function.

This rule comes from MISRA C: 2012 Amendment 1.

Rationale

The preceding functions return a pointer to an object within the Standard Library. Implementation for
this object can use a static buffer that can be modified by a second call to the same function.
Therefore the value accessed through a pointer before a subsequent call to the same function can
change unexpectedly.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of Return Value from getenv After Another Call to getenv

#include <stdio.h>
#include <locale.h>
#include <string.h>

void f1(void)
{
 const char* res1;
 const char* res2;
 char copy[128];
 res1 = setlocale(LC_ALL, 0);
 (void) strcpy(copy, res1);
 res2 = setlocale(LC_MONETARY, "French");
 printf("%s\n", res1); /* Non-compliant */
 printf("%s\n", copy); /* Compliant */
 printf("%s\n", res2); /* Compliant */
}

In this example:

• The first printf statement is non-compliant because the pointer returned by setlocale is used
following a subsequent call to it when res2 is assigned.

 MISRA C:2012 Rule 21.20

21-283

• The second printf statement is compliant because the copy operation performed by strcpy is
made before a subsequent call to setlocale function is made.

• The third printf statement is compliant because there is no subsequent call to the setlocale
function is made before use.

Check Information
Group: Standard libraries
Category: Mandatory
AGC Category: Mandatory

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

21 MISRA C 2012

21-284

MISRA C:2012 Rule 21.3
The memory allocation and deallocation functions of <stdlib.h> shall not be used

Description
Rule Definition

The memory allocation and deallocation functions of <stdlib.h> shall not be used.

Rationale

Using memory allocation and deallocation routines can cause undefined behavior. For instance:

• You free memory that you had not allocated dynamically.
• You use a pointer that points to a freed memory location.

Polyspace Implementation

The checker flags uses of the calloc, malloc, realloc, aligned_alloc and free functions.

If you define macros with the same names as these dynamic heap memory allocation functions, and
you expand the macros in the code, this rule is violated. It is assumed that rule 21.2 is not violated.

Additional Message in Report

• The macro <name> shall not be used.
• Identifier XX should not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of malloc, calloc, realloc and free

#include <stdlib.h>

static int foo(void);

typedef struct struct_1 {
 int a;
 char c;
} S_1;

static int foo(void) {

 S_1 * ad_1;
 int * ad_2;
 int * ad_3;

 MISRA C:2012 Rule 21.3

21-285

 ad_1 = (S_1*)calloc(100U, sizeof(S_1)); /* Non-compliant */
 ad_2 = malloc(100U * sizeof(int)); /* Non-compliant */
 ad_3 = realloc(ad_3, 60U * sizeof(long)); /* Non-compliant */

 free(ad_1); /* Non-compliant */
 free(ad_2); /* Non-compliant */
 free(ad_3); /* Non-compliant */

 return 1;
}

In this example, the rule is violated when the functions malloc, calloc, realloc and free are
used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 18.7 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-286

MISRA C:2012 Rule 21.4
The standard header file <setjmp.h> shall not be used

Description
Rule Definition

The standard header file <setjmp.h> shall not be used.

Rationale

Using setjmp and longjmp, you can bypass normal function call mechanisms and cause undefined
behavior.

Polyspace Implementation

If the longjmp function is a macro and the macro is expanded in the code, this rule is violated. It is
assumed that rule 21.2 is not violated.

Additional Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.4

21-287

MISRA C:2012 Rule 21.5
The standard header file <signal.h> shall not be used

Description
Rule Definition

The standard header file <signal.h> shall not be used.

Rationale

Using signal handling functions can cause implementation-defined and undefined behavior.

Polyspace Implementation

If the signal function is a macro and the macro is expanded in the code, this rule is violated. It is
assumed that rule 21.2 is not violated.

Additional Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-288

MISRA C:2012 Rule 21.6
The Standard Library input/output functions shall not be used

Description
Rule Definition

The Standard Library input/output functions shall not be used.

Rationale

This rule applies to the functions that are provided by <stdio.h> and in C99, their character-wide
equivalents provided by <wchar.h>. Using these functions can cause unspecified, undefined and
implementation-defined behavior.

Polyspace Implementation

If the Standard Library function is a macro and the macro is expanded in the code, this rule is
violated. It is assumed that rule 21.2 is not violated.

Additional Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.6

21-289

MISRA C:2012 Rule 21.7
The Standard Library functions atof, atoi, atol, and atoll functions of <stdlib.h> shall not be
used

Description
Rule Definition

The Standard Library functions atof, atoi, atol, and atoll functions of <stdlib.h> shall not be
used.

Rationale

When a string cannot be converted, the behavior of these functions can be undefined.

Polyspace Implementation

If the function is a macro and the macro is expanded in the code, this rule is violated. It is assumed
that rule 21.2 is not violated.

Additional Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-290

MISRA C:2012 Rule 21.8
The Standard Library functions of abort, exit, getnenv and system of <stdlib.h> shall not be
used

Description
Rule Definition

The Standard Library functions of abort, exit, getnenv and system of <stdlib.h> shall not be
used.

Rationale

Using these functions can cause undefined and implementation-defined behaviors.

Polyspace Implementation

Polyspace flags the use of the abort, exit, _Exit, or quick_exit functions that are defined in
<stdlib.h>.

If these functions are user-defined, Polyspace does not flag them.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Unsafe Termination Functions
#include<stdlib.h>

void foo(){
 puts("pushed");
 //...
 _Exit(-1);//Noncompliant
}
void bar(){
 puts("pushed");
 //...
 abort();//Noncompliant
}
void foobar(){
 puts("pushed");
 //...
 quick_exit(-1);//Noncompliant
}

In this example, unsafe termination functions are invoked to terminate the program. These functions
might not perform the essential cleanup operations. For instance, the data pushed to the output
stream might become lost because the program is terminated before the streams are closed.
Polyspace flags the use of such unsafe termination programs.

 MISRA C:2012 Rule 21.8

21-291

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-292

MISRA C:2012 Rule 21.9
The Standard Library library functions bsearch and qsort of <stdlib.h> shall not be used

Description
Rule Definition

The library functions bsearch and qsort of <stdlib.h> shall not be used.

Rationale

The comparison function in these library functions can behave inconsistently when the elements
being compared are equal. Also, the implementation of qsort can be recursive and place unknown
demands on the call stack.

Polyspace Implementation

If the function is a macro and the macro is expanded in the code, this rule is violated. It is assumed
that rule 21.2 is not violated.

Additional Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.9

21-293

MISRA C:2012 Rule 21.10
The Standard Library time and date functions shall not be used

Description
Rule Definition

The Standard Library time and date functions shall not be used.

Rationale

Using these functions can cause unspecified, undefined and implementation-defined behavior.

Polyspace Implementation

If the function is a macro and the macro is expanded in the code, this rule is violated. It is assumed
that rule 21.2 is not violated.

Additional Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-294

MISRA C:2012 Rule 21.11
The standard header file <tgmath.h> shall not be used

Description
Rule Definition

The standard header file <tgmath.h> shall not be used.

Rationale

Using the facilities of this header file can cause undefined behavior.

Polyspace Implementation

If the function is a macro and the macro is expanded in the code, this rule is violated. It is assumed
that rule 21.2 is not violated.

Additional Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of Function in tgmath.h

#include <tgmath.h>

float f1,res;

void func(void) {
 res = sqrt(f1); /* Non-compliant */
}

In this example, the rule is violated when the sqrt macro defined in tgmath.h is used.
Correction — Use Appropriate Function in math.h

For this example, one possible correction is to use the function sqrtf defined in math.h for float
arguments.

#include <math.h>

float f1, res;

 MISRA C:2012 Rule 21.11

21-295

void func(void) {
 res = sqrtf(f1);
}

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

21 MISRA C 2012

21-296

MISRA C:2012 Rule 21.12
The exception handling features of <fenv.h> should not be used

Description
Rule Definition

The exception handling features of <fenv.h> should not be used.

Rationale

In some cases, the values of the floating-point status flags are unspecified. Attempts to access them
can cause undefined behavior.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of Features in <fenv.h>

#include <fenv.h>

void func(float x, float y) {
 float z;

 feclearexcept(FE_DIVBYZERO); /* Non-compliant */
 z = x/y;

 if(fetestexcept (FE_DIVBYZERO)) { /* Non-compliant */
 }
 else {
#pragma STDC FENV_ACCESS ON
 z=x*y;
 if(z>x) {
#pragma STDC FENV_ACCESS OFF
 if(fetestexcept (FE_OVERFLOW)) { /* Non-compliant */
 }
 }
 }
}

In this example, the rule is violated when the identifiers feclearexcept and fetestexcept, and
the macros FE_DIVBYZERO and FE_OVERFLOW are used.

Check Information
Group: Standard libraries
Category: Advisory
AGC Category: Advisory

 MISRA C:2012 Rule 21.12

21-297

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

21 MISRA C 2012

21-298

MISRA C:2012 Rule 21.13
Any value passed to a function in <ctype.h> shall be representable as an unsigned char or be the
value EOF

Description
Rule Definition

Any value passed to a function in <ctype.h> shall be representable as an unsigned char or be the
value EOF.

This rule comes from MISRA C: 2012 Amendment 1.

Rationale

Functions in <ctype.h> have a well-defined behavior only for int arguments whose value is within
the range of unsigned char or the negative value equivalent of EOF. The use of other values results
in undefined behavior.

Polyspace Implementation

Polyspace considers that the negative value equivalent of EOF is -1 and does not raise a violation if
you pass -1 as argument to a function in ctype.h.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Invalid Arguments for Functions from <ctype.h>

#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <ctype.h>

bool f(uint8_t a)
{
 return (isdigit((int32_t) a) /* Compliant */
 && isalpha((int32_t) 'b') /* Compliant */
 && islower(EOF) /* Compliant */
 && isalpha(256)); /* Non-compliant */
}

In this example, the rule is violated when 256, which is an neither an unsigned char or the value
EOF, is passed as an input argument to the isalpha function.

Note The int casts in the above example are required to comply with Rule 10.3 on page 21-139.

 MISRA C:2012 Rule 21.13

21-299

Check Information
Group: Standard libraries
Category: Mandatory
AGC Category: Mandatory

See Also
MISRA C:2012 Rule 10.3 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

21 MISRA C 2012

21-300

MISRA C:2012 Rule 21.14
The Standard Library function memcmp shall not be used to compare null terminated strings

Description
Rule Definition

The Standard Library function memcmp shall not be used to compare null terminated strings.

This rule comes from MISRA C: 2012 Amendment 1.

Rationale

If memcmp is used to compare two strings and the length of either string is less than the number of
bytes compared, the strings can appear different even when they are logically the same. The
characters after the null terminator are compared even though they do not form part of the string.

For instance:

memcmp(string1, string2, sizeof(string1))

can compare bytes after the null terminator if string1 is longer than string2.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Using memcmp for String Comparison

extern char buffer1[12];
extern char buffer2[12];
void f1(void)
{
 (void) strcpy(buffer1, "abc");
 (void) strcpy(buffer2, "abc");

 if (memcmp(buffer1, /* Non-compliant */
 buffer2,
 sizeof(buffer1)) != 0) {

 }
}

In this example, the comparison in the if statement is noncompliant. The strings stored in buffer1
and buffer2 can be reported different, but this difference comes from uninitialized characters after
the null terminators.

 MISRA C:2012 Rule 21.14

21-301

Check Information
Group: Standard libraries
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 21.15 | MISRA C:2012 Rule 21.16 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

21 MISRA C 2012

21-302

MISRA C:2012 Rule 21.15
The pointer arguments to the Standard Library functions memcpy, memmove and memcmp shall be
pointers to qualified or unqualified versions of compatible types

Description
Rule Definition

The pointer arguments to the Standard Library functions memcpy, memmove and memcmp shall be
pointers to qualified or unqualified versions of compatible types.

This rule comes from MISRA C: 2012 Amendment 1.

Rationale

The functions

memcpy(arg1, arg2, num_bytes);
memmove(arg1, arg2, num_bytes);
memcmp(arg1, arg2, num_bytes);

perform a byte-by-byte copy, move or comparison between the memory locations that arg1 and arg2
point to. A byte-by-byte copy, move or comparison is meaningful only if arg1 and arg2 have
compatible types.

Using pointers to different data types for arg1 and arg2 typically indicates a coding error.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Incompatible Argument Types for memcpy

#include <stdint.h>

void f (uint8_t s1[8], uint16_t s2[8])
{
 (void) memcpy (s1, s2, 8); /* Non-compliant */
}

In this example, s1 and s2 are pointers to different data types. The memcpy statement copies eight
bytes from one buffer to another.

Eight bytes represent the entire span of the buffer that s1 points to, but only part of the buffer that
s2 points to. Therefore, the memcpy statement copies only part of s2 to s1, which might be
unintended.

 MISRA C:2012 Rule 21.15

21-303

Check Information
Group: Standard libraries
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 21.14 | MISRA C:2012 Rule 21.16 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

21 MISRA C 2012

21-304

MISRA C:2012 Rule 21.16
The pointer arguments to the Standard Library function memcmp shall point to either a pointer type,
an essentially signed type, an essentially unsigned type, an essentially Boolean type or an essentially
enum type

Description
Rule Definition

The pointer arguments to the Standard Library function memcmp shall point to either a pointer type,
an essentially signed type, an essentially unsigned type, an essentially Boolean type or an essentially
enum type.

This rule comes from MISRA C: 2012 Amendment 1.

Rationale

The Standard Library function

memcmp (lhs, rhs, num);

performs a byte-by-byte comparison of the first num bytes of the two objects that lhs and rhs point
to.

Do not use memcmp for a byte-by-byte comparison of the following.

Type Rationale
Structures If members of a structure have different data types, your compiler introduces

additional padding for data alignment in memory. The content of these extra
padding bytes is meaningless. If you perform a byte-by-byte comparison of
structures with memcmp, you compare even the meaningless data stored in the
padding. You might reach the false conclusion that two data structures are not
equal, even if their corresponding members have the same value.

Objects with
essentially floating
type

The same floating point value can be stored using different representations. If
you perform a byte-by-byte comparison of two variables with memcmp, you can
reach the false conclusion that the variables are unequal even when they have
the same value. The reason is that the values are stored using two different
representations.

Essentially char
arrays

Essentially char arrays are typically used to store strings. In strings, the content
in bytes after the null terminator is meaningless. If you perform a byte-by-byte
comparison of two strings with memcmp, you might reach the false conclusion
that two strings are not equal, even if the bytes before the null terminator store
the same value.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

 MISRA C:2012 Rule 21.16

21-305

Examples
Using memcmp for Comparison of Structures, Unions, and essentially char Arrays
#include <stdbool.h>
#include <stdint.h>

struct S {
//...
};

bool f1(struct S* s1, struct S* s2)
{
 return (memcmp(s1, s2, sizeof(struct S)) != 0); /* Non-compliant */
}

union U {
 uint32_t range;
 uint32_t height;
};
bool f2(union U* u1, union U* u2)
{
 return (memcmp(u1, u2, sizeof(union U)) != 0); /* Non-compliant */
}

const char a[6] = "task";
bool f3(const char b[6])
{
 return (memcmp(a, b, 6) != 0); /* Non-compliant */
}

In this example:

• Structures s1 and s2 are compared in the bool_t f1 function. The return value of this function
might indicate that s1 and s2 are different due to padding. This comparison is noncompliant.

• Unions u1 and u2 are compared in the bool_t f2 function. The return value of this function
might indicate that u1 and u2 are the same due to unintentional comparison of u1.range and
u2.height, or u1.height and u2.range. This comparison is noncompliant.

• Essentially char arrays a and b are compared in the bool_t f3 function. The return value of this
function might incorrectly indicate that the strings are different because the length of a (four) is
less than the number of bytes compared (six). This comparison is noncompliant.

Check Information
Group: Standard libraries
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 21.14 | MISRA C:2012 Rule 21.15 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

21 MISRA C 2012

21-306

Introduced in R2017a

 MISRA C:2012 Rule 21.16

21-307

MISRA C:2012 Rule 21.17
Use of the string handling function from <string.h> shall not result in accesses beyond the bounds
of the objects referenced by their pointer parameters

Description
Rule Definition

Use of the string handling function from <string.h> shall not result in accesses beyond the bounds
of the objects referenced by their pointer parameters.

This rule comes from MISRA C: 2012 Amendment 1.

Rationale

Incorrect use of a string handling function might result in a read or write access beyond the bounds
of the function arguments, resulting in undefined behavior.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Pointer Access Out of Bounds from strcpy Usage

#include <stdio.h>
#include<string.h>

char string[] = "Short";
void f1(const char* str)
{
 (void) strcpy(string, "Too long to fit"); /* Non-compliant */
 if (strlen(str) < (sizeof(string) - 1u)) {
 (void) strcpy(string, str); /* Compliant */
 }
}

size_t f2(void)
{
 char text[5] = "Token";
 return strlen(text); /* Non-compliant */
}

In this example:

• The first use of strcpy is noncompliant because it attempts to write beyond the end of its
destination argument string.

• The second use of strcpy is compliant because it attempts to write to the destination argument
string only if the source argument str fits.

21 MISRA C 2012

21-308

• The use of strlen is noncompliant. strlen computes the length of a string up to the null
terminator. The character array text has no null terminator.

Check Information
Group: Standard libraries
Category: Mandatory
AGC Category: Mandatory

See Also
MISRA C:2012 Rule 21.18 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Rule 21.17

21-309

MISRA C:2012 Rule 21.18
The size_t argument passed to any function in <string.h> shall have an appropriate value

Description
Rule Definition

The size_t argument passed to any function in <string.h> shall have an appropriate value.

This rule comes from MISRA C: 2012 Amendment 1.

Rationale

The value must be positive and not greater than the size of the smallest object passed by pointer to
the function. For instance, suppose you use the strncmp function to compare two strings
lhs_string and rhs_string as follows:

strncmp (lhs_string, rhs_string, num)

The third argument num must be positive and must not be greater than the size of lhs_string or
rhs_string, whichever is smaller.

Otherwise, using the function can result in read or write access beyond the bounds of the function
argument.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Incorrect size_t Argument for memcmp

#include <string.h>
char buf1[5] = "12345";
char buf2[10] = "1234567890";

void f(void)
{
 if (memcmp(buf1, buf2, 5) == 0) { /* Compliant */

 }
 if (memcmp(buf1, buf2, 6) == 0) { /* Non-compliant */

 }
}

In this example, the first if statement is compliant. The size_t argument is five, which is same as
the size of the smaller string, buf1.

By the same reasoning, the second if statement is noncompliant.

21 MISRA C 2012

21-310

Check Information
Group: Standard libraries
Category: Mandatory
AGC Category: Mandatory

See Also
MISRA C:2012 Rule 21.17 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Rule 21.18

21-311

MISRA C:2012 Rule 21.19
The pointers returned by the Standard Library functions localeconv, getenv, setlocale or
strerror shall only be used as if they have pointer to const-qualified type

Description
Rule Definition

The pointers returned by the Standard Library functions localeconv, getenv, setlocale or
strerror shall only be used as if they have pointer to const-qualified type.

This rule comes from MISRA C: 2012 Amendment 1.

Rationale

The C99 Standard states that if the program modifies the structure pointed to by the value returned
by localeconv, or the strings returned by getenv, setlocale or strerro, undefined behavior
occurs. Treating the pointers returned by the various functions as if they were const-qualified allows
an analysis tool to detect any attempt to modify an object through one of the pointers. Assigning the
return values of the functions to const-qualified pointers results in the compiler issuing a diagnostic
if an attempt is made to modify an object.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Returning Pointers fromsetlocale and localeconv
#include <locale.h>
#include <string.h>

void f1(void)
{
 char* s1 = setlocale(LC_ALL, 0); /* Non-compliant */
 struct lconv* conv = localeconv(); /* Non-compliant */
 s1[1] = 'A'; /* Non-compliant. Undefined behavior */
 conv->decimal_point = "^"; /* Non-compliant. Undefined behavior */
}

void f2(void)
{
 char str[128];
 (void) strcpy(str, setlocale(LC_ALL, 0)); /* Compliant */
 const struct lconv* conv = localeconv(); /* Compliant */
 conv->decimal_point = "^"; /* Non-compliant. Constraint violation */
}

void f3(void)
{
 const struct lconv* conv = localeconv(); /* Compliant */
 conv->grouping[2] = 'x'; /* Non-compliant */
}

In the above example:

• The usage of setlocale and localeconv in the function f1 are non-compliant as the returned
pointers are assigned to non-const—qualified pointers.

21 MISRA C 2012

21-312

Note The usage of setlocale and localeconv above are not constraint violations and will
therefore not be reported by a compiler. However, an analysis tool will be able to report a
violation.

• The usage of setlocale in the function f2 is compliant as strcpy takes a const char * as its
second parameter. The usage of localeconv in the function f2 is compliant as the returned
pointers are assigned to a const-qualified pointer. Any attempt to modify an object through a
pointer will be reported by a compiler or analysis tool as this is a constraint violation.

• The usage of a const-qualified pointer in the function f3 gives compile time protection of the
value returned by localeconv but the same is not true for the strings it references. Modification
of these strings can be detected by an analysis tool.

Check Information
Group: Standard libraries
Category: Mandatory
AGC Category: Mandatory

See Also
MISRA C:2012 Rule 7.4 | MISRA C:2012 Rule 11.8 | MISRA C:2012 Rule 21.8 | Check
MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Rule 21.19

21-313

MISRA C:2012 Rule 21.21
The Standard Library function system of <stdlib.h> shall not be used

Description
Rule Definition

The Standard Library function system of <stdlib.h> shall not be used.

This rule comes from MISRA C: 2012 Amendment 2.

Rationale

If the argument of the system function is not sanitized, it can cause exploitable vulnerabilities. An
attacker can execute arbitrary commands or read and modify data anywhere on the system.

Polyspace Implementation

The checker flags uses of the Standard Library function system.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
system() Function Called

#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

enum {
SIZE512=512,
SIZE3=3};

void func_noncompliant(char *arg)
{
 char buf[SIZE512];
 int retval=sprintf(buf, "/usr/bin/any_cmd %s", arg);

 if (retval<=0 || retval>SIZE512){
 /* Handle error */
 abort();
 }
 /* Use of system() to pass any_cmd with
 unsanitized argument to command processor */

 if (system(buf) == -1) { //Noncompliant
 /* Handle error */
 }

21 MISRA C 2012

21-314

}

void func_compliant(char *arg)
{
 char *const args[SIZE3] = {"any_cmd", arg, NULL};
 char *const env[] = {NULL};

 /* Sanitize argument */

 /* Use execve() to execute any_cmd. */

 if (execve("/usr/bin/time", args, env) == -1) { //Compliant
 /* Handle error */
 }
}

In this example, in the func_noncompliant function, the system function passes its argument to
the host environment for the command processor to execute. This code is vulnerable to an attack by
command-injection.

In the compliant version of the same function, func_compliant, the argument of any_cmd is
sanitized, and then passed to the execve function for execution. exec-family functions are not
vulnerable to command-injection attacks.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2021a

 MISRA C:2012 Rule 21.21

21-315

MISRA C:2012 Rule 22.1
All resources obtained dynamically by means of Standard Library functions shall be explicitly
released

Description
Rule Definition

All resources obtained dynamically by means of Standard Library functions shall be explicitly
released.

Rationale

Resources are something that you must return to the system once you have used them. Examples
include dynamically allocated memory and file descriptors.

If you do not release resources explicitly as soon as possible, then a failure can occur due to
exhaustion of resources.

Polyspace Implementation

The checker flags uses of:

• Memory-allocation functions such as malloc and aligned_alloc if the memory is not released.
• File opening functions such as fopen if the file is not closed.

You can check for this rule with a Bug Finder analysis only.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Dynamic Memory
#include<stdlib.h>

void performOperation(int);

int func1(int num)
{
 int* arr1 = (int*) malloc(num * sizeof(int));

 return 0; /* Non-compliant - memory allocated to arr1 is not released */
}

int func2(int num)
{
 int* arr2 = (int*) malloc(num * sizeof(int));

 free(arr2);
 return 0; /* Compliant - memory allocated to arr2 is released */
}

In this example, the rule is violated when memory dynamically allocated using the malloc function is
not freed using the free function before the end of scope.

21 MISRA C 2012

21-316

File Pointers

#include <stdio.h>
void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");

 fp1 = fopen ("data2.txt", "w"); /* Non-compliant */
 fprintf (fp1, "!");
 fclose (fp1);
}

void func2(void) {
 FILE *fp2;
 fp2 = fopen ("data1.txt", "w");
 fprintf (fp2, "*");
 fclose(fp2);

 fp2 = fopen ("data2.txt", "w"); /* Compliant */
 fprintf (fp2, "!");
 fclose (fp2);
}

In this example, the file pointer fp1 is pointing to a file data1.txt. Before fp1 is explicitly
dissociated from the file stream of data1.txt, it is used to access another file data2.txt.
Therefore, the rule 22.1 is violated.

The rule is not violated in func2 because file data1.txt is closed and the file pointer fp2 is
explicitly dissociated from data1.txt before it is reused.

Check Information
Group: Resources
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Dir 4.13 | MISRA C:2012 Rule 21.3 | MISRA C:2012 Rule 21.6 | Resource
leak | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Rule 22.1

21-317

MISRA C:2012 Rule 22.10
The value of errno shall only be tested when the last function to be called was an errno-setting
function

Description
Rule Definition

The value of errno shall only be tested when the last function to be called was an errno-setting
function.

This rule comes from MISRA C: 2012 Amendment 1.

Rationale

Besides the errno-setting functions, the Standard does not enforce that other functions set errno on
errors. Whether these functions set errno or not is implementation-dependent.

To detect errors, if you check errno alone, the validity of this check also becomes implementation-
dependent. On implementations that do not require errno setting, even if you check errno alone,
you can overlook error conditions.

For a list of errno-setting functions, see MISRA C:2012 Rule 22.8.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Incorrect Test of errno

#include <stddef.h>
#include <stdlib.h>

typedef double float64_t;

void f(void)
{
 float64_t f64;
 errno = 0;
 f64 = atof("A.12");
 if (0 == errno) { /* Non-compliant */
 }
 errno = 0;
 f64 = strtod("A.12", NULL);
 if (0 == errno) { /* Compliant */
 }
}

In this example:

21 MISRA C 2012

21-318

• The first if statement is noncompliant because atof may or may not set errno when an error is
detected. f64 may not have a valid value within this if statement.

• The second if statement is compliant because strtod is an errno-setting function. f64 will have
a valid value within this if statement.

Check Information
Group: Resources
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 22.8 | MISRA C:2012 Rule 22.9 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Rule 22.10

21-319

MISRA C:2012 Rule 22.2
A block of memory shall only be freed if it was allocated by means of a Standard Library function

Description
Rule Definition

A block of memory shall only be freed if it was allocated by means of a Standard Library function.

Rationale

The Standard Library functions that allocate memory are malloc, calloc and realloc.

You free a block of memory when you pass its address to the free or realloc function. The
following causes undefined behavior:

• You free a block of memory that you did not allocate.
• You free a block of memory that have already freed before.

Polyspace Implementation

You can check for this rule with a Bug Finder analysis only.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Memory Not Allocated Is Freed

#include <stdlib.h>

void func1(void) {
 int x=0;
 int *ptr=&x;

 free(ptr); /* Non-compliant: ptr is not dynamically allocated */

}

In this example, the rule is violated because the free function operates on a pointer that does not
point to dynamically allocated memory.

Memory Freed Twice

#include <stdlib.h>

void func(int arrSize) {
 int *ptr = (int*) malloc(arrSize* sizeof(int));

21 MISRA C 2012

21-320

 free(ptr); /* Block of memory freed once */
 free(ptr); /* Non-compliant - Block of memory freed twice */
}

In this example, the rule is violated when the free function operates on ptr twice without a
reallocation in between.

Check Information
Group: Resources
Category: Mandatory
AGC Category: Mandatory

See Also
MISRA C:2012 Dir 4.13 | MISRA C:2012 Rule 21.3 | Invalid free of pointer |
Deallocation of previously deallocated pointer | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Rule 22.2

21-321

MISRA C:2012 Rule 22.3
The same file shall not be open for read and write access at the same time on different streams

Description
Rule Definition

The same file shall not be open for read and write access at the same time on different streams.

Rationale

If a file is both written and read via different streams, the behavior can be undefined.

Polyspace Implementation

You can check for this rule with a Bug Finder analysis only.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Opening File That Is Open in Another Stream

#include <stdio.h>

void func(void) {
 FILE *fw = fopen("tmp.txt", "r+");
 FILE *fr = fopen("tmp.txt", "r"); /* Non-compliant: File open in stream fw*/
}

In this example, the rule is violated when the same file tmp.txt is opened in two streams. The FILE
pointers fw and fr point to two different streams here.

Check Information
Group: Resources
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 21.6 | Resource leak | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

21 MISRA C 2012

21-322

Introduced in R2015b

 MISRA C:2012 Rule 22.3

21-323

MISRA C:2012 Rule 22.4
There shall be no attempt to write to a stream which has been opened as read-only

Description
Rule Definition

There shall be no attempt to write to a stream which has been opened as read-only.

Rationale

The Standard does not specify the behavior if an attempt is made to write to a read-only stream.

Polyspace Implementation

You can check for this rule with a Bug Finder analysis only.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Writing to File Opened as Read-Only
#include <stdio.h>

void func1(void) {
 FILE *fp1 = fopen("tmp.txt", "r");
 (void) fprintf(fp1, "Some text"); /* Non-compliant: Read-only stream */
 (void) fclose(fp1);
}

void func2(void) {
 FILE *fp2 = fopen("tmp.txt", "r+");
 (void) fprintf(fp2, "Some text"); /* Compliant */
 (void) fclose(fp2);
}

In this example, the file stream associated with fp1 is opened as read-only. The rule is violated when
the stream is written.

Check Information
Group: Resources
Category: Mandatory
AGC Category: Mandatory

See Also
MISRA C:2012 Rule 21.6 | Writing to read-only resource | Check MISRA C:2012 (-
misra3)

21 MISRA C 2012

21-324

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Rule 22.4

21-325

MISRA C:2012 Rule 22.5
A pointer to a FILE object shall not be dereferenced

Description
Rule Definition

A pointer to a FILE object shall not be dereferenced.

Rationale

The Standard states that the address of a FILE object used to control a stream can be significant.
Copying that object might not give the same behavior. This rule ensures that you cannot perform such
a copy.

Directly manipulating a FILE object might be incompatible with its use as a stream designator.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
FILE* Pointer Dereferenced

#include <stdio.h>

void func(void) {
 FILE *pf1;
 FILE *pf2;
 FILE f3;

 pf2 = pf1; /* Compliant */
 f3 = *pf2; /* Non-compliant */
 pf2->_flags=0; /* Non-compliant */
 }

In this example, the rule is violated when the FILE* pointer pf2 is dereferenced.

Check Information
Group: Resources
Category: Mandatory
AGC Category: Mandatory

See Also
MISRA C:2012 Rule 21.6 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”

21 MISRA C 2012

21-326

“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Rule 22.5

21-327

MISRA C:2012 Rule 22.6
The value of a pointer to a FILE shall not be used after the associated stream has been closed

Description
Rule Definition

The value of a pointer to a FILE shall not be used after the associated stream has been closed.

Rationale

The Standard states that the value of a FILE* pointer is indeterminate after you close the stream
associated with it.

Polyspace Implementation

You can check for this rule with a Bug Finder analysis only.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of FILE Pointer After Closing Stream
#include <stdio.h>

void func(void) {
 FILE *fp;
 void *ptr;

 fp = fopen("tmp","w");
 if(fp != NULL) {
 fclose(fp);
 fprintf(fp,"text"); // Non-compliant
 }
}

In this example, the stream associated with the FILE* pointer fp is closed with the fclose function.
The rule is violated FILE* pointer fp is used before the stream is re-opened.

Check Information
Group: Resources
Category: Mandatory
AGC Category: Mandatory

See Also
MISRA C:2012 Dir 4.13 | MISRA C:2012 Rule 21.6 | Use of previously closed
resource | Check MISRA C:2012 (-misra3)

21 MISRA C 2012

21-328

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Rule 22.6

21-329

MISRA C:2012 Rule 22.7
The macro EOF shall only be compared with the unmodified return value from any Standard Library
function capable of returning EOF

Description
Rule Definition

The macro EOF shall only be compared with the unmodified return value from any Standard Library
function capable of returning EOF.

This rule comes from MISRA C: 2012 Amendment 1.

Rationale

The EOF value may become indistinguishable from a valid character code if the value returned is
converted to another type. In such cases, testing the converted value against EOF will not reliably
identify if the end of the file has been reached or if an error has occurred.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Possibly Misleading Results from Comparison with EOF

#include <stdio.h>
#include <stdint.h>

void f1(void)
{
 char ch;
 ch = (char) getchar();
 if (EOF != (int32_t) ch) { /* Non-compliant */
 }
}

void f2(void)
{
 char ch;
 ch = (char) getchar();
 if (!feof(stdin)) { /* Compliant */
 }
}

void f3(void)
{
 int32_t i_ch;
 i_ch = getchar();
 if (EOF != i_ch) { /* Compliant */

21 MISRA C 2012

21-330

 char ch;
 ch = (char) i_ch;
 }
}

In this example:

• The test in the f1 function is non-compliant. It will not be reliable as the return value is cast to a
narrower type before checking for EOF.

• The test in the f2 function is compliant. It shows how feof() can be used to check for EOF when
the return value from getchar() has been subjected to type conversion.

• The test in the f3 function is compliant. It is reliable as the unconverted return value is used when
checking for EOF.

Check Information
Group: Resources
Category: Required
AGC Category: Required

See Also
Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Rule 22.7

21-331

MISRA C:2012 Rule 22.8
The value of errno shall be set to zero prior to a call to an errno-setting-function

Description
Rule Definition

The value of errno shall be set to zero prior to a call to an errno-setting-function.

This rule comes from MISRA C: 2012 Amendment 1.

Rationale

If an error occurs during a call to an errno-setting-function, the function writes a nonzero value to
errno. Otherwise, errno is not modified.

If you do not explicitly set errno to zero before a function call, it can contain values from a previous
call. Checking errno for nonzero values after the function call can give the false impression that an
error occurred.

Errno-setting functions include:

• ftell, fgetpos, fgetwc and related functions.
• strtoimax, strtol and related functions.

The wide-character equivalents such as wcstoimax and wcstol are also covered.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
errno Not Reset Before Use

#include <stdlib.h>
#include <errno.h>

double val = 0.0;

void f (void)
{
 val = strtod("1.0",NULL);/*errno is not checked*/
 if (0 == errno) /* Non-compliant*/
 {
 val = strtod("1.0",NULL); /* Compliant - case 1*/
 if (0 == errno) /* Check errno for nonzero values */
 {
 }
 }
 else

21 MISRA C 2012

21-332

 {
 errno = 0;
 val = strtod("1.0",NULL); /* Compliant - case 2*/
 if (0 == errno) /* Check errno for nonzero values */
 {
 }
 }
}

In this example, the rule is violated when strtod is called but errno is not reset prior to the call.

The rule is not violated in the following cases:

• Case 1: errno is compared against zero and then strtod is called in the if(0 == errno)
branch.

• Case 2: errno is explicitly set to zero and then strtod is called.

Check Information
Group: Resources
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 22.9 | MISRA C:2012 Rule 22.10 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Rule 22.8

21-333

MISRA C:2012 Rule 22.9
The value of errno shall be tested against zero after calling an errno-setting function

Description
Rule Definition

The value of errno shall be tested against zero after calling an errno-setting function.

This rule comes from MISRA C: 2012 Amendment 1.

Rationale

If an error occurs during a call to an errno-setting-function, the function writes a nonzero value to
errno. Otherwise, errno is not modified.

When errno is nonzero, the function return value is not likely to be correct. Before using this return
value, you must test errno for nonzero values.

Errno-setting functions include:

• ftell, fgetpos, fgetwc and related functions.
• strtoimax, strtol and related functions.

The wide-character equivalents such as wcstoimax and wcstol are also covered.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
errno Not Tested After Function Call
#include <stdlib.h>
#include <errno.h>

void func(void);
double val = 0.0;

void f1 (void)
{
 errno = 0;
 val = strtod ("1.0", NULL); /* Non-compliant */
 func ();

 if (0 != errno)
 {
 }

 errno = 0;
 val = strtod ("1.0", NULL); /* Compliant */
 if (0 == errno)
 {
 func();

21 MISRA C 2012

21-334

 }
}

In this example, the rule is violated when errno is not checked immediately after the first call to
strtod. Instead, a second function func is called. func might use the value in the global variable
val. The value can be incorrect if an error has occurred during the call to strtod.

The rule is not violated when errno is checked before operations that potentially use the return
value of strtod.

Check Information
Group: Resources
Category: Required
AGC Category: Required

See Also
MISRA C:2012 Rule 22.8 | MISRA C:2012 Rule 22.10 | Check MISRA C:2012 (-misra3)

Topics
“Check for Coding Standard Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Rule 22.9

21-335

MISRA C++: 2008

22

MISRA C++:2008 Rule 0-1-1
A project shall not contain unreachable code

Description
Rule Definition

A project shall not contain unreachable code.

Rationale

This rule flags situations where a group of statements is unreachable because of syntactic reasons.
For instance, code following a return statement are always unreachable.

Unreachable code involve unnecessary maintenance and can often indicate programming errors.

Polyspace Implementation

Bug Finder and Code Prover check this coding rule differently. The analyses can produce different
results.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Unreachable statements

int func(int arg) {
 int temp = 0;
 switch(arg) {
 temp = arg; // Noncompliant
 case 1:
 {
 break;
 }
 default:
 {
 break;
 }
 }
 return arg;
 arg++; // Noncompliant
}

These statements are unreachable:

• Statements inside a switch statement that do not belong to a case or default block.
• Statements after a return statement.

22 MISRA C++: 2008

22-2

Check Information
Group: Language Independent Issues
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 0-1-1

22-3

MISRA C++:2008 Rule 0-1-2
A project shall not contain infeasible paths

Description
Rule Definition

A project shall not contain infeasible paths.

Rationale

This rule flags situations where a group of statements is redundant because of nonsyntactic reasons.
For instance, an if condition is always true or false. Code that is unreachable from syntactic reasons
are flagged by rule 0-1-1.

Unreachable or redundant code involve unnecessary maintenance and can often indicate
programming errors.

Polyspace Implementation

Bug Finder and Code Prover check this rule differently. The analysis can produce different results.

• Bug Finder checks for this rule through the Dead code and Useless if checkers..
• Code Prover does not use run-time checks to detect violations of this rule. Instead, Code Prover

detects the violations at compile time.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Boolean Operations with Invariant Results

void func (unsigned int arg) {
 if (arg >= 0U) //Noncompliant
 arg = 1U;
 if (arg < 0U) //Noncompliant
 arg = 1U;
}

An unsigned int variable is nonnegative. Both if conditions involving the variable are always true
or always false and are therefore redundant.

Check Information
Group: Language Independent Issues
Category: Required

22 MISRA C++: 2008

22-4

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 0-1-2

22-5

MISRA C++:2008 Rule 0-1-3
A project shall not contain unused variables

Description
This checker is deactivated in a default Polyspace as You Code analysis . See “Checkers Deactivated
in Polyspace as You Code Default Analysis”.

Rule Definition

A project shall not contain unused variables.

Rationale

Presence of unused variables indicates that the wrong variable name might be used in the source
code. Removing these variables reduces the possibility of the wrong variable being used in further
development. Keep padding bits in bitfields unnamed to reduce unused variables in your project.

Polyspace Implementation

The checker flags local or global variables that are declared or defined but not read or written in any
source files of the project. This specification also applies to members of structures and classes.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of Named Bit Field for Padding

#include <iostream>
struct S {
 unsigned char b1 : 3;
 unsigned char pad: 1; //Noncompliant
 unsigned char b2 : 4;
};
void init(struct S S_obj)
{
 S_obj.b1 = 0;
 S_obj.b2 = 0;
}

In this example, the bit field pad is used for padding the structure. Therefore, the field is never read
or written and causes a violation of this rule. To avoid the violation, use an unnamed field for padding.

#include <iostream>
struct S {
 unsigned char b1 : 3;
 unsigned char : 1; //Compliant

22 MISRA C++: 2008

22-6

 unsigned char b2 : 4;
};
void init(struct S S_obj)
{
 S_obj.b1 = 0;
 S_obj.b2 = 0;
}

Check Information
Group: Language Independent Issues
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2018a

 MISRA C++:2008 Rule 0-1-3

22-7

MISRA C++:2008 Rule 0-1-4
A project shall not contain non-volatile POD variables having only one use

Description
Rule Definition

A project shall not contain non-volatile POD variables having only one use.

Rationale

If you use a non-volatile variable with a Plain Old Data type (int, double, etc.) only once, you can
replace the variable with a constant literal. Your use of a variable indicates that you intended more
than one use for that variable and might have a programming error in the code. You might have
omitted the other uses of the non-volatile variable or incorrectly used other variables at intended
points of use.

Polyspace Implementation

The checker flags local and static variables that have a function scope (locally static) and file scope,
which are used only once. The checker considers const-qualified global variables without the
extern specifier as static variables with file scope.

The checker counts these use cases as one use of the non-volatile variable:

• An explicit initialization using a constant literal or the return value of a function
• An assignment
• A reference to the variable such as a read operation
• An assignment of the variable address to a pointer

If the variable address is assigned to a pointer, the checker assumes that the pointer might be
dereferenced later and does not flag the variable.

Some objects are designed to be used only once by their semantics. Polyspace does not flag a single
use of these objects:

• lock_guard
• scoped_lock
• shared_lock
• unique_lock
• thread
• future
• shared_future

If you use nonstandard objects that provide similar functionality as the objects in the preceding list,
Polyspace might flag single uses of the nonstandard objects. Justify their single uses by using
comments.

22 MISRA C++: 2008

22-8

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Non-volatile Variable Used Only Once

#include <mutex>
int readStatus1();
int readStatus2();
extern std::mutex m;
void foo()
{
 // Initiating lock 'lk'
 std::lock_guard<std::mutex> lk{m};
 int checkEngineStatus1 = readStatus1();
 int checkEngineStatus2 = readStatus2();//Noncompliant

 if(checkEngineStatus1) {
 //Perform some actions if both statuses are valid
 }
 // Release lock when 'lk' is deleted at exit point of scope
}

In this example, the variable checkEngineStatus2 is used only once. The single use of this variable
might indicate a programming error. For instance, you might have intended to check both
checkEngineStatus1 and checkEngineStatus2 in the if condition, but omitted the second
check. The lock_guard object lk is also used only once. Because the semantics of a lock_guard
object justifies its single use, Polyspace does not flag it.

Check Information
Group: Language Independent Issues
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 MISRA C++:2008 Rule 0-1-4

22-9

MISRA C++:2008 Rule 0-1-5
A project shall not contain unused type declarations

Description
Rule Definition

A project shall not contain unused type declarations.

Rationale

If a type is declared but not used, when reviewing the code later, it is unclear if the type is redundant
or left unused by mistake.

Unused types can indicate coding errors. For instance, you declared a enumerated data type for some
specialized data but used an integer type for the data.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Unused enum Declaration

enum switchValue {low, medium, high}; //Noncompliant

void operate(int userInput) {
 switch(userInput) {
 case 0: // Turn on low setting
 break;
 case 1: // Turn on medium setting
 break;
 case 2: // Turn on high setting
 break;
 default: // Return error
 }
}

In this example, the enumerated type switchValue is not used. Perhaps the intention was to use the
type as switch input like this.

enum switchValue {low, medium, high}; //Compliant

void operate(switchValue userInput) {
 switch(userInput) {
 case low: // Turn on low setting
 break;
 case medium: // Turn on medium setting
 break;
 case high: // Turn on high setting
 break;

22 MISRA C++: 2008

22-10

 default: // Return error
 }
}

Check Information
Group: Language Independent Issues
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2018a

 MISRA C++:2008 Rule 0-1-5

22-11

MISRA C++:2008 Rule 0-1-7
The value returned by a function having a non- void return type that is not an overloaded operator
shall always be used

Description
Rule Definition

The value returned by a function having a non- void return type that is not an overloaded operator
shall always be used.

Rationale

The unused return value might indicate a coding error or oversight.

Overloaded operators are excluded from this rule because their usage must emulate built-in
operators which might not use their return value.

Polyspace Implementation

The checker flags functions with non-void return if the return value is not used or not explicitly cast
to a void type.

The checker does not flag the functions memcpy, memset, memmove, strcpy, strncpy, strcat,
strncat because these functions simply return a pointer to their first arguments.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Return Value Not Used

#include <iostream>
#include <new>

int assignMemory(int * ptr){
 int res = 1;
 ptr = new (std::nothrow) int;
 if(ptr==NULL) {
 res = 0;
 }
 return res;
}

void main() {
 int val;
 int status;

 assignMemory(&val); //Noncompliant

22 MISRA C++: 2008

22-12

 status = assignMemory(&val); //Compliant
 (void)assignMemory(&val); //Compliant

}

The first call to the function assignMemory is noncompliant because the return value is not used.
The second and third calls use the return value. The return value from the second call is assigned to a
local variable.

The return value from the third call is cast to void. Casting to void indicates deliberate non-use of
the return value and cannot be a coding oversight.

Check Information
Group: Language Independent Issues
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 0-1-7

22-13

MISRA C++:2008 Rule 0-1-9
There shall be no dead code

Description
Rule Definition

There shall be no dead code.

Rationale

If an operation is reachable but removing the operation does not affect program behavior, the
operation constitutes dead code. For instance, suppose that a variable is never read following a write
operation. The write operation is redundant.

The presence of dead code can indicate an error in the program logic. Because a compiler can
remove dead code, its presence can cause confusion for code reviewers.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Redundant Operations

#define ULIM 10000

int func(int arg) {
 int res;
 res = arg*arg + arg;
 if (res > ULIM)
 res = 0; //Noncompliant
 return arg;
}

In this example, the operations involving res are redundant because the function func returns its
argument arg. All operations involving res can be removed without changing the effect of the
function.

The checker flags the last write operation on res because the variable is never read after that point.
The dead code can indicate an unintended coding error. For instance, you intended to return the
value of res instead of arg.

Check Information
Group: Language Independent Issues
Category: Required

22 MISRA C++: 2008

22-14

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2016b

 MISRA C++:2008 Rule 0-1-9

22-15

MISRA C++:2008 Rule 0-1-10
Every defined function shall be called at least once

Description
Rule Definition

Every defined function shall be called at least once.

Rationale

If a function with a definition is not called, it might indicate a serious coding error. For instance, the
function call is unreachable or a different function is called unintentionally.

Polyspace Implementation

The checker detects situations where a static function is defined but not called at all in its translation
unit.

Additional Message in Report

Every defined function shall be called at least once. The static function funcName is not called.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Uncalled Static Function

static void func1() {
}

static void func2() { //Noncompliant
}

void func3();

int main() {
 func1();
 return 0;
}

The static function func2 is defined but not called.

The function func3 is not called either, however, it is only declared and not defined. The absence of a
call to func3 does not violate the rule.

22 MISRA C++: 2008

22-16

Check Information
Group: Language Independent Issues
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 0-1-10

22-17

MISRA C++:2008 Rule 0-1-11
There shall be no unused parameters (named or unnamed) in nonvirtual functions

Description
Rule Definition

There shall be no unused parameters (named or unnamed) in nonvirtual functions.

Rationale

Unused parameters often indicate later design changes. You perhaps removed all uses of a specific
parameter but forgot to remove the parameter from the parameter list.

Unused parameters constitute an unnecessary overhead. You can also inadvertently call the function
with a different number of arguments causing a parameter mismatch.

Polyspace Implementation

The checker flags a function that has unused named parameters unless the function body is empty.

Additional Message in Report

Function funcName has unused parameters.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Unused Parameters

typedef int (*callbackFn) (int a, int b);

int callback_1 (int a, int b) { //Compliant
 return a+b;
}

int callback_2 (int a, int b) { //Noncompliant
 return a;
}

int callback_3 (int, int b) { //Compliant - flagged by Polyspace
 return b;
}

int getCallbackNumber();
int getInput();

void main() {

22 MISRA C++: 2008

22-18

 callbackFn ptrFn;
 int n = getCallbackNumber();
 int x = getInput(), y = getInput();
 switch(n) {
 case 0: ptrFn = &callback_1; break;
 case 1: ptrFn = &callback_2; break;
 default: ptrFn = &callback_3; break;
 }

 (*ptrFn)(x,y);
}

In this example, the three functions callback_1, callback_2 and callback_3 are used as
callback functions. One of the three functions is called via a function pointer depending on a value
obtained at run time.

• Function callback_1 uses all its parameters and does not violate the rule.
• Function callback_2 does not use its parameter a and violates this rule.
• Function callback_3 also does not use its first parameter but it does not violate the rule because

the parameter is unnamed. However, Polyspace flags the unused parameter as a rule violation. If
you see a violation of this kind, justify the violation with comments. See “Address Polyspace
Results Through Bug Fixes or Justifications”.

Check Information
Group: Language Independent Issues
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2016b

 MISRA C++:2008 Rule 0-1-11

22-19

MISRA C++:2008 Rule 0-1-12
There shall be no unused parameters (named or unnamed) in the set of parameters for a virtual
function and all the functions that override it

Description
Rule Definition

There shall be no unused parameters (named or unnamed) in the set of parameters for a virtual
function and all the functions that override it.

Rationale

Unused parameters often indicate later design changes. You perhaps removed all uses of a specific
parameter but forgot to remove the parameter from the parameter list.

Unused parameters constitute an unnecessary overhead. You can also inadvertently call the function
with a different number of arguments causing a parameter mismatch.

Polyspace Implementation

For each virtual function, the checker looks at all overrides of the function. If an override has a
named parameter that is not used, the checker shows a violation on the original virtual function and
lists the override as a supporting event.

Note that Polyspace checks for unused parameters in virtual functions within single translation units.
For instance, if a base class contains a virtual method with an unused parameter but the derived class
implementation of the method uses that parameter, the rule is not violated. However, if the base class
and derived class are defined in different files, the checker, which operates file by file, flags a
violation of this rule on the base class.

The checker does not flag unused parameters in functions with empty bodies.

Additional Message in Report

There shall be no unused parameters (named or unnamed) in the set of parameters for a virtual
function and all the functions that override it.

Function funcName has unused parameters.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Unused Parameter in Virtual Function

class base {
 public:

22 MISRA C++: 2008

22-20

 virtual void assignVal (int arg1, int arg2) = 0; //Noncompliant
 virtual void assignAnotherVal (int arg1, int arg2) = 0;
};

class derived1: public base {
 public:
 virtual void assignVal (int arg1, int arg2) {
 arg1 = 0;
 }
 virtual void assignAnotherVal (int arg1, int arg2) {
 arg1 = 1;
 }
};

class derived2: public base {
 public:
 virtual void assignVal (int arg1, int arg2) {
 arg1 = 0;
 }
 virtual void assignAnotherVal (int arg1, int arg2) {
 arg2 = 1;
 }
};

In this example, the second parameter of the virtual method assignVal is not used in any of the
derived class implementations of the method.

On the other hand, the implementation of the virtual method assignAnotherVal in derived class
derived1 uses the first parameter of the method. The implementation in derived2 uses the second
parameter. Both parameters of assignAnotherVal are used and therefore the virtual method does
not violate the rule.

Check Information
Group: Language Independent Issues
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2016b

 MISRA C++:2008 Rule 0-1-12

22-21

MISRA C++:2008 Rule 0-2-1
An object shall not be assigned to an overlapping object

Description
Rule Definition

An object shall not be assigned to an overlapping object.

Rationale

When you assign an object to another object with overlapping memory, the behavior is undefined.

The exceptions are:

• You assign an object to another object with exactly overlapping memory and compatible type.
• You copy one object to another with memmove.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Assignment of Union Members

void func (void) {
 union {
 short i;
 int j;
 } a = {0}, b = {1};

 a.j = a.i; //Noncompliant
 a = b; //Compliant
}

In this example, the rule is violated when a.i is assigned to a.j because the two variables have
overlapping regions of memory.

Check Information
Group: Language Independent Issues
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

22 MISRA C++: 2008

22-22

Introduced in R2016b

 MISRA C++:2008 Rule 0-2-1

22-23

MISRA C++:2008 Rule 0-3-2
If a function generates error information, then that error information shall be tested

Description
Rule Definition

If a function generates error information, then that error information shall be tested.

Rationale

If you do not check the return value of functions that indicate error information through their return
values, your program can behave unexpectedly. Errors from these functions can propagate
throughout the program causing incorrect output, security vulnerabilities, and possibly system
failures.

For the errno-setting functions, to see if the function call completed without errors, check errno for
error values. The return values of these errno-setting functions do not indicate errors. The return
value can be one of the following:

• void
• Even if an error occurs, the return value can be the same as the value from a successful call. Such

return values are called in-band error indicators. For instance, strtol converts a string to a long
integer and returns the integer. If the result of conversion overflows, the function returns
LONG_MAX and sets errno to ERANGE. However, the function can also return LONG_MAX from a
successful conversion. Only by checking errno can you distinguish between an error and a
successful conversion.

For the errno-setting functions, you can determine if an error occurred only by checking errno.

Polyspace Implementation

The checker raises a violation when:

• You call sensitive functions that return information about possible errors and then you ignore the
return value or use the output of the function without testing the return value.

The checker covers function from the standard library and other well-known libraries such as the
POSIX library or the WinAPI library. Polyspace considers a function as sensitive if the function call
is prone to failure because of reasons such as:

• Exhausted system resources (for example, when allocating resources).
• Changed privileges or permissions.
• Tainted sources when reading, writing, or converting data from external sources.
• Unsupported features despite an existing API.

Polyspace considers a function a critical sensitive when they perform critical tasks such as:

• Set privileges (for example, setuid)
• Create a jail (for example, chroot)

22 MISRA C++: 2008

22-24

• Create a process (for example, fork)
• Create a thread (for example, pthread_create)
• Lock or unlock mutex (for example, pthread_mutex_lock)
• Lock or unlock memory segments (for example, mlock)

For functions that are not critical, the checker is not flagged if you explicitly ignore the return
value by casting it to void. Explicitly ignoring the return value of critical sensitive functions is
flagged by Polyspace.

• You call a function that sets errno to indicate error conditions, but do not check errno after the
call. For these functions, checking errno is the only reliable way to determine if an error
occurred.

Functions that set errno on errors include:

• fgetwc, strtol, and wcstol.

For a comprehensive list of functions, see documentation about errno.
• POSIXerrno-setting functions such as encrypt and setkey.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Sensitive Function Return Ignored

#include <pthread.h>
#include <string.h>
#include <stddef.h>
#include <stdio.h>
#include <cstdlib>
#define fatal_error() abort()

void initialize_1() {
 pthread_attr_t attr;
 pthread_attr_init(&attr); //Noncompliant
}

void initialize_2() {
 pthread_attr_t attr;
 (void)pthread_attr_init(&attr); //Compliant
}

void initialize_3() {
 pthread_attr_t attr;
 int result;
 result = pthread_attr_init(&attr); //Compliant
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

 MISRA C++:2008 Rule 0-3-2

22-25

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152351

int read_file_1(int argc, char *argv[])
{
 FILE *in;
 if (argc != 2) {
 /* Handle error */
 }

 in = fmemopen (argv[1], strlen (argv[1]), "r");
 return 0; //Noncompliant

}
int read_file_2(int argc, char *argv[])
{
 FILE *in;
 if (argc != 2) {
 /* Handle error */
 }

 in = fmemopen (argv[1], strlen (argv[1]), "r"); //Compliant
 if (in==NULL){
 // Handle error
 }
 return 0;
}

This example shows a call to the sensitive functions pthread_attr_init and fmemopen. Polyspace
raises a flag if:

• You implicitly ignore the return of the sensitive function. Explicitly ignoring the output of sensitive
functions is not flagged.

• You obtain the return value of a sensitive function but do not test the value before exiting the
relevant scope. The violation is raised on the exit statement.

To be compliant, you can explicitly cast their return value to void or test the return values to check
for errors.

Critical Function Return Ignored

#include <pthread.h>
#include <cstdlib>
#define fatal_error() abort()
extern void *start_routine(void *);

void returnnotchecked_1() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;

 (void)pthread_attr_init(&attr);
 (void)pthread_create(&thread_id, &attr, &start_routine, ((void *)0)); //Noncompliant
 pthread_join(thread_id, &res); //Noncompliant
}

void returnnotchecked_2() {
 pthread_t thread_id;
 pthread_attr_t attr;

22 MISRA C++: 2008

22-26

 void *res;
 int result;

 (void)pthread_attr_init(&attr);
 result = pthread_create(&thread_id, &attr, &start_routine, NULL); //Compliant
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }

 result = pthread_join(thread_id, &res); //Compliant
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

In this example, two critical functions are called: pthread_create and pthread_join. The return
value of the pthread_create is ignored by casting to void, but because pthread_create is a
critical function (not just a sensitive function), the rule checker still raises a violation. The other
critical function, pthread_join, returns a value that is ignored implicitly.

To be compliant, check the return value of these critical functions to verify the function performed as
expected.

errno Not Checked After Call to strtol

#include<cstdlib>
#include<cerrno>
#include<climits>
#include<iostream>

int main(int argc, char *argv[]) {
 char *str, *endptr;
 int base;

 str = argv[1];
 base = 10;

 long val = strtol(str, &endptr, base); //Noncompliant
 std::cout<<"Return value of strtol() = %ld\n" << val;

 errno = 0;
 long val2 = strtol(str, &endptr, base); //Compliant
 if((val2 == LONG_MIN || val2 == LONG_MAX) && errno == ERANGE) {
 std::cout<<"strtol error";
 exit(EXIT_FAILURE);
 }
 std::cout<<"Return value of strtol() = %ld\n" << val2;
}

In the noncompliant example, the return value of strtol is used without checking errno.

To be compliant, before calling strtol, set errno to zero . After a call to strtol, check the return
value for LONG_MIN or LONG_MAX and errno for ERANGE.

 MISRA C++:2008 Rule 0-3-2

22-27

Check Information
Group: Language Independent Issues
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

22 MISRA C++: 2008

22-28

MISRA C++:2008 Rule 1-0-1
All code shall conform to ISO/IEC 14882:2003 "The C++ Standard Incorporating Technical
Corrigendum 1"

Description
Rule Definition

All code shall conform to ISO/IEC 14882:2003 "The C++ Standard Incorporating Technical
Corrigendum 1".

Polyspace Implementation

The checker reports compilation errors as detected by a compiler that strictly adheres to the C++03
Standard (ISO/IEC 14882:2003).

Bug Finder and Code Prover check this coding rule differently. The analyses can produce different
results.

Additional Message in Report

The message has two parts:

• Rule statement:

All code shall conform to ISO/IEC 14882:2003 "The C++ Standard Incorporating Technical
Corrigendum 1".

• Compilation error message such as:

Expected a ;

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: General
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 1-0-1

22-29

MISRA C++:2008 Rule 2-3-1
Trigraphs shall not be used

Description
Rule Definition

Trigraphs shall not be used.

Rationale

You denote trigraphs with two question marks followed by a specific third character (for
instance,'??-' represents a '~' (tilde) character and '??)' represents a ']'). These trigraphs can
cause accidental confusion with other uses of two question marks.

For instance, the string

"(Date should be in the form ??-??-??)"

is transformed to

"(Date should be in the form ~~]"

but this transformation might not be intended.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Lexical Conventions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-30

MISRA C++:2008 Rule 2-5-1
Digraphs should not be used

Description
Rule Definition

Digraphs should not be used.

Rationale

Digraphs are a sequence of two characters that are supposed to be treated as a single character. The
checker flags use of these digraphs:

• <%, indicating [
• %>, indicating]
• <:, indicating {
• :>, indicating }
• %:, indicating #
• %:%:

When developing or reviewing code with digraphs, the developer or reviewer can incorrectly consider
the digraph as a sequence of separate characters.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Lexical Conventions
Category: Advisory

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 2-5-1

22-31

MISRA C++:2008 Rule 2-7-1
The character sequence /* shall not be used within a C-style comment

Description
Rule Definition

The character sequence /* shall not be used within a C-style comment.

Rationale

If your code contains a /* in a /* */ comment, it typically means that you have inadvertently
commented out code. See the example that follows.

Polyspace Implementation

You cannot justify a violation of this rule using source code annotations.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of /* in /* */ Comment

void setup(void);
void foo() {
 /* Initializer functions
 setup();
 /* Step functions */ //Noncompliant
}

In this example, the call to setup() is commented out because the ending */ is omitted, perhaps
inadvertently. The checker flags this issue by highlighting the /* in the /* */ comment.

Check Information
Group: Lexical Conventions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-32

MISRA C++:2008 Rule 2-7-2
Sections of code shall not be "commented out" using C-style comments

Description
Rule Definition

Sections of code shall not be "commented out" using C-style comments.

Rationale

C-style comments enclosed in /* */ do not support nesting. A comment beginning with /* ends at
the first */ even when the */ is intended as the end of a later nested comment. If a section of code
that is commented out already contains comments, you can encounter compilation errors (or at least
comment out less code than you intend).

Commenting out code is not a good practice. The commented out code can remain out of sync with
the surrounding code without causing compilation errors. Later, if you uncomment the code, you can
encounter unexpected issues.

Use comments only to explain aspects of the code that are not apparent from the code itself.

Polyspace Implementation

The checker uses internal heuristics to detect commented out code. For instance, characters such as
#, ;, { or } indicate comments that might potentially contain code. These comments are then
evaluated against other metrics to determine the likelihood of code masquerading as comment. For
instance, several successive words without a symbol in between reduces this likelihood.

The checker does not flag the following comments even if they contain code:

• Doxygen comments beginning with /** or /*!.
• Comments that repeat the same symbol several times, for instance, the symbol = here:

/* =====================================
 * A comment
 * =====================================*/

• Comments on the first line of a file.
• Comments that mix the C style (/* */) and C++ style (//).

The checker considers that these comments are meant for documentation purposes or entered
deliberately with some forethought.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

 MISRA C++:2008 Rule 2-7-2

22-33

Examples
Code Commented Out With C-Style Comments

#include <iostream>
/* class randInt {//Noncompliant
 public:
 int getRandInt();
};
*/

int getRandInt();

/* Function to print random integers*/
void printInteger() {
 /* int val = getRandInt();//Noncompliant
 * val++;
 * std::cout << val;*/
 std::cout << getRandInt();
}

This example contains two blocks of commented out code, that constitutes two rule violations.

Check Information
Group: Lexical Conventions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

22 MISRA C++: 2008

22-34

MISRA C++:2008 Rule 2-7-3
Sections of code should not be "commented out" using C++-style comments

Description
Rule Definition

Sections of code should not be "commented out" using C++-style comments.

Rationale

Commenting out code is not a good practice. The commented out code can remain out of sync with
the surrounding code without causing compilation errors. Later, if you uncomment the code, you can
encounter unexpected issues.

Use comments only to explain aspects of the code that are not apparent from the code itself.

Polyspace Implementation

The checker uses internal heuristics to detect commented out code. For instance, characters such as
#, ;, { or } indicate comments that might potentially contain code. These comments are then
evaluated against other metrics to determine the likelihood of code masquerading as comment. For
instance, several successive words without a symbol in between reduces this likelihood.

The checker does not flag the following comments even if they contain code:

• Doxygen comments beginning with /// or //!.
• Comments that repeat the same symbol several times, for instance, the symbol = here:

// =====================================
// A comment
// =====================================*/

• Comments on the first line of a file.
• Comments that mix the C style (/* */) and C++ style (//).

The checker considers that these comments are meant for documentation purposes or entered
deliberately with some forethought.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Code Commented Out With C++-Style Comments

#include <iostream>
int getRandInt();

// Function to print random integers

 MISRA C++:2008 Rule 2-7-3

22-35

void printInteger() {
 // int val = getRandInt();
 // val++;
 // std::cout << val;
 std::cout << getRandInt();
}

This example contains a block of commented out code that violates the rule.

Check Information
Group: Lexical Conventions
Category: Advisory

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

22 MISRA C++: 2008

22-36

MISRA C++:2008 Rule 2-10-1
Different identifiers shall be typographically unambiguous

Description
Rule Definition

Different identifiers shall be typographically unambiguous.

Rationale

When you use identifiers that are typographically close, you can confuse between them.

The identifiers should not differ by:

• The interchange of a lowercase letter with its uppercase equivalent.
• The presence or absence of the underscore character.
• The interchange of the letter O and the digit 0.
• The interchange of the letter I and the digit 1.
• The interchange of the letter I and the letter l.
• The interchange of the letter S and the digit 5.
• The interchange of the letter Z and the digit 2.
• The interchange of the letter n and the letter h.
• The interchange of the letter B and the digit 8.
• The interchange of the letters rn and the letter m.

Polyspace Implementation

The rule checker does not consider the fully qualified names of variables when checking this rule.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce different
results.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Typographically Ambiguous Identifiers

void func(void) {
 int id1_numval;
 int id1_num_val; //Non-compliant

 int id2_numval;
 int id2_numVal; //Non-compliant

 MISRA C++:2008 Rule 2-10-1

22-37

 int id3_lvalue;
 int id3_Ivalue; //Non-compliant

 int id4_xyZ;
 int id4_xy2; //Non-compliant

 int id5_zerO;
 int id5_zer0; //Non-compliant

 int id6_rn;
 int id6_m; //Non-compliant
}

In this example, the rule is violated when identifiers that can be confused for each other are used.

Check Information
Group: Lexical Conventions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-38

MISRA C++:2008 Rule 2-10-2
Identifiers declared in an inner scope shall not hide an identifier declared in an outer scope

Description
Rule Definition

Identifiers declared in an inner scope shall not hide an identifier declared in an outer scope.

Rationale

The rule flags situations where the same identifier name is used in two variable declarations, one in
an outer scope and the other in an inner scope.

int var;
...
{
...
 int var;
...
}

All uses of the name in the inner scope refers to the variable declared in the inner scope. However, a
developer or code reviewer can incorrectly assume that the usage refers to the variable declared in
the outer scope.

Polyspace Implementation

The rule checker flags all cases of variable shadowing including when:

• The same identifier name is used in an outer and inner named namespace.
• The same name is used for a class data member and a variable outside the class.
• The same name is used for a method in a base and derived class.

To exclude these cases, switch to the more modern standard AUTOSAR C++14 and check for the rule
AUTOSAR C++14 Rule A2-10-1.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Local Variable Hiding Global Variable

int varInit = 1;

void doSomething(void);

void step(void) {
 int varInit = 0; //Noncompliant

 MISRA C++:2008 Rule 2-10-2

22-39

 if(varInit)
 doSomething();
}

In this example, varInit defined in func hides the global variable varInit. The if condition refers
to the local varInit and the block is unreachable, but you might expect otherwise.

Loop Index Hiding Variable Outside Loop

void runSomeCheck(int);

void checkMatrix(int dim1, int dim2) {
 for(int index = 0; index < dim1; index++) {
 for(int index = 0; index < dim2; index++) { // Noncompliant
 runSomeCheck(index);
 }
 }
}

In this example, the variable index defined in the inner for loop hides the variable with the same
name in the outer loop.

Check Information
Group: Lexical Conventions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-40

MISRA C++:2008 Rule 2-10-3
A typedef name (including qualification, if any) shall be a unique identifier

Description
Rule Definition

A typedef name (including qualification, if any) shall be a unique identifier.

Rationale

The rule flags identifier declarations where the identifier name is the same as a previously declared
typedef name. When you use identifiers that are identical, you can confuse between them.

Polyspace Implementation

The checker does not flag situations where the conflicting names occur in different namespaces.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce different
results.

Additional Message in Report

A typedef name (including qualification, if any) shall be a unique identifier.

Identifier typeName should not be reused.

Already used as typedef name (fileNamelineNumber).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Typedef Name Conflicting with Other Identifiers

namespace NS1 {
 typedef int WIDTH;
}

namespace NS2 {
 float WIDTH; //Compliant
}

void f1() {
 typedef int TYPE;
}

void f2() {

 MISRA C++:2008 Rule 2-10-3

22-41

 float TYPE; //Noncompliant
}

In this example, the declaration of TYPE in f2() conflicts with a typedef declaration in f1().

The checker does not flag the redeclaration of WIDTH because the two declarations belong to
different namespaces.

Check Information
Group: Lexical Conventions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-42

MISRA C++:2008 Rule 2-10-4
A class, union or enum name (including qualification, if any) shall be a unique identifier

Description
Rule Definition

A class, union or enum name (including qualification, if any) shall be a unique identifier.

Rationale

The rule flags identifier declarations where the identifier name is the same as a previously declared
class, union or typedef name. When you use identifiers that are identical, you can confuse between
them.

Polyspace Implementation

The checker does not flag situations where the conflicting names occur in different namespaces.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce different
results.

Additional Message in Report

A class, union or enum name (including qualification, if any) shall be a unique identifier.

Identifier tagName should not be reused.

Already used as tag name (fileNamelineNumber).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Typedef Name Conflicting with Other Identifiers

void f1() {
 class floatVar {};
}

void f2() {
 float floatVar; //Noncompliant
}

In this example, the declaration of floatVar in f2() conflicts with a class declaration in f1().

Check Information
Group: Lexical Conventions

 MISRA C++:2008 Rule 2-10-4

22-43

Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-44

MISRA C++:2008 Rule 2-10-5
The identifier name of a non-member object or function with static storage duration should not be
reused

Description
This checker is deactivated in a default Polyspace as You Code analysis . See “Checkers Deactivated
in Polyspace as You Code Default Analysis”.

Rule Definition

The identifier name of a non-member object or function with static storage duration should not be
reused.

Rationale

The rule flags situations where the name of an identifier with static storage duration is reused. The
rule applies even if the identifiers belong to different namespaces because the reuse leaves the
chance that you mistake one identifier for the other.

Polyspace Implementation

The rule checker flags redefined functions only when there is a declaration.

The checker is not raised on unused code such as

• Noninstantiated templates
• Uncalled static or extern functions
• Uncalled and undefined local functions
• Unused types and variables

Bug Finder and Code Prover check this coding rule differently. The analyses can produce different
results.

Additional Message in Report

The identifier name of a non-member object or function with static storage duration should not be
reused.

Identifier name should not be reused.

Already used as static identifier with static storage duration (fileNamelineNumber).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

 MISRA C++:2008 Rule 2-10-5

22-45

Examples
Reuse of Identifiers in Different Namespaces

namespace NS1 {
 static int WIDTH;
}

namespace NS2 {
 float WIDTH; //Noncompliant
}

In this example, the identifier name WIDTH is reused in the two namespaces NS1 and NS2.

Check Information
Group: Lexical Conventions
Category: Advisory

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-46

MISRA C++:2008 Rule 2-10-6
If an identifier refers to a type, it shall not also refer to an object or a function in the same scope

Description
Rule Definition

If an identifier refers to a type, it shall not also refer to an object or a function in the same scope.

Rationale

For compatibility with C, in C++, you are allowed to use the same name for a type and an object or
function. However, the name reuse can cause confusion during development or code review.

Polyspace Implementation

If the identifier is a function and the function is both declared and defined, then the violation is
reported only once.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce different
results.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Reuse of Name for Type and Object

struct vector{
 int x;
 int y;
 int z;
}vector; //Noncompliant

In this example, the name vector is used both for the structured data type and for an object of that
type.

Check Information
Group: Lexical Conventions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 2-10-6

22-47

Introduced in R2013b

22 MISRA C++: 2008

22-48

MISRA C++:2008 Rule 2-13-1
Only those escape sequences that are defined in ISO/IEC 14882:2003 shall be used

Description
Rule Definition

Only those escape sequences that are defined in ISO/IEC 14882:2003 shall be used.

Rationale

Escape sequences are certain special characters represented in string and character literals. They
are written with a backslash (\) followed by a character.

The C++ Standard (ISO/IEC 14882:2003, Sec. 2.13.2) defines a list of escape sequences. See Escape
Sequences. Use of escape sequences (backslash followed by character) outside that list leads to
undefined behavior.

Additional Message in Report

Only those escape sequences that are defined in ISO/IEC 14882:2003 shall be used.

\char is not an ISO/IEC escape sequence.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Incorrect Escape Sequences

void func () {
 const char a[2] = "\k"; //Noncompliant
 const char b[2] = "\b"; //Compliant
}

In this example, \k is not a recognized escape sequence.

Check Information
Group: Lexical Conventions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 2-13-1

22-49

https://en.cppreference.com/w/cpp/language/escape
https://en.cppreference.com/w/cpp/language/escape

Introduced in R2013b

22 MISRA C++: 2008

22-50

MISRA C++:2008 Rule 2-13-2
Octal constants (other than zero) and octal escape sequences (other than "\0") shall not be used

Description
Rule Definition

Octal constants (other than zero) and octal escape sequences (other than "\0") shall not be used.

Rationale

Octal constants are denoted by a leading zero. A developer or code reviewer can mistake an octal
constant as a decimal constant with a redundant leading zero.

Octal escape sequences beginning with \ can also cause confusion. Inadvertently introducing an 8 or
9 in the digit sequence after \ breaks the escape sequence and introduces a new digit. A developer or
code reviewer can ignore this issue and continue to treat the escape sequence as one digit.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of Octal Constants and Octal Escape Sequences

void func(void) {
 int busData[6];

 busData[0] = 100;
 busData[1] = 108;
 busData[2] = 052; //Noncompliant
 busData[3] = 071; //Noncompliant
 busData[4] = '\109'; //Noncompliant
 busData[5] = '\100'; //Noncompliant

}

The checker flags all octal constants (other than zero) and all octal escape sequences (other than \0).

In this example:

• The octal escape sequence contains the digit 9, which is not an octal digit. This escape sequence
has implementation-defined behavior.

• The octal escape sequence \100 represents the number 64, but the rule checker forbids this use.

Check Information
Group: Lexical Conventions
Category: Required

 MISRA C++:2008 Rule 2-13-2

22-51

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-52

MISRA C++:2008 Rule 2-13-3
A "U" suffix shall be applied to all octal or hexadecimal integer literals of unsigned type

Description
Rule Definition

A "U" suffix shall be applied to all octal or hexadecimal integer literals of unsigned type.

Rationale

The signedness of a constant is determined from:

• Value of the constant.
• Base of the constant: octal, decimal or hexadecimal.
• Size of the various types.
• Any suffixes used.

Unless you use a suffix u or U, another developer looking at your code cannot determine easily
whether a constant is signed or unsigned.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Lexical Conventions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 2-13-3

22-53

MISRA C++:2008 Rule 2-13-4
Literal suffixes shall be upper case

Description
Rule Definition

Literal suffixes shall be upper case.

Rationale

Literal constants can end with the letter l (el). Enforcing literal suffixes to be upper case removes
potential confusion between the letter l and the digit 1.

For consistency, use upper case constants for other suffixes such as U (unsigned) and F (float).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of Literal Constants with Lower Case Suffix

const int a = 0l; //Noncompliant
const int b = 0L; //Compliant

In this example, both a and b are assigned the same literal constant. However, from a quick glance,
one can mistakenly assume that a is assigned the value 01 (octal one).

Check Information
Group: Lexical Conventions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-54

MISRA C++:2008 Rule 2-13-5
Narrow and wide string literals shall not be concatenated

Description
Rule Definition

Narrow and wide string literals shall not be concatenated.

Rationale

Narrow string literals are enclosed in double quotes without a prefix. Wide string literals are
enclosed in double quotes with a prefix L outside the quotes. See string literals.

Concatenation of narrow and wide string literals can lead to undefined behavior.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Concatenation of Narrow and Wide String Literals

char array[] = "Hello" "World";
wchar_t w_array[] = L"Hello" L"World";
wchar_t mixed[] = "Hello" L"World"; //Noncompliant

In this example, in the initialization of the array mixed, the narrow string literal "Hello" is
concatenated with the wide string literal L"World".

Check Information
Group: Lexical Conventions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 2-13-5

22-55

https://en.cppreference.com/w/cpp/language/string_literal

MISRA C++:2008 Rule 3-1-1
It shall be possible to include any header file in multiple translation units without violating the One
Definition Rule

Description
Rule Definition

It shall be possible to include any header file in multiple translation units without violating the One
Definition Rule.

Rationale

If a header file with variable or function definitions appears in multiple inclusion paths, the header
file violates the One Definition Rule possibly leading to unpredictable behavior. For instance, a source
file includes the header file include.h and another header file, which also includes include.h.

Polyspace Implementation

The rule checker flags variable and function definitions in header files.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Basic Concepts
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-56

MISRA C++:2008 Rule 3-1-2
Functions shall not be declared at block scope

Description
Rule Definition

Functions shall not be declared at block scope.

Rationale

It is a good practice to place all declarations at the namespace level.

Additionally, if you declare a function at block scope, it is often not clear if the statement is a function
declaration or an object declaration with a call to the constructor.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Function Declarations at Block Scope

class A {
};

void b1() {
 void func(); //Noncompliant
 A a(); //Noncompliant
}

In this example, the declarations of func and a are in the block scope of b1.

The second function declaration can cause confusion because it is not clear if a is a function that
returns an object of type A or a is itself an object of type A.

Check Information
Group: Basic Concepts
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 3-1-2

22-57

MISRA C++:2008 Rule 3-1-3
When an array is declared, its size shall either be stated explicitly or defined implicitly by
initialization

Description
Rule Definition

When an array is declared, its size shall either be stated explicitly or defined implicitly by
initialization.

Rationale

Though you can declare an incomplete array type and later complete the type, specifying the array
size during the first declaration makes the subsequent array access less error-prone.

Additional Message in Report

When an array is declared, its size shall either be stated explicitly or defined implicitly by
initialization.

Size of array arrayName should be explicitly stated.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Array Size Unspecified During Declaration

int array[10];
extern int array2[]; //Noncompliant
int array3[]= {0,1,2};
extern int array4[10];

In the declaration of array2, the array size is unspecified.

Check Information
Group: Basic Concepts
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

22 MISRA C++: 2008

22-58

Introduced in R2013b

 MISRA C++:2008 Rule 3-1-3

22-59

MISRA C++:2008 Rule 3-2-1
All declarations of an object or function shall have compatible types

Description
This checker is deactivated in a default Polyspace as You Code analysis . See “Checkers Deactivated
in Polyspace as You Code Default Analysis”.

Rule Definition

All declarations of an object or function shall have compatible types.

Rationale

If the declarations of an object or function in two different translation units have incompatible types,
the behavior is undefined.

Polyspace Implementation

Polyspace considers two types to be compatible if they have the same size and signedness in the
environment that you use. The checker is not raised on unused code such as

• Noninstantiated templates
• Uncalled static or extern functions
• Uncalled and undefined local functions
• Unused types and variables

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Compatible and Incompatible Definitions in Two Files

file1.cpp

typedef char char_t;
typedef signed short int16_t;
typedef signed long int64_t;

namespace bar {
 int64_t a;
 int16_t c;

};

file2.cpp

22 MISRA C++: 2008

22-60

typedef char char_t;
typedef signed int int32_t;

namespace bar {
 extern char_t c;// Noncompliant
 extern int32_t a;
 void foo(void){
 ++a;
 ++c;
 }
};

In this example, the variable bar::c is defined as a char in file2.cpp and as a signed short in
file1.cpp. In the target processor i386, the size of these types are not equal. Polyspace flags the
definition of bar::c.

The variable bar::a is defined as a long in file1.cpp and as an int in file2.cpp. In the target
processor i386, both int and long has a size of 32 bits. Because the definitions of bar::a is
compatible in both files, Polyspace does not raise a flag.

Check Information
Group: Basic Concepts
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 3-2-1

22-61

MISRA C++:2008 Rule 3-2-2
The One Definition Rule shall not be violated

Description
This checker is deactivated in a default Polyspace as You Code analysis . See “Checkers Deactivated
in Polyspace as You Code Default Analysis”.

Rule Definition

The One Definition Rule shall not be violated.

Rationale

Violations of the One Definition Rule leads to undefined behavior.

Polyspace Implementation

The checker flags situations where the same function or object has multiple definitions and the
definitions differ by some token. The checker is not raised on unused code such as

• Noninstantiated templates
• Uncalled static or extern functions
• Uncalled and undefined local functions
• Unused types and variables

Additional Message in Report

The One Definition Rule shall not be violated.

Declaration of class className violates the One Definition Rule:

it conflicts with other declaration (fileNamelineNumber).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Different Tokens in Same Type Definition

This example uses two files:

• file1.cpp:

typedef struct S //Noncompliant
{
 int x;

22 MISRA C++: 2008

22-62

 int y;
}S;
void foo(S& s){
//...
}

• file2.cpp:

typedef struct S
{
 int y;
 int x;
}S ;
void bar(S& s){
//...
}

In this example, both file1.cpp and file2.cpp define the structure S. However, the definitions
switch the order of the structure fields.

Check Information
Group: Basic Concepts
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 3-2-2

22-63

MISRA C++:2008 Rule 3-2-3
A type, object or function that is used in multiple translation units shall be declared in one and only
one file

Description
This checker is deactivated in a default Polyspace as You Code analysis . See “Checkers Deactivated
in Polyspace as You Code Default Analysis”.

Rule Definition

A type, object or function that is used in multiple translation units shall be declared in one and only
one file.

Rationale

If you declare an identifier in a header file, you can include the header file in any translation unit
where the identifier is defined or used. In this way, you ensure consistency between:

• The declaration and the definition.
• The declarations in different translation units.

The rule enforces the practice of declaring external objects or functions in header files.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Basic Concepts
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-64

MISRA C++:2008 Rule 3-2-4
An identifier with external linkage shall have exactly one definition

Description
This checker is deactivated in a default Polyspace as You Code analysis . See “Checkers Deactivated
in Polyspace as You Code Default Analysis”.

Rule Definition

An identifier with external linkage shall have exactly one definition.

Rationale

If an identifier has multiple definitions or no definitions, it can lead to undefined behavior.

Polyspace Implementation

The checker is not raised on unused code such as

• Noninstantiated templates
• Uncalled static or extern functions
• Uncalled and undefined local functions
• Unused types and variables

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Multiple Definitions of Identifier

This example uses two files:

• file1.cpp:

typedef signed int int32_t;

namespace NS {
 extern int32_t a;

 void foo(){
 a = 0;

 }
};

• file2.cpp:

 MISRA C++:2008 Rule 3-2-4

22-65

typedef signed int int32_t;
typedef signed long long int64_t;

namespace NS {
 extern int64_t a; //Noncompliant
 void bar(){
 ++a;

 }
};

The same identifier a is defined in both files.

Check Information
Group: Basic Concepts
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-66

MISRA C++:2008 Rule 3-3-1
Objects or functions with external linkage shall be declared in a header file

Description
Rule Definition

Objects or functions with external linkage shall be declared in a header file.

Rationale

If you declare a function or object in a header file, it is clear that the function or object is meant to be
accessed in multiple translation units. If you intend to access the function or object from a single
translation unit, declare it static or in an unnamed namespace.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Declaration in Header File Missing

This example uses two files:

• decls.h:

extern int x;
• file.cpp:

#include "decls.h"

int x = 0;
int y = 0; //Noncompliant
static int z = 0;

In this example, the variable x is declared in a header file but the variable y is not. The variable z is
also not declared in a header file but it is declared with the static specifier and does not have
external linkage.

Check Information
Group: Basic Concepts
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

 MISRA C++:2008 Rule 3-3-1

22-67

Introduced in R2013b

22 MISRA C++: 2008

22-68

MISRA C++:2008 Rule 3-3-2
If a function has internal linkage then all re-declarations shall include the static storage class
specifier

Description
Rule Definition

If a function has internal linkage then all re-declarations shall include the static storage class
specifier.

Rationale

If a function declaration has the static storage class specifier, it has internal linkage. Subsequent
redeclarations of the function have internal linkage even without the static specifier.

However, if you do not specify the static keyword explicitly, it is not immediately clear from a
declaration whether the function has internal linkage.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Missing static Specifier from Redeclaration

static void func1 ();
static void func2 ();

void func1() {} //Noncompliant
static void func2() {}

In this example, the function func1 is declared static but defined without the static specifier.

Check Information
Group: Basic Concepts
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 3-3-2

22-69

MISRA C++:2008 Rule 3-4-1
An identifier declared to be an object or type shall be defined in a block that minimizes its visibility

Description
Rule Definition

An identifier declared to be an object or type shall be defined in a block that minimizes its visibility.

Rationale

Defining variables with the minimum possible block scope reduces the possibility that they might
later be accessed unintentionally.

For instance, if an object is meant to be accessed in one function only, declare the object local to the
function.

Polyspace Implementation

The rule checker determines if an object is used in one block only. If the object is used in one block
but defined outside the block, the checker raises a violation.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of Global Variable in Single Function
static int countReset; //Noncompliant

volatile int check;

void increaseCount() {
 int count = countReset;
 while(check%2) {
 count++;
 }
}

In this example, the variable countReset is declared global used in one function only. A compliant
solution declares the variable local to the function to reduce its visibility.

Check Information
Group: Basic Concepts
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

22 MISRA C++: 2008

22-70

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 3-4-1

22-71

MISRA C++:2008 Rule 3-9-1
The types used for an object, a function return type, or a function parameter shall be token-for-token
identical in all declarations and re-declarations

Description
Rule Definition

The types used for an object, a function return type, or a function parameter shall be token-for-token
identical in all declarations and re-declarations.

Rationale

If a redeclaration is not token-for-token identical to the previous declaration, it is not clear from
visual inspection which object or function is being redeclared.

Polyspace Implementation

The rule checker compares the current declaration with the last seen declaration.

Additional Message in Report

The types used for an object, a function return type, or a function parameter shall be token-for-token
identical in all declarations and re-declarations.

Variable varName is not compatible with previous declaration.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Identical Declarations That Do Not Match Token for Token

typedef int* intptr;

int* map;
extern intptr map; //Noncompliant

intptr table;
extern intptr table; //Compliant

In this example, the variable map is declared twice. The second declaration uses a typedef which
resolves to the type of the first declaration. Because of the typedef, the second declaration is not
token-for-token identical to the first.

Check Information
Group: Basic Concepts

22 MISRA C++: 2008

22-72

Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 3-9-1

22-73

MISRA C++:2008 Rule 3-9-2
typedefs that indicate size and signedness should be used in place of the basic numerical types

Description
Rule Definition

typedefs that indicate size and signedness should be used in place of the basic numerical types.

Rationale

When the amount of memory being allocated is important, using specific-length types makes it clear
how much storage is being reserved for each object.

Polyspace Implementation

The rule checker does not raise violations in templates that are not instantiated.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Direct Use of Basic Numerical Types

typedef unsigned int uint32_t;

unsigned int x = 0; //Noncompliant
uint32_t y = 0; //Compliant

In this example, the declaration of x is noncompliant because it uses the basic type int directly.

Check Information
Group: Basic Concepts
Category: Advisory

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-74

MISRA C++:2008 Rule 3-9-3
The underlying bit representations of floating-point values shall not be used

Description
Rule Definition

The underlying bit representations of floating-point values shall not be used.

Rationale

The underlying bit representations of floating point values vary across compilers. If you directly use
the underlying representation of floating point values, your program is not portable across
implementations.

Polyspace Implementation

The rule checker flags conversions from pointers to floating point types into pointers to integer types,
and vice versa.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Using Underlying Representation of Floating-Point Values

float fabs2(float f) {
 unsigned int* ptr = reinterpret_cast <unsigned int*> (&f); //Noncompliant
 *(ptr + 3) &= 0x7f;
 return f;
}

In this example, the reinterpret_cast attempts to cast a floating-point value to an integer and
access the underlying bit representation of the floating point value.

Check Information
Group: Basic Concepts
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 3-9-3

22-75

MISRA C++:2008 Rule 4-5-1
Expressions with type bool shall not be used as operands to built-in operators other than the
assignment operator =, the logical operators &&, ||, !, the equality operators == and !=, the unary &
operator, and the conditional operator

Description
Rule Definition

Expressions with type bool shall not be used as operands to built-in operators other than the
assignment operator =, the logical operators &&, ||, !, the equality operators == and !=, the unary &
operator, and the conditional operator.

Rationale

Operators other than the ones mentioned in the rule do not produce meaningful results with bool
operands. Use of bool operands with these operators can indicate programming errors. For instance,
you intended to use the logical operator || but used the bitwise operator | instead.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Compliant and Noncompliant Uses of bool Operands
void boolOperations() {
 bool lhs = true;
 bool rhs = false;

 int res;

 if(lhs & rhs) {} //Noncompliant
 if(lhs < rhs) {} //Noncompliant
 if(~rhs) {} //Noncompliant
 if(lhs ^ rhs) {} //Noncompliant
 if(lhs == rhs) {} //Compliant
 if(!rhs) {} //Compliant
 res = lhs? -1:1; //Compliant
}

In this example, bool operands do not violate the rule when used with the ==, ! and the ? operators.

Check Information
Group: Standard Conversions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

22 MISRA C++: 2008

22-76

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 4-5-1

22-77

MISRA C++:2008 Rule 4-5-2
Expressions with type enum shall not be used as operands to built- in operators other than the
subscript operator [], the assignment operator =, the equality operators == and !=, the unary &
operator, and the relational operators <, <=, >, >=

Description
Rule Definition

Expressions with type enum shall not be used as operands to built- in operators other than the
subscript operator [], the assignment operator =, the equality operators == and !=, the unary &
operator, and the relational operators <, <=, >, >=.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Standard Conversions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-78

MISRA C++:2008 Rule 4-5-3
Expressions with type (plain) char and wchar_t shall not be used as operands to built-in operators
other than the assignment operator =, the equality operators == and !=, and the unary & operator N

Description
Rule Definition

Expressions with type (plain) char and wchar_t shall not be used as operands to built-in operators
other than the assignment operator =, the equality operators == and !=, and the unary & operator. N

Rationale

The C++03 Standard only requires that the characters '0' to '9' have consecutive values. Other
characters do not have well-defined values. If you use these characters in operations other than the
ones mentioned in the rule, you implicitly use their underlying values and might see unexpected
results.

Additional Message in Report

Expressions with type (plain) char and wchar_t shall not be used as operands to built-in operators
other than the assignment operator =, the equality operators == and !=, and the unary & operator. N

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Compliant and Noncompliant Uses of Character Operands

void charManipulations (char ch) {

 char initChar = 'a'; //Compliant
 char finalChar = 'z'; //Compliant

 if(ch == initChar) {} //Compliant
 if((ch >= initChar) && (ch <= finalChar)) {} //Noncompliant
 else if((ch >= '0') && (ch <= '9')) {} //Compliant by exception
}

In this example, character operands do not violate the rule when used with the = and == operators.
Character operands can also be used with relational operators as long as the comparison is
performed with the digits '0' to '9'.

Check Information
Group: Standard Conversions
Category: Required

 MISRA C++:2008 Rule 4-5-3

22-79

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-80

MISRA C++:2008 Rule 4-10-1
NULL shall not be used as an integer value

Description
Rule Definition

NULL shall not be used as an integer value.

Rationale

In C++, you can use the literals 0 and NULL as both an integer and a null pointer constant. However,
use of 0 as a null pointer constant or NULL as an integer can cause developer confusion.

This rule restricts the use of NULL to null pointer constants. MISRA C++:2008 Rule 4-10-2
restricts the use of the literal 0 to integers.

Polyspace Implementation

The checker flags assignment of NULL to an integer variable or binary operations involving NULL
and an integer. Assignments can be direct or indirect such as passing NULL as integer argument to a
function.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Compliant and Noncompliant Uses of NULL
#include <cstddef>

void checkInteger(int);
void checkPointer(int *);

void main() {
 checkInteger(NULL); //Noncompliant
 checkPointer(NULL); //Compliant
}

In this example, the use of NULL as argument to the checkInteger function is noncompliant
because the function expects an int argument.

Check Information
Group: Standard Conversions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

 MISRA C++:2008 Rule 4-10-1

22-81

Topics
“Check for Coding Standard Violations”

Introduced in R2018a

22 MISRA C++: 2008

22-82

MISRA C++:2008 Rule 4-10-2
Literal zero (0) shall not be used as the null-pointer-constant

Description
Rule Definition

Literal zero (0) shall not be used as the null-pointer-constant.

Rationale

In C++, you can use the literals 0 and NULL as both an integer and a null pointer constant. However,
use of 0 as a null pointer constant or NULL as an integer can cause developer confusion.

This rule restricts the use of the literal 0 to integers. MISRA C++:2008 Rule 4-10-1 restricts the
use of NULL to null pointer constants.

Polyspace Implementation

The checker flags assignment of 0 to a pointer variable or binary operations involving 0 and a pointer.
Assignments can be direct or indirect such as passing 0 as pointer argument to a function.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Compliant and Noncompliant Uses of Literal 0

#include <cstddef>

void checkInteger(int);
void checkPointer(int *);

void main() {
 checkInteger(0); //Compliant
 checkPointer(0); //Noncompliant
}

In this example, the use of 0 as argument to the checkPointer function is noncompliant because the
function expects an int * argument.

Check Information
Group: Standard Conversions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

 MISRA C++:2008 Rule 4-10-2

22-83

Topics
“Check for Coding Standard Violations”

Introduced in R2018a

22 MISRA C++: 2008

22-84

MISRA C++:2008 Rule 5-0-1
The value of an expression shall be the same under any order of evaluation that the standard permits

Description
Rule Definition

The value of an expression shall be the same under any order of evaluation that the standard permits.

Rationale

If an expression results in different values depending on the order of evaluation, its value becomes
implementation-defined.

Polyspace Implementation

Polyspace raises a violation if an expression satisfies any of these conditions:

• The same variable is modified more than once in the expression or it is both read and written.
• The expression allows more than one order of evaluation.
• The expression contains a single volatile object that occurs multiple times.
• The expression contains more than one volatile object.

Because volatile objects can change their value at anytime, an expression containing multiple
volatile variables or multiple instances of the same volatile variable might have different
results depending on the order of evaluation.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Variable Modified More Than Once in Expression
int a[10], b[10];
#define COPY_ELEMENT(index) (a[(index)]=b[(index)])
void main () {
 int i=0, k=0;

 COPY_ELEMENT (k); // Compliant
 COPY_ELEMENT (i++); // // Non-compliant
}

In this example, the rule is violated by the statement COPY_ELEMENT(i++) because i++ occurs twice
and the order of evaluation of the two expressions is unspecified.

Variable Modified and Used in Multiple Function Arguments

void f (unsigned int param1, unsigned int param2) {}

void main () {
 unsigned int i=0;

 MISRA C++:2008 Rule 5-0-1

22-85

 f (i++, i); // Noncompliant
}

In this example, the rule is violated because it is unspecified whether the operation i++ occurs before
or after the second argument is passed to f. The call f(i++,i) can translate to either f(0,0) or
f(0,1).

Multiple volatile Objects in an Expression

volatile int a, b;
int mathOp(int x, int y);

int foo(void){
 int temp = mathOp(5,a) + mathOp(6,b);//Noncompliant
 return temp * mathOp(a,a);//Noncompliant
}

In this example, this rule is violated twice.

• The declaration of temp uses two volatile objects in the expression. Because the value of
volatile objects might change at any time, the expression might evaluate to different values
depending on the order of evaluation. Polyspace flags the second volatile object in the
expression.

• The return statement uses the same volatile object twice. Because the expression might have
different results depending on the order of evaluation, Polyspace raises this defect.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-86

MISRA C++:2008 Rule 5-0-2
Limited dependence should be placed on C++ operator precedence rules in expressions

Description
Rule Definition

Limited dependence should be placed on C++ operator precedence rules in expressions.

Rationale

Use parentheses to clearly indicate the order of evaluation.

Depending on operator precedence can cause the following issues:

• If you or another code reviewer reviews the code, the intended order of evaluation is not
immediately clear.

• It is possible that the result of the evaluation does not meet your expectations. For instance:

• In the operation *p++, it is possible that you expect the dereferenced value to be incremented.
However, the pointer p is incremented before the dereference.

• In the operation (x == y | z), it is possible that you expect x to be compared with y | z.
However, the == operation happens before the | operation.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Evaluation Order Dependent on Operator Precedence Rules

#include <cstdio>

void showbits(unsigned int x) {
 for(int i = (sizeof(int) * 8) - 1; i >= 0; i--) {
 (x & 1u << i) ? putchar('1') : putchar('0'); // Noncompliant
 }
 printf("\n");
}

In this example, the checker flags the operation x & 1u << i because the statement relies on
operator precedence rules for the << operation to happen before the & operation. If this is the
intended order, the operation can be rewritten as x & (1u << i).

Check Information
Group: Expressions
Category: Advisory

 MISRA C++:2008 Rule 5-0-2

22-87

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-88

MISRA C++:2008 Rule 5-0-3
A cvalue expression shall not be implicitly converted to a different underlying type

Description
Rule Definition

A cvalue expression shall not be implicitly converted to a different underlying type.

Rationale

This rule ensures that the result of the expression does not overflow when converted to a different
type.

Polyspace Implementation

Expressions flagged by this checker follow the detailed specifications for cvalue expressions from the
MISRA C++ documentation.

The underlying data type of a cvalue expression is the widest of operand data types in the expression.
For instance, if you add two variables, one of type int8_t (typedef for char) and another of type
int32_t (typedef for int), the addition has underlying type int32_t. If you assign the sum to a
variable of type int8_t, the rule is violated.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Implicit Conversion of Cvalue Expression

#include<cstdint>

void func ()
 {
 int32_t s32;
 int8_t s8;
 s32 = s8 + s8; //Noncompliant
 s32 = s32 + s8; //Compliant
 }

In this example, the rule is violated when two variables of type int8_t are added and the result is
assigned to a variable of type int32_t. The underlying type of the addition does not take into
account the integer promotion involved and is simply the widest of operand data types, in this case,
int8_t.

The rule is not violated if one of the operands has type int32_t and the result is assigned to a
variable of type int32_t. In this case, the underlying data type of the addition is the same as the
type of the variable to which the result is assigned.

 MISRA C++:2008 Rule 5-0-3

22-89

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-90

MISRA C++:2008 Rule 5-0-4
An implicit integral conversion shall not change the signedness of the underlying type

Description
Rule Definition

An implicit integral conversion shall not change the signedness of the underlying type.

Rationale

Some conversions from signed to unsigned data types can lead to implementation-defined behavior.
You can see unexpected results from the conversion.

Polyspace Implementation

The checker flags implicit conversions from a signed to an unsigned integer data type or vice versa.

The checker assumes that ptrdiff_t is a signed integer.

Additional Message in Report

An implicit integral conversion shall not change the signedness of the underlying type.

Implicit conversion of one of the binary + operands whose underlying types are typename_1 and
typename_2.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Implicit Conversions that Change Signedness

typedef char int8_t;
typedef unsigned char uint8_t;

void func()
 {
 int8_t s8;
 uint8_t u8;

 s8 = u8; //Noncompliant
 u8 = s8 + u8; //Noncompliant
 u8 = static_cast< uint8_t > (s8) + u8; //Compliant
}

In this example, the rule is violated when a variable with a variable with signed data type is implicitly
converted to a variable with unsigned data type or vice versa. If the conversion is explicit, as in the
preceding example, the rule violation does not occur.

 MISRA C++:2008 Rule 5-0-4

22-91

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-92

MISRA C++:2008 Rule 5-0-5
There shall be no implicit floating-integral conversions

Description
Rule Definition

There shall be no implicit floating-integral conversions.

Rationale

If you convert from a floating point to an integer type, you lose information. Unless you explicitly cast
from floating point to an integer type, it is not clear whether the loss of information is intended.
Additionally, if the floating-point value cannot be represented in the integer type, the behavior is
undefined.

Conversion from an integer to floating-point type can result in an inexact representation of the value.
The error from conversion can accumulate over later operations and lead to unexpected results.

Polyspace Implementation

The checker flags implicit conversions between floating-point types (float and double) and integer
types (short, int, etc.).

This rule takes precedence over 5-0-4 and 5-0-6 if they apply at the same time.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Conversion Between Floating Point and Integer Types

typedef signed int int32_t;
typedef float float32_t;

void func ()
 {
 float32_t f32;
 int32_t s32;
 s32 = f32; //Noncompliant
 f32 = s32; //Noncompliant
 f32 = static_cast< float32_t > (s32); //Compliant
 }

In this example, the rule is violated when a floating-point type is implicitly converted to an integer
type. The violation does not occur if the conversion is explicit.

 MISRA C++:2008 Rule 5-0-5

22-93

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-94

MISRA C++:2008 Rule 5-0-6
An implicit integral or floating-point conversion shall not reduce the size of the underlying type

Description
Rule Definition

An implicit integral or floating-point conversion shall not reduce the size of the underlying type.

Rationale

A conversion that reduces the size of the underlying type can result in loss of information. Unless you
explicitly cast to the narrower type, it is not clear whether the loss of information is intended.

Polyspace Implementation

The checker flags implicit conversions that reduce the size of a type.

If the conversion is to a narrower integer with a different sign, then rule 5-0-4 takes precedence over
rule 5-0-6. Only rule 5-0-4 is shown.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Conversion That Reduces Size of Type

typedef signed short int16_t;
typedef signed int int32_t;

void func ()
 {
 int16_t s16;;
 int32_t s32;
 s16 = s32; //Noncompliant
 s16 = static_cast< int16_t > (s32); //Compliant
 }

In this example, the rule is violated when a type is implicitly converted to a narrower type. The
violation does not occur if the conversion is explicit.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

 MISRA C++:2008 Rule 5-0-6

22-95

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-96

MISRA C++:2008 Rule 5-0-7
There shall be no explicit floating-integral conversions of a cvalue expression

Description
Rule Definition

There shall be no explicit floating-integral conversions of a cvalue expression.

Rationale

Expressions flagged by this checker follow the detailed specifications for cvalue expressions from the
MISRA C++ documentation.

If you evaluate an expression and later cast the result to a different type, the cast has no effect on the
underlying type of the evaluation (the widest of operand data types in the expression). For instance,
in this example, the result of an integer division is then cast to a floating-point type.

short num;
short den;
float res;
res= static_cast<float> (num/den);

However, a developer or code reviewer can expect that the evaluation uses the data type to which the
result is cast later. For instance, one can expect a floating-point division because of the later cast.

Additional Message in Report

There shall be no explicit floating-integral conversions of a cvalue expression.

Complex expression of underlying type typeBeforeConversion may only be cast to narrower
integer type of same signedness, however the destination type is typeAfterconversion.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Conversion of Division Result from Integer to Floating Point

void func() {
 short num;
 short den;
 short res_short;
 float res_float;

 res_float = static_cast<float> (num/den); //Noncompliant

 res_short = num/den;
 res_float = static_cast<float> (res_short); //Compliant

 MISRA C++:2008 Rule 5-0-7

22-97

}

In this example, the first cast on the division result violates the rule but the second cast does not.

• The first cast can lead to the incorrect expectation that the expression is evaluated with an
underlying type float.

• The second cast makes it clear that the expression is evaluated with the underlying type short.
The result is then cast to the type float.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-98

MISRA C++:2008 Rule 5-0-8
An explicit integral or floating-point conversion shall not increase the size of the underlying type of a
cvalue expression

Description
Rule Definition

An explicit integral or floating-point conversion shall not increase the size of the underlying type of a
cvalue expression.

Rationale

Expressions flagged by this checker follow the detailed specifications for cvalue expressions from the
MISRA C++ documentation.

If you evaluate an expression and later cast the result to a different type, the cast has no effect on the
underlying type of the evaluation (the widest of operand data types in the expression). For instance,
in this example, the sum of two short operands is cast to the wider type int.

short op1;
short op2;
int res;
res= static_cast<int> (op1 + op2);

However, a developer or code reviewer can expect that the evaluation uses the data type to which the
result is cast later. For instance, one can expect a sum with the underlying type int because of the
later cast.

Additional Message in Report

An explicit integral or floating-point conversion shall not increase the size of the underlying type of a
cvalue expression.

Complex expression of underlying type typeBeforeConversion may only be cast to narrower
integer type of same signedness, however the destination type is typeAfterconversion.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Conversion of Sum to Wider Integer Type

void func() {
 short op1;
 short op2;
 int res;

 res = static_cast<int> (op1 + op2); //Noncompliant

 MISRA C++:2008 Rule 5-0-8

22-99

 res = static_cast<int> (op1) + op2; //Compliant

}

In this example, the first cast on the sum violates the rule but the second cast does not.

• The first cast can lead to the incorrect expectation that the sum is evaluated with an underlying
type int.

• The second cast first converts one of the operands to int so that the sum is actually evaluated
with the underlying type int.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-100

MISRA C++:2008 Rule 5-0-9
An explicit integral conversion shall not change the signedness of the underlying type of a cvalue
expression

Description
Rule Definition

An explicit integral conversion shall not change the signedness of the underlying type of a cvalue
expression.

Rationale

Expressions flagged by this checker follow the detailed specifications for cvalue expressions from the
MISRA C++ documentation.

If you evaluate an expression and later cast the result to a different type, the cast has no effect on the
underlying type of the evaluation (the widest of operand data types in the expression).. For instance,
in this example, the sum of two unsigned int operands is cast to the type int.

unsigned int op1;
unsigned int op2;
int res;
res= static_cast<int> (op1 + op2);

However, a developer or code reviewer can expect that the evaluation uses the data type to which the
result is cast later. For instance, one can expect a sum with the underlying type int because of the
later cast.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Conversion of Sum to Wider Integer Type
typedef int int32_t;
typedef unsigned int uint32_t;

void func() {
 uint32_t op1;
 uint32_t op2;
 int32_t res;

 res = static_cast<int32_t> (op1 + op2); //Noncompliant
 res = static_cast<int32_t> (op1) +
 static_cast<int32_t> (op2); //Compliant

}

In this example, the first cast on the sum violates the rule but the second cast does not.

 MISRA C++:2008 Rule 5-0-9

22-101

• The first cast can lead to the incorrect expectation that the sum is evaluated with an underlying
type int32_t.

• The second cast first converts each of the operands to int32_t so that the sum is actually
evaluated with the underlying type int32_t.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-102

MISRA C++:2008 Rule 5-0-10
If the bitwise operators ~ and << are applied to an operand with an underlying type of unsigned char
or unsigned short, the result shall be immediately cast to the underlying type of the operand

Description
Rule Definition

If the bitwise operators ~ and << are applied to an operand with an underlying type of unsigned char
or unsigned short, the result shall be immediately cast to the underlying type of the operand.

Rationale

When the bitwise operators ~ and << are applied to small integer types, such as unsigned short and
unsigned char, the operations are preceded by integral promotion. That is, the small integer types are
first promoted to a larger integer type, and then the operation takes place. The result of these bitwise
operation might contain unexpected higher order bits. For instance:

uint8_t var = 0x5aU;
uint8_t result = (~var)>>4;

The binary representation of var is 0101 1010 and that of ~var is 1010 0101. You might expect
that result is 0000 1010. Because var is promoted to a larger integer before ~var is calculated,
result becomes 1111 1010. The higher order bits might be unexpected. The results of such
operations might depend on the size of int in your implementation.

To avoid confusion and unexpected errors, cast the result of the bitwise ~ and >> operators back to
the underlying type of the operands before using the results. For instance:

uint8_t var = 0x5aU;
uint8_t result = (static_cat<unit8_t>(~var))>>4;

The binary representation of result in this case is 0000 1010, which is the expected value.

As an exception, casting is not required if you apply these bitwise operators on short integer types,
and then immediately assign the result to an object of the same underlying type. For instance, the
value of result in this case is 0000 1010 without requiring a cast.

uint8_t var = 0x5aU;
unit8_t result = ~var; // No higher order bits
 // due to implicit conversion
uint8_t result = results>>4;

Polyspace Implementation

Polyspace flags the use of the bitwise ~ and >> operators if all of these conditions are true:

• The operators are used on an unsigned short or unsigned char operand.
• The result of the operation is not immediately assigned to an object that has the same underlying

type as the operand.
• The result is used without being cast to the underlying type of the operand.

 MISRA C++:2008 Rule 5-0-10

22-103

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Cast Results of ~ and << Operators to the Operand Type When the Operand Is Small Integer
Type

#include<cstdint>
void foo(){
 uint8_t var = 0x5aU;
 uint8_t result;
 result = (~var) >> 4; // Non-compliant
 result = static_cast<uint8_t>((~var)) >> 4; // Compliant
 uint8_t cbe = ~var;//Compliant by Exception
}

In this example, Polyspace flags the use of ~ on the small integer var. The ~ operator is flagged
because:

• It operates on an unsigned short integer var.
• The result of the operator is used in an expression without casting ~var to uint8_t.

When the result of ~ operator is cast to unit8_t, the use is compliant with this rule. When the result
of ~ is immediately assigned to a unit8_t variable, the use is compliant to this rule by exception.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-104

MISRA C++:2008 Rule 5-0-11
The plain char type shall only be used for the storage and use of character values

Description
Rule Definition

The plain char type shall only be used for the storage and use of character values.

Polyspace Implementation

The checker raises a violation when a value of signed or unsigned integer type is implicitly converted
to the plain char type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2015a

 MISRA C++:2008 Rule 5-0-11

22-105

MISRA C++:2008 Rule 5-0-12
Signed char and unsigned char type shall only be used for the storage and use of numeric values

Description
Rule Definition

Signed char and unsigned char type shall only be used for the storage and use of numeric values.

Rationale

In C/C++, there are three types of char:

• Plain char
• signed char
• unsigned char

The signedness of plain char is implementation-defined. Plain char cannot be interchangeably used
with the other types. For instance, you might assume char is unsigned and use unsigned char to
store character. Your implementation might interpret characters as signed. In such a situation, your
code might behave in unexpected manner, leading to bugs that are difficult to diagnose.

MISRA C++:2008 limits the use of these three types of char for different applications. The signed
and unsigned char type is appropriate for numeric values and storage. The plain char is
appropriate for character data. Avoid using signed or unsigned char when you intend to use the
plain char.

This rule also applies to the different typedef of these char types, such as uint8_t and int8_t.
See MISRA C++:2008 Rule 3-9-2.

Polyspace Implementation

Polyspace raises a violation of this rule when a plain char is implicitly converted to either signed
char or unsigned char.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use Plain char to Store Characters

typedef signed char int8_t;
typedef unsigned char uint8_t;

namespace foo
{
 int8_t ch_1 = 'a'; // Noncompliant
 uint8_t ch_2 = '\r'; // Noncompliant

22 MISRA C++: 2008

22-106

 char ch_3 = 'A'; // Compliant
 int8_t num_1 = 10; // Compliant
 uint8_t num_2 = 12U; // Compliant
 signed char num_3 = 11; // Compliant

};

In this example, Polyspace flags the use of signed char and unsigned char to store character
data. The character literals are of plain char types, and Polyspace flags the implicit conversion of
these plain char types to explicitly signed or unsigned char types.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp) | MISRA C++:2008 Rule 3-9-2

Topics
“Check for Coding Standard Violations”

Introduced in R2015a

 MISRA C++:2008 Rule 5-0-12

22-107

MISRA C++:2008 Rule 5-0-13
The condition of an if-statement and the condition of an iteration- statement shall have type bool

Description
Rule Definition

The condition of an if-statement and the condition of an iteration- statement shall have type bool.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-108

MISRA C++:2008 Rule 5-0-14
The first operand of a conditional-operator shall have type bool

Description
Rule Definition

The first operand of a conditional-operator shall have type bool.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-14

22-109

MISRA C++:2008 Rule 5-0-15
Array indexing shall be the only form of pointer arithmetic

Description
Rule Definition

Array indexing shall be the only form of pointer arithmetic.

Rationale

You can traverse an array in two ways:

• Increment or decrement an array index, and then use the array index to access an element.
• Increment or decrement a pointer to the array and then dereference the pointer.

The first method is clearer and less error-prone.

All other forms of explicit pointer arithmetic introduce the risk of accessing unintended memory
locations.

Polyspace Implementation

The checker flags:

• Arithmetic operations on all pointers, for instance p+I, I+p and p-I, where p is a pointer and I
an integer..

• Array indexing on nonarray pointers.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-110

MISRA C++:2008 Rule 5-0-16
A pointer operand and any pointer resulting from pointer arithmetic using that operand shall both
address elements of the same array.

Description
Rule Definition

A pointer operand and any pointer resulting from pointer arithmetic using that operand shall both
address elements of the same array.

Rationale

It is undefined behavior when the result of a pointer arithmetic operation that uses a pointer to an
array element does not point to either:

• An element of the array.
• One past the last element of the array. For instance:

int arr[3];
int* res;
res = arr+3; // res points to one beyond arr

The rule applies to these operations. ptr is a pointer to an array element and int_exp is an integer
expression.

• ptr + int_exp
• int_exp + ptr
• ptr - int_exp
• ptr + +
• ++ptr
• --ptr
• ptr--
• ptr [int_exp]

Polyspace Implementation

• Single objects that are not part of an array are considered arrays of one element. For instance, in
this code example, arr_one is equivalent to an array of one element. Polyspace does not flag the
increment of pointer ptr_to_one because it points to one past the last element of arr_one.

void f_incr(int* x){
 int* ptr_to_one = x;
 ++ptr_to_one; // Compliant
}

void func(){
 int arr_one=1; // Equivalent to array of one element
 f_incr(&arr_one);
}

 MISRA C++:2008 Rule 5-0-16

22-111

• Polyspace does not flag the use of pointer parameters in pointer arithmetic operations when those
pointers point to arrays. For instance, in this code snippet, the use of &a1[2] in f1 is compliant
when you pass an array to f1.

void f1(int* const a1){
 int* b= &a1[2]; // Compliant
}
void f2(){
 int arr[3] {};
 f1(arr);
}

• In structures with multiple elements, Polyspace does not flag the result of a pointer arithmetic
operation on an element that results in a pointer that points to a different element if the pointer
points within the allocated memory of the structure or to one past the last element of the
structure.

For instance, in this code snippet, the assignment to ptr_to_struct is compliant because it
remains inside myStruct, even if it points outside myStruct.elem1. Using an index larger than
the element dimension to access the content of that element is not compliant, even if the resulting
address is within the allocated memory of the structure.

void func(){
 struct {
 char elem1[10];
 char elem2[10];
 } myStruct;

 char* ptr_to_struct = &myStruct.elem1[11]; //Compliant
 // Address of myStruct.elem1[11] is inside myStruct
 char val_to_struct = myStruct.elem1[11]; // Non-compliant
}

• In multidimensional arrays, Polyspace flags any use of indices that are larger than a subarray
dimension to access an element of that subarray. Polyspace does not flag the assignment of the
address of that same subarray element if the address is inside the allocated memory of the top-
level array.

For example, in this code snippet, the assignment to pointer ptr_to_arr is compliant because
the pointer points to an address that is within the allocated memory of multi_arr. The
assignment to variable arr_val is not compliant because the index used to access the subarray
element (3) is larger than the dimension of the subarray (2).

void func(){
 int multi_arr[5][2];

 // Assigned memory is inside top level array
 int* ptr_to_arr = &multi_arr[2][3]; //Compliant

 // Use of index 3 with subarray of size 2
 int arr_val = multi_arr[2][3]; // Non-compliant
}

• Polyspace flags the dereference of a pointer when that pointer points to one past the last element
of an array. For instance, in this code snippet, the assignment of ptr is compliant, but the
dereference of ptr is not. tab+3 is one past the last element of tab.

void derefPtr(){
 int tab[3] {};

22 MISRA C++: 2008

22-112

 int* ptr = tab+3; //Compliant
 int res = *(tab+3); // Non-compliant
}

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Pointer Arithmetic by Using Pointers to Array Elements
void f_incr(int* x)
{
 int* ptr_to_one = x;
 ++ptr_to_one; // Compliant
}

void f1(int* const a1)
{
 int* b = &a1[2]; // Compliant
}

int main()
{

 int arr_one = 1; // Equivalent to array of one element
 f_incr(&arr_one);

 int arr[3] {};
 f1(arr);

 struct {
 char elem1[10];
 char elem2[10];
 } myStruct;

 char* ptr_to_struct = &myStruct.elem1[11]; // Compliant
 ptr_to_struct = &myStruct.elem2[11]; //Non-compliant

 int tab[3] {1, 2, 3};
 int* ptr = &tab[2];
 int res = tab[2];
 ++ptr; // Compliant
 res = *ptr; //Non-compliant

 return 0;
}

In this example:

• The increment of ptr_to_one inside f_incr() is compliant because the operation results in a
pointer that points to one past the last element of array x. The integer that is passed to f_incr()
is equivalent to an array of one element.

• The operation on pointer parameter a1 inside f1() is compliant because the pointer points to
array arr.

 MISRA C++:2008 Rule 5-0-16

22-113

• The first assignment of ptr_to_struct is compliant because elem1[11] is still inside
myStruct. The second assignment of ptr_to_struct is not compliant because the result of the
operation does not point to either inside myStruct or to one past the last element of myStruct.

• The increment of ptr is compliant because the result of the operation points to one past the last
element of tab. The dereference of ptr on the next line is not compliant.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2021a

22 MISRA C++: 2008

22-114

MISRA C++:2008 Rule 5-0-17
Subtraction between pointers shall only be applied to pointers that address elements of the same
array

Description
Rule Definition

Subtraction between pointers shall only be applied to pointers that address elements of the same
array.

Polyspace Implementation

Use Bug Finder for this checker. The rule checker performs the same checks as Subtraction or
comparison between pointers to different arrays. Code Prover can fail to detect some
violations.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-17

22-115

MISRA C++:2008 Rule 5-0-18
>, >=, <, <= shall not be applied to objects of pointer type, except where they point to the same
array

Description
Rule Definition

>, >=, <, <= shall not be applied to objects of pointer type, except where they point to the same
array.

Polyspace Implementation

Use Bug Finder for this checker. The rule checker performs the same checks as Subtraction or
comparison between pointers to different arrays. Code Prover can fail to detect some
violations.

The checker ignores casts when showing the violation on relational operator use with pointers types.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-116

MISRA C++:2008 Rule 5-0-19
The declaration of objects shall contain no more than two levels of pointer indirection

Description
Rule Definition

The declaration of objects shall contain no more than two levels of pointer indirection.

Rationale

If you use pointers with more than two levels of indirection, a developer reading the code might find
it difficult to understand the behavior of the code.

Polyspace Implementation

Polyspace flags all declarations of objects that contain more than two levels of pointer indirection.

• If you use type aliases, the checker includes pointer indirections from the alias in the evaluation of
the level of indirection. For instance, in this code snippet, the declaration of var is non-compliant.
The type of var is const pointer to a const pointer to a pointer to char, which is three levels of
pointer indirection. The declaration of var2 has two levels of pointer indirection and is compliant.
using ptrToChar = char*;

void func()
{
 ptrToChar* const* const var = nullptr; //Non-compliant, 3 levels of indirection
 char* const* const var2 = nullptr; //Compliant, 2 levels of indirection
 //...
}

• If you pass an array to a function, the conversion of the array to a pointer to the first element of
the array is included in the evaluation of the level of indirection. For instance, in this code snippet,
parameter arrParam is non-compliant. The type of arrParam is a pointer to a pointer to a pointer
to char (three levels of pointer indirection). The declaration of arrVar is compliant because
arrVar has type array of pointer to pointer to char (two levels of pointer indirection).

void func(char** arrParam[]) //Non-compliant
{
 //...
 char** arrVar[5]; //Compliant
}

This checker does not flag the use of objects with more than two levels of indirection. For instance, in
this code snippet, the declaration of var is non-compliant, but the evaluation of the size of var is
compliant.

#include<iostream>

using charToPtr = char*;

void func()
{
 charToPtr* const* const var = nullptr; //Non-compliant

 MISRA C++:2008 Rule 5-0-19

22-117

 std::cout << sizeof(var) << std::endl; //Compliant

}

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-118

MISRA C++:2008 Rule 5-0-20
Non-constant operands to a binary bitwise operator shall have the same underlying type

Description
Rule Definition

Non-constant operands to a binary bitwise operator shall have the same underlying type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-20

22-119

MISRA C++:2008 Rule 5-0-21
Bitwise operators shall only be applied to operands of unsigned underlying type

Description
Rule Definition

Bitwise operators shall only be applied to operands of unsigned underlying type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-120

MISRA C++:2008 Rule 5-2-1
Each operand of a logical && or || shall be a postfix-expression

Description
Rule Definition

Each operand of a logical && or || shall be a postfix-expression.

Rationale

This rule effectively requires that operands of a logical && or || operation be appropriately
parenthesized. For instance, instead of a + b || c, the rule requires (a + b) || c or a + (b
|| c). In both compliant cases, the left operand of ||, that is (a + b) or b, is a primary expression
and therefore also a postfix expression. For more information on postfix expressions, see the C++03
Standard (Section 5.2).

Enclosing operands in parentheses improves readability of code and makes sure that the operations
occur in the order that the developer intends.

Polyspace Implementation

The checker raises a violation if a logical && or || operand is not a postfix expression.

A postfix expression can be a primary expression such as a simple identifier or a combination of
identifiers enclosed in parentheses, but also one of the following:

• Function call such as func().
• Array element access such as arr[].
• Structure member access such as aStructVar.aMember.

For the complete list of postfix expressions, see the C++03 Standard (Section 5.2).

The checker allows exceptions on associative chains such as (a && b && c) or (a || b || c).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Noncompliant and Compliant Expressions Involving Logical Operations

bool Operations(bool a, bool b, bool c, bool priority) {
 bool res;
 if(priority) {
 res = a && b || c; //Noncompliant
 }
 else {
 res = a && (b || c); //Compliant

 MISRA C++:2008 Rule 5-2-1

22-121

 }
 return res;
}

In this example, the expression a && b || c violates the rule because the right operand of && and
the left operand of || are not postfix expressions.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-122

MISRA C++:2008 Rule 5-2-2
A pointer to a virtual base class shall only be cast to a pointer to a derived class by means of
dynamic_cast

Description
Rule Definition

A pointer to a virtual base class shall only be cast to a pointer to a derived class by means of
dynamic_cast.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-2

22-123

MISRA C++:2008 Rule 5-2-3
Casts from a base class to a derived class should not be performed on polymorphic types

Description
Rule Definition

Casts from a base class to a derived class should not be performed on polymorphic types.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Advisory

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-124

MISRA C++:2008 Rule 5-2-4
C-style casts (other than void casts) and functional notation casts (other than explicit constructor
calls) shall not be used

Description
Rule Definition

C-style casts (other than void casts) and functional notation casts (other than explicit constructor
calls) shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-4

22-125

MISRA C++:2008 Rule 5-2-5
A cast shall not remove any const or volatile qualification from the type of a pointer or reference

Description
Rule Definition

A cast shall not remove any const or volatile qualification from the type of a pointer or reference.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-126

MISRA C++:2008 Rule 5-2-6
A cast shall not convert a pointer to a function to any other pointer type, including a pointer to
function type

Description
Rule Definition

A cast shall not convert a pointer to a function to any other pointer type, including a pointer to
function type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-6

22-127

MISRA C++:2008 Rule 5-2-7
An object with pointer type shall not be converted to an unrelated pointer type, either directly or
indirectly

Description
Rule Definition

An object with pointer type shall not be converted to an unrelated pointer type, either directly or
indirectly.

Rationale

If you convert a pointer to a pointer of unrelated type, the result of the operation is unspecified. To
avoid unexpected results, do not convert a pointers to an unrelated pointer type.

Polyspace Implementation

The checker flags all pointer conversions including between a pointer to a struct object and a
pointer to the first member of the same struct type.

Indirect conversions from a pointer to non-pointer type are not detected.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-128

MISRA C++:2008 Rule 5-2-8
An object with integer type or pointer to void type shall not be converted to an object with pointer
type

Description
Rule Definition

An object with integer type or pointer to void type shall not be converted to an object with pointer
type.

Polyspace Implementation

The checker allows an exception on zero constants.

Objects with pointer type include objects with pointer-to-function type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-8

22-129

MISRA C++:2008 Rule 5-2-9
A cast should not convert a pointer type to an integral type

Description
Rule Definition

A cast should not convert a pointer type to an integral type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Advisory

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-130

MISRA C++:2008 Rule 5-2-10
The increment (++) and decrement (--) operators should not be mixed with other operators in an
expression

Description
Rule Definition

The increment (++) and decrement (--) operators should not be mixed with other operators in an
expression.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Advisory

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-10

22-131

MISRA C++:2008 Rule 5-2-11
The comma operator, && operator and the || operator shall not be overloaded

Description
Rule Definition

The comma operator, && operator and the || operator shall not be overloaded.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-132

MISRA C++:2008 Rule 5-2-12
An identifier with array type passed as a function argument shall not decay to a pointer

Description
Rule Definition

An identifier with array type passed as a function argument shall not decay to a pointer.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-12

22-133

MISRA C++:2008 Rule 5-3-1
Each operand of the ! operator, the logical && or the logical || operators shall have type bool

Description
Rule Definition

Each operand of the ! operator, the logical && or the logical || operators shall have type bool.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-134

MISRA C++:2008 Rule 5-3-2
The unary minus operator shall not be applied to an expression whose underlying type is unsigned

Description
Rule Definition

The unary minus operator shall not be applied to an expression whose underlying type is unsigned.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-3-2

22-135

MISRA C++:2008 Rule 5-3-3
The unary & operator shall not be overloaded

Description
Rule Definition

The unary & operator shall not be overloaded.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-136

MISRA C++:2008 Rule 5-3-4
Evaluation of the operand to the sizeof operator shall not contain side effects

Description
Rule Definition

Evaluation of the operand to the sizeof operator shall not contain side effects.

Polyspace Implementation

The checker does not show a warning on volatile accesses and function calls

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-3-4

22-137

MISRA C++:2008 Rule 5-8-1
The right hand operand of a shift operator shall lie between zero and one less than the width in bits
of the underlying type of the left hand operand

Description
Rule Definition

The right hand operand of a shift operator shall lie between zero and one less than the width in bits
of the underlying type of the left hand operand.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-138

MISRA C++:2008 Rule 5-14-1
The right hand operand of a logical && or || operator shall not contain side effects

Description
Rule Definition

The right hand operand of a logical && or || operator shall not contain side effects.

Rationale

When evaluated, an expression with side effect modifies at least one of the variables in the
expression. For instance, n++ is an expression with side effect.

The right-hand operand of a:

• Logical && operator is evaluated only if the left-hand operand evaluates to true.
• Logical || operator is evaluated only if the left-hand operand evaluates to false.

In other cases, the right-hand operands are not evaluated, so side effects of the expression do not
take place. If your program relies on the side effects, you might see unexpected results in those
cases.

Polyspace Implementation

The checker flags logical && or || operators whose right operands are expressions that have side
effects. Polyspace assumes:

• Expressions that modifies at least one of its variables have side effects.
• Explicit constructors or conversion functions that are declared but not defined have no side
effects. Defined conversion functions have side effects.

• Volatile accesses and function calls have no side effects.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Side Effects in Right Operand of Logical Operation

class real32_T {
public:
 real32_T() = default;

 /* Casting operations */
 explicit real32_T(float a) {
 // ...
 }
 /* Relational operators */

 MISRA C++:2008 Rule 5-14-1

22-139

 bool operator==(real32_T a) const;
 bool operator>(real32_T a) const;
};

void bar() {
 real32_T d;

 if ((d == static_cast<real32_T>(0.0F))
 || (static_cast<real32_T>(0.0F) > d)) {//Noncompliant
 /**/
 }
}

void foo(int i, int j){
 if(i==0 && ++j==i){ //Noncompliant
 --i;
 }
}

In the function foo, the right operand of the && operator contains an increment operation, which has
a side effect. Polyspace flags the operator. In the function bar, the right operand of the || operator
contains a conversion function that is implemented in the class. Polyspace considers such constructor
to have side effects. Because the right operator has side effects, the operator is flagged.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-140

MISRA C++:2008 Rule 5-18-1
The comma operator shall not be used

Description
Rule Definition

The comma operator shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 5-18-1

22-141

MISRA C++:2008 Rule 5-19-1
Evaluation of constant unsigned integer expressions should not lead to wrap-around

Description
Rule Definition

Evaluation of constant unsigned integer expressions should not lead to wrap-around.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-142

MISRA C++:2008 Rule 6-2-1
Assignment operators shall not be used in sub-expressions

Description
Rule Definition

Assignment operators shall not be used in sub-expressions.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-2-1

22-143

MISRA C++:2008 Rule 6-2-2
Floating-point expressions shall not be directly or indirectly tested for equality or inequality

Description
Rule Definition

Floating-point expressions shall not be directly or indirectly tested for equality or inequality.

Polyspace Implementation

The checker detects the use of == or != with floating-point variables or expressions. The checker
does not detect indirectly testing of equality, for instance, using the <= operator.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-144

MISRA C++:2008 Rule 6-2-3
Before preprocessing, a null statement shall only occur on a line by itself; it may be followed by a
comment, provided that the first character following the null statement is a white - space character

Description
Rule Definition

Before preprocessing, a null statement shall only occur on a line by itself; it may be followed by a
comment, provided that the first character following the null statement is a white - space character.

Polyspace Implementation

The checker considers a null statement as a line where the first character excluding comments is a
semicolon. The checker flags situations where:

• Comments appear before the semicolon.

For instance:

/* wait for pin */ ;
• Comments appear immediately after the semicolon without a white space in between.

For instance:

;// wait for pin

The checker also shows a violation when a second statement appears on the same line following the
null statement.

For instance:

; count++;

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-2-3

22-145

MISRA C++:2008 Rule 6-3-1
The statement forming the body of a switch, while, do while or for statement shall be a compound
statement

Description
Rule Definition

The statement forming the body of a switch, while, do ... while or for statement shall be a compound
statement.

Rationale

A compound statement is included in braces.

If a block of code associated with an iteration or selection statement is not contained in braces, you
can make mistakes about the association. For example:

• You can wrongly associate a line of code with an iteration or selection statement because of its
indentation.

• You can accidentally place a semicolon following the iteration or selection statement. Because of
the semicolon, the line following the statement is no longer associated with the statement even
though you intended otherwise.

This checker enforces the practice of adding braces following a selection or iteration statement even
for a single line in the body. Later, when more lines are added, the developer adding them does not
need to note the absence of braces and include them.

Polyspace Implementation

The checker flags for loops where the first token following a for statement is not a left brace, for
instance:

for (i=init_val; i > 0; i--)
 if (arr[i] < 0)
 arr[i] = 0;

Similar checks are performed for switch, for and do..while statements.

The second line of the message on the Result Details pane indicates which statement is violating the
rule. For instance, in the preceding example, the second line of the message states that the for loop
is violating the rule.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements

22 MISRA C++: 2008

22-146

Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-3-1

22-147

MISRA C++:2008 Rule 6-4-1
An if (condition) construct shall be followed by a compound statement The else keyword shall be
followed by either a compound statement, or another if statement

Description
Rule Definition

An if (condition) construct shall be followed by a compound statement. The else keyword shall be
followed by either a compound statement, or another if statement.

Additional Message in Report

An if (condition) construct shall be followed by a compound statement. The else keyword shall be
followed by either a compound statement, or another if statement.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-148

MISRA C++:2008 Rule 6-4-2
All if else if constructs shall be terminated with an else clause

Description
Rule Definition

All if ... else if constructs shall be terminated with an else clause.

Additional Message in Report

All if ... else if constructs shall be terminated with an else clause.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-4-2

22-149

MISRA C++:2008 Rule 6-4-3
A switch statement shall be a well-formed switch statement

Description
Rule Definition

A switch statement shall be a well-formed switch statement.

Polyspace Implementation

The checker flags these situations:

• A statement occurs between the switch statement and the first case statement.

For instance:

switch(ch) {
 int temp;
 case 1:
 break;
 default:
 break;
}

• A label or a jump statement such as goto or return occurs in the switch block.
• A variable is declared in a case statement (outside any block).

For instance:

switch(ch) {
 case 1:
 int temp;
 break;
 default:
 break;
}

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

22 MISRA C++: 2008

22-150

Introduced in R2013b

 MISRA C++:2008 Rule 6-4-3

22-151

MISRA C++:2008 Rule 6-4-4
A switch-label shall only be used when the most closely-enclosing compound statement is the body of
a switch statement

Description
Rule Definition

A switch-label shall only be used when the most closely-enclosing compound statement is the body of
a switch statement.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-152

MISRA C++:2008 Rule 6-4-5
An unconditional throw or break statement shall terminate every non - empty switch-clause

Description
Rule Definition

An unconditional throw or break statement shall terminate every non - empty switch-clause.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-4-5

22-153

MISRA C++:2008 Rule 6-4-6
The final clause of a switch statement shall be the default-clause

Description
Rule Definition

The final clause of a switch statement shall be the default-clause.

Polyspace Implementation

The checker detects switch statements that do not have a final default clause.

The checker does not raise a violation if the switch variable is an enum with finite number of values
and you have a case clause for each value. For instance:

enum Colours { RED, BLUE, GREEN } colour;

switch (colour) {
 case RED:
 break;
 case BLUE:
 break;
 case GREEN:
 break;
}

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-154

MISRA C++:2008 Rule 6-4-7
The condition of a switch statement shall not have bool type

Description
Rule Definition

The condition of a switch statement shall not have bool type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-4-7

22-155

MISRA C++:2008 Rule 6-4-8
Every switch statement shall have at least one case-clause

Description
Rule Definition

Every switch statement shall have at least one case-clause.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-156

MISRA C++:2008 Rule 6-5-1
A for loop shall contain a single loop-counter which shall not have floating type

Description
Rule Definition

A for loop shall contain a single loop-counter which shall not have floating type.

Polyspace Implementation

The checker flags these situations:

• The for loop index has a floating point type.
• More than one loop counter is incremented in the for loop increment statement.

For instance:

for(i=0, j=0; i<10 && j < 10;i++, j++) {}

• A loop counter is not incremented in the for loop increment statement.

For instance:

for(i=0; i<10;) {}

Even if you increment the loop counter in the loop body, the checker still raises a violation.
According to the MISRA C++ specifications, a loop counter is one that is initialized in or prior to
the loop expression, acts as an operand to a relational operator in the loop expression and is
modified in the loop expression. If the increment statement in the loop expression is missing, the
checker cannot find the loop counter modification and considers as if a loop counter is not
present.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-5-1

22-157

MISRA C++:2008 Rule 6-5-2
If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall only be used
as an operand to <=, <, > or >=

Description
Rule Definition

If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall only be used
as an operand to <=, <, > or >=.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-158

MISRA C++:2008 Rule 6-5-3
The loop-counter shall not be modified within condition or statement

Description
Rule Definition

The loop-counter shall not be modified within condition or statement.

Rationale

The for loop has a specific syntax for modifying the loop counter. A code reviewer expects
modification using that syntax. Modifying the loop counter elsewhere can make the code harder to
review.

Polyspace Implementation

The checker flags modification of a for loop counter in the loop body or the loop condition (the
condition that is checked to see if the loop must be terminated).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-5-3

22-159

MISRA C++:2008 Rule 6-5-4
The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n remains constant for the
duration of the loop

Description
Rule Definition

The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n remains constant for the
duration of the loop.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-160

MISRA C++:2008 Rule 6-5-5
A loop-control-variable other than the loop-counter shall not be modified within condition or
expression

Description
Rule Definition

A loop-control-variable other than the loop-counter shall not be modified within condition or
expression.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-5-5

22-161

MISRA C++:2008 Rule 6-5-6
A loop-control-variable other than the loop-counter which is modified in statement shall have type
bool

Description
Rule Definition

A loop-control-variable other than the loop-counter which is modified in statement shall have type
bool.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-162

MISRA C++:2008 Rule 6-6-1
Any label referenced by a goto statement shall be declared in the same block, or in a block enclosing
the goto statement

Description
Rule Definition

Any label referenced by a goto statement shall be declared in the same block, or in a block enclosing
the goto statement.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-6-1

22-163

MISRA C++:2008 Rule 6-6-2
The goto statement shall jump to a label declared later in the same function body

Description
Rule Definition

The goto statement shall jump to a label declared later in the same function body.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-164

MISRA C++:2008 Rule 6-6-3
The continue statement shall only be used within a well-formed for loop

Description
Rule Definition

The continue statement shall only be used within a well-formed for loop.

Polyspace Implementation

The checker flags the use of continue statements in:

• for loops that are not well-formed, that is, loops that violate rules 6-5-x.
• while loops.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-6-3

22-165

MISRA C++:2008 Rule 6-6-4
For any iteration statement there shall be no more than one break or goto statement used for loop
termination

Description
Rule Definition

For any iteration statement there shall be no more than one break or goto statement used for loop
termination.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-166

MISRA C++:2008 Rule 6-6-5
A function shall have a single point of exit at the end of the function

Description
Rule Definition

A function shall have a single point of exit at the end of the function.

Rationale

This rule requires that a return statement must occur as the last statement in the function body.
Otherwise, the following issues can occur:

• Code following a return statement can be unintentionally omitted.
• If a function that modifies some of its arguments has early return statements, when reading the

code, it is not immediately clear which modifications actually occur.

Polyspace Implementation

The checker flags these situations:

• A function has more than one return statement.
• A non-void function has one return statement only but the return statement is not the last

statement in the function.

A void function need not have a return statement. If a return statement exists, it need not be the
last statement in the function.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 6-6-5

22-167

MISRA C++:2008 Rule 7-1-1
A variable which is not modified shall be const qualified

Description
Rule Definition

A variable which is not modified shall be const qualified.

Rationale

Declaring a variable const reduces the chances that you modify the variable by accident.

Polyspace Implementation

The checker flags function parameters or local variables that are not const-qualified but never
modified in the function body. Function parameters of integer, float, enum and boolean types are not
flagged.

If a variable is passed to another function by reference or pointers, the checker assumes that the
variable can be modified. These variables are not flagged.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Unmodified Local Variable

#include <string.h>

char returnNthCharacter (int n) {
 char* pwd = "aXeWdf10fg" ; //Noncompliant
 char nthCharacter;

 for(int i=0; i < strlen(pwd); i++) {
 if(i==n)
 nthCharacter = pwd[i];
 }
 return nthCharacter;
}

In this example, the pointer pwd is not const-qualified. However, beyond initialization with a
constant, it is not reassigned anywhere in the returnNthCharacter function.

Check Information
Group: Declarations
Category: Required

22 MISRA C++: 2008

22-168

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2018a

 MISRA C++:2008 Rule 7-1-1

22-169

MISRA C++:2008 Rule 7-1-2
A pointer or reference parameter in a function shall be declared as pointer to const or reference to
const if the corresponding object is not modified

Description
Rule Definition

A pointer or reference parameter in a function shall be declared as pointer to const or reference to
const if the corresponding object is not modified.

Polyspace Implementation

The checker flags pointers where the underlying object is not const-qualified but never modified in
the function body.

If a variable is passed to another function by reference or pointers, the checker assumes that the
variable can be modified. Pointers that point to these variables are not flagged.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarations
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2018a

22 MISRA C++: 2008

22-170

MISRA C++:2008 Rule 7-3-1
The global namespace shall only contain main, namespace declarations and extern "C" declarations

Description
Rule Definition

The global namespace shall only contain main, namespace declarations and extern "C" declarations.

Rationale

The rule makes sure that all names found at global scope are part of a namespace. Adhering to this
rule avoids name clashes and ensures that developers do not reuse a variable name, resulting in
compilation/linking errors, or shadow a variable name, resulting in possibly unexpected issues later.

Polyspace Implementation

Other than the main function, the checker flags all names used at global scope that are not part of a
namespace.

The checker does not flag names at global scope if they are declared in extern "C" blocks (C code
included within C++ code). However, if you use the option Ignore link errors (-no-extern-
c), these names are also flagged.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarations
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 7-3-1

22-171

MISRA C++:2008 Rule 7-3-2
The identifier main shall not be used for a function other than the global function main

Description
Rule Definition

The identifier main shall not be used for a function other than the global function main.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarations
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-172

MISRA C++:2008 Rule 7-3-3
There shall be no unnamed namespaces in header files

Description
Rule Definition

There shall be no unnamed namespaces in header files.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarations
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 7-3-3

22-173

MISRA C++:2008 Rule 7-3-4
using-directives shall not be used

Description
Rule Definition

using-directives shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarations
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-174

MISRA C++:2008 Rule 7-3-5
Multiple declarations for an identifier in the same namespace shall not straddle a using-declaration
for that identifier

Description
Rule Definition

Multiple declarations for an identifier in the same namespace shall not straddle a using-declaration
for that identifier.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarations
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 7-3-5

22-175

MISRA C++:2008 Rule 7-3-6
using-directives and using-declarations (excluding class scope or function scope using-declarations)
shall not be used in header files

Description
Rule Definition

using-directives and using-declarations (excluding class scope or function scope using-declarations)
shall not be used in header files.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarations
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-176

MISRA C++:2008 Rule 7-4-2
Assembler instructions shall only be introduced using the asm declaration

Description
Rule Definition

Assembler instructions shall only be introduced using the asm declaration.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarations
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 7-4-2

22-177

MISRA C++:2008 Rule 7-4-3
Assembly language shall be encapsulated and isolated

Description
Rule Definition

Assembly language shall be encapsulated and isolated.

Polyspace Implementation

The checker flags asm statements unless they are encapsulated in a function call.

For instance, the noncompliant asm statement below is in regular C code while the compliant asm
statement is encapsulated in a call to the function Delay.

void Delay (void)
 {
 asm("NOP");//Compliant
 }
void fn (void)
 {
 DoSomething();
 Delay();// Assembler is encapsulated
 DoSomething();
 asm("NOP"); //Noncompliant
 DoSomething();
 }

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarations
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-178

MISRA C++:2008 Rule 7-5-1
A function shall not return a reference or a pointer to an automatic variable (including parameters),
defined within the function

Description
Rule Definition

A function shall not return a reference or a pointer to an automatic variable (including parameters),
defined within the function.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarations
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 7-5-1

22-179

MISRA C++:2008 Rule 7-5-2
The address of an object with automatic storage shall not be assigned to another object that may
persist after the first object has ceased to exist

Description
Rule Definition

The address of an object with automatic storage shall not be assigned to another object that may
persist after the first object has ceased to exist.

Rationale

If an object continues to point to another object after the latter object ceases to exist, dereferencing
the first object leads to undefined behavior.

Polyspace Implementation

The checker flags situations where the address of a local variable is assigned to a pointer defined at
global scope.

The checker does not raise violations of this rule if:

• A function returns the address of a local variable. MISRA C++:2008 Rule 7-5-1 covers this
situation.

• The address of a variable defined at block scope is assigned to a pointer that is defined with
greater scope, but not global scope.

For instance:

 void foobar (void)
 {
 char * ptr;
 {
 char var;
 ptr = &var;
 }
 }

Only if the pointer is defined at global scope is a rule violation raised. For instance, the rule
checker flags the assignment here:

char * ptr;
void foobar (void)
 {
 char var;
 ptr = &var;
 }

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

22 MISRA C++: 2008

22-180

Examples
Address of Local Variable Assigned to Global Pointer

char * ptr;

void foo (void) {
 char varInFoo;
 ptr = &varInFoo; //Noncompliant
}

void bar (void) {
 char varInBar = *ptr;
}

void main() {
 foo();
 bar();
}

The assignment ptr = &varInFoo is noncompliant because the global pointer ptr might be
dereferenced outside the function foo, where the variable varInFoo is no longer in scope. For
instance, in this example, ptr is dereferenced in the function bar, which is called after foo
completes execution.

Check Information
Group: Declarations
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 7-5-2

22-181

MISRA C++:2008 Rule 7-5-3
A function shall not return a reference or a pointer to a parameter that is passed by reference or
const reference

Description
Rule Definition

A function shall not return a reference or a pointer to a parameter that is passed by reference or
const reference.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarations
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-182

MISRA C++:2008 Rule 7-5-4
Functions should not call themselves, either directly or indirectly

Description
Rule Definition

Functions should not call themselves, either directly or indirectly.

Polyspace Implementation

The checker reports each function that calls itself, directly or indirectly. Even if several functions are
involved in one recursion cycle, each function is individually reported.

You can calculate the total number of recursion cycles using the code complexity metric Number of
Recursions. Note that unlike the checker, the metric also considers implicit calls, for instance, to
compiler-generated constructors during object creation.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarations
Category: Advisory

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 7-5-4

22-183

MISRA C++:2008 Rule 8-0-1
An init-declarator-list or a member-declarator-list shall consist of a single init-declarator or member-
declarator respectively

Description
Rule Definition

An init-declarator-list or a member-declarator-list shall consist of a single init-declarator or member-
declarator respectively.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarators
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-184

MISRA C++:2008 Rule 8-3-1
Parameters in an overriding virtual function shall either use the same default arguments as the
function they override, or else shall not specify any default arguments

Description
Rule Definition

Parameters in an overriding virtual function shall either use the same default arguments as the
function they override, or else shall not specify any default arguments.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarators
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 8-3-1

22-185

MISRA C++:2008 Rule 8-4-1
Functions shall not be defined using the ellipsis notation

Description
Rule Definition

Functions shall not be defined using the ellipsis notation.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarators
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-186

MISRA C++:2008 Rule 8-4-2
The identifiers used for the parameters in a re-declaration of a function shall be identical to those in
the declaration

Description
Rule Definition

The identifiers used for the parameters in a re-declaration of a function shall be identical to those in
the declaration.

Polyspace Implementation

The checker detects mismatch in parameter names between:

• A function declaration and the corresponding definition.
• Two declarations of a function, provided they occur in the same file.

If the declarations occur in different files, the checker does not raise a violation for mismatch in
parameter names. Redeclarations in different files are forbidden by MISRA C++:2008 Rule
3-2-3.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarators
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 8-4-2

22-187

MISRA C++:2008 Rule 8-4-3
All exit paths from a function with non- void return type shall have an explicit return statement with
an expression

Description
Rule Definition

All exit paths from a function with non- void return type shall have an explicit return statement with
an expression.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarators
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-188

MISRA C++:2008 Rule 8-4-4
A function identifier shall either be used to call the function or it shall be preceded by &

Description
Rule Definition

A function identifier shall either be used to call the function or it shall be preceded by &.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarators
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 8-4-4

22-189

MISRA C++:2008 Rule 8-5-1
All variables shall have a defined value before they are used

Description
Rule Definition

All variables shall have a defined value before they are used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarators
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-190

MISRA C++:2008 Rule 8-5-2
Braces shall be used to indicate and match the structure in the non- zero initialization of arrays and
structures

Description
Rule Definition

Braces shall be used to indicate and match the structure in the non- zero initialization of arrays and
structures.

Rationale

The use of nested braces in initializer lists to match the structures of nested objects in arrays, unions,
and structs encourages you to consider the order of initialization of complex data types and makes
your code more readable. For example, the use of nested braces in the initialization of ex1 makes it
easier to see how the nested arrays arr1 and arr2 in struct ex1 are initialized.

struct Example
{
 int num;
 int arr1[2];
 int arr2[3];
};

//....
struct Example ex1 {1, {2, 3}, {4, 5, 6}}; //Compliant

The rule does not require the use of nested braces if you zero initialize an array, a union, or a struct
with nested structures are the top-level, for instance:

struct Example ex1 {}; //Compliant

Polyspace Implementation

If you non-zero initialize an array, union, or struct that contains nested structures and you do not use
nested braces to reflect the nested structure, Polyspace flags the first element of the first nested
structure in the initializer list. For instance, in this code snippet, Polyspace flags the number 2
because it corresponds to the first element of nested structure arr1 inside struct ex1.

struct Example
{
 int num;
 int arr1[2];
 int arr2[3];
};

//....
struct Example ex1 {1, 2, 3, 4, 5, 6}; // Non-compliant

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

 MISRA C++:2008 Rule 8-5-2

22-191

Examples
Missing Nested Braces in Initializer of Two-Dimensional Arrays

char arr1[2][3] {'a', 'b', 'c', 'd', 'e', 'f'}; //Non-compliant
char arr2[2][3] {{'a', 'b', 'c'}, {'d', 'e', 'f'}}; //Compliant
char arr_top_level[2][3] { }; //Compliant
char arr_sub_level[2][3] { {}, {'d', 'e', 'f'}}; //Non-compliant

In this example, two-dimensional array arr1 is non-compliant because the initializer list does not
reflect the nested structure of this array (two arrays of three elements each). The initialization of
arr2 uses nested braces to reflect the nested structure of the array and is compliant. Similarly, the
initialization of arr_top_level is compliant because it zero initializes the array at the top level.
Note that the initialization of arr_sub_level is non-compliant because zero-initializes only the first
sub-array while explicitly initializing all the elements of the other sub-array.

Check Information
Group: Declarators
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-192

MISRA C++:2008 Rule 8-5-3
In an enumerator list, the = construct shall not be used to explicitly initialize members other than the
first, unless all items are explicitly initialized

Description
Rule Definition

In an enumerator list, the = construct shall not be used to explicitly initialize members other than the
first, unless all items are explicitly initialized.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarators
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 8-5-3

22-193

MISRA C++:2008 Rule 9-3-1
const member functions shall not return non-const pointers or references to class-data

Description
Rule Definition

const member functions shall not return non-const pointers or references to class-data.

Polyspace Implementation

The checker flags a rule violation only if a const member function returns a non-const pointer or
reference to a nonstatic data member. The rule does not apply to static data members.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Classes
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-194

MISRA C++:2008 Rule 9-3-2
Member functions shall not return non-const handles to class-data

Description
Rule Definition

Member functions shall not return non-const handles to class-data.

Polyspace Implementation

The checker flags a rule violation only if a member function returns a non-const pointer or reference
to a nonstatic data member. The rule does not apply to static data members.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Classes
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 9-3-2

22-195

MISRA C++:2008 Rule 9-3-3
If a member function can be made static then it shall be made static, otherwise if it can be made
const then it shall be made const

Description
Rule Definition

If a member function can be made static then it shall be made static, otherwise if it can be made
const then it shall be made const.

Rationale

const member functions cannot modify the data members of the class. static member function
cannot modify the nonstatic data members of the class. If a member function does not need to modify
the nonstatic data members of the class, limit their access to data by declaring the member functions
as const or static. Such declaration clearly expresses and enforces the design intent. That is, if
you inadvertently attempt to modify a data member through a const member function, the compiler
catches the error. Without the const declaration, this kind of inadvertent error might lead to bugs
that are difficult to find or debug.

Polyspace Implementation

The checker performs these checks in this order:

1 The checker first checks if a class member function accesses a data member of the class.
Functions that do not access data members can be declared static.

2 The checker then checks functions that access data members to determine if the function
modifies any of the data members. Functions that do not modify data members can be declared
const.

A violation on a const member function means that the function does not even access a data member
of the class and can be declared static.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Explicitly Restrict Access for Member Functions that Do Not Modify Data Members

#include<cstdint>
void Connector(void);
class A
{
public:
 int16_t foo () // Noncompliant
 {
 return m_i;

22 MISRA C++: 2008

22-196

 }
 int16_t foo2 () // Noncompliant
 {
 Connector();// Might have side-effect
 return m_i;
 }
 int16_t foo3 () // Noncompliant
 {
 return m_s;
 }
 int16_t inc_m () // Compliant
 {
 return ++m_i;
 }
 int16_t& getref()//Noncompliant
 {
 return m_i_ref;
 }
private:
 int16_t m_i;
 static int16_t m_s;
 int16_t& m_i_ref;
};

In this example, Polyspace flags the functions foo, foo2, foo3, and getref as noncompliant.

• The functions foo and foo3 do not modify any nonstatic data members. Because their data access
is not explicitly restricted by declaring them as const, Polyspace flags these functions. To fix
these defects, declare foo and foo3 as const.

• The function foo2 does not explicitly modify any of the data members. Because it is not declared
as const, Polyspace flags the function. foo2 calls the global function Connector, which might
have side effects. Do not declare foo2 as a const function. In C++11 or later, const member
functions are expected to be thread-safe, but foo2 might not be thread-safe because of the side
effects of Connector. To avoid data races, keep foo2 as a nonconst function. Justify the defect by
using review information or code comments.

• The function getref does not modify any data members. Because it is not declared as const,
Polyspace flags it. Declaring getref as const resolves this defect, but that is not enough to
restrict write access of getref because it returns a nonconst reference to m_i_ref. To restrict
getref from modifying m_i_ref, the return type of getref must also be const.

Check Information
Group: Classes
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2018a

 MISRA C++:2008 Rule 9-3-3

22-197

MISRA C++:2008 Rule 9-5-1
Unions shall not be used

Description
Rule Definition

Unions shall not be used.

Rationale

Using unions to store a value might result in misinterpretation of the value and lead to undefined
behavior. For instance:

union Data{
 int i;
 double d;
};
void bar_int(int);
void bar_double(double);
void foo(void){
 Data var;
 var.d = 3.1416;
 bar_int(var.d);//Undefined Behavior
}

In the call to bar_int, the double data in the union is misinterpreted as an int, which is undefined
behavior. Compilers might react to this misinterpretation differently depending on their
implementation. To avoid undefined behaviors, do not use a union.

In some cases, use of unions might be necessary to increase efficiency. In such cases, use unions after
documenting the relevant implementation-defined compiler behaviors. In the preceding case, before
using a union, consult the manual of the compiler that you use and document how the compiler
reacts to interpreting a double as an int.

Polyspace Implementation

Polyspace flags the declaration of a union. You might consider the use of union necessary or
acceptable in your code. In such cases, justify the violation by annotating the result or by using code
comments. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

22 MISRA C++: 2008

22-198

Examples
Avoid Using union

#include <iostream>

union Pi{ //Noncompliant
 int i;
 double d;
};

void foo(void){

 std::cout << std::endl;

 Pi pi;
 pi.d = 3.1416;// pi holds a double
 std::cout << "pi.d: " << pi.d << std::endl;
 std::cout << "pi.i: " << pi.i << std::endl; // Undefined Behavior

 std::cout << std::endl;

 pi.i = 4; // pi holds an int
 std::cout << "pi.i: " << pi.i << std::endl;
 std::cout << "pi.d: " << pi.d << std::endl; // Undefined Behavior

 std::cout << std::endl;

}

In this example, the union Pi contains a double and an int. In the code, a double is
misinterpreted as an int and vice versa by using the union. These misinterpretations are undefined
behaviors and might lead to bugs and implementation dependent code behavior. Polyspace flags the
union declaration.

Check Information
Group: Classes
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 9-5-1

22-199

MISRA C++:2008 Rule 9-6-2
Bit-fields shall be either bool type or an explicitly unsigned or signed integral type

Description
Rule Definition

Bit-fields shall be either bool type or an explicitly unsigned or signed integral type.

Rationale

Using bit-fields require that their underlying bit representations are not implementation-defined. For
types other than bool and signed or unsigned integral types, the underlying bit representation is
not explicitly known. For instance, the underlying representation of an int bit-field can be either
signed or unsigned based on implementation. Similarly, ISO/IEC 14882:2003 does not explicitly
define the signedness of the underlying bit representation of wchar_t types.

Using types other than bool and signed or unsigned integral types as bit fields might result in
code that behaves in an implementation-dependent manner and result in bugs that are difficult to
diagnose. When using bit fields, use bool, signed integral types, or unsigned integral types.

Polyspace Implementation

Polyspace reports a violation of this rule if the type of a bit field is:

• An integral type that does not have an explicit sign specification
• A wchar_t

Polyspace does not report a violation if the type of a bit field is:

• A bool
• An explicitly signed or explicitly unsigned integral type
• An explicitly signed or unsigned char

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Specify Signedness of Types When Using Bit Fields

#include <cstdint>
struct S
{
 signed int sInt_f : 2; // Compliant
 unsigned int uInt_f : 2; // Compliant
 char Ch_f : 2; // Noncompliant
 signed char sCh_f : 2; // Compliant
 unsigned char uCh_f : 2; // Compliant

22 MISRA C++: 2008

22-200

 short Sh_f : 2; // Noncompliant
 signed short sSh_f : 2; // Compliant
 unsigned short uSh_f : 2; // Compliant
 int Int_f : 2; // Noncompliant
 bool Bool_f : 2; // Compliant
 wchar_t wch_f : 2; // Noncompliant
 int32_t sInt32_f : 2; // Noncompliant
 int8_t sInt8_f : 2; // Compliant
 long Long_f:2; //Noncompliant
 unsigned long uLong_f:2; //Compliant
};

In this example, Polyspace flags the integral type bit fields that are not explicitly signed or unsigned
and the wchar_t type bit fields.

Check Information
Group: Classes
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 9-6-2

22-201

MISRA C++:2008 Rule 9-6-3
Bit-fields shall not have enum type

Description
Rule Definition

Bit-fields shall not have enum type.

Rationale

Using bit fields requires that their underlying bit representations are not implementation-defined.
The ISO/IEC 14882:2003 does not explicitly define the signedness of the underlying bit
representation of enum types. Because the sign of an enum type depends on the implementation, the
exact number of bits that is required to represent the values in the enum is implementation-defined.

To avoid code that behaves differently in different implementations and bugs that are difficult to
diagnose, do not use enum types as bit fields.

Polyspace Implementation

Polyspace reports a violation of this rule when you use enum types as bit fields.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Using enum Types in Bit Fields
enum Spin {CW, CCW};
void foo(){
 struct DataStruct{
 Spin electron:2; //Noncompliant
 };
}

In this example, Polyspace flags the declaration of the object electron as a bit field because
electron is a enum type.

Check Information
Group: Classes
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

22 MISRA C++: 2008

22-202

Introduced in R2013b

 MISRA C++:2008 Rule 9-6-3

22-203

MISRA C++:2008 Rule 9-6-4
Named bit-fields with signed integer type shall have a length of more than one bit

Description
Rule Definition

Named bit-fields with signed integer type shall have a length of more than one bit.

Rationale

Variables with signed integer bit-field types of length one might have values that do not meet
developer expectations. For instance, signed integer types of fixed width such as std::int16_t
(from cstdint) have a two's complement representation. In this representation, a single bit is just
the sign bit and the value might be 0 or -1.

Polyspace Implementation

The checker flags declarations of named variables having signed integer bit field types of length
equal to one.

Bit field types of length zero are not flagged.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Compliant and Noncompliant Bit-Field Types

#include <cstdint>

typedef struct
{
 std::uint16_t IOFlag :1; //Compliant - unsigned type
 std::int16_t InterruptFlag :1; //Noncompliant
 std::int16_t Register1Flag :2; //Compliant - Length more than one bit
 std::int16_t : 1; //Compliant - Unnamed
 std::int16_t : 0; //Compliant - Unnamed
 std::uint16_t SetupFlag :1; //Compliant - unsigned type
} InterruptConfigbits_t;

In this example, only the second bit-field declaration is noncompliant. A named variable is declared
with a signed type of length one bit.

Check Information
Group: Classes
Category: Required

22 MISRA C++: 2008

22-204

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 9-6-4

22-205

MISRA C++:2008 Rule 10-1-1
Classes should not be derived from virtual bases

Description
Rule Definition

Classes should not be derived from virtual bases.

Rationale

The use of virtual bases can lead to many confusing behaviors.

For instance, in an inheritance hierarchy involving a virtual base, the most derived class calls the
constructor of the virtual base. Intermediate calls to the virtual base constructor are ignored.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of Virtual Bases

class Base {};
class Intermediate: public virtual Base {}; //Noncompliant
class Final: public Intermediate {};

In this example, the rule checker raises a violation when the Intermediate class is derived from the
class Base with the virtual keyword.

The following behavior can be a potential source of confusion. When you create an object of type
Final, the constructor of Final directly calls the constructor of Base. Any call to the Base
constructor from the Intermediate constructor are ignored. You might see unexpected results if
you do not take into account this behavior.

Check Information
Group: Derived Classes
Category: Advisory

See Also
MISRA C++:2008 Rule 10-1-2 | Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-206

MISRA C++:2008 Rule 10-1-2
A base class shall only be declared virtual if it is used in a diamond hierarchy

Description
Rule Definition

A base class shall only be declared virtual if it is used in a diamond hierarchy.

Rationale

This rule is less restrictive than MISRA C++:2008 Rule 10-1-1. Rule 10-1-1 forbids the use of a
virtual base anywhere in your code because a virtual base can lead to potentially confusing behavior.

Rule 10-1-2 allows the use of virtual bases in the one situation where they are useful, that is, as a
common base class in diamond hierarchies.

For instance, the following diamond hierarchy violates rule 10-1-1 but not rule 10-1-2.

class Base {};
class Intermediate1: public virtual Base {};
class Intermediate2: public virtual Base {};
class Final: public Intermediate1, public Intermediate2 {};

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Derived Classes
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 10-1-2

22-207

MISRA C++:2008 Rule 10-1-3
An accessible base class shall not be both virtual and non-virtual in the same hierarchy

Description
Rule Definition

An accessible base class shall not be both virtual and non-virtual in the same hierarchy.

Rationale

The checker flags situations where the same class is inherited as a virtual base class and a non-virtual
base class in the same derived class. These situations defeat the purpose of virtual inheritance and
causes multiple copies of the base class sub-object in the derived class object.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Base Class Both Virtual and Non-Virtual in Same Hierarchy

class Base {};
class Intermediate1: virtual public Base {};
class Intermediate2: virtual public Base {};
class Intermediate3: public Base {};
class Final: public Intermediate1, Intermediate2, Intermediate3 {}; //Noncompliant

In this example, the class Base is inherited in Final both as a virtual and non-virtual base class. The
Final object contains at least two copies of a Base sub-object.

Check Information
Group: Derived Classes
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-208

MISRA C++:2008 Rule 10-2-1
All accessible entity names within a multiple inheritance hierarchy should be unique

Description
Rule Definition

All accessible entity names within a multiple inheritance hierarchy should be unique.

Rationale

Data members and nonvirtual functions within the same inheritance hierarchy that have the same
name might cause developer confusion. The entity the developer intended for use might not be the
entity the compiler chooses. Avoid using nonunique names for accessible entities within a multiple
inheritance hierarchy.

Polyspace Implementation

This checker flags entities from separate classes that belong to the same derived class if they have an
ambiguous name. The name of an entity is ambiguous if:

• Two variables share the same name, even if they are of different types.
• Two functions share the same name, same parameters, and the same return type.

If the data member accessed in the derived class is ambiguous, Polyspace reports this issue as a
compilation issue, not a coding rule violation. The checker does not check for conflicts between
entities of different kinds such as member functions against data members.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Noncompliant Data Members in a Multiple Inheritance Hierarchy

#include<iostream>
#include<cstdlib>
#include<cstdint>

using namespace std;

class A
{
public:
 int32_t num; //Noncompliant
 int32_t total; //Compliant
 int32_t sum(int32_t toSum) //Noncompliant
 {
 total = toSum + num;
 };

 MISRA C++:2008 Rule 10-2-1

22-209

};

class B
{
public:
 int32_t num; //Noncompliant
 int32_t total(); //Compliant
 int32_t sum(int32_t toSum) //Noncompliant
 {
 num = toSum + num;
 };
};

class C : public A, public B
{
public:
 void foo()
 {
 num = total;
 sum(num);
 }
};

• Because class A and class B define their own local variable int32_t num, and because
class C is a multiple inheritance hierarchy containing class A and class B, Polyspace flags
both int32_t num variables as noncompliant.

• Because int32_t sum() in class A and int32_t sum() in class B share the same name,
return type, arguments, and are members of the same multiple inheritance hierarchy, both
functions are flagged by Polyspace as noncompliant.

• Because int32_t total and int_32t total() are different types of class members, Polyspace
does not flag them even though they are part of the same multiple inheritance hierarchy.

The ambiguous data members might be reported as compilation issues.

Check Information
Group: Derived Classes
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-210

MISRA C++:2008 Rule 10-3-1
There shall be no more than one definition of each virtual function on each path through the
inheritance hierarchy

Description
Rule Definition

There shall be no more than one definition of each virtual function on each path through the
inheritance hierarchy.

Rationale

The checker flags virtual member functions that have multiple definitions on the same path in an
inheritance hierarchy. If a function is defined multiple times, it can be ambiguous which
implementation is used in a given function call.

Polyspace Implementation

The checker also raises a violation if a base class member function is redefined in the derived class
without the virtual keyword.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Virtual Function Redefined in Derived Class

class Base {
 public:
 virtual void foo() {
 }
};

class Intermediate1: public virtual Base {
 public:
 virtual void foo() { //Noncompliant
 }
};

class Intermediate2: public virtual Base {
 public:
 void bar() {
 foo(); // Calls Base::foo()
 }
};

class Final: public Intermediate1, public Intermediate2 {
};

 MISRA C++:2008 Rule 10-3-1

22-211

void main() {
 Intermediate2 intermediate2Obj;
 intermediate2Obj.bar(); // Calls Base::foo()
 Final finalObj;
 finalObj.bar(); //Calls Intermediate1::foo()
 //but you might expect Base::foo()
}

In this example, the virtual function foo is defined in the base class Base and also in the derived
class Intermediate1.

A potential source of confusion can be the following. The class Final derives from Intermediate1
and also derives from Base through another path using Intermediate2.

• When an Intermediate2 object calls the function bar that calls the function foo, the
implementation of foo in Base is called. An Intermediate2 object does not know of the
implementation in Intermediate1.

• However, when a Final object calls the same function bar that calls the function foo, the
implementation of foo in Intermediate1 is called because of dominance of the more derived
class.

You might see unexpected results if you do not take this behavior into account.

To prevent this issue, declare a function as pure virtual in the base class. For instance, you can
declare the class Base as follows:

class Base {
 public:
 virtual void foo()=0;
};

void Base::foo() {
 //You can still define Base::foo()
}

Check Information
Group: Derived Classes
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-212

MISRA C++:2008 Rule 10-3-2
Each overriding virtual function shall be declared with the virtual keyword

Description
Rule Definition

Each overriding virtual function shall be declared with the virtual keyword.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Derived Classes
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 10-3-2

22-213

MISRA C++:2008 Rule 10-3-3
A virtual function shall only be overridden by a pure virtual function if it is itself declared as pure
virtual

Description
Rule Definition

A virtual function shall only be overridden by a pure virtual function if it is itself declared as pure
virtual.

Rationale

In C++, an abstract class is the base of a polymorphic class hierarchy and the derived classes
implement variation of the abstract class. When a virtual function is overriden in a derived class by a
pure virtual function, the derived class becomes an abstract class. That a derived class is defined as
an abstract class or an implemented function is overriden by a pure virtual function is unexpected
behavior, which might confuse a developer.

Polyspace Implementation

Polyspace flags a pure virtual function if it overrides a function that is not pure virtual.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Do Not Redeclare Functions as Pure Virtual

class Conic{
 //...
 public:
 double centerAbscissa;
 double centerOrdinate;
 //..
 virtual double getArea()=0;
};
class Circle: public Conic{
 //...
 public:
 //...
 double getArea() override{
 //calculate area of circle
 }
};
class Ellipse: public Circle{
 //...
 public:
 //...

22 MISRA C++: 2008

22-214

 virtual double getArea()=0; //Noncompliant
};

In this example, the base class Conic is an abstract class because the function getArea() is a pure
virtual function. The derived class Circle implements the function getArea. The expectation from
such a polymorphic hierarchy is that the virtual function getArea calculates the area correctly based
on the derived class. When the derived class Ellipse redeclares getArea as a pure virtual function,
the derived class Ellipse becomes abstract and the function Ellipse.getArea() cannot be
invoked. Developers might expect Ellipse.getArea() to return the area of the ellipse. Because
this redeclaration as a pure virtual function does not meet developer expectation, Polyspace flags the
declaration.

Check Information
Group: Derived Classes
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 10-3-3

22-215

MISRA C++:2008 Rule 11-0-1
Member data in non- POD class types shall be private

Description
Rule Definition

Member data in non- POD class types shall be private.

Rationale

If classes have data members that are publicly accessible, other classes and functions might interact
with the class data members directly. Any change in the class might require updating the clients that
use the class. If a class is not a plain-old-data (POD) type, restricting access to its data members
enables encapsulation of the class. In such an encapsulated class, the implementation details of the
class are opaque to the clients that use it. The class retains control over its implementation and can
be maintained independently without impacting the clients that use the class.

Polyspace Implementation

Polyspace flags nonprivate data members in classes that are not POD types. Polyspace space uses the
same definition of POD classes as the standard.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Declare Data Members in Non-POD Classes as private

class nonPOD{
 nonPOD(){
 //...
 }
 ~nonPOD(){
 //...
 }
 public:
 int getX();
 int setX(int&);
 int getY();
 int setY(int&);
 int getZ();
 int setZ(int&);
 int x; //Noncompliant
 protected:
 int y; //Noncompliant
 private:
 int z;
};

22 MISRA C++: 2008

22-216

In this example, the data members y and z are not private. Polyspace flags them.

Check Information
Group: Member Access Control
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 11-0-1

22-217

MISRA C++:2008 Rule 12-1-1
An object's dynamic type shall not be used from the body of its constructor or destructor

Description
Rule Definition

An object's dynamic type shall not be used from the body of its constructor or destructor.

Rationale

The dynamic type of an object is the type of its most derived class. For instance:

struct B {
 virtual ~B() {}
};
struct D: B {};
D d;
B* ptr = &d;

The dynamic type of the object pointed to by *ptr is D because that is the most derived class in the
polymorphic hierarchy.

When you invoke the dynamic type of a polymorphic object in its constructor or destructor, you might
get the type of the constructed or destroyed object instead of the type of the most derived object. This
is because when you invoke the dynamic type during construction or destructor, the derived classes
might not be constructed yet. Using dynamic types in constructors and destructors might result in
unexpected behavior. Calling pure virtual functions from constructors and destructors results in
undefined behavior. Avoid using the dynamic type of an object in its constructors or destructors.

Polyspace Implementation

Polyspace flags these items when they are used in a constructor or a destructor of a polymorphic
class:

• The operator typeid
• Virtual or pure virtual functions
• The function dynamic_cast or implicit C-style casts

Polyspace assumes that a class is polymorphic if it has any virtual member.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Using Dynamic Type in Constructors and Destructors
#include <cassert>
#include <typeinfo>

22 MISRA C++: 2008

22-218

class PS
{
public:
 PS ()
 {
 typeid (PS); // Compliant
 }
};

class PS_1
{
public:
 virtual ~PS_1 ();
 virtual void bar ();
 PS_1 ()
 {
 typeid (PS_1); // Noncompliant
 PS_1::bar (); // Compliant
 bar (); // Noncompliant
 dynamic_cast< PS_1* > (this); // Noncompliant
 }
};

In this example, class PS has no virtual member. Polyspace does not consider PS a polymorphic class.
Because PS is not polymorphic, its dynamic type does not change at run time. Polyspace does not flag
using the typeid operator in the constructor PS::PS().

PS_1 is considered polymorphic because it has a virtual member function. Because it is
polymorphic, its dynamic type changes during run time. Polyspace flags the invocation of its dynamic
type in the constructor PS_1::PS_1().

Check Information
Group: Special Member Functions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 12-1-1

22-219

MISRA C++:2008 Rule 12-1-2
All constructors of a class should explicitly call a constructor for all of its immediate base classes and
all virtual base classes

Description
Rule Definition

All constructors of a class should explicitly call a constructor for all of its immediate base classes and
all virtual base classes.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Special Member Functions
Category: Advisory

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-220

MISRA C++:2008 Rule 12-1-3
All constructors that are callable with a single argument of fundamental type shall be declared
explicit

Description
Rule Definition

All constructors that are callable with a single argument of fundamental type shall be declared
explicit.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Special Member Functions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 12-1-3

22-221

MISRA C++:2008 Rule 12-8-1
A copy constructor shall only initialize its base classes and the non- static members of the class of
which it is a member

Description
Rule Definition

A copy constructor shall only initialize its base classes and the non- static members of the class of
which it is a member.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Special Member Functions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-222

MISRA C++:2008 Rule 12-8-2
The copy assignment operator shall be declared protected or private in an abstract class

Description
Rule Definition

The copy assignment operator shall be declared protected or private in an abstract class.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Special Member Functions
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 12-8-2

22-223

MISRA C++:2008 Rule 14-5-1
A non-member generic function shall only be declared in a namespace that is not an associated
namespace

Description
Rule Definition

A non-member generic function shall only be declared in a namespace that is not an associated
namespace.

Rationale

This rule forbids placing generic functions in the same namespace as class (struct) type, enum type,
or union type declarations. If the class, enum or union types are used as template parameters, the
presence of generic functions in the same namespace can cause unexpected call resolutions. Place
generic functions only in namespaces that cannot be associated with a class, enum or union type.

Consider the namespace NS that combines a class B and a generic form of operator==:

namespace NS {
 class B {};
 template <typename T> bool operator==(T, std::int32_t);
}

If you use class B as a template parameter for another generic class, such as this template class A:

template <typename T> class A {
 public:
 bool operator==(std::int64_t);
}

template class A<NS::B>;

the entire namespace NS is used for overload resolution when operators of class A are called. For
instance, if you call operator== with an int32_t argument, the generic operator== in the
namespace NS with an int32_t parameter is used instead of the operator== in the original
template class A with an int64_t parameter. You or another developer or code reviewer might
expect the operator call to resolve to the operator== in the original template class A.

Polyspace Implementation

For each generic function, the rule checker determines if the containing namespace also contains
declarations of class types, enum types, or union types. If such a declaration is found, the checker
flags a rule violation on the operator itself.

The checker also flags generic functions defined in the global namespace if the global namespace also
has class, enum or union declarations.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

22 MISRA C++: 2008

22-224

Examples
Generic Operator in Same Namespace as Class Type

#include <cstdint>

template <typename T> class Pair {
 std::int32_t item1;
 std::int32_t item2;
 public:
 bool operator==(std::int64_t ItemToCompare);
 bool areItemsEqual(std::int32_t itemValue) {
 return (*this == itemValue);
 }
};

namespace Operations {
 class Data {};
 template <typename T> bool operator==(T, std::int32_t); //Noncompliant
}

namespace Checks {
 bool checkConsistency();
 template <typename T> bool operator==(T, std::int32_t); //Compliant
}

template class Pair<Operations::Data>;

In this example, the namespace Operations violates the rule because it contains the class type Data
alongside the generic operator==. The namespace Checks does not violate the rule because the
only other declaration in the namespace, besides the generic operator==, is a function declaration.

In the method areItemsEqual in template class Pair<Operations::Data>, the == operation
invokes the generic operator== method in the Operations namespace. The invocation resolves to
this operator== method based on the argument data type (std_int32_t). This method is a better
match compared to the operator== method in the original template class Pair.

Check Information
Group: Templates
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 MISRA C++:2008 Rule 14-5-1

22-225

MISRA C++:2008 Rule 14-5-2
A copy constructor shall be declared when there is a template constructor with a single parameter
that is a generic parameter

Description
Rule Definition

A copy constructor shall be declared when there is a template constructor with a single parameter
that is a generic parameter.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Templates
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-226

MISRA C++:2008 Rule 14-5-3
A copy assignment operator shall be declared when there is a template assignment operator with a
parameter that is a generic parameter

Description
Rule Definition

A copy assignment operator shall be declared when there is a template assignment operator with a
parameter that is a generic parameter.

Rationale

When declaring a user-defined assignment operator, the corresponding implicit operator is
suppressed. When declaring a template assignment operator that has a generic parameter, this
behavior is not preserved. In that case, to suppress the implicit shallow-copying operator, explicitly
instantiate a version of the copy assignment operator for the class.

If you do not declare the copy assignment operator for the class, the compiler-generated copy
assignment operator might be used instead on implementation. Not declaring a copy assignment
operator explicitly might result in an unexpected outcome, such as creating a shallow copy when a
deep copy was intended.

Polyspace Implementation

Polyspace flags this checker if a structure, class, or union contains a template assignment operator
that has a generic parameter but no copy assignment operator is present within the structure, class,
or union.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Noncompliant Template Assignment Operator That Has Generic Parameter

#include<cstdint>
namespace example
{
 class A //Noncompliant
 {
 public:

 template <typename T>
 T & operator= (T const & rhs)
 {
 if (this != &rhs) {
 delete i;
 i = new int32_t;

 MISRA C++:2008 Rule 14-5-3

22-227

 *i = *rhs.i;
 }
 return *this;
 }
 private:
 int32_t * i; // Member requires deep copy
 };

 void f (A const & a1, A & a2)
 {
 a2 = a1;
 }
};

Because no copy assignment operator is declared within the class, Polyspace flags class A. The
implicitly defined copy assignment operator is not suppressed by the template assignment operator
and results in a shallow copy of a1 to a2 when you might want a deep copy.

Template Assignment Operator That Has a Generic Parameter and Copy Assignment
Operator Declared

#include<cstdint>
namespace example
{
 class A//Compliant
 {
 public:
 A & operator= (A const & rhs) {};

 template <typename T>
 T & operator= (T const & rhs)
 {
 if (this != &rhs) {
 delete i;
 i = new int32_t;
 *i = *rhs.i;
 }
 return *this;
 }
 private:
 int32_t * i;
 };

 void f (A const & a1, A & a2)
 {
 a2 = a1;
 }
};

Because this class contains a copy assignment operation declaration, Polyspace does not flag class
A.

Check Information
Group: Templates
Category: Required

22 MISRA C++: 2008

22-228

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 14-5-3

22-229

MISRA C++:2008 Rule 14-6-1
In a class template with a dependent base, any name that may be found in that dependent base shall
be referred to using a qualified-id or this->

Description
Rule Definition

In a class template with a dependent base, any name that may be found in that dependent base shall
be referred to using a qualified-id or this->

Rationale

When a class template derives from another class template, there might be confusion arising from the
use of names that exist in both the base template and the current scope or namespace. When the
same name exists in the base class template and a namespcae that contains the classes, the scope
resolution of these names is dependent on the compiler, which might be contrary to developer's
expectation. To avoid confusion, use fully qualified id or this-> to explicitly disambiguate the
intended object when such a name conflict exists.

Polyspace Implementation

Polyspace flags names for which all of these conditions are true:

• The name exists in the base class.
• The name exists in a namespace that contains the base class.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use Fully Qualified Names in Class Templates That Have Dependent Base Classes
typedef signed int int32_t;
namespace NS0{
 typedef int32_t TYPE;

 void bar();
 namespace NS1{
 namespace NS{

 template <typename T>
 class Base;
 template <typename T>
 class Derived : public Base<T>
 {
 void foo ()
 {
 TYPE t = 0; // Noncompliant

22 MISRA C++: 2008

22-230

 bar (); // Noncompliant
 }
 void foo2 ()
 {
 NS0::TYPE t1 = 0; // Compliant
 NS0::bar (); // Compliant
 typename Base<T>::TYPE t2 = 0; // Compliant
 this->bar (); // Compliant
 }
 };
 template <typename T>
 class Base
 {
 public:
 typedef T TYPE;
 void bar ();
 };
 template class Derived<int32_t>;
 }
 }
}

In this example, the names Type and bar are defined both in the namespace NS0 and within the class
template Base. The class template Derived derives from Base. In Derived::foo1(), these names
are used without using the fully qualified names or this->. It is not clear whether the TYPE in
Base::foo1 resolves to NS0::TYPE or Base::TYPE. You might get different results depending on
the implementation of the compiler. Polyspace flags these ambiguous statements.

In Derived::foo2(), TYPE and bar are invoked by using their fully qualified name or this->. By
using qualified names or this->, the ambiguity in scope resolution is bypassed. Polyspace does not
flag these uses.

Check Information
Group: Templates
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 14-6-1

22-231

MISRA C++:2008 Rule 14-6-2
The function chosen by overload resolution shall resolve to a function declared previously in the
translation unit

Description
Rule Definition

The function chosen by overload resolution shall resolve to a function declared previously in the
translation unit.

Rationale

In general, you cannot call a function before it is declared, so you expect a function call to resolve to
a previously declared function. However, in case of overload resolution of a function call inside a
template, this expectation might not be satisfied. The resolution of this overload occurs at the point of
template instantiation, not at the point of template definition. So, the call might resolve to a function
that is declared after the template definition and lead to unexpected results. See examples below.

To satisfy the expectation that a function call always resolves to a previously declared function,
declare the overloads of a function prior to calling it. Alternatively, use the scope resolution
operator :: or parenthesis to explicitly call a specific previously declared function and bypass the
overload resolution mechanism.

Polyspace Implementation

The checker flags a call to a function or operator in a function template definition if the function or
operator is declared after the template definition.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Function Call Resolves to Function Declared Later

void show (int);

namespace helpers {
 struct params {
 operator int () const;
 };
}

template <typename T> void displayParams(T const & arg) {
 show(arg); //Non-compliant
 ::show(arg); //Compliant
 (show)(arg); //Compliant
}

22 MISRA C++: 2008

22-232

namespace helpers {
 void show (params const &);
}

void main() {
 helpers::params aParam;
 displayParams(aParam);
}

In this example, the call show(arg) in the template displayParams resolves to
helpers::show(), but a developer or code reviewer might not expect this call resolution, since
helpers::show() is declared later. Polyspace flags this call.

The calls ::show(arg) and (show)(arg) explicitly indicate the previously declared function
show() declared in the global namespace. Polyspace does not flag these calls.

Check Information
Group: Templates
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 14-6-2

22-233

MISRA C++:2008 Rule 14-7-3
All partial and explicit specializations for a template shall be declared in the same file as the
declaration of their primary template

Description
Rule Definition

All partial and explicit specializations for a template shall be declared in the same file as the
declaration of their primary template.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Templates
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-234

MISRA C++:2008 Rule 14-8-1
Overloaded function templates shall not be explicitly specialized

Description
Rule Definition

Overloaded function templates shall not be explicitly specialized.

Polyspace Implementation

The checker first checks within file scope to find overloads. The checker later looks for call to a
specialized template function later. As a result, the checker flags all specializations of overloaded
templates even if overloading occurs after the call.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Templates
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 14-8-1

22-235

MISRA C++:2008 Rule 14-8-2
The viable function set for a function call should either contain no function specializations, or only
contain function specializations

Description
Rule Definition

The viable function set for a function call should either contain no function specializations, or only
contain function specializations.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Templates
Category: Advisory

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-236

MISRA C++:2008 Rule 15-0-2
An exception object should not have pointer type

Description
Rule Definition

An exception object should not have pointer type.

Polyspace Implementation

The checker raises a violation if a throw statement throws an exception of pointer type.

The checker does not raise a violation if a NULL pointer is thrown as exception. Throwing a NULL
pointer is forbidden by MISRA C++:2008 Rule 15-1-2.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Exception Handling
Category: Advisory

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 15-0-2

22-237

MISRA C++:2008 Rule 15-0-3
Control shall not be transferred into a try or catch block using a goto or a switch statement

Description
Rule Definition

Control shall not be transferred into a try or catch block using a goto or a switch statement.

Rationale

Transferring control into a try or catch block by using a goto or a switch statement results in ill-
formed code that is difficult to understand. The intended behavior of such code is difficult to identify
and the code might result in unexpected behavior. Abruptly entering into an exception handling block
might cause compilation failure in some compilers while other compilers might not diagnose the
issue. To improve code understanding and reduce unexpected behavior, avoid transferring control
into a try or a catch block.

Polyspace Implementation

Polyspace flags the goto and switch statements that jump into a try or a catch block.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Jumping into try or catch Blocks

#include<cstdint>
void foo (int32_t input)
{
 if (input==1)
 {
 goto Label_1; // Noncompliant
 }
 if (input==2)
 {
 goto Label_2; // Noncompliant
 }
 switch (input) //Noncompliant
 {
 case 1:
 try
 {
 Label_1:
 case 2:
 break;
 }
 catch (...)

22 MISRA C++: 2008

22-238

 {
 Label_2:
 case 3:
 break;
 }
 break;
 default:
 {
 //...
 break;
 }
 }
}

In this example, goto and switch statements are used to jump into a try-catch block. Jumping
into a try-catch block makes the code difficult to understand. Abrupt transfer of control into a try
block or a catch block might result in compilation failure. Polyspace flags the goto and switch
statements.

Check Information
Group: Exception Handling
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 15-0-3

22-239

MISRA C++:2008 Rule 15-1-1
The assignment-expression of a throw statement shall not itself cause an exception to be thrown

Description
Rule Definition

The assignment-expression of a throw statement shall not itself cause an exception to be thrown.

Rationale

In C++, you can use a throw statement to raise exceptions explicitly. The compiler executes such a
throw statement in two steps:

• First, it creates the argument for the throw statement. The compiler might call a constructor or
evaluate an assignment expression to create the argument object.

• Then, it raises the created object as an exception. The compiler tries to match the exception object
to a compatible handler.

If an unexpected exception is raised when the compiler is creating the expected exception in a throw
statement, the unexpected exception is raised instead of the expected one. Consider this code where
a throw statement raises an explicit exception of class myException.

class myException{
 myException(){
 msg = new char[10];
 //...
 }
 //...
};

foo(){
 try{
 //..
 throw myException();
 }
 catch(myException& e){
 //...
 }
}

During construction of the temporary myException object, the new operator can raise a bad_alloc
exception. In such a case, the throw statement raises a bad_alloc exception instead of
myException. Because myException was the expected exception, the catch block is incompatible
with bad_alloc. The bad_alloc exception becomes an unhandled exception. It might cause the
program to abort abnormally without unwinding the stack, leading to resource leak and security
vulnerabilities.

Unexpected exceptions arising from the argument of a throw statement can cause resource leaks
and security vulnerabilities. To prevent such unwanted outcome, avoid using expressions that might
raise exceptions as argument in a throw statement.

22 MISRA C++: 2008

22-240

Polyspace Implementation

Polyspace flags the expressions in throw statements that can raise an exception. Expressions that
can raise exceptions can include:

• Functions that are specified as noexcept(false)
• Functions that contain one or more explicit throw statements
• Constructors that perform memory allocation operations
• Expressions that involve dynamic casting

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Expressions That Can Raise Exceptions in throw Statements

This example shows how Polyspace flags the expressions in throw statements that can raise
unexpected exceptions.

int f_throw() noexcept(false);

class WithDynamicAlloc {
public:
 WithDynamicAlloc(int n) {
 m_data = new int[n];
 }
 ~WithDynamicAlloc() {
 delete[] m_data;
 }
private:
 int* m_data;
};

class MightThrow {
public:
 MightThrow(bool b) {
 if (b) {
 throw 42;
 }
 }
};

class Base {
 virtual void bar() =0;
};
class Derived: public Base {
 void bar();
};
class UsingDerived {
public:
 UsingDerived(const Base& b) {
 m_d =

 MISRA C++:2008 Rule 15-1-1

22-241

 dynamic_cast<const Derived&>(b);
 }
private:
 Derived m_d;
};
class CopyThrows {
public:
 CopyThrows() noexcept(true);
 CopyThrows(const CopyThrows& other) noexcept(false);
};
int foo(){
 try{
 //...
 throw WithDynamicAlloc(10); //Noncompliant
 //...
 throw MightThrow(false);//Noncompliant
 throw MightThrow(true);//Noncompliant
 //...
 Derived d;
 throw UsingDerived(d);// Noncompliant
 //...
 throw f_throw(); //Noncompliant
 CopyThrows except;
 throw except;//Noncompliant
 }
 catch(WithDynamicAlloc& e){
 //...
 }
 catch(MightThrow& e){
 //...
 }
 catch(UsingDerived& e){
 //...
 }
}

• When constructing a WithDyamicAlloc object by calling the constructor
WithDynamicAlloc(10), exceptions can be raised during dynamic memory allocation. Because
the expression WithDynamicAlloc(10) can raise an exception, Polyspace flags the throw
statement throw WithDynamicAlloc(10);

• When constructing a UsingDerived object by calling the constructor UsingDervide(),
exceptions can be raised during the dynamic casting operation. Because the expression
UsingDerived(d) can raise exceptions, Polyspace flags the statement throw
UsingDerived(d).

• In the function MightThrow(), exceptions can be raised depending on the input to the function.
Because Polyspace analyzes functions statically, it assumes that the function MightThrow() can
raise exceptions. Polyspace flags the statements throw MightThrow(false) and throw
MightThrow(true).

• In the statement throw except, the object except is copied by implicitly calling the copy
constructor of the class CopyThrows. Because the copy constructor is specified as
noexcept(false), Polyspace assumes that the copy operation might raise exceptions. Polyspace
flags the statement throw except

• Because the function f_throw() is specified as noexcept(false), Polyspace assumes that it
can raise exceptions. Polyspace flags the statement throw f_throw().

22 MISRA C++: 2008

22-242

Check Information
Group: Exception Handling
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 MISRA C++:2008 Rule 15-1-1

22-243

MISRA C++:2008 Rule 15-1-2
NULL shall not be thrown explicitly

Description
Rule Definition

NULL shall not be thrown explicitly.

Rationale

The macro NULL is commonly used to refer to null pointers. Compliers interpret NULL as an integer
with value zero, instead of a pointer. When you use NULL explicitly in a throw statement, you might
expect the statement to raise a pointer type exception. The throw(NULL) is equivalent to throw(0)
and raises an integer exception. This behavior might be contrary to developer expectation and might
result in bugs that are difficult to find. Avoid using NULL explicitly in a throw statement.

Polyspace Implementation

Polyspace flags a throw statement that raises a NULL explicitly. Polyspace does not flag the statement
when NULL is raised after casting to a specific type or assigning it to a pointer type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Do Not Throw NULL Explicitly

typedef char char_t;
typedef signed int int32_t;

#include <cstddef>

void foo()
{
 try {
 char_t * p1 = NULL;
 throw (NULL); // Noncompliant
 throw(p1); //Compliant
 throw (static_cast < const char_t * > (NULL)); // Compliant
 } catch (int32_t i) { // NULL exception handled here
 // /*...*/
 } catch (const char_t *) { // Other two exceptions are handled here
 // /*...*/
 }
}

In this example, three exceptions are raised directly by using throw statements.

22 MISRA C++: 2008

22-244

• Polyspace flags the statement throw(NULL) because it explicitly raises NULL as exception. You
might expect that this statement raises a pointer type exception that is handled in the second
catch block. This statement actually raises an int exception that is handled in the first catch
block.

• The other throw statements show the compliant method of using NULL in a throw statement. For
instance, the second throw statement raises a char* that is assigned the value NULL. The third
throw statement raises a char* by casting NULL to a char*. Because these statements do not
raise NULL explicitly, Polyspace does not flag them.

Check Information
Group: Exception Handling
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 15-1-2

22-245

MISRA C++:2008 Rule 15-1-3
An empty throw (throw;) shall only be used in the compound- statement of a catch handler

Description
Rule Definition

An empty throw (throw;) shall only be used in the compound- statement of a catch handler.

Rationale

When you use an empty throw statement (throw;), the compiler checks if an exception object is
present in the current scope. If the current scope contains an exception object, the compiler raises a
temporary object containing the current exception. If the current scope does not contain an exception
objects, the compiler invokes std::terminate() implicitly. The function std::terminate()
terminates the program execution in an implementation-defined manner. That is, the exact process of
program termination depends on the software and hardware that you are using. For instance,
std:terminate() might invoke std::abort() to abnormally abort the execution without
unwinding the stack, leading to resource leak and security vulnerabilities.

The best practice is to use an empty throw statement only in the catch block of a try-catch
construct, which enables you to spread the handling of an exception across multiple catch blocks.
Avoid using empty throw statements in scopes that might not contain an exception.

Polyspace Implementation

Polyspace flags an empty throw statement if it is not within a catch block.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Using Empty throw Statements Outside catch Blocks

#include <iostream>
#include <typeinfo>
#include <exception>

void handleException()//function to handle all exception
{
 try {
 throw; // Noncompliant
 }
 catch (std::bad_cast& e) {
 //...Handle bad_cast...
 }
 catch (std::bad_alloc& e) {
 //...Handle bad_alloc...
 }

22 MISRA C++: 2008

22-246

 catch(...){
 //...Handle other exceptions
 }
}

void f()
{
 try {
 //...something that might throw...
 }
 catch (...) {
 handleException();
 }
}

In this example, the function handleException() raises the current exception by using an empty
throw statement, and then directs it to the appropriate catch block. This method of delegating the
exception handling works as intended only when the function handleException() is called from
within a catch block. The empty throw statement might cause abrupt termination of the program if
the function is called in any other scope that does not contain an exception. Polyspace flags the empty
throw statement.

Use Empty throw Statement to Handle Exceptions in Multiple Blocks

#include <iostream>
#include <typeinfo>
#include <exception>
void foo()//function to handle all exception
{
 try {
 //...
 }
 catch (std::bad_cast& e) {
 //...Handle bad_cast...
 }
 catch (std::bad_alloc& e) {
 //...Handle bad_alloc...
 }
 catch(std::exception& e){
 //...Handle std::exceptions
 // if exception cannot be handled
 // throw it again
 throw;//Compliant
 }
}

int main(){
 try{
 foo();
 }
 catch(...){

 }
}

This example shows a compliant use of an empty throw statement. The function foo contains a try-
catch construct that handles specific exceptions. If the raised exception cannot be handled, foo

 MISRA C++:2008 Rule 15-1-3

22-247

raises the exception again as an unhandled exception by using an empty throw statement. In main,
the function foo is invoked and any unhandled exception arising from foo is handled in a generic
catch(...) block. By using the empty throw statement, the handling of the exception is spread
across the catch blocks of foo and main. In this case, the empty throw statement is executed only
when there is an exception in the same scope because it is within a catch block. Polyspace does not
flag it.

Check Information
Group: Exception Handling
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-248

MISRA C++:2008 Rule 15-3-1
Exceptions shall be raised only after start-up and before termination of the program

Description
Rule Definition

Exceptions shall be raised only after start-up and before termination of the program.

Rationale

In c++, the process of exception handling runs during execution of main(), where exceptions arising
in different scopes are handled by exception handlers in the same or adjacent scopes. Before starting
the execution of main(), the compiler is in startup phase, and after finishing the execution of
main(), the compiler is in termination phase. During these two phases, the compiler performs a set
of predefined operations but does not execute any code.

If an exception is raised during either the startup phase or the termination phase, you cannot write
an exception handler that the compiler can execute in those phases. For instance, you might
implement main() as a function-try-catch block to handle exceptions. The catch blocks in
main() can handle only the exceptions raised in main(). None of the catch blocks can handle
exceptions raised during startup or termination phase. When such exceptions are raised, the compiler
might abnormally terminate the code execution without unwinding the stack. Consider this code
where the construction and destruction of the static object obj might cause an exception.

class A{
 A(){throw(0);}
 ~A(){throw(0)}
};

static A obj;

main(){
 //...
}

The static object obj is constructed by calling A() before main() starts, and it is destroyed by
calling ~A() after main() ends. When A() or ~A() raises an exception, no exception handler can be
matched with them. Based on the implementation, such an exception can result in program
termination without stack unwinding, leading to memory leak and security vulnerabilities.

Avoid operations that might raise an exception in the parts of your code that might be executed
before startup or after termination of the program. For instance, avoid operations that might raise
exceptions in the constructor and destructor of static or global objects.

Polyspace Implementation

Polyspace flags global or static variable declaration that uses a callable entity that might raise an
exception. For instance:

• Functions: When you call an initializer function or constructor directly to initialize a global or
static variable, Polyspace checks whether the function raises an exception and flags the variable

 MISRA C++:2008 Rule 15-3-1

22-249

declaration if the function might raise an exception. Polyspace deduces whether a function might
raise an exception regardless of its exception specification. For instance, If a noexcept
constructor raises an exception, Polyspace flags it. If the initializer or constructor calls another
function, Polyspace assumes the called function might raise an exception only if it is specified as
noexcept(<false>). Some standard library functions, such as the constructor of std::string,
uses pointers to functions to perform memory allocation, which might raise exceptions. Polyspace
does not flag the variable declaration when these functions are used.

• External function: When you call external functions to initialize a global or static variable,
Polyspace flags the declaration if the external function is specified as noexcept(<false>).

• Virtual function: When you call a virtual function to initialize a global or static variable, Polyspace
flags it if the virtual function is specified as noexcept(<false>) in any derived class. For
instance, if you use a virtual initializer function that is declared as noexcept(<true>) in the
base class, and noexcept(<false>) in a subsequent derived class, Polyspace flags it.

• Pointers to function: When you use a pointer to a function to initialize a global or static variable,
Polyspace assumes that pointer to function do not raise exceptions.

Polyspace ignores:

• Exceptions raised in destructors
• Exceptions raised in atext() operations

Polyspace also ignores the dynamic context when checking for exceptions. For instance, you might
initialize a global or static variable by using function that raises exceptions only in certain dynamic
context. Polyspace flags such a declaration even if the exception might never be raised. You can
justify such a violation using comments in Polyspace.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Exceptions Before main() Starts

This example shows how Polyspace flags construction or initialization of a global or static variable
that might raise an exception. Consider this code where static and global objects are initialized by
using various callable entities.

#include <stdexcept>
#include <string>
class C
{
public:
 C (){throw (0);}
 ~C (){throw (0);}
};
int LibraryFunc();
int LibraryFunc_noexcept_false() noexcept(false);
int LibraryFunc_noexcept_true() noexcept(true);
int g() noexcept {
 throw std::runtime_error("dead code");
 return 0;

22 MISRA C++: 2008

22-250

}
int f() noexcept {
 return g();
}
int init(int a) {
 if (a>10) {
 throw std::runtime_error("invalid case");
 }
 return a;
}
void* alloc(size_t s) noexcept {
 return new int[s];
}
int a = LibraryFunc() +
LibraryFunc_noexcept_true(); // Compliant
int c =
LibraryFunc_noexcept_false() + // Noncompliant
LibraryFunc_noexcept_true();
static C static_c; //Noncompliant
static C static_d; //Compliant
C &get_static_c(){
 return static_c;
}
C global_c; //Noncompliant
int a3 = f(); //Compliant
int b3 = g(); //Noncompliant
int a4 = init(5); //Noncompliant
int b5 = init(20); //Noncompliant
int* arr = (int*)alloc(5); //Noncompliant

int main(){
 //...
}

• The global pointer arr is initialized by using the function alloc(). Because alloc() uses new to
allocate memory, it can raise an exception when initializing arr during the startup of the program.
Polyspace flags the declaration of arr and highlights the use of new in the function alloc().

• The integer variable b3 is initialized by calling the function g(), which is specified as noexcept.
Polyspace deduces that the correct exception specification of g() is noexcept(false) because
it contains a throw() statement. Initializing the global variable b3 by using g() might raise an
exception when initializing arr during the startup of the program. Polyspace flags the declaration
of b3 and highlights the throw statement in g(). The declaration of a3 by calling f() is not
flagged. Because f() is a noexcept function that does not throw, and calls another noexcept
function, Polyspace deduces that f() does not raise an exception.

• The global variables a4 and b5 are initialized by calling the function init(). The function
init() might raise an exception in certain cases, depending on the context. Because Polyspace
deduces the exception specification of a function statically, it assumes that init() might raise an
exception regardless of context. Consequently, Polyspace flags the declarations of both a4 and b5,
even though init() raises an exception only when initializing b5.

• The global variable global_int is initialized by calling two external functions. The external
function LibraryFunc_noexcept_false() is specified as noexcept(false) and Polyspace
assumes that this external function might raise an exception. Polyspace flags the declaration of
global_int. Polyspace does not flag the declaration of a because it is initialized by calling
external functions that are not specified as noexcept(false).

 MISRA C++:2008 Rule 15-3-1

22-251

• The static variable static_c and the nonstatic global variable global_cis declared and
initialized by using the constructor of the class C, which might raise an exception. Polyspace flags
the declarations of these variables and highlights the throw() statement in the constructor of
class C. Polyspace does not flag the declaration of the unused static variable static_d, even
though its constructor might raise an exception. Because it is unused, static_d is not initialized
and its constructor is not called. Its declaration does not raise any exception.

Check Information
Group: Templates
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

22 MISRA C++: 2008

22-252

MISRA C++:2008 Rule 15-3-2
There should be at least one exception handler to catch all otherwise unhandled exceptions

Description
Rule Definition

There should be at least one exception handler to catch all otherwise unhandled exceptions.

Polyspace Implementation

The checker shows a violation if there is no try/catch in the main function or the catch does not
handle all exceptions (with ellipsis ...). The rule is not checked if a main function does not exist.

The checker does not determine if an exception of an unhandled type actually propagates to main.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce different
results.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Exception Handling
Category: Advisory

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 15-3-2

22-253

MISRA C++:2008 Rule 15-3-3
Handlers of a function-try-block implementation of a class constructor or destructor shall not
reference non-static members from this class or its bases

Description
Rule Definition

Handlers of a function-try-block implementation of a class constructor or destructor shall not
reference non-static members from this class or its bases.

Rationale

The handler catch blocks of a function try block handle exception that are raised from the body of
the function and the initializer list. When used in class constructors and destructors, these catch
blocks might handle exceptions that arise during the creation or destruction of the class nonstatic
members. That is, the catch blocks might be executed before or after the lifetime of the nonstatic
members of a class. If the nonstatic members of a class are accessed in such catch blocks, the
compiler might attempt to access objects that are not created yet or already deleted, which is
undefined behavior. For instance:

class C{

 private:
 int* inptr_x;
 public:
 C() try: inptr_x(new int){}
 catch(...){
 intptr_x = nullptr;
 //...
 }
};

Here, the constructor of C is implemented by using a function try block to handle any exception
arising from the memory allocation operation in the initializer list. In the catch block of this
function-try block, the class member C.intptr_x is accessed. The catch block executes when the
memory allocation for intptr_x failed. That is, the catch block attempts to access the member
before its lifetime, which is undefined behavior.

To avoid undefined behavior, avoid using the nonstatic data members or base classes of an object in
the catch block of the function-try-block implementation of its constructors and destructor.

Polyspace Implementation

If a statement in the catch block of a constructor or destructor function-try block accesses any of
these, Polyspace flags the statement:

• The nonstatic members of the object
• The base classes of the object
• The nonstatic members of the base classes

22 MISRA C++: 2008

22-254

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Accessing Nonstatic Members of Classes in function-trycatch Blocks
#include<cstdint>
class B
{
public:
 B () try: x(0){/*...*/}
 catch (...)
 {
 if (0 == x){/*...*/} //Noncompliant
 //...
 }
 ~B () try{/*...*/}
 catch (...)
 {
 if (0 == x){/*...*/} //Noncompliant
 //...
 else if (sb == 1){/*...*/} //Compliant
 //....
 }
public:
 static int32_t sb;
protected:
 int32_t x;
};

class D : public B
{
public:
 D () try: B(),y{0}{/*...*/}
 catch (...)
 {
 if (0 == x){/*...*/} //Noncompliant
 //...
 else if (y == 1){/*...*/} //Noncompliant
 //...
 }
 ~D ()try {/*...*/}
 catch (...)
 {
 if (0 == x) {/*...*/} //Noncompliant
 //...
 }
protected:
 int32_t y;
};

In this example, the constructors and destructors of B and D are implemented by using function-try
blocks. The catch blocks of these function-try blocks access the nonstatic members of the class and
its base class. Polyspace flags accessing these nonstatic members in the catch blocks. Because the

 MISRA C++:2008 Rule 15-3-3

22-255

lifetime of static members is greater than the lifetime of the object itself, Polyspace does not flag
accessing static objects in these catch blocks.

Check Information
Group: Exception Handling
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-256

MISRA C++:2008 Rule 15-3-4
Each exception explicitly thrown in the code shall have a handler of a compatible type in all call paths
that could lead to that point

Description
Rule Definition

Each exception explicitly thrown in the code shall have a handler of a compatible type in all call paths
that could lead to that point.

Rationale

In C++, when an operation raises an exception, the compiler tries to match the exception with a
compatible exception handler in the current and adjacent scopes. If no compatible exception handler
for a raised exception exists, the compiler invokes the function std::terminate() implicitly. The
function std::terminate() terminates the program execution in an implementation-defined
manner. That is, the exact process of program termination depends on the particular set of software
and hardware that you use. For instance, std::terminate() might invoke std::abort() to
abnormally abort the execution without unwinding the stack. If the stack is not unwound before
program termination, then the destructors of the variables in the stack are not invoked, leading to
resource leak and security vulnerabilities.

Consider this code where multiple exceptions are raised in the try block of code.

class General{/*... */};
class Specific : public General{/*...*/};
class Different{}
void foo() noexcept
{
 try{
 //...
 throw(General e);
 //..
 throw(Specific e);
 // ...
 throw(Different e);
 }
 catch (General& b){

 }
}

The catch block of code accepts references to the base class General. This catch block is compatible
with exceptions of the base class General and the derived class Specific. The exception of class
Different does not have a compatible handler. This unhandled exception violates this rule and
might result in resource leaks and security vulnerabilities.

Because unhandled exceptions can lead to resource leak and security vulnerabilities, match the
explicitly raised exceptions in your code with a compatible handler.

 MISRA C++:2008 Rule 15-3-4

22-257

Polyspace Implementation

• Polyspace flags a throw statement in a function if a compatible catch statement is absent in the
call path of the function. If the function is not specified as noexcept, Polyspace ignores it if its
call path lacks an entry point like main().

• Polyspace flags a throw statement that uses a catch(â€¦) statement to handle the raised
exceptions.

• Polyspace does not flag rethrow statements, that is, throw statements within catch blocks.
• You might have compatible catch blocks for the throw statements in your function in a nested try-

catch block Polyspace ignores nested try-catch blocks. Justify throw statements that have
compatible catch blocks in a nested structure by using comments. Alternatively, use a single level
of try-catch in your functions.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Match throw Statements with Compatible Catch Blocks

This example shows how Polyspace flags operations that raise exceptions without any compatible
handler. Consider this code.

#include <stdexcept>

class MyException : public std::runtime_error {
public:
 MyException() : std::runtime_error("MyException") {}
};

void ThrowingFunc() {
 throw MyException(); //Noncompliant
}

void CompliantCaller() {
 try {
 ThrowingFunc();
 } catch (std::exception& e) {
 /* ... */
 }
}

void NoncompliantCaller() {
 ThrowingFunc();
}

int main(void) {
 CompliantCaller();
 NoncompliantCaller();
}

void GenericHandler() {
 try {

22 MISRA C++: 2008

22-258

 throw MyException(); //Noncompliant
 } catch (...) {
 /* ... */
 }
}

void TrueNoexcept() noexcept {
 try {
 throw MyException();//Compliant
 } catch (std::exception& e) {
 /* ... */
 }
}

void NotNoexcept() noexcept {
 try {
 throw MyException(); //Noncompliant
 } catch (std::logic_error& e) {
 /* ... */
 }
}

• The function ThrowingFunc() raises an exception. This function has multiple call paths:

• main()->CompliantCaller()->ThrowingFunc(): In this call path, the function
CompliantCaller() has a catch block that is compatible with the exception raised by
ThrowingFunc(). This call path is compliant with the rule.

• main()->NoncompliantCaller()->ThrowingFunc(): In this call path, there are no
compatible handlers for the exception raised by ThrowingFunc(). Polyspace flags the throw
statement in ThrowingFunc() and highlights the call path in the code.

The function main() is the entry point for both of these call paths. If main() is commented out,
Polyspace ignores both of these call paths. If you want to analyze a call path that lacks an entry
point, specify the top most calling function as noexcept.

• The function GenericHandler() raises an exception by using a throw statement and handles
the raised exception by using a generic catch-all block. Because Polyspace considers such catch-
all handler to be incompatible with exceptions that are raised by explicit throw statements,
Polyspace flags the throw statement in GenericHandler().

• The noexcept function TrueNoexcept() contains an explicit throwstatement and a catch block
of compatible type. Because this throw statement is matched with a compatible catch block, it is
compliant with the rule.

• The noexcept function NotNoexcept() contains an explicit throw statement, but the catch
block is not compatible with the raised exception. Because this throw statement is not matched
with a compatible catch block, Polyspace flags the throw statement in NotNoexcept().

Check Information
Group: Exception Handling
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

 MISRA C++:2008 Rule 15-3-4

22-259

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

22 MISRA C++: 2008

22-260

MISRA C++:2008 Rule 15-3-5
A class type exception shall always be caught by reference

Description
Rule Definition

A class type exception shall always be caught by reference.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Exception Handling
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 15-3-5

22-261

MISRA C++:2008 Rule 15-3-6
Where multiple handlers are provided in a single try-catch statement or function-try-block for a
derived class and some or all of its bases, the handlers shall be ordered most-derived to base class

Description
Rule Definition

Where multiple handlers are provided in a single try-catch statement or function-try-block for a
derived class and some or all of its bases, the handlers shall be ordered most-derived to base class.

Rationale

In a try-catch or function-try block, exception objects of a derived class match to handler
catch blocks that accept the base class. If you place handlers of the base exception class before
handlers of the derived exception class, the base class handler handles both base and derived class
exceptions. The derived class handler becomes unreachable code, which is unexpected behavior.
When using a class hierarchy to raise exceptions, make sure that the handler of a derived class
precedes the handler of a base class.

Polyspace Implementation

Polyspace flags a handler block if it follows a handler of a base class.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Order Handler Blocks from most Derived to Base Class

#include<exception>
// classes used for exception handling
class MathError { };
class NotANumber: public MathError { };
class DivideByZero: public NotANumber{};

void bar(void){
 try
 {
 // ...
 }
 catch (MathError &e)
 {
 // ...
 }
 catch (NotANumber &nan) // Noncompliant
 {
 // Unreachable Code

22 MISRA C++: 2008

22-262

 }
 catch (DivideByZero &dbz)//Noncompliant
 {
 //Unreachable Code
 }
}

In this example, three classes in a hierarchy might arise in the try block. The handler catch blocks
handle the exceptions.

• The block catch (NotANumber &nan) follows the handler of its base class catch
(MathError &e). Because the exception of class NotANumber also matches to the handler
catch (MathError &e), the handler block catch (NotANumber &nan) becomes
unreachable code. The order of this block is noncompliant with this rule. Polyspace flags the
handler block.

• The block catch (DivideByZero &dbz) becomes unreachable code because exceptions of
the class DivideByZero match to the preceding handlers of its base classes. Polyspace flags the
handler block catch (DivideByZero &dbz).

Check Information
Group: Exception Handling
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 15-3-6

22-263

MISRA C++:2008 Rule 15-3-7
Where multiple handlers are provided in a single try-catch statement or function-try-block, any
ellipsis (catch-all) handler shall occur last

Description
Rule Definition

Where multiple handlers are provided in a single try-catch statement or function-try-block, any
ellipsis (catch-all) handler shall occur last.

Rationale

In a try-catch statement or function-try block, the compiler matches the raised exception with a
catch() handler. The catch(â€¦) handler matches any exception. Handlers after the catch-all
handler within the same try-catch statement or function try-block are ignored by the compiler during
the exception handling process and are unreachable code.

Having a handler after the catch-all handler might result in developer confusion as to why certain
intended handlers are not being executed. Likewise, the catch-all handler might not handle the
exception in the way the developer intends, resulting in confusion.

Polyspace Implementation

Polyspace raises this defect whenever a handler appears after the catch-all handler within the try-
catch statement or function try-block.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Handlers After the Catch-All Handler Are Noncompliant

#include <iostream>
#include <exception>

using namespace std;

int main()
{

 try
 {
 //some code
 } catch(exception& e1) { //Compliant

 //...

 } catch(...) { //Compliant

22 MISRA C++: 2008

22-264

 //...

 } catch(exception& e2) { //Noncompliant

 //...

 }
 }

 return 0;
}

Because the catch (exception& e2) handler comes after the catch(â€¦) handler, Polyspace
flags the handler before the catch-all handler as noncompliant. This issue might result in a
compilation error.

Check Information
Group: Exception Handling
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 15-3-7

22-265

MISRA C++:2008 Rule 15-4-1
If a function is declared with an exception-specification, then all declarations of the same function (in
other translation units) shall be declared with the same set of type-ids

Description
This checker is deactivated in a default Polyspace as You Code analysis . See “Checkers Deactivated
in Polyspace as You Code Default Analysis”.

Rule Definition

If a function is declared with an exception-specification, then all declarations of the same function (in
other translation units) shall be declared with the same set of type-ids.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Exception Handling
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-266

MISRA C++:2008 Rule 15-5-1
A class destructor shall not exit with an exception

Description
Rule Definition

A class destructor shall not exit with an exception.

Polyspace Implementation

The checker flags exceptions thrown in the body of the destructor. If the destructor calls another
function, the checker does not detect if that function throws an exception.

The checker does not detect these situations:

• A catch statement does not catch exceptions of all types that are thrown.

The checker considers the presence of a catch statement corresponding to a try block as
indication that an exception is caught.

• throw statements inside catch blocks

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Exception Handling
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 15-5-1

22-267

MISRA C++:2008 Rule 15-5-2
Where a function's declaration includes an exception-specification, the function shall only be capable
of throwing exceptions of the indicated type(s)

Description
Rule Definition

Where a function's declaration includes an exception-specification, the function shall only be capable
of throwing exceptions of the indicated type(s).

Polyspace Implementation

The checker flags situations where the data type of the exception thrown does not match the
exception type listed in the function specification.

For instance:

void goo () throw (Exception)
 {
 throw 21; // Non-compliant - int is not listed
 }

The checker limits detection to throw statements that are in the body of the function. If the function
calls another function, the checker does not detect if the called function throws an exception.

The checker does not detect throw statements inside catch blocks.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Exception Handling
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-268

MISRA C++:2008 Rule 15-5-3
The terminate() function shall not be called implicitly

Description
Rule Definition

The terminate() function shall not be called implicitly.

Polyspace Implementation

The checker flags situations that might result in calling the function std::terminate() implicitly.
These situations might include:

• An exception escapes uncaught. This also violates MISRA C++:2008 Rule 15-3-2. For
instance:

• Before an exception is caught, it escapes through another function that throws an uncaught
exception. For instance, a catch statement or exception handler invokes a copy constructor
that throws an uncaught exception.

• An empty throw expression raises an uncaught exception again.
• A class destructor raises an exception. Exceptions in destructors also violates MISRA C++:2008

Rule 15-5-1.
• A termination handler that is passed to std::atexit raises an unhandled exception.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Unhandled Exceptions

#include <stdexcept>
#include <new>
class obj
{
public:
 obj() noexcept(false){}
 obj(const obj& a){
 //...
 throw -1;
 }
 ~obj()
 {
 try{
 // ...
 throw std::runtime_error("Error2"); // Noncompliant
 }catch(std::bad_alloc& e){

 MISRA C++:2008 Rule 15-5-3

22-269

 }
 }
};
obj globalObject;
void atexit_handler(){//Noncompliant
 throw std::runtime_error("Error in atexit function");
}
void main(){//Noncompliant
 try{
 //...
 obj localObject = globalObject;
 std::atexit(atexit_handler);
 }catch(std::exception& e){

 }
}

In this example, Polyspace flags unhandled exceptions because they result in implicit calls to
std::terminate().

• The destructor ~obj() does not catch the exception raised by the throw statement. The
unhandled exception in the destructor results in abrupt termination of the program through an
implicit call to std::terminate. Polyspace flags the throw statement in the destructor of obj.

• The main() function does not handle all exceptions raised in the code. Because an unhandled
exception might result in an implicit call to std::terminate(), Polyspace flags the main()
function.

• The termination handler atexit_handler raises an uncaught exception. The function
atexit_handler executes after the main finishes execution. Unhandled exceptions in this
function cannot be handled elsewhere, leading to an implicit call to std::terminate().
Polyspace flags the function.

Check Information
Group: Exception Handling
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2018a

22 MISRA C++: 2008

22-270

MISRA C++:2008 Rule 16-0-1
#include directives in a file shall only be preceded by other preprocessor directives or comments

Description
Rule Definition

#include directives in a file shall only be preceded by other preprocessor directives or comments.

Rationale

Grouping all #include preprocessor directives at the beginning of the source file makes the code
more readable. #include directives might include header files where macros are defined. If you use
such a macro before including its definition, you might encounter unexpected code behavior.

Polyspace Implementation

Polyspace raises this defect when an #include directive comes after any code that is not a comment
or preprocessor directive. Polyspace ignores code that is hidden by using conditional compilation
directives such as #if or #ifdef.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
#include Directive Preceded by Noncompliant Code

//this comment is compliant //Compliant
/*
 This comment is compliant
*/

#ifndef TESTING_H //Compliant
#define TESTING_H //Compliant

#include <iostream> //Compliant
using namespace std; //Compliant
#include <exception> //Noncompliant

#endif

Because an include directive follows a code statement that is neither a preprocessor directive nor a
comment, Polyspace flags the include directive.

Check Information
Group: Preprocessing Directives
Category: Required

 MISRA C++:2008 Rule 16-0-1

22-271

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-272

MISRA C++:2008 Rule 16-0-2
Macros shall only be #define 'd or #undef 'd in the global namespace

Description
Rule Definition

Macros shall only be #define 'd or #undef 'd in the global namespace.

Rationale

If you define or undefine macros in a local namespace, you might expect the macro to be valid only in
the local namespace. But macros do not follow the scoping mechanism. Instead, the compiler
replaces all occurrences of a macro by its defined value beginning at the #define statement until the
end of file or until the macro is redefined. This behavior of macros might be contrary to developer
expectation and might cause logic errors that result in bugs.

Polyspace Implementation

Polyspace flags a #define or #undef statement that is placed within a block instead of in the global
namespace.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Macros in Local Namespaces
#include<cstdlib>
#define HCUT 1
namespace unnormalized{
 #define HCUT 6582 //Noncompliant
 void foo(){
 //...
 }
};
void bar(){
 int intEnergy = HCUT*10;
 //HCUT is 6582, you might expect HCUT=1;
}

namespace uniteV{
 const double hcut = 6582; //eV
 void foo(){

 }
};

In this example, different values of HCUT are defined, perhaps to accommodate code written by using
different systems of unit. You might expect the definition of HCUT in the namespace unnormalized

 MISRA C++:2008 Rule 16-0-2

22-273

to remain limited to the namespace. But the value of HCUT remains 6582 until the end of file. For
instance, in the function bar, you might expect that HCUT is one, but the value of HCUT remains 6582,
which might cause logic error, unexpected results, and bugs. Polyspace flags the #define statement
within the local namespace.

To implement constants that might have different values in different scopes, use const variables, as
shown in the namespace uniteV. Avoid using macros to represent constants that might require
different values in different scopes.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-274

MISRA C++:2008 Rule 16-0-3
#undef shall not be used

Description
Rule Definition

#undef shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 16-0-3

22-275

MISRA C++:2008 Rule 16-0-4
Function-like macros shall not be defined

Description
Rule Definition

Function-like macros shall not be defined.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-276

MISRA C++:2008 Rule 16-0-5
Arguments to a function-like macro shall not contain tokens that look like preprocessing directives

Description
Rule Definition

Arguments to a function-like macro shall not contain tokens that look like preprocessing directives.

Rationale

When a compiler encounters function-like macros, it replaces the argument of the macro into the
replacement code. If the argument contains a token that looks like preprocessing directives, the
replacement process during macro expansion is undefined. Depending on the environment, such a
function-like macro might behave in unexpected ways, leading to errors and bugs.

Polyspace Implementation

Polyspace flags calls to function-like macros if their argument starts with the character #.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Avoid Arguments That Start with # in Function-Like Macros

#include<cstdlib>
#include<iostream>
#define PRINT(ARG) std::cout<<#ARG
//....
#define Error1
//...

void foo(void){
 PRINT(
 #ifdef Error1 //Noncompliant
 "Error 1"
 #else
 "Error 2"
 #endif //Noncompliant
);

}

In this example, the function-like macro PRINT is invoked with an argument that chooses between
two strings by using an #ifdef block. Depending on the environment, the output of this code might
be #ifdef Error1 //Noncompliant "Error 1" #else "Error 2" #endif //
Noncompliant or Error 1. Polyspace flags the arguments that start with the character #.

 MISRA C++:2008 Rule 16-0-5

22-277

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-278

MISRA C++:2008 Rule 16-0-6
In the definition of a function-like macro, each instance of a parameter shall be enclosed in
parentheses, unless it is used as the operand of # or ##

Description
Rule Definition

In the definition of a function-like macro, each instance of a parameter shall be enclosed in
parentheses, unless it is used as the operand of # or ##.

Rationale

When you invoke function-like macros, the compiler expands the macro by replacing its parameters
with the tokens. Then the compiler substitutes the expanded macro into the code. This expansion and
substitution process does not take precedence of operation into account. The function-like macros
might produce unexpected results if their parameters are not enclosed in parenthesis. For instance,
consider this function-like macro:

#define dustance_from_ten(x) x>10? x-10:10-x

The macro is intended to measure the distance of a number from ten. When you invoke the macro
with the argument (a-b), the macro expands to:

a-b>10: a-b-10:10-a-b

The expression 10-a-b is equivalent to 10-(a+b) instead of the intended distance 10-(a-b). This
unexpected behavior might result in errors and bugs. To avoid such unexpected behaviors, enclose
parameters of a function-like macro in parentheses.

The exception to this rule is when a parameter is used as an operand of # or ##.

Polyspace Implementation

Polyspace flags function-like macro definitions if the parameters are not enclosed in parenthesis.
Polyspace does not flag unparenthesized parameters if they are preceded by the operators ., ->, or
the characters #, ##.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Enclose Parameters of Function-Like Macros in Parentheses

#include<iostream>
#include<cmath>
#define abs(x) (x>0) ? x:-x //Noncompliant

double foo(double num1, double num2){

 MISRA C++:2008 Rule 16-0-6

22-279

 return log(abs(num1-num2));
}

int main(){
 std::cout<<foo(10,10.5);
}

In this example, when you invoke foo(10,10.5), you might expect the output to be log(0.5) or
-0.69. Because the parameters of abs are not enclosed in parentheses, the output becomes
log(-20.5) or NaN, which is unexpected and might lead to bugs. Polyspace flags the function-like
macro definition.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-280

MISRA C++:2008 Rule 16-0-7
Undefined macro identifiers shall not be used in #if or #elif preprocessor directives, except as
operands to the defined operator

Description
Rule Definition

Undefined macro identifiers shall not be used in #if or #elif preprocessor directives, except as
operands to the defined operator.

Rationale

If you attempt to use a macro identifier in a preprocessing directive, and you have not defined that
identifier, then the preprocessor assumes that it has a value of zero. This value might not meet
developer expectations.

Polyspace Implementation

Polyspace flags an #if or #elif statement if it uses an undefined macro identifier.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Macro Identifiers

#if M == 0 //Noncompliant
#endif

#if defined (M) //Complaint
#if M == 0 //Executes only when M is defined
#endif
#endif

#if defined (M) && (M == 0) //Compliant
//...
#endif

This example shows various uses of M in preprocessing directives:

• The first #if clause uses the undefined identifier M. Because M is undefined when this
preprocessor directive is evaluated, the compiler assumes that M is zero, which results in
unexpected results. Such a use of undefined identifiers is not compliant with this rule. Polyspace
flags the #if statement.

• The second and third #if statements use the undefined identifier M as the operand to the
defined operator. These use of undefined identifiers are compliant with this rule.

 MISRA C++:2008 Rule 16-0-7

22-281

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-282

MISRA C++:2008 Rule 16-0-8
If the # token appears as the first token on a line, then it shall be immediately followed by a
preprocessing token

Description
Rule Definition

If the # token appears as the first token on a line, then it shall be immediately followed by a
preprocessing token.

Rationale

The # character precedes a preprocessor directive when it is the first character on a line. If the #
character is not immediately followed by a preprocessor directive, the preprocessor directive might
be malformed.

Preprocessor directives might be used to exclude portions of code from compilation. The compiler
excludes code until it encounters an #else, #elif, or #endif preprocessor directive. If one of those
preprocessor directives is malformed, the compiler continues excluding code beyond the intended
end point, resulting in bugs and unexpected behavior which can be difficult to diagnose.

Avoid malformed preprocessor directives by placing the preprocessor token directly after a # token.
Specifically, do not place any characters other than white space between the # token and
preprocessor token in #else and #endif directives.

Polyspace Implementation

Polyspace raises this defect when the # character is followed by any character that is not part of a
properly formed preprocessor token. A preprocessor token that is preceded or followed by any
character other than white space causes Polyspace to raise this defect. Polyspace raises this defect
when a preprocessor token is badly formed due to misspelling or improper capitalization.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Poorly Formed Preprocessor Tokens Following # Character

#define TESTING_H //Compliant

namespace Example
{
#ifndef TESTING_H //Compliant
 // code here
#elseX; //Noncompliant
 // code here
#else; //Compliant

 MISRA C++:2008 Rule 16-0-8

22-283

 // code here
#endnif //Noncompliant
 // code here
 }

};

Because elseX is not a preprocessor directive and follows directly after the # character, Polyspace
flags it as noncompliant.

#endnif is not a properly formed preprocessor directive. Polyspace flags it as noncompliant.

#define TESTING_H, #ifndef TESTING_H, and #else are properly formed preprocessor
conditionals and are compliant with this rule.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-284

MISRA C++:2008 Rule 16-1-1
The defined preprocessor operator shall only be used in one of the two standard forms

Description
Rule Definition

The defined preprocessor operator shall only be used in one of the two standard forms.

Rationale

The defined preprocessor operator checks whether an identifier is defined as a macro. In C, the only
two permissible forms for this operator are:

• defined (identifier)
• defined identifier

Using any other form results in invalid code that compiler might not report. For instance, if you use
expressions as arguments for the defined operator, the code is invalid. If the compiler does not
report the invalid usage of defined, diagnosing the invalid code is difficult.

If your #if or similar preprocessor directives expand to create a defined statement, the code
behavior is undefined. For instance:

#define DEFINED defined
#if DEFINED(X)

The #if preprocessor directive expands to form a defined operation. Depending on your
environment, the code might behave in unexpected ways, leading to bugs that are difficult to
diagnose.

To avoid invalid code, bugs, and undefined behavior, use only the permitted forms when using the
defined operator.

Polyspace Implementation

Polyspace flags incorrect usages of the defined operator, such as:

• The operator defined is used without an identifier.
• The operator defined appears after macro expansion.
• The operator defined is used with a complex expression.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

 MISRA C++:2008 Rule 16-1-1

22-285

Examples
Use defined Operators With Identifiers

#if defined (X<Y)//Noncompliant
//...
#endif
#if defined (X) && defined (Y) &&(X<Y)//Compliant
//...
#endif

In this example, a block of code is conditionally executed only if the identifiers X and Y are defined
and if X is smaller than Y. Constructing this condition by using an expression as the argument for the
defined operator is not permissible and results in invalid code. Polyspace flags the impermissible
defined statement. The permissible way to define such a condition is to use individual identifiers
with defined.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-286

MISRA C++:2008 Rule 16-1-2
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if or #ifdef
directive to which they are related

Description
Rule Definition

All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if or #ifdef
directive to which they are related.

Rationale

You use preprocessor directives, such as #if...#elif...#else...#endif, to conditionally
include or exclude blocks of code. If the different branches of such a directive reside in different
source files, the code can be confusing. If all the branches are not included in a project, the code
might behave in unexpected ways. To avoid confusion and unexpected behavior, keep the branches of
a conditional preprocessor directive within the same source file.

Polyspace Implementation

Polyspace raises a violation of this rule if either of these conditions are true:

• A corresponding #if directive cannot be found within a source file for every #else, #elif, or
#endif directive.

• A corresponding #endif directive cannot be found within a source file for every #if directive.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Incomplete Conditional Preprocessor Directives

//file1.h
#if !defined (FILE)
//.....
#elif //Noncompliant
//...///
//file2.h
#else //Noncompliant
//...
#endif //Noncompliant
///

In this example, a conditional directive is split across two source files.

• In file1.h, the #if directive has no corresponding #endif directive. Polyspace flags the block.

 MISRA C++:2008 Rule 16-1-2

22-287

• In file2.h, the #else and #endif directives have no corresponding #if directive. Polyspace
flags both directives.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-288

MISRA C++:2008 Rule 16-2-1
The preprocessor shall only be used for file inclusion and include guards

Description
Rule Definition

The preprocessor shall only be used for file inclusion and include guards.

Rationale

Aside from inclusion and include guarding, you might use preprocessor directives for other purposes
such as defining constants or function-like macros. These preprocessor directives do not obey typical
linkage and lack scoping mechanism or type safety. Preprocessor directives are less safe as compared
to equivalent C++ features. For instance, a constant defined by using a #define statement retains
its value across all scopes even if it is defined in a local scope. Using the #define preprocessor
instead of a constexpr might lead to confusion if you define a constant differently in different
scopes. Because a constexpr variable maintains a well defined scope, it is a safer alternative. The
constexpr is efficient because it is a compile time constant.

Avoid preprocessor directives if they are not used for inclusion or include guards. Instead, use
features such as inline functions, const or constexpr objects, and templates.

Polyspace Implementation

Polyspace raises a violation of this rule in an included header file when either of these conditions is
true:

• #define is used outside of an include guard. These #define statements typically define
constants and function-like macros.

• #ifndef is used outside of an include guard.

Polyspace considers this idiom as the correct include guard idiom:

#ifndef <identifier>
#define <identifier>
#endif

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

 MISRA C++:2008 Rule 16-2-1

22-289

Examples
Avoid #define Directives Outside Include Guards

file1.h main.cpp
#ifndef MY_FILE
#define MY_FILE //Compliant
#endif
#define PI 3.1416 //Noncompliant
constexpr double pi = 3.1416;

#include"file1.h"
//...

In this example, include file file1.h contains two #define statements. The first #define directive
is used within an include guard. This directive is compliant with this rule. The second #define
directive defines the constant macro PI. This directive is noncompliant with this rule and Polyspace
flags it. A better alternative is to use a constexpr variable.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-290

MISRA C++:2008 Rule 16-2-2
C++ macros shall only be used for: include guards, type qualifiers, or storage class specifiers

Description
Rule Definition

C++ macros shall only be used for: include guards, type qualifiers, or storage class specifiers.

Rationale

Aside from defining include guards, type qualifiers, and storage class classifiers, you might use C++
macros for other purposes such as defining constants or function-like macros. These macros do not
obey typical linkage and lack scoping mechanism or type safety. Compared to available alternatives in
C++, macros are less safe. For instance, a constant defined by using a #define statement retains its
value across all scopes even if it is defined in a local scope. Using a macro instead of a constexpr
might lead to confusion if you define a constant differently in different scopes. Because a constexpr
variable maintains a well-defined scope, it is a safer alternative. The constexpr is efficient because
it is a compile time constant.

Avoid macros if they are not used for defining include guards, type qualifiers, and storage class
classifiers. Instead, use features such as inline function, const or constexpr objects, and function
templates.

Polyspace Implementation

The checker flags #define statements where the macros expand to something other than include
guards, type qualifiers or storage class specifiers such as static, inline, volatile, auto,
register, and const.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Nonpermissible Use of Macros
#ifndef IDENTIFIER //Compliant
#define IDENTIFIER //Compliant
#endif //Compliant - Include guard

#define STOR extern // Compliant - Storage class specifier
#define VOL volatile //Compliant - Type qualifier

#define CLOCK (xtal/16) // Noncompliant
#define PLUS2(X) ((X) + 2) // Noncompliant
#define PI 3.14159F // Noncompliant
#define int32_t long // Noncompliant
#define STARTIF if(// Noncompliant
#define INIT(value) {(value), 0, 0} // Noncompliant

 MISRA C++:2008 Rule 16-2-2

22-291

#define HEADER "filename.h" // Noncompliant

In this example, Polyspace flags all macros except those that define include guards, storage class
specifiers, and type qualifiers.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-292

MISRA C++:2008 Rule 16-2-3
Include guards shall be provided

Description
Rule Definition

Include guards shall be provided.

Rationale

When a translation unit contains a complex hierarchy of nested header files, it is possible for a
particular header file to be included more than once, leading to confusion. If this multiple inclusion
produces multiple or conflicting definitions, then your program can have undefined or erroneous
behavior.

For instance, suppose that a header file contains:

#ifdef _WIN64
 int env_var;
#elseif
 long int env_var;
#endif

If the header file is contained in two inclusion paths, one that defines the macro _WIN64 and another
that undefines it, you can have conflicting definitions of env_var.

To avoid multiple inclusion of the same file, add include guards to the beginning of header files. Use
either of these formats:

• <start-of-file>
// Comments allowed here
#if !defined (identifier)
#define identifier
// Contents of file
#endif
<end-of-file>

• <start-of-file>
// Comments allowed here
#ifndef identifier
#define identifier
// Contents of file
#endif
<end-of-file>

Polyspace Implementation

The checker raises a violation if a header file does not contain an include guard.

For instance, this code uses an include guard for the #define and #include statements. This code
does not violate the rule:

// Contents of a header file
#ifndef FILE_H

 MISRA C++:2008 Rule 16-2-3

22-293

#define FILE_H
#include "libFile.h"
#endif

If you use include guards that do not adhere to the suggested format, Polyspace flags them. For
instance:

• You might mistakenly use different identifiers in the #ifndef and #define statements:

#ifndef MACRO
#define MICRO
//...
#endif

• You might inadvertently use #ifdef instead of #ifndef or omit the #define statement.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Missing or Incorrectly Formatted Include Guard

file1.h file2.h mainfile.cpp
#ifndef MACRO
#define MICRO
//...
#endif

#ifdef DO_INCLUDE
#define DO_INCLUDE
void foo();
#endif

#include"file1.h"
#include"file2.h"
int main(){
 return 0;
}

In this example, two header files are included in the file mainfile.cpp.

• The include guard in file1.h queries the definition of MACRO but conditionally defines a different
identifier MICRO, perhaps inadvertently. This include guard is incorrectly formatted. Polyspace
flags the file.

• The include guard in file2.h uses #ifdef instead of #ifndef. This include guard is incorrect
and Polyspace flags the file.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-294

MISRA C++:2008 Rule 16-2-4
The ', ", /* or // characters shall not occur in a header file name

Description
Rule Definition

The ', ", /* or // characters shall not occur in a header file name.

Rationale

You include header files in a source file by enclosing its name between the delimiters <> or "". Using
the characters ', ", /*, or // between the delimiters < and > is undefined behavior. Using the
characters ', /*, or // between the " delimiters also results in undefined behavior. Depending on
your environment and compiler, using these characters in a header filer name might result in
unexpected behavior.

Avoid the characters ', ", /*, or // in a header file name.

Polyspace Implementation

Polyspace raises a violation of this rule if the name of a header file includes one of these characters:

• '
• "
• /*
• //

If you use the character " between the delimiter ", Polyspace interprets the portion of the header
name between two successive " delimiters as the header file name. For instance, in this code,

#include "foo\".h"

Polyspace interprets foo\ as the header name. In such cases, Polyspace does not raise a violation of
this rule, but because the compiler looks for a header file that does not exist, you might get a
compilation warning.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Undefined Behavior

#include<dummy'file> //Noncompliant
#include<dummy"file> //Noncompliant

#include<dummy/*file>//Noncompliant
#include<dummy//file>//Noncmpliant

 MISRA C++:2008 Rule 16-2-4

22-295

#include "dummy'file" //Noncompliant
#include "dummy"file" //Compliant

#include "dummy/*file" //noncompliant
#include "dummy//file" //nonCompliant

in this example, Polyspace flags the use of the characters ', ", /*, or // in header file names.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-296

MISRA C++:2008 Rule 16-2-5
The \ character should not occur in a header file name

Description
Rule Definition

The \ character should not occur in a header file name.

Rationale

You include header files in a source file by enclosing its name between the delimiters <> or "". Using
the character \between the delimiters < and > or between the delimiters " is undefined behavior.
Using / in a header file name might result in unexpected behavior.

Some environments use the character \ as a file name delimiter, for instance, when describing paths.
Compilers for these environments might support the use of \ in an #include directive.

Polyspace Implementation

Polyspace raises a violation of this rule if the character \ occurs in a header file name.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Using \ in Header File Name

#include"incguard\5\.h" \\Noncompliant
#include"inc\\guard.h"\\noncompliant

In this example, Polyspace flags the #include statements that have header file names where the \
character occurs.

Check Information
Group: Preprocessing Directives
Category: Advisory

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 16-2-5

22-297

MISRA C++:2008 Rule 16-2-6
The #include directive shall be followed by either a <filename> or "filename" sequence

Description
Rule Definition

The #include directive shall be followed by either a <filename> or "filename" sequence.

Rationale

This rule applies only after macro replacement.

The code behavior is undefined if an #include directive does not use one of these forms:

• #include <filename>
• #include "filename"

Using other forms of #include directives is not permitted by ISO/IEC 14882:2003. To avoid
unexpected behavior, avoid using malformed #include statements.

Polyspace Implementation

Polyspace raises a violation of this rule if an #include directive is not followed by either
<filename> or "Filename".

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Malformed #include Directives

#include"incguard.h" //Compliant
#include<incguard.h> //Compliant

#define MH "myheader.h"
#define STR <string>
#include MH //Compliant
#include STR //Compliant

#include myfile.h //Noncompliant

In this example, Polyspace flags the directive that attempts to include myfile.h because it does not
follow either of the permissible forms. The other directives follow the permissible forms after
applicable macro replacements.

22 MISRA C++: 2008

22-298

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 16-2-6

22-299

MISRA C++:2008 Rule 16-3-1
There shall be at most one occurrence of the # or ## operators in a single macro definition

Description
Rule Definition

There shall be at most one occurrence of the # or ## operators in a single macro definition.

Rationale

The evaluation of the # and ## preprocessor operators does not have a specified execution order.
When more than one occurrence of the # or ## operators exists in a single macro definition, it is
unclear which preprocessor operator is executed first by the compiler. The uncertainty of execution
order might result in developer confusion or unexpected macro calculations. Use only one of the # or
preprocessor operators for each macro definition.

Polyspace Implementation

Polyspace raises this defect whenever more than one instance of the # or ## operators is used in a
single macro definition.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Multiple # and ## Operators Used in a Single Macro Definition

#define STRING(X) { #X } //compliant
#define CONCAT(X, Y) {X ## Y} //compliant
#define STRING_CONCAT(x, y) {#x ## y} //noncompliant
#define MULTI_CONCAT(x, y, xy, z) {x ## y ## z} //noncompliant

Because the macro STRING_CONCAT uses both the # and ## operators, Polyspace flags the macro as
noncompliant.

Polyspace flags the macro MULTI_CONCAT as noncompliant because it uses multiple ## operators.

Check Information
Group: Preprocessing Directives
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

22 MISRA C++: 2008

22-300

Introduced in R2013b

 MISRA C++:2008 Rule 16-3-1

22-301

MISRA C++:2008 Rule 16-3-2
The # and ## operators should not be used

Description
Rule Definition

The # and ## operators should not be used.

Rationale

The evaluation of the # and ## preprocessor operators does not have a specified execution order.
Different compilers might evaluate these operators in different order of execution. The uncertainty of
execution order might result in developer confusion or unexpected macro calculations. When
possible, avoid using the # and ## preprocessor operators.

Polyspace Implementation

Polyspace raises this advisory when the # or ## operators are used in a macro definition.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Using # and ## Operators in Macro Definition

#define STRING(X) { #X } //noncompliant
#define CONCAT(X, Y) {X ## Y} //noncompliant

Because the macro STRING(X) uses the # operator, Polyspace flags the macro as noncompliant.

Polyspace flags the macro CONCAT(X, Y) as noncompliant because it uses the ## operator.

Check Information
Group: Preprocessing Directives
Category: Advisory

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-302

MISRA C++:2008 Rule 16-6-1
All uses of the #pragma directive shall be documented

Description
Rule Definition

All uses of the #pragma directive shall be documented.

Rationale

Because the behaviors of #pragma directives depend on the set of software, hardware, and compilers
that you use, the developer's intent for a #pragma directive might be unclear. To clearly communicate
the developer intent and the expected behavior of a #pragma directive, for each of these directives,
document:

• The meaning
• The detailed expected behavior
• The implication of the directive for the code

Document the preceding factors in sufficient detail to show that you fully understand what the
#pragma directives mean and how they might impact the code. Avoid using #pragma directives as
much as possible. Encapsulate their use in dedicated functions whenever possible.

Polyspace Implementation

To check this rule, list the pragmas that are allowed in source files by using the option Allowed
pragmas (-allowed-pragmas). If Polyspace finds a pragma not in the allowed pragma list, a
violation is raised.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Preprocessing Directives
Category: Document

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2016b

 MISRA C++:2008 Rule 16-6-1

22-303

MISRA C++:2008 Rule 17-0-1
Reserved identifiers, macros and functions in the Standard Library shall not be defined, redefined or
undefined

Description
Rule Definition

Reserved identifiers, macros and functions in the Standard Library shall not be defined, redefined or
undefined.

Rationale

Redefining or undefining reserved identifiers, macros and functions from the Standard Library is not
good practice. In some cases, these actions can lead to undefined behavior.

Polyspace Implementation

The checker raises a violation if identifiers and macros from the Standard Library are defined,
redefined or undefined.

In general, the checker considers identifiers and macros that begin with an underscore followed by
an uppercase letter as reserved for the Standard Library.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Library Introduction
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-304

MISRA C++:2008 Rule 17-0-2
The names of standard library macros and objects shall not be reused

Description
Rule Definition

The names of standard library macros and objects shall not be reused.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Library Introduction
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 17-0-2

22-305

MISRA C++:2008 Rule 17-0-3
The names of standard library functions shall not be overridden

Description
Rule Definition

The names of standard library functions shall not be overridden.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Library Introduction
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2018a

22 MISRA C++: 2008

22-306

MISRA C++:2008 Rule 17-0-5
The setjmp macro and the longjmp function shall not be used

Description
Rule Definition

The setjmp macro and the longjmp function shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Library Introduction
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 17-0-5

22-307

MISRA C++:2008 Rule 18-0-1
The C library shall not be used

Description
Rule Definition

The C library shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Language Support Library
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-308

MISRA C++:2008 Rule 18-0-2
The library functions atof, atoi and atol from library <cstdlib> shall not be used

Description
Rule Definition

The library functions atof, atoi and atol from library <cstdlib> shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Language Support Library
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 18-0-2

22-309

MISRA C++:2008 Rule 18-0-3
The library functions abort, exit, getenv and system from library <cstdlib> shall not be used

Description
Rule Definition

The library functions abort, exit, getenv and system from library <cstdlib> shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Language Support Library
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-310

MISRA C++:2008 Rule 18-0-4
The time handling functions of library <ctime> shall not be used

Description
Rule Definition

The time handling functions of library <ctime> shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Language Support Library
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 18-0-4

22-311

MISRA C++:2008 Rule 18-0-5
The unbounded functions of library <cstring> shall not be used

Description
Rule Definition

The unbounded functions of library <cstring> shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Language Support Library
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-312

MISRA C++:2008 Rule 18-2-1
The macro offsetof shall not be used

Description
Rule Definition

The macro offsetof shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Language Support Library
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 18-2-1

22-313

MISRA C++:2008 Rule 18-4-1
Dynamic heap memory allocation shall not be used

Description
Rule Definition

Dynamic heap memory allocation shall not be used.

Rationale

Dynamic memory allocation uses heap memory, which can lead to issues such as memory leaks, data
inconsistency, memory exhaustion, and nondeterministic behavior.

Polyspace Implementation

The checker flags uses of the malloc, calloc, realloc and free functions, and non-placement
versions of the new and delete operator.

The checker also flags uses of the alloca function. Though memory leak cannot happen with the
alloca function, other issues associated with dynamic memory allocation can still occur.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Language Support Library
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

22 MISRA C++: 2008

22-314

MISRA C++:2008 Rule 18-7-1
The signal handling facilities of <csignal> shall not be used

Description
Rule Definition

The signal handling facilities of <csignal> shall not be used.

Rationale

Signal handling functions such as signal contains undefined and implementation-specific behavior.

You have to be very careful when using signal to avoid these behaviors.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Language Support Library
Category: Required

See Also
Return from computational exception signal handler | Signal call in
multithreaded program | Shared data access within signal handler | Function
called from signal handler not asynchronous-safe | Check MISRA C++:2008 (-
misra-cpp)

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 18-7-1

22-315

MISRA C++:2008 Rule 19-3-1
The error indicator errno shall not be used

Description
Rule Definition

The error indicator errno shall not be used.

Rationale

Observing this rule encourages the good practice of not relying on errno to check error conditions.

Checking errno is not sufficient to guarantee absence of errors. Functions such as fopen might not
set errno on error conditions. Often, you have to check the return value of such functions for error
conditions.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of errno
#include <cstdlib>
#include <cerrno>

void func (const char* str) {
 errno = 0; // Noncompliant
 int i = atoi(str);
 if(errno != 0) { // Noncompliant
 //Handle Error
 }
}

The use of errno violates this rule. The function atoi is not required to set errno if the input string
cannot be converted to an integer. Checking errno later does not safeguard against possible failures
in conversion.

Check Information
Group: Diagnostic Library
Category: Required

See Also
Misuse of errno | Misuse of errno in a signal handler | Check MISRA C++:2008 (-
misra-cpp)

Topics
“Check for Coding Standard Violations”

22 MISRA C++: 2008

22-316

Introduced in R2013b

 MISRA C++:2008 Rule 19-3-1

22-317

MISRA C++:2008 Rule 27-0-1
The stream input/output library <cstdio> shall not be used

Description
Rule Definition

The stream input/output library <cstdio> shall not be used.

Rationale

Functions in cstdio such as gets, fgetpos, fopen, ftell, etc. have unspecified, undefined and
implementation-defined behavior.

For instance:

• The gets function:

char * gets (char * buf);

does not check if the number of characters provided at the standard input exceeds the buffer buf.
The function can have unexpected behavior when the input exceeds the buffer.

• The fopen function has implementation-specific behavior related to whether it sets errno on
errors or whether it accepts additional characters following the standard mode specifiers.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of gets

#include <cstdio>

void func()
{
 char array[10];
 fgets(array, sizeof array, stdin); //Noncompliant
}

The use of fgets violates this rule.

Check Information
Group: Input/output Library
Category: Required

See Also
Check MISRA C++:2008 (-misra-cpp)

22 MISRA C++: 2008

22-318

Topics
“Check for Coding Standard Violations”

Introduced in R2013b

 MISRA C++:2008 Rule 27-0-1

22-319

CERT C Rules and Recommendations

23

Acknowledgement
This software has been created by MathWorks incorporating portions of: the “SEI CERT-C Website,”
© 2017 Carnegie Mellon University, the SEI CERT-C++ Web site © 2017 Carnegie Mellon
University, ”SEI CERT C Coding Standard – Rules for Developing safe, Reliable and Secure systems –
2016 Edition,” © 2016 Carnegie Mellon University, and “SEI CERT C++ Coding Standard – Rules for
Developing safe, Reliable and Secure systems in C++ – 2016 Edition” © 2016 Carnegie Mellon
University, with special permission from its Software Engineering Institute.

ANY MATERIAL OF CARNEGIE MELLON UNIVERSITY AND/OR ITS SOFTWARE ENGINEERING
INSTITUTE CONTAINED HEREIN IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This software and associated documentation has not been reviewed nor is it endorsed by Carnegie
Mellon University or its Software Engineering Institute.

23 CERT C Rules and Recommendations

23-2

CERT C: Rule PRE30-C
Do not create a universal character name through concatenation

Description
Rule Definition

Do not create a universal character name through concatenation.

Polyspace Implementation

This checker checks for Universal character name from token concatenation.

Examples
Universal character name from token concatenation
Issue

Universal character name from token concatenation occurs when two preprocessing tokens
joined with a ## operator create a universal character name. A universal character name begins with
\u or \U followed by hexadecimal digits. It represents a character not found in the basic character
set.

For instance, you form the character \u0401 by joining two tokens:

#define assign(uc1, uc2, val) uc1##uc2 = val
...
assign(\u04, 01, 4);

Risk

The C11 Standard (Sec. 5.1.1.2) states that if a universal character name is formed by token
concatenation, the behavior is undefined.

Fix

Use the universal character name directly instead of producing it through token concatenation.

Example - Universal Character Name from Token Concatenation

#define assign(uc1, uc2, val) uc1##uc2 = val

int func(void) {
 int \u0401 = 0;
 assign(\u04, 01, 4);
 return \u0401;
}

In this example, the assign macro, when expanded, joins the two tokens \u04 and 01 to form the
universal character name \u0401.

 CERT C: Rule PRE30-C

23-3

Correction — Use Universal Character Name Directly

One possible correction is to use the universal character name \u0401 directly. The correction
redefines the assign macro so that it does not join tokens.

#define assign(ucn, val) ucn = val

int func(void) {
 int \u0401 = 0;
 assign(\u0401, 4);
 return \u0401;
}

Check Information
Group: Rule 01. Preprocessor (PRE)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
PRE30-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-4

https://wiki.sei.cmu.edu/confluence/display/c/PRE30-C.+Do+not+create+a+universal+character+name+through+concatenation

CERT C: Rule PRE31-C
Avoid side effects in arguments to unsafe macros

Description
Rule Definition

Avoid side effects in arguments to unsafe macros.

Polyspace Implementation

This checker checks for Side effect in arguments to unsafe macro.

Examples
Side effect in arguments to unsafe macro
Issue

Side effect in arguments to unsafe macro occurs when you call an unsafe macro with an
expression that has a side effect.

• Unsafe macro: When expanded, an unsafe macro evaluates its arguments multiple times or does
not evaluate its argument at all.

For instance, the ABS macro evaluates its argument x twice.

#define ABS(x) (((x) < 0) ? -(x) : (x))
• Side effect: When evaluated, an expression with a side effect modifies at least one of the variables

in the expression.

For instance, ++n modifies n, but n+1 does not modify n.

The checker does not consider side effects in nested macros. The checker also does not consider
function calls or volatile variable access as side effects.

Risk

If you call an unsafe macro with an expression that has a side effect, the expression is evaluated
multiple times or not evaluated at all. The side effect can occur multiple times or not occur at all,
causing unexpected behavior.

For instance, in the call MACRO(++n), you expect only one increment of the variable n. If MACRO is an
unsafe macro, the increment happens more than once or does not happen at all.

The checker flags expressions with side effects in the assert macro because the assert macro is
disabled in non-debug mode. To compile in non-debug mode, you define the NDEBUG macro during
compilation. For instance, in GCC, you use the flag -DNDEBUG.
Fix

Evaluate the expression with a side effect in a separate statement, and then use the result as a macro
argument.

 CERT C: Rule PRE31-C

23-5

For instance, instead of:

MACRO(++n);

perform the operation in two steps:

++n;
MACRO(n);

Alternatively, use an inline function instead of a macro. Pass the expression with side effect as
argument to the inline function.

The checker considers modifications of a local variable defined only in the block scope of a macro
body as a side effect. This defect cannot happen since the variable is visible only in the macro body. If
you see a defect of this kind, ignore the defect.

Example - Macro Argument with Side Effects

#define ABS(x) (((x) < 0) ? -(x) : (x))

void func(int n) {
 /* Validate that n is within the desired range */
 int m = ABS(++n);

 /* ... */
}

In this example, the ABS macro evaluates its argument twice. The second evaluation can result in an
unintended increment.

Correction — Separate Evaluation of Expression from Macro Usage

One possible correction is to first perform the increment, and then pass the result to the macro.

#define ABS(x) (((x) < 0) ? -(x) : (x))

void func(int n) {
 /* Validate that n is within the desired range */
 ++n;
 int m = ABS(n);

 /* ... */
}

Correction — Evaluate Expression in Inline Function

Another possible correction is to evaluate the expression in an inline function.

static inline int iabs(int x) {
 return (((x) < 0) ? -(x) : (x));
}

void func(int n) {
 /* Validate that n is within the desired range */

int m = iabs(++n);

 /* ... */
}

23 CERT C Rules and Recommendations

23-6

Check Information
Group: Rule 01. Preprocessor (PRE)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
PRE31-C

Introduced in R2019a

 CERT C: Rule PRE31-C

23-7

https://wiki.sei.cmu.edu/confluence/display/c/PRE31-C.+Avoid+side+effects+in+arguments+to+unsafe+macros

CERT C: Rule PRE32-C
Do not use preprocessor directives in invocations of function-like macros

Description
Rule Definition

Do not use preprocessor directives in invocations of function-like macros.

Polyspace Implementation

This checker checks for Preprocessor directive in macro argument.

Examples
Preprocessor directive in macro argument
Issue

Preprocessor directive in macro argument occurs when you use a preprocessor directive in the
argument to a function-like macro or a function that might be implemented as a function-like macro.

For instance, a #ifdef statement occurs in the argument to a memcpy function. The memcpy function
might be implemented as a macro.

memcpy(dest, src,
 #ifdef PLATFORM1
 12
 #else
 24
 #endif
);

The checker flags similar usage in printf and assert, which can also be implemented as macros.

Risk

During preprocessing, a function-like macro call is replaced by the macro body and the parameters
are replaced by the arguments to the macro call (argument substitution). Suppose a macro min() is
defined as follows.

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

When you call min(1,2), it is replaced by the body ((X) < (Y) ? (X) : (Y)). X and Y are
replaced by 1 and 2.

According to the C11 Standard (Sec. 6.10.3), if the list of arguments to a function-like macro itself
has preprocessing directives, the argument substitution during preprocessing is undefined.

Fix

To ensure that the argument substitution happens in an unambiguous manner, use the preprocessor
directives outside the function-like macro.

23 CERT C Rules and Recommendations

23-8

For instance, to execute memcpy with different arguments based on a #ifdef directive, call memcpy
multiple times within the #ifdef directive branches.

#ifdef PLATFORM1
 memcpy(dest, src, 12);
#else
 memcpy(dest, src, 24);
#endif

Example - Directives in Function-Like Macros

#include <stdio.h>

#define print(A) printf(#A)

void func(void) {
 print(
#ifdef SW
 "Message 1"
#else
 "Message 2"
#endif
);
}

In this example, the preprocessor directives #ifdef and #endif occur in the argument to the
function-like macro print().

Correction — Use Directives Outside Macro

One possible correction is to use the function-like macro multiple times in the branches of the
#ifdef directive.

#include <stdio.h>

#define print(A) printf(#A)

void func(void) {
#ifdef SW
 print("Message 1");
#else
 print("Message 2");
#endif
}

Check Information
Group: Rule 01. Preprocessor (PRE)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
PRE32-C

 CERT C: Rule PRE32-C

23-9

https://wiki.sei.cmu.edu/confluence/display/c/PRE32-C.+Do+not+use+preprocessor+directives+in+invocations+of+function-like+macros

Introduced in R2019a

23 CERT C Rules and Recommendations

23-10

CERT C: Rule DCL30-C
Declare objects with appropriate storage durations

Description
Rule Definition

Declare objects with appropriate storage durations.

Polyspace Implementation

This checker checks for Pointer or reference to stack variable leaving scope.

Examples
Pointer or reference to stack variable leaving scope
Issue

Pointer or reference to stack variable leaving scope occurs when a pointer or reference to a
local variable leaves the scope of the variable. For instance:

• A function returns a pointer to a local variable.
• A function performs the assignment globPtr = &locVar. globPtr is a global pointer variable

and locVar is a local variable.
• A function performs the assignment *paramPtr = &locVar. paramPtr is a function parameter

that is, for instance, an int** pointer and locVar is a local int variable.
• A C++ method performs the assignment memPtr = &locVar. memPtr is a pointer data member

of the class the method belongs to. locVar is a variable local to the method.

The defect also applies to memory allocated using the alloca function. The defect does not apply to
static, local variables.
Risk

Local variables are allocated an address on the stack. Once the scope of a local variable ends, this
address is available for reuse. Using this address to access the local variable value outside the
variable scope can cause unexpected behavior.

If a pointer to a local variable leaves the scope of the variable, Polyspace Bug Finder highlights the
defect. The defect appears even if you do not use the address stored in the pointer. For maintainable
code, it is a good practice to not allow the pointer to leave the variable scope. Even if you do not use
the address in the pointer now, someone else using your function can use the address, causing
undefined behavior.
Fix

Do not allow a pointer or reference to a local variable to leave the variable scope.
Example - Pointer to Local Variable Returned from Function

void func2(int *ptr) {
 *ptr = 0;

 CERT C: Rule DCL30-C

23-11

}

int* func1(void) {
 int ret = 0;
 return &ret ;
}
void main(void) {
 int* ptr = func1() ;
 func2(ptr) ;
}

In this example, func1 returns a pointer to local variable ret.

In main, ptr points to the address of the local variable. When ptr is accessed in func2, the access is
illegal because the scope of ret is limited to func1,

Check Information
Group: Rule 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL30-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-12

https://wiki.sei.cmu.edu/confluence/display/c/DCL30-C.+Declare+objects+with+appropriate+storage+durations

CERT C: Rule DCL31-C
Declare identifiers before using them

Description
Rule Definition

Declare identifiers before using them.

Polyspace Implementation

This checker checks for these issues:

• Types not explicitly specified.
• Implicit function declaration.

Examples
Types not explicitly specified

Issue

The rule checker flags situations where a function parameter or return type is not explicitly specified.
To enable checking of this rule, use the value c90 for the option C standard version (-c-
version).

Risk

In some circumstances, you can omit types from the C90 standard. In those cases, the int type is
implicitly specified. However, the omission of an explicit type can lead to confusion. For example, in
the declaration extern void foo (char c, const k);, the type of k is const int, but you
might expect const char.

You might be using an implicit type in:

• Object declarations
• Parameter declarations
• Member declarations
• typedef declarations
• Function return types

Example - Implicit Types

static foo(int a); /* Non compliant */
static void bar(void); /* Compliant */

In this example, the rule is violated because the return type of foo is implicit.

 CERT C: Rule DCL31-C

23-13

Implicit function declaration
Issue

The issue occurs when you call a function before you declare or define it.

Risk

An implicit declaration occurs when you call a function before declaring or defining it. When you
declare a function explicitly before calling it, the compiler can match the argument and return types
with the parameter types in the declaration. If an implicit declaration occurs, the compiler makes
assumptions about the argument and return types. For instance, it assumes a return type of int. The
assumptions might not agree with what you expect and cause undesired type conversions.

Example - Function Not Declared Before Call

#include <math.h>

extern double power3 (double val, int exponent);
int getChoice(void);

double func() {
 double res;
 int ch = getChoice();
 if(ch == 0) {
 res = power(2.0, 10); /* Non-compliant */
 }
 else if(ch==1) {
 res = power2(2.0, 10); /* Non-compliant */
 }
 else {
 res = power3(2.0, 10); /* Compliant */
 return res;
 }
}

double power2 (double val, int exponent) {
 return (pow(val, exponent));
}

In this example, the rule is violated when a function that is not declared is called in the code. Even if
a function definition exists later in the code, the rule violation occurs.

The rule is not violated when the function is declared before it is called in the code. If the function
definition exists in another file and is available only during the link phase, you can declare the
function in one of the following ways:

• Declare the function with the extern keyword in the current file.
• Declare the function in a header file and include the header file in the current file.

Check Information
Group: Rule 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

23 CERT C Rules and Recommendations

23-14

Topics
“Check for Coding Standard Violations”

External Websites
DCL31-C

Introduced in R2019a

 CERT C: Rule DCL31-C

23-15

https://wiki.sei.cmu.edu/confluence/display/c/DCL31-C.+Declare+identifiers+before+using+them

CERT C: Rule DCL36-C
Do not declare an identifier with conflicting linkage classifications

Description
Rule Definition

Do not declare an identifier with conflicting linkage classifications.

Polyspace Implementation

This checker checks for Inconsistent use of static and extern in object declarations.

Examples
Inconsistent use of static and extern in object declarations
Issue

The issue occurs when you do not use the static storage class specifier consistently in all
declarations of object and functions that have internal linkage.

The rule checker detects situations where:

• The same object is declared multiple times with different storage specifiers.
• The same function is declared and defined with different storage specifiers.

Risk

If you do not use the static specifier consistently in all declarations of objects with internal linkage,
you might declare the same object with external and internal linkage.

In this situation, the linkage follows the earlier specification that is visible (C99 Standard, Section
6.2.2). For instance, if the earlier specification indicates internal linkage, the object has internal
linkage even though the latter specification indicates external linkage. If you notice the latter
specification alone, you might expect otherwise.

Example - Linkage Conflict Between Variable Declarations

static int foo = 0;
extern int foo; /* Non-compliant */

extern int hhh;
static int hhh; /* Non-compliant */

In this example, the first line defines foo with internal linkage. The first line is compliant because the
example uses the static keyword. The second line does not use static in the declaration, so the
declaration is noncompliant. By comparison, the third line declares hhh with an extern keyword
creating external linkage. The fourth line declares hhh with internal linkage, but this declaration
conflicts with the first declaration of hhh.

23 CERT C Rules and Recommendations

23-16

Correction — Consistent static and extern Use

One possible correction is to use static and extern consistently:

static int foo = 0;
static int foo;

extern int hhh;
extern int hhh;

Example - Linkage Conflict Between Function Declaration and Definition

static int fee(void); /* Compliant - declaration: internal linkage */
int fee(void){ /* Non-compliant */
 return 1;
}

static int ggg(void); /* Compliant - declaration: internal linkage */
extern int ggg(void){ /* Non-compliant */
 return 1;
}

This example shows two internal linkage violations. Because fee and ggg have internal linkage, you
must use a static class specifier to be compliant with MISRA.

Check Information
Group: Rule 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL36-C

Introduced in R2019a

 CERT C: Rule DCL36-C

23-17

https://wiki.sei.cmu.edu/confluence/display/c/DCL36-C.+Do+not+declare+an+identifier+with+conflicting+linkage+classifications

CERT C: Rule DCL37-C
Do not declare or define a reserved identifier

Description
Rule Definition

Do not declare or define a reserved identifier.

Polyspace Implementation

This checker checks for these issues:

• Defining and undefining reserved identifiers or macros.
• Declaring a reserved identifier or macro name.

Examples
Defining and undefining reserved identifiers or macros

Issue

The issue occurs when you use #define and #undef on a reserved identifier or reserved macro
name.

Risk

Reserved identifiers and reserved macro names are intended for use by the implementation.
Removing or changing the meaning of a reserved macro can result in undefined behavior. This rule
applies to the following:

• Identifiers or macro names beginning with an underscore
• Identifiers in file scope described in the C Standard Library (ISO/IEC 9899:1999, Section 7,

"Library")
• Macro names described in the C Standard Library as being defined in a standard header (ISO/IEC

9899:1999, Section 7, "Library").

Example - Defining or Undefining Reserved Identifiers

#undef __LINE__ /* Non-compliant - begins with _ */
#define _Guard_H 1 /* Non-compliant - begins with _ */
#undef _ BUILTIN_sqrt /* Non-compliant - implementation may
 * use _BUILTIN_sqrt for other purposes,
 * e.g. generating a sqrt instruction */
#define defined /* Non-compliant - reserved identifier */
#define errno my_errno /* Non-compliant - library identifier */
#define isneg(x) ((x) < 0) /* Compliant - rule doesn't include
 * future library directions */

23 CERT C Rules and Recommendations

23-18

Declaring a reserved identifier or macro name
Issue

The issue occurs when you declare a reserved identifier or macro name.

If you define a macro name that corresponds to a standard library macro, object, or function,
Polyspace considers this a violation of the rule.

The rule considers tentative definitions as definitions.

Risk

The Standard allows implementations to treat reserved identifiers specially. If you reuse reserved
identifiers, you can cause undefined behavior.

Check Information
Group: Rule 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL37-C

Introduced in R2019a

 CERT C: Rule DCL37-C

23-19

https://wiki.sei.cmu.edu/confluence/display/c/DCL37-C.+Do+not+declare+or+define+a+reserved+identifier

CERT C: Rule DCL38-C
Use the correct syntax when declaring a flexible array member

Description
Rule Definition

Use the correct syntax when declaring a flexible array member.

Polyspace Implementation

This checker checks for Incorrect syntax of flexible array member size.

Examples
Incorrect syntax of flexible array member size

Issue

Incorrect syntax of flexible array member size occurs when you do not use the standard C syntax
to define a structure with a flexible array member.

Since C99, you can define a flexible array member with an unspecified size. For instance, desc is a
flexible array member in this example:

struct record {
 size_t len;
 double desc[];
};

Prior to C99, you might have used compiler-specific methods to define flexible arrays. For instance,
you used arrays of size one or zero:

struct record {
 size_t len;
 double desc[0];
};

This usage is not compliant with the C standards following C99.

Risk

If you define flexible array members by using size zero or one, your implementation is compiler-
dependent. For compilers that do not recognize the syntax, an int array of size one has buffer for
one int variable. If you try to write beyond this buffer, you can run into issues stemming from array
access out of bounds.

If you use the standard C syntax to define a flexible array member, your implementation is portable
across all compilers conforming with the standard.

23 CERT C Rules and Recommendations

23-20

Fix

To implement a flexible array member in a structure, define an array of unspecified size. The
structure must have one member besides the array and the array must be the last member of the
structure.

Example - Flexible Array Member Defined with Size One

#include <stdlib.h>

struct flexArrayStruct {
 int num;
 int data[1];
};

unsigned int max_size = 100;

void func(unsigned int array_size) {
 if(array_size<= 0 || array_size > max_size)
 exit(1);
 /* Space is allocated for the struct */
 struct flexArrayStruct *structP
 = (struct flexArrayStruct *)
 malloc(sizeof(struct flexArrayStruct)
 + sizeof(int) * (array_size - 1));
 if (structP == NULL) {
 /* Handle malloc failure */
 exit(2);
 }

 structP->num = array_size;

 /*
 * Access data[] as if it had been allocated
 * as data[array_size].
 */
 for (unsigned int i = 0; i < array_size; ++i) {
 structP->data[i] = 1;
 }

 free(structP);
}

In this example, the flexible array member data is defined with a size value of one. Compilers that do
not recognize this syntax treat data as a size-one array. The statement structP->data[i] = 1;
can write to data beyond the first array member and cause out of bounds array issues.

Correction — Use Standard C Syntax to Define Flexible Array

Define flexible array members with unspecified size.

#include <stdlib.h>

struct flexArrayStruct{
 int num;
 int data[];
};

 CERT C: Rule DCL38-C

23-21

unsigned int max_size = 100;

void func(unsigned int array_size) {
 if(array_size<=0 || array_size > max_size)
 exit(1);

 /* Allocate space for structure */
 struct flexArrayStruct *structP
 = (struct flexArrayStruct *)
 malloc(sizeof(struct flexArrayStruct)
 + sizeof(int) * array_size);

 if (structP == NULL) {
 /* Handle malloc failure */
 exit(2);
 }

 structP->num = array_size;

 /*
 * Access data[] as if it had been allocated
 * as data[array_size].
 */
 for (unsigned int i = 0; i < array_size; ++i) {
 structP->data[i] = 1;
 }

 free(structP);
}

Check Information
Group: Rule 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL38-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-22

https://wiki.sei.cmu.edu/confluence/display/c/DCL38-C.+Use+the+correct+syntax+when+declaring+a+flexible+array+member

CERT C: Rule DCL39-C
Avoid information leakage in structure padding

Description
Rule Definition

Avoid information leakage in structure padding.

Polyspace Implementation

This checker checks for Information leak via structure padding.

Examples
Information leak via structure padding
Issue

Information leak via structure padding occurs when you do not initialize the padding data of a
structure or union before passing it across a trust boundary. A compiler adds padding bytes to the
structure or union to ensure a proper memory alignment of its members. The bit-fields of the storage
units can also have padding bits.

Information leak via structure padding raises a defect when:

• You call an untrusted function with structure or union pointer type argument containing
uninitialized padding data.

All external functions are considered untrusted.
• You copy or assign a structure or union containing uninitialized padding data to an untrusted

object.

All external structure or union objects, the output parameters of all externally linked functions,
and the return pointer of all external functions are considered untrusted objects.

Risk

The padding bytes of the passed structure or union might contain sensitive information that an
untrusted source can access.
Fix

• Prevent the addition of padding bytes for memory alignment by using the pack pragma or
attribute supported by your compiler.

• Explicitly declare and initialize padding bytes as fields within the structure or union.
• Explicitly declare and initialize bit-fields corresponding to padding bits, even if you use the pack

pragma or attribute supported by your compiler.

Example - Structure with Padding Bytes Passed to External Function

#include <stddef.h>
#include <stdlib.h>

 CERT C: Rule DCL39-C

23-23

#include <string.h>

typedef struct s_padding
{
 /* Padding bytes may be introduced between
 * 'char c' and 'int i'
 */
 char c;
 int i;

/*Padding bits may be introduced around the bit-fields
* even if you use "#pragma pack" (Windows) or
* __attribute__((__packed__)) (GNU)*/

 unsigned int bf1:1;
 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

/* External function */
extern void copy_object(void *out, void *in, size_t s);

void func(void *out_buffer)
{
/*Padding bytes not initialized*/

 S_Padding s = {'A', 10, 1, 3, {}};
/*Structure passed to external function*/

 copy_object((void *)out_buffer, (void *)&s, sizeof(s));
}

void main(void)
{
 S_Padding s1;
 func(&s1);
}

In this example, structure s1 can have padding bytes between the char c and int i members. The
bit-fields of the storage units of the structure can also contain padding bits. The content of the
padding bytes and bits is accessible to an untrusted source when s1 is passed to func.

Correction — Use pack Pragma to Prevent Padding Bytes

One possible correction in Microsoft Visual Studio is to use #pragma pack() to prevent padding
bytes between the structure members. To prevent padding bits in the bit-fields of s1, explicitly
declare and initialize the bit-fields even if you use #pragma pack().

 #include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>

#define CHAR_BIT 8

#pragma pack(push, 1)

23 CERT C Rules and Recommendations

23-24

typedef struct s_padding
{
/*No Padding bytes when you use "#pragma pack" (Windows) or
* __attribute__((__packed__)) (GNU)*/
 char c;
 int i;
 unsigned int bf1:1;
 unsigned int bf2:2;
/* Padding bits explicitely declared */
 unsigned int bf_filler : sizeof(unsigned) * CHAR_BIT - 3;
 unsigned char buffer[20];
}

 S_Padding;

#pragma pack(pop)

/* External function */
extern void copy_object(void *out, void *in, size_t s);

void func(void *out_buffer)
{
 S_Padding s = {'A', 10, 1, 3, 0 /* padding bits */, {}};
 copy_object((void *)out_buffer, (void *)&s, sizeof(s));
}

void main(void)
{
 S_Padding s1;
 func(&s1);
}

Check Information
Group: Rule 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL39-C

Introduced in R2019a

 CERT C: Rule DCL39-C

23-25

https://wiki.sei.cmu.edu/confluence/display/c/DCL39-C.+Avoid+information+leakage+when+passing+a+structure+across+a+trust+boundary

CERT C: Rule DCL40-C
Do not create incompatible declarations of the same function or object

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

Rule Definition

Do not create incompatible declarations of the same function or object.

Polyspace Implementation

This checker checks for Declaration mismatch.

Examples
Declaration mismatch
Issue

Declaration mismatch occurs when a function or variable declaration does not match other
instances of the function or variable.

Risk

When a mismatch occurs between two variable declarations in different compilation units, a typical
linker follows an algorithm to pick one declaration for the variable. If you expect a variable
declaration that is different from the one chosen by the linker, you can see unexpected results when
the variable is used.

A similar issue can occur with mismatch in function declarations.

Fix

The fix depends on the type of declaration mismatch. If both declarations indeed refer to the same
object, use the same declaration. If the declarations refer to different objects, change the names of
the one of the variables. If you change a variable name, remember to make the change in all places
that use the variable.

Sometimes, declaration mismatches can occur because the declarations are affected by previous
preprocessing directives. For instance, a declaration occurs in a macro, and the macro is defined on
one inclusion path but undefined in another. These declaration mismatches can be tricky to debug.
Identify the divergence between the two inclusion paths and fix the conflicting macro definitions.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

23 CERT C Rules and Recommendations

23-26

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Inconsistent Declarations in Two Files

file1.c

int foo(void) {
 return 1;
}

file2.c

double foo(void);

int bar(void) {
 return (int)foo();
}

In this example, file1.c declares foo() as returning an integer. In file2.c, foo() is declared as
returning a double. This difference might cause a compilation failure. Polyspace raises a defect on the
second instance of foo in file2.

Correction — Align the Function Return Values

One possible correction is to change the function declarations so that they match. In this example, by
changing the declaration of foo in file2.c to match file1.c, the defect is fixed.

file1.c

int foo(void) {
 return 1;
}

file2.c

int foo(void);

int bar(void) {
 return foo();
}

Example - Inconsistent Structure Alignment

test1.c

#include "square.h"
#include "circle.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

test2.c

#include "circle.h"
#include "square.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

 CERT C: Rule DCL40-C

23-27

circle.h

#pragma pack(1)

extern struct aCircle{
 int radius;
} circle;

square.h

extern struct aSquare {
 unsigned int side:1;
} square;

In this example, a declaration mismatch defect is raised on square in square.h because Polyspace
infers that square in square.h does not have the same alignment as square in test2.c. This error
occurs because the #pragma pack(1) statement in circle.h declares specific alignment. In test2.c,
circle.h is included before square.h. Therefore, the #pragma pack(1) statement from circle.h is not
reset to the default alignment after the aCircle structure. Because of this omission, test2.c infers
that the aSquare square structure also has an alignment of 1 byte. This defect might cause a
compilation failure.

Correction — Close Packing Statements

One possible correction is to reset the structure alignment after the aCircle struct declaration. For
the GNU or Microsoft Visual compilers, fix the defect by adding a #pragma pack() statement at the
end of circle.h.

test1.c

#include "square.h"
#include "circle.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

test2.c

#include "circle.h"
#include "square.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

circle.h

#pragma pack(1)

extern struct aCircle{
 int radius;
} circle;

#pragma pack()

square.h

extern struct aSquare {
 unsigned int side:1;
} square;

Other compilers require different #pragma pack syntax. For your syntax, see the documentation for
your compiler.

Correction — Use the Ignore pragma pack directives Option

One possible correction is to add the Ignore pragma pack directives option to your Bug Finder
analysis. If you want the structure alignment to change for each structure, and you do not want to see
this Declaration mismatch defect, use this correction.

1 On the Configuration pane, select the Advanced Settings pane.
2 In the Other box, enter -ignore-pragma-pack.

23 CERT C Rules and Recommendations

23-28

3 Rerun your analysis.

The Declaration mismatch defect is resolved.

Check Information
Group: Rule 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL40-C

Introduced in R2019a

 CERT C: Rule DCL40-C

23-29

https://wiki.sei.cmu.edu/confluence/display/c/DCL40-C.+Do+not+create+incompatible+declarations+of+the+same+function+or+object

CERT C: Rule DCL41-C
Do not declare variables inside a switch statement before the first case label

Description
Rule Definition

Do not declare variables inside a switch statement before the first case label.

Polyspace Implementation

This checker checks for variable declaration before first case label.

Examples
Variable declaration before first case label
Issue

The issue occurs when you define a variable in a switch block before the first case label.
Risk

In a switch block, control jumps to one of the case labels or a default label, depending on the
control expression of the switch statement. If you define a variable before the first case label, the
compiler ignores the variable declaration. Read operations on this variable can lead to indeterminate
values.
Example — Noncompliant Variable Declaration

void bar(int iTemp){
 //...
}
void foo(){
 //...
 int bFlag;
 //...
 switch(bFlag){
 int temp; //Noncompliant
 bar (temp);
 case 0:
 //...
 break;
 case 1:
 //...
 break;

 }

}

In this example, the variable temp is declared before the first case label. The compiler ignores this
declaration. If you perform a read operation on temp in one of the case blocks, the operation might
lead to indeterminate values. Polyspace flags the variable declaration.

23 CERT C Rules and Recommendations

23-30

Example — Compliant switch Statement

To fix the preceding issue, move the variable declaration out of the switch statement.

void bar(int iTemp){
 //...
}
void foo(){
 //...
 int bFlag;
 //...
 int temp;//Compliant
 bar (temp);
 switch(bFlag){

 case 0://...
 break;
 case 1:
 break;
 }
}

Check Information
Group: Rule 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL41-C

Introduced in R2019a

 CERT C: Rule DCL41-C

23-31

https://wiki.sei.cmu.edu/confluence/display/c/DCL41-C.+Do+not+declare+variables+inside+a+switch+statement+before+the+first+case+label

CERT C: Rule EXP30-C
Do not depend on the order of evaluation for side effects

Description
Rule Definition

Do not depend on the order of evaluation for side effects.

Polyspace Implementation

This checker checks for Expression value depends on order of evaluation or of side effects.

Examples
Expression value depends on order of evaluation or of side effects
Issue

The issue occurs when the value of an expression and its persistent side effects is not the same under
all permitted evaluation orders.

An expression can have different values under the following conditions:

• The same variable is modified more than once in the expression, or is both read and written.
• The expression allows more than one order of evaluation.
• The expression contains a single volatile object that occurs multiple times.
• The expression contains more than one volatile object.

Therefore, this rule forbids expressions where a variable is modified more than once and can cause
different results under different orders of evaluation.

Risk

If an expression results in different values depending on the order of evaluation, its value becomes
implementation-defined.

Example - Variable Modified More Than Once in Expression

int a[10], b[10];
#define COPY_ELEMENT(index) (a[(index)]=b[(index)])

void main () {
 int i=0, k=0;

 COPY_ELEMENT (k); /* Compliant */
 COPY_ELEMENT (i++); /* Noncompliant */
}

In this example, the rule is violated by the statement COPY_ELEMENT(i++) because i++ occurs twice
and the order of evaluation of the two expressions is unspecified.

23 CERT C Rules and Recommendations

23-32

Example - Variable Modified and Used in Multiple Function Arguments

void f (unsigned int param1, unsigned int param2) {}

void main () {
 unsigned int i=0;
 f (i++, i); /* Non-compliant */
}

In this example, the rule is violated because it is unspecified whether the operation i++ occurs before
or after the second argument is passed to f. The call f(i++,i) can translate to either f(0,0) or
f(0,1).

Multiple volatile Objects in an Expression

volatile int a, b;
int mathOp(int x, int y);

int foo(void){
 int temp = mathOp(5,a) + mathOp(6,b);//Noncompliant
 return temp * mathOp(a,a);//Noncompliant
}

In this example, this rule is violated twice.

• The declaration of temp uses two volatile objects in the expression. Because the value of
volatile objects might change at any time, the expression might evaluate to different values
depending on the order of evaluation. Polyspace flags the second volatile object in the
expression.

• The return statement uses the same volatile object twice. Because the expression might have
different results depending on the order of evaluation, Polyspace raises this defect.

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP30-C

Introduced in R2019a

 CERT C: Rule EXP30-C

23-33

https://wiki.sei.cmu.edu/confluence/display/c/EXP30-C.+Do+not+depend+on+the+order+of+evaluation+for+side+effects

CERT C: Rule EXP32-C
Do not access a volatile object through a nonvolatile reference

Description
Rule Definition

Do not access a volatile object through a nonvolatile reference.

Polyspace Implementation

This checker checks for Cast to pointer that removes volatile qualification.

Examples
Cast to pointer that removes volatile qualification
Issue

Polyspace flags both implicit and explicit conversions that violate this rule.

Risk

This rule forbids casts from a pointer to a volatile object to a pointer that does not point to a
volatile object. Such casts violate type qualification.

Example - Casts That Remove Qualifiers

void foo(void) {
 volatile unsigned short *pvi; /* pointer to volatile */
 unsigned short *pi;

 pi = (unsigned short *) pvi; /* Non-compliant */

}

In this example, the variable pvi has a volatile qualifier in its type. The rule is violated when the
variable is cast to a type that does not have the volatile qualifier.

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP32-C

23 CERT C Rules and Recommendations

23-34

https://wiki.sei.cmu.edu/confluence/display/c/EXP32-C.+Do+not+access+a+volatile+object+through+a+nonvolatile+reference

Introduced in R2019a

 CERT C: Rule EXP32-C

23-35

CERT C: Rule EXP33-C
Do not read uninitialized memory

Description
Rule Definition

Do not read uninitialized memory.

Polyspace Implementation

This checker checks for these issues:

• Non-initialized pointer.
• Non-initialized variable.

Examples
Non-initialized pointer
Issue

Non-initialized pointer occurs when a pointer is not assigned an address before dereference.
Risk

Unless a pointer is explicitly assigned an address, it points to an unpredictable location.
Fix

The fix depends on the root cause of the defect. For instance, you assigned an address to the pointer
but the assignment is unreachable.

Often the result details show a sequence of events that led to the defect. You can implement the fix on
any event in the sequence. If the result details do not show the event history, you can trace back
using right-click options in the source code and see previous related events. See also “Interpret Bug
Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below. It is a good practice to initialize a pointer to NULL when declaring the
pointer.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Non-initialized pointer error

#include <stdlib.h>

23 CERT C Rules and Recommendations

23-36

int* assign_pointer(int* prev)
{
 int j = 42;
 int* pi;

 if (prev == NULL)
 {
 pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return NULL;
 }

 *pi = j;
 /* Defect: Writing to uninitialized pointer */

 return pi;
}

If prev is not NULL, the pointer pi is not assigned an address. However, pi is dereferenced on every
execution paths, irrespective of whether prev is NULL or not.

Correction — Initialize Pointer on Every Execution Path

One possible correction is to assign an address to pi when prev is not NULL.

#include <stdlib.h>

int* assign_pointer(int* prev)
{
 int j = 42;
 int* pi;

 if (prev == NULL)
 {
 pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return NULL;
 }
 /* Fix: Initialize pi in branches of if statement */
 else
 pi = prev;

 *pi = j;

 return pi;
}

Non-initialized variable

Issue

Non-initialized variable occurs when a variable is not initialized before its value is read.

Risk

Unless a variable is explicitly initialized, the variable value is unpredictable. You cannot rely on the
variable having a specific value.

 CERT C: Rule EXP33-C

23-37

Fix

The fix depends on the root cause of the defect. For instance, you assigned a value to the variable but
the assignment is unreachable or you assigned a value to the variable in one of two branches of a
conditional statement. Fix the unreachable code or missing assignment.

Often the result details show a sequence of events that led to the defect. You can implement the fix on
any event in the sequence. If the result details do not show the event history, you can trace back
using right-click options in the source code and see previous related events. See also “Interpret Bug
Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below. It is a good practice to initialize a variable at declaration.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Non-initialized variable error

int get_sensor_value(void)
{
 extern int getsensor(void);
 int command;
 int val;

 command = getsensor();
 if (command == 2)
 {
 val = getsensor();
 }

 return val;
 /* Defect: val does not have a value if command is not 2 */
}

If command is not 2, the variable val is unassigned. In this case, the return value of function
get_sensor_value is undetermined.
Correction — Initialize During Declaration

One possible correction is to initialize val during declaration so that the initialization is not bypassed
on some execution paths.

int get_sensor_value(void)
{
 extern int getsensor(void);
 int command;
 /* Fix: Initialize val */
 int val=0;

 command = getsensor();
 if (command == 2)
 {

23 CERT C Rules and Recommendations

23-38

 val = getsensor();
 }

 return val;
 }

val is assigned an initial value of 0. When command is not equal to 2, the function
get_sensor_value returns this value.

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP33-C

Introduced in R2019a

 CERT C: Rule EXP33-C

23-39

https://wiki.sei.cmu.edu/confluence/display/c/EXP33-C.+Do+not+read+uninitialized+memory

CERT C: Rule EXP34-C
Do not dereference null pointers

Description
Rule Definition

Do not dereference null pointers.

Polyspace Implementation

This checker checks for Null pointer.

Examples
Null pointer
Issue

Null pointer occurs when you use a pointer with a value of NULL as if it points to a valid memory
location.

Risk

Dereferencing a null pointer is undefined behavior. In most implementations, the dereference can
cause your program to crash.

Fix

Check a pointer for NULL before dereference.

If the issue occurs despite an earlier check for NULL, look for intermediate events between the check
and the subsequent dereference. Often the result details (or source code tooltips in Polyspace as You
Code) show a sequence of events that led to the defect. You can implement the fix on any event in the
sequence. If the result details do not show this event history, you can search for previous references
of variables relevant to the defect using right-click options in the source code and find related events.
See also “Interpret Bug Finder Results in Polyspace Desktop User Interface” or “Interpret Bug Finder
Results in Polyspace Access Web Interface”.

See examples of fixes below.

Example - Null pointer error

#include <stdlib.h>

int FindMax(int *arr, int Size)
{
 int* p=NULL;

 *p=arr[0];
 /* Defect: Null pointer dereference */

 for(int i=0;i<Size;i++)

23 CERT C Rules and Recommendations

23-40

 {
 if(arr[i] > (*p))
 *p=arr[i];
 }

 return *p;
}

The pointer p is initialized with value of NULL. However, when the value arr[0] is written to *p, p is
assumed to point to a valid memory location.

Correction — Assign Address to Null Pointer Before Dereference

One possible correction is to initialize p with a valid memory address before dereference.

#include <stdlib.h>

int FindMax(int *arr, int Size)
{
 /* Fix: Assign address to null pointer */
 int* p=&arr[0];

 for(int i=0;i<Size;i++)
 {
 if(arr[i] > (*p))
 *p=arr[i];
 }

 return *p;
}

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP34-C

Introduced in R2019a

 CERT C: Rule EXP34-C

23-41

https://wiki.sei.cmu.edu/confluence/display/c/EXP34-C.+Do+not+dereference+null+pointers

CERT C: Rule EXP35-C
Do not modify objects with temporary lifetime

Description
Rule Definition

Do not modify objects with temporary lifetime.

Polyspace Implementation

This checker checks for Accessing object with temporary lifetime.

Examples
Accessing object with temporary lifetime
Issue

Accessing object with temporary lifetime occurs when you attempt to read from or write to an
object with temporary lifetime that is returned by a function call. In a structure or union returned by
a function, and containing an array, the array members are temporary objects. The lifetime of
temporary objects ends:

• When the full expression or full declarator containing the call ends, as defined in the C11
Standard.

• After the next sequence point, as defined in the C90 and C99 Standards. A sequence point is a
point in the execution of a program where all previous evaluations are complete and no
subsequent evaluation has started yet.

For C++ code, Accessing object with temporary lifetime raises a defect only when you write to an
object with a temporary lifetime.

If the temporary lifetime object is returned by address, no defect is raised.

Risk

Modifying objects with temporary lifetime is undefined behavior and can cause abnormal program
termination and portability issues.

Fix

Assign the object returned from the function call to a local variable. The content of the temporary
lifetime object is copied to the variable. You can now modify it safely.

Example - Modifying Temporary Lifetime Object Returned by Function Call

#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>

#define SIZE6 6

23 CERT C Rules and Recommendations

23-42

struct S_Array
{
 int t;
 int a[SIZE6];
};

struct S_Array func_temp(void);

/* func_temp() returns a struct value containing
* an array with a temporary lifetime.
*/
int func(void) {

/*Writing to temporary lifetime object is
 undefined behavior
 */
 return ++(func_temp().a[0]);
}

void main(void) {
 (void)func();
}

In this example, func_temp() returns by value a structure with an array member a. This member
has temporary lifetime. Incrementing it is undefined behavior.

Correction — Assign Returned Value to Local Variable Before Writing

One possible correction is to assign the return of the call to func_temp() to a local variable. The
content of the temporary object a is copied to the variable, which you can safely increment.

 #include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>

#define SIZE6 6

struct S_Array
{
 int t;
 int a[SIZE6];
};

struct S_Array func_temp(void);

int func(void) {

/* Assign object returned by function call to
 *local variable
 */
 struct S_Array s = func_temp();

/* Local variable can safely be
 *incremented
 */
 ++(s.a[0]);

 CERT C: Rule EXP35-C

23-43

 return s.a[0];
}

void main(void) {
 (void)func();
}

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP35-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-44

https://wiki.sei.cmu.edu/confluence/display/c/EXP35-C.+Do+not+modify+objects+with+temporary+lifetime

CERT C: Rule EXP36-C
Do not cast pointers into more strictly aligned pointer types

Description
Rule Definition

Do not cast pointers into more strictly aligned pointer types.

Polyspace Implementation

This checker checks for:

• Conversion of void* pointer into pointer to object
• Source buffer misaligned with destination buffer

Examples
Conversion of void* pointer into pointer to object
Issue

Conversion of void* pointer into pointer to object occurs when a void* pointer is converted
into a pointer to a different data type. The checker does not flag casts or implicit conversions from
NULL or (void*)0.

Risk

You can indirectly convert a pointer to one data type into a pointer to a different and misaligned data
type through an intermediate void* pointer. This checker flags conversions from void* pointers into
pointers to other types and prevents these indirect conversions.

Fix

Avoid conversions from a void* pointer into a pointer to another data type.

Example - Conversion from void* to int*

int *lookup (void *loc)
{
 /* ... */
 return loc; //Noncompliant
}

void search (char *pos)
{
 int *found = lookup (pos);
}

In this example, the lookup function has a void* parameter but converts the parameter into an
int* pointer when returning. This conversion allows an indirect conversion of a char* pointer
passed as argument to lookup into an int* pointer.

 CERT C: Rule EXP36-C

23-45

Source buffer misaligned with destination buffer
Issue

Source buffer misaligned with destination buffer occurs when the source pointer in a pointer-to-
pointer conversion has one of the following issues:

• Points to a buffer that is smaller than what the destination pointer points to.
• Points to a buffer that is larger than what the destination pointer points to but the buffer size is

not an exact multiple of the destination buffer size.

The alignment of the source pointer changes in these conversions.

Risk

If the alignment of a pointer changes in a pointer-to-pointer conversion, dereferencing the result of
the conversion can cause abnormal program termination.

Fix

Avoid changing the alignment of a pointer in a pointer-to-pointer conversion.

Example - Change in Pointer Alignment During Conversion

#include <string.h>
struct record {
 int len;
 /* ... */
};

int copyBuffer (char *data, int offset)
{
 struct record *tmp;
 struct record dest;
 tmp = (struct record *) (data + offset); //Noncompliant
 memcpy (&dest, tmp, sizeof (dest));
 /* ... */

 return dest.len;
}

In this example, a char* pointer is converted to a struct record* pointer, followed by a memcpy
operation. The memcpy operation might assume a struct record* alignment of tmp and lead to
undefined behavior. The checker flags the prior conversion to prevent this undefined behavior.

To avoid the issue, use data + offset as the source argument of the memcpy instead of using an
intermediate struct record* pointer.

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

23 CERT C Rules and Recommendations

23-46

External Websites
EXP36-C

Introduced in R2019a

 CERT C: Rule EXP36-C

23-47

https://wiki.sei.cmu.edu/confluence/display/c/EXP36-C.+Do+not+cast+pointers+into+more+strictly+aligned+pointer+types

CERT C: Rule EXP37-C
Call functions with the correct number and type of arguments

Description
Rule Definition

Call functions with the correct number and type of arguments.

Polyspace Implementation

This checker checks for these issues:

• Bad file access mode or status.
• Unreliable cast of function pointer.
• Standard function call with incorrect arguments.
• Unsupported complex arguments
• Function declaration mismatch
• Incompatible argument

Examples
Bad file access mode or status
Issue

Bad file access mode or status occurs when you use functions in the fopen or open group with
invalid or incompatible file access modes, file creation flags, or file status flags as arguments. For
instance, for the open function, examples of valid:

• Access modes include O_RDONLY, O_WRONLY, and O_RDWR
• File creation flags include O_CREAT, O_EXCL, O_NOCTTY, and O_TRUNC.
• File status flags include O_APPEND, O_ASYNC, O_CLOEXEC, O_DIRECT, O_DIRECTORY,

O_LARGEFILE, O_NOATIME, O_NOFOLLOW, O_NONBLOCK, O_NDELAY, O_SHLOCK, O_EXLOCK,
O_FSYNC, O_SYNC and so on.

The defect can occur in the following situations.

23 CERT C Rules and Recommendations

23-48

Situation Risk Fix
You pass an empty or invalid
access mode to the fopen
function.

According to the ANSI C
standard, the valid access
modes for fopen are:

• r,r+
• w,w+
• a,a+
• rb, wb, ab
• r+b, w+b, a+b
• rb+, wb+, ab+

fopen has undefined behavior
for invalid access modes.

Some implementations allow
extension of the access mode
such as:

• GNU: rb+cmxe,ccs=utf
• Visual C++: a+t, where t
specifies a text mode.

However, your access mode
string must begin with one of
the valid sequences.

Pass a valid access mode to
fopen.

You pass the status flag
O_APPEND to the open function
without combining it with either
O_WRONLY or O_RDWR.

O_APPEND indicates that you
intend to add new content at the
end of a file. However, without
O_WRONLY or O_RDWR, you
cannot write to the file.

The open function does not
return -1 for this logical error.

Pass either O_APPEND|
O_WRONLY or O_APPEND|
O_RDWR as access mode.

You pass the status flags
O_APPEND and O_TRUNC
together to the open function.

O_APPEND indicates that you
intend to add new content at the
end of a file. However, O_TRUNC
indicates that you intend to
truncate the file to zero.
Therefore, the two modes
cannot operate together.

The open function does not
return -1 for this logical error.

Depending on what you intend
to do, pass one of the two
modes.

You pass the status flag
O_ASYNC to the open function.

On certain implementations, the
mode O_ASYNC does not enable
signal-driven I/O operations.

Use the fcntl(pathname,
F_SETFL, O_ASYNC); instead.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

 CERT C: Rule EXP37-C

23-49

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Invalid Access Mode with fopen

#include <stdio.h>

void func(void) {
 FILE *file = fopen("data.txt", "rw");
 if(file!=NULL) {
 fputs("new data",file);
 fclose(file);
 }
}

In this example, the access mode rw is invalid. Because r indicates that you open the file for reading
and w indicates that you create a new file for writing, the two access modes are incompatible.

Correction — Use Either r or w as Access Mode

One possible correction is to use the access mode corresponding to what you intend to do.

#include <stdio.h>

void func(void) {
 FILE *file = fopen("data.txt", "w");
 if(file!=NULL) {
 fputs("new data",file);
 fclose(file);
 }
}

Unreliable cast of function pointer
Issue

Unreliable cast of function pointer occurs when a function pointer is cast to another function
pointer that has different argument or return type.

This defect applies only if the code language for the project is C.

Risk

If you cast a function pointer to another function pointer with different argument or return type and
then use the latter function pointer to call a function, the behavior is undefined.

Fix

Avoid a cast between two function pointers with mismatch in argument or return types.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

23 CERT C Rules and Recommendations

23-50

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Unreliable cast of function pointer error

#include <stdio.h>
#include <math.h>
#include <stdio.h>
#define PI 3.142

double Calculate_Sum(int (*fptr)(double))
{
 double sum = 0.0;
 double y;

 for (int i = 0; i <= 100; i++)
 {
 y = (*fptr)(i*PI/100);
 sum += y;
 }
 return sum / 100;
}

int main(void)
{
 double (*fp)(double);
 double sum;

 fp = sin;
 sum = Calculate_Sum(fp);
 /* Defect: fp implicitly cast to int(*) (double) */

 printf("sum(sin): %f\n", sum);
 return 0;
}

The function pointer fp is declared as double (*)(double). However in passing it to function
Calculate_Sum, fp is implicitly cast to int (*)(double).
Correction — Avoid Function Pointer Cast

One possible correction is to check that the function pointer in the definition of Calculate_Sum has
the same argument and return type as fp. This step makes sure that fp is not implicitly cast to a
different argument or return type.

#include <stdio.h>
#include <math.h>
#include <stdio.h>
define PI 3.142

/*Fix: fptr has same argument and return type everywhere*/
double Calculate_Sum(double (*fptr)(double))
{
 double sum = 0.0;
 double y;

 for (int i = 0; i <= 100; i++)

 CERT C: Rule EXP37-C

23-51

 {
 y = (*fptr)(i*PI/100);
 sum += y;
 }
 return sum / 100;
}

int main(void)
{
 double (*fp)(double);
 double sum;

 fp = sin;
 sum = Calculate_Sum(fp);
 printf("sum(sin): %f\n", sum);

 return 0;
}

Standard function call with incorrect arguments
Issue

Standard function call with incorrect arguments occurs when the arguments to certain standard
functions do not meet the requirements for their use in the functions.

For instance, the arguments to these functions can be invalid in the following ways.

Function Type Situation Risk Fix
String manipulation
functions such as
strlen and strcpy

The pointer arguments
do not point to a NULL-
terminated string.

The behavior of the
function is undefined.

Pass a NULL-terminated
string to string
manipulation functions.

File handling functions
in stdio.h such as
fputc and fread

The FILE* pointer
argument can have the
value NULL.

The behavior of the
function is undefined.

Test the FILE* pointer
for NULL before using it
as function argument.

File handling functions
in unistd.h such as
lseek and read

The file descriptor
argument can be -1.

The behavior of the
function is undefined.

Most implementations
of the open function
return a file descriptor
value of -1. In addition,
they set errno to
indicate that an error
has occurred when
opening a file.

Test the return value of
the open function for -1
before using it as
argument for read or
lseek.

If the return value is -1,
check the value of
errno to see which
error has occurred.

23 CERT C Rules and Recommendations

23-52

Function Type Situation Risk Fix
The file descriptor
argument represents a
closed file descriptor.

The behavior of the
function is undefined.

Close the file descriptor
only after you have
completely finished
using it. Alternatively,
reopen the file
descriptor before using
it as function argument.

Directory name
generation functions
such as mkdtemp and
mkstemps

The last six characters
of the string template
are not XXXXXX.

The function replaces
the last six characters
with a string that makes
the file name unique. If
the last six characters
are not XXXXXX, the
function cannot
generate a unique
enough directory name.

Test if the last six
characters of a string
are XXXXXX before
using the string as
function argument.

Functions related to
environment variables
such as getenv and
setenv

The string argument is
"".

The behavior is
implementation-defined.

Test the string
argument for "" before
using it as getenv or
setenv argument.

The string argument
terminates with an
equal sign, =. For
instance, "C=" instead
of "C".

The behavior is
implementation-defined.

Do not terminate the
string argument with =.

String handling
functions such as
strtok and strstr

• strtok: The
delimiter argument
is "".

• strstr: The search
string argument is
"".

Some implementations
do not handle these
edge cases.

Test the string for ""
before using it as
function argument.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

 CERT C: Rule EXP37-C

23-53

Example - NULL Pointer Passed as strnlen Argument

#include <string.h>
#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE20 = 20
};

int func() {
 char* s = NULL;
 return strnlen(s, SIZE20);
}

In this example, a NULL pointer is passed as strnlen argument instead of a NULL-terminated string.

Before running analysis on the code, specify a GNU compiler. See Compiler (-compiler).

Correction — Pass NULL-terminated String

Pass a NULL-terminated string as the first argument of strnlen.

#include <string.h>
#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE20 = 20
};

int func() {
 char* s = "";
 return strnlen(s, SIZE20);
}

Unsupported complex arguments
Issue

Unsupported complex arguments occurs when these functions are called with a complex
argument:

• atan2
• erf
• fdim
• fmin
• ilogb
• llround
• logb
• nextafter
• rint
• tgamma

23 CERT C Rules and Recommendations

23-54

• cbrt
• erfc
• floor
• fmod
• ldexp
• log10
• lrint
• nexttoward
• round
• trunc
• ceil
• exp2
• fma
• frexp
• lgamma
• log1p
• round
• remainder
• scalbn
• copysign
• expm1
• fmax
• hypot
• llrint
• log2
• nearbyint
• remquo
• scalbln

Risk

Calling any of the preceding functions with a complex argument is undefined behavior in the C++
standard, which might lead to unexpected results. Because some mathematical functions support
complex arguments while the functions in the preceding list do not, the unexpected results might be
difficult to debug. Performing some of these mathematical operations on a complex number might
not be mathematically sound, which indicates an issue in the underlying logic of your code.
Fix

Avoid calling the preceding functions with a complex input argument. To perform the preceding
mathematical operations on a complex number, define alternative functions that support complex
arguments.
Example — Calling log2 and trunc Functions with Complex Arguments

#include <complex.h>
#include <tgmath.h>

 CERT C: Rule EXP37-C

23-55

typedef double complex cDouble;
cDouble Noncompliant (void)
{
 cDouble Z = 2.0 + 4.0 * I;
 cDouble result = log2 (Z); //Noncompliant
 return trunc(result);//Noncompliant
}

In this example, the function Noncompliant calculates the base two logarithm of a complex number,
truncates the result, and returns it. The functions log2 and trunc do not support a complex
argument. Polyspace flags these operations. To run this example, specify gnu6.x as the compiler. For
instance, in the command line, use the option -compiler gnu6.x.
Correction — Define Functions That Support Complex Arguments

One possible correction is to define alternative functions that support complex numbers. For instance,
while log2 does not support complex numbers, the function log does. Define a function
complexLog2 that uses log to calculate the base two logarithm of a complex number. Similarly,
trunc does not support complex numbers and the mathematical rule for truncating a complex
number is not well-defined. Define a function complexTrunc that truncates a complex number by
truncating its real and imaginary parts separately.

#include <complex.h>
#include <tgmath.h>
typedef double complex cDouble;

cDouble complexLog2(cDouble z) {
 return log (z) / log (2); // Compliant
}

cDouble complexTrunc(cDouble z){
 return trunc(creal(z)) + I*trunc(cimag(z)); //Compliant
}

cDouble Compliant (void)
{
 cDouble Z = 2.0 + 4.0 * I;
 cDouble result = complexLog2 (Z); //Compliant
 return complexTrunc(result);//Compliant
}

Function declaration mismatch
Issue

Function declaration mismatch occurs when the prototype of a function does not match its
definition. If a function lacks a prototype in the file where it is called, Polyspace deduces its prototype
based on the signature of the call. If the deduced prototype does not match the definition of the
function, Polyspace raises this defect. The prototype of a variadic function cannot be deduced from its
function call. If you call a variadic function without specifying its prototype in the same file, Polyspace
raises this defect.

When deducing the prototype of a function from a call to such a function, Polyspace makes these
assumptions:

• The number of arguments of the deduced prototype is equal to the input argument of the function
call.

23 CERT C Rules and Recommendations

23-56

• The argument types of the deduced prototype are set by implicitly promoting the argument types
of the function call. For instance, both signed and unsigned char or short type arguments are
promoted to int. Similarly float type arguments are promoted to double.

• Type mismatch between the arguments of the function definition and the function prototype might
depend on your environment. Polyspace considers two types as compatible if they have the same
size and signedness in the environment that you use. For instance, if your specify -target as
i386, Polyspace considers long and int as compatible types.

The checker does not flag this issue in a default Polyspace as You Code analysis. See “Checkers
Deactivated in Polyspace as You Code Default Analysis”.

Risk

According to the C standard, function declaration mismatch might result in undefined behavior even
though such code might compile successfully producing only warnings during compilation. Because
code with this issue might compile successfully, function declaration mismatches might result in
unexpected results that are difficult to diagnose.

Fix

• Before you call a function, provide its complete prototype, even if you define the function later in
the same file.

• Avoid any mismatch between the number arguments in the function prototype declaration and the
function definition.

• Avoid any mismatch between the argument types of the function prototype declaration and the
function definition.

When complete prototypes of the called functions are provided, the compiler tries to resolve any
function declaration mismatches through implicit casting. If the compiler fails to resolve the
mismatch, the compilation fails, which prevents unexpected behavior. To fix such compile errors, call
the functions using argument types and numbers that match the function definition.

Example — Function Calls That Lack Prototypes

// file1.c
void foo(int iVar){
 //...
}
void bar(float fVar1, float fVar2){
 //...
}
void bar2(float fVar1){
 //...
}
void fubar(const char* str,...){
 //...
}
void foo2(char cVar){
 //...
}
void call_variadic(){
 fubar("String");
}

//file2.c
void bar2(float);
void foo2(int);
void call_funcs(){
 int iTemp;
 float fTemp;
 foo();//Noncompliant
 bar(fTemp,fTemp);//Noncompliant
 fubar("String"); //Noncompliant
 bar2(iTemp);//Compliant
 foo2(iTemp); //Noncompliant
}

 CERT C: Rule EXP37-C

23-57

In this example, the functions foo, foo2, bar, bar2, and fubar are defined in the file file1.c.
These functions are then called in the file file2.c.

• The function foo is defined in file1.c with one int input and called in file2.c without any
input. Because file2.c does not have a prototype for foo, Polyspace deduces a prototype based
on the call foo(), which takes no input. This deduced prototype does not match the function
declaration in file1.c. Polyspace flags the call.

• The function bar is defined in file1.c with two float inputs and called in file2.c with two
float inputs. Because file2.c does not have a prototype for bar, Polyspace deduces a
prototype based on the call bar(fTemp,fTemp). By promoting the argument types of the
function call, the signature of this deduced prototype is bar(double, double), which does not
match the function declaration in file1.c. Polyspace flags the call.

• The function bar2 is defined in file1.c with one float input. The complete prototype for bar2,
which matches the definition, is provided in file2.c. Because a complete prototype is present in
this file, when bar2 is called with an incorrect input, the compiler implicitly converts the int
input iTemp into a float. Because the call to the function matches the declaration after an
implicit conversion facilitated by the prototype, Polyspace does not flag the call.

• The function foo2 is defined in file1.c with a char input. Its prototype in file2.c is defined
with a int input. Because the definition and the prototype do not match, Polyspace flags the call
to foo2.

• The variadic function fubar is defined in file1.c. The call to it in call_variadic is compliant
because the call comes after the definition. The function fubar does not have a prototype in
file2.c. Because the function takes a variable number of inputs, its prototype cannot be
deduced. The call to fubar in file2.c lacks a prototype and Polyspace flags the call.

Correction — Compliant Function Calls

The fix for this defect is to declare complete prototypes for the called functions in all compilation
modules. It is a best practice to combine the function prototype declarations in a header file, and then
include it in files where the functions are called. In this case, resolve the flagged issues by including
such a header file prototype.h in file2.c. Once a correct prototype is declared, the call foo() in
file2.c causes a compilation failure because the compiler cannot resolve the mismatch between the
call and the declared prototype. Call foo with an int to resolve the compilation failure.

23 CERT C Rules and Recommendations

23-58

// file1.c
void foo(int iVar){
 //...
}
void bar(float fVar1, float fVar2){
 //...
}
void bar2(float fVar1){
 //...
}
void fubar(const char* str,...){
 //...
}
void foo2(char cVar){
 //...
}
void call_variadic(){
 fubar("String");
}

//prototypes.h
void foo(int iVar);
void bar(float fVar1, float fVar2);
void fubar(const char* str,...);
void bar2(float);
void foo2(char);
void call_variadic(void);
void call_funcs(void);

//file2.c
#include"prototype.h"
void call_funcs(){
 int iTemp;
 float fTemp;
 //foo(); This call results in compile failure
 foo(iTemp);//Compliant
 bar(fTemp,fTemp);//Compliant
 fubar("String"); //Compliant
 bar2(iTemp);//Compliant
 foo2('a'); //Compliant
}

Incompatible argument
Issue

Incompatible argument occurs when an external function is called by using an argument that is not
compatible with the prototype. The compatibility of types might depend on the set of hardware and
software that you use. For instance, consider this code:

extern long foo(int);

long bar(long i) {
 return foo(i); //Noncompliant: calls foo(int) with a long
}

The external function foo is called with a long when an int is expected. In environments where the
size of an int is smaller than the size of a long, this function call is incompatible with the prototype,
resulting in a defect.

Risk

Calling external functions with arguments that are incompatible with the parameter is undefined
behavior. Depending on your environment, the code might compile but behave in an unexpected way.

 CERT C: Rule EXP37-C

23-59

Fix

When calling external functions, use argument types that are smaller or equal in size compared to the
parameter type defined in the prototype. Check the sizes of various integer types in your environment
to determine compatibility of argument and parameter types.

Example — Call External Functions with Incompatible argument

extern long foo1(int);
extern long foo2(long);
void bar(){
 int varI;
 long varL;
 foo1(varL);//Noncompliant
 foo2(varI);//Compliant
}

In this example, the external function foo1 is called with a long argument, while the prototype
specifies the parameter as an int. In x86 architecture, the size of long is larger than the size of
int. The call foo1(varL) might result in undefined behavior. Polyspace flags the call. The call
foo2(varI) uses an int argument while the parameter is specified as a long. This type of
mismatch is compliant with this rule because the size of int is not larger than the size of long.

To run this example in Polyspace, use these options:

• -lang c
• -target x86_64

See Target processor type (-target).

Correction — Cast Variables Explicitly to Match Argument to Parameter

To fix this issue, cast the argument of foo1 explicitly so that argument type and parameter type
matches.

extern long foo1(int);
extern long foo2(long);
void bar(){
 int varI;
 long varL;
 foo1((int)varL);//Compliant
 foo2(varI);//Compliant
}

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

23 CERT C Rules and Recommendations

23-60

External Websites
EXP37-C

Introduced in R2019a

 CERT C: Rule EXP37-C

23-61

https://wiki.sei.cmu.edu/confluence/display/c/EXP37-C.+Call+functions+with+the+correct+number+and+type+of+arguments

CERT C: Rule EXP39-C
Do not access a variable through a pointer of an incompatible type

Description
Rule Definition

Do not access a variable through a pointer of an incompatible type.

Polyspace Implementation

This checker checks for these issues:

• Cast to pointer pointing to object of different type
• Reading memory reallocated from object of another type without reinitializing first

.

Examples
Cast to pointer pointing to object of different type
Issue

The issue occurs when you perform a cast between a pointer to an object type and a pointer to a
different object type.

Risk

If a pointer to an object is cast into a pointer to a different object, the resulting pointer can be
incorrectly aligned. The incorrect alignment causes undefined behavior.

Even if the conversion produces a pointer that is correctly aligned, the behavior can be undefined if
the pointer is used to access an object.

Exception: You can convert a pointer to object type into a pointer to one of the following types:

• char
• signed char
• unsigned char

Example - Noncompliant: Cast to Pointer Pointing to Object of Wider Type

signed char *p1;
unsigned int *p2;

void foo(void){
 p2 = (unsigned int *) p1; /* Non-compliant */
}

In this example, p1 can point to a signed char object. However, p1 is cast to a pointer that points
to an object of wider type, unsigned int.

23 CERT C Rules and Recommendations

23-62

Example - Noncompliant: Cast to Pointer Pointing to Object of Narrower Type

extern unsigned int read_value (void);
extern void display (unsigned int n);

void foo (void){
 unsigned int u = read_value ();
 unsigned short *hi_p = (unsigned short *) &u; /* Non-compliant */
 *hi_p = 0;
 display (u);
}

In this example, u is an unsigned int variable. &u is cast to a pointer that points to an object of
narrower type, unsigned short.

On a big-endian machine, the statement *hi_p = 0 attempts to clear the high bits of the memory
location that &u points to. But, from the result of display(u), you might find that the high bits have
not been cleared.
Example - Compliant: Cast Adding a Type Qualifier

const short *p;
const volatile short *q;
void foo (void){
 q = (const volatile short *) p; /* Compliant */
}

In this example, both p and q can point to short objects. The cast between them adds a volatile
qualifier only and is therefore compliant.

Reading memory reallocated from object of another type without reinitializing first
Issue

This issue occurs when you do the following in sequence:

1 Reallocate memory to an object with a type that is different from the original allocation.

For instance, in this code snippet, a memory originally allocated to a pointer with type struct
A* is reallocated to a pointer with type struct B*:

struct A;
struct B;

struct A *Aptr = (struct A*) malloc(sizeof(struct A));
struct B *Bptr = (struct B*) realloc(Aptr, sizeof(struct B));

2 Read from this reallocated memory without reinitializing the memory first.

Read accesses on the pointer to the reallocated memory can happen through pointer dereference
or array indexing. Passing the pointer to a function that takes a pointer to a const-qualified
object as the corresponding parameter also counts as a read access.

Risk

Reading from reallocated memory that has not been reinitialized leads to undefined behavior.
Fix

Reinitialize memory after reallocation and before the first read access.

 CERT C: Rule EXP39-C

23-63

The checker considers any write access on the pointer to the reallocated memory as satisfying the
reinitialization requirement (even if the object might only be partially reinitialized). Write accesses on
the pointer to the reallocated memory can happen through pointer dereference or array indexing.
Passing the pointer to a function that takes a pointer to a non-const-qualified object as the
corresponding parameter also counts as a write access.

Example – Noncompliant: Reading from Reallocated Memory Without Reinitializing First

#include<stdlib.h>

struct group {
 char *groupFirst;
 int groupSize;
};

struct groupWithID {
 int groupID;
 char *groupFirst;
 int groupSize;
};

char* readName();
int readSize();

void createGroup(int nextAvailableID) {
 struct group *aGroup;
 struct groupWithID *aGroupWithID;

 aGroup = (struct group*) malloc(sizeof(struct group));

 if(!aGroup) {
 /*Handle error*/
 }

 aGroup->groupFirst = readName();
 aGroup->groupSize = readSize();

 /* Reassign to group with ID */
 aGroupWithID = (struct groupWithID*) realloc(aGroup, sizeof(struct groupWithID));
 if(!aGroupWithID) {
 free(aGroup);
 /*Handle error*/
 }

 if(aGroupWithID -> groupSize > 0) { /* Noncompliant */
 /* ... */
 }

 /* ...*/
 free(aGroupWithID);
}

In this example, the memory allocated to a group* pointer using the malloc function is reallocated
to a groupWithID* pointer using the realloc function. There is a read access on the reallocated
memory before the memory is reinitialized.

23 CERT C Rules and Recommendations

23-64

Correction – Reinitialize Memory After Reallocation and Before First Read

Reinitialize the memory assigned to the groupWithID* pointer before the first read access. All bits
of the memory can be reinitialized using the memset function.

#include<stdlib.h>
#include<string.h>

struct group {
 char *groupFirst;
 int groupSize;
};

struct groupWithID {
 int groupID;
 char *groupFirst;
 int groupSize;
};

char* readName();
int readSize();

void createGroup(int nextAvailableID) {
 struct group *aGroup;
 struct groupWithID *aGroupWithID;

 aGroup = (struct group*) malloc(sizeof(struct group));

 if(!aGroup) {
 /*Handle error*/
 }

 aGroup->groupFirst = readName();
 aGroup->groupSize = readSize();

 /* Reassign to group with ID */
 aGroupWithID = (struct groupWithID*) realloc(aGroup, sizeof(struct groupWithID));
 if(!aGroupWithID) {
 free(aGroup);
 /*Handle error*/
 }

 memset(aGroupWithID, 0 , sizeof(struct groupWithID));
 /* Reinitialize group */
 if(aGroupWithID -> groupSize > 0) {
 /* ... */
 }

 /* ...*/
 free(aGroupWithID);
}

Check Information
Group: Rule 03. Expressions (EXP)

 CERT C: Rule EXP39-C

23-65

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP39-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-66

https://wiki.sei.cmu.edu/confluence/display/c/EXP39-C.+Do+not+access+a+variable+through+a+pointer+of+an+incompatible+type

CERT C: Rule EXP40-C
Do not modify constant objects

Description
Rule Definition

Do not modify constant objects.

Polyspace Implementation

This checker checks for Writing to const qualified object.

Examples
Writing to const qualified object

Issue

Writing to const qualified object occurs when you do one of the following:

• Use a const-qualified object as the destination of an assignment.
• Pass a const-qualified object to a function that modifies the argument.

For instance, the defect can occur in the following situations:

• You pass a const-qualified object as first argument of one of the following functions:

• mkstemp
• mkostemp
• mkostemps
• mkdtemp

• You pass a const-qualified object as the destination argument of one of the following functions:

• strcpy
• strncpy
• strcat
• memset

• You perform a write operation on a const-qualified object.

Risk

The risk depends upon the modifications made to the const-qualified object.

 CERT C: Rule EXP40-C

23-67

Situation Risk
Passing to mkstemp, mkostemp, mkostemps,
mkdtemp, and so on.

These functions replace the last six characters of
their first argument with a string. Therefore, they
expect a modifiable char array as their first
argument.

Passing to strcpy, strncpy, strcat, memset
and so on.

These functions modify their destination
argument. Therefore, they expect a modifiable
char array as their destination argument.

Writing to the object The const qualifier implies an agreement that
the value of the object will not be modified. By
writing to a const-qualified object, you break the
agreement. The result of the operation is
undefined.

Fix

The fix depends on the modification made to the const-qualified object.

Situation Fix
Passing to mkstemp, mkostemp, mkostemps,
mkdtemp, and so on.

Pass a non-const object as first argument of the
function.

Passing to strcpy, strncpy, strcat, memset
and so on.

Pass a non-const object as destination argument
of the function.

Writing to the object Perform the write operation on a non-const
object.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Writing to const-Qualified Object

#include <string.h>

const char* buffer = "abcdeXXXXXXX";

void func(char* string) {
 char *ptr = (char*)strchr(buffer,'X');
 if(ptr)
 strcpy(ptr,string);
}

In this example, because buffer is const-qualified, strchr(buffer,'X') returns a const-
qualified char* pointer. When this char* pointer is used as the destination argument of strcpy, a
Writing to const qualified object error appears.

23 CERT C Rules and Recommendations

23-68

Correction — Copy const-Qualified Object to Non-const Object

One possible correction is to assign the constant string to a non-const object and use the non-const
object as destination argument of strchr.

#include <string.h>

char buffer[] = "abcdeXXXXXXX";

void func(char* string) {
 char *ptr = (char*)strchr(buffer,'X');
 if(ptr)
 strcpy(ptr,string);
}

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP40-C

Introduced in R2019a

 CERT C: Rule EXP40-C

23-69

https://wiki.sei.cmu.edu/confluence/display/c/EXP40-C.+Do+not+modify+constant+objects

CERT C: Rule EXP42-C
Do not compare padding data

Description
Rule Definition

Do not compare padding data.

Polyspace Implementation

This checker checks for Memory comparison of padding data.

Examples
Memory comparison of padding data
Issue

Memory comparison of padding data occurs when you use the memcmp function to compare two
structures as a whole. In the process, you compare meaningless data stored in the structure padding.

For instance:

typedef struct structType {
 char member1;
 int member2;
 //...
}myStruct;

myStruct var1;
myStruct var2;
//...
if(memcmp(&var1,&var2,sizeof(var1)))
{//...}

Risk

If members of a structure have different data types, your compiler introduces additional padding for
data alignment in memory. For an example of padding, see Higher Estimate of Size of Local
Variables.

The content of these extra padding bytes is meaningless. The C Standard allows the content of these
bytes to be indeterminate, giving different compilers latitude to implement their own padding. If you
perform a byte-by-byte comparison of structures with memcmp, you compare even the meaningless
data stored in the padding. You might reach the false conclusion that two data structures are not
equal, even if their corresponding members have the same value.

Fix

Instead of comparing two structures in one attempt, compare the structures member by member.

23 CERT C Rules and Recommendations

23-70

For efficient code, write a function that does the comparison member by member. Use this function
for comparing two structures.

You can use memcmp for byte-by-byte comparison of structures only if you know that the structures do
not contain padding. Typically, to prevent padding, you use specific attributes or pragmas such as
#pragma pack. However, these attributes or pragmas are not supported by all compilers and make
your code implementation-dependent. If your structures contain bit-fields, using these attributes or
pragmas cannot prevent padding.

Example - Structures Compared with memcmp

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define fatal_error() abort()

typedef struct s_padding
{
 char c;
 int i;
 unsigned int bf1:1;
 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

/* Function that guarantees safe access to the input memory */
extern int trusted_memory_zone(void *ptr, size_t sz);

int func(const S_Padding *left, const S_Padding *right)
{

 if (!trusted_memory_zone((void *)left, sizeof(S_Padding)) ||
 !trusted_memory_zone((void *)right, sizeof(S_Padding))) {
 fatal_error();
 }

 if (0 == memcmp(left, right, sizeof(S_Padding)))
 {
 return 1;
 }
 else
 return 0;
}

In this example, memcmp compares byte-by-byte the two structures that left and right point to.
Even if the values stored in the structure members are the same, the comparison can show an
inequality if the meaningless values in the padding bytes are not the same.

Correction — Compare Structures Member by Member

One possible correction is to compare individual structure members.

Note You can compare entire arrays by using memcmp. All members of an array have the same data
type. Padding bytes are not required to store arrays.

 CERT C: Rule EXP42-C

23-71

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define fatal_error() abort()

typedef struct s_padding
{
 char c;
 int i;
 unsigned int bf1:1;
 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

/* Function that guarantees safe access to the input memory */
extern int trusted_memory_zone(void *ptr, size_t sz);

int func(const S_Padding *left, const S_Padding *right)
{
 if (!trusted_memory_zone((void *)left, sizeof(S_Padding)) ||
 !trusted_memory_zone((void *)right, sizeof(S_Padding))) {
 fatal_error();
 }

 return ((left->c == right->c) &&
 (left->i == right->i) &&
 (left->bf1 == right->bf1) &&
 (left->bf2 == right->bf2) &&
 (memcmp(left->buffer, right->buffer, 20) == 0));
}

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP42-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-72

https://wiki.sei.cmu.edu/confluence/display/c/EXP42-C.+Do+not+compare+padding+data

CERT C: Rule EXP43-C
Avoid undefined behavior when using restrict-qualified pointers

Description
Rule Definition

Avoid undefined behavior when using restrict-qualified pointers.

Polyspace Implementation

This checker checks for Overlapping access by restrict-qualified pointers.

Examples
Overlapping Access by restrict-Qualified Pointers
Issue

Overlapping access by restrict-qualified pointers occurs when any of these is true:

• Two restrict-qualified pointers modify objects that have overlapping memory addresses.
• In a function, one or more const restrict-qualified pointer might modify a nonconst

restrict-qualified pointer but when calling the function, the const and nonconst arguments
are the same or are derived from the same pointer.

• A standard library function is called by using restrict-qualified pointers that overlap.
• A restrict-qualified pointer is assigned to another restrict-qualified pointer within the same

scope.

Risk

The restrict qualifier on a pointer implies that within a block, only this pointer (or other pointers
created from this pointer) can access the pointed object. You cannot create a second pointer
independently of the restrict-qualified pointer to point to the object.

This specification requires that two restrict-qualified pointers cannot point to the same or
overlapping objects. Two restrict-qualified pointers accessing the same memory address or object
results in undefined behavior.
Fix

If you assign a restrict-qualified pointer to another pointer, make sure that the destination pointer
itself is not restrict-qualified. The restrict qualifier assists the compiler in optimizing the code.
Removing all instances of this qualifier does not change the observable code behavior.
Example — Assignment Between restrict-qualified Pointers in the Same Scope

int *restrict rptr1;
int *restrict rptr2;
int * ptr;
extern int arr[];

 CERT C: Rule EXP43-C

23-73

void func (void)
{
 arr[0] = 0;
 arr[1] = 1;
 rptr1 = &arr[0];
 rptr2 = &arr[1];
 rptr2 = rptr1; //Non-compliant
 ptr = rptr1; //Compliant
 /* ... */

}

In this example, rptr1 and rptr2 are restrict-qualified pointers that point to different locations
in the same array arr. Assigning one such restrict-qualified pointer to another in the same scope
causes a rule violation.
Example — restrict-Qualified Function Parameters

#include <stddef.h>
#include <stdio.h>
void addArray (size_t n, int *restrict res,
 const int *restrict lhs, const int *restrict rhs)
{
 for (size_t i = 0; i < n; ++i) {
 res[i] = lhs[i] + rhs[i];
 }
}
void foo (void)
{
 int a[100];
 memset(&a, 0, 100);
 addArray (100, a, a, a);//Noncompliant
}

In this example, the function addArray() is defined with three restrict qualified parameters lhs,
rhs, and res. The parameters lhs and rhs are const restrict pointers. The function
addArray() is then invoked by using the same pointer a as all three parameters. As a result, the
const restrict qualified pointers lhs and rhs might attempt to access the memory associated
with the non-const restrict qualified pointer res. This overlapping access between lhs and res
as well as that between rhs and res are undefined behaviors. Polyspace raises two violations on the
function call.
Example — Invoking Library Functions by Using restrict-Qualified Pointers

#include <string.h>

void func(void) {
 char c_str[]= "test string";
 char *ptr1 = c_str;
 char *ptr2;

 ptr2 = ptr1 + 3;
 /* Undefined behavior because of overlapping objects */
 memcpy(ptr2, ptr1, 6);//Noncompliant
 /* ... */
}

In this example, the function memcpy has two restrict-qualified pointers as input parameters This
function copies six bytes from the location pointed to by ptr1 into the location pointed to by ptr2.

23 CERT C Rules and Recommendations

23-74

Because the distance between ptr1 and ptr2 is three bytes, the memcpy function call results in two
restrict-qualified pointers attempting to modify overlapping memory. This overlapping access
results in undefined behavior. Polyspace flags the call to memcpy.

Example — Assignments Between Restricted Pointers

void func(void) {
 int *restrict p1;
 int *restrict p2 = p1; /* Undefined behavior */ //Noncompliant
 }

In this example, the restrict-qualified pointer p1 is assigned to another restrict-qualified
pointer in the same scope. Such assignments result in undefined behavior, which Polyspace flags. To
resolve the issue, declare p2 in a separate nested scope. For example:

void func(void) {
 int *restrict p1;
 {
 int *restrict p2 = p1;//Compliant
 }
 }

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP43-C

Introduced in R2019a

 CERT C: Rule EXP43-C

23-75

https://wiki.sei.cmu.edu/confluence/display/c/EXP43-C.+Avoid+undefined+behavior+when+using+restrict-qualified+pointers

CERT C: Rule EXP44-C
Do not rely on side effects in operands to sizeof, _Alignof, or _Generic

Description
Rule Definition

Do not rely on side effects in operands to sizeof, _Alignof, or _Generic.

Polyspace Implementation

This checker checks for Side effect of expression ignored.

Examples
Side effect of expression ignored
Issue

Side effect of expression ignored occurs when the sizeof, _Alignof, or _Generic operator
operates on an expression with a side effect. When evaluated, an expression with side effect modifies
at least one of the variables in the expression.

For instance, the defect checker does not flag sizeof(n+1) because n+1 does not modify n. The
checker flags sizeof(n++) because n++ is intended to modify n.

The check also applies to the C++ operator alignof and its C extensions, __alignof__ and
__typeof__.

Risk

The expression in a _Alignof or _Generic operator is not evaluated. The expression in a sizeof
operator is evaluated only if it is required for calculating the size of a variable-length array, for
instance, sizeof(a[n++]).

When an expression with a side effect is not evaluated, the variable modification from the side effect
does not happen. If you rely on the modification, you can see unexpected results.

Fix

Evaluate the expression with a side effect in a separate statement, and then use the result in a
sizeof, _Alignof, or _Generic operator.

For instance, instead of:

a = sizeof(n++);

perform the operation in two steps:

n++;
a = sizeof(n);

23 CERT C Rules and Recommendations

23-76

The checker considers a function call as an expression with a side effect. Even if the function does not
have side effects now, it might have side effects on later additions. The code is more maintainable if
you call the function outside the sizeof operator.

Example - Increment Operator in sizeof

#include <stdio.h>

void func(void) {
 unsigned int a = 1U;
 unsigned int b = (unsigned int)sizeof(++a);
 printf ("%u, %u\n", a, b);
}

In this example, sizeof operates on ++a, which is intended to modify a. Because the expression is
not evaluated, the modification does not happen. The printf statement shows that a still has the
value 1.

Correction — Perform Increment Outside sizeof

One possible correction is to perform the increment first, and then provide the result to the sizeof
operator.

#include <stdio.h>

void func(void) {
 unsigned int a = 1U;
 ++a;
 unsigned int b = (unsigned int)sizeof (a);
 printf ("%u, %u\n", a, b);
}

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP44-C

Introduced in R2019a

 CERT C: Rule EXP44-C

23-77

https://wiki.sei.cmu.edu/confluence/display/c/EXP44-C.+Do+not+rely+on+side+effects+in+operands+to+sizeof%2C+_Alignof%2C+or+_Generic

CERT C: Rule EXP45-C
Do not perform assignments in selection statements

Description
Rule Definition

Do not perform assignments in selection statements.

Polyspace Implementation

This checker checks for Invalid use of = (assignment) operator.

Examples
Invalid use of = (assignment) operator
Issue

Invalid use of = operator occurs when an assignment is made inside the predicate of a conditional,
such as if or while.

In C and C++, a single equal sign is an assignment not a comparison. Using a single equal sign in a
conditional statement can indicate a typo or a mistake.

Risk

• Conditional statement tests the wrong values— The single equal sign operation assigns the value
of the right operand to the left operand. Then, because this assignment is inside the predicate of a
conditional, the program checks whether the new value of the left operand is nonzero or not
NULL.

• Maintenance and readability issues — Even if the assignment is intended, someone reading or
updating the code can misinterpret the assignment as an equality comparison instead of an
assignment.

Fix

• If the assignment is a bug, to check for equality, add a second equal sign (==).
• If the assignment inside the conditional statement was intentional, to improve readability,

separate the assignment and the test. Move the assignment outside the control statement. In the
control statement, simply test the result of the assignment.

If you do not want to fix the issue, add comments to your result or code to avoid another review.
See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results
in a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

23 CERT C Rules and Recommendations

23-78

Example - Single Equal Sign Inside an if Condition

#include <stdio.h>

void bad_equals_ex(int alpha, int beta)
{
 if(alpha = beta)
 {
 printf("Equal\n");
 }
}

The equal sign is flagged as a defect because the assignment operator is used within the predicate of
the if-statement. The predicate assigns the value beta to alpha, then implicitly tests whether alpha
is true or false.
Correction — Change Expression to Comparison

One possible correction is adding an additional equal sign. This correction changes the assignment to
a comparison. The if condition compares whether alpha and beta are equal.

#include <stdio.h>

void equality_test(int alpha, int beta)
{
 if(alpha == beta)
 {
 printf("Equal\n");
 }
}

Correction — Assignment and Comparison Inside the if Condition

If an assignment must be made inside the predicate, a possible correction is adding an explicit
comparison. This correction assigns the value of beta to alpha, then explicitly checks whether
alpha is nonzero. The code is clearer.

#include <stdio.h>

int assignment_not_zero(int alpha, int beta)
{
 if((alpha = beta) != 0)
 {
 return alpha;
 }
 else
 {
 return 0;
 }
}

Correction — Move Assignment Outside the if Statement

If the assignment can be made outside the control statement, one possible correction is to separate
the assignment and comparison. This correction assigns the value of beta to alpha before the if.
Inside the if-condition, only alpha is given to test if alpha is nonzero or not NULL.

#include <stdio.h>

 CERT C: Rule EXP45-C

23-79

void assign_and_print(int alpha, int beta)
{
 alpha = beta;
 if(alpha)
 {
 printf("%d", alpha);
 }
}

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP45-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-80

https://wiki.sei.cmu.edu/confluence/display/c/EXP45-C.+Do+not+perform+assignments+in+selection+statements

CERT C: Rule EXP46-C
Do not use a bitwise operator with a Boolean-like operand

Description
Rule Definition

Do not use a bitwise operator with a Boolean-like operand.

Polyspace Implementation

This checker checks for Use of bitwise operator with a Boolean-like operand.

Examples
Use of bitwise operator with a Boolean-like operand
Issue

Use of bitwise operator with a Boolean-like operand occurs when you use bitwise operators,
such as:

• Bitwise AND (&, &=)
• Bitwise OR (|, |=)
• Bitwise XOR (^, ^=)
• Bitwise NOT(~)

with:

• Boolean type variables
• Outputs of relational or equality expressions

Using Boolean type variables as array indices, in Boolean arithmetic expression, and in shifting
operations does not raise this defect.
Risk

Boolean-like operands, such as variables of type bool and outputs of relational operators typically
appear in logical expressions. Using a bitwise operator in an expression containing Boolean variables
and relational operators might be a sign of logic error. Because bitwise operators and logical
operators look similar, you might inadvertently use a bitwise operator instead of a logical operator.
Such logic errors do not raise any compilation error and can introduce bugs in your code that are
difficult to find.
Fix

Use logical operators in expressions that contain Boolean variables and relational operator. To
indicate that you intend to use a bitwise operator in such an expression, use parentheses.
Example — Possible Bug Due to Using Bitwise Operator

int getuid();
int geteuid();

 CERT C: Rule EXP46-C

23-81

void Noncompliant ()
{
 if (getuid () & geteuid () == 0) {//Noncompliant
 /* ... */
 }else{
 /*...*/
 }
}

In this example, the if-else block is executed conditionally. The conditional statement uses the
bitwise AND (&) instead of the logical AND (&&), perhaps by mistake. Consider when the function
geteuid() evaluates to 0, and getuid() evaluates to 2. In this case, the else block of code
executes if you use & because 2&1 evaluates to false. Conversely, the if block of code executes
when you use && because 2&&1 evaluates to true. Using & instead of && might introduce logic errors
and bugs in your code that are difficult to find. Polyspace flags the use of bitwise operators in these
kinds of expressions where relational operators are also used.

Correction — Use Logical Operators with Boolean-Like Operands

One possible correction is to use logical operators in expressions that contain relational operators
and Boolean variables.

int getuid();
int geteuid();
void Compliant ()
{
 if (getuid () && geteuid () == 0) {
 /* ... */
 }else{
 /*...*/
 }
}

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP46-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-82

https://wiki.sei.cmu.edu/confluence/display/c/EXP46-C.+Do+not+use+a+bitwise+operator+with+a+Boolean-like+operand

CERT C: Rule EXP47-C
Do not call va_arg with an argument of the incorrect type

Description
Rule Definition

Do not call va_arg with an argument of the incorrect type.

Polyspace Implementation

This checker checks for these issues:

• Incorrect data type passed to va_arg.
• Too many va_arg calls for current argument list.

Examples
Incorrect data type passed to va_arg
Issue

Incorrect data type passed to va_arg when the data type in a va_arg call does not match the data
type of the variadic function argument that va_arg reads.

For instance, you pass an unsigned char argument to a variadic function func. Because of default
argument promotion, the argument is promoted to int. When you use a va_arg call that reads an
unsigned char argument, a type mismatch occurs.

void func (int n, ...) {
 //...
 va_list args;
 va_arg(args, unsigned char);
 //...
}

void main(void) {
 unsigned char c;
 func(1,c);
}

Risk

In a variadic function (function with variable number of arguments), you use va_arg to read each
argument from the variable argument list (va_list). The va_arg use does not guarantee that there
actually exists an argument to read or that the argument data type matches the data type in the
va_arg call. You have to make sure that both conditions are true.

Reading an incorrect type with a va_arg call can result in undefined behavior. Because function
arguments reside on the stack, you might access an unwanted area of the stack.

 CERT C: Rule EXP47-C

23-83

Fix

Make sure that the data type of the argument passed to the variadic function matches the data type
in the va_arg call.

Arguments of a variadic function undergo default argument promotions. The argument data types of
a variadic function cannot be determined from a prototype. The arguments of such functions undergo
default argument promotions (see Sec. 6.5.2.2 and 7.15.1.1 in the C99 Standard). Integer arguments
undergo integer promotion and arguments of type float are promoted to double. For integer
arguments, if a data type can be represented by an int, for instance, char or short, it is promoted
to an int. Otherwise, it is promoted to an unsigned int. All other arguments do not undergo
promotion.

To avoid undefined and implementation-defined behavior, minimize the use of variadic functions. Use
the checkers for MISRA C:2012 Rule 17.1 or MISRA C++:2008 Rule 8-4-1 to detect use of
variadic functions.
Example - char Used as Function Argument Type and va_arg argument

#include <stdarg.h>
#include <stdio.h>

unsigned char func(size_t count, ...) {
 va_list ap;
 unsigned char result = 0;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, unsigned char);
 }
 va_end(ap);
 return result;
}

void func_caller(void) {
 unsigned char c = 0x12;
 (void)func(1, c);
}

In this example, func takes an unsigned char argument, which undergoes default argument
promotion to int. The data type in the va_arg call is still unsigned char, which does not match
the int argument type.
Correction — Use int as va_arg Argument

One possible correction is to read an int argument with va_arg.

#include <stdarg.h>
#include <stdio.h>

unsigned char func(size_t count, ...) {
 va_list ap;
 unsigned char result = 0;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 }
 va_end(ap);
 return result;

23 CERT C Rules and Recommendations

23-84

}

void func_caller(void) {
 unsigned char c = 0x12;
 (void)func(1, c);
}

Too many va_arg calls for current argument list
Issue

Too many va_arg calls for current argument list occurs when the number of calls to va_arg
exceeds the number of arguments passed to the corresponding variadic function. The analysis raises
a defect only when the variadic function is called.

Too many va_arg calls for current argument list does not raise a defect when:

• The number of calls to va_arg inside the variadic function is indeterminate. For example, if the
calls are from an external source.

• The va_list used in va_arg is invalid.

Risk

When you call va_arg and there is no next argument available in va_list, the behavior is
undefined. The call to va_arg might corrupt data or return an unexpected result.

Fix

Ensure that you pass the correct number of arguments to the variadic function.

Example - No Argument Available When Calling va_arg

#include <stdarg.h>
#include <stddef.h>
#include <math.h>

/* variadic function defined with
* one named argument 'count'
*/
int variadic_func(int count, ...) {
 int result = -1;
 va_list ap;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 count --;
 if (count > 0) {
/* No further argument available
* in va_list when calling va_arg
*/

 result += va_arg(ap, int);
 }
 }
 va_end(ap);
 return result;
}

 CERT C: Rule EXP47-C

23-85

void func(void) {

 (void)variadic_func(2, 100);

}

In this example, the named argument and only one variadic argument are passed to
variadic_func() when it is called inside func(). On the second call to va_arg, no further
variadic argument is available in ap and the behavior is undefined.
Correction — Pass Correct Number of Arguments to Variadic Function

One possible correction is to ensure that you pass the correct number of arguments to the variadic
function.

#include <stdarg.h>
#include <stddef.h>
#include <math.h>

/* variadic function defined with
* one named argument 'count'
*/

int variadic_func(int count, ...) {
 int result = -1;
 va_list ap;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 count --;
 if (count > 0) {

/* The correct number of arguments is
* passed to va_list when variadic_func()
* is called inside func()
*/
 result += va_arg(ap, int);
 }
 }
 va_end(ap);
 return result;
}

void func(void) {

 (void)variadic_func(2, 100, 200);

}

Check Information
Group: Rule 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

23 CERT C Rules and Recommendations

23-86

External Websites
EXP47-C

Introduced in R2019a

 CERT C: Rule EXP47-C

23-87

https://wiki.sei.cmu.edu/confluence/display/c/EXP47-C.+Do+not+call+va_arg+with+an+argument+of+the+incorrect+type

CERT C: Rule INT30-C
Ensure that unsigned integer operations do not wrap

Description
Rule Definition

Ensure that unsigned integer operations do not wrap.

Polyspace Implementation

This checker checks for these issues:

• Unsigned integer overflow.
• Unsigned integer constant overflow.

Examples
Unsigned integer overflow
Issue

Unsigned integer overflow occurs when an operation on unsigned integer variables can result in
values that cannot be represented by the result data type. The data type of a variable determines the
number of bytes allocated for the variable storage and constrains the range of allowed values.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).
Risk

The C11 standard states that unsigned integer overflows result in wrap-around behavior. However, a
wrap around behavior might not always be desirable. For instance, if the result of a computation is
used as an array size and the computation overflows, the array size is much smaller than expected.
Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

You can fix the defect by:

• Using a bigger data type for the result of the operation so that all values can be accommodated.
• Checking for values that lead to the overflow and performing appropriate error handling. In the

error handling code, you can override the default wrap-around behavior for overflows and
implement saturation behavior, for instance.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

23 CERT C Rules and Recommendations

23-88

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Add One to Maximum Unsigned Integer

#include <limits.h>

unsigned int plusplus(void) {

 unsigned uvar = UINT_MAX;
 uvar++;
 return uvar;
}

In the third statement of this function, the variable uvar is increased by 1. However, the value of
uvar is the maximum unsigned integer value, so 1 plus the maximum integer value cannot be
represented by an unsigned int. The C programming language standard does not view unsigned
overflow as an error because the program automatically reduces the result by modulo the maximum
value plus 1. In this example, uvar is reduced by modulo UINT_MAX. The result is uvar = 1.

Correction — Different Storage Type

One possible correction is to store the operation result in a larger data type. In this example, by
returning an unsigned long long instead of an unsigned int, the overflow error is fixed.

#include <limits.h>

unsigned long long plusplus(void) {

 unsigned long long ullvar = UINT_MAX;
 ullvar++;
 return ullvar;
}

Unsigned integer constant overflow
Issue

Unsigned integer constant overflow occurs when you assign a compile-time constant to a
unsigned integer variable whose data type cannot accommodate the value. An n-bit unsigned integer
holds values in the range [0, 2n-1].

For instance, c is an 8-bit unsigned char variable that cannot hold the value 256.

unsigned char c = 256;

To determine the sizes of fundamental types, Bug Finder uses your specification for Target
processor type (-target).

Risk

The C standard states that overflowing unsigned integers must be wrapped around (see, for instance,
the C11 standard, section 6.2.5). However, the wrap-around behavior can be unintended and cause
unexpected results.

 CERT C: Rule INT30-C

23-89

Fix

Check if the constant value is what you intended. If the value is correct, use a wider data type for the
variable.

Example - Overflowing Constant from Macro Expansion

#define MAX_UNSIGNED_CHAR 255
#define MAX_UNSIGNED_SHORT 65535

void main() {
 unsigned char c1 = MAX_UNSIGNED_CHAR + 1;
 unsigned short c2 = MAX_UNSIGNED_SHORT + 1;
}

In this example, the defect appears on the macros because at least one use of the macro causes an
overflow.

Correction — Use Wider Data Type

One possible correction is to use a wider data type for the variables that overflow.

#define MAX_UNSIGNED_CHAR 255
#define MAX_UNSIGNED_SHORT 65535

void main() {
 unsigned short c1 = MAX_UNSIGNED_CHAR + 1;
 unsigned int c2 = MAX_UNSIGNED_SHORT + 1;
}

Check Information
Group: Rule 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT30-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-90

https://wiki.sei.cmu.edu/confluence/display/c/INT30-C.+Ensure+that+unsigned+integer+operations+do+not+wrap

CERT C: Rule INT31-C
Ensure that integer conversions do not result in lost or misinterpreted data

Description
Rule Definition

Ensure that integer conversions do not result in lost or misinterpreted data.

Polyspace Implementation

This checker checks for these issues:

• Integer conversion overflow.
• Call to memset with unintended value.
• Sign change integer conversion overflow.
• Tainted sign change conversion.
• Unsigned integer conversion overflow.

Examples
Integer conversion overflow
Issue

Integer conversion overflow occurs when converting an integer to a smaller integer type. If the
variable does not have enough bytes to represent the original value, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).

Risk

Integer conversion overflows result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. Use this event list to determine how the variables in the overflowing
computation acquire their current values. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click options in the
source code and see previous related events. See also “Interpret Bug Finder Results in Polyspace
Desktop User Interface”.

You can fix the defect by:

• Using a bigger data type for the result of the conversion so that all values can be accommodated.
• Checking for values that lead to the overflow and performing appropriate error handling.

In general, avoid conversions to smaller integer types.

 CERT C: Rule INT31-C

23-91

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Converting from int to char

char convert(void) {

 int num = 1000000;

 return (char)num;
}

In the return statement, the integer variable num is converted to a char. However, an 8-bit or 16-bit
character cannot represent 1000000 because it requires at least 20 bits. So the conversion operation
overflows.

Correction — Change Conversion Type

One possible correction is to convert to a different integer type that can represent the entire number.

long convert(void) {

 int num = 1000000;

 return (long)num;
}

Call to memset with unintended value

Issue

Call to memset with unintended value occurs when Polyspace Bug Finder detects a use of the
memset or wmemset function with possibly incorrect arguments.

void *memset (void *ptr, int value, size_t num) fills the first num bytes of the memory
block that ptr points to with the specified value. If the argument value is incorrect, the memory
block is initialized with an unintended value.

The unintended initialization can occur in the following cases.

Issue Risk Possible Fix
The second argument is '0'
instead of 0 or '\0'.

The ASCII value of character
'0' is 48 (decimal), 0x30
(hexadecimal), 069 (octal) but
not 0 (or '\0') .

If you want to initialize with
'0', use one of the ASCII
values. Otherwise, use 0 or
'\0'.

23 CERT C Rules and Recommendations

23-92

Issue Risk Possible Fix
The second and third arguments
are probably reversed. For
instance, the third argument is
a literal and the second
argument is not a literal.

If the order is reversed, a
memory block of unintended
size is initialized with incorrect
arguments.

Reverse the order of the
arguments.

The second argument cannot be
represented in a byte.

If the second argument cannot
be represented in a byte, and
you expect each byte of a
memory block to be filled with
that argument, the initialization
does not occur as intended.

Apply a bit mask to the
argument to produce a wrapped
or truncated result that can be
represented in a byte. When you
apply a bit mask, make sure that
it produces an expected result.

For instance, replace
memset(a, -13,
sizeof(a)) with memset(a,
(-13) & 0xFF, sizeof(a)).

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Value Cannot Be Represented in a Byte

#include <string.h>

#define SIZE 32
void func(void) {
 char buf[SIZE];
 int c = -2;
 memset(buf, (char)c, sizeof(buf));
}

In this example, (char)c cannot be represented in a byte.

Correction — Apply Cast

One possible correction is to apply a cast so that the result can be represented in a byte. However,
check that the result of the cast is an acceptable initialization value. Polyspace still flags the call to
memset because the casting the signed integer c to an unsigned character overflows.

 CERT C: Rule INT31-C

23-93

#include <string.h>

#define SIZE 32
void func(void) {
 char buf[SIZE];
 int c = -2;
 memset(buf, (unsigned char)c, sizeof(buf));
}

Correction — Avoid Using memset

One possible correction is to reserve the use of memset only for setting or clearing all bits in a buffer.
For instance, in this code, memset is called to clear the bits of the character array buf.

#include <string.h>

#define SIZE 32
void func(void) {
 char buf[SIZE];
 int c = -2;
 memset(buf, 0, sizeof(buf));//Compliant
 /* After clearing buf, use it in operations*/
}

Sign change integer conversion overflow
Issue

Sign change integer conversion overflow occurs when converting an unsigned integer to a signed
integer. If the variable does not have enough bytes to represent both the original constant and the
sign bit, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Convert from unsigned char to char

char sign_change(void) {
 unsigned char count = 255;

23 CERT C Rules and Recommendations

23-94

 return (char)count;
}

In the return statement, the unsigned character variable count is converted to a signed character.
However, char has 8 bits, 1 for the sign of the constant and 7 to represent the number. The
conversion operation overflows because 255 uses 8 bits.
Correction — Change conversion types

One possible correction is using a larger integer type. By using an int, there are enough bits to
represent the sign and the number value.

int sign_change(void) {
 unsigned char count = 255;

 return (int)count;
}

Tainted sign change conversion
Issue

Tainted sign change conversion looks for values from unsecure sources that are converted,
implicitly or explicitly, from signed to unsigned values.

For example, functions that use size_t as arguments implicitly convert the argument to an unsigned
integer. Some functions that implicitly convert size_t are:

bcmp
memcpy
memmove
strncmp
strncpy
calloc
malloc
memalign

Risk

If you convert a small negative number to unsigned, the result is a large positive number. The large
positive number can create security vulnerabilities. For example, if you use the unsigned value in:

• Memory size routines — causes allocating memory issues.
• String manipulation routines — causes buffer overflow.
• Loop boundaries — causes infinite loops.

Fix

To avoid converting unsigned negative values, check that the value being converted is within an
acceptable range. For example, if the value represents a size, validate that the value is not negative
and less than the maximum value size.
Example - Set Memory Value with Size Argument

#include <stdlib.h>
#include <string.h>

enum {

 CERT C: Rule INT31-C

23-95

 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void bug_taintedsignchange(int size) {
 char str[SIZE128] = "";
 if (size<SIZE128) {
 memset(str, 'c', size);
 }
}

In this example, a char buffer is created and filled using memset. The size argument to memset is an
input argument to the function.

The call to memset implicitly converts size to unsigned integer. If size is a large negative number,
the absolute value could be too large to represent as an integer, causing a buffer overflow.

Correction — Check Value of size

One possible correction is to check if size is inside the valid range. This correction checks if size is
greater than zero and less than the buffer size before calling memset.

#include <stdlib.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void corrected_taintedsignchange(int size) {
 char str[SIZE128] = "";
 if (size>0 && size<SIZE128) {
 memset(str, 'c', size);
 }
}

Unsigned integer conversion overflow
Issue

Unsigned integer conversion overflow occurs when converting an unsigned integer to a smaller
unsigned integer type. If the variable does not have enough bytes to represent the original constant,
the conversion overflows.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).

Risk

Integer conversion overflows result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do

23 CERT C Rules and Recommendations

23-96

not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

You can fix the defect by:

• Using a bigger data type for the result of the conversion so that all values can be accommodated.
• Checking for values that lead to the overflow and performing appropriate error handling.

In general, avoid conversions to smaller integer types.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Converting from int to char

unsigned char convert(void) {
 unsigned int unum = 1000000U;

 return (unsigned char)unum;
}

In the return statement, the unsigned integer variable unum is converted to an unsigned character
type. However, the conversion overflows because 1000000 requires at least 20 bits. The C
programming language standard does not view unsigned overflow as an error because the program
automatically reduces the result by modulo the maximum value plus 1. In this example, unum is
reduced by modulo 2^8 because a character data type can only represent 2^8-1.

Correction — Change Conversion Type

One possible correction is to convert to a different integer type that can represent the entire number.
For example, long.

unsigned long convert(void) {
 unsigned int unum = 1000000U;

 return (unsigned long)unum;
}

Check Information
Group: Rule 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

 CERT C: Rule INT31-C

23-97

External Websites
INT31-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-98

https://wiki.sei.cmu.edu/confluence/display/c/INT31-C.+Ensure+that+integer+conversions+do+not+result+in+lost+or+misinterpreted+data

CERT C: Rule INT32-C
Ensure that operations on signed integers do not result in overflow

Description
Rule Definition

Ensure that operations on signed integers do not result in overflow.

Polyspace Implementation

This checker checks for these issues:

• Integer overflow.
• Tainted division operand.
• Tainted modulo operand.

Examples
Integer overflow
Issue

Integer overflow occurs when an operation on integer variables can result in values that cannot be
represented by the result data type. The data type of a variable determines the number of bytes
allocated for the variable storage and constrains the range of allowed values.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target). W

Risk

Integer overflows on signed integers result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. Use this event list to determine how the variables in the overflowing
computation acquire their current values. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click options in the
source code and see previous related events. See also “Interpret Bug Finder Results in Polyspace
Desktop User Interface”.

You can fix the defect by:

• Using a bigger data type for the result of the operation so that all values can be accommodated.
• Checking for values that lead to the overflow and performing appropriate error handling.

To avoid overflows in general, try one of these techniques:

• Keep integer variable values restricted to within half the range of signed integers.

 CERT C: Rule INT32-C

23-99

• In operations that might overflow, check for conditions that can lead to the overflow and
implement wrap around or saturation behavior depending on how the result of the operation is
used. The result then becomes predictable and can be safely used in subsequent computations.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Addition of Maximum Integer

#include <limits.h>

int plusplus(void) {

 int var = INT_MAX;
 var++;
 return var;
}

In the third statement of this function, the variable var is increased by one. But the value of var is
the maximum integer value, so an int cannot represent one plus the maximum integer value.

Correction — Different Storage Type

One possible correction is to change data types. Store the result of the operation in a larger data type
(Note that on a 32-bit machine, int and long has the same size). In this example, on a 32-bit
machine, by returning a long long instead of an int, the overflow error is fixed.

#include <limits.h>

long long plusplus(void) {

 long long lvar = INT_MAX;
 lvar++;
 return lvar;
}

Tainted division operand
Issue

Tainted division operand detects division operations where one or both of the integer operands is
from an unsecure source.

Risk

• If the numerator is the minimum possible value and the denominator is -1, your division operation
overflows because the result cannot be represented by the current variable size.

• If the denominator is zero, your division operation fails possibly causing your program to crash.

23 CERT C Rules and Recommendations

23-100

These risks can be used to execute arbitrary code. This code is usually outside the scope of a
program's implicit security policy.

Fix

Before performing the division, validate the values of the operands. Check for denominators of 0 or
-1, and numerators of the minimum integer value.

Example - Division of Function Arguments

#include <limits.h>
#include <stdio.h>

extern void print_int(int);

int taintedintdivision(void) {
 long num, denum;
 scanf("%lf %lf", &num, &denum);
 int r = num/denum;
 print_int(r);
 return r;
}

This example function divides two argument variables, then prints and returns the result. The
argument values are unknown and can cause division by zero or integer overflow.

Correction — Check Values

One possible correction is to check the values of the numerator and denominator before performing
the division.

#include <limits.h>
#include <stdio.h>

extern void print_long(long);

int taintedintdivision(void) {
 long num, denum;
 scanf("%lf %lf", &num, &denum);
 long res= 0;
 if (denum!=0 && !(num==INT_MIN && denum==-1)) {
 res = num/denum;
 }
 print_long(res);
 return res;
}

Tainted modulo operand
Issue

Tainted modulo operand checks the operands of remainder % operations. Bug Finder flags modulo
operations with one or more tainted operands.

Risk

• If the second remainder operand is zero, your remainder operation fails, causing your program to
crash.

 CERT C: Rule INT32-C

23-101

• If the second remainder operand is -1, your remainder operation can overflow if the remainder
operation is implemented based on the division operation that can overflow.

• If one of the operands is negative, the operation result is uncertain. For C89, the modulo operation
is not standardized, so the result from negative operands is implementation-defined.

These risks can be exploited by attackers to gain access to your program or the target in general.

Fix

Before performing the modulo operation, validate the values of the operands. Check the second
operand for values of 0 and -1. Check both operands for negative values.

Example - Modulo with Unsecure Input

#include<stdio.h>
extern void print_int(int);

int taintedintmod(void) {
 int userden;
 scanf("%d",&userden);
 int rem = 128%userden;
 print_int(rem);
 return rem;
}

In this example, the function performs a modulo operation by using a user input. The user input is not
checked before calculating the remainder for values that can crash the program, such as 0 and -1.

Correction — Check Operand Values

One possible correction is to check the values of the operands before performing the modulo
operation. In this corrected example, the modulo operation continues only if the second operand is
greater than zero.

#include<stdio.h>
extern void print_int(int);

int taintedintmod(void) {
 int userden;
 scanf("%d",&userden);
 int rem = 0;
 if (userden > 0) {
 rem = 128 % userden;
 }
 print_int(rem);
 return rem;
}

Check Information
Group: Rule 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

23 CERT C Rules and Recommendations

23-102

External Websites
INT32-C

Introduced in R2019a

 CERT C: Rule INT32-C

23-103

https://wiki.sei.cmu.edu/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow

CERT C: Rule INT33-C
Ensure that division and remainder operations do not result in divide-by-zero errors

Description
Rule Definition

Ensure that division and remainder operations do not result in divide-by-zero errors.

Polyspace Implementation

This checker checks for these issues:

• Integer division by zero.
• Tainted division operand.
• Tainted modulo operand.

Examples
Integer division by zero
Issue

Integer division by zero occurs when the denominator of a division or modulo operation can be a
zero-valued integer.
Risk

A division by zero can result in a program crash.
Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. Use this event list to determine how the denominator variable acquires a zero
value. You can implement the fix on any event in the sequence. If the result details do not show the
event history, you can trace back using right-click options in the source code and see previous related
events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

It is a good practice to check for zero values of a denominator before division and handle the error.
Instead of performing the division directly:

res = num/den;

use a library function that handles zero values of the denominator before performing the division:

res = div(num, den);

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

23 CERT C Rules and Recommendations

23-104

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Dividing an Integer by Zero

int fraction(int num)
{
 int denom = 0;
 int result = 0;

 result = num/denom;

 return result;
}

A division by zero error occurs at num/denom because denom is zero.

Correction — Check Before Division

int fraction(int num)
{
 int denom = 0;
 int result = 0;

 if (denom != 0)
 result = num/denom;

 return result;
}

Before dividing, add a test to see if the denominator is zero, checking before division occurs. If denom
is always zero, this correction can produce a dead code defect in your Polyspace results.

Correction — Change Denominator

One possible correction is to change the denominator value so that denom is not zero.

int fraction(int num)
{
 int denom = 2;
 int result = 0;

 result = num/denom;

 return result;
}

Example - Modulo Operation with Zero

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 arr[i] = input % i;
 }

 CERT C: Rule INT33-C

23-105

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

In this example, Polyspace flags the modulo operation as a division by zero. Because modulo is
inherently a division operation, the divisor (right hand argument) cannot be zero. The modulo
operation uses the for loop index as the divisor. However, the for loop starts at zero, which cannot
be an iterator.

Correction — Check Divisor Before Operation

One possible correction is checking the divisor before the modulo operation. In this example, see if
the index i is zero before the modulo operation.

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 if(i != 0)
 {
 arr[i] = input % i;
 }
 else
 {
 arr[i] = input;
 }
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

Correction — Change Divisor

Another possible correction is changing the divisor to a nonzero integer. In this example, add one to
the index before the % operation to avoid dividing by zero.

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 arr[i] = input % (i+1);
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

Tainted division operand
Issue

Tainted division operand detects division operations where one or both of the integer operands is
from an unsecure source.

Risk

• If the numerator is the minimum possible value and the denominator is -1, your division operation
overflows because the result cannot be represented by the current variable size.

23 CERT C Rules and Recommendations

23-106

• If the denominator is zero, your division operation fails possibly causing your program to crash.

These risks can be used to execute arbitrary code. This code is usually outside the scope of a
program's implicit security policy.
Fix

Before performing the division, validate the values of the operands. Check for denominators of 0 or
-1, and numerators of the minimum integer value.
Example - Division of Function Arguments

#include<stdio.h>
extern void print_int(int);

int taintedintdivision(void) {
 int num, den;
 scanf("%lf %lf",&num, &den);
 int r = num/den;
 print_int(r);
 return r;
}

This example function divides two argument variables, then prints and returns the result. The
argument values are unknown and can cause division by zero or integer overflow.
Correction — Check Values

One possible correction is to check the values of the numerator and denominator before performing
the division.

#include<stdio.h>
#include <limits.h>
extern void print_int(int);

int taintedintdivision(void) {
 int num, den;
 scanf("%lf %lf",&num, &den);
 int r = 0;
 if (den!=0 && !(num=INT_MIN && den==-1)){
 r = num/den;
 }
 print_int(r);
 return r;
}

Tainted modulo operand
Issue

Tainted modulo operand checks the operands of remainder % operations. Bug Finder flags modulo
operations with one or more tainted operands.
Risk

• If the second remainder operand is zero, your remainder operation fails, causing your program to
crash.

• If the second remainder operand is -1, your remainder operation can overflow if the remainder
operation is implemented based on the division operation that can overflow.

 CERT C: Rule INT33-C

23-107

• If one of the operands is negative, the operation result is uncertain. For C89, the modulo operation
is not standardized, so the result from negative operands is implementation-defined.

These risks can be exploited by attackers to gain access to your program or the target in general.
Fix

Before performing the modulo operation, validate the values of the operands. Check the second
operand for values of 0 and -1. Check both operands for negative values.
Example - Modulo with UInsecure Input

#include<stdio.h>
extern void print_int(int);

int taintedintmod(void) {
 int userden;
 scanf("%d",&userden);
 int rem = 128%userden;
 print_int(rem);
 return rem;
}

In this example, the function performs a modulo operation by using a user input. The input is not
checked before calculating the remainder for values that can crash the program, such as 0 and -1.
Correction — Check Operand Values

One possible correction is to check the values of the operands before performing the modulo
operation. In this corrected example, the modulo operation continues only if the second operand is
greater than zero.

#include<stdio.h>
extern void print_int(int);

int taintedintmod(void) {
 int userden;
 scanf("%d",&userden);
 int rem = 0;
 if (userden > 0) {
 rem = 128 % userden;
 }
 print_int(rem);
 return rem;
}

Check Information
Group: Rule 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT33-C

23 CERT C Rules and Recommendations

23-108

https://wiki.sei.cmu.edu/confluence/display/c/INT33-C.+Ensure+that+division+and+remainder+operations+do+not+result+in+divide-by-zero+errors

Introduced in R2019a

 CERT C: Rule INT33-C

23-109

CERT C: Rule INT34-C
Do not shift an expression by a negative number of bits or by greater than or equal to the number of
bits that exist in the operand

Description
Rule Definition

Do not shift an expression by a negative number of bits or by greater than or equal to the number of
bits that exist in the operand.

Polyspace Implementation

This checker checks for these issues:

• Shift of a negative value.
• Shift operation overflow.

Examples
Shift of a negative value
Issue

Shift of a negative value occurs when a bit-wise shift is used on a variable that can have negative
values.

Risk

Shifts on negative values overwrite the sign bit that identifies a number as negative. The shift
operation can result in unexpected values.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. Use this event list to determine how the variable being shifted acquires
negative values. You can implement the fix on any event in the sequence. If the result details do not
show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

To fix the defect, check for negative values before the bit-wise shift operation and perform
appropriate error handling.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

23 CERT C Rules and Recommendations

23-110

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Shifting a negative variable

int shifting(int val)
{
 int res = -1;
 return res << val;
}

In the return statement, the variable res is shifted a certain number of bits to the left. However,
because res is negative, the shift might overwrite the sign bit.

Correction — Change the Data Type

One possible correction is to change the data type of the shifted variable to unsigned. This correction
eliminates the sign bit, so left shifting does not change the sign of the variable.

int shifting(int val)
{
 unsigned int res = -1;
 return res << val;
}

Shift operation overflow
Issue

Shift operation overflow occurs when a shift operation can result in values that cannot be
represented by the result data type. The data type of a variable determines the number of bytes
allocated for the variable storage and constrains the range of allowed values.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).

Risk

Shift operation overflows can result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. Use this event list to determine how the variables in the shift operation acquire
their current values. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

You can fix the defect by:

• Using a bigger data type for the result of the shift operation so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error handling.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

 CERT C: Rule INT34-C

23-111

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Left Shift of Integer

int left_shift(void) {

 int foo = 33;
 return 1 << foo;
}

In the return statement of this function, bit-wise shift operation is performed shifting 1 foo bits to
the left. However, an int has only 32 bits, so the range of the shift must be between 0 and 31.
Therefore, this shift operation causes an overflow.

Correction — Different storage type

One possible correction is to store the shift operation result in a larger data type. In this example, by
returning a long long instead of an int, the overflow defect is fixed.

long long left_shift(void) {

 int foo = 33;
 return 1LL << foo;
}

Check Information
Group: Rule 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT34-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-112

https://wiki.sei.cmu.edu/confluence/display/c/INT34-C.+Do+not+shift+an+expression+by+a+negative+number+of+bits+or+by+greater+than+or+equal+to+the+number+of+bits+that+exist+in+the+operand

CERT C: Rule INT35-C
Use correct integer precisions

Description
Rule Definition

Use correct integer precisions.

Polyspace Implementation

This checker checks for Integer precision exceeded.

Examples
Integer precision exceeded
Issue

Integer precision exceeded occurs when an integer expression uses the integer size in an
operation that exceeds the integer precision. On some architectures, the size of an integer in memory
can include sign and padding bits. On these architectures, the integer size is larger than the precision
which is just the number of bits that represent the value of the integer.
Risk

Using the size of an integer in an operation on the integer precision can result in integer overflow,
wrap around, or unexpected results. For instance, an unsigned integer can be stored in memory in 64
bits, but uses only 48 bits to represent its value. A 56 bits left-shift operation on this integer is
undefined behavior.

Assuming that the size of an integer is equal to its precision can also result in program portability
issues between different architectures.
Fix

Do not use the size of an integer instead of its precision. To determine the integer precision,
implement a precision computation routine or use a builtin function such as
__builtin_popcount().
Example - Using Size of unsigned int for Left Shift Operation

#include <limits.h>

unsigned int func(unsigned int exp)
{
 if (exp >= sizeof(unsigned int) * CHAR_BIT) {
 /* Handle error */
 }
 return 1U << exp;
}

In this example, the function uses a left shift operation to return the value of 2 raised to the power of
exp. The operation shifts the bits of 1U by exp positions to the left. The if statement ensures that

 CERT C: Rule INT35-C

23-113

the operation does not shift the bits by a number of positions exp greater than the size of an
unsigned int. However, if unsigned int contains padding bits, the value returned by sizeof()
is larger than the precision of unsigned int. As a result, some values of exp might be too large,
and the shift operation might be undefined behavior.

Correction — Implement Function to Compute Precision of unsigned int

One possible correction is to implement a function popcount() that computes the precision of
unsigned int by counting the number of set bits.

#include <stddef.h>
#include <stdint.h>
#include <limits.h>

size_t popcount(uintmax_t);
#define PRECISION(umax_value) popcount(umax_value)

unsigned int func(unsigned int exp)
{
 if (exp >= PRECISION(UINT_MAX)) {
 /* Handle error */
 }
 return 1 << exp;
}

size_t popcount(uintmax_t num)
{
 size_t precision = 0;
 while (num != 0) {
 if (num % 2 == 1) {
 precision++;
 }
 num >>= 1;
 }
 return precision;
}

Check Information
Group: Rule 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT35-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-114

https://wiki.sei.cmu.edu/confluence/display/c/INT35-C.+Use+correct+integer+precisions

CERT C: Rule INT36-C
Converting a pointer to integer or integer to pointer

Description
Rule Definition

Converting a pointer to integer or integer to pointer.

Polyspace Implementation

This checker checks for Unsafe conversion between pointer and integer.

Examples
Unsafe conversion between pointer and integer
Issue

Unsafe conversion between pointer and integer checks for pointer to integer and integer to
pointers conversions. If you convert between a pointer, intptr_t, or uintprt_t and an integer
type, such as enum, ptrdiff_t, or pid_t, Polyspace raises a defect if the size of pointers and
integer types are different in your environment. For instance, in i386 environment, both pointers and
integer types have a size of 32 bits. In this environment, Polyspace does not flag conversion between
a pointer and integer of same size. But in x86_64 environment where pointers are 64 bits and
unsigned integers are 32 bits, Polyspace flags conversion between pointers and integers of different
sizes.

Risk

The mapping between pointers and integers is not always consistent with the addressing structure of
the environment.

Converting from pointers to integers can create:

• Truncated or out of range integer values.
• Invalid integer types.

Converting from integers to pointers can create:

• Misaligned pointers or misaligned objects.
• Invalid pointer addresses.

Fix

Where possible, avoid pointer-to-integer or integer-to-pointer conversions. If you want to convert a
void pointer to an integer, so that you do not change the value, use types:

• C99 — intptr_t or uintptr_t
• C90 — size_t or ssize_t

 CERT C: Rule INT36-C

23-115

Example - Integer to Pointer Conversions

unsigned int *badintptrcast(void)
{
 unsigned int *ptr0 = (unsigned int *)0xdeadbeef;
 char *ptr1 = (char *)0xdeadbeef;
 return (unsigned int *)(ptr0 - (unsigned int *)ptr1);
}

In this example, there are three conversions, two unsafe conversions and one safe conversion. The
first conversion of 0xdeadbeef to unsigned int* causes alignment issues for the pointer. The
second conversion of 0xdeadbeef to char * is safe because there are no alignment issues for char.
The third conversion in the return casts ptrdiff_t to a pointer. This pointer might or might not
point to an invalid address.

Correction — Use intptr_t

One possible correction is to use intptr_t types to store the pointer address 0xdeadbeef. Also, you
can change the second pointer to an integer offset so that there is no longer a conversion from
ptrdiff_t to a pointer.

#include <stdint.h>

unsigned int *badintptrcast(void)
{
 intptr_t iptr0 = (intptr_t)0xdeadbeef;
 int offset = 0;
 return (unsigned int *)(iptr0 - offset);
}

Check Information
Group: Rule 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT36-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-116

https://wiki.sei.cmu.edu/confluence/display/c/INT36-C.+Converting+a+pointer+to+integer+or+integer+to+pointer

CERT C: Rule FLP30-C
Do not use floating-point variables as loop counters

Description
Rule Definition

Do not use floating-point variables as loop counters.

Polyspace Implementation

This checker checks for Use of float variable as loop counter.

Examples
Use of float variable as loop counter
Issue

The issue occurs when a loop counter has a floating type.

If the for index is a variable symbol, Polyspace checks that it is not a float.

Risk

When using a floating-point loop counter, accumulation of rounding errors can result in a mismatch
between the expected and actual number of iterations. This rounding error can happen when a loop
step that is not a power of the floating point radix is rounded to a value that can be represented by a
float.

Even if a loop with a floating-point loop counter appears to behave correctly on one implementation,
it can give a different number of iteration on another implementation.

Example - for Loop Counters

int main(void){
 unsigned int counter = 0u;
 int result = 0;
 float foo;

 // Float loop counters
 for(float foo = 0.0f; foo < 1.0f; foo +=0.001f){ /*Non-compliant*/
 /*counter = 1000 at the end of the loop */
 ++counter;
 }

 float fff = 0.0f;
 for(fff = 0.0f; fff <12.0f; fff += 1.0f){ /* Non-compliant*/
 result++;
 }

 // Integer loop count
 for(unsigned int count = 0u; count < 1000u; ++count){ /* Compliant */

 CERT C: Rule FLP30-C

23-117

 foo = (float) count * 0.001f;
 }
}

In this example, the three for loops show three different loop counters. The first and second for
loops use float variables as loop counters, and therefore are not compliant. The third loop uses the
integer count as the loop counter. Even though count is used as a float inside the loop, the variable
remains an integer when acting as the loop index. Therefore, this for loop is compliant.

Example - while Loop Counters

int main(void){
 unsigned int u32a;
 float foo;

 foo = 0.0f;
 while (foo < 1.0f){/* Non-compliant - foo used as a loop counter */
 foo += 0.001f;
 }

 foo = read_float32();
 do{
 u32a = read_u32();
 }while(((float)u32a - foo) > 10.0f);/* Compliant - */
/* foo doesn't change in the loop, so cannot be a counter */

 return 1;
}

This example shows two while loops both of which use foo in the while-loop conditions.

The first while loop uses foo in the condition and inside the loop. Because foo changes, floating-
point rounding errors can cause unexpected behavior.

The second while loop does not use foo inside the loop, but does use foo inside the while-
condition. So foo is not the loop counter. The integer u32a is the loop counter because it changes
inside the loop and is part of the while condition. Because u32a is an integer, the rounding error
issue is not a concern, making this while loop compliant.

Check Information
Group: Rule 05. Floating Point (FLP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FLP30-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-118

https://wiki.sei.cmu.edu/confluence/display/c/FLP30-C.+Do+not+use+floating-point+variables+as+loop+counters

CERT C: Rule FLP32-C
Prevent or detect domain and range errors in math functions

Description
Rule Definition

Prevent or detect domain and range errors in math functions.

Polyspace Implementation

This checker checks for Invalid use of standard library floating point routine.

Examples
Invalid use of standard library floating point routine
Issue

Invalid use of standard library floating point routine occurs when you use invalid arguments
with a floating point function from the standard library. This defect picks up:

• Rounding and absolute value routines

ceil, fabs, floor, fmod
• Fractions and division routines

fmod, modf
• Exponents and log routines

frexp, ldexp, sqrt, pow, exp, log, log10
• Trigonometry function routines

cos, sin, tan, acos, asin, atan, atan2, cosh, sinh, tanh, acosh, asinh,
atanh

Risk

Domain errors on standard library floating point functions result in implementation-defined values. If
you use the function return value in subsequent computations, you can see unexpected results.
Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. Use this event list to determine how the function argument acquires invalid
values. You can implement the fix on any event in the sequence. If the result details do not show the
event history, you can trace back using right-click options in the source code and see previous related
events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

It is a good practice to handle for domain errors before using a standard library floating point
function. For instance, before calling the acos function, check if the argument is in [-1.0, 1.0] and
handle the error.

 CERT C: Rule FLP32-C

23-119

See examples of fixes below.

If you do not want to fix the issue, for instance, when you handle infinities in your code, add
comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Arc Cosine Operation

#include <math.h>

double arccosine(void) {
 double degree = 5.0;
 return acos(degree);
}

The input value to acos must be in the interval [-1,1]. This input argument, degree, is outside this
range.

Correction — Change Input Argument

One possible correction is to change the input value to fit the specified range. In this example, change
the input value from degrees to radians to fix this defect.

#include <math.h>

double arccosine(void) {
 double degree = 5.0;
 double radian = degree * 3.14159 / 180.;
 return acos(radian);
}

Check Information
Group: Rule 05. Floating Point (FLP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FLP32-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-120

https://wiki.sei.cmu.edu/confluence/display/c/FLP32-C.+Prevent+or+detect+domain+and+range+errors+in+math+functions

CERT C: Rule FLP34-C
Ensure that floating-point conversions are within range of the new type

Description
Rule Definition

Ensure that floating-point conversions are within range of the new type.

Polyspace Implementation

This checker checks for:

• Float conversion overflow
• Floating point to integer conversion overflow

Examples
Float conversion overflow
Issue

Float conversion overflow occurs when converting a floating point value to a smaller floating point
data type. If the variable does not have enough memory to represent the original value, the
conversion overflows.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).

Risk

Overflows can result in unpredictable values from computations. The result can be infinity or the
maximum finite value depending on the rounding mode used in the implementation. If you use the
result of an overflowing conversion in subsequent computations and do not account for the overflow,
you can see unexpected results.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. Use this event list to determine how the variable being converted acquires its
current value You can implement the fix on any event in the sequence. If the result details do not
show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

You can fix the defect by:

• Using a bigger data type for the result of the conversion so that all values can be accommodated.
• Checking for values that lead to the overflow and performing appropriate error handling.

In general, avoid conversions to smaller floating point types.

See examples of fixes below.

 CERT C: Rule FLP34-C

23-121

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Converting from double to float

float convert(void) {

 double diam = 1e100;
 return (float)diam;
}

In the return statement, the variable diam of type double (64 bits) is converted to a variable of type
float (32 bits). However, the value 1^100 requires more than 32 bits to be precisely represented.

Floating point to integer conversion overflow
Issue

Floating point to integer conversion overflow occurs when converting a floating-point value to an
integer data type. If the integer part of the value cannot be represented within the storage available
for the integer data type, the conversion overflows.

Risk

When converting from floating point to integer types, if the floating point value is outside the range
that can be represented by the integer type, the behavior is undefined (C Standard 6.3.14 and
6.3.15).

Fix

You can fix the defect by:

• Using a bigger data type for the result of the conversion so that all values can be accommodated.
• Checking for values that lead to the overflow and performing appropriate error handling.

A check for overflowing values on a float variable var can be like this:

if isnan(var)
 || popcount(INT_MAX) < log2f(fabsf(var))
 || (var != 0.0F && fabsf(var) < FLT_MIN)){
 // Handle error
}
else {
 // Perform operations on var
}

The check determines if the floating point value is representable within an integer type:

• The value is not NaN.

23 CERT C Rules and Recommendations

23-122

• The number of bits required to store the value is less than the number of bits in INT_MAX (the
largest integer that the int type can represent). The popcount function (not defined here)
counts the number of 1's (or set bits) in a number.

• The floating point value is not lower than the smallest representable floating-point value.

Example – Floating Point Value Converted to Integer Without Handling Overflows

void func(float fVar) {
 int iVar;
 iVar = fVar; //Noncompliant
}

In this example, the floating point value of fVar is not checked for overflows before converting to an
integer type. Since the argument fVar can contain values that are not representable within the int
data type, the analysis flags a potential overflow.

Note that func is not called in this example, and the overflow is only a possibility. To see issues of
these types, add the analysis option Run stricter checks considering all values of
system inputs (-checks-using-system-input-values).

Check Information
Group: Rule 05. Floating Point (FLP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FLP34-C

Introduced in R2019a

 CERT C: Rule FLP34-C

23-123

https://wiki.sei.cmu.edu/confluence/display/c/FLP34-C.+Ensure+that+floating-point+conversions+are+within+range+of+the+new+type

CERT C: Rule FLP36-C
Preserve precision when converting integral values to floating-point type

Description
Rule Definition

Preserve precision when converting integral values to floating-point type.

Polyspace Implementation

This checker checks for Precision loss in integer to float conversion.

Examples
Precision loss in integer to float conversion
Issue

Precision loss from integer to float conversion occurs when you cast an integer value to a
floating-point type that cannot represent the original integer value.

For instance, the long int value 1234567890L is too large for a variable of type float .

Risk

If the floating-point type cannot represent the integer value, the behavior is undefined (see C11
standard, 6.3.1.4, paragraph 2). For instance, least significant bits of the variable value can be
dropped leading to unexpected results.

Fix

Convert to a floating-point type that can represent the integer value.

For instance, if the float data type cannot represent the integer value, use the double data type
instead.

When writing a function that converts an integer to floating point type, before the conversion, check
if the integer value can be represented in the floating-point type. For instance, DBL_MANT_DIG *
log2(FLT_RADIX) represents the number of base-2 digits in the type double. Before conversion to
the type double, check if this number is greater than or equal to the precision of the integer that you
are converting. To determine the precision of an integer num, use this code:

 size_t precision = 0;
 while (num != 0) {
 if (num % 2 == 1) {
 precision++;
 }
 num >>= 1;
 }

Some implementations provide a builtin function to determine the precision of an integer. For
instance, GCC provides the function __builtin_popcount.

23 CERT C Rules and Recommendations

23-124

Example - Conversion of Large Integer to Floating-Point Type

#include <stdio.h>

int main(void) {
 long int big = 1234567890L;
 float approx = big;
 printf("%ld\n", (big - (long int)approx));
 return 0;
}

In this example, the long int variable big is converted to float.

Correction — Use a Wider Floating-Point Type

One possible correction is to convert to the double data type instead of float.

#include <stdio.h>

int main(void) {
 long int big = 1234567890L;
 double approx = big;
 printf("%ld\n", (big - (long int)approx));
 return 0;
}

Check Information
Group: Rule 05. Floating Point (FLP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FLP36-C

Introduced in R2019a

 CERT C: Rule FLP36-C

23-125

https://wiki.sei.cmu.edu/confluence/display/c/FLP36-C.+Preserve+precision+when+converting+integral+values+to+floating-point+type

CERT C: Rule FLP37-C
Do not use object representations to compare floating-point values

Description
Rule Definition

Do not use object representations to compare floating-point values.

Polyspace Implementation

This checker checks for Memory comparison of float-point values.

Examples
Memory comparison of float-point values
Issue

Memory comparison of float-point values occurs when you compare the object representation of
floating-point values or the object representation of structures containing floating-point members.
When you use the functions memcmp, bcmp, or wmemcmp to perform the bit pattern comparison, the
defect is raised.

Risk

The object representation of floating-point values uses specific bit patterns to encode those values.
Floating-point values that are equal, for instance -0.0 and 0.0 in the IEC 60559 standard, can have
different bit patterns in their object representation. Similarly, floating-point values that are not equal
can have the same bit pattern in their object representation.

Fix

When you compare structures containing floating-point members, compare the structure members
individually.

To compare two floating-point values, use the == or != operators. If you follow a standard that
discourages the use of these operators, such as MISRA, ensure that the difference between the
floating-point values is within an acceptable range.

Example - Using memcmp to Compare Structures with Floating-Point Members

#include <string.h>

typedef struct {
 int i;
 float f;
} myStruct;

extern void initialize_Struct(myStruct *);

int func_cmp(myStruct *s1, myStruct *s2) {
/* Comparison between structures containing

23 CERT C Rules and Recommendations

23-126

* floating-point members */
 return memcmp
 ((const void *)s1, (const void *)s2, sizeof(myStruct));
}

void func(void) {
 myStruct s1, s2;
 initialize_Struct(&s1);
 initialize_Struct(&s2);
 (void)func_cmp(&s1, &s2);
}

In this example, func_cmp() calls memcmp() to compare the object representations of structures s1
and s2. The comparison might be inaccurate because the structures contain floating-point members.

Correction — Compare Structure Members Individually

One possible correction is to compare the structure members individually and to ensure that the
difference between the floating-point values is within an acceptable range defined by ESP.

 #include <string.h>

typedef struct {
 int i;
 float f;
} myStruct;

extern void initialize_Struct(myStruct *);

#define ESP 0.00001

int func_cmp(myStruct *s1, myStruct *s2) {

/*Structure members are compared individually */
 return ((s1->i == s2->i) &&
 (fabsf(s1->f - s2->f) <= ESP));
}

void func(void) {
 myStruct s1, s2;
 initialize_Struct(&s1);
 initialize_Struct(&s2);
 (void)func_cmp(&s1, &s2);
}

Check Information
Group: Rule 05. Floating Point (FLP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FLP37-C

 CERT C: Rule FLP37-C

23-127

https://wiki.sei.cmu.edu/confluence/display/c/FLP37-C.+Do+not+use+object+representations+to+compare+floating-point+values

Introduced in R2019a

23 CERT C Rules and Recommendations

23-128

CERT C: Rule ARR30-C
Do not form or use out-of-bounds pointers or array subscripts

Description
Rule Definition

Do not form or use out-of-bounds pointers or array subscripts.

Polyspace Implementation

This checker checks for these issues:

• Array access out of bounds.
• Pointer access out of bounds.
• Array access with tainted index.
• Pointer dereference with tainted offset.

Examples
Array access out of bounds
Issue

Array access out of bounds occurs when an array index falls outside the range
[0...array_size-1] during array access.

Risk

Accessing an array outside its bounds is undefined behavior. You can read an unpredictable value or
try to access a location that is not allowed and encounter a segmentation fault.

Fix

The fix depends on the root cause of the defect. For instance, you accessed an array inside a loop and
one of these situations happened:

• The upper bound of the loop is too large.
• You used an array index that is the same as the loop index instead of being one less than the loop

index.

To fix the issue, you have to modify the loop bound or the array index.

Another reason why an array index can exceed array bounds is a prior conversion from signed to
unsigned integers. The conversion can result in a wrap around of the index value, eventually causing
the array index to exceed the array bounds.

Often the result details show a sequence of events that led to the defect. You can implement the fix on
any event in the sequence. If the result details do not show the event history, you can trace back
using right-click options in the source code and see previous related events. See also “Interpret Bug
Finder Results in Polyspace Desktop User Interface”.

 CERT C: Rule ARR30-C

23-129

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Array Access Out of Bounds Error

#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 printf("The 10-th Fibonacci number is %i .\n", fib[i]);
 /* Defect: Value of i is greater than allowed value of 9 */
}

The array fib is assigned a size of 10. An array index for fib has allowed values of [0,1,2,...,9].
The variable i has a value 10 when it comes out of the for-loop. Therefore, the printf statement
attempts to access fib[10] through i.

Correction — Keep Array Index Within Array Bounds

One possible correction is to print fib[i-1] instead of fib[i] after the for-loop.

#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 /* Fix: Print fib[9] instead of fib[10] */
 printf("The 10-th Fibonacci number is %i .\n", fib[i-1]);
}

23 CERT C Rules and Recommendations

23-130

The printf statement accesses fib[9] instead of fib[10].

Pointer access out of bounds
Issue

Pointer access out of bounds occurs when a pointer is dereferenced outside its bounds.

When a pointer is assigned an address, a block of memory is associated with the pointer. You cannot
access memory beyond that block using the pointer.

Risk

Dereferencing a pointer outside its bounds is undefined behavior. You can read an unpredictable
value or try to access a location that is not allowed and encounter a segmentation fault.

Fix

The fix depends on the root cause of the defect. For instance, you dereferenced a pointer inside a loop
and one of these situations happened:

• The upper bound of the loop is too large.
• You used pointer arithmetic to advance the pointer with an incorrect value for the pointer

increment.

To fix the issue, you have to modify the loop bound or the pointer increment value.

Often the result details show a sequence of events that led to the defect. You can implement the fix on
any event in the sequence. If the result details do not show the event history, you can trace back
using right-click options in the source code and see previous related events. See also “Interpret Bug
Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Pointer access out of bounds error

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 ptr++;
 *ptr=i;
 /* Defect: ptr out of bounds for i=9 */
 }

 CERT C: Rule ARR30-C

23-131

 return(arr);
}

ptr is assigned the address arr that points to a memory block of size 10*sizeof(int). In the for-
loop, ptr is incremented 10 times. In the last iteration of the loop, ptr points outside the memory
block assigned to it. Therefore, it cannot be dereferenced.
Correction — Check Pointer Stays Within Bounds

One possible correction is to reverse the order of increment and dereference of ptr.

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 /* Fix: Dereference pointer before increment */
 *ptr=i;
 ptr++;
 }

 return(arr);
}

After the last increment, even though ptr points outside the memory block assigned to it, it is not
dereferenced more.

Array access with tainted index
Issue

Array access with tainted index detects reading or writing to an array by using a tainted index that
has not been validated.
Risk

The index might be outside the valid array range. If the tainted index is outside the array range, it
can cause:

• Buffer underflow/underwrite — writing to memory before the beginning of the buffer.
• Buffer overflow — writing to memory after the end of a buffer.
• Over-reading a buffer — accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted buffer.

An attacker can use an invalid read or write operation create to problems in your program.
Fix

Before using the index to access the array, validate the index value to make sure that it is inside the
array range.
Example - Use Index to Return Buffer Value

#include <stdlib.h>
#include <stdio.h>
#define SIZE100 100

23 CERT C Rules and Recommendations

23-132

extern int tab[SIZE100];
static int tainted_int_source(void) {
 return strtol(getenv("INDEX"),NULL,10);
}
int taintedarrayindex(void) {
 int num = tainted_int_source();
 return tab[num];
}

In this example, the index num accesses the array tab. The function does not check to see if num is
inside the range of tab.

Correction — Check Range Before Use

One possible correction is to check that num is in range before using it.

#include <stdlib.h>
#include <stdio.h>
#define SIZE100 100
extern int tab[SIZE100];
static int tainted_int_source(void) {
 return strtol(getenv("INDEX"),NULL,10);
}
int taintedarrayindex(void) {
 int num = tainted_int_source();
 if (num >= 0 && num < SIZE100) {
 return tab[num];
 } else {
 return -1;
 }
}

Pointer dereference with tainted offset

Issue

Pointer dereference with tainted offset detects pointer dereferencing, either reading or writing,
using an offset variable from an unknown or unsecure source.

This check focuses on dynamically allocated buffers. For static buffer offsets, see Array access
with tainted index.

Risk

The index might be outside the valid array range. If the tainted index is outside the array range, it
can cause:

• Buffer underflow/underwrite, or writing to memory before the beginning of the buffer.
• Buffer overflow, or writing to memory after the end of a buffer.
• Over reading a buffer, or accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted buffer.

An attacker can use an invalid read or write to compromise your program.

 CERT C: Rule ARR30-C

23-133

Fix

Validate the index before you use the variable to access the pointer. Check to make sure that the
variable is inside the valid range and does not overflow.

Example - Dereference Pointer Array

#include <stdio.h>
#include <stdlib.h>
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(void) {
 int offset;
 scanf("%d",&offset);
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if(pint) {
 /* Filling array */
 read_pint(pint);
 c = pint[offset];
 free(pint);
 }
 return c;
}

In this example, the function initializes an integer pointer pint. The pointer is dereferenced using
the input index offset. The value of offset could be outside the pointer range, causing an out-of-
range error.

Correction — Check Index Before Dereference

One possible correction is to validate the value of offset. Continue with the pointer dereferencing
only if offset is inside the valid range.

#include <stdlib.h>
#include <stdio.h>
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(void) {
 int offset;
 scanf("%d",&offset);
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if (pint) {
 /* Filling array */
 read_pint(pint);
 if (offset>0 && offset<SIZE10) {

23 CERT C Rules and Recommendations

23-134

 c = pint[offset];
 }
 free(pint);
 }
 return c;
}

Check Information
Group: Rule 06. Arrays (ARR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ARR30-C

Introduced in R2019a

 CERT C: Rule ARR30-C

23-135

https://wiki.sei.cmu.edu/confluence/display/c/ARR30-C.+Do+not+form+or+use+out-of-bounds+pointers+or+array+subscripts

CERT C: Rule ARR32-C
Ensure size arguments for variable length arrays are in a valid range

Description
Rule Definition

Ensure size arguments for variable length arrays are in a valid range.

Polyspace Implementation

This checker checks for these issues:

• Memory allocation with tainted size.
• Tainted size of variable length array.

Examples
Memory allocation with tainted size

Issue

Memory allocation with tainted size checks memory allocation functions, such as calloc or
malloc, for size arguments from unsecured sources.

Risk

Uncontrolled memory allocation can cause your program to request too much system memory. This
consequence can lead to a crash due to an out-of-memory condition, or assigning too many resources.

Fix

Before allocating memory, check the value of your arguments to check that they do not exceed the
bounds.

Example - Allocate Memory Using Input Argument

#include<stdio.h>
#include <stdlib.h>

int* bug_taintedmemoryallocsize(void) {
 size_t size;
 scanf("%zu", &size);
 int* p = (int*)malloc(size);
 return p;
}

In this example, malloc allocates size amount of memory for the pointer p. size is an outside
variable, so could be any size value. If the size is larger than the amount of memory you have
available, your program could crash.

23 CERT C Rules and Recommendations

23-136

Correction — Check Size of Memory to be Allocated

One possible correction is to check the size of the memory that you want to allocate before
performing the malloc operation. This example checks to see if the size is positive and less than the
maximum size.

#include<stdio.h>
#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int* corrected_taintedmemoryallocsize(void) {
 size_t size;
 scanf("%zu", &size);
 int* p = NULL;
 if (size>0 && size<SIZE128) { /* Fix: Check entry range before use */
 p = (int*)malloc((unsigned int)size);
 }
 return p;
}

Tainted size of variable length array
Issue

Tainted size of variable length array detects variable length arrays (VLA) whose size is from an
unsecure source.

Risk

If an attacker changed the size of your VLA to an unexpected value, it can cause your program to
crash or behave unexpectedly.

If the size is non-positive, the behavior of the VLA is undefined. Your program does not perform as
expected.

If the size is unbounded, the VLA can cause memory exhaustion or stack overflow.

Fix

Validate your VLA size to make sure that it is positive and less than a maximum value.

Example - Input Argument Used as Size of VLA

#include<stdio.h>
#inclule<stdlib.h>
#define LIM 40

long squaredSum(int size) {

 int tabvla[size];
 long res = 0;
 for (int i=0 ; i<LIM-1 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];

 CERT C: Rule ARR32-C

23-137

 }
 return res;
}
int main(){
 int size;
 scanf("%d",&size);
 //...
 long result = squaredSum(size);
 //...
 return 0;
}

In this example, a variable length array size is based on an input argument. Because this input
argument value is not checked, the size may be negative or too large.
Correction — Check VLA Size

One possible correction is to check the size variable before creating the variable length array. This
example checks if the size is larger than 10 and less than 100, before creating the VLA

#include <stdio.h>
#include <stdlib.h>
#define LIM 40

long squaredSum(int size) {
 long res = 0;
 if (size>0 && size<LIM){
 int tabvla[size];
 for (int i=0 ; i<size || i<LIM-1 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 }else{
 res = -1;
 }
 return res;
}
int main(){
 int size;
 scanf("%d",&size);
 //...
 long result = squaredSum(size);
 //...
 return 0;
}

Check Information
Group: Rule 06. Arrays (ARR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ARR32-C

23 CERT C Rules and Recommendations

23-138

https://wiki.sei.cmu.edu/confluence/display/c/ARR32-C.+Ensure+size+arguments+for+variable+length+arrays+are+in+a+valid+range

Introduced in R2019a

 CERT C: Rule ARR32-C

23-139

CERT C: Rule ARR36-C
Do not subtract or compare two pointers that do not refer to the same array

Description
Rule Definition

Do not subtract or compare two pointers that do not refer to the same array.

Polyspace Implementation

This checker checks for Subtraction or comparison between pointers to different arrays.

Examples
Subtraction or comparison between pointers to different arrays
Issue

Subtraction or comparison between pointers to different arrays occurs when you subtract or
compare pointers that are null or that point to elements in different arrays. The relational operators
for the comparison are >, <, >=, and <=.
Risk

When you subtract two pointers to elements in the same array, the result is the difference between
the subscripts of the two array elements. Similarly, when you compare two pointers to array
elements, the result is the positions of the pointers relative to each other. If the pointers are null or
point to different arrays, a subtraction or comparison operation is undefined. If you use the
subtraction result as a buffer index, it can cause a buffer overflow.
Fix

Before you subtract or use relational operators to compare pointers to array elements, check that
they are non-null and that they point to the same array.
Example - Subtraction Between Pointers to Elements in Different Arrays

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE20 20

size_t func(void)
{
 int nums[SIZE20];
 int end;
 int *next_num_ptr = nums;
 size_t free_elements;
 /* Increment next_num_ptr as array fills */

 /* Subtraction operation is undefined unless array nums
 is adjacent to variable end in memory. */

23 CERT C Rules and Recommendations

23-140

 free_elements = &end - next_num_ptr;
 return free_elements;
}

In this example, the array nums is incrementally filled. Pointer subtraction is then used to determine
how many free elements remain. Unless end points to a memory location one past the last element of
nums, the subtraction operation is undefined.

Correction — Subtract Pointers to the Same Array

Subtract the pointer to the last element that was filled from the pointer to the last element in the
array.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE20 20

size_t func(void)
{
 int nums[SIZE20];
 int *next_num_ptr = nums;
 size_t free_elements;
 /* Increment next_num_ptr as array fills */

 /* Subtraction operation involves pointers to the same array. */
 free_elements = &(nums[SIZE20 - 1]) - next_num_ptr;

 return free_elements + 1;
}

Check Information
Group: Rule 06. Arrays (ARR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ARR36-C

Introduced in R2019a

 CERT C: Rule ARR36-C

23-141

https://wiki.sei.cmu.edu/confluence/display/c/ARR36-C.+Do+not+subtract+or+compare+two+pointers+that+do+not+refer+to+the+same+array

CERT C: Rule ARR37-C
Do not add or subtract an integer to a pointer to a non-array object

Description
Rule Definition

Do not add or subtract an integer to a pointer to a non-array object.

Polyspace Implementation

This checker checks for Invalid assumptions about memory organization.

Examples
Invalid assumptions about memory organization
Issue

Invalid assumptions about memory organization occurs when you compute the address of a
variable in the stack by adding or subtracting from the address of another non-array variable.

Risk

When you compute the address of a variable in the stack by adding or subtracting from the address of
another variable, you assume a certain memory organization. If your assumption is incorrect,
accessing the computed address can be invalid.

Fix

Do not perform an access that relies on assumptions about memory organization.

Example - Reliance on Memory Organization

void func(void) {
 int var1 = 0x00000011, var2;
 *(&var1 + 1) = 0;
}

In this example, the programmer relies on the assumption that &var1 + 1 provides the address of
var2. Therefore, an Invalid assumptions about memory organization appears on the +
operation. In addition, a Pointer access out of bounds error also appears on the dereference.

Correction — Do Not Rely on Memory Organization

One possible correction is not perform direct computation on addresses to access separately declared
variables.

Check Information
Group: Rule 06. Arrays (ARR)

23 CERT C Rules and Recommendations

23-142

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ARR37-C

Introduced in R2019a

 CERT C: Rule ARR37-C

23-143

https://wiki.sei.cmu.edu/confluence/display/c/ARR37-C.+Do+not+add+or+subtract+an+integer+to+a+pointer+to+a+non-array+object

CERT C: Rule ARR38-C
Guarantee that library functions do not form invalid pointers

Description
Rule Definition

Guarantee that library functions do not form invalid pointers.

Polyspace Implementation

This checker checks for these issues:

• Mismatch between data length and size.
• Invalid use of standard library memory routine.
• Possible misuse of sizeof.
• Buffer overflow from incorrect string format specifier.
• Invalid use of standard library string routine.
• Destination buffer overflow in string manipulation.
• Destination buffer underflow in string manipulation.

Examples
Mismatch between data length and size
Issue

Mismatch between data length and size looks for memory copying functions such as memcpy,
memset, or memmove. If you do not control the length argument and data buffer argument properly,
Bug Finder raises a defect.

Risk

If an attacker can manipulate the data buffer or length argument, the attacker can cause buffer
overflow by making the actual data size smaller than the length.

This mismatch in length allows the attacker to copy memory past the data buffer to a new location. If
the extra memory contains sensitive information, the attacker can now access that data.

This defect is similar to the SSL Heartbleed bug.

Fix

When copying or manipulating memory, compute the length argument directly from the data so that
the sizes match.

Example - Copy Buffer of Data

#include <stdlib.h>
#include <string.h>

23 CERT C Rules and Recommendations

23-144

typedef struct buf_mem_st {
 char *data;
 size_t max; /* size of buffer */
} BUF_MEM;

extern BUF_MEM beta;

int cpy_data(BUF_MEM *alpha)
{
 BUF_MEM *os = alpha;
 int num, length;

 if (alpha == 0x0) return 0;
 num = 0;

 length = *(unsigned short *)os->data;
 memcpy(&(beta.data[num]), os->data + 2, length);

 return(1);
}

This function copies the buffer alpha into a buffer beta. However, the length variable is not related
to data+2.

Correction — Check Buffer Length

One possible correction is to check the length of your buffer against the maximum value minus 2.
This check ensures that you have enough space to copy the data to the beta structure.

#include <stdlib.h>
#include <string.h>

typedef struct buf_mem_st {
 char *data;
 size_t max; /* size of buffer */
} BUF_MEM;

extern BUF_MEM beta;

int cpy_data(BUF_MEM *alpha)
{
 BUF_MEM *os = alpha;
 int num, length;

 if (alpha == 0x0) return 0;
 num = 0;

 length = *(unsigned short *)os->data;
 if (length<(os->max -2)) {
 memcpy(&(beta.data[num]), os->data + 2, length);
 }

 return(1);

}

 CERT C: Rule ARR38-C

23-145

Invalid use of standard library memory routine
Issue

Invalid use of standard library memory routine occurs when a memory library function is called
with invalid arguments. For instance, the memcpy function copies to an array that cannot
accommodate the number of bytes copied.
Risk

Use of a memory library function with invalid arguments can result in issues such as buffer overflow.
Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Invalid Use of Standard Library Memory Routine Error

#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void)
 {
 char str1[10],str2[5];

 printf("Enter string:\n");
 scanf("%9s",str1);

 memcpy(str2,str1,6);
 /* Defect: Arguments of memcpy invalid: str2 has size < 6 */

 return str2;
 }

The size of string str2 is 5, but six characters of string str1 are copied into str2 using the memcpy
function.
Correction — Call Function with Valid Arguments

One possible correction is to adjust the size of str2 so that it accommodates the characters copied
with the memcpy function.

#include <string.h>
#include <stdio.h>

23 CERT C Rules and Recommendations

23-146

char* Copy_First_Six_Letters(void)
 {
 /* Fix: Declare str2 with size 6 */
 char str1[10],str2[6];

 printf("Enter string:\n");
 scanf("%9s",str1);

 memcpy(str2,str1,6);
 return str2;
 }

Possible misuse of sizeof

Issue

Possible misuse of sizeof occurs when Polyspace Bug Finder detects possibly unintended results
from the use of sizeof operator. For instance:

• You use the sizeof operator on an array parameter name, expecting the array size. However, the
array parameter name by itself is a pointer. The sizeof operator returns the size of that pointer.

• You use the sizeof operator on an array element, expecting the array size. However, the operator
returns the size of the array element.

• The size argument of certain functions such as strncmp or wcsncpy is incorrect because you
used the sizeof operator earlier with possibly incorrect expectations. For instance:

• In a function call strncmp(string1, string2, num), num is obtained from an incorrect
use of the sizeof operator on a pointer.

• In a function call wcsncpy(destination, source, num), num is the not the number of
wide characters but a size in bytes obtained by using the sizeof operator. For instance, you
use wcsncpy(destination, source, sizeof(destination) - 1) instead of
wcsncpy(destination, source, (sizeof(desintation)/sizeof(wchar_t)) - 1).

Risk

Incorrect use of the sizeof operator can cause the following issues:

• If you expect the sizeof operator to return array size and use the return value to constrain a
loop, the number of loop runs are smaller than what you expect.

• If you use the return value of sizeof operator to allocate a buffer, the buffer size is smaller than
what you require. Insufficient buffer can lead to resultant weaknesses such as buffer overflows.

• If you use the return value of sizeof operator incorrectly in a function call, the function does not
behave as you expect.

Fix

Possible fixes are:

• Do not use the sizeof operator on an array parameter name or array element to determine array
size.

The best practice is to pass the array size as a separate function parameter and use that
parameter in the function body.

 CERT C: Rule ARR38-C

23-147

• Use the sizeof operator carefully to determine the number argument of functions such as
strncmp or wcsncpy. For instance, for wide string functions such as wcsncpy, use the number of
wide characters as argument instead of the number of bytes.

Example - sizeof Used Incorrectly to Determine Array Size

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < sizeof(a)/sizeof(int); i++) {
 a[i] = i + 1;
 }
}

In this example, sizeof(a) returns the size of the pointer a and not the array size.
Correction — Determine Array Size in Another Way

One possible correction is to use another means to determine the array size.

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < MAX_SIZE; i++) {
 a[i] = i + 1;
 }
}

Buffer overflow from incorrect string format specifier
Issue

Buffer overflow from incorrect string format specifier occurs when the format specifier
argument for functions such as sscanf leads to an overflow or underflow in the memory buffer
argument.
Risk

If the format specifier specifies a precision that is greater than the memory buffer size, an overflow
occurs. Overflows can cause unexpected behavior such as memory corruption.
Fix

Use a format specifier that is compatible with the memory buffer size.
Example - Memory Buffer Overflow

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%33c", buf);
}

In this example, buf can contain 32 char elements. Therefore, the format specifier %33c causes a
buffer overflow.

23 CERT C Rules and Recommendations

23-148

Correction — Use Smaller Precision in Format Specifier

One possible correction is to use a smaller precision in the format specifier.

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%32c", buf);
}

Invalid use of standard library string routine
Issue

Invalid use of standard library string routine occurs when a string library function is called with
invalid arguments.
Risk

The risk depends on the type of invalid arguments. For instance, using the strcpy function with a
source argument larger than the destination argument can result in buffer overflows.
Fix

The fix depends on the standard library function involved in the defect. In some cases, you can
constrain the function arguments before the function call. For instance, if the strcpy function:

char * strcpy(char * destination, const char* source);

tries to copy too many bytes into the destination argument compared to the available buffer, constrain
the source argument before the call to strcpy. In some cases, you can use an alternative function to
avoid the error. For instance, instead of strcpy, you can use strncpy to control the number of bytes
copied. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Invalid Use of Standard Library String Routine Error

 #include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);
 /* Error: Size of text is less than gbuffer */

 CERT C: Rule ARR38-C

23-149

 return(res);
 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot copy text
into gbuffer.
Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger size than
the source string text.

#include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 /*Fix: gbuffer has equal or larger size than text */
 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);
 }

Destination buffer overflow in string manipulation
Issue

Destination buffer overflow in string manipulation occurs when certain string manipulation
functions write to their destination buffer argument at an offset greater than the buffer size.

For instance, when calling the function sprintf(char* buffer, const char* format), you
use a constant string format of greater size than buffer.
Risk

Buffer overflow can cause unexpected behavior such as memory corruption or stopping your system.
Buffer overflow also introduces the risk of code injection.
Fix

One possible solution is to use alternative functions to constrain the number of characters written.
For instance:

• If you use sprintf to write formatted data to a string, use snprintf, _snprintf or sprintf_s
instead to enforce length control. Alternatively, use asprintf to automatically allocate the
memory required for the destination buffer.

• If you use vsprintf to write formatted data from a variable argument list to a string, use
vsnprintf or vsprintf_s instead to enforce length control.

• If you use wcscpy to copy a wide string, use wcsncpy, wcslcpy, or wcscpy_s instead to enforce
length control.

Another possible solution is to increase the buffer size.
Example - Buffer Overflow in sprintf Use

#include <stdio.h>

23 CERT C Rules and Recommendations

23-150

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 sprintf(buffer, fmt_string);
}

In this example, buffer can contain 20 char elements but fmt_string has a greater size.

Correction — Use snprintf Instead of sprintf

One possible correction is to use the snprintf function to enforce length control.

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 snprintf(buffer, 20, fmt_string);
}

Destination buffer underflow in string manipulation
Issue

Destination buffer underflow in string manipulation occurs when certain string manipulation
functions write to their destination buffer argument at a negative offset from the beginning of the
buffer.

For instance, for the function sprintf(char* buffer, const char* format), you obtain the
buffer from an operation buffer = (char*)arr; ... buffer += offset;. arr is an array
and offset is a negative value.

Risk

Buffer underflow can cause unexpected behavior such as memory corruption or stopping your system.
Buffer underflow also introduces the risk of code injection.

Fix

If the destination buffer argument results from pointer arithmetic, see if you are decrementing a
pointer. Fix the pointer decrement by modifying either the original value before decrement or the
decrement value.

Example - Buffer Underflow in sprintf Use

#include <stdio.h>
#define offset -2

void func(void) {
 char buffer[20];
 char *fmt_string ="Text";

 sprintf(&buffer[offset], fmt_string);
}

In this example, &buffer[offset] is at a negative offset from the memory allocated to buffer.

 CERT C: Rule ARR38-C

23-151

Correction — Change Pointer Decrementer

One possible correction is to change the value of offset.

#include <stdio.h>
#define offset 2

void func(void) {
 char buffer[20];
 char *fmt_string ="Text";

 sprintf(&buffer[offset], fmt_string);
}

Check Information
Group: Rule 06. Arrays (ARR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ARR38-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-152

https://wiki.sei.cmu.edu/confluence/display/c/ARR38-C.+Guarantee+that+library+functions+do+not+form+invalid+pointers

CERT C: Rule ARR39-C
Do not add or subtract a scaled integer to a pointer

Description
Rule Definition

Do not add or subtract a scaled integer to a pointer.

Polyspace Implementation

This checker checks for Incorrect pointer scaling.

Examples
Incorrect pointer scaling
Issue

Incorrect pointer scaling occurs when Polyspace Bug Finder considers that you are ignoring the
implicit scaling in pointer arithmetic.

For instance, the defect can occur in the following situations.

Situation Risk Possible Fix
You use the sizeof operator in
arithmetic operations on a
pointer.

The sizeof operator returns
the size of a data type in
number of bytes.

Pointer arithmetic is already
implicitly scaled by the size of
the data type of the pointed
variable. Therefore, the use of
sizeof in pointer arithmetic
produces unintended results.

Do not use sizeof operator in
pointer arithmetic.

You perform arithmetic
operations on a pointer, and
then apply a cast.

Pointer arithmetic is implicitly
scaled. If you do not consider
this implicit scaling, casting the
result of a pointer arithmetic
produces unintended results.

Apply the cast before the
pointer arithmetic.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

 CERT C: Rule ARR39-C

23-153

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example — Use of sizeof Operator

void func(void) {
 int arr[5] = {1,2,3,4,5};
 int *ptr = arr;

 int value_in_position_2 = *(ptr + 2*(sizeof(int)));
}

In this example, the operation 2*(sizeof(int)) returns twice the size of an int variable in bytes.
However, because pointer arithmetic is implicitly scaled, the number of bytes by which ptr is offset is
2*(sizeof(int))*(sizeof(int)).

In this example, the incorrect scaling shifts ptr outside the bounds of the array. Therefore, a Pointer
access out of bounds error appears on the * operation.

Correction — Remove sizeof Operator

One possible correction is to remove the sizeof operator.

void func(void) {
 int arr[5] = {1,2,3,4,5};
 int *ptr = arr;

 int value_in_position_2 = *(ptr + 2);
}

Example — Cast Following Pointer Arithmetic

int func(void) {
 int x = 0;
 char r = *(char *)(&x + 1);
 return r;
}

In this example, the operation &x + 1 offsets &x by sizeof(int). Following the operation, the
resulting pointer points outside the allowed buffer. When you dereference the pointer, a Pointer
access out of bounds error appears on the * operation.

Correction — Apply Cast Before Pointer Arithmetic

If you want to access the second byte of x, first cast &x to a char* pointer and then perform the
pointer arithmetic. The resulting pointer is offset by sizeof(char) bytes and still points within the
allowed buffer, whose size is sizeof(int) bytes.

int func(void) {
 int x = 0;
 char r = *((char *)(&x)+ 1);
 return r;
}

23 CERT C Rules and Recommendations

23-154

Example — Use of sizeof in Function Arguments

#include <stddef.h>
#include <stdlib.h>
#include <wchar.h>
enum { WCHAR_BUF = 128 };
FILE* pFile;
//...
void func2_ko (void)
{
 wchar_t error_msg[WCHAR_BUF];
 wcscpy (error_msg, L"Error: ");
 fgetws (error_msg + wcslen (error_msg) *
 sizeof (wchar_t), WCHAR_BUF - 7, pFile); //Noncompliant
}

In this example, an error message is read from the file pointer pFile stream and copied to
error_msg after an offset. The intended offset here is wcslen(error_msg), which is already
implicitly scaled when it is added to the wchar pointer error_msg. Because the offset is then
explicitly scaled again by using sizeof, Polyspace flags the incorrect scaling.

Correction — Remove sizeof Operator

One possible correction is to remove the sizeof operator.

#include <stddef.h>
#include <stdlib.h>
#include <wchar.h>
enum { WCHAR_BUF = 128 };
const wchar_t ERROR_PREFIX[8] = L"Error: ";
FILE* pFile;
//...

void func2_ok (void)
{
 const size_t prefix_len = wcslen (ERROR_PREFIX);
 wchar_t error_msg[WCHAR_BUF];
 wcscpy (error_msg, ERROR_PREFIX);
 fgetws (error_msg + prefix_len, WCHAR_BUF - prefix_len, pFile); //Compliant
 /* ... */
}

Check Information
Group: Rule 06. Arrays (ARR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ARR39-C

Introduced in R2019a

 CERT C: Rule ARR39-C

23-155

https://wiki.sei.cmu.edu/confluence/display/c/ARR39-C.+Do+not+add+or+subtract+a+scaled+integer+to+a+pointer

CERT C: Rule STR30-C
Do not attempt to modify string literals

Description
Rule Definition

Do not attempt to modify string literals.

Polyspace Implementation

This checker checks for Writing to const qualified object.

Examples
Writing to const qualified object

Issue

Writing to const qualified object occurs when you do one of the following:

• Use a const-qualified object as the destination of an assignment.
• Pass a const-qualified object to a function that modifies the argument.

For instance, the defect can occur in the following situations:

• You pass a const-qualified object as first argument of one of the following functions:

• mkstemp
• mkostemp
• mkostemps
• mkdtemp

• You pass a const-qualified object as the destination argument of one of the following functions:

• strcpy
• strncpy
• strcat
• memset

• You perform a write operation on a const-qualified object.

Risk

The risk depends upon the modifications made to the const-qualified object.

23 CERT C Rules and Recommendations

23-156

Situation Risk
Passing to mkstemp, mkostemp, mkostemps,
mkdtemp, and so on.

These functions replace the last six characters of
their first argument with a string. Therefore, they
expect a modifiable char array as their first
argument.

Passing to strcpy, strncpy, strcat, memset
and so on.

These functions modify their destination
argument. Therefore, they expect a modifiable
char array as their destination argument.

Writing to the object The const qualifier implies an agreement that
the value of the object will not be modified. By
writing to a const-qualified object, you break the
agreement. The result of the operation is
undefined.

Fix

The fix depends on the modification made to the const-qualified object.

Situation Fix
Passing to mkstemp, mkostemp, mkostemps,
mkdtemp, and so on.

Pass a non-const object as first argument of the
function.

Passing to strcpy, strncpy, strcat, memset
and so on.

Pass a non-const object as destination argument
of the function.

Writing to the object Perform the write operation on a non-const
object.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Writing to const-Qualified Object

#include <string.h>

const char* buffer = "abcdeXXXXXXX";

void func(char* string) {
 char *ptr = (char*)strchr(buffer,'X');
 if(ptr)
 strcpy(ptr,string);
}

In this example, because buffer is const-qualified, strchr(buffer,'X') returns a const-
qualified char* pointer. When this char* pointer is used as the destination argument of strcpy, a
Writing to const qualified object error appears.

 CERT C: Rule STR30-C

23-157

Correction — Copy const-Qualified Object to Non-const Object

One possible correction is to assign the constant string to a non-const object and use the non-const
object as destination argument of strchr.

#include <string.h>

char buffer[] = "abcdeXXXXXXX";

void func(char* string) {
 char *ptr = (char*)strchr(buffer,'X');
 if(ptr)
 strcpy(ptr,string);
}

Check Information
Group: Rule 07. Characters and Strings (STR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
STR30-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-158

https://wiki.sei.cmu.edu/confluence/display/c/STR30-C.+Do+not+attempt+to+modify+string+literals

CERT C: Rule STR31-C
Guarantee that storage for strings has sufficient space for character data and the null terminator

Description
Rule Definition

Guarantee that storage for strings has sufficient space for character data and the null terminator.

Polyspace Implementation

This checker checks for these issues:

• Use of dangerous standard function.
• Missing null in string array.
• Buffer overflow from incorrect string format specifier.
• Destination buffer overflow in string manipulation.

Examples
Use of dangerous standard function

Issue

The Use of dangerous standard function check highlights uses of functions that are inherently
dangerous or potentially dangerous given certain circumstances. The following table lists possibly
dangerous functions, the risks of using each function, and what function to use instead.

Dangerous
Function

Risk Level Safer Function

gets Inherently dangerous — You cannot
control the length of input from the
console.

fgets

cin Inherently dangerous — You cannot
control the length of input from the
console.

Avoid or prefaces calls to cin with
cin.width.

strcpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

strncpy

stpcpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

stpncpy

lstrcpy or StrCpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

StringCbCopy, StringCchCopy,
strncpy, strcpy_s, or strlcpy

 CERT C: Rule STR31-C

23-159

Dangerous
Function

Risk Level Safer Function

strcat Possibly dangerous — If the
concatenated result is greater than the
destination, buffer overflow can occur.

strncat, strlcat, or strcat_s

lstrcat or StrCat Possibly dangerous — If the
concatenated result is greater than the
destination, buffer overflow can occur.

StringCbCat, StringCchCat,
strncay, strcat_s, or strlcat

wcpcpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

wcpncpy

wcscat Possibly dangerous — If the
concatenated result is greater than the
destination, buffer overflow can occur.

wcsncat, wcslcat, or wcncat_s

wcscpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

wcsncpy

sprintf Possibly dangerous — If the output
length depends on unknown lengths or
values, buffer overflow can occur.

snprintf

vsprintf Possibly dangerous — If the output
length depends on unknown lengths or
values, buffer overflow can occur.

vsnprintf

Risk

These functions can cause buffer overflow, which attackers can use to infiltrate your program.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Using sprintf

#include <stdio.h>
#include <string.h>
#include <iostream>

23 CERT C Rules and Recommendations

23-160

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

 if (sprintf(dst, "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

This example function uses sprintf to copy the string str to dst. However, if str is larger than the
buffer, sprintf can cause buffer overflow.

Correction — Use snprintf with Buffer Size

One possible correction is to use snprintf instead and specify a buffer size.

#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

 if (snprintf(dst, sizeof(dst), "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

Missing null in string array
Issue

Missing null in string array occurs when a string does not have enough space to terminate with a
null character '\0'.

This defect applies only for projects in C.

Risk

A buffer overflow can occur if you copy a string to an array without assuming the implicit null
terminator.

 CERT C: Rule STR31-C

23-161

Fix

If you initialize a character array with a literal, avoid specifying the array bounds.

char three[] = "THREE";

The compiler automatically allocates space for a null terminator. In the preceding example, the
compiler allocates sufficient space for five characters and a null terminator.

If the issue occurs after initialization, you might have to increase the size of the array by one to
account for the null terminator.

In certain circumstances, you might want to initialize the character array with a sequence of
characters instead of a string. In this situation, add comments to your result or code to avoid another
review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Array size is too small

void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[5] = "THREE";
}

The character array three has a size of 5 and 5 characters 'T', 'H', 'R', 'E', and 'E'. There is no
room for the null character at the end because three is only five bytes large.

Correction — Increase Array Size

One possible correction is to change the array size to allow for the five characters plus a null
character.

void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[6] = "THREE";
}

Correction — Change Initialization Method

One possible correction is to initialize the string by leaving the array size blank. This initialization
method allocates enough memory for the five characters and a terminating-null character.

void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[] = "THREE";
}

23 CERT C Rules and Recommendations

23-162

Buffer overflow from incorrect string format specifier
Issue

Buffer overflow from incorrect string format specifier occurs when the format specifier
argument for functions such as sscanf leads to an overflow or underflow in the memory buffer
argument.

Risk

If the format specifier specifies a precision that is greater than the memory buffer size, an overflow
occurs. Overflows can cause unexpected behavior such as memory corruption.

Fix

Use a format specifier that is compatible with the memory buffer size.

Example - Memory Buffer Overflow

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%33c", buf);
}

In this example, buf can contain 32 char elements. Therefore, the format specifier %33c causes a
buffer overflow.

Correction — Use Smaller Precision in Format Specifier

One possible correction is to use a smaller precision in the format specifier.

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%32c", buf);
}

Destination buffer overflow in string manipulation
Issue

Destination buffer overflow in string manipulation occurs when certain string manipulation
functions write to their destination buffer argument at an offset greater than the buffer size.

For instance, when calling the function sprintf(char* buffer, const char* format), you
use a constant string format of greater size than buffer.

Risk

Buffer overflow can cause unexpected behavior such as memory corruption or stopping your system.
Buffer overflow also introduces the risk of code injection.

Fix

One possible solution is to use alternative functions to constrain the number of characters written.
For instance:

 CERT C: Rule STR31-C

23-163

• If you use sprintf to write formatted data to a string, use snprintf, _snprintf or sprintf_s
instead to enforce length control. Alternatively, use asprintf to automatically allocate the
memory required for the destination buffer.

• If you use vsprintf to write formatted data from a variable argument list to a string, use
vsnprintf or vsprintf_s instead to enforce length control.

• If you use wcscpy to copy a wide string, use wcsncpy, wcslcpy, or wcscpy_s instead to enforce
length control.

Another possible solution is to increase the buffer size.

Example - Buffer Overflow in sprintf Use

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 sprintf(buffer, fmt_string);
}

In this example, buffer can contain 20 char elements but fmt_string has a greater size.

Correction — Use snprintf Instead of sprintf

One possible correction is to use the snprintf function to enforce length control.

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 snprintf(buffer, 20, fmt_string);
}

Check Information
Group: Rule 07. Characters and Strings (STR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
STR31-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-164

https://wiki.sei.cmu.edu/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator

CERT C: Rule STR32-C
Do not pass a non-null-terminated character sequence to a library function that expects a string

Description
Rule Definition

Do not pass a non-null-terminated character sequence to a library function that expects a string.

Polyspace Implementation

This checker checks for these issues:

• Invalid use of standard library string routine.
• Tainted NULL or non-null-terminated string.

Examples
Invalid use of standard library string routine
Issue

Invalid use of standard library string routine occurs when a string library function is called with
invalid arguments.

Risk

The risk depends on the type of invalid arguments. For instance, using the strcpy function with a
source argument larger than the destination argument can result in buffer overflows.

Fix

The fix depends on the standard library function involved in the defect. In some cases, you can
constrain the function arguments before the function call. For instance, if the strcpy function:

char * strcpy(char * destination, const char* source)

tries to copy too many bytes into the destination argument compared to the available buffer, constrain
the source argument before the call to strcpy. In some cases, you can use an alternative function to
avoid the error. For instance, instead of strcpy, you can use strncpy to control the number of bytes
copied.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

 CERT C: Rule STR32-C

23-165

Example - Invalid Use of Standard Library String Routine Error

 #include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);
 /* Error: Size of text is less than gbuffer */

 return(res);
 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot copy text
into gbuffer.

Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger size than
the source string text.

#include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 /*Fix: gbuffer has equal or larger size than text */
 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);
 }

Tainted NULL or non-null-terminated string
Issue

Tainted NULL or non-null-terminated string looks for strings from unsecure sources that are
being used in string manipulation routines that implicitly dereference the string buffer. For example,
strcpy or sprintf.

Tainted NULL or non-null-terminated string raises no defect for a string returned from a call to
scanf-family variadic functions. Similarly, no defect is raised when you pass the string with a %s
specifier to printf-family variadic functions.

Note If you reference a string using the form ptr[i], *ptr, or pointer arithmetic, Bug Finder raises
a Use of tainted pointer defect instead. The Tainted NULL or non-null-terminated string defect
is raised only when the pointer is used as a string.

23 CERT C Rules and Recommendations

23-166

Risk

If a string is from an unsecure source, it is possible that an attacker manipulated the string or pointed
the string pointer to a different memory location.

If the string is NULL, the string routine cannot dereference the string, causing the program to crash.
If the string is not null-terminated, the string routine might not know when the string ends. This error
can cause you to write out of bounds, causing a buffer overflow.

Fix

Validate the string before you use it. Check that:

• The string is not NULL.
• The string is null-terminated
• The size of the string matches the expected size.

Example — Getting String from Input

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define SIZE128 128
#define MAX 40
extern void print_str(const char*);
void warningMsg(void)
{
 char userstr[MAX];
 read(0,userstr,MAX);
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

In this example, the string str is concatenated with the argument userstr. The value of userstr is
unknown. If the size of userstr is greater than the space available, the concatenation overflows.

Correction — Validate the Data

One possible correction is to check the size of userstr and make sure that the string is null-
terminated before using it in strncat. This example uses a helper function, sansitize_str, to
validate the string. The defects are concentrated in this function.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define SIZE128 128
#define MAX 40
extern void print_str(const char*);
int sanitize_str(char* s) {
 int res = 0;
 if (s && (strlen(s) > 0)) { // TAINTED_STRING only flagged here
 // - string is not null

 CERT C: Rule STR32-C

23-167

 // - string has a positive and limited size
 // - TAINTED_STRING on strlen used as a firewall
 res = 1;
 }
 return res;
}
void warningMsg(void)
{
 char userstr[MAX];
 read(0,userstr,MAX);
 char str[SIZE128] = "Warning: ";
 if (sanitize_str(userstr))
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

Correction — Validate the Data

Another possible correction is to call function errorMsg and warningMsg with specific strings.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

int manageSensorValue(int sensorValue) {
 int ret = sensorValue;
 if (sensorValue < 0) {
 errorMsg("sensor value should be positive");
 exit(1);
 } else if (sensorValue > 50) {
 warningMsg("sensor value greater than 50 (applying threshold)...");
 sensorValue = 50;
 }

 return sensorValue;
}

Check Information
Group: Rule 07. Characters and Strings (STR)

23 CERT C Rules and Recommendations

23-168

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
STR32-C

Introduced in R2019a

 CERT C: Rule STR32-C

23-169

https://wiki.sei.cmu.edu/confluence/display/c/STR32-C.+Do+not+pass+a+non-null-terminated+character+sequence+to+a+library+function+that+expects+a+string

CERT C: Rule STR34-C
Cast characters to unsigned char before converting to larger integer sizes

Description
Rule Definition

Cast characters to unsigned char before converting to larger integer sizes.

Polyspace Implementation

This checker checks for Misuse of sign-extended character value.

Examples
Misuse of sign-extended character value
Issue

Misuse of sign-extended character value occurs when you convert a signed or plain char data
type to a wider integer data type with sign extension. You then use the resulting sign-extended value
as array index, for comparison with EOF or as argument to a character-handling function.

Risk

Comparison with EOF: Suppose, your compiler implements the plain char type as signed. In this
implementation, the character with the decimal form of 255 (–1 in two’s complement form) is stored
as a signed value. When you convert a char variable to the wider data type int for instance, the sign
bit is preserved (sign extension). This sign extension results in the character with the decimal form
255 being converted to the integer –1, which cannot be distinguished from EOF.

Use as array index: By similar reasoning, you cannot use sign-extended plain char variables as array
index. If the sign bit is preserved, the conversion from char to int can result in negative integers.
You must use positive integer values for array index.

Argument to character-handling function: By similar reasoning, you cannot use sign-extended plain
char variables as arguments to character-handling functions declared in ctype.h, for instance,
isalpha() or isdigit(). According to the C11 standard (Section 7.4), if you supply an integer
argument that cannot be represented as unsigned char or EOF, the resulting behavior is
undefined.

Fix

Before conversion to a wider integer data type, cast the signed or plain char value explicitly to
unsigned char.

Example - Sign-Extended Character Value Compared with EOF

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

extern char parsed_token_buffer[20];

23 CERT C Rules and Recommendations

23-170

static int parser(char *buf)
{
 int c = EOF;
 if (buf && *buf) {
 c = *buf++;
 }
 return c;
}

void func()
{
 if (parser(parsed_token_buffer) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

In this example, the function parser can traverse a string input buf. If a character in the string has
the decimal form 255, when converted to the int variable c, its value becomes –1, which is
indistinguishable from EOF. The later comparison with EOF can lead to a false positive.

Correction — Cast to unsigned char Before Conversion

One possible correction is to cast the plain char value to unsigned char before conversion to the
wider int type.

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

extern char parsed_token_buffer[20];

static int parser(char *buf)
{
 int c = EOF;
 if (buf && *buf) {
 c = (unsigned char)*buf++;
 }
 return c;
}

void func()
{
 if (parser(parsed_token_buffer) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

Check Information
Group: Rule 07. Characters and Strings (STR)

See Also
Check SEI CERT-C (-cert-c)

 CERT C: Rule STR34-C

23-171

Topics
“Check for Coding Standard Violations”

External Websites
STR34-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-172

https://wiki.sei.cmu.edu/confluence/display/c/STR34-C.+Cast+characters+to+unsigned+char+before+converting+to+larger+integer+sizes

CERT C: Rule STR37-C
Arguments to character-handling functions must be representable as an unsigned char

Description
Rule Definition

Arguments to character-handling functions must be representable as an unsigned char.

Polyspace Implementation

This checker checks for Invalid arguments to character-handling functions.

Examples
Invalid arguments to character-handling functions

Issue

Invalid arguments to character-handling functions occurs when you use a signed or plain char
variable with a negative value as argument to a character-handling function declared in ctype.h, for
instance, isalpha() or isdigit().

Risk

You cannot use plain char variables as arguments to these character-handling functions. On certain
platforms, plain char variables can have negative values that cannot be represented as unsigned
char or EOF, resulting in undefined behavior.

Fix

To avoid unexpected results, explicitly cast plain char variables to unsigned char before passing to
character-handling functions.

Check Information
Group: Rule 07. Characters and Strings (STR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
STR37-C

Introduced in R2019a

 CERT C: Rule STR37-C

23-173

https://wiki.sei.cmu.edu/confluence/display/c/STR37-C.+Arguments+to+character-handling+functions+must+be+representable+as+an+unsigned+char

CERT C: Rule STR38-C
Do not confuse narrow and wide character strings and functions

Description
Rule Definition

Do not confuse narrow and wide character strings and functions.

Polyspace Implementation

This checker checks for Misuse of narrow or wide character string.

Examples
Misuse of narrow or wide character string
Issue

Misuse of narrow or wide character string occurs when you pass a narrow character string to a
wide string function, or a wide character string to a narrow string function.

Misuse of narrow or wide character string raises no defect on operating systems where narrow
and wide character strings have the same size.

Risk

Using a narrow character string with a wide string function, or vice versa, can result in unexpected
or undefined behavior.

If you pass a wide character string to a narrow string function, you can encounter these issues:

• Data truncation. If the string contains null bytes, a copy operation using strncpy() can
terminate early.

• Incorrect string length. strlen() returns the number of characters of a string up to the first null
byte. A wide string can have additional characters after its first null byte.

If you pass a narrow character string to a wide string function, you can encounter this issue:

• Buffer overflow. In a copy operation using wcsncpy(), the destination string might have
insufficient memory to store the result of the copy.

Fix

Use the narrow string functions with narrow character strings. Use the wide string functions with
wide character strings.

Example - Passing Wide Character Strings to strncpy()

#include <string.h>
#include <wchar.h>

void func(void)

23 CERT C Rules and Recommendations

23-174

{
 wchar_t wide_str1[] = L"0123456789";
 wchar_t wide_str2[] = L"0000000000";
 strncpy(wide_str2, wide_str1, 10);
}

In this example, strncpy() copies 10 wide characters from wide_strt1 to wide_str2. If
wide_str1 contains null bytes, the copy operation can end prematurely and truncate the wide
character string.

Correction — Use wcsncpy() to Copy Wide Character Strings

One possible correction is to use wcsncpy() to copy wide_str1 to wide_str2.

#include <string.h>
#include <wchar.h>

void func(void)
{
 wchar_t wide_str1[] = L"0123456789";
 wchar_t wide_str2[] = L"0000000000";
 wcsncpy(wide_str2, wide_str1, 10);
}

Check Information
Group: Rule 07. Characters and Strings (STR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
STR38-C

Introduced in R2019a

 CERT C: Rule STR38-C

23-175

https://wiki.sei.cmu.edu/confluence/display/c/STR38-C.+Do+not+confuse+narrow+and+wide+character+strings+and+functions

CERT C: Rule MEM30-C
Do not access freed memory

Description
Rule Definition

Do not access freed memory.

Polyspace Implementation

This checker checks for:

• Accessing previously freed pointer
• Freeing previously freed pointer

Examples
Accessing previously freed pointer
Issue

Accessing previously freed pointer occurs when you attempt to access a block of memory after
freeing the block by using the free function.

Risk

When a pointer is allocated dynamic memory by using malloc, calloc or realloc, it points to a
memory location on the heap. When you use the free function on this pointer, the associated block of
memory is freed for reallocation and the pointer becomes a dangling pointer. Attempting to access
this block of memory by dereferencing the dangling pointer can result in unpredictable behavior or a
segmentation fault.

Fix

The fix depends on the root cause of the defect. Determine if you intended to free the memory later or
allocate another memory block to the pointer before access.

As a best practice, after you free a memory block, assign the corresponding pointer to NULL. Before
dereferencing pointers, check them for NULL values and handle the error. In this way, you are
protected against accessing a freed block.

Example — Accessing Previously Freed Pointer Error

#include <stdlib.h>
#include <stdio.h>
 int increment_content_of_address(int base_val, int shift)
 {
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;

23 CERT C Rules and Recommendations

23-176

 free(pi);

 j = *pi + shift;
 /* Defect: Reading a freed pointer */

 return j;
 }

The free statement releases the block of memory that pi refers to. Therefore, dereferencing pi
after the free statement is not valid.

Correction — Free Pointer After Last Use

One possible correction is to free the pointer pi only after the last instance where it is accessed.

#include <stdlib.h>

int increment_content_of_address(int base_val, int shift)
{
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;

 j = *pi + shift;
 *pi = 0;

 /* Fix: The pointer is freed after its last use */
 free(pi);
 return j;
}

Freeing previously freed pointer
Issue

Freeing previously freed pointer occurs when you attempt to free the memory allocated to a
pointer after already freeing the pointer by using the free function.

Risk

Attempting to free the memory associated with a previously freed pointer might corrupt the memory
management of the program and cause a memory leak. This defect might allow an attacker to access
the memory and execute arbitrary code.

Fix

To avoid this defect, assign pointers to NULL after freeing them. Check the pointers for NULL value
before attempting to access the memory associated with the pointer. In this way, you are protected
against accessing a freed block.

Example — Freeing Previously Freed Pointer

#include <stdlib.h>
#include <stdio.h>
int getStatus();
void double_deallocation(void)
{

 CERT C: Rule MEM30-C

23-177

 int* pi = (int*)malloc(sizeof(int));
 if (pi == 0) return;

 *pi = 2;
 /*...*/
 if(getStatus()==1)
 {
 /*...*/
 free(pi);
 }
 free(pi); //Noncompliant
}

The second free statement attempts to release the block of memory that pi refers to, but the pointer
pi might already be freed in the if block of code. This second free statement might cause a
memory leak and security vulnerabilities in the code. Polyspace flags the second free statement.

Correction — Check Pointers Before Calling free

One possible correction is to assign freed pointers to NULL and to check pointers for NULL before
freeing them.

#include <stdlib.h>
#include <stdio.h>
int getStatus();
void double_deallocation(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == 0) return;

 *pi = 2;
 /*...*/
 if(getStatus()==1)
 {
 /*...*/
 if(pi!=NULL)
 {
 free(pi);
 pi= NULL;
 }
 }
 /*...*/
 if(pi!=NULL)
 {
 free(pi);
 pi= NULL;
 } //Compliant
}

In this case, the memory allocated to pointer pi is freed only if it is not already freed.

Check Information
Group: Rule 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

23 CERT C Rules and Recommendations

23-178

Topics
“Check for Coding Standard Violations”

External Websites
MEM30-C

Introduced in R2019a

 CERT C: Rule MEM30-C

23-179

https://wiki.sei.cmu.edu/confluence/display/c/MEM30-C.+Do+not+access+freed+memory

CERT C: Rule MEM31-C
Free dynamically allocated memory when no longer needed

Description
Rule Definition

Free dynamically allocated memory when no longer needed.

Polyspace Implementation

This checker checks for Memory leak.

Examples
Memory leak
Issue

Memory leak occurs when you do not free a block of memory allocated through malloc, calloc,
realloc, or new. If the memory is allocated in a function, the defect does not occur if:

• Within the function, you free the memory using free or delete.
• The function returns the pointer assigned by malloc, calloc, realloc, or new.
• The function stores the pointer in a global variable or in a parameter.

Risk

Dynamic memory allocation functions such as malloc allocate memory on the heap. If you do not
release the memory after use, you reduce the amount of memory available for another allocation. On
embedded systems with limited memory, you might end up exhausting available heap memory even
during program execution.

Fix

Determine the scope where the dynamically allocated memory is accessed. Free the memory block at
the end of this scope.

To free a block of memory, use the free function on the pointer that was used during memory
allocation. For instance:

ptr = (int*)malloc(sizeof(int));
//...
free(ptr);

It is a good practice to allocate and free memory in the same module at the same level of abstraction.
For instance, in this example, func allocates and frees memory at the same level but func2 does not.

void func() {
 ptr = (int*)malloc(sizeof(int));
 {
 //...

23 CERT C Rules and Recommendations

23-180

 }
 free(ptr);
}

void func2() {
 {
 ptr = (int*)malloc(sizeof(int));
 //...
 }
 free(ptr);
}

See CERT-C Rule MEM00-C.

Example - Dynamic Memory Not Released Before End of Function

#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return;
 }

 *pi = 42;
 /* Defect: pi is not freed */
}

In this example, pi is dynamically allocated by malloc. The function assign_memory does not free
the memory, nor does it return pi.

Correction — Free Memory

One possible correction is to free the memory referenced by pi using the free function. The free
function must be called before the function assign_memory terminates

#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return;
 }
 *pi = 42;

 /* Fix: Free the pointer pi*/
 free(pi);
}

 CERT C: Rule MEM31-C

23-181

https://wiki.sei.cmu.edu/confluence/x/FtYxBQ

Correction — Return Pointer from Dynamic Allocation

Another possible correction is to return the pointer pi. Returning pi allows the function calling
assign_memory to free the memory block using pi.

#include<stdlib.h>
#include<stdio.h>

int* assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return(pi);
 }
 *pi = 42;

 /* Fix: Return the pointer pi*/
 return(pi);
}

Check Information
Group: Rule 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM31-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-182

https://wiki.sei.cmu.edu/confluence/display/c/MEM31-C.+Free+dynamically+allocated+memory+when+no+longer+needed

CERT C: Rule MEM33-C
Allocate and copy structures containing a flexible array member dynamically

Description
Rule Definition

Allocate and copy structures containing a flexible array member dynamically.

Polyspace Implementation

This checker checks for Misuse of structure with flexible array member.

Examples
Misuse of structure with flexible array member
Issue

Misuse of structure with flexible array member occurs when:

• You define an object with a flexible array member of unknown size at compilation time.
• You make an assignment between structures with a flexible array member without using

memcpy() or a similar function.
• You use a structure with a flexible array member as an argument to a function and pass the

argument by value.
• Your function returns a structure with a flexible array member.

A flexible array member has no array size specified and is the last element of a structure with at least
two named members.

Risk

If the size of the flexible array member is not defined, it is ignored when allocating memory for the
containing structure. Accessing such a structure has undefined behavior.

Fix

• Use malloc() or a similar function to allocate memory for a structure with a flexible array
member.

• Use memcpy() or a similar function to copy a structure with a flexible array member.
• Pass a structure with a flexible array member as a function argument by pointer.

Example - Structure Passed By Value to Function

#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>

 CERT C: Rule MEM33-C

23-183

struct example_struct
{
 size_t num;
 int data[];
};

extern void arg_by_value(struct example_struct s);

void func(void)
{
 struct example_struct *flex_struct;
 size_t i;
 size_t array_size = 4;
 /* Dynamically allocate memory for the struct */
 flex_struct = (struct example_struct *)
 malloc(sizeof(struct example_struct) + sizeof(int) * array_size);
 if (flex_struct == NULL)
 {
 /* Handle error */
 }
 /* Initialize structure */
 flex_struct->num = array_size;
 for (i = 0; i < array_size; ++i)
 {
 flex_struct->data[i] = 0;
 }
 /* Handle structure */

 /* Argument passed by value. 'data' not
 copied to passed value. */
 arg_by_value(*flex_struct);

 /* Free dynamically allocated memory */
 free(flex_struct);
}

In this example, flex_struct is passed by value as an argument to arg_by_value. As a result, the
flexible array member data is not copied to the passed argument.

Correction — Pass Structure by Pointer to Function

To ensure that all the members of the structure are copied to the passed argument, pass
flex_struct to arg_by_pointer by pointer.

#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>

struct example_struct
{
 size_t num;
 int data[];

23 CERT C Rules and Recommendations

23-184

};

extern void arg_by_pointer(struct example_struct *s);

void func(void)
{
 struct example_struct *flex_struct;
 size_t i;
 size_t array_size = 4;
 /* Dynamically allocate memory for the struct */
 flex_struct = (struct example_struct *)
 malloc(sizeof(struct example_struct) + sizeof(int) * array_size);
 if (flex_struct == NULL)
 {
 /* Handler error */
 }
 /* Initialize structure */
 flex_struct->num = array_size;
 for (i = 0; i < array_size; ++i)
 {
 flex_struct->data[i] = 0;
 }
 /* Handle structure */

 /* Structure passed by pointer */
 arg_by_pointer(flex_struct);

 /* Free dynamically allocated memory */
 free(flex_struct);
}

Check Information
Group: Rule 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM33-C

Introduced in R2019a

 CERT C: Rule MEM33-C

23-185

https://wiki.sei.cmu.edu/confluence/display/c/MEM33-C.++Allocate+and+copy+structures+containing+a+flexible+array+member+dynamically

CERT C: Rule MEM34-C
Only free memory allocated dynamically

Description
Rule Definition

Only free memory allocated dynamically.

Polyspace Implementation

This checker checks for Invalid free of pointer.

Examples
Invalid free of pointer
Issue

Invalid free of pointer occurs when a block of memory released using the free function was not
previously allocated using malloc, calloc, or realloc.

Risk

The free function releases a block of memory allocated on the heap. If you try to access a location on
the heap that you did not allocate previously, a segmentation fault can occur.

The issue can highlight coding errors. For instance, you perhaps wanted to use the free function or a
previous malloc function on a different pointer.

Fix

In most cases, you can fix the issue by removing the free statement. If the pointer is not allocated
memory from the heap with malloc or calloc, you do not need to free the pointer. You can simply
reuse the pointer as required.

If the issue highlights a coding error such as use of free or malloc on the wrong pointer, correct the
error.

If the issue occurs because you use the free function to free memory allocated with the new
operator, replace the free function with the delete operator.

Example - Invalid Free of Pointer Error

#include <stdlib.h>

void Assign_Ones(void)
{
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;

 free(p);

23 CERT C Rules and Recommendations

23-186

 /* Defect: p does not point to dynamically allocated memory */
}

The pointer p is deallocated using the free function. However, p points to a memory location that
was not dynamically allocated.

Correction — Remove Pointer Deallocation

If the number of elements of the array p is known at compile time, one possible correction is to
remove the deallocation of the pointer p.

#include <stdlib.h>

void Assign_Ones(void)
 {
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;
 /* Fix: Remove deallocation of p */
 }

Correction — Introduce Pointer Allocation

If the number of elements of the array p is not known at compile time, one possible correction is to
dynamically allocate memory to the array p.

#include <stdlib.h>

void Assign_Ones(int num)
{
 int *p;
 /* Fix: Allocate memory dynamically to p */
 p=(int*) calloc(10,sizeof(int));
 for(int i=0;i<10;i++)
 *(p+i)=1;
 free(p);
}

Check Information
Group: Rule 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM34-C

Introduced in R2019a

 CERT C: Rule MEM34-C

23-187

https://wiki.sei.cmu.edu/confluence/display/c/MEM34-C.+Only+free+memory+allocated+dynamically

CERT C: Rule MEM35-C
Allocate sufficient memory for an object

Description
Rule Definition

Allocate sufficient memory for an object.

Polyspace Implementation

This checker checks for these issues:

• Pointer access out of bounds.
• Memory allocation with tainted size.
• Wrong type used in sizeof during memory allocation

Examples
Pointer access out of bounds
Issue

Pointer access out of bounds occurs when a pointer is dereferenced outside its bounds.

When a pointer is assigned an address, a block of memory is associated with the pointer. You cannot
access memory beyond that block using the pointer.
Risk

Dereferencing a pointer outside its bounds is undefined behavior. You can read an unpredictable
value or try to access a location that is not allowed and encounter a segmentation fault.
Fix

The fix depends on the root cause of the defect. For instance, you dereferenced a pointer inside a loop
and one of these situations happened:

• The upper bound of the loop is too large.
• You used pointer arithmetic to advance the pointer with an incorrect value for the pointer

increment.

To fix the issue, you have to modify the loop bound or the pointer increment value.

Often the result details show a sequence of events that led to the defect. You can implement the fix on
any event in the sequence. If the result details do not show the event history, you can trace back
using right-click options in the source code and see previous related events. See also “Interpret Bug
Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

23 CERT C Rules and Recommendations

23-188

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Pointer access out of bounds error

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 ptr++;
 *ptr=i;
 /* Defect: ptr out of bounds for i=9 */
 }

 return(arr);
}

ptr is assigned the address arr that points to a memory block of size 10*sizeof(int). In the for-
loop, ptr is incremented 10 times. In the last iteration of the loop, ptr points outside the memory
block assigned to it. Therefore, it cannot be dereferenced.

Correction — Check Pointer Stays Within Bounds

One possible correction is to reverse the order of increment and dereference of ptr.

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 /* Fix: Dereference pointer before increment */
 *ptr=i;
 ptr++;
 }

 return(arr);
}

After the last increment, even though ptr points outside the memory block assigned to it, it is not
dereferenced more.

Memory allocation with tainted size

Issue

Memory allocation with tainted size checks memory allocation functions, such as calloc or
malloc, for size arguments from unsecured sources.

 CERT C: Rule MEM35-C

23-189

Risk

Uncontrolled memory allocation can cause your program to request too much system memory. This
consequence can lead to a crash due to an out-of-memory condition, or assigning too many resources.
Fix

Before allocating memory, check the value of your arguments to check that they do not exceed the
bounds.
Example — Allocate Memory Using Input From User

#include<stdio.h>
#include <stdlib.h>

int* bug_taintedmemoryallocsize(void) {
 size_t size;
 scanf("%zu", &size);
 int* p = (int*)malloc(size);
 return p;
}

In this example, malloc allocates size bytes of memory for the pointer p. The variable size comes
from the user of the program. Its value is not checked, and it could be larger than the amount of
available memory. If size is larger than the number of available bytes, your program could crash.
Correction — Check Size of Memory to be Allocated

One possible correction is to check the size of the memory that you want to allocate before
performing the malloc operation. This example checks to see if size is positive and less than the
maximum size.

#include<stdio.h>
#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int* corrected_taintedmemoryallocsize(void) {
 size_t size;
 scanf("%zu", &size);
 int* p = NULL;
 if (size>0 && size<SIZE128) { /* Fix: Check entry range before use */
 p = (int*)malloc((unsigned int)size);
 }
 return p;
}

Wrong type used in sizeof during memory allocation
Issue

Wrong type used in sizeof during memory allocation occurs when you use a pointer as the
argument of the sizeof operator instead of using the object that the pointer points to when
allocating memory for the pointer dynamically. For instance, this issue is raised if you use
malloc(sizeof(type*)) instead of malloc(sizeof(type)) when initializing a type* pointer.

23 CERT C Rules and Recommendations

23-190

Risk

Irrespective of what type stands for, the expression sizeof(type*) always returns the pointer size
on your platform in bytes. If you inadvertantly use sizeof(type*) instead of sizeof(type) in
your malloc statement, the allocated memory block might be smaller than what you need. This error
might cause defects such as buffer overflows.

Consider a structure structType, which contains 10 int variables. If you initialize a structType*
pointer by using malloc(sizeof(structType*)) on a 32-bit platform, the pointer is assigned a
memory block of four bytes. This memory block is insufficient for a structType structure, which
requires at least 10 * sizeof(int) bytes. Because the required size is much greater than the
actual allocated size, using structType* instead of structType as the argument of sizeof results
in an overflow.
Fix

When allocating memory blocks for pointers, use sizeof(type) instead of sizeof(type*).
Example — Allocate a Structure Array by Using sizeof Operator in malloc Statement

#include <stdlib.h>
typedef struct user{
 long uid;
 long euid;
 int number;
 int address;
 int value;
} USER;

void Noncompliant(void) {
 USER* user_list;
 user_list = (USER*)malloc(sizeof(USER*) * 5);//Noncompliant
 /*...*/
 free(user_list);

}

In this example, memory is dynamically allocated for the array user_list which contains five
instances of the structure USER. This array requires at least 50 bytes of memory because each
element of the array requires at least 10 bytes of memory. In the malloc statement, USER* is used as
the argument for the sizeof operator instead of USER, perhaps inadvertently. As a result, the size of
the allocated memory block might be 20 bytes, which is much less than the required memory. This
error might result in an buffer overflow.
Correction — Use Correct Type

One possible correction is to use the type of the object that the pointer points to as the input to
sizeof. For instance, use USER instead of USER* when allocating memory for an array of USER.

#include <stdlib.h>
typedef struct user{
 long uid;
 long euid;
 int number;
 int address;
 int value;
} USER;

 CERT C: Rule MEM35-C

23-191

void Compliant(void) {
 USER* user_list;
 user_list = (USER*)malloc(sizeof(USER) * 5);
 /*...*/
 free(user_list);

}

Check Information
Group: Rule 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM35-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-192

https://wiki.sei.cmu.edu/confluence/display/c/MEM35-C.+Allocate+sufficient+memory+for+an+object

CERT C: Rule MEM36-C
Do not modify the alignment of objects by calling realloc()

Description
Rule Definition

Do not modify the alignment of objects by calling realloc().

Polyspace Implementation

This checker checks for Alignment changed after memory reallocation.

Examples
Alignment changed after memory reallocation
Issue

Alignment changed after memory reallocation occurs when you use realloc() to modify the
size of objects with strict memory alignment requirements.

Risk

The pointer returned by realloc() can be suitably assigned to objects with less strict alignment
requirements. A misaligned memory allocation can lead to buffer underflow or overflow, an illegally
dereferenced pointer, or access to arbitrary memory locations. In processors that support misaligned
memory, the allocation impacts the performance of the system.

Fix

To reallocate memory:

1 Resize the memory block.

• In Windows, use _aligned_realloc() with the alignment argument used in
_aligned_malloc() to allocate the original memory block.

• In UNIX/Linux, use the same function with the same alignment argument used to allocate the
original memory block.

2 Copy the original content to the new memory block.
3 Free the original memory block.

Note This fix has implementation-defined behavior. The implementation might not support the
requested memory alignment and can have additional constraints for the size of the new memory.

Example - Memory Reallocated Without Preserving the Original Alignment

#include <stdio.h>
#include <stdlib.h>

 CERT C: Rule MEM36-C

23-193

#define SIZE1024 1024

void func(void)
{
 size_t resize = SIZE1024;
 size_t alignment = 1 << 12; /* 4096 bytes alignment */
 int *ptr = NULL;
 int *ptr1;

 /* Allocate memory with 4096 bytes alignment */

 if (posix_memalign((void **)&ptr, alignment, sizeof(int)) != 0)
 {
 /* Handle error */
 }

 /*Reallocate memory without using the original alignment.
 ptr1 may not be 4096 bytes aligned. */

 ptr1 = (int *)realloc(ptr, sizeof(int) * resize);

 if (ptr1 == NULL)
 {
 /* Handle error */
 }

 /* Processing using ptr1 */

 /* Free before exit */
 free(ptr1);
}

In this example, the allocated memory is 4096-bytes aligned. realloc() then resizes the allocated
memory. The new pointer ptr1 might not be 4096-bytes aligned.

Correction — Specify the Alignment for the Reallocated Memory

When you reallocate the memory, use posix_memalign() and pass the alignment argument that you
used to allocate the original memory.

#include <stdio.h>
#include <stdlib.h>

#define SIZE1024 1024

void func(void)
{
 size_t resize = SIZE1024;
 size_t alignment = 1 << 12; /* 4096 bytes alignment */
 int *ptr = NULL;

 /* Allocate memory with 4096 bytes alignment */
 if (posix_memalign((void **)&ptr, alignment, sizeof(int)) != 0)
 {
 /* Handle error */

23 CERT C Rules and Recommendations

23-194

 }

 /* Reallocate memory using the original alignment. */
 if (posix_memalign((void **)&ptr, alignment, sizeof(int) * resize) != 0)
 {
 /* Handle error */
 free(ptr);
 ptr = NULL;
 }

 /* Processing using ptr */

 /* Free before exit */
 free(ptr);
}

Check Information
Group: Rule 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM36-C

Introduced in R2019a

 CERT C: Rule MEM36-C

23-195

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152255

CERT C: Rule FIO30-C
Exclude user input from format strings

Description
Rule Definition

Exclude user input from format strings.

Polyspace Implementation

This checker checks for Tainted string format.

Examples
Tainted string format
Issue

Tainted string format detects string formatting with printf-style functions that contain elements
from unsecure sources.

Risk

If you use externally controlled elements to format a string, you can cause buffer overflow or data-
representation problems. An attacker can use these string formatting elements to view the contents
of a stack using %x or write to a stack using %n.

Fix

Pass a static string to format string functions. This fix ensures that an external actor cannot control
the string.

Another possible fix is to allow only the expected number of arguments. If possible, use functions that
do not support the vulnerable %n operator in format strings.

Example - Get Elements from User Input

#include <stdio.h>
#include <unistd.h>
#define MAX 40
void taintedstringformat(void) {
 char userstr[MAX];
 read(0,userstr,MAX);
 printf(userstr);
}

This example prints the input argument userstr. The string is unknown. If it contains elements such
as %, printf can interpret userstr as a string format instead of a string, causing your program to
crash.

Correction — Print as String

One possible correction is to print userstr explicitly as a string so that there is no ambiguity.

23 CERT C Rules and Recommendations

23-196

#include "stdio.h"
#include <unistd.h>
#define MAX 40

void taintedstringformat(void) {
 char userstr[MAX];
 read(0,userstr,MAX);
 printf("%.20s", userstr);
}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO30-C

Introduced in R2019a

 CERT C: Rule FIO30-C

23-197

https://wiki.sei.cmu.edu/confluence/display/c/FIO30-C.+Exclude+user+input+from+format+strings

CERT C: Rule FIO32-C
Do not perform operations on devices that are only appropriate for files

Description
Rule Definition

Do not perform operations on devices that are only appropriate for files.

Polyspace Implementation

This checker checks for Inappropriate I/O operation on device files.

Examples
Inappropriate I/O operation on device files
Issue

Inappropriate I/O operation on device files occurs when you do not check whether a file name
parameter refers to a device file before you pass it to these functions:

• fopen()
• fopen_s()
• freopen()
• remove()
• rename()
• CreateFile()
• CreateFileA()
• CreateFileW()
• _wfopen()
• _wfopen_s()

Device files are files in a file system that provide an interface to device drivers. You can use these files
to interact with devices.

Inappropriate I/O operation on device files does not raise a defect when:

• You use stat or lstat-family functions to check the file name parameter before calling the
previously listed functions.

• You use a string comparison function to compare the file name against a list of device file names.

Risk

Operations appropriate only for regular files but performed on device files can result in denial-of-
service attacks, other security vulnerabilities, or system failures.

23 CERT C Rules and Recommendations

23-198

Fix

Before you perform an I/O operation on a file:

• Use stat(), lstat(), or an equivalent function to check whether the file name parameter refers
to a regular file.

• Use a string comparison function to compare the file name against a list of device file names.

Example - Using fopen() Without Checking file_name

#include <stdio.h>
#include <string.h>

#define SIZE1024 1024

FILE* func()
{

 FILE* f;
 const char file_name[SIZE1024] = "./tmp/file";

 if ((f = fopen(file_name, "w")) == NULL) {
 /*handle error */
 };
 /*operate on file */
}

In this example, func() operates on the file file_name without checking whether it is a regular file.
If file_name is a device file, attempts to access it can result in a system failure.

Correction — Check File with lstat() Before Calling fopen()

One possible correction is to use lstat() and the S_ISREG macro to check whether the file is a
regular file. This solution contains a TOCTOU race condition that can allow an attacker to modify the
file after you check it but before the call to fopen(). To prevent this vulnerability, ensure that
file_name refers to a file in a secure folder.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>

#define SIZE1024 1024

FILE* func()
{

 FILE* f;
 const char file_name[SIZE1024] = "./tmp/file";
 struct stat orig_st;
 if ((lstat(file_name, &orig_st) != 0) ||
 (!S_ISREG(orig_st.st_mode))) {
 exit(0);
 }
 if ((f = fopen(file_name, "w")) == NULL) {
 /*handle error */
 };

 CERT C: Rule FIO32-C

23-199

 /*operate on file */
}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO32-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-200

https://wiki.sei.cmu.edu/confluence/display/c/FIO32-C.+Do+not+perform+operations+on+devices+that+are+only+appropriate+for+files

CERT C: Rule FIO34-C
Distinguish between characters read from a file and EOF or WEOF

Description
Rule Definition

Distinguish between characters read from a file and EOF or WEOF.

Polyspace Implementation

This checker checks for Character value absorbed into EOF.

Examples
Character value absorbed into EOF
Issue

Character value absorbed into EOF occurs when you perform a data type conversion that makes a
valid character value indistinguishable from EOF (End-of-File). Bug Finder flags the defect in one of
the following situations:

• End-of-File: You perform a data type conversion such as from int to char that converts a non-
EOF character value into EOF.

char ch = (char)getchar()

You then compare the result with EOF.

if((int)ch == EOF)

The conversion can be explicit or implicit.
• Wide End-of-File: You perform a data type conversion that can convert a non-WEOF wide

character value into WEOF, and then compare the result with WEOF.

Risk

The data type char cannot hold the value EOF that indicates the end of a file. Functions such as
getchar have return type int to accommodate EOF. If you convert from int to char, the values
UCHAR_MAX (a valid character value) and EOF get converted to the same value -1 and become
indistinguishable from each other. When you compare the result of this conversion with EOF, the
comparison can lead to false detection of EOF. This rationale also applies to wide character values
and WEOF.

Fix

Perform the comparison with EOF or WEOF before conversion.

Example - Return Value of getchar Converted to char

#include <stdio.h>
#include <stdlib.h>

 CERT C: Rule FIO34-C

23-201

#define fatal_error() abort()

char func(void)
{
 char ch;
 ch = getchar();
 if (EOF == (int)ch) {
 fatal_error();
 }
 return ch;
}

In this example, the return value of getchar is implicitly converted to char. If getchar returns
UCHAR_MAX, it is converted to -1, which is indistinguishable from EOF. When you compare with EOF
later, it can lead to a false positive.

Correction — Perform Comparison with EOF Before Conversion

One possible correction is to first perform the comparison with EOF, and then convert from int to
char.

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

char func(void)
{
 int i;
 i = getchar();
 if (EOF == i) {
 fatal_error();
 }
 else {
 return (char)i;
 }
}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO34-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-202

https://wiki.sei.cmu.edu/confluence/display/c/FIO34-C.+Distinguish+between+characters+read+from+a+file+and+EOF+or+WEOF

CERT C: Rule FIO37-C
Do not assume that fgets() or fgetws() returns a nonempty string when successful

Description
Rule Definition

Do not assume that fgets() or fgetws() returns a nonempty string when successful.

Polyspace Implementation

This checker checks for Use of indeterminate string.

Examples
Use of indeterminate string
Issue

Use of indeterminate string occurs when you do not check the validity of the buffer returned from
fgets-family functions. The checker raises a defect when such a buffer is used as:

• An argument in standard functions that print or manipulate strings or wide strings.
• A return value.
• An argument in external functions with parameter type const char * or const wchar_t *.

Risk

If an fgets-family function fails, the content of its output buffer is indeterminate. Use of such a
buffer has undefined behavior and can result in a program that stops working or other security
vulnerabilities.

Fix

Reset the output buffer of an fgets-family function to a known string value when the function fails.

Example - Output of fgets() Passed to External Function

#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <stdlib.h>

#define SIZE20 20

extern void display_text(const char *txt);

void func(void) {
 char buf[SIZE20];

 /* Check fgets() error */
 if (fgets (buf, sizeof (buf), stdin) == NULL)
 {

 CERT C: Rule FIO37-C

23-203

 /* 'buf' may contain an indeterminate string. */
 ;
 }
 /* 'buf passed to external function */
 display_text(buf);
}

In this example, the output buf is passed to the external function display_text(), but its value is
not reset if fgets() fails.

Correction — Reset fgets() Output on Failure

If fgets() fails, reset buf to a known value before you pass it to an external function.

#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <stdlib.h>

#define SIZE20 20

extern void display_text(const char *txt);

void func1(void) {
 char buf[SIZE20];
 /* Check fgets() error */
 if (fgets (buf, sizeof (buf), stdin) == NULL)
 {
 /* value of 'buf' reset after fgets() failure. */
 buf[0] = '\0';
 }
 /* 'buf' passed to external function */
 display_text(buf);
}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO37-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-204

https://wiki.sei.cmu.edu/confluence/display/c/FIO37-C.+Do+not+assume+that+fgets%28%29+or+fgetws%28%29+returns+a+nonempty+string+when+successful

CERT C: Rule FIO38-C
Do not copy a FILE object

Description
Rule Definition

Do not copy a FILE object.

Polyspace Implementation

This checker checks for Misuse of a FILE object.

Examples
Misuse of a FILE object
Issue

Misuse of a FILE object occurs when:

• You dereference a pointer to a FILE object, including indirect dereference by using memcmp().
• You modify an entire FILE object or one of its components through its pointer.
• You take the address of FILE object that was not returned from a call to an fopen-family function.

No defect is raised if a macro defines the pointer as the address of a built-in FILE object, such as
#define ptr (&__stdout).

Risk

In some implementations, the address of the pointer to a FILE object used to control a stream is
significant. A pointer to a copy of a FILE object is interpreted differently than a pointer to the original
object, and can potentially result in operations on the wrong stream. Therefore, the use of a copy of a
FILE object can cause the software to stop responding, which an attacker might exploit in denial-of-
service attacks.

Fix

Do not make a copy of a FILE object. Do not use the address of a FILE object that was not returned
from a successful call to an fopen-family function.

Example - Copy of FILE Object Used in fputs()

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>

void fatal_error(void);

int func(void)
{

 CERT C: Rule FIO38-C

23-205

 /*'stdout' dereferenced and contents
 copied to 'my_stdout'. */
 FILE my_stdout = *stdout;

 /* Address of 'my_stdout' may not point to correct stream. */
 if (fputs("Hello, World!\n", &my_stdout) == EOF)
 {
 /* Handler error */
 fatal_error();
 }
 return 0;
}

In this example, FILE object stdout is dereferenced and its contents are copied to my_stdout. The
contents of stdout might not be significant. fputs() is then called with the address of my_stdout
as an argument. Because no call to fopen() or a similar function was made, the address of
my_stdout might not point to the correct stream.
Correction — Copy the FILE Object Pointer

Declare my_stdout to point to the same address as stdout to ensure that you write to the correct
stream when you call fputs().

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>

void fatal_error(void);

int func(void)
{
 /* 'my_stdout' and 'stdout' point to the same object. */
 FILE *my_stdout = stdout;
 if (fputs("Hello, World!\n", my_stdout) == EOF)
 {
 /* Handler error */
 fatal_error();
 }
 return 0;
}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO38-C

23 CERT C Rules and Recommendations

23-206

https://wiki.sei.cmu.edu/confluence/display/c/FIO38-C.+Do+not+copy+a+FILE+object

Introduced in R2019a

 CERT C: Rule FIO38-C

23-207

CERT C: Rule FIO39-C
Do not alternately input and output from a stream without an intervening flush or positioning call

Description
Rule Definition

Do not alternately input and output from a stream without an intervening flush or positioning call.

Polyspace Implementation

This checker checks for Alternating input and output from a stream without flush or
positioning call.

Examples
Alternating input and output from a stream without flush or positioning call
Issue

Alternating input and output from a stream without flush or positioning call occurs when:

• You do not perform a flush or function positioning call between an output operation and a
following input operation on a file stream in update mode.

• You do not perform a function positioning call between an input operation and a following output
operation on a file stream in update mode.

Risk

Alternating input and output operations on a stream without an intervening flush or positioning call is
undefined behavior.

Fix

Call fflush() or a file positioning function such as fseek() or fsetpos() between output and
input operations on an update stream.

Call a file positioning function between input and output operations on an update stream.

Example - Read After Write Without Intervening Flush

#include <stdio.h>
#define SIZE20 20

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void func()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

23 CERT C Rules and Recommendations

23-208

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Read operation after write without
 intervening flush. */
 if (fread(data, 1, SIZE20, file) < SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;
 }
}

In this example, the file demo.txt is opened for reading and appending. After the call to fwrite(),
a call to fread() without an intervening flush operation is undefined behavior.

Correction — Call fflush() Before the Read Operation

After writing data to the file, before calling fread(), perform a flush call.

#include <stdio.h>
#define SIZE20 20

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void func()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)

 CERT C: Rule FIO39-C

23-209

 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Buffer flush after write and before read */
 if (fflush(file) != 0)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 if (fread(data, 1, SIZE20, file) < SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;
 }
}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO39-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-210

https://wiki.sei.cmu.edu/confluence/display/c/FIO39-C.+Do+not+alternately+input+and+output+from+a+stream+without+an+intervening+flush+or+positioning+call

CERT C: Rule FIO40-C
Reset strings on fgets() or fgetws() failure

Description
Rule Definition

Reset strings on fgets() or fgetws() failure.

Polyspace Implementation

This checker checks for Use of indeterminate string.

Examples
Use of indeterminate string
Issue

Use of indeterminate string occurs when you do not check if a write operation using an fgets-
family function such as:

char * fgets(char* buf, int n, FILE *stream);

succeeded and the buffer written has valid content, or you do not reset the buffer on failure. You then
perform an operation that assumes a buffer with valid content. For instance, if the buffer with
possibly indeterminate content is buf (as shown above), the checker raises a defect if:

• You pass buf as argument to standard functions that print or manipulate strings or wide strings.
• You return buf from a function.
• You pass buf as argument to external functions with parameter type const char * or const

wchar_t *.
• You read buf as buf[index] or *(buf + offset), where index or offset is a numerical

value representing the distance from the beginning of the buffer.

Risk

If an fgets-family function fails, the content of its output buffer is indeterminate. Use of such a
buffer has undefined behavior and can result in a program that stops working or other security
vulnerabilities.

Fix

Reset the output buffer of an fgets-family function to a known string value when the function fails.

Example - Output of fgets() Passed to External Function

#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <stdlib.h>

 CERT C: Rule FIO40-C

23-211

#define SIZE20 20

extern void display_text(const char *txt);

void func(void) {
 char buf[SIZE20];

 /* Check fgets() error */
 if (fgets (buf, sizeof (buf), stdin) == NULL)
 {
 /* 'buf' may contain an indeterminate string. */
 ;
 }
 /* 'buf passed to external function */
 display_text(buf);
}

In this example, the output buf is passed to the external function display_text(), but its value is
not reset if fgets() fails.

Correction — Reset fgets() Output on Failure

If fgets() fails, reset buf to a known value before you pass it to an external function.

#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <stdlib.h>

#define SIZE20 20

extern void display_text(const char *txt);

void func1(void) {
 char buf[SIZE20];
 /* Check fgets() error */
 if (fgets (buf, sizeof (buf), stdin) == NULL)
 {
 /* value of 'buf' reset after fgets() failure. */
 buf[0] = '\0';
 }
 /* 'buf' passed to external function */
 display_text(buf);
}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

23 CERT C Rules and Recommendations

23-212

External Websites
FIO40-C

Introduced in R2019a

 CERT C: Rule FIO40-C

23-213

https://wiki.sei.cmu.edu/confluence/display/c/FIO40-C.+Reset+strings+on+fgets%28%29++or+fgetws%28%29+failure

CERT C: Rule FIO41-C
Do not call getc(), putc(), getwc(), or putwc() with a stream argument that has side effects

Description
Rule Definition

Do not call getc(), putc(), getwc(), or putwc() with a stream argument that has side effects.

Polyspace Implementation

This checker checks for Stream argument with possibly unintended side effects.

Examples
Stream argument with possibly unintended side effects
Issue

Stream argument with possibly unintended side effects occurs when you call getc(), putc(),
getwc(), or putwc() with a stream argument that has side effects.

Stream argument with possibly unintended side effects considers the following as stream side
effects:

• Any assignment of a variable of a stream, such as FILE *, or any assignment of a variable of a
deeper stream type, such as an array of FILE *.

• Any call to a function that manipulates a stream or a deeper stream type.

The number of defects raised corresponds to the number of side effects detected. When a stream
argument is evaluated multiple times in a function implemented as a macro, a defect is raised for
each evaluation that has a side effect.

A defect is also raised on functions that are not implemented as macros but that can be implemented
as macros on another operating system.

Risk

If the function is implemented as an unsafe macro, the stream argument can be evaluated more than
once, and the stream side effect happens multiple times. For instance, a stream argument calling
fopen() might open the same file multiple times, which is unspecified behavior.

Fix

To ensure that the side effect of a stream happens only once, use a separate statement for the stream
argument.

Example - Stream Argument of getc() Has Side Effect fopen()

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

23 CERT C Rules and Recommendations

23-214

#define fatal_error() abort()

const char* myfile = "my_file.log";

void func(void)
{
 int c;
 FILE* fptr;
 /* getc() has stream argument fptr with
 * 2 side effects: call to fopen(), and assignment
 * of fptr
 */
 c = getc(fptr = fopen(myfile, "r"));
 if (c == EOF) {
 /* Handle error */
 (void)fclose(fptr);
 fatal_error();
 }
 if (fclose(fptr) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

void main(void)
{
 func();

}

In this example, getc() is called with stream argument fptr. The stream argument has two side
effects: the call to fopen() and the assignment of fptr. If getc() is implemented as an unsafe
macro, the side effects happen multiple times.

Correction — Use Separate Statement for fopen()

One possible correction is to use a separate statement for fopen(). The call to fopen() and the
assignment of fptr happen in this statement so there are no side effects when you pass fptr to
getc().

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

#define fatal_error() abort()

const char* myfile = "my_file.log";

void func(void)
{
 int c;
 FILE* fptr;

 /* Separate statement for fopen()
 * before call to getc()
 */
 fptr = fopen(myfile, "r");

 CERT C: Rule FIO41-C

23-215

 if (fptr == NULL) {
 /* Handle error */
 fatal_error();
 }
 c = getc(fptr);
 if (c == EOF) {
 /* Handle error */
 (void)fclose(fptr);
 fatal_error();
 }
 if (fclose(fptr) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

void main(void)
{
 func();

}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO41-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-216

https://wiki.sei.cmu.edu/confluence/display/c/FIO41-C.+Do+not+call+getc%28%29%2C+putc%28%29%2C+getwc%28%29%2C+or+putwc%28%29+with+a+stream+argument+that+has+side+effects

CERT C: Rule FIO42-C
Close files when they are no longer needed

Description
Rule Definition

Close files when they are no longer needed.

Polyspace Implementation

This checker checks for Resource leak.

Examples
Resource leak
Issue

Resource leak occurs when you open a file stream by using a FILE pointer but do not close it
before:

• The end of the pointer’s scope.
• Assigning the pointer to another stream.

Risk

If you do not release file handles explicitly as soon as possible, a failure can occur due to exhaustion
of resources.
Fix

Close a FILE pointer before the end of its scope, or before you assign the pointer to another stream.
Example - FILE Pointer Not Released Before End of Scope

#include <stdio.h>

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");
 fclose (fp1);
}

In this example, the file pointer fp1 is pointing to a file data1.txt. Before fp1 is explicitly
dissociated from the file stream of data1.txt, it is used to access another file data2.txt.
Correction — Release FILE Pointer

One possible correction is to explicitly dissociate fp1 from the file stream of data1.txt.

 CERT C: Rule FIO42-C

23-217

#include <stdio.h>

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");
 fclose(fp1);

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");
 fclose (fp1);
}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO42-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-218

https://wiki.sei.cmu.edu/confluence/display/c/FIO42-C.+Close+files+when+they+are+no+longer+needed

CERT C: Rule FIO44-C
Only use values for fsetpos() that are returned from fgetpos()

Description
Rule Definition

Only use values for fsetpos() that are returned from fgetpos().

Polyspace Implementation

This checker checks for Invalid file position.

Examples
Invalid file position
Issue

Invalid file position occurs when the file position argument of fsetpos() uses a value that is not
obtained from fgetpos().

Risk

The function fgetpos(FILE *stream, fpos_t *pos) gets the current file position of the stream.
When you use any other value as the file position argument of fsetpos(FILE *stream, const
fpos_t *pos), you might access an unintended location in the stream.

Fix

Use the value returned from a successful call to fgetpos() as the file position argument of
fsetpos().

Example - memset() Sets File Position Argument

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

FILE *func(FILE *file)
{
 fpos_t offset;
 if (file == NULL)
 {
 /* Handle error */
 }
 /* Store initial position in variable 'offset' */
 (void)memset(&offset, 0, sizeof(offset));

 /* Read data from file */

 /* Return to the initial position. offset was not
 returned from a call to fgetpos() */

 CERT C: Rule FIO44-C

23-219

 if (fsetpos(file, &offset) != 0)
 {
 /* Handle error */
 }
 return file;
}

In this example, fsetpos() uses offset as its file position argument. However, the value of offset
is set by memset(). The preceding code might access the wrong location in the stream.

Correction — Use a File Position Returned From fgetpos()

Call fgetpos(), and if it returns successfully, use the position argument in your call to fsetpos().

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

FILE *func(FILE *file)
{
 fpos_t offset;
 if (file == NULL)
 {
 /* Handle error */
 }
 /* Store initial position in variable 'offset'
 using fgetpos() */
 if (fgetpos(file, &offset) != 0)
 {
 /* Handle error */
 }

 /* Read data from file */

 /* Back to the initial position */
 if (fsetpos(file, &offset) != 0)
 {
 /* Handle error */
 }
 return file;
}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO44-C

23 CERT C Rules and Recommendations

23-220

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152071

Introduced in R2019a

 CERT C: Rule FIO44-C

23-221

CERT C: Rule FIO45-C
Avoid TOCTOU race conditions while accessing files

Description
Rule Definition

Avoid TOCTOU race conditions while accessing files.

Polyspace Implementation

This checker checks for File access between time of check and use (TOCTOU).

Examples
File access between time of check and use (TOCTOU)
Issue

File access between time of check and use (TOCTOU) detects race condition issues between
checking the existence of a file or folder, and using a file or folder.
Risk

An attacker can access and manipulate your file between your check for the file and your use of a file.
Symbolic links are particularly risky because an attacker can change where your symbolic link points.
Fix

Before using a file, do not check its status. Instead, use the file and check the results afterward.
Example - Check File Before Using

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

extern void print_tofile(FILE* f);

void toctou(char * log_path) {
 if (access(log_path, W_OK)==0) {
 FILE* f = fopen(log_path, "w");
 if (f) {
 print_tofile(f);
 fclose(f);
 }
 }
}

In this example, before opening and using the file, the function checks if the file exists. However, an
attacker can change the file between the first and second lines of the function.
Correction — Open Then Check

One possible correction is to open the file, and then check the existence and contents afterward.

23 CERT C Rules and Recommendations

23-222

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

extern void print_tofile(FILE* f);

void toctou(char * log_path) {
 int fd = open(log_path, O_WRONLY);
 if (fd!=-1) {
 FILE *f = fdopen(fd, "w");
 if (f) {
 print_tofile(f);
 fclose(f);
 }
 }
}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO45-C

Introduced in R2019a

 CERT C: Rule FIO45-C

23-223

https://wiki.sei.cmu.edu/confluence/display/c/FIO45-C.+Avoid+TOCTOU+race+conditions+while+accessing+files

CERT C: Rule FIO46-C
Do not access a closed file

Description
Rule Definition

Do not access a closed file.

Polyspace Implementation

This checker checks for Use of previously closed resource.

Examples
Use of previously closed resource
Issue

Use of previously closed resource occurs when a function operates on a stream that you closed
earlier in your code.

Risk

The standard states that the value of a FILE* pointer is indeterminate after you close the stream
associated with it. Operations using the FILE* pointer can produce unintended results.

Fix

One possible fix is to close the stream only at the end of operations. Another fix is to reopen the
stream before using it again.

Example - Use of FILE* Pointer After Closing Stream

#include <stdio.h>

void func(void) {
 FILE *fp;
 void *ptr;

 fp = fopen("tmp","w");
 if(fp != NULL) {
 fclose(fp);
 fprintf(fp,"text");
 }
}

In this example, fclose closes the stream associated with fp. When you use fprintf on fp after
fclose, the Use of previously closed resource defect appears.

Correction — Close Stream After All Operations

One possible correction is to reverse the order of the fprintf and fclose operations.

23 CERT C Rules and Recommendations

23-224

#include <stdio.h>

void func(void) {
 FILE *fp;
 void *ptr;

 fp = fopen("tmp","w");
 if(fp != NULL) {
 fprintf(fp,"text");
 fclose(fp);
 }
}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO46-C

Introduced in R2019a

 CERT C: Rule FIO46-C

23-225

https://wiki.sei.cmu.edu/confluence/display/c/FIO46-C.+Do+not+access+a+closed+file

CERT C: Rule FIO47-C
Use valid format strings

Description
Rule Definition

Use valid format strings.

Polyspace Implementation

This checker checks for Format string specifiers and arguments mismatch.

Examples
Format string specifiers and arguments mismatch
Issue

Format string specifiers and arguments mismatch occurs when the format specifiers in the
formatted output functions such as printf do not match their corresponding arguments. For
example, an argument of type unsigned long must have a format specification of %lu.
Risk

Mismatch between format specifiers and the corresponding arguments result in undefined behavior.
Fix

Make sure that the format specifiers match the corresponding arguments. For instance, in this
example, the %d specifier does not match the string argument message and the %s specifier does not
match the integer argument err_number.

 const char *message = "License not available";
 int err_number = -4;
 printf("Error: %d (error type %s)\n", message, err_number);

Switching the two format specifiers fixes the issue. See the specifications for the printf function for
more information about format specifiers.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Printing a Float

#include <stdio.h>

void string_format(void) {

23 CERT C Rules and Recommendations

23-226

https://en.cppreference.com/w/cpp/io/c/fprintf

 unsigned long fst = 1;

 printf("%d\n", fst);
}

In the printf statement, the format specifier, %d, does not match the data type of fst.

Correction — Use an Unsigned Long Format Specifier

One possible correction is to use the %lu format specifier. This specifier matches the unsigned
integer type and long size of fst.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%lu\n", fst);
}

Correction — Use an Integer Argument

One possible correction is to change the argument to match the format specifier. Convert fst to an
integer to match the format specifier and print the value 1.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", (int)fst);
}

Check Information
Group: Rule 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO47-C

Introduced in R2019a

 CERT C: Rule FIO47-C

23-227

https://wiki.sei.cmu.edu/confluence/display/c/FIO47-C.+Use+valid+format+strings

CERT C: Rule ENV30-C
Do not modify the object referenced by the return value of certain functions

Description
Rule Definition

Do not modify the object referenced by the return value of certain functions.

Polyspace Implementation

This checker checks for Modification of internal buffer returned from nonreentrant standard
function.

Examples
Modification of internal buffer returned from nonreentrant standard function
Issue

Modification of internal buffer returned from nonreentrant standard function occurs when
the following happens:

• A nonreentrant standard function returns a pointer.
• You attempt to write to the memory location that the pointer points to.

Nonreentrant standard functions that return a non const-qualified pointer to an internal buffer
include getenv, getlogin, crypt, setlocale, localeconv, strerror and others.
Risk

Modifying the internal buffer that a nonreentrant standard function returns can cause the following
issues:

• It is possible that the modification does not succeed or alters other internal data.

For instance, getenv returns a pointer to an environment variable value. If you modify this value,
you alter the environment of the process and corrupt other internal data.

• Even if the modification succeeds, it is possible that a subsequent call to the same standard
function does not return your modified value.

For instance, you modify the environment variable value that getenv returns. If another process,
thread, or signal handler calls setenv, the modified value is overwritten. Therefore, a subsequent
call to getenv does not return your modified value.

Fix

Avoid modifying the internal buffer using the pointer returned from the function.
Example - Modification of getenv Return Value

#include <stdlib.h>
#include <string.h>

23 CERT C Rules and Recommendations

23-228

void printstr(const char*);

void func() {
 char* env = getenv("LANGUAGE");
 if (env != NULL) {
 strncpy(env, "C", 1);
 printstr(env);
 }
}

In this example, the first argument of strncpy is the return value from a nonreentrant standard
function getenv. The behavior can be undefined because strncpy modifies this argument.

Correction - Copy Return Value of getenv and Modify Copy

One possible solution is to copy the return value of getenv and pass the copy to the strncpy
function.

#include <stdlib.h>
#include <string.h>
enum {
 SIZE20 = 20
};

void printstr(const char*);

void func() {
 char* env = getenv("LANGUAGE");
 if (env != NULL) {
 char env_cp[SIZE20];
 strncpy(env_cp, env, SIZE20);
 strncpy(env_cp, "C", 1);
 printstr(env_cp);
 }
}

Check Information
Group: Rule 10. Environment (ENV)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ENV30-C

Introduced in R2019a

 CERT C: Rule ENV30-C

23-229

https://wiki.sei.cmu.edu/confluence/display/c/ENV30-C.+Do+not+modify+the+object+referenced+by+the+return+value+of+certain+functions

CERT C: Rule ENV31-C
Do not rely on an environment pointer following an operation that may invalidate it

Description
Rule Definition

Do not rely on an environment pointer following an operation that may invalidate it.

Polyspace Implementation

This checker checks for Environment pointer invalidated by previous operation.

Examples
Environment pointer invalidated by previous operation
Issue

Environment pointer invalidated by previous operation occurs when you use the third argument
of main() in a hosted environment to access the environment after an operation modifies the
environment. In a hosted environment, many C implementations support the nonstandard syntax:

main (int argc, char *argv[], char *envp[])

A call to a setenv or putenv family function modifies the environment pointed to by *envp.
Risk

When you modify the environment through a call to a setenv or putenv family function, the
environment memory can potentially be reallocated. The hosted environment pointer is not updated
and might point to an incorrect location. A call to this pointer can return unexpected results or cause
an abnormal program termination.
Fix

Do not use the hosted environment pointer. Instead, use global external variable environ in Linux,
_environ or _wenviron in Windows, or their equivalent. When you modify the environment, these
variables are updated.
Example - Access Environment Through Pointer envp

#include <stdio.h>
#include <stdlib.h>

extern int check_arguments(int argc, char **argv, char **envp);
extern void use_envp(char **envp);

/* envp is from main function */
int func(char **envp)
{
 /* Call to setenv may cause environment
 *memory to be reallocated
 */

23 CERT C Rules and Recommendations

23-230

 if (setenv(("MY_NEW_VAR"),("new_value"),1) != 0)
 {
 /* Handle error */
 return -1;
 }
 /* envp not updated after call to setenv, and may
 *point to incorrect location.
 **/
 if (envp != ((void *)0)) {
 use_envp(envp);
/* No defect on second access to
*envp because defect already raised */
 }
 return 0;
}

void main(int argc, char **argv, char **envp)
{
 if (check_arguments(argc, argv, envp))
 {
 (void)func(envp);
 }
}

In this example, envp is accessed inside func() after a call to setenv that can reallocate the
environment memory. envp can point to an incorrect location because it is not updated after setenv
modifies the environment. No defect is raised when use_envp() is called because the defect is
already raised on the previous line of code.
Correction — Use Global External Variable environ

One possible correction is to access the environment by using a variable that is always updated after
a call to setenv. For instance, in the following code, the pointer envp is still available from main(),
but the environment is accessed in func() through the global external variable environ.

#include <stdio.h>
#include <stdlib.h>
extern char **environ;

extern int check_arguments(int argc, char **argv, char **envp);
extern void use_envp(char **envp);

int func(void)
{
 if (setenv(("MY_NEW_VAR"), ("new_value"),1) != 0) {
 /* Handle error */
 return -1;
 }
 /* Use global external variable environ
 *which is always updated after a call to setenv */

 if (environ != NULL) {
 use_envp(environ);
 }
 return 0;
}

void main(int argc, char **argv, char **envp)

 CERT C: Rule ENV31-C

23-231

{
 if (check_arguments(argc, argv, envp))
 {
 (void)func();
 }
}

Check Information
Group: Rule 10. Environment (ENV)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ENV31-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-232

https://wiki.sei.cmu.edu/confluence/display/c/ENV31-C.+Do+not+rely+on+an+environment+pointer+following+an+operation+that+may+invalidate+it

CERT C: Rule ENV32-C
All exit handlers must return normally

Description
Rule Definition

All exit handlers must return normally.

Polyspace Implementation

This checker checks for Abnormal termination of exit handler.

Examples
Abnormal termination of exit handler
Issue

Abnormal termination of exit handler looks for registered exit handlers. Exit handlers are
registered with specific functions such as atexit, (WinAPI) _onexit, or at_quick_exit(). If the
exit handler calls a function that interrupts the program’s expected termination sequence, Polyspace
raises a defect. Some functions that can cause abnormal exits are exit, abort, longjmp, or
(WinAPI) _onexit.
Risk

If your exit handler terminates your program, you can have undefined behavior. Abnormal program
termination means other exit handlers are not invoked. These additional exit handlers may do
additional clean up or other required termination steps.
Fix

In inside exit handlers, remove calls to functions that prevent the exit handler from terminating
normally.
Example - Exit Handler With Call to exit

#include <stdlib.h>

volatile int some_condition = 1;
void demo_exit1(void)
{
 /* ... Cleanup code ... */
 return;
}
void exitabnormalhandler(void)
{
 if (some_condition)
 {
 /* Clean up */
 exit(0);
 }
 return;

 CERT C: Rule ENV32-C

23-233

}

int demo_install_exitabnormalhandler(void)
{

 if (atexit(demo_exit1) != 0) /* demo_exit1() performs additional cleanup */
 {
 /* Handle error */
 }
 if (atexit(exitabnormalhandler) != 0)
 {
 /* Handle error */
 }
 /* ... Program code ... */
 return 0;
}

In this example, demo_install_exitabnormalhandler registers two exit handlers, demo_exit1
and exitabnormalhandler. Exit handlers are invoked in the reverse order of which they are
registered. When the program ends, exitabnormalhandler runs, then demo_exit1. However,
exitabnormalhandler calls exit interrupting the program exit process. Having this exit inside
an exit handler causes undefined behavior because the program is not finished cleaning up safely.
Correction — Remove exit from Exit Handler

One possible correction is to let your exit handlers terminate normally. For this example, exit is
removed from exitabnormalhandler, allowing the exit termination process to complete as
expected.

#include <stdlib.h>

volatile int some_condition = 1;
void demo_exit1(void)
{
 /* ... Cleanup code ... */
 return;
}
void exitabnormalhandler(void)
{
 if (some_condition)
 {
 /* Clean up */
 /* Return normally */
 }
 return;
}

int demo_install_exitabnormalhandler(void)
{

 if (atexit(demo_exit1) != 0) /* demo_exit1() continues clean up */
 {
 /* Handle error */
 }
 if (atexit(exitabnormalhandler) != 0)
 {
 /* Handle error */
 }

23 CERT C Rules and Recommendations

23-234

 /* ... Program code ... */
 return 0;
}

Check Information
Group: Rule 10. Environment (ENV)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ENV32-C

Introduced in R2019a

 CERT C: Rule ENV32-C

23-235

https://wiki.sei.cmu.edu/confluence/display/c/ENV32-C.+All+exit+handlers+must+return+normally

CERT C: Rule ENV33-C
Do not call system()

Description
Rule Definition

Do not call system().

Polyspace Implementation

This checker checks for Unsafe call to a system function.

Examples
Unsafe call to a system function
Issue

Unsafe call to a system function occurs when you use a function that invokes an implementation-
defined command processor. These functions include:

• The C standard system() function.
• The POSIX popen() function.
• The Windows _popen() and _wpopen() functions.

Risk

If the argument of a function that invokes a command processor is not sanitized, it can cause
exploitable vulnerabilities. An attacker can execute arbitrary commands or read and modify data
anywhere on the system.
Fix

Do not use a system-family function to invoke a command processor. Instead, use safer functions
such as POSIX execve() and WinAPI CreateProcess().
Example - system() Called

include <string.h>
include <stdlib.h>
include <stdio.h>
include <unistd.h>

enum {
SIZE512=512,
SIZE3=3};

void func(char *arg)
{
 char buf[SIZE512];
 int retval=sprintf(buf, "/usr/bin/any_cmd %s", arg);

23 CERT C Rules and Recommendations

23-236

 if (retval<=0 || retval>SIZE512){
 /* Handle error */
 abort();
 }
 /* Use of system() to pass any_cmd with
 unsanitized argument to command processor */

 if (system(buf) == -1) {
 /* Handle error */
 }
}

In this example, system() passes its argument to the host environment for the command processor
to execute. This code is vulnerable to an attack by command-injection.

Correction — Sanitize Argument and Use execve()

In the following code, the argument of any_cmd is sanitized, and then passed to execve() for
execution. exec-family functions are not vulnerable to command-injection attacks.

include <string.h>
include <stdlib.h>
include <stdio.h>
include <unistd.h>

enum {
SIZE512=512,
SIZE3=3};

void func(char *arg)
{
 char *const args[SIZE3] = {"any_cmd", arg, NULL};
 char *const env[] = {NULL};

 /* Sanitize argument */

 /* Use execve() to execute any_cmd. */

 if (execve("/usr/bin/time", args, env) == -1) {
 /* Handle error */
 }
}

Check Information
Group: Rule 10. Environment (ENV)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ENV33-C

 CERT C: Rule ENV33-C

23-237

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152177

Introduced in R2019a

23 CERT C Rules and Recommendations

23-238

CERT C: Rule ENV34-C
Do not store pointers returned by certain functions

Description
Rule Definition

Do not store pointers returned by certain functions.

Polyspace Implementation

This checker checks for Misuse of return value from nonreentrant standard function.

Examples
Misuse of return value from nonreentrant standard function
Issue

Misuse of return value from nonreentrant standard function occurs when these events happen
in this sequence:

1 You point to the buffer returned from a nonreentrant standard function such as getenv or
setlocale.

user = getenv("USER");
2 You call that nonreentrant standard function again.

user2 = getenv("USER2");
3 You use or dereference the pointer from the first step expecting the buffer to remain unmodified

since that step. In the meantime, the call in the second step has modified the buffer.

For instance:

var=*user;

In some cases, the defect might appear even if you do not call the getenv function a second time but
simply return the pointer. For instance:

char* func() {
 user=getenv("USER");
 .
 .
 return user;
}

For information on which functions are covered by this defect, see documentation on nonreentrant
standard functions.
Risk

The C Standard allows nonreentrant functions such as getenv to return a pointer to a static buffer.
Because the buffer is static, a second call to getenv modifies the buffer. If you continue to use the

 CERT C: Rule ENV34-C

23-239

https://www.securecoding.cert.org/confluence/display/c/ENV34-C.+Do+not+store+pointers+returned+by+certain+functions
https://www.securecoding.cert.org/confluence/display/c/ENV34-C.+Do+not+store+pointers+returned+by+certain+functions

pointer returned from the first call past the second call, you can see unexpected results. The buffer
that it points to no longer has values from the first call.

The defect appears even if you do not call getenv a second time but simply return the pointer. The
reason is that someone calling your function might use the returned pointer after a second call to
getenv. By returning the pointer from your call to getenv, you make your function unsafe to use.

The same rationale is true for other nonreentrant functions covered by this defect.

Fix

After the first call to getenv, make a copy of the buffer that the returned pointer points to. After the
second call to getenv, use this copy. Even if the second call modifies the buffer, your copy is
untouched.

Example - Return from getenv Used After Second Call to getenv

#include <stdlib.h>
#include <string.h>

int func()
{
 int result = 0;

 char *home = getenv("HOME"); /* First call */
 if (home != NULL) {
 char *user = NULL;
 char *user_name_from_home = strrchr(home, '/');

 if (user_name_from_home != NULL) {
 user = getenv("USER"); /* Second call */
 if ((user != NULL) &&
 (strcmp(user, user_name_from_home) == 0))
 {
 result = 1;
 }
 }
 }
 return result;
}

In this example, the pointer user_name_from_home is derived from the pointer home. home points
to the buffer returned from the first call to getenv. Therefore, user_name_from_home points to a
location in the same buffer.

After the second call to getenv, the buffer is modified. If you continue to use
user_name_from_home, you can get unexpected results.

Correction — Make Copy of Buffer Before Second Call

If you want to access the buffer from the first call to getenv past the second call, make a copy of the
buffer after the first call. One possible correction is to use the strdup function to make the copy.

#include <stdlib.h>
#include <string.h>

int func()
{

23 CERT C Rules and Recommendations

23-240

 int result = 0;

 char *home = getenv("HOME");
 if (home != NULL) {
 char *user = NULL;
 char *user_name_from_home = strrchr(home, '/');
 if (user_name_from_home != NULL) {
 /* Make copy before second call */
 char *saved_user_name_from_home = strdup(user_name_from_home);
 if (saved_user_name_from_home != NULL) {
 user = getenv("USER");
 if ((user != NULL) &&
 (strcmp(user, saved_user_name_from_home) == 0))
 {
 result = 1;
 }
 free(saved_user_name_from_home);
 }
 }
 }
 return result;
}

Check Information
Group: Rule 10. Environment (ENV)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ENV34-C

Introduced in R2019a

 CERT C: Rule ENV34-C

23-241

https://wiki.sei.cmu.edu/confluence/display/c/ENV34-C.+Do+not+store+pointers+returned+by+certain+functions

CERT C: Rule SIG30-C
Call only asynchronous-safe functions within signal handlers

Description
Rule Definition

Call only asynchronous-safe functions within signal handlers.

Polyspace Implementation

This checker checks for these issues:

• Function called from signal handler not asynchronous-safe.
• Function called from signal handler not asynchronous-safe (strict).

Examples
Function called from signal handler not asynchronous-safe
Issue

Function called from signal handler not asynchronous-safe occurs when a signal handler calls a
function that is not asynchronous-safe according to the POSIX standard. An asynchronous-safe
function can be interrupted at any point in its execution, then called again without causing an
inconsistent state. It can also correctly handle global data that might be in an inconsistent state.

If a signal handler calls another function that calls an asynchronous-unsafe function, the defect
appears on the function call in the signal handler. The defect traceback shows the full path from the
signal handler to the asynchronous-unsafe function.

Risk

When a signal handler is invoked, the execution of the program is interrupted. After the handler is
finished, program execution resumes at the point of interruption. If a function is executing at the time
of the interruption, calling it from within the signal handler is undefined behavior, unless it is
asynchronous-safe.

Fix

The POSIX standard defines these functions as asynchronous-safe. You can call these functions from a
signal handler.

_exit() getpgrp() setsockopt()
_Exit() getpid() setuid()
abort() getppid() shutdown()
accept() getsockname() sigaction()
access() getsockopt() sigaddset()
aio_error() getuid() sigdelset()

23 CERT C Rules and Recommendations

23-242

aio_return() kill() sigemptyset()
aio_suspend() link() sigfillset()
alarm() linkat() sigismember()
bind() listen() signal()
cfgetispeed() lseek() sigpause()
cfgetospeed() lstat() sigpending()
cfsetispeed() mkdir() sigprocmask()
cfsetospeed() mkdirat() sigqueue()
chdir() mkfifo() sigset()
chmod() mkfifoat() sigsuspend()
chown() mknod() sleep()
clock_gettime() mknodat() sockatmark()
close() open() socket()
connect() openat() socketpair()
creat() pathconf() stat()
dup() pause() symlink()
dup2() pipe() symlinkat()
execl() poll() sysconf()
execle() posix_trace_event() tcdrain()
execv() pselect() tcflow()
execve() pthread_kill() tcflush()
faccessat() pthread_self() tcgetattr()
fchdir() pthread_sigmask() tcgetpgrp()
fchmod() quick_exit() tcsendbreak()
fchmodat() raise() tcsetattr()
fchown() read() tcsetpgrp()
fchownat() readlink() time()
fcntl() readlinkat() timer_getoverrun()
fdatasync() recv() timer_gettime()
fexecve() recvfrom() timer_settime()
fork() recvmsg() times()
fpathconf() rename() umask()
fstat() renameat() uname()
fstatat() rmdir() unlink()
fsync() select() unlinkat()
ftruncate() sem_post() utime()
futimens() send() utimensat()

 CERT C: Rule SIG30-C

23-243

getegid() sendmsg() utimes()
geteuid() sendto() wait()
getgid() setgid() waitpid()
getgroups() setpgid() write()
getpeername() setsid()

Functions not in the previous table are not asynchronous-safe, and should not be called from a signal
hander.
Example - Call to printf() Inside Signal Handler

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

#define SIZE20 20

extern volatile sig_atomic_t e_flag;

void display_info(const char *info)
{
 if (info)
 {
 (void)fputs(info, stderr);
 }
}

void sig_handler(int signum)
{
 /* Call function printf() that is not
 asynchronous-safe */
 printf("signal %d received.", signum);
 e_flag = 1;
}

int main(void)
{
 e_flag = 0;
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 char *info = (char *)calloc(SIZE20, sizeof(char));
 if (info == NULL)
 {
 /* Handle Error */
 }
 while (!e_flag)
 {
 /* Main loop program code */
 display_info(info);
 /* More program code */

23 CERT C Rules and Recommendations

23-244

 }
 free(info);
 info = NULL;
 return 0;
}

In this example, sig_handler calls printf() when catching a signal. If the handler catches
another signal while printf() is executing, the behavior of the program is undefined.

Correction — Set Flag Only in Signal Handler

Use your signal handler to set only the value of a flag. e_flag is of type volatile sig_atomic_t.
sig_handler can safely access it asynchronously.

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

#define SIZE20 20

extern volatile sig_atomic_t e_flag;

void display_info(const char *info)
{
 if (info)
 {
 (void)fputs(info, stderr);
 }
}

void sig_handler1(int signum)
{
 int s0 = signum;
 e_flag = 1;
}

int func(void)
{
 e_flag = 0;
 if (signal(SIGINT, sig_handler1) == SIG_ERR)
 {
 /* Handle error */
 }
 char *info = (char *)calloc(SIZE20, 1);
 if (info == NULL)
 {
 /* Handle error */
 }
 while (!e_flag)
 {
 /* Main loop program code */
 display_info(info);

 CERT C: Rule SIG30-C

23-245

 /* More program code */
 }
 free(info);
 info = NULL;
 return 0;
}

Function called from signal handler not asynchronous-safe (strict)
Issue

Function called from signal handler not asynchronous-safe (strict) occurs when a signal
handler calls a function that is not asynchronous-safe according to the C standard. An asynchronous-
safe function can be interrupted at any point in its execution, then called again without causing an
inconsistent state. It can also correctly handle global data that might be in an inconsistent state.

When you select the checker Function called from signal handler not asynchronous-safe, the
checker detects calls to functions that are not asynchronous-safe according to the POSIX standard.
Function called from signal handler not asynchronous-safe (strict) does not raise a defect for
these cases. Function called from signal handler not asynchronous-safe (strict) raises a defect
for functions that are asynchronous-safe according to the POSIX standard but not according to the C
standard.

If a signal handler calls another function that calls an asynchronous-unsafe function, the defect
appears on the function call in the signal handler. The defect traceback shows the full path from the
signal handler to the asynchronous-unsafe function.

Risk

When a signal handler is invoked, the execution of the program is interrupted. After the handler is
finished, program execution resumes at the point of interruption. If a function is executing at the time
of the interruption, calling it from within the signal handler is undefined behavior, unless it is
asynchronous-safe.

Fix

The C standard defines the following functions as asynchronous-safe. You can call these functions
from a signal handler:

• abort()
• _Exit()
• quick_exit()
• signal()

Example - Call to raise() Inside Signal Handler

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

void SIG_ERR_handler(int signum)
{

23 CERT C Rules and Recommendations

23-246

 int s0 = signum;
 /* SIGTERM specific handling */
}

void sig_handler(int signum)
{
 int s0 = signum;
 /* Call raise() */
 if (raise(SIGTERM) != 0) {
 /* Handle error */
 }
}

int finc(void)
{
 if (signal(SIGTERM, SIG_ERR_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 }
 /* More code */
 return 0;
}

In this example, sig_handler calls raise() when catching a signal. If the handler catches another
signal while raise() is executing, the behavior of the program is undefined.

Correction — Remove Call to raise() in Signal Handler

According to the C standard, the only functions that you can safely call from a signal handler are
abort(), _Exit(), quick_exit(), and signal().

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

void SIG_ERR_handler(int signum)
{
 int s0 = signum;
 /* SIGTERM specific handling */
}
void sig_handler(int signum)
{
 int s0 = signum;

 CERT C: Rule SIG30-C

23-247

}

int func(void)
{
 if (signal(SIGTERM, SIG_ERR_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 }
 /* More code */
 return 0;
}

Check Information
Group: Rule 11. Signals (SIG)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
SIG30-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-248

https://wiki.sei.cmu.edu/confluence/display/c/SIG30-C.+Call+only+asynchronous-safe+functions+within+signal+handlers

CERT C: Rule SIG31-C
Do not access shared objects in signal handlers

Description
Rule Definition

Do not access shared objects in signal handlers.

Polyspace Implementation

This checker checks for Shared data access within signal handler.

Examples
Shared data access within signal handler
Issue

Shared data access within signal handler occurs when you access or modify a shared object
inside a signal handler.

Risk

When you define a signal handler function to access or modify a shared object, the handler accesses
or modifies the shared object when it receives a signal. If another function is already accessing the
shared object, that function causes a race condition and can leave the data in an inconsistent state.

Fix

To access or modify shared objects inside a signal handler, check that the objects are lock-free
atomic, or, if they are integers, declare them as volatile sig_atomic_t.

Example - int Variable Access in Signal Handler

#include <signal.h>
#include <stdlib.h>
#include <string.h>

/* declare global variable. */
int e_flag;

void sig_handler(int signum)
{
 /* Signal handler accesses variable that is not
 of type volatile sig_atomic_t. */
 e_flag = signum;
}

int func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

 CERT C: Rule SIG31-C

23-249

 abort();
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 abort();
 }
 /* More code */
 return 0;
}

In this example, sig_handler accesses e_flag, a variable of type int. A concurrent access by
another function can leave e_flag in an inconsistent state.
Correction — Declare Variable of Type volatile sig_atomic_t

Before you access a shared variable from a signal handler, declare the variable with type volatile
sig_atomic_t instead of int. You can safely access variables of this type asynchronously.

#include <signal.h>
#include <stdlib.h>
#include <string.h>

/* Declare variable of type volatile sig_atomic_t. */
volatile sig_atomic_t e_flag;
void sig_handler(int signum)
{
 /* Use variable of proper type inside signal handler. */
 e_flag = signum;

}

int func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 abort();
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 abort();
 }
 /* More code */
 return 0;
}

Check Information
Group: Rule 11. Signals (SIG)

See Also
Check SEI CERT-C (-cert-c)

23 CERT C Rules and Recommendations

23-250

Topics
“Check for Coding Standard Violations”

External Websites
SIG31-C

Introduced in R2019a

 CERT C: Rule SIG31-C

23-251

https://wiki.sei.cmu.edu/confluence/display/c/SIG31-C.+Do+not+access+shared+objects+in+signal+handlers

CERT C: Rule SIG34-C
Do not call signal() from within interruptible signal handlers

Description
Rule Definition

Do not call signal() from within interruptible signal handlers.

Polyspace Implementation

This checker checks for Signal call from within signal handler.

Examples
Signal call from within signal handler
Issue

Signal call from within signal handler occurs when you call the function signal() from a signal
handler on Windows platforms.

The issue is detected only if you specify a Visual Studio compiler. See Compiler (-compiler).

Risk

The function signal() associates a signal with a signal handler function. On platforms such as
Windows, which removes this association after receiving the signal, you might call the function
signal() again within the signal handler to re-establish the association.

However, this attempt to make a signal handler persistent is prone to race conditions. On Windows
platforms, from the time the signal handler begins execution to when the signal function is called
again, it is the default signal handling, SIG_DFL, that is active. If a second signal is received within
this time window, you see the default signal handling and not the custom signal handler, but you
might expect otherwise.

Fix

Do not call signal() from a signal handler on Windows platforms.

Example - signal() Called from Signal Handler

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>

volatile sig_atomic_t e_flag = 0;

void sig_handler(int signum)
{

23 CERT C Rules and Recommendations

23-252

 int s0 = signum;
 e_flag = 1;

 /* Call signal() to reestablish sig_handler
 upon receiving SIG_ERR. */

 if (signal(s0, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
}

void func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

 }
 /* more code */
}

In this example, the definition of sig_handler() includes a call to signal() when the handler
catches SIG_ERR. On Windows platforms, signal handlers are nonpersistent. This code can result in a
race condition.

The issue is detected only if you specify a compiler such as visual15.x for the analysis.

Correction — Do Not Call signal() from Signal Handler

Avoid attempting to make a signal handler persistent on Windows. If your code requires the use of a
persistent signal handler on a Windows platform, use a persistent signal handler after performing a
thorough risk analysis.

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>

volatile sig_atomic_t e_flag = 0;

void sig_handler(int signum)
{
 int s0 = signum;
 e_flag = 1;
 /* No call to signal() */
}

int main(void)
{

 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

 CERT C: Rule SIG34-C

23-253

 }
}

Check Information
Group: Rule 11. Signals (SIG)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
SIG34-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-254

https://wiki.sei.cmu.edu/confluence/display/c/SIG34-C.+Do+not+call+signal%28%29+from+within+interruptible+signal+handlers

CERT C: Rule SIG35-C
Do not return from a computational exception signal handler

Description
Rule Definition

Do not return from a computational exception signal handler.

Polyspace Implementation

This checker checks for Return from computational exception signal handler.

Examples
Return from computational exception signal handler
Issue

Return from computational exception signal handler occurs when a signal handler returns after
catching a computational exception signal SIGFPE, SIGILL, or SIGSEGV.

Risk

A signal handler that returns normally from a computational exception is undefined behavior. Even if
the handler attempts to fix the error that triggered the signal, the program can behave unexpectedly.

Fix

Check the validity of the values of your variables before the computation to avoid using a signal
handler to catch exceptions. If you cannot avoid a handler to catch computation exception signals,
call abort(), quick_exit(), or _Exit() in the handler to stop the program.

Example - Signal Handler Return from Division by Zero

#include <errno.h>
#include <limits.h>
#include <signal.h>
#include <stdlib.h>

static volatile sig_atomic_t denom;
/* Declare signal handler to catch division by zero
computation error. */
void sig_handler(int s)
{
 int s0 = s;
 if (denom == 0)
 {
 denom = 1;
 }
 /* Normal return from computation exception
 signal */
 return;
}

 CERT C: Rule SIG35-C

23-255

long func(int v)
{
 denom = (sig_atomic_t)v;

 if (signal(SIGFPE, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }

 long result = 100 / (long)denom;
 return result;
}

In this example, sig_handler is declared to handle a division by zero computation error. The
handler changes the value of denom if it is zero and returns, which is undefined behavior.

Correction — Call abort() to Terminate Program

After catching a computational exception, call abort() from sig_handler to exit the program
without further error.

#include <errno.h>
#include <limits.h>
#include <signal.h>
#include <stdlib.h>

static volatile sig_atomic_t denom;
/* Declare signal handler to catch division by zero
computation error. */

void sig_handler(int s)
{
 int s0 = s;
 /* call to abort() to exit the program */
 abort();
}

long func(int v)
{
 denom = (sig_atomic_t)v;

 if (signal(SIGFPE, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }

 long result = 100 / (long)denom;
 return result;
}

Check Information
Group: Rule 11. Signals (SIG)

23 CERT C Rules and Recommendations

23-256

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
SIG35-C

Introduced in R2019a

 CERT C: Rule SIG35-C

23-257

https://wiki.sei.cmu.edu/confluence/display/c/SIG35-C.+Do+not+return+from+a+computational+exception+signal+handler

CERT C: Rule ERR30-C
Set errno to zero before calling a library function known to set errno, and check errno only after the
function returns a value indicating failure

Description
Rule Definition

Set errno to zero before calling a library function known to set errno, and check errno only after the
function returns a value indicating failure.

Polyspace Implementation

This checker checks for these issues:

• Misuse of errno.
• Errno not reset.

Examples
Misuse of errno
Issue

Misuse of errno occurs when you check errno for error conditions in situations where checking
errno does not guarantee the absence of errors. In some cases, checking errno can lead to false
positives.

For instance, you check errno following calls to the functions:

• fopen: If you follow the ISO Standard, the function might not set errno on errors.
• atof: If you follow the ISO Standard, the function does not set errno.
• signal: The errno value indicates an error only if the function returns the SIG_ERR error

indicator.

Risk

The ISO C Standard does not enforce that these functions set errno on errors. Whether the functions
set errno or not is implementation-dependent.

To detect errors, if you check errno alone, the validity of this check also becomes implementation-
dependent.

In some cases, the errno value indicates an error only if the function returns a specific error
indicator. If you check errno before checking the function return value, you can see false positives.

Fix

For information on how to detect errors, see the documentation for that specific function.

Typically, the functions return an out-of-band error indicator to indicate errors. For instance:

23 CERT C Rules and Recommendations

23-258

• fopen returns a null pointer if an error occurs.
• signal returns the SIG_ERR error indicator and sets errno to a positive value. Check errno

only after you have checked the function return value.

Example - Incorrectly Checking for errno After fopen Call

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

#define fatal_error() abort()

const char *temp_filename = "/tmp/demo.txt";

FILE *func()
{
 FILE *fileptr;
 errno = 0;
 fileptr = fopen(temp_filename, "w+b");
 if (errno != 0) {
 if (fileptr != NULL) {
 (void)fclose(fileptr);
 }
 /* Handle error */
 fatal_error();
 }
 return fileptr;
}

In this example, errno is the first variable that is checked after a call to fopen. You might expect
that fopen changes errno to a nonzero value if an error occurs. If you run this code with an
implementation of fopen that does not set errno on errors, you might miss an error condition. In
this situation, fopen can return a null pointer that escapes detection.

Correction — Check Return Value of fopen After Call

One possible correction is to only check the return value of fopen for a null pointer.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

#define fatal_error() abort()

const char *temp_filename = "/tmp/demo.txt";

FILE *func()
{
 FILE *fileptr;
 fileptr = fopen(temp_filename, "w+b");
 if (fileptr == NULL) {
 fatal_error();
 }
 return fileptr;
}

 CERT C: Rule ERR30-C

23-259

Errno not reset
Issue

Errno not reset occurs when you do not reset errno before calling a function that sets errno to
indicate error conditions. However, you check errno for those error conditions after the function
call.

Risk

The errno is not clean and can contain values from a previous call. Checking errno for errors can
give the false impression that an error occurred.

errno is set to zero at program startup but subsequently, errno is not reset by a C standard library
function. You must explicitly set errno to zero when required.

Fix

Before calling a function that sets errno to indicate error conditions, reset errno to zero explicitly.

Example - errno Not Reset Before Call to strtod

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <float.h>

#define fatal_error() abort()

double func(const char *s1, const char *s2)
{
 double f1;
 f1 = strtod (s1, NULL);
 if (0 == errno) {
 double f2 = strtod (s2, NULL);
 if (0 == errno) {
 long double result = (long double)f1 + f2;
 if ((result <= (long double)DBL_MAX) && (result >= (long double)-DBL_MAX))
 {
 return (double)result;
 }
 }
 }
 fatal_error();
 return 0.0;
}

In this example, errno is not reset to 0 before the first call to strtod. Checking errno for 0 later
can lead to a false positive.

Correction — Reset errno Before Call

One possible correction is to reset errno to 0 before calling strtod.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <float.h>

23 CERT C Rules and Recommendations

23-260

#define fatal_error() abort()

double func(const char *s1, const char *s2)
{
 double f1;
 errno = 0;
 f1 = strtod (s1, NULL);
 if (0 == errno) {
 double f2 = strtod (s2, NULL);
 if (0 == errno) {
 long double result = (long double)f1 + f2;
 if ((result <= (long double)DBL_MAX) && (result >= (long double)-DBL_MAX))
 {
 return (double)result;
 }
 }
 }
 fatal_error();
 return 0.0;
}

Check Information
Group: Rule 12. Error Handling (ERR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ERR30-C

Introduced in R2019a

 CERT C: Rule ERR30-C

23-261

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152351

CERT C: Rule ERR32-C
Do not rely on indeterminate values of errno

Description
Rule Definition

Do not rely on indeterminate values of errno.

Polyspace Implementation

This checker checks for Misuse of errno in a signal handler.

Examples
Misuse of errno in a signal handler

Issue

Misuse of errno in a signal handler occurs when you call one of these functions in a signal
handler:

• signal: You call the signal function in a signal handler and then read the value of errno.

For instance, the signal handler function handler calls signal and then calls perror, which
reads errno.

typedef void (*pfv)(int);

void handler(int signum) {
 pfv old_handler = signal(signum, SIG_DFL);
 if (old_handler == SIG_ERR) {
 perror("SIGINT handler");
 }
}

• errno-setting POSIX function: You call an errno-setting POSIX function in a signal handler but
do not restore errno when returning from the signal handler.

For instance, the signal handler function handler calls waitpid, which changes errno, but does
not restore errno before returning.

#include <stddef.h>
#include <errno.h>
#include <sys/wait.h>

void handler(int signum) {
 int rc = waitpid(-1, NULL, WNOHANG);
 if (ECHILD != errno) {
 }
}

23 CERT C Rules and Recommendations

23-262

Risk

In each case that the checker flags, you risk relying on an indeterminate value of errno.

• signal: If the call to signal in a signal handler fails, the value of errno is indeterminate (see
C11 Standard, Sec. 7.14.1.1). If you rely on a specific value of errno, you can see unexpected
results.

• errno-setting POSIX function: An errno-setting function sets errno on failure. If you read
errno after a signal handler is called and the signal handler itself calls an errno-setting function,
you can see unexpected results.

Fix

Avoid situations where you risk relying on an indeterminate value of errno.

• signal: After calling the signal function in a signal handler, do not read errno or use a
function that reads errno.

• errno-setting POSIX function: Before calling an errno-setting function in a signal handler, save
errno to a temporary variable. Restore errno from this variable before returning from the signal
handler.

Example - Reading errno After signal Call in Signal Handler

#include <signal.h>
#include <stdlib.h>
#include <stdio.h>

#define fatal_error() abort()

void handler(int signum) {
 if (signal(signum, SIG_DFL) == SIG_ERR) {
 perror("SIGINT handler");
 }
}

int func(void) {
 if (signal(SIGINT, handler) == SIG_ERR) {
 /* Handle error */
 fatal_error();
 }
 /* Program code */
 if (raise(SIGINT) != 0) {
 /* Handle error */
 fatal_error();
 }
 return 0;
}

In this example, the function handler is called to handle the SIGINT signal. In the body of handler,
the signal function is called. Following this call, the value of errno is indeterminate. The checker
raises a defect when the perror function is called because perror relies on the value of errno.
Correction — Avoid Reading errno After signal Call

One possible correction is to not read errno after calling the signal function in a signal handler.
The corrected code here calls the abort function via the fatal_error macro instead of the perror
function.

 CERT C: Rule ERR32-C

23-263

#include <signal.h>
#include <stdlib.h>
#include <stdio.h>

#define fatal_error() abort()

void handler(int signum) {
 if (signal(signum, SIG_DFL) == SIG_ERR) {
 fatal_error();
 }
}

int func(void) {
 if (signal(SIGINT, handler) == SIG_ERR) {
 /* Handle error */
 fatal_error();
 }
 /* Program code */
 if (raise(SIGINT) != 0) {
 /* Handle error */
 fatal_error();
 }
 return 0;
}

Check Information
Group: Rule 12. Error Handling (ERR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ERR32-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-264

https://wiki.sei.cmu.edu/confluence/display/c/ERR32-C.+Do+not+rely+on+indeterminate+values+of+errno

CERT C: Rule ERR33-C
Detect and handle standard library errors

Description
Rule Definition

Detect and handle standard library errors.

Polyspace Implementation

This checker checks for these issues:

• Errno not checked.
• Returned value of a sensitive standard function not checked.
• Unprotected dynamic memory allocation.
• Pointer overwritten during reallocation.

Examples
Errno not checked
Issue

Errno not checked occurs when you call a function that sets errno to indicate error conditions, but
do not check errno after the call. For these functions, checking errno is the only reliable way to
determine if an error occurred.

Functions that set errno on errors include:

• fgetwc, strtol, and wcstol.

For a comprehensive list of functions, see documentation about errno.
• POSIX errno-setting functions such as encrypt and setkey.

Risk

To see if the function call completed without errors, check errno for error values.

The return values of these errno-setting functions do not indicate errors. The return value can be
one of the following:

• void
• Even if an error occurs, the return value can be the same as the value from a successful call. Such

return values are called in-band error indicators.

You can determine if an error occurred only by checking errno.

For instance, strtol converts a string to a long integer and returns the integer. If the result of
conversion overflows, the function returns LONG_MAX and sets errno to ERANGE. However, the

 CERT C: Rule ERR33-C

23-265

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152351

function can also return LONG_MAX from a successful conversion. Only by checking errno can you
distinguish between an error and a successful conversion.

Fix

Before calling the function, set errno to zero.

After the function call, to see if an error occurred, compare errno to zero. Alternatively, compare
errno to known error indicator values. For instance, strtol sets errno to ERANGE to indicate
errors.

The error message in the Polyspace result shows the error indicator value that you can compare to.

Example - errno Not Checked After Call to strtol

#include<stdio.h>
#include<stdlib.h>
#include<errno.h>

int main(int argc, char *argv[]) {
 char *str, *endptr;
 int base;

 str = argv[1];
 base = 10;

 long val = strtol(str, &endptr, base);
 printf("Return value of strtol() = %ld\n", val);
}

You are using the return value of strtol without checking errno.

Correction — Check errno After Call

Before calling strtol, set errno to zero . After a call to strtol, check the return value for
LONG_MIN or LONG_MAX and errno for ERANGE.

#include<stdlib.h>
#include<stdio.h>
#include<errno.h>
#include<limits.h>

int main(int argc, char *argv[]) {
 char *str, *endptr;
 int base;

 str = argv[1];
 base = 10;

 errno = 0;
 long val = strtol(str, &endptr, base);
 if((val == LONG_MIN || val == LONG_MAX) && errno == ERANGE) {
 printf("strtol error");
 exit(EXIT_FAILURE);
 }
 printf("Return value of strtol() = %ld\n", val);
}

23 CERT C Rules and Recommendations

23-266

Returned value of a sensitive standard function not checked
Issue

Returned value of a sensitive standard function not checked occurs when you call sensitive
standard functions, but you:

• Ignore the return value.
• Use an output or a return value without testing the validity of the return value.

For this defect, two type of functions are considered: sensitive and critical sensitive.

A sensitive function is a standard function that can encounter:

• Exhausted system resources (for example, when allocating resources)
• Changed privileges or permissions
• Tainted sources when reading, writing, or converting data from external sources
• Unsupported features despite an existing API

A critical sensitive function is a sensitive function that performs one of these critical or vulnerable
tasks:

• Set privileges (for example, setuid)
• Create a jail (for example, chroot)
• Create a process (for example, fork)
• Create a thread (for example, thrd_create)
• Lock or unlock memory segments (for example, mlock)

Risk

If you do not check the return value of functions that perform sensitive or critical sensitive tasks,
your program can behave unexpectedly. Errors from these functions can propagate throughout the
program causing incorrect output, security vulnerabilities, and possibly system failures.
Fix

Before continuing with the program, test the return value of critical sensitive functions.

For sensitive functions, you can explicitly ignore a return value by casting the function to void.
Polyspace does not raise this defect for sensitive functions cast to void. This resolution is not
accepted for critical sensitive functions because they perform more vulnerable tasks.
Example - Sensitive Function Return Ignored

#include<stdio.h>
#include <wchar.h>
#include <locale.h>
void initialize(size_t n, size_t* size, wchar_t *wcs, const char *utf8) {

 scanf("%d",&n); //Noncompliant
 setlocale (LC_CTYPE, "en_US.UTF-8"); //Noncompliant
 *size = mbstowcs (wcs, utf8, n);
}

This example shows a call to the sensitive function scanf(). The return value of scanf() is ignored,
causing a defect. Similarly, the pointer returned by setlocale is not checked. When setlocal

 CERT C: Rule ERR33-C

23-267

returns a NULL pointer, the call to mbstowcs might fail or produce unexpected results. Polyspace
flags these calls to sensitive functions when their returns are not checked.

Correction — Cast Function to (void)

One possible correction is to cast the functions to void. This fix informs Polyspace and any reviewers
that you are explicitly ignoring the return value of these sensitive functions.

#include<stdio.h>
#include <wchar.h>
#include <locale.h>
void initialize(size_t n, size_t* size, wchar_t *wcs, const char *utf8) {

 (void)scanf("%d",&n); //Compliant
 (void)setlocale (LC_CTYPE, "en_US.UTF-8"); //Compliant
 *size = mbstowcs (wcs, utf8, n);
}

Correction — Test Return Value

One possible correction is to test the return value of scanf and setlocale to check for errors.

#include<stdio.h>
#include <wchar.h>
#include <locale.h>
void initialize(size_t n, size_t* size, wchar_t *wcs, const char *utf8) {

 int flag = scanf("%d",&n);
 if(flag>0){ //Compliant
 // action
 }
 char* status = setlocale (LC_CTYPE, "en_US.UTF-8");
 if(status!=NULL){//Compliant
 *size = mbstowcs (wcs, utf8, n);
 }

}

Example - Critical Function Return Ignored

#include <threads.h>
int thrd_func(void);
void initialize() {
 thrd_t thr;
 int n = 1;

 (void) thrd_create(&thr,thrd_func,&n);
}

In this example, a critical function thrd_create is called and its return value is ignored by casting
to void, but because thrd_create is a critical function, Polyspace does not ignore this defect.

Correction — Test the Return Value of Critical Functions

The correction for this defect is to check the return value of these critical functions to verify the
function performed as expected.

#include <threads.h>
int thrd_func(void);

23 CERT C Rules and Recommendations

23-268

void initialize() {
 thrd_t thr;
 int n = 1;
 if(thrd_success!= thrd_create(&thr,thrd_func,&n)){
 // handle error

 }
}

Unprotected dynamic memory allocation
Issue

Unprotected dynamic memory allocation occurs when you do not check after dynamic memory
allocation whether the memory allocation succeeded.

Risk

When memory is dynamically allocated using malloc, calloc, or realloc, it returns a value NULL if
the requested memory is not available. If the code following the allocation accesses the memory block
without checking for this NULL value, this access is not protected from failures.

Fix

Check the return value of malloc, calloc, or realloc for NULL before accessing the allocated
memory location.

#DEFINE SIZE 8;

int *ptr = malloc(SIZE * sizeof(int));

if(ptr) /* Check for NULL */
{
 /* Memory access through ptr */
}

Example - Unprotected Dynamic Memory Allocation Error

#include <stdlib.h>

void Assign_Value(void)
{
 int* p = (int*)calloc(5, sizeof(int));
 *p = 2; //Noncompliant
 /* Defect: p is not checked for NULL value */
 free(p);
}
/*Defect: p is not checked for NULL before deallocating*/

If the memory allocation fails, the function such as calloc returns NULL to p. Before accessing the
memory through p or freeing p, the code does not check whether p is NULL. These operations might
result in memory leaks.

Correction — Check for NULL Value

One possible correction is to check whether p has value NULL before dereference.

#include <stdlib.h>

 CERT C: Rule ERR33-C

23-269

void Assign_Value(void)
 {
 int* p = (int*)calloc(5, sizeof(int));
 /* Fix: Check if p is NULL */
 if(p!=NULL) *p = 2;
 free(p);
 }

Pointer overwritten during reallocation
Issue

Pointer overwritten during reallocation occurs when you overwrite the original pointer by the
return value of realloc(). For instance:

p = realloc(p,SIZE);

Risk

The function realloc() returns a NULL value when memory allocation fails. In the preceding code,
because you overwrite p by the return of realloc(), it becomes NULL when the reallocation
operation fails. You lose the connection between the original memory block and p, resulting in a
memory leak.

Fix

When reallocating pointers, preserve the original pointer. For instance, you might use a temporary
variable to store the reallocated memory.

Example — Avoid Overwriting Original Pointer When Reallocating Memory

#include <stdlib.h>
//...
void foo (int* ptrI, size_t new_size)
{

 if (new_size == 0) {
 /* Handle error */
 return;
 }

 ptrI = (int*)realloc (ptrI, new_size); //Noncompliant

 if (ptrI == NULL) {
 /* Handle error */
 return;
 }
}

Overwriting the pointer ptrI by the pointer returned by realloc destroys the association between
ptrI and the original memory block. If realloc fails, such overwriting might cause a memory leak
and data loss.

Correction — Store Reallocated Memory in Temporary Variable

When reallocating a pointer, use a temporary variable to hold the reallocated memory. Before
assigning the temporary variable to ptrI, check it for NULL value to avoid memory leaks and data
loss.

23 CERT C Rules and Recommendations

23-270

#include <stdlib.h>

void foo (int* ptrI, size_t new_size)
{
int* temp;
 if (new_size == 0) {
 /* Handle error */
 return;
 }

 temp = (int*)realloc (ptrI, new_size); //Noncompliant

 if (temp == NULL) {
 /* Handle error */
 return;
 }else{
 ptrI = temp;
 }
}

Check Information
Group: Rule 12. Error Handling (ERR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ERR33-C

Introduced in R2019a

 CERT C: Rule ERR33-C

23-271

https://wiki.sei.cmu.edu/confluence/display/c/ERR33-C.+Detect+and+handle+standard+library+errors

CERT C: Rule ERR34-C
Detect errors when converting a string to a number

Description
Rule Definition

Detect errors when converting a string to a number.

Polyspace Implementation

This checker checks for Unsafe conversion from string to numerical value.

Examples
Unsafe conversion from string to numerical value
Issue

Unsafe conversion from string to numerical value detects conversions from strings to integer or
floating-point values. If your conversion method does not include robust error handling, a defect is
raised.

Risk

Converting a string to numerical value can cause data loss or misinterpretation. Without validation of
the conversion or error handling, your program continues with invalid values.

Fix

• Add additional checks to validate the numerical value.
• Use a more robust string-to-numeric conversion function such as strtol, strtoll, strtoul, or

strtoull.

Example - Conversion With atoi

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static int demo_check_string_not_empty(char *s)
{
 if (s != NULL)
 return strlen(s) > 0; /* check string null-terminated and not empty */
 else
 return 0;
}

int unsafestrtonumeric(char* argv1)
{
 int s = 0;
 if (demo_check_string_not_empty(argv1))
 {

23 CERT C Rules and Recommendations

23-272

 s = atoi(argv1);
 }
 return s;
}

In this example, argv1 is converted to an integer with atoi. atoi does not provide errors for an
invalid integer string. The conversion can fail unexpectedly.

Correction — Use strtol instead

One possible correction is to use strtol to validate the input string and the converted integer.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <errno.h>

static int demo_check_string_not_empty(char *s)
{
 if (s != NULL)
 return strlen(s) > 0; /* check string null-terminated and not empty */
 else
 return 0;
}

int unsafestrtonumeric(char *argv1)
{
 char *c_str = argv1;
 char *end;
 long sl;

 if (demo_check_string_not_empty(c_str))
 {
 errno = 0; /* set errno for error check */
 sl = strtol(c_str, &end, 10);
 if (end == c_str)
 {
 (void)fprintf(stderr, "%s: not a decimal number\n", c_str);
 }
 else if ('\0' != *end)
 {
 (void)fprintf(stderr, "%s: extra characters: %s\n", c_str, end);
 }
 else if ((LONG_MIN == sl || LONG_MAX == sl) && ERANGE == errno)
 {
 (void)fprintf(stderr, "%s out of range of type long\n", c_str);
 }
 else if (sl > INT_MAX)
 {
 (void)fprintf(stderr, "%ld greater than INT_MAX\n", sl);
 }
 else if (sl < INT_MIN)
 {
 (void)fprintf(stderr, "%ld less than INT_MIN\n", sl);
 }
 else
 {

 CERT C: Rule ERR34-C

23-273

 return (int)sl;
 }
 }
 return 0;
}

Check Information
Group: Rule 12. Error Handling (ERR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ERR34-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-274

https://wiki.sei.cmu.edu/confluence/display/c/ERR34-C.+Detect+errors+when+converting+a+string+to+a+number

CERT C: Rule CON30-C
Clean up thread-specific storage

Description
Rule Definition

Clean up thread-specific storage.

Polyspace Implementation

This checker checks for Thread-specific memory leak.

Examples
Thread-specific memory leak
Issue

Thread-specific memory leak occurs when you do not free thread-specific dynamically allocated
memory before the end of a thread.

To create thread-specific storage, you generally do these steps:

1 You create a key for thread-specific storage.
2 You create the threads.
3 In each thread, you allocate storage dynamically and then associate the key with this storage.

After the association, you can read the stored data later using the key.
4 Before the end of the thread, you free the thread-specific memory using the key.

The checker flags execution paths in the thread where the last step is missing.

The checker works on these families of functions:

• tss_get and tss_set (C11)
• pthread_getspecific and pthread_setspecific (POSIX)

Risk

The data stored in the memory is available to other processes even after the threads end (memory
leak). Besides security vulnerabilities, memory leaks can shrink the amount of available memory and
reduce performance.
Fix

Free dynamically allocated memory before the end of a thread.

You can explicitly free dynamically allocated memory with functions such as free.

Alternatively, when you create a key, you can associate a destructor function with the key. The
destructor function is called with the key value as argument at the end of a thread. In the body of the

 CERT C: Rule CON30-C

23-275

destructor function, you can free any memory associated with the key. If you use this method, Bug
Finder still flags a defect. Ignore this defect with appropriate comments. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Memory Not Freed at End of Thread

#include <threads.h>
#include <stdlib.h>

/* Global key to the thread-specific storage */
tss_t key;
enum { MAX_THREADS = 3 };

int add_data(void) {
 int *data = (int *)malloc(2 * sizeof(int));
 if (data == NULL) {
 return -1; /* Report error */
 }
 data[0] = 0;
 data[1] = 1;

 if (thrd_success != tss_set(key, (void *)data)) {
 /* Handle error */
 }
 return 0;
}

void print_data(void) {
 /* Get this thread's global data from key */
 int *data = tss_get(key);

 if (data != NULL) {
 /* Print data */
 }
}

int func(void *dummy) {
 if (add_data() != 0) {
 return -1; /* Report error */
 }
 print_data();
 return 0;
}

int main(void) {
 thrd_t thread_id[MAX_THREADS];

 /* Create the key before creating the threads */
 if (thrd_success != tss_create(&key, NULL)) {
 /* Handle error */
 }

23 CERT C Rules and Recommendations

23-276

 /* Create threads that would store specific storage */
 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_create(&thread_id[i], func, NULL)) {
 /* Handle error */
 }
 }

 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_join(thread_id[i], NULL)) {
 /* Handle error */
 }
 }

 tss_delete(key);
 return 0;
}

In this example, the start function of each thread func calls two functions:

• add_data: This function allocates storage dynamically and associates the storage with a key
using the tss_set function.

• print_data: This function reads the stored data using the tss_get function.

At the points where func returns, the dynamically allocated storage has not been freed.

Correction — Free Dynamically Allocated Memory Explicitly

One possible correction is to free dynamically allocated memory explicitly before leaving the start
function of a thread. See the highlighted change in the corrected version.

In this corrected version, a defect still appears on the return statement in the error handling section
of func. The defect cannot occur in practice because the error handling section is entered only if
dynamic memory allocation fails. Ignore this remaining defect with appropriate comments. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

#include <threads.h>
#include <stdlib.h>

/* Global key to the thread-specific storage */
tss_t key;
enum { MAX_THREADS = 3 };

int add_data(void) {
 int *data = (int *)malloc(2 * sizeof(int));
 if (data == NULL) {
 return -1; /* Report error */
 }
 data[0] = 0;
 data[1] = 1;

 CERT C: Rule CON30-C

23-277

 if (thrd_success != tss_set(key, (void *)data)) {
 /* Handle error */
 }
 return 0;
}

void print_data(void) {
 /* Get this thread's global data from key */
 int *data = tss_get(key);

 if (data != NULL) {
 /* Print data */
 }
}

int func(void *dummy) {
 if (add_data() != 0) {
 return -1; /* Report error */
 }
 print_data();
 free(tss_get(key));
 return 0;
}

int main(void) {
 thrd_t thread_id[MAX_THREADS];

 /* Create the key before creating the threads */
 if (thrd_success != tss_create(&key, NULL)) {
 /* Handle error */
 }

 /* Create threads that would store specific storage */
 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_create(&thread_id[i], func, NULL)) {
 /* Handle error */
 }
 }

 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_join(thread_id[i], NULL)) {
 /* Handle error */
 }
 }

 tss_delete(key);
 return 0;
}

Check Information
Group: Rule 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

23 CERT C Rules and Recommendations

23-278

Topics
“Check for Coding Standard Violations”

External Websites
CON30-C

Introduced in R2019a

 CERT C: Rule CON30-C

23-279

https://wiki.sei.cmu.edu/confluence/display/c/CON30-C.+Clean+up+thread-specific+storage

CERT C: Rule CON31-C
Do not destroy a mutex while it is locked

Description
Rule Definition

Do not destroy a mutex while it is locked.

Polyspace Implementation

This checker checks for Destruction of locked mutex.

Examples
Destruction of locked mutex
Issue

Destruction of locked mutex occurs when a task destroys a mutex after it is locked (and before it is
unlocked). The locking and destruction can happen in the same task or different tasks.

Risk

A mutex is locked to protect shared variables from concurrent access. If a mutex is destroyed in the
locked state, the protection does not apply.

Fix

To fix this defect, destroy the mutex only after you unlock it. It is a good design practice to:

• Initialize a mutex before creating the threads where you use the mutex.
• Destroy a mutex after joining the threads that you created.

On the Result Details pane, you see two events, the locking and destruction of the mutex, and the
tasks that initiated the events. To navigate to the corresponding line in your source code, click the
event.

Example - Locking and Destruction in Different Tasks

#include <pthread.h>

pthread_mutex_t lock1;
pthread_mutex_t lock2;
pthread_mutex_t lock3;

void t0 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);
 pthread_mutex_lock (&lock3);
 pthread_mutex_unlock (&lock2);

23 CERT C Rules and Recommendations

23-280

 pthread_mutex_unlock (&lock1);
 pthread_mutex_unlock (&lock3);
}

void t1 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);
 pthread_mutex_destroy (&lock3);
 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

In this example, after task t0 locks the mutex lock3, task t1 can destroy it. The destruction occurs if
the following events happen in sequence:

1 t0 acquires lock3.
2 t0 releases lock2.
3 t0 releases lock1.
4 t1 acquires the lock lock1 released by t0.
5 t1 acquires the lock lock2 released by t0.
6 t1 destroys lock3.

For simplicity, this example uses a mix of automatic and manual concurrency detection. The tasks t0
and t1 are manually specified as entry points by using the option Tasks (-entry-points). The
critical sections are implemented through primitives pthread_mutex_lock and
pthread_mutex_unlock that the software detects automatically. In practice, for entry point
specification (thread creation), you will use primitives such as pthread_create. The next example
shows how the defect can appear when you use pthread_create.

Correction — Place Lock-Unlock Pair Together in Same Critical Section as Destruction

The locking and destruction of lock3 occurs inside the critical section imposed by lock1 and lock2,
but the unlocking occurs outside. One possible correction is to place the lock-unlock pair in the same
critical section as the destruction of the mutex. Use one of these critical sections:

• Critical section imposed by lock1 alone.
• Critical section imposed by lock1 and lock2.

In this corrected code, the lock-unlock pair and the destruction is placed in the critical section
imposed by lock1 and lock2. When t0 acquires lock1 and lock2, t1 has to wait for their release
before it executes the instruction pthread_mutex_destroy (&lock3);. Therefore, t1 cannot
destroy mutex lock3 in the locked state.

#include <pthread.h>

pthread_mutex_t lock1;
pthread_mutex_t lock2;
pthread_mutex_t lock3;

void t0 (void) {
 pthread_mutex_lock (&lock1);

 CERT C: Rule CON31-C

23-281

 pthread_mutex_lock (&lock2);

 pthread_mutex_lock (&lock3);
 pthread_mutex_unlock (&lock3);

 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

void t1 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);

 pthread_mutex_destroy (&lock3);

 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

Example - Locking and Destruction in Start Routine of Thread

#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 4
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
void atomic_operation(void);

void *do_create(void *arg) {
 /* Creation thread */
 pthread_mutex_init(&lock, NULL);
 pthread_exit((void*) 0);
}

void *do_work(void *arg) {
 /* Worker thread */
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_exit((void*) 0);
}

void *do_destroy(void *arg) {
 /* Destruction thread */
 pthread_mutex_destroy(&lock);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;
 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);

23 CERT C Rules and Recommendations

23-282

 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Thread that initializes mutex */
 pthread_create(&callThd[0], &attr, do_create, NULL);

 /* Threads that use mutex for atomic operation*/
 for(i=0; i<NUMTHREADS-1; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 /* Thread that destroys mutex */
 pthread_create(&callThd[NUMTHREADS -1], &attr, do_destroy, NULL);

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 pthread_exit(NULL);
}

In this example, four threads are created. The threads are assigned different actions.

• The first thread callThd[0] initializes the mutex lock.
• The second and third threads, callThd[1] and callThd[2], perform an atomic operation

protected by the mutex lock.
• The fourth thread callThd[3] destroys the mutex lock.

The threads can interrupt each other. Therefore, immediately after the second or third thread locks
the mutex, the fourth thread can destroy it.

Correction — Initialize and Destroy Mutex Outside Start Routine

One possible correction is to initialize and destroy the mutex in the main function outside the start
routine of the threads. The threads perform only the atomic operation. You need two fewer threads
because the mutex initialization and destruction threads are not required.

#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 2
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
void atomic_operation(void);

void *do_work(void *arg) {
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;

 CERT C: Rule CON31-C

23-283

 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Initialize mutex */
 pthread_mutex_init(&lock, NULL);

 for(i=0; i<NUMTHREADS; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 /* Destroy mutex */
 pthread_mutex_destroy(&lock);

 pthread_exit(NULL);
}

Correction — Use A Second Mutex To Protect Lock-Unlock Pair and Destruction

Another possible correction is to use a second mutex and protect the lock-unlock pair from the
destruction. This corrected code uses the mutex lock2 to achieve this protection. The second mutex
is initialized in the main function outside the start routine of the threads.

#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 4
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
pthread_mutex_t lock2;
void atomic_operation(void);

void *do_create(void *arg) {
 /* Creation thread */
 pthread_mutex_init(&lock, NULL);
 pthread_exit((void*) 0);
}

void *do_work(void *arg) {
 /* Worker thread */
 pthread_mutex_lock (&lock2);
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_mutex_unlock (&lock2);
 pthread_exit((void*) 0);
}

23 CERT C Rules and Recommendations

23-284

void *do_destroy(void *arg) {
 /* Destruction thread */
 pthread_mutex_lock (&lock2);
 pthread_mutex_destroy(&lock);
 pthread_mutex_unlock (&lock2);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;
 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Initialize second mutex */
 pthread_mutex_init(&lock2, NULL);

 /* Thread that initializes first mutex */
 pthread_create(&callThd[0], &attr, do_create, NULL);

 /* Threads that use first mutex for atomic operation */
 /* The threads use second mutex to protect first from destruction in locked state*/
 for(i=0; i<NUMTHREADS-1; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 /* Thread that destroys first mutex */
 /* The thread uses the second mutex to prevent destruction of locked mutex */
 pthread_create(&callThd[NUMTHREADS -1], &attr, do_destroy, NULL);

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 /* Destroy second mutex */
 pthread_mutex_destroy(&lock2);

 pthread_exit(NULL);
}

Check Information
Group: Rule 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

 CERT C: Rule CON31-C

23-285

Topics
“Check for Coding Standard Violations”

External Websites
CON31-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-286

https://wiki.sei.cmu.edu/confluence/display/c/CON31-C.+Do+not+destroy+a+mutex+while+it+is+locked

CERT C: Rule CON32-C
Prevent data races when accessing bit fields from multiple threads

Description
Rule Definition

Prevent data races when accessing bit fields from multiple threads.

Polyspace Implementation

This checker checks for Data race on adjacent bit fields.

Examples
Data race on adjacent bit fields
Issue

Data race on adjacent bit fields occurs when both of these conditions are true:

• Multiple tasks perform unprotected operations on bit fields that are part of the same structure.

For instance, a task operates on field errorFlag1 and another task on field errorFlag2 in a
variable of this type:

struct errorFlags {
 unsigned int errorFlag1 : 1;
 unsigned int errorFlag2 : 1;
 //...
};

Suppose that the operations are not atomic with respect to each other. In other words, you have
not implemented protection mechanisms to ensure that one operation is completed before another
operation begins.

• At least one of the unprotected operations is a write operation.

To find this defect, before analysis, you must specify the multitasking options. To specify these
options, on the Configuration pane, select Multitasking. For more information, see “Configuring
Polyspace Multitasking Analysis Manually”.

Risk

Adjacent bit fields that are part of the same structure might be stored in one byte in the same
memory location. Read or write operations on all variables including bit fields occur one byte or word
at a time. To modify only specific bits in a byte, steps similar to these steps occur in sequence:

1 The byte is loaded into RAM.
2 A mask is created so that only specific bits are modified to the intended value and the remaining

bits remain unchanged.
3 A bitwise OR operation is performed between the copy of the byte in RAM and the mask.

 CERT C: Rule CON32-C

23-287

4 The byte with specific bits modified is copied back from RAM.

When you access two different bit fields, these four steps have to be performed for each bit field. If
the accesses are not protected, all four steps for one bit field might not be completed before the four
steps for the other bit field begin. As a result, the modification of one bit field might undo the
modification of an adjacent bit field. For instance, in the preceding example, the modification of
errorFlag1 and errorFlag2 can occur in the following sequence.

Steps 1,2 and 5 relate to modification of errorFlag1 and while steps 3,4 and 6 relate to that of
errorFlag2.

1 The byte with both errorFlag1 and errorFlag2 unmodified is copied into RAM, for purposes
of modifying errorFlag1.

2 A mask that modifies only errorFlag1 is bitwise OR-ed with this copy.
3 The byte containing both errorFlag1 and errorFlag2 unmodified is copied into RAM a second

time, for purposes of modifying errorFlag2.
4 A mask that modifies only errorFlag2 is bitwise OR-ed with this second copy.
5 The version with errorFlag1 modified is copied back. This version has errorFlag2

unmodified.
6 The version with errorFlag2 modified is copied back. This version has errorFlag1 unmodified

and overwrites the previous modification.

Fix

To fix this defect, protect the operations on bit fields that are part of the same structure using critical
sections, temporal exclusion, or another means. See “Protections for Shared Variables in Multitasking
Code”.

To identify existing protections that you can reuse, see the table and graphs associated with the
result. The table shows each pair of conflicting calls. The Access Protections column shows existing

protections on the calls. To see the function call sequence leading to the conflicts, click the icon.
Example - Unprotected Operation on Global Variable from Multiple Tasks

typedef struct
{
 unsigned int IOFlag :1;
 unsigned int InterruptFlag :1;
 unsigned int Register1Flag :1;
 unsigned int SignFlag :1;
 unsigned int SetupFlag :1;
 unsigned int Register2Flag :1;
 unsigned int ProcessorFlag :1;
 unsigned int GeneralFlag :1;
} InterruptConfigbits_t;

InterruptConfigbits_t InterruptConfigbitsProc12;

void task1 (void) {
 InterruptConfigbitsProc12.IOFlag = 0;
}

void task2 (void) {

23 CERT C Rules and Recommendations

23-288

 InterruptConfigbitsProc12.SetupFlag = 0;
}

In this example, task1 and task2 access different bit fields IOFlag and SetupFlag, which belong
to the same structured variable InterruptConfigbitsProc12.

To emulate multitasking behavior, specify the options listed in this table.

Option Specification
Configure multitasking
manually on page 2-115
Tasks on page 2-119 task1

task2

At the command-line, use:

 polyspace-bug-finder
 -entry-points task1,task2

Correction – Use Critical Sections

One possible correction is to wrap the bit field access in a critical section. A critical section lies
between a call to a lock function and an unlock function. In this correction, the critical section lies
between the calls to functions begin_critical_section and end_critical_section.

typedef struct
{
 unsigned int IOFlag :1;
 unsigned int InterruptFlag :1;
 unsigned int Register1Flag :1;
 unsigned int SignFlag :1;
 unsigned int SetupFlag :1;
 unsigned int Register2Flag :1;
 unsigned int ProcessorFlag :1;
 unsigned int GeneralFlag :1;
} InterruptConfigbits_t;

InterruptConfigbits_t InterruptConfigbitsProc12;

void begin_critical_section(void);
void end_critical_section(void);

void task1 (void) {
 begin_critical_section();
 InterruptConfigbitsProc12.IOFlag = 0;
 end_critical_section();
}

void task2 (void) {
 begin_critical_section();
 InterruptConfigbitsProc12.SetupFlag = 0;
 end_critical_section();
}

In this example, to emulate multitasking behavior, specify the options listed in this table.

 CERT C: Rule CON32-C

23-289

Option Specification
Configure multitasking
manually on page 2-115
Tasks on page 2-119 task1

task2
Critical section details on
page 2-130

Starting routine Ending routine
begin_critical_section end_critical_section

At the command-line, use:

 polyspace-bug-finder
 -entry-points task1,task2
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

Correction – Avoid Bit Fields

If you do not have memory constraints, use the char data type instead of bit fields. The char
variables in a structure occupy at least one byte and do not have the thread-safety issues that come
from bit manipulations in a byte-sized operation. Data races do not result from unprotected
operations on different char variables that are part of the same structure.

typedef struct
{
 unsigned char IOFlag;
 unsigned char InterruptFlag;
 unsigned char Register1Flag;
 unsigned char SignFlag;
 unsigned char SetupFlag;
 unsigned char Register2Flag;
 unsigned char ProcessorFlag;
 unsigned char GeneralFlag;
} InterruptConfigbits_t;

InterruptConfigbits_t InterruptConfigbitsProc12;

void task1 (void) {
 InterruptConfigbitsProc12.IOFlag = 0;
}

void task2 (void) {
 InterruptConfigbitsProc12.SetupFlag = 0;
}

Though the checker does not flag this correction, do not use this correction for C99 or earlier. Only
from C11 and later does the C Standard mandate that distinct char variables cannot be accessed
using the same word.
Correction – Insert Bit Field of Size 0

You can enter a non-bit field member or an unnamed bit field member of size 0 between two adjacent
bit fields that might be accessed concurrently. A non-bit field member or size 0 bit-field member
ensures that the subsequent bit field starts from a new memory location. In this corrected example,
the size 0 bit-field member ensures that IOFlag and SetupFlag are stored in distinct memory
locations.

23 CERT C Rules and Recommendations

23-290

typedef struct
{
 unsigned int IOFlag :1;
 unsigned int InterruptFlag :1;
 unsigned int Register1Flag :1;
 unsigned int SignFlag :1;
 unsigned int : 0;
 unsigned int SetupFlag :1;
 unsigned int Register2Flag :1;
 unsigned int ProcessorFlag :1;
 unsigned int GeneralFlag :1;
} InterruptConfigbits_t;

InterruptConfigbits_t InterruptConfigbitsProc12;

void task1 (void) {
 InterruptConfigbitsProc12.IOFlag = 0;
}

void task2 (void) {
 InterruptConfigbitsProc12.SetupFlag = 0;
}

Check Information
Group: Rule 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”
“Analyze Multitasking Programs in Polyspace”
“Protections for Shared Variables in Multitasking Code”

External Websites
CON32-C

Introduced in R2019a

 CERT C: Rule CON32-C

23-291

https://wiki.sei.cmu.edu/confluence/display/c/CON32-C.+Prevent+data+races+when+accessing+bit-fields+from+multiple+threads

CERT C: Rule CON33-C
Avoid race conditions when using library functions

Description
Rule Definition

Avoid race conditions when using library functions.

Polyspace Implementation

This checker checks for Data race through standard library function call.

Examples
Data race through standard library function call
Issue

Data race through standard library function call occurs when:

• Multiple tasks call the same standard library function.

For instance, multiple tasks call the strerror function.
• The calls are not protected using a common protection.

For instance, the calls are not protected by the same critical section.

Functions flagged by this defect are not guaranteed to be reentrant. A function is reentrant if it can
be interrupted and safely called again before its previous invocation completes execution. If a
function is not reentrant, multiple tasks calling the function without protection can cause
concurrency issues. For the list of functions that are flagged, see CON33-C: Avoid race conditions
when using library functions.

To find this defect, you must specify the multitasking options before analysis. To specify these options,
on the Configuration pane, select Multitasking. For more information, see “Configuring Polyspace
Multitasking Analysis Manually”.

Risk

The functions flagged by this defect are nonreentrant because their implementations can use global
or static variables. When multiple tasks call the function without protection, the function call from
one task can interfere with the call from another task. The two invocations of the function can
concurrently access the global or static variables and cause unpredictable results.

The calls can also cause more serious security vulnerabilities, such as abnormal termination, denial-
of-service attack, and data integrity violations.

Fix

To fix this defect, do one of the following:

23 CERT C Rules and Recommendations

23-292

https://wiki.sei.cmu.edu/confluence/display/c/CON33-C.+Avoid+race+conditions+when+using+library+functions
https://wiki.sei.cmu.edu/confluence/display/c/CON33-C.+Avoid+race+conditions+when+using+library+functions

• Use a reentrant version of the standard library function if it exists.

For instance, instead of strerror(), use strerror_r() or strerror_s(). For alternatives to
functions flagged by this defect, see the documentation for CON33-C.

• Protect the function calls using common critical sections or temporal exclusion.

See Critical section details (-critical-section-begin -critical-section-
end) and Temporally exclusive tasks (-temporal-exclusions-file).

To identify existing protections that you can reuse, see the table and graphs associated with the
result. The table shows each pair of conflicting calls. The Access Protections column shows
existing protections on the calls. To see the function call sequence leading to the conflicts, click

the icon. For an example, see below.

Example - Unprotected Call to Standard Library Function from Multiple Tasks

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin_critical_section(void);
void end_critical_section(void);

FILE *getFilePointer(void);

void func(FILE *fp) {
 fpos_t pos;
 errno = 0;
 if (0 != fgetpos(fp, &pos)) {
 char *errmsg = strerror(errno);
 printf("Could not get the file position: %s\n", errmsg);
 }
}

void task1(void) {
 FILE* fptr1 = getFilePointer();
 func(fptr1);
}

void task2(void) {
 FILE* fptr2 = getFilePointer();
 func(fptr2);
}

void task3(void) {
 FILE* fptr3 = getFilePointer();
 begin_critical_section();
 func(fptr3);
 end_critical_section();
}

In this example, to emulate multitasking behavior, specify the following options:

 CERT C: Rule CON33-C

23-293

https://wiki.sei.cmu.edu/confluence/display/c/CON33-C.+Avoid+race+conditions+when+using+library+functions

Option Specification
Configure multitasking
manually
Tasks (-entry-points) task1

task2

task3
Critical section details
(-critical-section-begin
-critical-section-end)

Starting routine Ending routine
begin_critical_section end_critical_section

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2,task3
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

In this example, the tasks, task1, task2 and task3, call the function func. func calls the
nonreentrant standard library function, strerror.

Though task3 calls func inside a critical section, other tasks do not use the same critical section.
Operations in the critical section of task3 are not mutually exclusive with operations in other tasks.

These three tasks are calling a nonreentrant standard library function without common protection. In
your result details, you see each pair of conflicting function calls.

If you click the icon, you see the function call sequence starting from the entry point to the
standard library function call. You also see that the call starting from task3 is in a critical section.
The Access Protections entry shows the lock and unlock function that begin and end the critical
section. In this example, you see the functions begin_critical_section and
end_critical_section.

23 CERT C Rules and Recommendations

23-294

Correction — Use Reentrant Version of Standard Library Function

One possible correction is to use a reentrant version of the standard library function strerror. You
can use the POSIX version strerror_r which has the same functionality but also guarantees thread-
safety.

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin_critical_section(void);
void end_critical_section(void);

FILE *getFilePointer(void);
enum { BUFFERSIZE = 64 };

void func(FILE *fp) {
 fpos_t pos;
 errno = 0;
 if (0 != fgetpos(fp, &pos)) {
 char errmsg[BUFFERSIZE];
 if (strerror_r(errno, errmsg, BUFFERSIZE) != 0) {
 /* Handle error */
 }
 printf("Could not get the file position: %s\n", errmsg);
 }
}

void task1(void) {
 FILE* fptr1 = getFilePointer();
 func(fptr1);
}

void task2(void) {
 FILE* fptr2 = getFilePointer();
 func(fptr2);
}

void task3(void) {
 FILE* fptr3 = getFilePointer();

 CERT C: Rule CON33-C

23-295

 begin_critical_section();
 func(fptr3);
 end_critical_section();
}

Correction — Place Function Call in Critical Section

One possible correction is to place the call to strerror in critical section. You can implement the
critical section in multiple ways.

For instance, you can place the call to the intermediate function func in the same critical section in
the three tasks. When task1 enters its critical section, the other tasks cannot enter their critical
sections until task1 leaves its critical section. The calls to func and therefore the calls to strerror
from the three tasks cannot interfere with each other.

To implement the critical section, in each of the three tasks, call func between calls to
begin_critical_section and end_critical_section.

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin_critical_section(void);
void end_critical_section(void);

FILE *getFilePointer(void);

void func(FILE *fp) {
 fpos_t pos;
 errno = 0;
 if (0 != fgetpos(fp, &pos)) {
 char *errmsg = strerror(errno);
 printf("Could not get the file position: %s\n", errmsg);
 }
}

void task1(void) {
 FILE* fptr1 = getFilePointer();
 begin_critical_section();
 func(fptr1);
 end_critical_section();
}

void task2(void) {
 FILE* fptr2 = getFilePointer();
 begin_critical_section();
 func(fptr2);
 end_critical_section();
}

void task3(void) {
 FILE* fptr3 = getFilePointer();
 begin_critical_section();
 func(fptr3);
 end_critical_section();
}

23 CERT C Rules and Recommendations

23-296

Correction — Make Tasks Temporally Exclusive

Another possible correction is to make the tasks, task1, task2 and task3, temporally exclusive.
Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

Option Value
Temporally exclusive
tasks (-temporal-
exclusions-file)

task1 task2 task3

On the command-line, you can use the following:

 polyspace-bug-finder
 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

task1 task2 task3

Check Information
Group: Rule 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
CON33-C

Introduced in R2019a

 CERT C: Rule CON33-C

23-297

https://wiki.sei.cmu.edu/confluence/display/c/CON33-C.+Avoid+race+conditions+when+using+library+functions

CERT C: Rule CON34-C
Declare objects shared between threads with appropriate storage durations

Description
Rule Definition

Declare objects shared between threads with appropriate storage durations.

Examples
Automatic or thread local variable escaping from a C11 thread
Issue

Automatic or thread local variable escaping from a C11 thread occurs when an automatic or
thread local variable is passed by address from one C11 thread to another without ensuring that the
variable stays alive through the duration of the latter thread.
Risk

An automatic or thread local variable is allocated on the stack at the beginning of a thread and its
lifetime extends till the end of the thread. The variable is not guaranteed to be alive when a different
thread accesses it.

For instance, consider the start function of a C11 thread with these lines:

int start_thread(thrd_t *tid) {
 int aVar = 0;
 if(thrd_success != thrd_create(tid, start_thread_child, &aVar) {
 //...
 }
}

The thrd_create function creates a child thread with start function start_thread_child and
passes the address of the automatic variable aVarto this function. When this child thread accesses
aVar, the parent thread might have completed execution and aVar is no longer on the stack. The
access might result in reading unpredictable values.
Fix

When you pass a variable from one thread to another, make sure that the variable lifetime matches or
exceeds the lifetime of both threads. You can achieve this synchronization in one of these ways:

• Declare the variable static so that it does not go out of stack when the current thread completes
execution.

• Dynamically allocate the storage for the variable so that it is allocated on the heap instead of the
stack and must be explicitly deallocated. Make sure that the deallocation happens after both
threads complete execution.

These solutions require you to create a variable in nonlocal memory. Instead, you can use other
solutions such as the shared keyword available with OpenMP's threading interface that allows you to
safely share local variables across threads.

23 CERT C Rules and Recommendations

23-298

Example – Automatic or Thread-Local Variable Escaping Thread

#include <threads.h>
#include <stdio.h>

int create_child_thread(void *childVal) {
 int *res = (int *)childVal;
 printf("Result: %d\n", *res);
 return 0;
}

void create_parent_thread(thrd_t *tid, int *parentPtr) {
 if (thrd_success != thrd_create(tid, create_child_thread, parentPtr)) {
 /* Handle error */
 }
}

int main(void) {
 thrd_t tid;
 int parentVal = 1;

 create_parent_thread(&tid, &parentVal);

 if (thrd_success != thrd_join(tid, NULL)) {
 /* Handle error */
 }
 return 0;
}

In this example, the value parentVal is local to the parent thread that starts in main and continues
into the function create_parent_thread. However, in the body of create_parent_thread, the
address of this local variable is passed to a child thread (the thread with start routine
create_child_thread). The parent thread might have completed execution and the variable
parentVal might have gone out of scope when the child thread accesses this variable.

The same issue appears if the variable is declared as thread-local, for instance with the C11 keyword
_Thread_local (or thread_local):

_Thread_local int parentVal = 1;

Correction – Use Static Variables

One possible correction is to declare the variable parentVal as static so that the variable is on the
stack for the entire duration of the program.

#include <threads.h>
#include <stdio.h>

int create_child_thread(void *childVal) {
 int *res = (int *)childVal;
 printf("Result: %d\n", *res);
 return 0;
}

void create_parent_thread(thrd_t *tid, int *parentPtr) {
 if (thrd_success != thrd_create(tid, create_child_thread, parentPtr)) {
 /* Handle error */
 }

 CERT C: Rule CON34-C

23-299

}

int main(void) {
 thrd_t tid;
 static int parentVal = 1;

 create_parent_thread(&tid, &parentVal);

 if (thrd_success != thrd_join(tid, NULL)) {
 /* Handle error */
 }
 return 0;
}

Correction – Use Dynamic Memory Allocation

One possible correction is to dynamically allocate storage for variables to be shared across threads
and explicitly free the storage after the variable is no longer required.

#include <threads.h>
#include <stdio.h>

int create_child_thread(void *childVal) {
 int *res = (int *)childVal;
 printf("Result: %d\n", *res);
 return 0;
}

void create_parent_thread(thrd_t *tid, int *parentPtr) {
 if (thrd_success != thrd_create(tid, create_child_thread, parentPtr)) {
 /* Handle error */
 }
}

int main(void) {
 thrd_t tid;
 int parentVal = 1;
 int parentPtr = (int*) malloc(sizeof(int));

 if(!parentPtr) {
 create_parent_thread(&tid, parentPtr);

 if (thrd_success != thrd_join(tid, NULL)) {
 /* Handle error */
 }
 free(parentPtr);
 }
 return 0;
}

Check Information
Group: Rule 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

23 CERT C Rules and Recommendations

23-300

External Websites
CON34-C

Introduced in R2020a

 CERT C: Rule CON34-C

23-301

https://wiki.sei.cmu.edu/confluence/display/c/CON34-C.+Declare+objects+shared+between+threads+with+appropriate+storage+durations

CERT C: Rule CON35-C
Avoid deadlock by locking in a predefined order

Description
Rule Definition

Avoid deadlock by locking in a predefined order.

Polyspace Implementation

This checker checks for Deadlock.

Examples
Deadlock
Issue

Deadlock occurs when multiple tasks are stuck in their critical sections (CS) because:

• Each CS waits for another CS to end.
• The critical sections (CS) form a closed cycle. For example:

• CS #1 waits for CS #2 to end, and CS #2 waits for CS #1 to end.
• CS #1 waits for CS #2 to end, CS #2 waits for CS #3 to end and CS #3 waits for CS #1 to

end.

Polyspace expects critical sections of code to follow a specific format. A critical section lies between a
call to a lock function and a call to an unlock function. When a task my_task calls a lock function
my_lock, other tasks calling my_lock must wait until my_task calls the corresponding unlock
function. Both lock and unlock functions must have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify these options,
on the Configuration pane, select Multitasking.
Risk

Each task waits for a critical section in another task to end and is unable to proceed. The program
can freeze indefinitely.
Fix

The fix depends on the root cause of the defect. You can try to break the cyclic order between the
tasks in one of these ways:

• Write down all critical sections involved in the deadlock in a certain sequence. Whenever you call
the lock functions of the critical sections within a task, respect the order in that sequence. See an
example below.

• If one of the critical sections involved in a deadlock occurs in an interrupt, try to disable all
interrupts during critical sections in all tasks. See Disabling all interrupts (-routine-
disable-interrupts -routine-enable-interrupts).

23 CERT C Rules and Recommendations

23-302

Reviewing this defect is an opportunity to check if all operations in your critical section are really
meant to be executed as an atomic block. It is a good practice to keep critical sections at a bare
minimum.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Deadlock with Two Tasks

void task1(void);
void task2(void);

int var;
void perform_task_cycle(void) {
 var++;
}

void begin_critical_section_1(void);
void end_critical_section_1(void);

void begin_critical_section_2(void);
void end_critical_section_2(void);

void task1() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

void task2() {
 while(1) {
 begin_critical_section_2();
 begin_critical_section_1();
 perform_task_cycle();
 end_critical_section_1();
 end_critical_section_2();
 }
}

In this example, to emulate multitasking behavior, you must specify the following options:

 CERT C: Rule CON35-C

23-303

Option Specification
Configure
multitasking
manually
Entry points task1

task2
Critical section
details

Starting routine Ending routine
begin_critical_section_1 end_critical_section_1
begin_critical_section_2 end_critical_section_2

A Deadlock occurs because the instructions can execute in the following sequence:

1 task1 calls begin_critical_section_1.
2 task2 calls begin_critical_section_2.
3 task1 reaches the instruction begin_critical_section_2();. Since task2 has already

called begin_critical_section_2, task1 waits for task2 to call
end_critical_section_2.

4 task2 reaches the instruction begin_critical_section_1();. Since task1 has already
called begin_critical_section_1, task2 waits for task1 to call
end_critical_section_1.

Correction-Follow Same Locking Sequence in Both Tasks

One possible correction is to follow the same sequence of calls to lock and unlock functions in both
task1 and task2.

void task1(void);
void task2(void);
void perform_task_cycle(void);

void begin_critical_section_1(void);
void end_critical_section_1(void);

void begin_critical_section_2(void);
void end_critical_section_2(void);

void task1() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

void task2() {
 while(1) {
 begin_critical_section_1();

23 CERT C Rules and Recommendations

23-304

 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

Example - Deadlock with More Than Two Tasks

int var;
void performTaskCycle() {
 var++;
}

void lock1(void);
void lock2(void);
void lock3(void);

void unlock1(void);
void unlock2(void);
void unlock3(void);

void task1() {
 while(1) {
 lock1();
 lock2();
 performTaskCycle();
 unlock2();
 unlock1();
 }
}

void task2() {
 while(1) {
 lock2();
 lock3();
 performTaskCycle();
 unlock3();
 unlock2();
 }
}

void task3() {
 while(1) {
 lock3();
 lock1();
 performTaskCycle();
 unlock1();
 unlock3();
 }
}

In this example, to emulate multitasking behavior, you must specify the following options:

 CERT C: Rule CON35-C

23-305

Option Specification
Configure multitasking
manually
Entry points task1

task2

task3
Critical section details Starting routine Ending routine

lock1 unlock1
lock2 unlock2
lock3 unlock3

A Deadlock occurs because the instructions can execute in the following sequence:

1 task1 calls lock1.
2 task2 calls lock2.
3 task3 calls lock3.
4 task1 reaches the instruction lock2();. Since task2 has already called lock2, task1 waits

for call to unlock2.
5 task2 reaches the instruction lock3();. Since task3 has already called lock3, task2 waits

for call to unlock3.
6 task3 reaches the instruction lock1();. Since task1 has already called lock1, task3 waits

for call to unlock1.

Correction — Break Cyclic Order

To break the cyclic order between critical sections, note every lock function in your code in a certain
sequence, for example:

1 lock1
2 lock2
3 lock3

If you use more than one lock function in a task, use them in the order in which they appear in the
sequence. For example, you can use lock1 followed by lock2 but not lock2 followed by lock1.

int var;
void performTaskCycle() {
 var++;
}

void lock1(void);
void lock2(void);
void lock3(void);

void unlock1(void);
void unlock2(void);

23 CERT C Rules and Recommendations

23-306

void unlock3(void);

void task1() {
 while(1) {
 lock1();
 lock2();
 performTaskCycle();
 unlock2();
 unlock1();
 }
}

void task2() {
 while(1) {
 lock2();
 lock3();
 performTaskCycle();
 unlock3();
 unlock2();
 }
}

void task3() {
 while(1) {
 lock1();
 lock3();
 performTaskCycle();
 unlock3();
 unlock1();
 }
}

Check Information
Group: Rule 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
CON35-C

Introduced in R2019a

 CERT C: Rule CON35-C

23-307

https://wiki.sei.cmu.edu/confluence/display/c/CON35-C.+Avoid+deadlock+by+locking+in+a+predefined+order

CERT C: Rule CON36-C
Wrap functions that can spuriously wake up in a loop

Description
Rule Definition

Wrap functions that can spuriously wake up in a loop.

Polyspace Implementation

This checker checks for Function that can spuriously wake up not wrapped in loop.

Examples
Function that can spuriously wake up not wrapped in loop
Issue

Function that can spuriously wake up not wrapped in loop occurs when the following wait-on-
condition functions are called from outside a loop:

• C functions:

• cnd_wait()
• cnd_timedwait()

• POSIX functions:

• pthread_cond_wait()
• pthread_cond_timedwait()

• C++ std::condition_variable and std::condition_variable_any class member
functions:

• wait()
• wait_until()
• wait_for()

Wait-on-condition functions pause the execution of the calling thread when a specified condition is
met. The thread wakes up and resumes once another thread notifies it with cnd_broadcast() or an
equivalent function. The wake-up notification can be spurious or malicious.
Risk

If a thread receives a spurious wake-up notification and the condition of the wait-on-condition
function is not checked, the thread can wake up prematurely. The wake-up can cause unexpected
control flow, indefinite blocking of other threads, or denial of service.
Fix

Wrap wait-on-condition functions that can wake up spuriously in a loop. The loop checks the wake-up
condition after a possible spurious wake-up notification.

23 CERT C Rules and Recommendations

23-308

Example - cnd_wait() Not Wrapped in Loop

#include <stdio.h>
#include <stddef.h>
#include <threads.h>

#define THRESHOLD 100

static mtx_t lock;
static cnd_t cond;

void func(int input)
{
 if (thrd_success != mtx_lock(&lock)) {
 /* Handle error */
 }
 /* test condition to pause thread */
 if (input > THRESHOLD) {
 if (thrd_success != cnd_wait(&cond, &lock)) {
 /* Handle error */
 }
 }
 /* Proceed if condition to pause does not hold */

 if (thrd_success != mtx_unlock(&lock)) {
 /* Handle error */
 }
}

In this example, the thread uses cnd_wait() to pause execution when input is greater than
THRESHOLD. The paused thread can resume if another thread uses cnd_broadcast(), which notifies
all the threads. This notification causes the thread to wake up even if the pause condition is still true.

Correction — Wrap cnd_wait() in a while Loop

One possible correction is to wrap cnd_wait() in a while loop. The loop checks the pause condition
after the thread receives a possible spurious wake-up notification.

#include <stdio.h>
#include <stddef.h>
#include <threads.h>

#define THRESHOLD 100

static mtx_t lock;
static cnd_t cond;

void func(int input)
{
 if (thrd_success != mtx_lock(&lock)) {
 /* Handle error */
 }
 /* test condition to pause thread */
 while (input > THRESHOLD) {
 if (thrd_success != cnd_wait(&cond, &lock)) {
 /* Handle error */

 CERT C: Rule CON36-C

23-309

 }
 }
 /* Proceed if condition to pause does not hold */

 if (thrd_success != mtx_unlock(&lock)) {
 /* Handle error */
 }
}

Check Information
Group: Rule 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
CON36-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-310

https://wiki.sei.cmu.edu/confluence/display/c/CON36-C.+Wrap+functions+that+can+spuriously+wake+up+in+a+loop

CERT C: Rule CON37-C
Do not call signal() in a multithreaded program

Description
Rule Definition

Do not call signal() in a multithreaded program.

Polyspace Implementation

This checker checks for Signal call in multithreaded program.

Examples
Signal call in multithreaded program
Issue

Signal call in multithreaded program occurs when you use the signal() function in a program
with multiple threads.

Risk

According to the C11 standard (Section 7.14.1.1), use of the signal() function in a multithreaded
program is undefined behavior.

Fix

Depending on your intent, use other ways to perform an asynchronous action on a specific thread.

Example - Use of signal() Function to Terminate Loop in Thread

#include <signal.h>
#include <stddef.h>
#include <threads.h>

volatile sig_atomic_t flag = 0;

void handler(int signum) {
 flag = 1;
}

/* Runs until user sends SIGUSR1 */
int func(void *data) {
 while (!flag) {
 /* ... */
 }
 return 0;
}

int main(void) {
 signal(SIGINT, handler); /* Undefined behavior */
 thrd_t tid;

 CERT C: Rule CON37-C

23-311

 if (thrd_success != thrd_create(&tid, func, NULL)) {
 /* Handle error */
 }
 /* ... */
 return 0;
}

In this example, the signal function is used to terminate a while loop in the thread created with
thrd_create.
Correction — Use atomic_bool Variable to Terminate Loop

One possible correction is to use an atomic_bool variable that multiple threads can access. In the
corrected example, the child thread evaluates this variable before every loop iteration. After
completing the program, you can modify this variable so that the child thread exits the loop.

#include <stdatomic.h>
#include <stdbool.h>
#include <stddef.h>
#include <threads.h>

atomic_bool flag = ATOMIC_VAR_INIT(false);

int func(void *data) {
 while (!flag) {
 /* ... */
 }
 return 0;
}

int main(void) {
 thrd_t tid;

 if (thrd_success != thrd_create(&tid, func, NULL)) {
 /* Handle error */
 }
 /* ... */
 /* Set flag when done */
 flag = true;

 return 0;
}

Check Information
Group: Rule 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
CON37-C

23 CERT C Rules and Recommendations

23-312

https://wiki.sei.cmu.edu/confluence/display/c/CON37-C.+Do+not+call+signal%28%29+in+a+multithreaded+program

Introduced in R2019a

 CERT C: Rule CON37-C

23-313

CERT C: Rule CON38-C
Preserve thread safety and liveness when using condition variables

Description
Rule Definition

Preserve thread safety and liveness when using condition variables.

Polyspace Implementation

This checker checks for Multiple threads waiting on same condition variable.

Examples
Multiple threads waiting on same condition variable
Issue

This issue occurs when you use cnd_signal family functions to wake up one of at least two threads
that are concurrently waiting on the same condition variable. For threads with the same priority
level, cnd_signal family functions cause the thread scheduler to arbitrarily wake up on of the
threads waiting on the condition variable that you signal with the cnd_signal family function.

The checkers flags the cnd_signal family function call. See the Event column in the Results
Details pane to view the threads waiting on the same condition variable.

Risk

The thread that is woken up with a cnd_signal family function usually tests for a condition
predicate. While the condition predicate is false, the thread waits again on the condition variable
until it is woken up by another thread that signals the condition variable. It is possible that the
program ends up in a state where no thread is available to signal the condition variable, which results
in indefinite blocking.

Fix

Use cnd_broadcast family functions instead to wake all threads waiting on the condition variable,
or use a different condition variable for each thread.

Example - Use of cnd_signal to Wake Up One of Many Threads Waiting on Condition Variable

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <threads.h>

typedef int thrd_return_t;

static void fatal_error(void)
{
 exit(1);
}

23 CERT C Rules and Recommendations

23-314

enum { NTHREADS = 5 };

mtx_t mutex;
cnd_t cond;

thrd_return_t next_step(void* t)
{
 static size_t current_step = 0;
 size_t my_step = *(size_t*)t;

 if (thrd_success != mtx_lock(&mutex)) {
 /* Handle error */
 fatal_error();
 }

 printf("Thread %zu has the lock\n", my_step);
 while (current_step != my_step) {
 printf("Thread %zu is sleeping...\n", my_step);
 if (thrd_success !=
 cnd_wait(&cond, &mutex)) {
 /* Handle error */
 fatal_error();
 }
 printf("Thread %zu woke up\n", my_step);
 }
 /* Do processing ... */
 printf("Thread %zu is processing...\n", my_step);
 current_step++;

 /* Signal a waiting task */
 if (thrd_success !=
 cnd_signal(&cond)) {
 /* Handle error */
 fatal_error();
 }

 printf("Thread %zu is exiting...\n", my_step);

 if (thrd_success != mtx_unlock(&mutex)) {
 /* Handle error */
 fatal_error();
 }
 return (thrd_return_t)0;
}

int main(void)
{
 thrd_t threads[NTHREADS];
 size_t step[NTHREADS];

 if (thrd_success != mtx_init(&mutex, mtx_plain)) {
 /* Handle error */
 fatal_error();
 }
 if (thrd_success != cnd_init(&cond)) {
 /* Handle error */
 fatal_error();

 CERT C: Rule CON38-C

23-315

 }
 /* Create threads */
 for (size_t i = 0; i < NTHREADS; ++i) {
 step[i] = i;
 if (thrd_success != thrd_create(&threads[i],
 next_step,
 &step[i])) {
 /* Handle error */
 fatal_error();
 }
 }
 /* Wait for all threads to complete */
 for (size_t i = NTHREADS; i != 0; --i) {
 if (thrd_success != thrd_join(threads[i - 1], NULL)) {
 /* Handle error */
 fatal_error();
 }
 }
 (void)mtx_destroy(&mutex);
 (void)cnd_destroy(&cond);
 return 0;
}

In this example, multiple threads are created and assigned step level. Each thread checks if its
assigned step level matches the current step level (condition predicate). If the predicate is false, the
thread goes back to waiting on the condition variable cond. The use of cnd_signal to signal the
cond causes the thread scheduler to arbitrarily wake up one of the threads waiting on cond. This can
result in indefinite blocking when the condition predicate of woken up thread is false and no other
thread is available to signal cond.
Correction — Use cnd_broadcast to Wake up All the Threads

One possible correction is to use cnd_broadcast instead to signal cond. The function cnd_signal
wakes up all the thread that are waiting on cond.

 #include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <threads.h>

typedef int thrd_return_t;

static void fatal_error(void)
{
 exit(1);
}

enum { NTHREADS = 5 };

mtx_t mutex;
cnd_t cond;

thrd_return_t next_step(void* t)
{
 static size_t current_step = 0;
 size_t my_step = *(size_t*)t;

 if (thrd_success != mtx_lock(&mutex)) {

23 CERT C Rules and Recommendations

23-316

 /* Handle error */
 fatal_error();
 }

 printf("Thread %zu has the lock\n", my_step);
 while (current_step != my_step) {
 printf("Thread %zu is sleeping...\n", my_step);
 if (thrd_success !=
 cnd_wait(&cond, &mutex)) {
 /* Handle error */
 fatal_error();
 }
 printf("Thread %zu woke up\n", my_step);
 }
 /* Do processing ... */
 printf("Thread %zu is processing...\n", my_step);
 current_step++;

 /* Signal a waiting task */
 if (thrd_success !=
 cnd_broadcast(&cond)) {
 /* Handle error */
 fatal_error();
 }

 printf("Thread %zu is exiting...\n", my_step);

 if (thrd_success != mtx_unlock(&mutex)) {
 /* Handle error */
 fatal_error();
 }
 return (thrd_return_t)0;
}

int main_test_next_step(void)
{
 thrd_t threads[NTHREADS];
 size_t step[NTHREADS];

 if (thrd_success != mtx_init(&mutex, mtx_plain)) {
 /* Handle error */
 fatal_error();
 }
 if (thrd_success != cnd_init(&cond)) {
 /* Handle error */
 fatal_error();
 }
 /* Create threads */
 for (size_t i = 0; i < NTHREADS; ++i) {
 step[i] = i;
 if (thrd_success != thrd_create(&threads[i],
 next_step,
 &step[i])) {
 /* Handle error */
 fatal_error();
 }
 }
 /* Wait for all threads to complete */

 CERT C: Rule CON38-C

23-317

 for (size_t i = NTHREADS; i != 0; --i) {
 if (thrd_success != thrd_join(threads[i - 1], NULL)) {
 /* Handle error */
 fatal_error();
 }
 }
 (void)mtx_destroy(&mutex);
 (void)cnd_destroy(&cond);
 return 0;
}

Check Information
Group: Rule 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
CON38-C

Introduced in R2020a

23 CERT C Rules and Recommendations

23-318

https://wiki.sei.cmu.edu/confluence/display/c/CON38-C.+Preserve+thread+safety+and+liveness+when+using+condition+variables

CERT C: Rule CON39-C
Do not join or detach a thread that was previously joined or detached

Description
Rule Definition

Do not perform operations that can block while holding a lock.

Polyspace Implementation

This checker checks for Join or detach of a joined or detached thread.

Examples
Join or detach of a joined or detached thread
Issue

Join or detach of a joined or detached thread occurs when:

• A thread that is joined was previously joined or detached
• A thread that is detached was previously joined or detached.

The Result Details pane describes if the thread was previously joined or detached and also shows
previous related events.

For instance, the issue occurs when a thread joined with thrd_join is then detached with
pthread_detach:

thrd_t id;
//...
thrd_join(id, NULL);
thrd_detach(id);

Note that a thread is considered as joined only if a previous thread joining is successful. For instance,
the thread is not considered as joined in the if branch here:

thrd_t t;
//...
if (thrd_success != thrd_join(t, 0)) {
 /* Thread not considered joined */
}

The analysis cannot detect cases where a joined thread detaches itself using, for instance, the
thrd_current() function.

Risk

The C11 standard (clauses 7.26.5.3 and 7.26.5.6) states that a thread shall not be joined or detached
once it was previously joined or detached. Violating these clauses of the standard results in undefined
behavior.

 CERT C: Rule CON39-C

23-319

Fix

Avoid joining a thread that was already joined or detached previously. Likewise, avoid detaching a
thread that was already joined or detached.
Example – Joining Followed by Detaching of Thread

#include <stddef.h>
#include <threads.h>
#include <stdlib.h>

extern int thread_func(void *arg);

int main (void)
{
 thrd_t t;

 if (thrd_success != thrd_create (&t, thread_func, NULL)) {
 /* Handle error */
 return 0;
 }

 if (thrd_success != thrd_join (t, 0)) {
 /* Handle error */
 return 0;
 }

 if (thrd_success != thrd_detach (t)) {
 /* Handle error */
 return 0;
 }

 return 0;
}

In this example, the use of thrd_detach on a thread that was previously joined with thrd_join
leads to undefined behavior.

To avoid compilation errors with this example, specify the C11 standard with the option C standard
version (-c-version).
Correction – Avoid Detaching a Joined Thread

Remove the thrd_join or thrd_detach statement.

#include <stddef.h>
#include <threads.h>
#include <stdlib.h>

extern int thread_func(void *arg);

int main (void)
{
 thrd_t t;

23 CERT C Rules and Recommendations

23-320

 if (thrd_success != thrd_create (&t, thread_func, NULL)) {
 /* Handle error */
 return 0;
 }

 if (thrd_success != thrd_join (t, 0)) {
 /* Handle error */
 return 0;
 }

 return 0;
}

Example – Joining Thread Created in Detached State
#include <stddef.h>
#include <pthread.h>
#define thread_success 0

extern void *thread_func(void *arg);

int main() {
 pthread_t id;
 pthread_attr_t attr;

 if(thread_success != pthread_attr_init(&attr)) {
 return 0;
 }

 if(thread_success != pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED)) {
 return 0;
 }

 if(thread_success != pthread_create(&id, &attr, thread_func, NULL)) {
 return 0;
 }

 if(thread_success != pthread_join(id, NULL)) {
 return 0;
 }

 return 0;
}

In this example, the thread attribute is assigned the state PTHREAD_CREATE_DETACHED. A thread
created using this attribute is then joined.

Correction – Create Threads as Joinable

One possible correction is to create a thread with thread attribute assigned to the state
PTHREAD_CREATE_JOINABLE and then join the thread.
#include <stddef.h>
#include <pthread.h>
#define thread_success 0

extern void *thread_func(void *arg);

int main() {
 pthread_t id;
 pthread_attr_t attr;

 if(thread_success != pthread_attr_init(&attr)) {
 return 0;
 }

 if(thread_success != pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE)) {
 return 0;
 }

 if(thread_success != pthread_create(&id, &attr, thread_func, NULL)) {

 CERT C: Rule CON39-C

23-321

 return 0;
 }

 if(thread_success != pthread_join(id, NULL)) {
 return 0;
 }

 return 0;
}

Check Information
Group: Rule 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
CON39-C

Introduced in R2019b

23 CERT C Rules and Recommendations

23-322

https://wiki.sei.cmu.edu/confluence/display/c/CON39-C.+Do+not+join+or+detach+a+thread+that+was+previously+joined+or+detached

CERT C: Rule CON40-C
Do not refer to an atomic variable twice in an expression

Description
Rule Definition

Do not refer to an atomic variable twice in an expression.

Polyspace Implementation

This checker checks for these issues:

• Atomic variable accessed twice in an expression.
• Atomic load and store sequence not atomic.

Examples
Atomic variable accessed twice in an expression
Issue

Atomic variable accessed twice in an expression occurs when C atomic types or C++
std::atomic class variables appear twice in an expression and there are:

• Two atomic read operations on the variable.
• An atomic read and a distinct atomic write operation on the variable.

The C standard defines certain operations on atomic variables that are thread safe and do not cause
data race conditions. Unlike individual operations, a pair of operations on the same atomic variable in
an expression is not thread safe.

Risk

A thread can modify the atomic variable between the pair of atomic operations, which can result in a
data race condition.

Fix

Do not reference an atomic variable twice in the same expression.

Example - Referencing Atomic Variable Twice in an Expression

#include <stdatomic.h>

atomic_int n = ATOMIC_VAR_INIT(0);

int compute_sum(void)
{
 return n * (n + 1) / 2;
}

 CERT C: Rule CON40-C

23-323

https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic

In this example, the global variable n is referenced twice in the return statement of compute_sum().
The value of n can change between the two distinct read operations. compute_sum() can return an
incorrect value.
Correction — Pass Variable as Function Argument

One possible correction is to pass the variable as a function argument n. The variable is copied to
memory and the read operations on the copy guarantee that compute_sum() returns a correct
result. If you pass a variable of type int instead of type atomic_int, the correction is still valid.

#include <stdatomic.h>

int compute_sum(atomic_int n)
{
 return n * (n + 1) / 2;
}

Atomic load and store sequence not atomic
Issue

Atomic load and store sequence not atomic occurs when you use these functions to load, and
then store an atomic variable.

• C functions:

• atomic_load()
• atomic_load_explicit()
• atomic_store()
• atomic_store_explicit()

• C++ functions:

• std::atomic_load()
• std::atomic_load_explicit()
• std::atomic_store()
• std::atomic_store_explicit()
• std::atomic::load()
• std::atomic::store()

A thread cannot interrupt an atomic load or an atomic store operation on a variable, but a thread can
interrupt a store, and then load sequence.
Risk

A thread can modify a variable between the load and store operations, resulting in a data race
condition.
Fix

To read, modify, and store a variable atomically, use a compound assignment operator such as +=,
atomic_compare_exchange() or atomic_fetch_*-family functions.
Example - Loading Then Storing an Atomic Variable

#include <stdatomic.h>
#include <stdbool.h>

23 CERT C Rules and Recommendations

23-324

static atomic_bool flag = ATOMIC_VAR_INIT(false);

void init_flag(void)
{
 atomic_init(&flag, false);
}

void toggle_flag(void)
{
 bool temp_flag = atomic_load(&flag);
 temp_flag = !temp_flag;
 atomic_store(&flag, temp_flag);
}

bool get_flag(void)
{
 return atomic_load(&flag);
}

In this example, variable flag of type atomic_bool is referenced twice inside the toggle_flag()
function. The function loads the variable, negates its value, then stores the new value back to the
variable. If two threads call toggle_flag(), the second thread can access flag between the load
and store operations of the first thread. flag can end up in an incorrect state.
Correction — Use Compound Assignment to Modify Variable

One possible correction is to use a compound assignment operator to toggle the value of flag. The C
standard defines the operation by using ^= as atomic.

#include <stdatomic.h>
#include <stdbool.h>

static atomic_bool flag = ATOMIC_VAR_INIT(false);

void toggle_flag(void)
{
 flag ^= 1;
}

bool get_flag(void)
{
 return flag;
}

Check Information
Group: Rule 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
CON40-C

 CERT C: Rule CON40-C

23-325

https://wiki.sei.cmu.edu/confluence/display/c/CON40-C.+Do+not+refer+to+an+atomic+variable+twice+in+an+expression

Introduced in R2019a

23 CERT C Rules and Recommendations

23-326

CERT C: Rule CON41-C
Wrap functions that can fail spuriously in a loop

Description
Rule Definition

Wrap functions that can fail spuriously in a loop.

Polyspace Implementation

This checker checks for Function that can spuriously fail not wrapped in loop.

Examples
Function that can spuriously fail not wrapped in loop
Issue

Function that can spuriously fail not wrapped in loop occurs when the following atomic compare
and exchange functions that can fail spuriously are called from outside a loop.

• C atomic functions:

• atomic_compare_exchange_weak()
• atomic_compare_exchange_weak_explicit()

• C++ atomic functions:

• std::atomic<T>::compare_exchange_weak(T* expected, T desired)
• std::atomic<T>::compare_exchange_weak_explicit(T* expected, T desired,

std::memory_order succ, std::memory_order fail)
• std::atomic_compare_exchange_weak(std::atomic<T>* obj, T* expected, T

desired)
• std::atomic_compare_exchange_weak_explicit(volatile std::atomic<T>* obj,

T* expected, T desired, std::memory_order succ, std::memory_order fail)

The functions compare the memory contents of the object representations pointed to by obj and
expected. The comparison can spuriously return false even if the memory contents are equal. This
spurious failure makes the functions faster on some platforms.

Risk

An atomic compare and exchange function that spuriously fails can cause unexpected results and
unexpected control flow.

Fix

Wrap atomic compare and exchange functions that can spuriously fail in a loop. The loop checks the
failure condition after a possible spurious failure.

 CERT C: Rule CON41-C

23-327

Example - atomic_compare_exchange_weak() Not Wrapped in Loop

#include <stdatomic.h>

extern void reset_count(void);
atomic_int count = ATOMIC_VAR_INIT(0);

void increment_count(void)
{
 int old_count = atomic_load(&count);
 int new_count;
 new_count = old_count + 1;
 if (!atomic_compare_exchange_weak(&count, &old_count, new_count))
 reset_count();

}

In this example, increment_count() uses atomic_compare_exchange_weak() to compare
count and old_count. If the counts are equal, count is incremented to new_count. If they are not
equal, the count is reset. When atomic_compare_exchange_weak() fails spuriously, the count is
reset unnecessarily.

Correction — Wrap atomic_compare_exchange_weak() in a while Loop

One possible correction is to wrap the call to atomic_compare_exchange_weak() in a while loop.
The loop checks the failure condition after a possible spurious failure.

#include <stdatomic.h>

extern void reset_count(void);
atomic_int count = ATOMIC_VAR_INIT(0);

void increment_count(void)
{
 int old_count = atomic_load(&count);
 int new_count;
 new_count = old_count + 1;

 do {
 reset_count();

 } while (!atomic_compare_exchange_weak(&count, &old_count, new_count));

}

Check Information
Group: Rule 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
CON41-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-328

https://wiki.sei.cmu.edu/confluence/display/c/CON41-C.+Wrap+functions+that+can+fail+spuriously+in+a+loop

CERT C: Rule CON43-C
Do not allow data races in multithreaded code

Description
Rule Definition

Do not allow data races in multithreaded code.

Polyspace Implementation

This checker checks for Data race.

Examples
Data race
Issue

Data race occurs when:

• Multiple tasks perform unprotected operations on a shared variable.
• At least one task performs a write operation.
• At least one operation is nonatomic. For data race on both atomic and nonatomic operations, see

Data race including atomic operations.

See also “Define Atomic Operations in Multitasking Code”.

To find this defect, you must specify the multitasking options before analysis. To specify these options,
on the Configuration pane, select Multitasking. For more information, see “Configuring Polyspace
Multitasking Analysis Manually”.

Risk

Data race can result in unpredictable values of the shared variable because you do not control the
order of the operations in different tasks.

Data races between two write operations are more serious than data races between a write and read
operation. Two write operations can interfere with each other and result in indeterminate values. To
identify write-write conflicts, use the filters on the Detail column of the Results List pane. For these
conflicts, the Detail column shows the additional line:

 Variable value may be altered by write-write concurrent access.

See “Filter and Group Results in Polyspace Desktop User Interface” or “Filter and Sort Results in
Polyspace Access Web Interface”.

Fix

To fix this defect, protect the operations on the shared variable using critical sections, temporal
exclusion or another means. See “Protections for Shared Variables in Multitasking Code”.

 CERT C: Rule CON43-C

23-329

To identify existing protections that you can reuse, see the table and graphs associated with the
result. The table shows each pair of conflicting calls. The Access Protections column shows existing

protections on the calls. To see the function call sequence leading to the conflicts, click the icon.
For an example, see below.

Example - Unprotected Operation on Global Variable from Multiple Tasks

int var;
void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 var++;
}

void task1(void) {
 increment();
}

void task2(void) {
 increment();
}

void task3(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

In this example, to emulate multitasking behavior, specify the following options:

Option Specification
Configure multitasking
manually on page 2-115
Tasks on page 2-119 task1

task2

task3
Critical section details on
page 2-130

Starting routine Ending routine
begin_critical_section end_critical_section

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2,task3
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

In this example, the tasks task1, task2, and task3 call the function increment. increment
contains the operation var++ that can involve multiple machine instructions including:

23 CERT C Rules and Recommendations

23-330

• Reading var.
• Writing an increased value to var.

These machine instructions, when executed from task1 and task2, can occur concurrently in an
unpredictable sequence. For example, reading var from task1 can occur either before or after
writing to var from task2. Therefore the value of var can be unpredictable.

Though task3 calls increment inside a critical section, other tasks do not use the same critical
section. The operations in the critical section of task3 are not mutually exclusive with operations in
other tasks.

Therefore, the three tasks are operating on a shared variable without common protection. In your
result details, you see each pair of conflicting function calls.

If you click the icon, you see the function call sequence starting from the entry point to the read
or write operation. You also see that the operation starting from task3 is in a critical section. The
Access Protections entry shows the lock and unlock function that begin and end the critical section.
In this example, you see the functions begin_critical_section and end_critical_section.

Correction — Place Operation in Critical Section

One possible correction is to place the operation in critical section. You can implement the critical
section in multiple ways. For instance:

• You can place var++ in a critical section. When task1 enters its critical section, the other tasks
cannot enter their critical sections until task1 leaves its critical section. The operation var++
from the three tasks cannot interfere with each other.

 CERT C: Rule CON43-C

23-331

To implement the critical section, in the function increment, place the operation var++ between
calls to begin_critical_section and end_critical_section.

int var;

void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 begin_critical_section();
 var++;
 end_critical_section();
}

void task1(void) {
 increment();
}

void task2(void) {
 increment();
}

void task3(void) {
 increment();
}

• You can place the call to increment in the same critical section in the three tasks. When task1
enters its critical section, the other tasks cannot enter their critical sections until task1 leaves its
critical section. The calls to increment from the three tasks cannot interfere with each other.

To implement the critical section, in each of the three tasks, call increment between calls to
begin_critical_section and end_critical_section.

int var;

void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 var++;
}

void task1(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

void task2(void) {
 begin_critical_section();
 increment();
 end_critical_section();

23 CERT C Rules and Recommendations

23-332

}

void task3(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

Correction — Make Tasks Temporally Exclusive

Another possible correction is to make the tasks, task1, task2 and task3, temporally exclusive.
Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

Option Value
Temporally exclusive tasks on
page 2-133

task1 task2 task3

On the command-line, you can use the following:

 polyspace-bug-finder
 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

task1 task2 task3

Example - Unprotected Operation in Threads Created with pthread_create

#include <pthread.h>

pthread_mutex_t count_mutex;
long long count;

void* increment_count(void* args)
{
 count = count + 1;
 return NULL;
}

void* set_count(void *args)
{
 long long c;
 c = count;
 return NULL;
}

int main(void)
{
 pthread_t thread_increment;
 pthread_t thread_get;

 pthread_create(&thread_increment, NULL, increment_count, NULL);
 pthread_create(&thread_get, NULL, set_count, NULL);

 pthread_join(thread_get, NULL);

 CERT C: Rule CON43-C

23-333

 pthread_join(thread_increment, NULL);

 return 1;
}

In this example, Bug Finder detects the creation of separate threads with pthread_create. The
Data race defect is raised because the operation count = count + 1 in the thread with id
thread_increment conflicts with the operation c = count in the thread with id thread_get. The
variable count is accessed in multiple threads without a common protection.

The two conflicting operations are nonatomic. The operation c = count is nonatomic on 32-bit
targets. See “Define Atomic Operations in Multitasking Code”.

Correction — Protect Operations with pthread_mutex_lock and pthread_mutex_unlock Pair

To prevent concurrent access on the variable count, protect operations on count with a critical
section. Use the functions pthread_mutex_lock and pthread_mutex_unlock to implement the
critical section.

#include <pthread.h>

pthread_mutex_t count_mutex;
long long count;

void* increment_count(void* args)
{
 pthread_mutex_lock(&count_mutex);
 count = count + 1;
 pthread_mutex_unlock(&count_mutex);
 return NULL;
}

void* set_count(void *args)
{
 long long c;
 pthread_mutex_lock(&count_mutex);
 c = count;
 pthread_mutex_unlock(&count_mutex);
 return NULL;
}

int main(void)
{
 pthread_t thread_increment;
 pthread_t thread_get;

 pthread_create(&thread_increment, NULL, increment_count, NULL);
 pthread_create(&thread_get, NULL, set_count, NULL);

 pthread_join(thread_get, NULL);
 pthread_join(thread_increment, NULL);

 return 1;
}

23 CERT C Rules and Recommendations

23-334

Check Information
Group: Rule 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
CON43-C

Introduced in R2019a

 CERT C: Rule CON43-C

23-335

https://wiki.sei.cmu.edu/confluence/display/c/CON43-C.+Do+not+allow+data+races+in+multithreaded+code

CERT C: Rule MSC30-C
Do not use the rand() function for generating pseudorandom numbers

Description
Rule Definition

Do not use the rand() function for generating pseudorandom numbers.

Polyspace Implementation

This checker checks for Use of rand() for Generating Pseudorandom Number.

Examples
Use of rand() for Generating Pseudorandom Number
Issue

This issue occurs when you use the function rand for generating pseudorandom numbers.

Risk

The function rand is cryptographically weak. That is, the numbers generated by rand can be
predictable. Do not use pseudorandom numbers generated from rand for security purposes. When a
predictable random value controls the execution flow, your program is vulnerable to attacks.

Fix

Use more cryptographically sound pseudorandom number generators (PRNG), such as
CryptGenRandom (Windows), OpenSSL/RAND_bytes(Linux/UNIX), or random (POSIX).

Example - Random Loop Numbers

#include <stdio.h>
#include <stdlib.h>

volatile int rd = 1;
int main(int argc, char *argv[])
{
 int j, r, nloops;
 struct random_data buf;
 int i = 0;

 nloops = rand();

 for (j = 0; j < nloops; j++) {
 i = rand();
 printf("random_r: %ld\n", (long)i);
 }
 return 0;
}

23 CERT C Rules and Recommendations

23-336

This example uses rand to generate random numbers nloops and i. The predictability of these
variables makes these function vulnerable to attacks.

Correction — Use Stronger PRNG

One possible correction is to replace the vulnerable PRNG with a stronger random number generator.
For instance, this code uses the PRNG random() from POSIX library. random is a much stronger
PRNG because it can be seeded by a different number every time it is called.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define TIME_UTC 1
volatile int rd = 1;
int randomWrapper(){
 struct timespec ts;
 if (timespec_get(&ts, TIME_UTC) == 0) {
 /* Handle error */
 }
 srandom(ts.tv_nsec ^ ts.tv_sec); /* Seed the PRNG */
 return random();
}
int main(int argc, char *argv[])
{
 int j, r, nloops;
 struct random_data buf;
 int i = 0;

 nloops = randomWrapper();

 for (j = 0; j < nloops; j++) {
 i = randomWrapper();
 printf("random_r: %ld\n", (long)i);
 }
 return 0;
}

Check Information
Group: Rule 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC30-C

Introduced in R2019a

 CERT C: Rule MSC30-C

23-337

https://wiki.sei.cmu.edu/confluence/display/c/MSC30-C.+Do+not+use+the+rand%28%29+function+for+generating+pseudorandom+numbers

CERT C: Rule MSC32-C
Properly seed pseudorandom number generators

Description
Rule Definition

Properly seed pseudorandom number generators.

Polyspace Implementation

This checker checks for these issues:

• Deterministic random output from constant seed.
• Predictable random output from predictable seed.

Examples
Deterministic random output from constant seed

Issue

Deterministic random output from constant seed detects random standard functions that when
given a constant seed, have deterministic output.

Risk

When some random functions, such as srand, srandom, and initstate, have constant seeds, the
results produce the same output every time that your program is run. A hacker can disrupt your
program if they know how your program behaves.

Fix

Use a different random standard function or use a nonconstant seed.

Some standard random routines are inherently cryptographically weak on page 13-86, and should not
be used for security purposes.

Example - Random Number Generator Initialization

#include <stdlib.h>

void random_num(void)
{
 srand(12345U);
 /* ... */
}

This example initializes a random number generator using srand with a constant seed. The random
number generation is deterministic, making this function cryptographically weak.

23 CERT C Rules and Recommendations

23-338

Correction — Use Different Random Number Generator

One possible correction is to use a random number generator that does not require a seed. This
example uses rand_s.

#define _CRT_RAND_S
#include <stdlib.h>
#include <stdio.h>

unsigned int random_num_time(void)
{

 unsigned int number;
 errno_t err;
 err = rand_s(&number);

 if(err != 0)
 {
 return number;
 }
 else
 {
 return err;
 }
}

Predictable random output from predictable seed
Issue

Predictable random output from predictable seed looks for random standard functions that use a
nonconstant but predictable seed. Examples of predictable seed generators are time,
gettimeofday, and getpid.
Risk

When you use predictable seed values for random number generation, your random numbers are also
predictable. A hacker can disrupt your program if they know how your program behaves.
Fix

You can use a different function to generate less predictable seeds.

You can also use a different random number generator that does not require a seed. For example, the
Windows API function rand_s seeds itself by default. It uses information from the entire system, for
example, system time, thread ids, system counter, and memory clusters. This information is more
random and a user cannot access this information.

Some standard random routines are inherently cryptographically weak on page 13-86, and should not
be used for security purposes.
Example - Seed as an Argument

#include <stdlib.h>
#include <time.h>

void seed_rng(int seed)

 CERT C: Rule MSC32-C

23-339

{
 srand(seed);
}

int generate_num(void)
{
 seed_rng(time(NULL) + 3);
 /* ... */
}

This example uses srand to start the random number generator with seed as the seed. However,
seed is predictable because the function time generates it. So, an attacker can predict the random
numbers generated by srand.

Correction — Use Different Random Number Generator

One possible correction is to use a random number generator that does not require a seed. This
example uses rand_s.

#define _CRT_RAND_S

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>

int generate_num(void)
{
 unsigned int number;
 errno_t err;
 err = rand_s(&number);

 if(err != 0)
 {
 return number;
 }
 else
 {
 return err;
 }
}

Check Information
Group: Rule 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC32-C

23 CERT C Rules and Recommendations

23-340

https://wiki.sei.cmu.edu/confluence/display/c/MSC32-C.+Properly+seed+pseudorandom+number+generators

Introduced in R2019a

 CERT C: Rule MSC32-C

23-341

CERT C: Rule MSC33-C
Do not pass invalid data to the asctime() function

Description
Rule Definition

Do not pass invalid data to the asctime() function.

Polyspace Implementation

This checker checks for Use of obsolete standard function.

Examples
Use of obsolete standard function

Issue

Use of obsolete standard function detects calls to standard function routines that are considered
legacy, removed, deprecated, or obsolete by C/C++ coding standards.

Obsolete Function Standards Risk Replacement
Function

asctime Deprecated in POSIX.1-2008 Not thread-safe. strftime or
asctime_s

asctime_r Deprecated in POSIX.1-2008 Implementation based on
unsafe function sprintf.

strftime or
asctime_s

bcmp Deprecated in 4.3BSD

Marked as legacy in POSIX.1-2001.

Returns from function
after finding the first
differing byte, making it
vulnerable to timing
attacks.

memcmp

bcopy Deprecated in 4.3BSD

Marked as legacy in POSIX.1-2001.

Returns from function
after finding the first
differing byte, making it
vulnerable to timing
attacks.

memcpy or memmove

brk and sbrk Marked as legacy in SUSv2 and
POSIX.1-2001.

 malloc

bsd_signal Removed in POSIX.1-2008 sigaction
bzero Marked as legacy in POSIX.1-2001.

Removed in POSIX.1-2008.
 memset

ctime Deprecated in POSIX.1-2008 Not thread-safe. strftime or
asctime_s

23 CERT C Rules and Recommendations

23-342

Obsolete Function Standards Risk Replacement
Function

ctime_r Deprecated in POSIX.1-2008 Implementation based on
unsafe function sprintf.

strftime or
asctime_s

cuserid Removed in POSIX.1-2001. Not reentrant. Precise
functionality not
standardized causing
portability issues.

getpwuid

ecvt and fcvt Marked as legacy in POSIX.1-2001.
Removed in POSIX.1-2008

Not reentrant snprintf

ecvt_r and fcvt_r Marked as legacy in POSIX.1-2001.
Removed in POSIX.1-2008

 snprintf

ftime Removed in POSIX.1-2008 time,
gettimeofday,
clock_gettime

gamma, gammaf,
gammal

Function not specified in any
standard because of historical
variations

Portability issues. tgamma, lgamma

gcvt Marked as legacy in POSIX.1-2001.
Removed in POSIX.1-2008.

 snprintf

getcontext Removed in POSIX.1-2008. Portability issues. Use POSIX thread
instead.

getdtablesize BSD API function not included in
POSIX.1-2001

Portability issues. sysconf(_SC_OPEN
_MAX)

gethostbyaddr Removed in POSIX.1-2008 Not reentrant getaddrinfo
gethostbyname Removed in POSIX.1-2008 Not reentrant getnameinfo
getpagesize BSD API function not included in

POSIX.1-2001
Portability issues. sysconf(_SC_PAGE

SIZE)
getpass Removed in POSIX.1-2001. Not reentrant. getpwuid
getw Not present in POSIX.1-2001. fread
getwd Marked legacy in POSIX.1-2001.

Removed in POSIX.1-2008.
 getcwd

index Marked as legacy in POSIX.1-2001.
Removed in POSIX.1-2008.

 strchr

makecontext Removed in POSIX.1-2008. Portability issues. Use POSIX thread
instead.

memalign Appears in SunOS 4.1.3. Not in 4.4
BSD or POSIX.1-2001

 posix_memalign

mktemp Removed in POSIX.1-2008. Generated names are
predictable and can
cause a race condition.

mkstemp removes
race risk

 CERT C: Rule MSC33-C

23-343

Obsolete Function Standards Risk Replacement
Function

pthread_attr_
getstackaddr and
pthread_attr_
setstackaddr

 Ambiguities in the
specification of the
stackaddr attribute
cause portability issues

pthread_attr_
getstack and
pthread_attr_
setstack

putw Not present in POSIX.1-2001. Portability issues. fwrite
qecvt and qfcvt Marked as legacy in POSIX.1-2001,

removed in POSIX.1-2008
 snprintf

qecvt_r and qfcvt_r Marked as legacy in POSIX.1-2001,
removed in POSIX.1-2008

 snprintf

rand_r Marked as obsolete in
POSIX.1-2008

re_comp BSD API function Portability issues regcomp
re_exes BSD API function Portability issues regexec
rindex Marked as legacy in POSIX.1-2001.

Removed in POSIX.1-2008.
 strrchr

scalb Removed in POSIX.1-2008 scalbln, scalblnf,
or scalblnl

sigblock 4.3BSD signal API whose origin is
unclear

 sigprocmask

sigmask 4.3BSD signal API whose origin is
unclear

 sigprocmask

sigsetmask 4.3BSD signal API whose origin is
unclear

 sigprocmask

sigstack Interface is obsolete and not
implemented on most platforms.

Portability issues. sigaltstack

sigvec 4.3BSD signal API whose origin is
unclear

 sigaction

swapcontext Removed in POSIX.1-2008 Portability issues. Use POSIX threads.
tmpnam and tmpnam_r Marked as obsolete in

POSIX.1-2008.
This function generates a
different string each time
it is called, up to
TMP_MAX times. If it is
called more than
TMP_MAX times, the
behavior is
implementation-defined.

mkstemp, tmpfile

ttyslot Removed in POSIX.1-2001.
ualarm Marked as legacy in POSIX.1-2001.

Removed in POSIX.1-2008.
Errors are under-
specified

setitimer or POSIX
timer_create

usleep Removed in POSIX.1-2008. nanosleep
utime SVr4, POSIX.1-2001. POSIX.1-2008

marks as obsolete.

23 CERT C Rules and Recommendations

23-344

Obsolete Function Standards Risk Replacement
Function

valloc Marked as obsolete in 4.3BSD.

Marked as legacy in SUSv2.

Removed from POSIX.1-2001

 posix_memalign

vfork Removed from POSIX.1-2008 Under-specified in
previous standards.

fork

wcswcs This function was not included in
the final ISO/IEC 9899:1990/
Amendment 1:1995 (E).

 wcsstr

WinExec WinAPI provides this function only
for 16-bit Windows compatibility.

 CreateProcess

LoadModule WinAPI provides this function only
for 16-bit Windows compatibility.

 CreateProcess

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Printing Out Time

#include <stdio.h>
#include <time.h>

void timecheck_bad(int argc, char *argv[])
{
 time_t ticks;

 ticks = time(NULL);
 printf("%.24s\r\n", ctime(&ticks));
}

In this example, the function ctime formats the current time and prints it out. However, ctime was
removed after C99 because it does not work on multithreaded programs.

Correction — Different Time Function

One possible correction is to use strftime instead because this function uses a set buffer size.

 CERT C: Rule MSC33-C

23-345

#include <stdio.h>
#include <string.h>
#include <time.h>

void timecheck_good(int argc, char *argv[])
{
 char outBuff[1025];
 time_t ticks;
 struct tm * timeinfo;

 memset(outBuff, 0, sizeof(outBuff));

 ticks = time(NULL);
 timeinfo = localtime(&ticks);
 strftime(outBuff,sizeof(outBuff),"%I:%M%p.",timeinfo);
 fprintf(stdout, outBuff);
}

Check Information
Group: Rule 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC33-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-346

https://wiki.sei.cmu.edu/confluence/display/c/MSC33-C.+Do+not+pass+invalid+data+to+the+asctime%28%29+function

CERT C: Rule MSC37-C
Ensure that control never reaches the end of a non-void function

Description
Rule Definition

Ensure that control never reaches the end of a non-void function.

Polyspace Implementation

This checker checks for Missing return statement.

Examples
Missing return statement
Issue

Missing return statement occurs when a function does not return a value along at least one
execution path. If the return type of the function is void, this error does not occur.

Risk

If a function has a non-void return value in its signature, it is expected to return a value. The return
value of this function can be used in later computations. If the execution of the function body goes
through a path where a return statement is missing, the function return value is indeterminate.
Computations with this return value can lead to unpredictable results.

Fix

In most cases, you can fix this defect by placing the return statement at the end of the function
body.

Alternatively, you can identify which execution paths through the function body do not have a return
statement and add a return statement on those paths. Often the result details show a sequence of
events that indicate this execution path. You can add a return statement at an appropriate point in
the path. If the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Bug Finder Results in
Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

 CERT C: Rule MSC37-C

23-347

Example - Missing or invalid return statement error

int AddSquares(int n)
 {
 int i=0;
 int sum=0;

 if(n!=0)
 {
 for(i=1;i<=n;i++)
 {
 sum+=i^2;
 }
 return(sum);
 }
 }
/* Defect: No return value if n is not 0*/

If n is equal to 0, the code does not enter the if statement. Therefore, the function AddSquares
does not return a value if n is 0.

Correction — Place Return Statement on Every Execution Path

One possible correction is to return a value in every branch of the if...else statement.

 int AddSquares(int n)
 {
 int i=0;
 int sum=0;

 if(n!=0)
 {
 for(i=1;i<=n;i++)
 {
 sum+=i^2;
 }
 return(sum);
 }

 /*Fix: Place a return statement on branches of if-else */
 else
 return 0;
 }

Check Information
Group: Rule 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC37-C

23 CERT C Rules and Recommendations

23-348

https://wiki.sei.cmu.edu/confluence/display/c/MSC37-C.+Ensure+that+control+never+reaches+the+end+of+a+non-void+function

Introduced in R2019a

 CERT C: Rule MSC37-C

23-349

CERT C: Rule MSC38-C
Do not treat a predefined identifier as an object if it might only be implemented as a macro

Description
Rule Definition

Do not treat a predefined identifier as an object if it might only be implemented as a macro.

Polyspace Implementation

This checker checks for Predefined macro used as an object.

Examples
Predefined macro used as an object
Issue

Predefined macro used as an object occurs when you use certain identifiers in a way that requires
an underlying object to be present. These identifiers are defined as macros. The C Standard does not
allow you to redefine them as objects. You use the identifiers in such a way that macro expansion of
the identifiers cannot occur.

For instance, you refer to an external variable errno:

extern int errno;

However, errno does not occur as a variable but a macro.

The defect applies to these macros: assert, errno, math_errhandling, setjmp, va_arg,
va_copy, va_end, and va_start. The checker looks for the defect only in source files (not header
files).

Risk

The C11 Standard (Sec. 7.1.4) allows you to redefine most macros as objects. To access the object
and not the macro in a source file, you do one of these:

• Redeclare the identifier as an external variable or function.
• For function-like macros, enclose the identifier name in parentheses.

If you try to use these strategies for macros that cannot be redefined as objects, an error occurs.

Fix

Do not use the identifiers in such a way that a macro expansion is suppressed.

• Do not redeclare the identifiers as external variables or functions.
• For function-like macros, do not enclose the macro name in parentheses.

23 CERT C Rules and Recommendations

23-350

Example - Use of assert as Function

#include<assert.h>
typedef void (*err_handler_func)(int);

extern void demo_handle_err(err_handler_func, int);

void func(int err_code) {
 extern void assert(int);
 demo_handle_err(&(assert), err_code);
}

In this example, the assert macro is redefined as an external function. When passed as an argument
to demo_handle_err, the identifier assert is enclosed in parentheses, which suppresses use of the
assert macro.

Correction — Use assert as Macro

One possible correction is to directly use the assert macro from assert.h. A different
implementation of the function demo_handle_err directly uses the assert macro instead of taking
the address of an assert function.

#include<assert.h>
void demo_handle_err(int err_code) {
 assert(err_code == 0);
}

void func(int err_code) {
 demo_handle_err(err_code);
}

Check Information
Group: Rule 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC38-C

Introduced in R2019a

 CERT C: Rule MSC38-C

23-351

https://wiki.sei.cmu.edu/confluence/display/c/MSC38-C.+Do+not+treat+a+predefined+identifier+as+an+object+if+it+might+only+be+implemented+as+a+macro

CERT C: Rule MSC39-C
Do not call va_arg() on a va_list that has an indeterminate value

Description
Rule Definition

Do not call va_arg() on a va_list that has an indeterminate value.

Polyspace Implementation

This checker checks for Use of indeterminate va_list values.

Examples
Use of indeterminate va_list values
Issue

This issue occurs when:

• You use a local va_list without initializing it first using va_start or va_copy.

You might be using the local va_list in va_arg or a vprintf-like function (function that takes
variable number of arguments).

• You use a va_list (variable argument list) from a function parameter directly instead of making
a copy using va_copy and using the copy.

Risk

If you use a local va_list without initializing it first, the behavior is undefined.

If you pass a va_list to another function and use it there, the va_list has indeterminate values in
the original calling function. Using the va_list in the calling function following the function call can
produce unexpected results.

Fix

Initialize a local va_list with va_start or va_copy before using it.

Pass a va_list by reference. In the called function, make a copy of the passed va_list and use the
copy. You can then continue to access the original va_list in the calling function.

Example – Direct Use of va_list From Another Function

#include <stdarg.h>
#include <stdio.h>

int contains_zero(size_t count, va_list ap) {
 for (size_t i = 1; i < count; ++i) {
 if (va_arg(ap, double) == 0.0) {//Noncompliant
 return 1;
 }

23 CERT C Rules and Recommendations

23-352

 }
 return 0;
}

int print_reciprocals(size_t count, ...) {
 va_list ap;
 va_start(ap, count);

 if (contains_zero(count, ap)) {
 va_end(ap);
 return 1;
 }

 for (size_t i = 0; i < count; ++i) {
 printf("%f ", 1.0 / va_arg(ap, double));
 }

 va_end(ap);
 return 0;
}

In this example, the function print_reciprocals prints out its variable arguments and uses a
helper function contains_zero to check if the va_list named ap contains zero. After ap is passed
to contains_zero by value, the value of ap is indeterminate. Attempts to read this indeterminate
value in print_reciprocals results in unexpected behavior. Polyspace flags the direct of ap in th
helper function.
Correction – Copy va_list Obtained from Another Function

To avoid the violation, pass the va_list by reference and make a copy of the variable in the
contains_zero function. Perform further operations on the copy.

#include <stdarg.h>
#include <stdio.h>

int contains_zero(size_t count, va_list *ap) {
 va_list ap1;
 va_copy(ap1, *ap);
 for (size_t i = 1; i < count; ++i) {
 if (va_arg(ap1, double) == 0.0) {
 return 1;
 }
 }
 va_end(ap1);
 return 0;
}

int print_reciprocals(size_t count, ...) {
 int status;
 va_list ap;
 va_start(ap, count);

 if (contains_zero(count, &ap)) {
 printf("0 in arguments!\n");
 status = 1;
 } else {
 for (size_t i = 0; i < count; i++) {
 printf("%f ", 1.0 / va_arg(ap, double));

 CERT C: Rule MSC39-C

23-353

 }
 printf("\n");
 status = 0;
 }

 va_end(ap);
 return status;
}

Check Information
Group: Rule 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC39-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-354

https://wiki.sei.cmu.edu/confluence/display/c/MSC39-C.+Do+not+call+va_arg%28%29+on+a+va_list+that+has+an+indeterminate+value

CERT C: Rule MSC40-C
Do not violate constraints

Description
Rule Definition

Do not violate constraints.

Polyspace Implementation

This checker checks for Inline constraint not respected.

Examples
Inline constraint not respected

Issue

Inline constraint not respected occurs when you refer to a file scope modifiable static variable or
define a local modifiable static variable in a nonstatic inlined function. The checker considers a
variable as modifiable if it is not const-qualified.

For instance, var is a modifiable static variable defined in an inline function func. g_step is a
file scope modifiable static variable referred to in the same inlined function.

static int g_step;
inline void func (void) {
 static int var = 0;
 var += g_step;
}

Risk

When you modify a static variable in multiple function calls, you expect to modify the same variable in
each call. For instance, each time you call func, the same instance of var1 is incremented but a
separate instance of var2 is incremented.

void func(void) {
 static var1 = 0;
 var2 = 0;
 var1++;
 var2++;
}

If a function has an inlined and non-inlined definition (in separate files), when you call the function,
the C standard allows compilers to use either the inlined or the non-inlined form (see ISO/IEC
9899:2011, sec. 6.7.4). If your compiler uses an inlined definition in one call and the non-inlined
definition in another, you are no longer modifying the same variable in both calls. This behavior defies
the expectations from a static variable.

 CERT C: Rule MSC40-C

23-355

Fix

Use one of these fixes:

• If you do not intend to modify the variable, declare it as const.

If you do not modify the variable, there is no question of unexpected modification.
• Make the variable non-static. Remove the static qualifier from the declaration.

If the variable is defined in the function, it becomes a regular local variable. If defined at file
scope, it becomes an extern variable. Make sure that this change in behavior is what you intend.

• Make the function static. Add a static qualifier to the function definition.

If you make the function static, the file with the inlined definition always uses the inlined
definition when the function is called. Other files use another definition of the function. The
question of which function definition gets used is not left to the compiler.

Example - Static Variable Use in Inlined and External Definition

/* file1. c : contains inline definition of get_random()*/

inline unsigned int get_random(void)
{

 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

int call_get_random(void)
{
 unsigned int rand_no;
 int ii;
 for (ii = 0; ii < 100; ii++) {
 rand_no = get_random();
 }
 rand_no = get_random();
 return 0;
}

/* file2. c : contains external definition of get_random()*/

extern unsigned int get_random(void)
{
 /* Initialize seeds */
 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

23 CERT C Rules and Recommendations

23-356

In this example, get_random() has an inline definition in file1.c and an external definition in
file2.c. When get_random is called in file1.c, compilers are free to choose whether to use the
inline or the external definition.

Depending on the definition used, you might or might not modify the version of m_z and m_w in the
inlined version of get_random(). This behavior contradicts the usual expectations from a static
variable. When you call get_random(), you expect to always modify the same m_z and m_w.

Correction — Make Inlined Function Static

One possible correction is to make the inlined get_random() static. Irrespective of your compiler,
calls to get_random() in file1.c then use the inlined definition. Calls to get_random() in other
files use the external definition. This fix removes the ambiguity about which definition is used and
whether the static variables in that definition are modified.

/* file1. c : contains inline definition of get_random()*/

static inline unsigned int get_random(void)
{

 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

int call_get_random(void)
{
 unsigned int rand_no;
 int ii;
 for (ii = 0; ii < 100; ii++) {
 rand_no = get_random();
 }
 rand_no = get_random();
 return 0;
}

/* file2. c : contains external definition of get_random()*/

extern unsigned int get_random(void)
{
 /* Initialize seeds */
 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

 CERT C: Rule MSC40-C

23-357

Check Information
Group: Rule 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC40-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-358

https://wiki.sei.cmu.edu/confluence/display/c/MSC40-C.+Do+not+violate+constraints

CERT C: Rule MSC41-C
Never hard code sensitive information

Description
Rule Definition

Never hard code sensitive information.

Polyspace Implementation

This checker checks for Hard coded sensitive data.

Examples
Hard coded sensitive data

Hard coded sensitive data occurs when data that is potentially sensitive is directly exposed in the
code, for instance, as string literals. The checker identifies data as sensitive from their use in certain
functions such as password encryption functions.

Following data can be potentially sensitive.

Type of Data Functions That Indicate Sensitive Nature of
Information

Host name • sethostname, setdomainname,
gethostbyname, gethostbyname2,
getaddrinfo, gethostbyname_r,
gethostbyname2_r (string argument)

• inet_aton, inet_pton, inet_net_pton,
inet_addr, inet_network (string
argument)

• mysql_real_connect,
mysql_real_connect_nonblocking,
mysql_connect (2nd argument)

Password • CreateProcessWithLogonW, LogonUser
(1st argument)

• mysql_real_connect,
mysql_real_connect_nonblocking,
mysql_connect (3rd argument)

 CERT C: Rule MSC41-C

23-359

Type of Data Functions That Indicate Sensitive Nature of
Information

Database • MySQL: mysql_real_connect,
mysql_real_connect_nonblocking,
mysql_connect (4th argument)

• SQLite: sqlite3_open, sqlite3_open16,
sqlite3_open_v2 (1st argument)

• PostgreSQL: PQconnectdb
• Microsoft SQL: SQLDriverConnect (3rd

argument)
User name • getpw, getpwnam, getpwnam_r, getpwuid,

getpwuid_r
Salt crypt, crypt_r (2nd argument)
Cryptography keys and initialization vectors OpenSSL:

• EVP_CipherInit, EVP_EncryptInit,
EVP_DecryptInit (3rd argument)

• EVP_CipherInit_ex,
EVP_EncryptInit_ex,
EVP_DecryptInit_ex (4th argument)

Seed • srand, srandom, initstate (1st argument)
• OpenSSL: RAND_seed, RAND_add

Risk

Information that is hardcoded can be queried from binaries generated from the code.

Fix

Avoid hard coding sensitive information.

Example – Sensitive Data Exposed Through String Literals

// Typically, you include the header "mysql.h" with function and type declarations.
// In this example, only the required lines from the header are quoted.

typedef struct _MYSQL MYSQL;

MYSQL *mysql_real_connect(MYSQL *mysql,
 const char *host, const char *user, const char *passwd,
 const char *db, unsigned int port, const char *unix_socket,
 unsigned long client_flag);

typedef void * DbHandle;
extern MYSQL *sql;

// File that uses functions from "mysql.h"
const char *host = "localhost";
char *user = "guest";
char *passwd;

DbHandle connect_to_database_server(const char *db)

23 CERT C Rules and Recommendations

23-360

{
 passwd = (char*)"guest";
 return (DbHandle)
 mysql_real_connect (sql, host, user, passwd, db, 0, 0x0, 0);
}

In this example, the mysql_real_connect arguments host (host name), user (user name), and
passwd (password) are string literals and directly exposed in the code.

Querying the generated binary for ASCII strings can reveal this information.

Correction – Read Sensitive Data from Secured Configuration Files

One possible correction is to read the data from a configuration file. In the following corrected
example, the call to function connect_to_database_server_init presumably reads the host
name, user name, and password into its arguments from a secured configuration file.

// Typically, you include the header "mysql.h" with function and type declarations.
// In this example, only the required lines from the header are quoted.

typedef struct _MYSQL MYSQL;

MYSQL *mysql_real_connect(MYSQL *mysql,
 const char *host, const char *user, const char *passwd,
 const char *db, unsigned int port, const char *unix_socket,
 unsigned long client_flag);

typedef void * DbHandle;
extern MYSQL *sql;

// File that uses functions from "mysql.h"

DbHandle connect_to_database_server(const char *db)
{
 const char *host_from_cfg;
 const char *user_from_cfg;
 const char *passwd_from_cfg;
 const char *db_from_cfg;
 if (connect_to_database_server_init(&host_from_cfg,
 &user_from_cfg,
 &passwd_from_cfg,
 &db_from_cfg))
 {
 return (DbHandle)
 mysql_real_connect (sql, host_from_cfg, user_from_cfg,
 passwd_from_cfg, db_from_cfg, 0, 0x0, 0);
 }
 else
 return (DbHandle)0x0;
}

Check Information
Group: Rule 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

 CERT C: Rule MSC41-C

23-361

Topics
“Check for Coding Standard Violations”

External Websites
MSC41-C

Introduced in R2020a

23 CERT C Rules and Recommendations

23-362

https://wiki.sei.cmu.edu/confluence/display/c/MSC41-C.+Never+hard+code+sensitive+information

CERT C: Rule POS30-C
Use the readlink() function properly

Description
Rule Definition

Use the readlink() function properly.

Polyspace Implementation

This checker checks for Misuse of readlink().

Examples
Misuse of readlink()
Issue

Misuse of readlink() occurs when you pass a buffer size argument to readlink() that does not
leave space for a null terminator in the buffer.

For instance:

size_t len = readlink("/usr/bin/perl", buf, sizeof(buf));

The third argument is exactly equal to the size of the second argument. For large enough symbolic
links, this use of readlink() does not leave space to enter a null terminator.
Risk

The readlink() function copies the content of a symbolic link (first argument) to a buffer (second
argument). However, the function does not append a null terminator to the copied content. After
using readlink(), you must explicitly add a null terminator to the buffer.

If you fill the entire buffer when using readlink, you do not leave space for this null terminator.
Fix

When using the readlink() function, make sure that the third argument is one less than the buffer
size.

Then, append a null terminator to the buffer. To determine where to add the null terminator, check
the return value of readlink(). If the return value is -1, an error has occurred. Otherwise, the
return value is the number of characters (bytes) copied.
Example - Incorrect Size Argument of readlink

#include <unistd.h>

#define SIZE1024 1024

extern void display_path(const char *);

 CERT C: Rule POS30-C

23-363

void func() {
 char buf[SIZE1024];
 ssize_t len = readlink("/usr/bin/perl", buf, sizeof(buf));
 if (len > 0) {
 buf[len - 1] = '\0';
 }
 display_path(buf);
}

In this example, the third argument of readlink is exactly the size of the buffer (second argument).
If the first argument is long enough, this use of readlink does not leave space for the null
terminator.

Also, if no characters are copied, the return value of readlink is 0. The following statement leads to
a buffer underflow when len is 0.

buf[len - 1] = '\0';

Correction — Make Sure Size Argument is One Less Than Buffer Size

One possible correction is to make sure that the third argument of readlink is one less than size of
the second argument.

The following corrected code also accounts for readlink returning 0.

#include <stdlib.h>
#include <unistd.h>

#define fatal_error() abort()
#define SIZE1024 1024

extern void display_path(const char *);

void func() {
 char buf[SIZE1024];
 ssize_t len = readlink("/usr/bin/perl", buf, sizeof(buf) - 1);
 if (len != -1) {
 buf[len] = '\0';
 display_path(buf);
 }
 else {
 /* Handle error */
 fatal_error();
 }
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

23 CERT C Rules and Recommendations

23-364

External Websites
POS30-C

Introduced in R2019a

 CERT C: Rule POS30-C

23-365

https://wiki.sei.cmu.edu/confluence/display/c/POS30-C.+Use+the+readlink%28%29+function+properly

CERT C: Rule POS34-C
Do not call putenv() with a pointer to an automatic variable as the argument

Description
Rule Definition

Do not call putenv() with a pointer to an automatic variable as the argument.

Polyspace Implementation

This checker checks for Use of automatic variable as putenv-family function argument.

Examples
Use of automatic variable as putenv-family function argument
Issue

Use of automatic variable as putenv-family function argument occurs when the argument of a
putenv-family function is a local variable with automatic duration.

Risk

The function putenv(char *string) inserts a pointer to its supplied argument into the
environment array, instead of making a copy of the argument. If the argument is an automatic
variable, its memory can be overwritten after the function containing the putenv() call returns. A
subsequent call to getenv() from another function returns the address of an out-of-scope variable
that cannot be dereferenced legally. This out-of-scope variable can cause environment variables to
take on unexpected values, cause the program to stop responding, or allow arbitrary code execution
vulnerabilities.

Fix

Use setenv()/unsetenv() to set and unset environment variables. Alternatively, use putenv-family
function arguments with dynamically allocated memory, or, if your application has no reentrancy
requirements, arguments with static duration. For example, a single thread execution with no
recursion or interrupts does not require reentrancy. It cannot be called (reentered) during its
execution.

Example - Automatic Variable as Argument of putenv()

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE1024 1024

void func(int var)
{
 char env[SIZE1024];
 int retval = sprintf(env, "TEST=%s", var ? "1" : "0");
 if (retval <= 0) {

23 CERT C Rules and Recommendations

23-366

 /* Handle error */
 }
 /* Environment variable TEST is set using putenv().
 The argument passed to putenv is an automatic variable. */
 retval = putenv(env);
 if (retval != 0) {
 /* Handle error */
 }
}

In this example, sprintf() stores the character string TEST=var in env. The value of the
environment variable TEST is then set to var by using putenv(). Because env is an automatic
variable, the value of TEST can change once func() returns.

Correction — Use static Variable for Argument of putenv()

Declare env as a static-duration variable. The memory location of env is not overwritten for the
duration of the program, even after func() returns.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE1024 1024
void func(int var)
{
 /* static duration variable */
 static char env[SIZE1024];
 int retval = sprintf(env,"TEST=%s", var ? "1" : "0");
 if (retval <= 0) {
 /* Handle error */
 }

 /* Environment variable TEST is set using putenv() */
 retval=putenv(env);
 if (retval != 0) {
 /* Handle error */
 }
}

Correction — Use setenv() to Set Environment Variable Value

To set the value of TEST to var, use setenv().

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE1024 1024

void func(int var)
{
 /* Environment variable TEST is set using setenv() */
 int retval = setenv("TEST", var ? "1" : "0", 1);

 if (retval != 0) {
 /* Handle error */

 CERT C: Rule POS34-C

23-367

 }
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS34-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-368

https://wiki.sei.cmu.edu/confluence/display/c/POS34-C.+Do+not+call+putenv%28%29+with+a+pointer+to+an+automatic+variable+as+the+argument

CERT C: Rule POS35-C
Avoid race conditions while checking for the existence of a symbolic link

Description
Rule Definition

Avoid race conditions while checking for the existence of a symbolic link.

Polyspace Implementation

This checker checks for File access between time of check and use (TOCTOU).

Examples
File access between time of check and use (TOCTOU)
Issue

File access between time of check and use (TOCTOU) detects race condition issues between
checking the existence of a file or folder, and using a file or folder.
Risk

An attacker can access and manipulate your file between your check for the file and your use of a file.
Symbolic links are particularly risky because an attacker can change where your symbolic link points.
Fix

Before using a file, do not check its status. Instead, use the file and check the results afterward.
Example - Check File Before Using

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

extern void print_tofile(FILE* f);

void toctou(char * log_path) {
 if (access(log_path, W_OK)==0) {
 FILE* f = fopen(log_path, "w");
 if (f) {
 print_tofile(f);
 fclose(f);
 }
 }
}

In this example, before opening and using the file, the function checks if the file exists. However, an
attacker can change the file between the first and second lines of the function.
Correction — Open Then Check

One possible correction is to open the file, and then check the existence and contents afterward.

 CERT C: Rule POS35-C

23-369

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

extern void print_tofile(FILE* f);

void toctou(char * log_path) {
 int fd = open(log_path, O_WRONLY);
 if (fd!=-1) {
 FILE *f = fdopen(fd, "w");
 if (f) {
 print_tofile(f);
 fclose(f);
 }
 }
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS35-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-370

https://wiki.sei.cmu.edu/confluence/display/c/POS35-C.+Avoid+race+conditions+while+checking+for+the+existence+of+a+symbolic+link

CERT C: Rule POS36-C
Observe correct revocation order while relinquishing privileges

Description
Rule Definition

Observe correct revocation order while relinquishing privileges.

Polyspace Implementation

This checker checks for Bad order of dropping privileges.

Examples
Bad order of dropping privileges
Issue

Bad order of dropping privileges checks the order of privilege drops. If you drop higher elevated
privileges before dropping lower elevated privileges, Polyspace raises a defect. For example dropping
elevated primary group privileges before dropping elevated ancillary group privileges.

Risk

If you drop privileges in the wrong order, you can potentially drop higher privileges that you need to
drop lower privileges. The incorrect order can mean, privileges are not dropped, compromising the
security of your program.

Fix

Respect this order of dropping elevated privileges:

• Drop (elevated) ancillary group privileges, then drop (elevated) primary group privileges.
• Drop (elevated) primary group privileges, then drop (elevated) user privileges.

Example - Dropping User Privileges First

#define _BSD_SOURCE
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
#include <stdlib.h>
#define fatal_error() abort()

static void sanitize_privilege_drop_check(uid_t olduid, gid_t oldgid)
{
 if (seteuid(olduid) != -1)
 {
 /* Privileges can be restored, handle error */
 fatal_error();
 }
 if (setegid(oldgid) != -1)

 CERT C: Rule POS36-C

23-371

 {
 /* Privileges can be restored, handle error */
 fatal_error();
 }
}
void badprivilegedroporder(void) {
 uid_t
 newuid = getuid(),
 olduid = geteuid();
 gid_t
 newgid = getgid(),
 oldgid = getegid();

 if (setuid(newuid) == -1) {
 /* handle error condition */
 fatal_error();
 }
 if (setgid(newgid) == -1) {
 /* handle error condition */
 fatal_error();
 }
 if (olduid == 0) {
 /* drop ancillary groups IDs only possible for root */
 if (setgroups(1, &newgid) == -1) {
 /* handle error condition */
 fatal_error();
 }
 }

 sanitize_privilege_drop_check(olduid, oldgid);
}

In this example, there are two privilege drops made in the incorrect order. setgid attempts to drop
group privileges. However, setgid requires the user privileges, which were dropped previously
using setuid, to perform this function. After dropping group privileges, this function attempts to
drop ancillary groups privileges by using setgroups. This task requires the higher primary group
privileges that were dropped with setgid. At the end of this function, it is possible to regain group
privileges because the order of dropping privileges was incorrect.
Correction — Reverse Privilege Drop Order

One possible correction is to drop the lowest level privileges first. In this correction, ancillary group
privileges are dropped, then primary group privileges are dropped, and finally user privileges are
dropped.

#define _BSD_SOURCE
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
#include <stdlib.h>
#define fatal_error() abort()

static void sanitize_privilege_drop_check(uid_t olduid, gid_t oldgid)
{
 if (seteuid(olduid) != -1)
 {
 /* Privileges can be restored, handle error */
 fatal_error();

23 CERT C Rules and Recommendations

23-372

 }
 if (setegid(oldgid) != -1)
 {
 /* Privileges can be restored, handle error */
 fatal_error();
 }
}
void badprivilegedroporder(void) {
 uid_t
 newuid = getuid(),
 olduid = geteuid();
 gid_t
 newgid = getgid(),
 oldgid = getegid();

 if (olduid == 0) {
 /* drop ancillary groups IDs only possible for root */
 if (setgroups(1, &newgid) == -1) {
 /* handle error condition */
 fatal_error();
 }
 }
 if (setgid(getgid()) == -1) {
 /* handle error condition */
 fatal_error();
 }
 if (setuid(getuid()) == -1) {
 /* handle error condition */
 fatal_error();
 }

 sanitize_privilege_drop_check(olduid, oldgid);
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS36-C

Introduced in R2019a

 CERT C: Rule POS36-C

23-373

https://wiki.sei.cmu.edu/confluence/display/c/POS36-C.+Observe+correct+revocation+order+while+relinquishing+privileges

CERT C: Rule POS37-C
Ensure that privilege relinquishment is successful

Description
Rule Definition

Ensure that privilege relinquishment is successful.

Polyspace Implementation

This checker checks for Privilege drop not verified.

Examples
Privilege drop not verified
Issue

Privilege drop not verified detects calls to functions that relinquish privileges. If you do not verify
that the privileges were dropped before the end of your function, a defect is raised.

Risk

If privilege relinquishment fails, an attacker can regain elevated privileges and have more access to
your program than intended. This security hole can cause unexpected behavior in your code if left
open.

Fix

Before the end of scope, verify that the privileges that you dropped were actually dropped.

Example - Drop Privileges Within a Function

#define _BSD_SOURCE
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
#include <stdlib.h>
#define fatal_error() abort()
extern int need_more_privileges;

void missingprivilegedropcheck()
{
 /* Code intended to run with elevated privileges */

 /* Temporarily drop elevated privileges */
 if (seteuid(getuid()) != 0) {
 /* Handle error */
 fatal_error();
 }

 /* Code intended to run with lower privileges */

23 CERT C Rules and Recommendations

23-374

 if (need_more_privileges) {
 /* Restore elevated privileges */
 if (seteuid(0) != 0) {
 /* Handle error */
 fatal_error();
 }
 /* Code intended to run with elevated privileges */
 }

 /* ... */

 /* Permanently drop elevated privileges */
 if (setuid(getuid()) != 0) {
 /* Handle error */
 fatal_error();
 }

 /* Code intended to run with lower privileges */
}

In this example, privileges are elevated and dropped to run code with the intended privilege level.
When privileges are dropped, the privilege level before exiting the function body is not verified. A
malicious attacker can regain their elevated privileges.

Correction — Verify Privilege Drop

One possible correction is to use setuid to verify that the privileges were dropped.

#define _BSD_SOURCE
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
#include <stdlib.h>
#define fatal_error() abort()
extern int need_more_privileges;

void missingprivilegedropcheck()
{
 /* Store the privileged ID for later verification */
 uid_t privid = geteuid();

 /* Code intended to run with elevated privileges */

 /* Temporarily drop elevated privileges */
 if (seteuid(getuid()) != 0) {
 /* Handle error */
 fatal_error();
 }

 /* Code intended to run with lower privileges */

 if (need_more_privileges) {
 /* Restore elevated Privileges */
 if (seteuid(privid) != 0) {
 /* Handle error */
 fatal_error();
 }
 /* Code intended to run with elevated privileges */

 CERT C: Rule POS37-C

23-375

 }

 /* ... */

 /* Restore privileges if needed */
 if (geteuid() != privid) {
 if (seteuid(privid) != 0) {
 /* Handle error */
 fatal_error();
 }
 }

 /* Permanently drop privileges */
 if (setuid(getuid()) != 0) {
 /* Handle error */
 fatal_error();
 }

 if (setuid(0) != -1) {
 /* Privileges can be restored, handle error */
 fatal_error();
 }

 /* Code intended to run with lower privileges; */
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS37-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-376

https://wiki.sei.cmu.edu/confluence/display/c/POS37-C.+Ensure+that+privilege+relinquishment+is+successful

CERT C: Rule POS38-C
Beware of race conditions when using fork and file descriptors

Description
Rule Definition

Beware of race conditions when using fork and file descriptors.

Polyspace Implementation

This checker checks for File descriptor exposure to child process.

Examples
File descriptor exposure to child process
Issue

File descriptor exposure to child process occurs when a process is forked and the child process
uses file descriptors inherited from the parent process.
Risk

When you fork a child process, file descriptors are copied from the parent process, which means that
you can have concurrent operations on the same file. Use of the same file descriptor in the parent and
child processes can lead to race conditions that may not be caught during standard debugging. If you
do not properly manage the file descriptor permissions and privileges, the file content is vulnerable to
attacks targeting the child process.
Fix

Check that the file has not been modified before forking the process. Close all inherited file
descriptors and reopen them with stricter permissions and privileges, such as read-only permission.
Example - File Descriptor Accessed from Forked Process

include <stdio.h>
include <stdlib.h>
include <string.h>
include <unistd.h>
include <fcntl.h>
include <sys/types.h>
include <sys/stat.h>

const char *test_file="/home/user/test.txt";

void func(void)
{
 char c;
 pid_t pid;
 /* create file descriptor in read and write mode */

 CERT C: Rule POS38-C

23-377

 int fd = open(test_file, O_RDWR);
 if (fd == -1)
 {
 /* Handle error */
 abort();
 }
 /* fork process */
 pid = fork();
 if (pid == -1)
 {
 /* Handle error */
 abort();
 }
 else if (pid == 0)
 { /* Child process accesses file descriptor inherited
 from parent process */
 (void)read(fd, &c, 1);
 }
 else
 { /* Parent process access same file descriptor as
 child process */
 (void)read(fd, &c, 1);
 }
}

In this example, a file descriptor fd is created in read and write mode. The process is then forked.
The child process inherits and accesses fd with the same permissions as the parent process. A race
condition exists between the parent and child processes. The contents of the file is vulnerable to
attacks through the child process.

Correction — Close and Reopen Inherited File Descriptor

After you create the file descriptor, check the file for tampering. Then, close the inherited file
descriptor in the child process and reopen it in read-only mode.

include <stdio.h>
include <stdlib.h>
include <string.h>
include <unistd.h>
include <fcntl.h>
include <sys/types.h>
include <sys/stat.h>

const char *test_file="/home/user/test.txt";

void func(void)
{
 char c;
 pid_t pid;

 /* Get the state of file for further file tampering checking */

 /* create file descriptor in read and write mode */
 int fd = open(test_file, O_RDWR);
 if (fd == -1)
 {

23 CERT C Rules and Recommendations

23-378

 /* Handle error */
 abort();
 }

 /* Be sure the file was not tampered with while opening */

 /* fork process */

 pid = fork();
 if (pid == -1)
 {
 /* Handle error */
 (void)close(fd);
 abort();
 }
 else if (pid == 0)
 { /* Close file descriptor in child process and repoen
 it in read only mode */

 (void)close(fd);
 fd = open(test_file, O_RDONLY);
 if (fd == -1)
 {
 /* Handle error */
 abort();
 }

 (void)read(fd, &c, 1);
 (void)close(fd);
 }
 else
 { /* Parent acceses original file descriptor */
 (void)read(fd, &c, 1);
 (void)close(fd);
 }
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS38-C

Introduced in R2019a

 CERT C: Rule POS38-C

23-379

https://wiki.sei.cmu.edu/confluence/display/c/POS38-C.+Beware+of+race+conditions+when+using+fork+and+file+descriptors

CERT C: Rule POS39-C
Use the correct byte ordering when transferring data between systems

Description
Rule Definition

Use the correct byte ordering when transferring data between systems.

Polyspace Implementation

This checker checks for Missing byte reordering when transferring data.

Examples
Missing byte reordering when transferring data
Issue

Missing byte reordering when transferring data occurs when you do not use a byte ordering
function:

• Before sending data to a network socket.
• After receiving data from a network socket.

Risk

Some system architectures implement little endian byte ordering (least significant byte first), and
other systems implement big endian (most significant byte first). If the endianness of the sent data
does not match the endianness of the receiving system, the value returned when reading the data is
incorrect.

Fix

After receiving data from a socket, use a byte ordering function such as ntohl(). Before sending
data to a socket, use a byte ordering function such as htonl() .

Example - Data Transferred Without Byte Reordering

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <byteswap.h>
#include <unistd.h>
#include <string.h>

unsigned int func(int sock, int server)
{
 unsigned int num; /* assume int is 32-bits */

23 CERT C Rules and Recommendations

23-380

 if (server)
 {
 /* Server side */
 num = 0x17;
 /* Endianness of server host may not match endianness of network. */
 if (send(sock, (void *)&num, sizeof(num), 0) < (int)sizeof(num))
 {
 /* Handle error */
 }
 return 0;
 }
 else {
 /* Endianness of client host may not match endianness of network. */
 if (recv (sock, (void *)&num, sizeof(num), 0) < (int) sizeof(num))
 {
 /* Handle error */
 }

 /* Comparison may be inaccurate */
 if (num> 255)
 {
 return 255;
 }
 else
 {
 return num;
 }
 }
}

In this example, variable num is assigned hexadecimal value 0x17 and is sent over a network to the
client from the server. If the server host is little endian and the network is big endian, num is
transferred as 0x17000000. The client then reads an incorrect value for num and compares it to a
local numeric value.
Correction — Use Byte Ordering Function

Before sending num from the server host, use htonl() to convert from host to network byte
ordering. Similarly, before reading num on the client host, use ntohl() to convert from network to
host byte ordering.

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <byteswap.h>
#include <unistd.h>
#include <string.h>

unsigned int func(int sock, int server)
{
 unsigned int num; /* assume int is 32-bits */
 if (server)
 {

 CERT C: Rule POS39-C

23-381

 /* Server side */
 num = 0x17;

 /* Convert to network byte order. */
 num = htonl(num);
 if (send(sock, (void *)&num, sizeof(num), 0) < (int)sizeof(num))
 {
 /* Handle error */
 }
 return 0;
 }
 else {
 if (recv (sock, (void *)&num, sizeof(num), 0) < (int) sizeof(num))
 {
 /* Handle error */
 }

 /* Convert to host byte order. */
 num = ntohl(num);
 if (num > 255)
 {
 return 255;
 }
 else
 {
 return num;
 }
 }
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS39-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-382

https://wiki.sei.cmu.edu/confluence/display/c/POS39-C.+Use+the+correct+byte+ordering+when+transferring+data+between+systems

CERT C: Rule POS44-C
Do not use signals to terminate threads

Description
Rule Definition

Do not use signals to terminate threads.

Polyspace Implementation

This checker checks for Use of signal to kill thread.

Examples
Use of signal to kill thread
Issue

Use of signal to kill thread occurs when you use an uncaught signal to kill a thread. For instance,
you use the POSIX function pthread_kill and send the signal SIGTERM to kill a thread.

Risk

Sending a signal kills the entire process instead of just the thread that you intend to kill.

For instance, the pthread_kill specifications state that if the disposition of a signal is to terminate,
this action affects the entire process.

Fix

Use other mechanisms that are intended to kill specific threads.

For instance, use the POSIX function pthread_cancel to terminate a specific thread.

Example - Use of pthread_kill to Terminate Threads

#include <signal.h>
#include <pthread.h>

void* func(void *foo) {
 /* Execution of thread */
}

int main(void) {
 int result;
 pthread_t thread;

 if ((result = pthread_create(&thread, NULL, func, 0)) != 0) {
 }
 if ((result = pthread_kill(thread, SIGTERM)) != 0) {
 }

 /* This point is not reached because the process terminates in pthread_kill() */

 CERT C: Rule POS44-C

23-383

https://man7.org/linux/man-pages/man3/pthread_kill.3.html

 return 0;
}

In this example, the pthread_kill function sends the signal SIGTERM to kill a thread. The signal
kills the entire process instead of the thread previously created with pthread_create.

Correction — Use pthread_cancel to Terminate Threads

One possible correction is to use the pthread_cancel function. The pthread_cancel terminates a
thread specified by its first argument at a specific cancellation point or immediately, depending on the
thread's cancellation type.

#include <signal.h>
#include <pthread.h>

void* func(void *foo) {
 /* Execution of thread */
}

int main(void) {
 int result;
 pthread_t thread;

 if ((result = pthread_create(&thread, NULL, func, 0)) != 0) {
 /* Handle Error */
 }
 if ((result = pthread_cancel(thread)) != 0) {
 /* Handle Error */
 }

 /* Continue executing */

 return 0;
}

See also:

• pthread_cancel for more information on cancellation types.
• Pthreads for functions that are allowed to be cancellation points.

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS44-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-384

https://man7.org/linux/man-pages/man3/pthread_cancel.3.html
https://man7.org/linux/man-pages/man7/pthreads.7.html
https://wiki.sei.cmu.edu/confluence/display/c/POS44-C.+Do+not+use+signals+to+terminate+threads

CERT C: Rule POS47-C
Do not use threads that can be canceled asynchronously

Description
Rule Definition

Do not use threads that can be canceled asynchronously.

Polyspace Implementation

This checker checks for Asynchronously cancellable thread.

Examples
Asynchronously cancellable thread
Issue

This issue occurs when you use pthread_setcanceltype with argument
PTHREAD_CANCEL_ASYNCHRONOUS to set the cancellability type of a calling thread to asynchronous
(or immediate) . An asynchronously cancellable thread can be cancelled at any time, usually
immediately upon receiving a cancellation request.

Risk

The calling thread might be cancelled in an unsafe state that could result in a resources leak, a
deadlock, a data race, data corruption, or unpredictable behavior.

Fix

Remove the call to pthread_setcanceltype with argument PTHREAD_CANCEL_ASYNCHRONOUS to
use the default cancellability type PTHREAD_CANCEL_DEFERRED instead. With the default
cancellability type, the thread defers cancellation requests until it calls a function that is a
cancellation point.

Example - Cancellability Type of Thread Set to Asynchronous
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

static int fatal_error(void)
{
 exit(1);
}

volatile int a = 5;
volatile int b = 10;

pthread_mutex_t global_lock = PTHREAD_MUTEX_INITIALIZER;

void* swap_values_thread(void* dummy)
{
 int i;
 int c;
 int result;
 if ((result =
 pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &i)) != 0) {

 CERT C: Rule POS47-C

23-385

 /* handle error */
 fatal_error();
 }
 while (1) {
 if ((result = pthread_mutex_lock(&global_lock)) != 0) {
 /* handle error */
 fatal_error();
 }
 c = b;
 b = a;
 a = c;
 if ((result = pthread_mutex_unlock(&global_lock)) != 0) {
 /* handle error */
 fatal_error();
 }
 }
 return NULL;
}

int main(void)
{
 int result;
 pthread_t worker;

 if ((result = pthread_create(&worker, NULL, swap_values_thread, NULL)) != 0) {
 /* handle error */
 fatal_error();
 }

 /* Additional code */

 if ((result = pthread_cancel(worker)) != 0) {
 /* handle error */
 fatal_error();
 }

 if ((result = pthread_join(worker, 0)) != 0) {
 /* handle error */
 fatal_error();
 }

 if ((result = pthread_mutex_lock(&global_lock)) != 0) {
 /* handle error */
 fatal_error();
 }
 printf("a: %i | b: %i", a, b);
 if ((result = pthread_mutex_unlock(&global_lock)) != 0) {
 /* handle error */
 fatal_error();
 }

 return 0;
}

In this example, the cancellability type of the worker thread is set to asynchronous. The mutex
global_lock helps ensure that the worker and main threads do not access variables a and b at the
same time. However, the worker thread might be cancelled while holding global_lock, and the
main thread will never acquire global_lock, which results in a deadlock.
Correction — Use the Default Cancellability Type

One possible correction is to remove the call to pthread_setcanceltype. By default, the
cancellability type of a new thread is set to PTHREAD_CANCEL_DEFERRED. The worker thread defers
cancellation requests until it calls a function that is a cancellation point.
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

static int fatal_error(void)
{
 exit(1);
}

volatile int a = 5;

23 CERT C Rules and Recommendations

23-386

volatile int b = 10;

pthread_mutex_t global_lock = PTHREAD_MUTEX_INITIALIZER;

void* swap_values_thread(void* dummy)
{
 int i;
 int c;
 int result;
 while (1) {
 if ((result = pthread_mutex_lock(&global_lock)) != 0) {
 /* handle error */
 fatal_error();
 }
 c = b;
 b = a;
 a = c;
 if ((result = pthread_mutex_unlock(&global_lock)) != 0) {
 /* handle error */
 fatal_error();
 }
 }
 return NULL;
}

int main(void)
{
 int result;
 pthread_t worker;

 if ((result = pthread_create(&worker, NULL, swap_values_thread, NULL)) != 0) {
 /* handle error */
 fatal_error();
 }

 /* Additional code */

 if ((result = pthread_cancel(worker)) != 0) {
 /* handle error */
 fatal_error();
 }

 if ((result = pthread_join(worker, 0)) != 0) {
 /* handle error */
 fatal_error();
 }

 if ((result = pthread_mutex_lock(&global_lock)) != 0) {
 /* handle error */
 fatal_error();
 }
 printf("a: %i | b: %i", a, b);
 if ((result = pthread_mutex_unlock(&global_lock)) != 0) {
 /* handle error */
 fatal_error();
 }

 return 0;
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS47-C

 CERT C: Rule POS47-C

23-387

https://wiki.sei.cmu.edu/confluence/display/c/POS47-C.+Do+not+use+threads+that+can+be+canceled+asynchronously

Introduced in R2020a

23 CERT C Rules and Recommendations

23-388

CERT C: Rule POS48-C
Do not unlock or destroy another POSIX thread's mutex

Description
Rule Definition

Do not unlock or destroy another POSIX thread's mutex.

Polyspace Implementation

This checker checks for Destruction of locked mutex.

Examples
Destruction of locked mutex
Issue

Destruction of locked mutex occurs when a task destroys a mutex after it is locked (and before it is
unlocked). The locking and destruction can happen in the same task or different tasks.

Risk

A mutex is locked to protect shared variables from concurrent access. If a mutex is destroyed in the
locked state, the protection does not apply.

Fix

To fix this defect, destroy the mutex only after you unlock it. It is a good design practice to:

• Initialize a mutex before creating the threads where you use the mutex.
• Destroy a mutex after joining the threads that you created.

On the Result Details pane, you see two events, the locking and destruction of the mutex, and the
tasks that initiated the events. To navigate to the corresponding line in your source code, click the
event.

Example - Locking and Destruction in Different Tasks

#include <pthread.h>

pthread_mutex_t lock1;
pthread_mutex_t lock2;
pthread_mutex_t lock3;

void t0 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);
 pthread_mutex_lock (&lock3);
 pthread_mutex_unlock (&lock2);

 CERT C: Rule POS48-C

23-389

 pthread_mutex_unlock (&lock1);
 pthread_mutex_unlock (&lock3);
}

void t1 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);
 pthread_mutex_destroy (&lock3);
 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

In this example, after task t0 locks the mutex lock3, task t1 can destroy it. The destruction occurs if
the following events happen in sequence:

1 t0 acquires lock3.
2 t0 releases lock2.
3 t0 releases lock1.
4 t1 acquires the lock lock1 released by t0.
5 t1 acquires the lock lock2 released by t0.
6 t1 destroys lock3.

For simplicity, this example uses a mix of automatic and manual concurrency detection. The tasks t0
and t1 are manually specified as entry points by using the option Tasks (-entry-points). The
critical sections are implemented through primitives pthread_mutex_lock and
pthread_mutex_unlock that the software detects automatically. In practice, for entry point
specification (thread creation), you will use primitives such as pthread_create. The next example
shows how the defect can appear when you use pthread_create.

Correction — Place Lock-Unlock Pair Together in Same Critical Section as Destruction

The locking and destruction of lock3 occurs inside the critical section imposed by lock1 and lock2,
but the unlocking occurs outside. One possible correction is to place the lock-unlock pair in the same
critical section as the destruction of the mutex. Use one of these critical sections:

• Critical section imposed by lock1 alone.
• Critical section imposed by lock1 and lock2.

In this corrected code, the lock-unlock pair and the destruction is placed in the critical section
imposed by lock1 and lock2. When t0 acquires lock1 and lock2, t1 has to wait for their release
before it executes the instruction pthread_mutex_destroy (&lock3);. Therefore, t1 cannot
destroy mutex lock3 in the locked state.

#include <pthread.h>

pthread_mutex_t lock1;
pthread_mutex_t lock2;
pthread_mutex_t lock3;

void t0 (void) {
 pthread_mutex_lock (&lock1);

23 CERT C Rules and Recommendations

23-390

 pthread_mutex_lock (&lock2);

 pthread_mutex_lock (&lock3);
 pthread_mutex_unlock (&lock3);

 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

void t1 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);

 pthread_mutex_destroy (&lock3);

 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

Example - Locking and Destruction in Start Routine of Thread

#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 4
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
void atomic_operation(void);

void *do_create(void *arg) {
 /* Creation thread */
 pthread_mutex_init(&lock, NULL);
 pthread_exit((void*) 0);
}

void *do_work(void *arg) {
 /* Worker thread */
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_exit((void*) 0);
}

void *do_destroy(void *arg) {
 /* Destruction thread */
 pthread_mutex_destroy(&lock);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;
 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);

 CERT C: Rule POS48-C

23-391

 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Thread that initializes mutex */
 pthread_create(&callThd[0], &attr, do_create, NULL);

 /* Threads that use mutex for atomic operation*/
 for(i=0; i<NUMTHREADS-1; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 /* Thread that destroys mutex */
 pthread_create(&callThd[NUMTHREADS -1], &attr, do_destroy, NULL);

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 pthread_exit(NULL);
}

In this example, four threads are created. The threads are assigned different actions.

• The first thread callThd[0] initializes the mutex lock.
• The second and third threads, callThd[1] and callThd[2], perform an atomic operation

protected by the mutex lock.
• The fourth thread callThd[3] destroys the mutex lock.

The threads can interrupt each other. Therefore, immediately after the second or third thread locks
the mutex, the fourth thread can destroy it.

Correction — Initialize and Destroy Mutex Outside Start Routine

One possible correction is to initialize and destroy the mutex in the main function outside the start
routine of the threads. The threads perform only the atomic operation. You need two fewer threads
because the mutex initialization and destruction threads are not required.

#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 2
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
void atomic_operation(void);

void *do_work(void *arg) {
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;

23 CERT C Rules and Recommendations

23-392

 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Initialize mutex */
 pthread_mutex_init(&lock, NULL);

 for(i=0; i<NUMTHREADS; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 /* Destroy mutex */
 pthread_mutex_destroy(&lock);

 pthread_exit(NULL);
}

Correction — Use A Second Mutex To Protect Lock-Unlock Pair and Destruction

Another possible correction is to use a second mutex and protect the lock-unlock pair from the
destruction. This corrected code uses the mutex lock2 to achieve this protection. The second mutex
is initialized in the main function outside the start routine of the threads.

#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 4
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
pthread_mutex_t lock2;
void atomic_operation(void);

void *do_create(void *arg) {
 /* Creation thread */
 pthread_mutex_init(&lock, NULL);
 pthread_exit((void*) 0);
}

void *do_work(void *arg) {
 /* Worker thread */
 pthread_mutex_lock (&lock2);
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_mutex_unlock (&lock2);
 pthread_exit((void*) 0);
}

 CERT C: Rule POS48-C

23-393

void *do_destroy(void *arg) {
 /* Destruction thread */
 pthread_mutex_lock (&lock2);
 pthread_mutex_destroy(&lock);
 pthread_mutex_unlock (&lock2);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;
 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Initialize second mutex */
 pthread_mutex_init(&lock2, NULL);

 /* Thread that initializes first mutex */
 pthread_create(&callThd[0], &attr, do_create, NULL);

 /* Threads that use first mutex for atomic operation */
 /* The threads use second mutex to protect first from destruction in locked state*/
 for(i=0; i<NUMTHREADS-1; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 /* Thread that destroys first mutex */
 /* The thread uses the second mutex to prevent destruction of locked mutex */
 pthread_create(&callThd[NUMTHREADS -1], &attr, do_destroy, NULL);

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 /* Destroy second mutex */
 pthread_mutex_destroy(&lock2);

 pthread_exit(NULL);
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

23 CERT C Rules and Recommendations

23-394

Topics
“Check for Coding Standard Violations”

External Websites
POS48-C

Introduced in R2019a

 CERT C: Rule POS48-C

23-395

https://wiki.sei.cmu.edu/confluence/display/c/POS48-C.+Do+not+unlock+or+destroy+another+POSIX+thread%27s+mutex

CERT C: Rule POS49-C
When data must be accessed by multiple threads, provide a mutex and guarantee no adjacent data is
also accessed

Description
Rule Definition

When data must be accessed by multiple threads, provide a mutex and guarantee no adjacent data is
also accessed.

Polyspace Implementation

This checker checks for Data race on adjacent bit fields.

Examples
Data race on adjacent bit fields
Issue

Data race on adjacent bit fields occurs when:

• Multiple tasks perform unprotected operations on bit fields that are part of the same structure.

For instance, a task operates on field errorFlag1 and another task on field errorFlag2 in a
variable of this type:

struct errorFlags {
 unsigned int errorFlag1 : 1;
 unsigned int errorFlag2 : 1;
 ...
}

Suppose that the operations are not atomic with respect to each other. In other words, you have
not implemented protection mechanisms to ensure that one operation completes before another
begins.

• At least one of the unprotected operations is a write operation.

Risk

Adjacent bit fields that are part of the same structure might be stored in one byte in the same
memory location. Read or write operations on all variables including bit fields happen one byte or
word at a time. To modify only specific bits in a byte, steps similar to this happen in sequence:

1 The byte is loaded into RAM.
2 A mask is created so that only specific bits would be modified to the intended value and the

remaining bits remain unchanged.
3 A bitwise OR operation is performed between the copy of the byte in RAM and the mask.
4 The byte with specific bits modified is copied back from RAM.

23 CERT C Rules and Recommendations

23-396

If two different bit fields are accessed, these four steps have to be performed for each bit field. If the
accesses are not protected, all four steps for one bit field might not complete before the four steps for
the other begin. As a result, the modification of one bit field might undo the modification of an
adjacent bit field. For instance, the modification of errorFlag1 and errorFlag2 can happen in the
following sequence. Steps marked 1 relate to modification of errorFlag1 and steps marked 2 relate
to that of errorFlag2.

1a. The byte with both errorFlag1 and errorFlag2 unmodified is copied into RAM, for purposes of
modifying errorFlag1.

1b. A mask that modifies only errorFlag1 is bitwise OR-ed with this copy.

2a. The byte containing both errorFlag1 and errorFlag2 unmodified is copied into RAM a second
time, for purposes of modifying errorFlag2.

2b. A mask that modifies only errorFlag2 is bitwise OR-ed with this second copy.

1c. The version with errorFlag1 modified is copied back. This version has errorFlag2 unmodified.

2c The version with errorFlag2 modified is copied back. This version has errorFlag1 unmodified
and overwrites the previous modification.

Fix

To fix this defect, protect the operations on bit fields that are part of the same structure using critical
sections, temporal exclusion or another means. See “Protections for Shared Variables in Multitasking
Code”.

To identify existing protections that you can reuse, see the table and graphs associated with the
result. The table shows each pair of conflicting calls. The Access Protections column shows existing

protections on the calls. To see the function call sequence leading to the conflicts, click the icon.
For an example, see below.

Example - Unprotected Operation on Global Variable from Multiple POSIX Threads

#include <stdlib.h>
#include <pthread.h>
#define thread_success 0

typedef struct
{
 unsigned int IOFlag :1;
 unsigned int InterruptFlag :1;
 unsigned int Register1Flag :1;
 unsigned int SignFlag :1;
 unsigned int SetupFlag :1;
 unsigned int Register2Flag :1;
 unsigned int ProcessorFlag :1;
 unsigned int GeneralFlag :1;
} InterruptConfigbits_t;

InterruptConfigbits_t InterruptConfigbitsProc12;

void* task1 (void* arg) {
 InterruptConfigbitsProc12.IOFlag = 0;
 //Additional code

 CERT C: Rule POS49-C

23-397

}

void* task2 (void* arg) {
 InterruptConfigbitsProc12.SetupFlag = 0;
 //Additional code
}

void main() {
 pthread_t thread1, thread2;
 if(thread_success != pthread_create(&thread1, NULL, task1, NULL)){
 //Handle error
 }
 if(thread_success != pthread_create(&thread2, NULL, task2, NULL)){
 //Handle error
 }
}

In this example, the threads with id thread1 and thread2 access different bit fields IOFlag and
SetupFlag, which belong to the same structured variable InterruptConfigbitsProc12.

Correction - Use Critical Sections

One possible correction is to wrap the bit field accesses in a critical section. A critical section lies
between a call to a lock function and an unlock function. In this correction, the critical section lies
between the calls to functions pthread_mutex_lock and pthread_mutex_unlock.

#include <stdlib.h>
#include <pthread.h>
#define thread_success 0
#define lock_success 0

pthread_mutex_t lock;

typedef struct
{
 unsigned int IOFlag :1;
 unsigned int InterruptFlag :1;
 unsigned int Register1Flag :1;
 unsigned int SignFlag :1;
 unsigned int SetupFlag :1;
 unsigned int Register2Flag :1;
 unsigned int ProcessorFlag :1;
 unsigned int GeneralFlag :1;
} InterruptConfigbits_t;

InterruptConfigbits_t InterruptConfigbitsProc12;

void* task1 (void* arg) {
 if(lock_success != pthread_mutex_lock(&lock)) {
 //Handle error
 }
 InterruptConfigbitsProc12.IOFlag = 0;
 if(lock_success != pthread_mutex_unlock(&lock)) {
 //Handle error
 }
 //Additional code
}

23 CERT C Rules and Recommendations

23-398

void* task2 (void* arg) {
 if(lock_success != pthread_mutex_lock(&lock)) {
 //Handle error
 }
 InterruptConfigbitsProc12.SetupFlag = 0;
 if(lock_success != pthread_mutex_unlock(&lock)) {
 //Handle error
 }
 //Additional code
}

void main() {
 pthread_t thread1, thread2;
 if(thread_success != pthread_create(&thread1, NULL, task1, NULL)){
 //Handle error
 }
 if(thread_success != pthread_create(&thread2, NULL, task2, NULL)){
 //Handle error
 }
}

Correction – Insert Bit Field of Size 0

You can enter a non bit field member or an unnamed bit field member of size 0 in between two
adjacent bit fields that might be accessed concurrently. A non bit field member or size 0 bit field
member ensures that the subsequent bit field starts from a new memory location. In this corrected
example, the size 0 bit field member ensures that IOFlag and SetupFlag are stored in distinct
memory locations.

#include <stdlib.h>
#include <pthread.h>
#define thread_success 0

typedef struct
{
 unsigned int IOFlag :1;
 unsigned int InterruptFlag :1;
 unsigned int Register1Flag :1;
 unsigned int SignFlag :1;
 unsigned int : 0;
 unsigned int SetupFlag :1;
 unsigned int Register2Flag :1;
 unsigned int ProcessorFlag :1;
 unsigned int GeneralFlag :1;
} InterruptConfigbits_t;

InterruptConfigbits_t InterruptConfigbitsProc12;

void* task1 (void* arg) {
 InterruptConfigbitsProc12.IOFlag = 0;
 //Additional code
}

void* task2 (void* arg) {
 InterruptConfigbitsProc12.SetupFlag = 0;
 //Additional code
}

 CERT C: Rule POS49-C

23-399

void main() {
 pthread_t thread1, thread2;
 if(thread_success != pthread_create(&thread1, NULL, task1, NULL)){
 //Handle error
 }
 if(thread_success != pthread_create(&thread2, NULL, task2, NULL)){
 //Handle error
 }
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS49-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-400

https://wiki.sei.cmu.edu/confluence/display/c/POS49-C.+When+data+must+be+accessed+by+multiple+threads%2C+provide+a+mutex+and+guarantee+no+adjacent+data+is+also+accessed

CERT C: Rule POS50-C
Declare objects shared between POSIX threads with appropriate storage durations

Description
Rule Definition

Declare objects shared between POSIX threads with appropriate storage durations.

Examples
Automatic or thread local variable escaping from a POSIX thread
Issue

Automatic or thread local variable escaping from a POSIX thread occurs when an automatic or
thread local variable is passed by address from one POSIX thread to another without ensuring that
the variable stays alive through the duration of the latter thread.
Risk

An automatic or thread local variable is allocated on the stack at the beginning of a thread and its
lifetime extends till the end of the thread. The variable is not guaranteed to be alive when a different
thread accesses it.

For instance, consider the start function of a POSIX thread with these lines:

int start_thread(pthread_t *tid) {
 int aVar = 0;
 if(thrd_success != pthread_create(tid, NULL, start_thread_child, &aVar) {
 //...
 }
}

The pthread_create function creates a child thread with start function start_thread_child and
passes the address of the automatic variable aVarto this function. When this child thread accesses
aVar, the parent thread might have completed execution and aVar is no longer on the stack. The
access might result in reading unpredictable values.
Fix

When you pass a variable from one thread to another, make sure that the variable lifetime matches or
exceeds the lifetime of both threads. You can achieve this synchronization in one of these ways:

• Declare the variable static so that it does not go out of stack when the current thread completes
execution.

• Dynamically allocate the storage for the variable so that it is allocated on the heap instead of the
stack and must be explicitly deallocated. Make sure that the deallocation happens after both
threads complete execution.

These solutions require you to create a variable in nonlocal memory. Instead, you can use other
solutions such as the shared keyword with OpenMP's threading interface that allows you to safely
share local variables across threads.

 CERT C: Rule POS50-C

23-401

Example – Local Variable Escaping Thread

#include <pthread.h>
#include <stdio.h>

void* create_child_thread(void *childVal) {
 int *res = (int *)childVal;
 printf("Result: %d\n", *res);
 return NULL;
}

void create_parent_thread(pthread_t *tid) {
 int parentVal = 1;
 int thrd_success;
 if ((thrd_success = pthread_create(tid, NULL, create_child_thread, &parentVal)) != 0) {
 /* Handle error */
 }
}

int main(void) {
 pthread_t tid;
 int thrd_success;
 create_parent_thread(&tid);

 if ((thrd_success = thrd_join(tid, NULL)) != 0) {
 /* Handle error */
 }
 return 0;
}

In this example, the value parentVal is local to the parent thread that starts in main and continues
into the function create_parent_thread. However, in the body of create_parent_thread, the
address of this local variable is passed to a child thread (the thread with start routine
create_child_thread). The parent thread might have completed execution and the variable
parentVal might have gone out of scope when the child thread accesses this variable.

Correction – Use Static Variables

One possible correction is to declare the variable parentVal as static so that the variable is on the
stack for the entire duration of the program.

#include <pthread.h>
#include <stdio.h>

void* create_child_thread(void *childVal) {
 int *res = (int *)childVal;
 printf("Result: %d\n", *res);
 return NULL;
}

void create_parent_thread(pthread_t *tid) {
 static int parentVal = 1;
 int thrd_success;
 if ((thrd_success = pthread_create(tid, NULL, create_child_thread, &parentVal)) != 0) {
 /* Handle error */
 }
}

23 CERT C Rules and Recommendations

23-402

int main(void) {
 pthread_t tid;
 int thrd_success;
 create_parent_thread(&tid);

 if ((thrd_success = thrd_join(tid, NULL)) != 0) {
 /* Handle error */
 }
 return 0;
}

Correction – Use Dynamic Memory Allocation

One possible correction is to dynamically allocate storage for variables to be shared across threads
and explicitly free the storage after the variable is no longer required.

#include <pthread.h>
#include <stlib.h>

void* create_child_thread(void *val) {
 int *res = (int *)val;
 printf("Result: %d\n", *res);
 free(res);
 return NULL;
}

void create_parent_thread(pthread_t *tid) {
 int *val;
 int thrd_success;

 val = malloc(sizeof(int));

 if(!val) {
 *val = 1;
 if ((thrd_success = pthread_create(tid, NULL, create_child_thread, val)) != 0) {
 /* Handle error */
 }
 }
}

int main(void) {
 pthread_t tid;
 int thrd_success;
 create_parent_thread(&tid);

 if ((thrd_success = thrd_join(tid, NULL)) != 0) {
 /* Handle error */
 }
 return 0;
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

 CERT C: Rule POS50-C

23-403

Topics
“Check for Coding Standard Violations”

External Websites
POS50-C

Introduced in R2020a

23 CERT C Rules and Recommendations

23-404

https://wiki.sei.cmu.edu/confluence/display/c/POS50-C.+Declare+objects+shared+between+POSIX+threads+with+appropriate+storage+durations

CERT C: Rule POS51-C
Avoid deadlock with POSIX threads by locking in predefined order

Description
Rule Definition

Avoid deadlock with POSIX threads by locking in predefined order.

Polyspace Implementation

This checker checks for Deadlock.

Examples
Deadlock
Issue

Deadlock occurs when multiple tasks are stuck in their critical sections (CS) because:

• Each CS waits for another CS to end.
• The critical sections (CS) form a closed cycle. For example:

• CS #1 waits for CS #2 to end, and CS #2 waits for CS #1 to end.
• CS #1 waits for CS #2 to end, CS #2 waits for CS #3 to end and CS #3 waits for CS #1 to

end.

Polyspace expects critical sections of code to follow a specific format. A critical section lies between a
call to a lock function and a call to an unlock function. When a task my_task calls a lock function
my_lock, other tasks calling my_lock must wait until my_task calls the corresponding unlock
function. Both lock and unlock functions must have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify these options,
on the Configuration pane, select Multitasking.
Risk

Each task waits for a critical section in another task to end and is unable to proceed. The program
can freeze indefinitely.
Fix

The fix depends on the root cause of the defect. You can try to break the cyclic order between the
tasks in one of these ways:

• Write down all critical sections involved in the deadlock in a certain sequence. Whenever you call
the lock functions of the critical sections within a task, respect the order in that sequence. See an
example below.

• If one of the critical sections involved in a deadlock occurs in an interrupt, try to disable all
interrupts during critical sections in all tasks. See Disabling all interrupts (-routine-
disable-interrupts -routine-enable-interrupts).

 CERT C: Rule POS51-C

23-405

Reviewing this defect is an opportunity to check if all operations in your critical section are really
meant to be executed as an atomic block. It is a good practice to keep critical sections at a bare
minimum.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Deadlock with Two Tasks

void task1(void);
void task2(void);

int var;
void perform_task_cycle(void) {
 var++;
}

void begin_critical_section_1(void);
void end_critical_section_1(void);

void begin_critical_section_2(void);
void end_critical_section_2(void);

void task1() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

void task2() {
 while(1) {
 begin_critical_section_2();
 begin_critical_section_1();
 perform_task_cycle();
 end_critical_section_1();
 end_critical_section_2();
 }
}

In this example, to emulate multitasking behavior, you must specify the following options:

23 CERT C Rules and Recommendations

23-406

Option Specification
Configure
multitasking
manually
Entry points task1

task2
Critical section
details

Starting routine Ending routine
begin_critical_section_1 end_critical_section_1
begin_critical_section_2 end_critical_section_2

A Deadlock occurs because the instructions can execute in the following sequence:

1 task1 calls begin_critical_section_1.
2 task2 calls begin_critical_section_2.
3 task1 reaches the instruction begin_critical_section_2();. Since task2 has already

called begin_critical_section_2, task1 waits for task2 to call
end_critical_section_2.

4 task2 reaches the instruction begin_critical_section_1();. Since task1 has already
called begin_critical_section_1, task2 waits for task1 to call
end_critical_section_1.

Correction-Follow Same Locking Sequence in Both Tasks

One possible correction is to follow the same sequence of calls to lock and unlock functions in both
task1 and task2.

void task1(void);
void task2(void);
void perform_task_cycle(void);

void begin_critical_section_1(void);
void end_critical_section_1(void);

void begin_critical_section_2(void);
void end_critical_section_2(void);

void task1() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

void task2() {
 while(1) {
 begin_critical_section_1();

 CERT C: Rule POS51-C

23-407

 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

Example - Deadlock with More Than Two Tasks

int var;
void performTaskCycle() {
 var++;
}

void lock1(void);
void lock2(void);
void lock3(void);

void unlock1(void);
void unlock2(void);
void unlock3(void);

void task1() {
 while(1) {
 lock1();
 lock2();
 performTaskCycle();
 unlock2();
 unlock1();
 }
}

void task2() {
 while(1) {
 lock2();
 lock3();
 performTaskCycle();
 unlock3();
 unlock2();
 }
}

void task3() {
 while(1) {
 lock3();
 lock1();
 performTaskCycle();
 unlock1();
 unlock3();
 }
}

In this example, to emulate multitasking behavior, you must specify the following options:

23 CERT C Rules and Recommendations

23-408

Option Specification
Configure multitasking
manually
Entry points task1

task2

task3
Critical section details Starting routine Ending routine

lock1 unlock1
lock2 unlock2
lock3 unlock3

A Deadlock occurs because the instructions can execute in the following sequence:

1 task1 calls lock1.
2 task2 calls lock2.
3 task3 calls lock3.
4 task1 reaches the instruction lock2();. Since task2 has already called lock2, task1 waits

for call to unlock2.
5 task2 reaches the instruction lock3();. Since task3 has already called lock3, task2 waits

for call to unlock3.
6 task3 reaches the instruction lock1();. Since task1 has already called lock1, task3 waits

for call to unlock1.

Correction — Break Cyclic Order

To break the cyclic order between critical sections, note every lock function in your code in a certain
sequence, for example:

1 lock1
2 lock2
3 lock3

If you use more than one lock function in a task, use them in the order in which they appear in the
sequence. For example, you can use lock1 followed by lock2 but not lock2 followed by lock1.

int var;
void performTaskCycle() {
 var++;
}

void lock1(void);
void lock2(void);
void lock3(void);

void unlock1(void);
void unlock2(void);

 CERT C: Rule POS51-C

23-409

void unlock3(void);

void task1() {
 while(1) {
 lock1();
 lock2();
 performTaskCycle();
 unlock2();
 unlock1();
 }
}

void task2() {
 while(1) {
 lock2();
 lock3();
 performTaskCycle();
 unlock3();
 unlock2();
 }
}

void task3() {
 while(1) {
 lock1();
 lock3();
 performTaskCycle();
 unlock3();
 unlock1();
 }
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS51-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-410

https://wiki.sei.cmu.edu/confluence/display/c/POS51-C.+Avoid+deadlock+with+POSIX+threads+by+locking+in+predefined+order

CERT C: Rule POS52-C
Do not perform operations that can block while holding a POSIX lock

Description
Rule Definition

Do not perform operations that can block while holding a POSIX lock.

Polyspace Implementation

This checker checks for Blocking operation while holding lock.

Examples
Blocking operation while holding lock
Issue

Blocking operation while holding lock occurs when a task (thread) performs a potentially lengthy
operation while holding a lock.

The checker considers calls to these functions as potentially lengthy:

• Functions that access a network such as recv
• System call functions such as fork, pipe and system
• Functions for I/O operations such as getchar and scanf
• File handling functions such as fopen, remove and lstat
• Directory manipulation functions such as mkdir and rmdir

The checker automatically detects certain primitives that hold and release a lock, for instance,
pthread_mutex_lock and pthread_mutex_unlock. For the full list of primitives that are
automatically detected, see “Auto-Detection of Thread Creation and Critical Section in Polyspace”.
Risk

If a thread performs a lengthy operation when holding a lock, other threads that use the lock have to
wait for the lock to be available. As a result, system performance can slow down or deadlocks can
occur.
Fix

Perform the blocking operation before holding the lock or after releasing the lock.

Some functions detected by this checker can be called in a way that does not make them potentially
lengthy. For instance, the function recv can be called with the parameter O_NONBLOCK which causes
the call to fail if no message is available. When called with this parameter, recv does not wait for a
message to become available.
Example - Network I/O Operations with recv While Holding Lock

#include <pthread.h>
#include <sys/socket.h>

 CERT C: Rule POS52-C

23-411

pthread_mutexattr_t attr;
pthread_mutex_t mutex;

void thread_foo(void *ptr) {
 unsigned int num;
 int result;
 int sock;

 /* sock is a connected TCP socket */

 if ((result = pthread_mutex_lock(&mutex)) != 0) {
 /* Handle Error */
 }

 if ((result = recv(sock, (void *)&num, sizeof(unsigned int), 0)) < 0) {
 /* Handle Error */
 }

 /* ... */

 if ((result = pthread_mutex_unlock(&mutex)) != 0) {
 /* Handle Error */
 }
}

int main() {
 pthread_t thread;
 int result;

 if ((result = pthread_mutexattr_settype(
 &attr, PTHREAD_MUTEX_ERRORCHECK)) != 0) {
 /* Handle Error */
 }

 if ((result = pthread_mutex_init(&mutex, &attr)) != 0) {
 /* Handle Error */
 }

 if (pthread_create(&thread, NULL,(void*(*)(void*))& thread_foo, NULL) != 0) {
 /* Handle Error */
 }

 /* ... */

 pthread_join(thread, NULL);

 if ((result = pthread_mutex_destroy(&mutex)) != 0) {
 /* Handle Error */
 }

 return 0;
}

In this example, in each thread created with pthread_create, the function thread_foo performs a
network I/O operation with recv after acquiring a lock with pthread_mutex_lock. Other threads

23 CERT C Rules and Recommendations

23-412

using the same lock variable mutex have to wait for the operation to complete and the lock to
become available.

Correction — Perform Blocking Operation Before Acquiring Lock

One possible correction is to call recv before acquiring the lock.

#include <pthread.h>
#include <sys/socket.h>

pthread_mutexattr_t attr;
pthread_mutex_t mutex;

void thread_foo(void *ptr) {
 unsigned int num;
 int result;
 int sock;

 /* sock is a connected TCP socket */
 if ((result = recv(sock, (void *)&num, sizeof(unsigned int), 0)) < 0) {
 /* Handle Error */
 }

 if ((result = pthread_mutex_lock(&mutex)) != 0) {
 /* Handle Error */
 }

 /* ... */

 if ((result = pthread_mutex_unlock(&mutex)) != 0) {
 /* Handle Error */
 }
}

int main() {
 pthread_t thread;
 int result;

 if ((result = pthread_mutexattr_settype(
 &attr, PTHREAD_MUTEX_ERRORCHECK)) != 0) {
 /* Handle Error */
 }

 if ((result = pthread_mutex_init(&mutex, &attr)) != 0) {
 /* Handle Error */
 }

 if (pthread_create(&thread, NULL,(void*(*)(void*))& thread_foo, NULL) != 0) {
 /* Handle Error */
 }

 /* ... */

 pthread_join(thread, NULL);

 if ((result = pthread_mutex_destroy(&mutex)) != 0) {
 /* Handle Error */
 }

 CERT C: Rule POS52-C

23-413

 return 0;
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS52-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-414

https://wiki.sei.cmu.edu/confluence/display/c/POS52-C.+Do+not+perform+operations+that+can+block+while+holding+a+POSIX+lock

CERT C: Rule. POS53-C
Do not use more than one mutex for concurrent waiting operations on a condition variable

Description
Rule Definition

Do not use more than one mutex for concurrent waiting operations on a condition variable.

Polyspace Implementation

This checker checks for Multiple mutexes used with same conditional variable.

Examples
Multiple mutexes used with same conditional variable
Issue

This issue occurs when multiple threads use more than one mutex to concurrently wait on the same
condition variable. A thread waits on a condition variable by calling the functions
pthread_cond_timedwait or pthread_cond_wait. These functions take a condition variable and
a locked mutex as arguments, and the condition variable is bound to that mutex when the thread
waits on the condition variable.

The checkers flags the use of pthread_cond_timedwait or pthread_cond_wait in one of the
threads. See the Event column in the Results Details pane to view the threads waiting on the same
condition variable and using a different mutex.
Risk

When a thread waits on a condition variable using a mutex, the condition variable is bound to that
mutex. Any other thread using a different mutex to wait on the same condition variable is undefined
behavior according to the POSIX standard.
Fix

Use the same mutex argument for pthread_cond_timedwait or pthread_cond_wait when
threads are concurrently waiting on the same condition variable, or use separate condition variables
for each mutex.
Example - Concurrent Waiting on Condition Variable with Multiple Mutexes
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
#define Thrd_return_t void *
#define __USE_XOPEN2K8

#define COUNT_LIMIT 5

static void fatal_error(void)
{
 exit(1);
}

 CERT C: Rule. POS53-C

23-415

pthread_mutex_t mutex1;
pthread_mutex_t mutex2;
pthread_mutex_t mutex3;
pthread_cond_t cv;

int count1 = 0, count2 = 0, count3 = 0;
#define DELAY 8

Thrd_return_t waiter1(void* arg)
{
 int ret;
 while (count1 < COUNT_LIMIT) {
 if ((ret = pthread_mutex_lock(&mutex1)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret =
 pthread_cond_wait(&cv, &mutex1)) != 0) {
 /* Handle error */
 fatal_error();
 }
 sleep(random() % DELAY);
 printf("count1 = %d\n", ++count1);
 if ((ret = pthread_mutex_unlock(&mutex1)) != 0) {
 /* Handle error */
 fatal_error();
 }
 }
 return (Thrd_return_t)0;
}

Thrd_return_t waiter2(void* arg)
{
 int ret;
 while (count2 < COUNT_LIMIT) {
 if ((ret = pthread_mutex_lock(&mutex2)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret =
 pthread_cond_wait(&cv, &mutex2)) != 0) {
 /* Handle error */
 fatal_error();
 }
 sleep(random() % DELAY);
 printf("count2 = %d\n", ++count2);
 if ((ret = pthread_mutex_unlock(&mutex2)) != 0) {
 /* Handle error */
 fatal_error();
 }
 }
 return (Thrd_return_t)0;
}

Thrd_return_t signaler(void* arg)
{
 int ret;
 while ((count1 < COUNT_LIMIT) || (count2 < COUNT_LIMIT)) {
 sleep(1);
 printf("signaling\n");
 if ((ret = pthread_cond_broadcast(&cv)) != 0) {
 /* Handle error */
 fatal_error();
 }
 }
 return (Thrd_return_t)0;
}

Thrd_return_t waiter3(void* arg)
{
 int ret;
 while (count3 % COUNT_LIMIT != 0) {
 if ((ret = pthread_mutex_lock(&mutex3)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret =
 pthread_cond_wait(&cv, &mutex3)) != 0) {
 /* Handle error */

23 CERT C Rules and Recommendations

23-416

 fatal_error();
 }
 sleep(random() % DELAY);
 printf("count3 = %d\n", ++count3);
 if ((ret = pthread_mutex_unlock(&mutex3)) != 0) {
 /* Handle error */
 fatal_error();
 }
 }
 return (Thrd_return_t)0;
}

int main(void)
{
 int ret;
 pthread_t thread1, thread2, thread3;

 pthread_mutexattr_t attr;

 if ((ret = pthread_mutexattr_init(&attr)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK)) != 0) {
 /* Handle error */
 fatal_error();
 }

 if ((ret = pthread_mutex_init(&mutex1, &attr)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_mutex_init(&mutex2, &attr)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_mutex_init(&mutex3, &attr)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_cond_init(&cv, NULL)) != 0) {
 /* handle error */
 fatal_error();
 }
 if ((ret = pthread_create(&thread1, NULL, &waiter1, NULL))) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_create(&thread2, NULL, &waiter2, NULL))) {
 /* handle error */
 fatal_error();
 }
 if ((ret = pthread_create(&thread3, NULL, &signaler, NULL))) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_join(thread1, NULL)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_join(thread2, NULL)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_join(thread3, NULL)) != 0) {
 /* Handle error */
 fatal_error();
 }

 while (1) { ; }

 return 0;
}

In this example, a different mutex is used to protect each count variable. Since all three waiter
functions wait on the same condition variable cv with different mutexes, the call to
pthread_cond_wait will succeed for one of the threads and the call will be undefined for the other
two.

 CERT C: Rule. POS53-C

23-417

The checker raises a defect for function waiter3 even though the function is not invoked directly or
indirectly by a thread, entry-point, or interrupt. The analysis considers function waiter3 called by
the main program through its function address or an unidentified thread whose creation is the
missing source code.
Correction — Use the Same Mutex for All Threads Waiting on Same Condition Variable

One possible correction is to pass the same mutex argument to all the call to pthread_cond_wait
that are used to wait on the same condition variable.
 #include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
#define Thrd_return_t void *
#define __USE_XOPEN2K8

#define COUNT_LIMIT 5

static void fatal_error(void)
{
 exit(1);
}

pthread_mutex_t mutex;

pthread_cond_t cv;

int count1 = 0, count2 = 0, count3 = 0;
#define DELAY 8

Thrd_return_t waiter1(void* arg)
{
 int ret;
 while (count1 < COUNT_LIMIT) {
 if ((ret = pthread_mutex_lock(&mutex)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret =
 pthread_cond_wait(&cv, &mutex)) != 0) {
 /* Handle error */
 fatal_error();
 }
 sleep(random() % DELAY);
 printf("count1 = %d\n", ++count1);
 if ((ret = pthread_mutex_unlock(&mutex)) != 0) {
 /* Handle error */
 fatal_error();
 }
 }
 return (Thrd_return_t)0;
}

Thrd_return_t waiter2(void* arg)
{
 int ret;
 while (count2 < COUNT_LIMIT) {
 if ((ret = pthread_mutex_lock(&mutex)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret =
 pthread_cond_wait(&cv, &mutex)) != 0) {
 /* Handle error */
 fatal_error();
 }
 sleep(random() % DELAY);
 printf("count2 = %d\n", ++count2);
 if ((ret = pthread_mutex_unlock(&mutex)) != 0) {
 /* Handle error */
 fatal_error();
 }
 }
 return (Thrd_return_t)0;

23 CERT C Rules and Recommendations

23-418

}

Thrd_return_t signaler(void* arg)
{
 int ret;
 while ((count1 < COUNT_LIMIT) || (count2 < COUNT_LIMIT)) {
 sleep(1);
 printf("signaling\n");
 if ((ret = pthread_cond_broadcast(&cv)) != 0) {
 /* Handle error */
 fatal_error();
 }
 }
 return (Thrd_return_t)0;
}

Thrd_return_t waiter3(void* arg)
{
 int ret;
 while (count3 % COUNT_LIMIT != 0) {
 if ((ret = pthread_mutex_lock(&mutex)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret =
 pthread_cond_wait(&cv, &mutex)) != 0) {
 /* Handle error */
 fatal_error();
 }
 sleep(random() % DELAY);
 printf("count3 = %d\n", ++count3);
 if ((ret = pthread_mutex_unlock(&mutex)) != 0) {
 /* Handle error */
 fatal_error();
 }
 }
 return (Thrd_return_t)0;
}
/*
void user_task(void)
{
 (void)waiter3(NULL);
} */

int main(void)
{
 int ret;
 pthread_t thread1, thread2, thread3;

 pthread_mutexattr_t attr;

 if ((ret = pthread_mutexattr_init(&attr)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK)) != 0) {
 /* Handle error */
 fatal_error();
 }

 if ((ret = pthread_mutex_init(&mutex, &attr)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_mutex_init(&mutex, &attr)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_mutex_init(&mutex, &attr)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_cond_init(&cv, NULL)) != 0) {
 /* handle error */
 fatal_error();
 }
 if ((ret = pthread_create(&thread1, NULL, &waiter1, NULL))) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_create(&thread2, NULL, &waiter2, NULL))) {

 CERT C: Rule. POS53-C

23-419

 /* handle error */
 fatal_error();
 }
 if ((ret = pthread_create(&thread3, NULL, &signaler, NULL))) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_join(thread1, NULL)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_join(thread2, NULL)) != 0) {
 /* Handle error */
 fatal_error();
 }
 if ((ret = pthread_join(thread3, NULL)) != 0) {
 /* Handle error */
 fatal_error();
 }

 while (1) { ; }

 return 0;
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS53-C

Introduced in R2020a

23 CERT C Rules and Recommendations

23-420

https://wiki.sei.cmu.edu/confluence/display/c/POS53-C.+Do+not+use+more+than+one+mutex+for+concurrent+waiting+operations+on+a+condition+variable

CERT C: Rule POS54-C
Detect and handle POSIX library errors

Description
Rule Definition

Detect and handle POSIX library errors.

Polyspace Implementation

This checker checks for Returned value of a sensitive POSIX function not checked.

Examples
Returned value of a sensitive POSIX function not checked
Issue

Returned value of a sensitive POSIX function not checked occurs when you call sensitive POSIX
functions, but you:

• Ignore the return value.
• Use an output or a return value without testing the validity of the return value.

For this defect, two type of functions are considered: sensitive and critical sensitive.

A sensitive function is a standard function that can encounter:

• Exhausted system resources (for example, when allocating resources)
• Changed privileges or permissions
• Tainted sources when reading, writing, or converting data from external sources
• Unsupported features despite an existing API

A critical sensitive function is a sensitive function that performs one of these critical or vulnerable
tasks:

• Set privileges (for example, setuid)
• Create a jail (for example, chroot)
• Create a process (for example, fork)
• Create a thread (for example, pthread_create)
• Lock or unlock mutex (for example, pthread_mutex_lock)
• Lock or unlock memory segments (for example, mlock)

Risk

If you do not check the return value of functions that perform sensitive or critical sensitive tasks,
your program can behave unexpectedly. Errors from these functions can propagate throughout the
program causing incorrect output, security vulnerabilities, and possibly system failures.

 CERT C: Rule POS54-C

23-421

Fix

Before continuing with the program, test the return value of critical sensitive functions.

For sensitive functions, you can explicitly ignore a return value by casting the function to void.
Polyspace does not raise this defect for sensitive functions cast to void. This resolution is not
accepted for critical sensitive functions because they perform more vulnerable tasks.

Example - Sensitive Function Return Ignored

#include <pthread.h>
#include <string.h>
#include <stddef.h>
#include <stdio.h>

void initialize() {
 pthread_attr_t attr;

 pthread_attr_init(&attr);//Noncompliant
}
int read_file(int argc, char *argv[])
{
 FILE *in;
 if (argc != 2) {
 /* Handle error */
 }

 in = fmemopen (argv[1], strlen (argv[1]), "r");
 return 0; //Noncompliant

}

This example shows calls to the sensitive POSIX functions pthread_attr_init and fmemopen.
Their return values are ignored, causing defect.

Correction — Cast Function to (void)

One possible correction is to cast the function to void. This fix informs Polyspace and any reviewers
that you are explicitly ignoring the return value of the sensitive function.

#include <pthread.h>
#include <string.h>
#include <stddef.h>
#include <stdio.h>

void initialize() {
 pthread_attr_t attr;

 (void)pthread_attr_init(&attr);//Compliant
}
int read_file(int argc, char *argv[])
{
 FILE *in;
 if (argc != 2) {
 /* Handle error */
 }

 (void)fmemopen (argv[1], strlen (argv[1]), "r"); //Compliant

23 CERT C Rules and Recommendations

23-422

 return 0;
}

Correction — Test Return Value

One possible correction is to test the return value of pthread_attr_init and fmemopen to check
for errors.

#include <pthread.h>
#include <string.h>
#include <stddef.h>
#include <stdio.h>

void initialize() {
 pthread_attr_t attr;

 int result = pthread_attr_init(&attr);//Compliant
 if(result != 0){
 //Handle fatal error
 }
}
int read_file(int argc, char *argv[])
{
 FILE *in;
 if (argc != 2) {
 /* Handle error */
 }

 in = fmemopen (argv[1], strlen (argv[1]), "r"); //Compliant
 if (in==NULL){
 // Handle error
 }
 return 0;
}

Example - Critical Function Return Ignored

#include <pthread.h>
extern void *start_routine(void *);

void returnnotchecked() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;

 (void)pthread_attr_init(&attr);
 (void)pthread_create(&thread_id, &attr, &start_routine, ((void *)0));
 pthread_join(thread_id, &res);
}

In this example, two critical functions are called: pthread_create and pthread_join. The return
value of the pthread_create is ignored by casting to void, but because pthread_create is a
critical function (not just a sensitive function), Polyspace does not ignore this Return value of a
sensitive function not checked defect. The other critical function, pthread_join, returns value that
is ignored implicitly. pthread_join uses the return value of pthread_create, which was not
checked.

 CERT C: Rule POS54-C

23-423

Correction — Test the Return Value of Critical Functions

The correction for this defect is to check the return value of these critical functions to verify the
function performed as expected.

#include <pthread.h>
#include <stdlib.h>
#define fatal_error() abort()

extern void *start_routine(void *);

void returnnotchecked() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;
 int result;

 (void)pthread_attr_init(&attr);
 result = pthread_create(&thread_id, &attr, &start_routine, NULL);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }

 result = pthread_join(thread_id, &res);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

Check Information
Group: Rule 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS54-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-424

https://wiki.sei.cmu.edu/confluence/display/c/POS54-C.+Detect+and+handle+POSIX+library+errors

CERT C: Rule WIN30-C
Properly pair allocation and deallocation functions

Description
Rule Definition

Properly pair allocation and deallocation functions.

Polyspace Implementation

This checker checks for Mismatched alloc/dealloc functions on Windows.

Examples
Mismatched alloc/dealloc functions on Windows
Issue

Mismatched alloc/dealloc functions on Windows occurs when you use a Windows deallocation
function that is not properly paired to its corresponding allocation function.

Risk

Deallocating memory with a function that does not match the allocation function can cause memory
corruption or undefined behavior. If you are using an older version of Windows, the improper function
can also cause compatibility issues with newer versions.

Fix

Properly pair your allocation and deallocation functions according to the functions listed in this table.

Allocation Function Deallocation Function
malloc() free()
realloc() free()
calloc() free()
_aligned_malloc() _aligned_free()
_aligned_offset_malloc() _aligned_free()
_aligned_realloc() _aligned_free()
_aligned_offset_realloc() _aligned_free()
_aligned_recalloc() _aligned_free()
_aligned_offset_recalloc() _aligned_free()
_malloca() _freea()
LocalAlloc() LocalFree()
LocalReAlloc() LocalFree()
GlobalAlloc() GlobalFree()

 CERT C: Rule WIN30-C

23-425

Allocation Function Deallocation Function
GlobalReAlloc() GlobalFree()
VirtualAlloc() VirtualFree()
VirtualAllocEx() VirtualFreeEx()
VirtualAllocExNuma() VirtualFreeEx()
HeapAlloc() HeapFree()
HeapReAlloc() HeapFree()

Example - Memory Deallocated with Incorrect Function

#ifdef _WIN32_
#include <windows.h>
#else
#define _WIN32_
typedef void *HANDLE;
typedef HANDLE HGLOBAL;
typedef HANDLE HLOCAL;
typedef unsigned int UINT;
extern HLOCAL LocalAlloc(UINT uFlags, UINT uBytes);
extern HLOCAL LocalFree(HLOCAL hMem);
extern HGLOBAL GlobalFree(HGLOBAL hMem);
#endif

#define SIZE9 9

void func(void)
{
 /* Memory allocation */
 HLOCAL p = LocalAlloc(0x0000, SIZE9);

 if (p) {
 /* Memory deallocation. */
 GlobalFree(p);

 }
}

In this example, memory is allocated with LocallAlloc(). The program then erroneously uses
GlobalFree() to deallocate the memory.

Correction — Properly Pair Windows Allocation and Deallocation Functions

When you allocate memory with LocalAllocate(), use LocalFree() to deallocate the memory.

#ifdef _WIN32_
#include <windows.h>
#else
#define _WIN32_
typedef void *HANDLE;
typedef HANDLE HGLOBAL;
typedef HANDLE HLOCAL;
typedef unsigned int UINT;

23 CERT C Rules and Recommendations

23-426

extern HLOCAL LocalAlloc(UINT uFlags, UINT uBytes);
extern HLOCAL LocalFree(HLOCAL hMem);
extern HGLOBAL GlobalFree(HGLOBAL hMem);
#endif

#define SIZE9 9
void func(void)
{
 /* Memory allocation */
 HLOCAL p = LocalAlloc(0x0000, SIZE9);
 if (p) {
 /* Memory deallocation. */
 LocalFree(p);
 }
}

Check Information
Group: Rule 51. Microsoft Windows (WIN)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
WIN30-C

Introduced in R2019a

 CERT C: Rule WIN30-C

23-427

https://wiki.sei.cmu.edu/confluence/display/c/WIN30-C.+Properly+pair+allocation+and+deallocation+functions

CERT C: Rec. PRE00-C
Prefer inline or static functions to function-like macros

Description
Rule Definition

Prefer inline or static functions to function-like macros.

Polyspace Implementation

This checker checks for Use of function-like macro instead of function.

Examples
Use of function-like macro instead of function
Issue

The issue occurs when you use a function-like macro instead of a function when the two are
interchangeable.

Polyspace considers all function-like macro definitions.

Risk

In most circumstances, use functions instead of macros. Functions perform argument type-checking
and evaluate their arguments once, avoiding problems with potential multiple side effects.

Check Information
Group: Rec. 01. Preprocessor (PRE)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
PRE00-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-428

https://wiki.sei.cmu.edu/confluence/display/c/PRE00-C.+Prefer+inline+or+static+functions+to+function-like+macros

CERT C: Rec. PRE01-C
Use parentheses within macros around parameter names

Description
Rule Definition

Use parentheses within macros around parameter names.

Polyspace Implementation

This checker checks for Macro parameters not enclosed in parentheses.

Examples
Macro parameters not enclosed in parentheses
Issue

The issue occurs when a macro parameter contains an expression but you do not enclose the
parameter in parentheses either in the macro definition or in the macro use.

If a macro parameter does not contain an expression, then the parentheses are not necessary.
Risk

If you do not enclose macro parameters containing expressions in parentheses, when parameter
substitution occurs, operator precedence might not give the results that you want .
Fix

If a macro parameter contains an expression, enclose the parameter in parenthesis in the macro
definition or macro use.
Example - Macro Expressions

#define mac1(x, y) (x * y)
#define mac2(x, y) ((x) * (y))

void foo(void){
 int r;

 r = mac1(1 + 2, 3 + 4); /* Non-compliant */
 r = mac1((1 + 2), (3 + 4)); /* Compliant */

 r = mac2(1 + 2, 3 + 4); /* Compliant */
}

In this example, mac1 and mac2 are macros that presumably implement the same definition.

• The definition of mac1 does not enclose the macro parameters in parentheses. In the
noncompliant expression, the macro expands to r = (1 + 2 * 3 + 4); The intended
expression can be (1 + (2 * 3) + 4) or (1 + 2) * (3 + 4). However, without parentheses,
a developer or code reviewer might not know the intent of the expression. The subsequent

 CERT C: Rec. PRE01-C

23-429

compliant expression encloses the macro parameters in parentheses, so the intended macro
expansion is clearly (1 + 2) * (3 + 4).

• The definition of mac2 encloses the parameters in parentheses. The expression involving mac2
expands to (1 + 2) * (3 + 4) and complies with the rule.

Check Information
Group: Rec. 01. Preprocessor (PRE)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
PRE01-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-430

https://wiki.sei.cmu.edu/confluence/display/c/PRE01-C.+Use+parentheses+within+macros+around+parameter+names

CERT C: Rec. PRE06-C
Enclose header files in an inclusion guard

Description
Rule Definition

Enclose header files in an inclusion guard.

Polyspace Implementation

This checker checks for Contents of header file not guarded from multiple inclusions.

Examples
Contents of header file not guarded from multiple inclusions
Issue

The issue occurs when you do not take precautions order to prevent the contents of a header file
being included more than once.

If you include a header file whose contents are not guarded from multiple inclusion, the analysis
raises a violation of this directive. The violation is shown at the beginning of the header file.

You can guard the contents of a header file from multiple inclusion by using one of the following
methods:

//<start-of-file>
#ifndef <control macro>
#define <control macro>
 /* Contents of file */
#endif
//<end-of-file>

or

//<start-of-file>
#ifdef <control macro>
#error ...
#else
#define <control macro>
 /* Contents of file */
#endif
//<end-of-file>

Unless you use one of these methods, Polyspace flags the header file inclusion as noncompliant.
Risk

When a translation unit contains a complex hierarchy of nested header files, it is possible for a
particular header file to be included more than once, leading to confusion. If this multiple inclusion

 CERT C: Rec. PRE06-C

23-431

produces multiple or conflicting definitions, then your program can have undefined or erroneous
behavior.

For instance, suppose that a header file contains:

#ifdef _WIN64
 int env_var;
#elseif
 long int env_var;
#endif

If the header file is contained in two inclusion paths, one that defines the macro _WIN64 and another
that undefines it, you can have conflicting definitions of env_var.

Example - Code After Macro Guard

#ifndef __MY_MACRO__
#define __MY_MACRO__
 void func(void);
#endif
void func2(void);

If a header file contains this code, it is noncompliant because the macro guard does not cover the
entire content of the header file. The line void func2(void) is outside the guard.

Note You can have comments outside the macro guard.

Example - Code Before Macro Guard

void func(void);
#ifndef __MY_MACRO__
#define __MY_MACRO__
 void func2(void);
#endif

If a header file contains this code, it is noncompliant because the macro guard does not cover the
entire content of the header file. The line void func(void) is outside the guard.

Note You can have comments outside the macro guard.

Example - Mismatch in Macro Guard

#ifndef __MY_MACRO__
#define __MY_MARCO__
 void func(void);
 void func2(void);
#endif

If a header file contains this code, it is noncompliant because the macro name in the #ifndef
statement is different from the name in the following #define statement.

23 CERT C Rules and Recommendations

23-432

Check Information
Group: Rec. 01. Preprocessor (PRE)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
PRE06-C

Introduced in R2019a

 CERT C: Rec. PRE06-C

23-433

https://wiki.sei.cmu.edu/confluence/display/c/PRE06-C.+Enclose+header+files+in+an+include+guard

CERT C: Rec. PRE07-C
Avoid using repeated question marks

Description
Rule Definition

Avoid using repeated question marks.

Polyspace Implementation

This checker checks for Use of trigraphs.

Examples
Use of trigraphs
Issue

The issue occurs when you use trigraphs in your code.

The Polyspace analysis converts trigraphs to the equivalent character for the defect analysis.
However, Polyspace also raises a MISRA violation.

The standard requires that trigraphs must be transformed before comments are removed during
preprocessing. Therefore, Polyspace raises a violation of this rule even if a trigraph appears in code
comments.

Risk

You denote trigraphs with two question marks followed by a specific third character (for
instance,'??-' represents a '~' (tilde) character and '??)' represents a ']'). These trigraphs can
cause accidental confusion with other uses of two question marks.

Note Digraphs (<: :>, <% %>, %:, %:%:) are permitted because they are tokens.

Check Information
Group: Rec. 01. Preprocessor (PRE)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
PRE07-C

23 CERT C Rules and Recommendations

23-434

https://wiki.sei.cmu.edu/confluence/display/c/PRE07-C.+Avoid+using+repeated+question+marks

Introduced in R2019a

 CERT C: Rec. PRE07-C

23-435

CERT C: Rec. PRE09-C
Do not replace secure functions with deprecated or obsolescent functions

Description
Rule Definition

Do not replace secure functions with deprecated or obsolescent functions.

Polyspace Implementation

This checker checks for Use of dangerous standard function.

Examples
Use of dangerous standard function
Issue

The Use of dangerous standard function check highlights uses of functions that are inherently
dangerous or potentially dangerous given certain circumstances. The following table lists possibly
dangerous functions, the risks of using each function, and what function to use instead.

Dangerous
Function

Risk Level Safer Function

gets Inherently dangerous — You cannot
control the length of input from the
console.

fgets

cin Inherently dangerous — You cannot
control the length of input from the
console.

Avoid or prefaces calls to cin with
cin.width.

strcpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

strncpy

stpcpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

stpncpy

lstrcpy or StrCpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

StringCbCopy, StringCchCopy,
strncpy, strcpy_s, or strlcpy

strcat Possibly dangerous — If the
concatenated result is greater than the
destination, buffer overflow can occur.

strncat, strlcat, or strcat_s

lstrcat or StrCat Possibly dangerous — If the
concatenated result is greater than the
destination, buffer overflow can occur.

StringCbCat, StringCchCat,
strncay, strcat_s, or strlcat

23 CERT C Rules and Recommendations

23-436

Dangerous
Function

Risk Level Safer Function

wcpcpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

wcpncpy

wcscat Possibly dangerous — If the
concatenated result is greater than the
destination, buffer overflow can occur.

wcsncat, wcslcat, or wcncat_s

wcscpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

wcsncpy

sprintf Possibly dangerous — If the output
length depends on unknown lengths or
values, buffer overflow can occur.

snprintf

vsprintf Possibly dangerous — If the output
length depends on unknown lengths or
values, buffer overflow can occur.

vsnprintf

Risk

These functions can cause buffer overflow, which attackers can use to infiltrate your program.
Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Using sprintf

#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

 CERT C: Rec. PRE09-C

23-437

 if (sprintf(dst, "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

This example function uses sprintf to copy the string str to dst. However, if str is larger than the
buffer, sprintf can cause buffer overflow.

Correction — Use snprintf with Buffer Size

One possible correction is to use snprintf instead and specify a buffer size.

#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

 if (snprintf(dst, sizeof(dst), "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

Check Information
Group: Rec. 01. Preprocessor (PRE)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
PRE09-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-438

https://wiki.sei.cmu.edu/confluence/display/c/PRE09-C.+Do+not+replace+secure+functions+with+deprecated+or+obsolescent+functions

CERT C: Rec. PRE10-C
Wrap multistatement macros in a do-while loop

Description
Rule Definition

Wrap multistatement macros in a do-while loop.

Polyspace Implementation

This checker checks for Macro with multiple statements.

Examples
Macro with multiple statements
Issue

Macro with multiple statements occurs when a macro contains multiple semicolon-terminated
statements, irrespective of whether the statements are enclosed in braces.

Risk

The macro expansion, in certain contexts such as an if condition or a loop, can lead to unintended
program logic.

For instance, consider the macro:

#define RESET(x,y) \
 x=0; \
 y=0;

In an if statement such as:

if(checkSomeCondition)
 RESET(x,y);

the macro expands to:

if(checkSomething)
 x=0;
y=0;

which might be unexpected if you want both statements to be executed in an if block.

Fix

In a macro definition, wrap multiple statements in a do...while(0) loop.

For instance, in the preceding example, use the definition:

#define RESET(x,y) \
 do { \

 CERT C: Rec. PRE10-C

23-439

 x=0; \
 y=0; \
 } while(0)

This macro is appropriate to expand in all contexts. The while(0) ensures that the statements are
executed only once.

Alternatively, use inline functions in preference to function-like macros that involve multiple
statements.

Note that the loop is required for the correct solution and wrapping the statements in braces alone
does not fix the issue. The macro expansion can still lead to unintended code.

Example – Macro with Multiple Statements

#define RESET(x,y) \
 x=0; \
 y=0;

void func(int *x, int *y, int resetFlag){
 if(resetFlag)
 RESET(x,y);
}

In this example, the defect occurs because the macro RESET consists of multiple statements.

Correction – Wrap Multiple Statements of Macro in do-while Loop

Wrap the statements of the macro in a do..while(0) loop in the macro definition.

#define RESET(x,y) \
 do { \
 x=0; \
 y=0; \
 } while(0)

void func(int *x, int *y, int resetFlag){
 if(resetFlag)
 RESET(x,y);
}

Check Information
Group: Rec. 01. Preprocessor (PRE)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
PRE10-C

Introduced in R2020a

23 CERT C Rules and Recommendations

23-440

https://wiki.sei.cmu.edu/confluence/display/c/PRE10-C.+Wrap+multistatement+macros+in+a+do-while+loop

CERT C: Rec. PRE11-C
Do not conclude macro definitions with a semicolon

Description
Rule Definition

Do not conclude macro definitions with a semicolon.

Polyspace Implementation

This checker checks for Macro terminated with a semicolon.

Examples
Macro terminated with a semicolon
Issue

Macro terminated with a semicolon occurs when a macro that is invoked at least once has a
definition ending with a semicolon.

Risk

If a macro definition ends with a semicolon, the macro expansion can lead to unintended program
logic in certain contexts, such as within an expression.

For instance, consider the macro:

#define INC_BY_ONE(x) ++x;

If used in the expression:

res = INC_BY_ONE(x)%2;

the expression resolves to:

res = ++x; %2;

The value of x+1 is assigned to res, which is probably unintended. The leftover standalone statement
%2; is valid C code and can only be detected by enabling strict compiler warnings.

Fix

Do not end macro definitions with a semicolon. Leave it up to users of the macro to add a semicolon
after the macro when needed.

Alternatively, use inline functions in preference to function-like macros that involve statements
ending with semicolon.

Example – Spurious Semicolon in Macro Definition

#define WHILE_LOOP(n) while(n>0);

 CERT C: Rec. PRE11-C

23-441

void performAction(int timeStep);

void main() {
 int loopIter = 100;
 WHILE_LOOP(loopIter) {
 performAction(loopIter);
 loopIter--;
 }
}

In this example, the defect occurs because the definition of the macro WHILE_LOOP(n) ends with a
semicolon. As a result of the semicolon, the while loop has an empty body and the following
statements run only once. It was probably intended that the loop must run 100 times.

Correction – Remove Semicolon from Macro Definition

Remove the trailing semicolon from the macro definition. Users of the macro can add a semicolon
after the macro when needed. In this example, a semicolon is not required.

#define WHILE_LOOP(n) while(n>0)

void performAction(int timeStep);

void main() {
 int loopIter = 100;
 WHILE_LOOP(loopIter) {
 performAction(loopIter);
 loopIter--;
 }
}

Check Information
Group: Rec. 01. Preprocessor (PRE)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
PRE11-C

Introduced in R2020a

23 CERT C Rules and Recommendations

23-442

https://wiki.sei.cmu.edu/confluence/display/c/PRE11-C.+Do+not+conclude+macro+definitions+with+a+semicolon

CERT C: Rec. DCL00-C
Const-qualify immutable objects

Description
Rule Definition

Const-qualify immutable objects.

Polyspace Implementation

This checker checks for Unmodified variable not const-qualified.

Examples
Unmodified variable not const-qualified
Issue

Unmodified variable not const-qualified occurs when a local variable is not const-qualified and
one of the following statements is true during the variable lifetime:

• You do not perform write operations on the variable after initialization.
• When you perform write operations, you reassign the same constant value to the variable.

The checker considers a variable as modified if its address is assigned to a pointer or reference
(unless it is a pointer or reference to a const variable), passed to another function, or otherwise
used. In these situations, the checker does not suggest adding a const qualifier.

The checker flags arrays as candidates for const-qualification only if you do not perform write
operations on the array elements at all after initialization.

Risk

const-qualifying a variable avoids unintended modification of the variable during later code
maintenance. The const qualifier also indicates to a developer that the variable retains its initial
value in the remainder of the code.

Fix

If you do not expect to modify a variable value during its lifetime, add the const qualifier to the
variable declaration and initialize the variable at declaration.

If you expect the variable to be modified, see if the absence of a modification indicates a
programming omission and fix the issue.

Example - Missing const Qualification on Pointer

#include <string.h>

char returnNthCharacter (int n) {
 char* pwd = "aXeWdf10fg" ;
 char nthCharacter;

 CERT C: Rec. DCL00-C

23-443

 for(int i=0; i < strlen(pwd); i++) {
 if(i==n)
 nthCharacter = pwd[i];
 }
 return nthCharacter;
}

In this example, the pointer pwd is not const-qualified. However, beyond initialization with a
constant, it is not reassigned anywhere in the returnNthCharacter function.

Correction – Add const at Variable Declaration

If the variable is not intended to be modified, add the const qualifier at declaration. In this example,
both the pointer and the pointed variable are not modified. Add a const qualifier to both the pointer
and the pointed variable. Later modifications cannot reassign the pointer pwd to point at a different
variable nor modify the value at the pointed location.

#include <string.h>

char returnNthCharacter (int n) {
 const char* const pwd = "aXeWdf10fg" ;
 char nthCharacter;

 for(int i=0; i < strlen(pwd); i++) {
 if(i==n)
 nthCharacter = pwd[i];
 }
 return nthCharacter;
}

Note that the checker only flags the missing const from the pointer declaration. The checker does
not determine if the pointed location also merits a const qualifier.

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL00-C

Introduced in R2020b

23 CERT C Rules and Recommendations

23-444

https://wiki.sei.cmu.edu/confluence/display/c/DCL00-C.+Const-qualify+immutable+objects

CERT C: Rec. DCL01-C
Do not reuse variable names in subscopes

Description
Rule Definition

Do not reuse variable names in subscopes.

Polyspace Implementation

This checker checks for Variable shadowing.

Examples
Variable shadowing
Issue

Variable shadowing occurs when a variable hides another variable of the same name in an outer
scope.

For instance, if a local variable has the same name as a global variable, the local variable hides the
global variable during its lifetime.

Risk

When two variables with the same name exist in an inner and outer scope, any reference to the
variable name uses the variable in the inner scope. However, a developer or reviewer might
incorrectly expect that the variable in the outer scope was used.

Fix

The fix depends on the root cause of the defect. For instance, suppose you refactor a function such
that you use a local static variable in place of a global variable. In this case, the global variable is
redundant and you can remove its declaration. Alternatively, if you are not sure if the global variable
is used elsewhere, you can modify the name of the local static variable and all references within the
function.

If the shadowing is intended and you do not want to fix the issue, add comments to your result or
code to avoid another review. See

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Variable Shadowing Error

#include <stdio.h>

 CERT C: Rec. DCL01-C

23-445

int fact[5]={1,2,6,24,120};

int factorial(int n)
 {
 int fact=1;
 /*Defect: Local variable hides global array with same name */

 for(int i=1;i<=n;i++)
 fact*=i;

 return(fact);
 }

Inside the factorial function, the integer variable fact hides the global integer array fact.

Correction — Change Variable Name

One possible correction is to change the name of one of the variables, preferably the one with more
local scope.

#include <stdio.h>

int fact[5]={1,2,6,24,120};

int factorial(int n)
 {
 /* Fix: Change name of local variable */
 int f=1;

 for(int i=1;i<=n;i++)
 f*=i;

 return(f);
 }

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL01-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-446

https://wiki.sei.cmu.edu/confluence/display/c/DCL01-C.+Do+not+reuse+variable+names+in+subscopes

CERT C: Rec. DCL02-C
Use visually distinct identifiers

Description
Rule Definition

Use visually distinct identifiers.

Polyspace Implementation

This checker checks for Use of typographically ambiguous identifiers.

Examples
Use of typographically ambiguous identifiers
Issue

The issue occurs when you use identifiers in the same name space with overlapping visibility and the
identifiers are not typographically unambiguous.

Risk

What “unambiguous” means depends on the alphabet and language in which source code is written.
When you use identifiers that are typographically close, you can confuse between them.

For the Latin alphabet as used in English words, at a minimum, the identifiers should not differ by:

• The interchange of a lowercase letter with its uppercase equivalent.
• The presence or absence of the underscore character.
• The interchange of the letter O and the digit 0.
• The interchange of the letter I and the digit 1.
• The interchange of the letter I and the letter l.
• The interchange of the letter S and the digit 5.
• The interchange of the letter Z and the digit 2.
• The interchange of the letter n and the letter h.
• The interchange of the letter B and the digit 8.
• The interchange of the letters rn and the letter m.

Example - Typographically Ambiguous Identifiers

void func(void) {
 int id1_numval;
 int id1_num_val; /* Non-compliant */

 int id2_numval;
 int id2_numVal; /* Non-compliant */

 CERT C: Rec. DCL02-C

23-447

 int id3_lvalue;
 int id3_Ivalue; /* Non-compliant */

 int id4_xyZ;
 int id4_xy2; /* Non-compliant */

 int id5_zerO;
 int id5_zer0; /* Non-compliant */

 int id6_rn;
 int id6_m; /* Non-compliant */
}

In this example, the rule is violated when identifiers that can be confused for each other are used.

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL02-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-448

https://wiki.sei.cmu.edu/confluence/display/c/DCL02-C.+Use+visually+distinct+identifiers

CERT C: Rec. DCL06-C
Use meaningful symbolic constants to represent literal values

Description
Rule Definition

Use meaningful symbolic constants to represent literal values.

Polyspace Implementation

This checker checks for these issues:

• Hard-coded buffer size.
• Hard-coded loop boundary.

Examples
Hard-coded buffer size
Issue

Hard-coded buffer size occurs when you use a numerical value instead of a symbolic constant when
declaring a memory buffer such as an array.

Risk

Hard-coded buffer size causes the following issues:

• Hard-coded buffer size increases the likelihood of mistakes and therefore maintenance costs. If a
policy change requires developers to change the buffer size, they must change every occurrence
of the buffer size in the code.

• Hard-constant constants can be exposed to attack if the code is disclosed.

Fix

Use a symbolic name instead of a hard-coded constant for buffer size. Symbolic names include
const-qualified variables, enum constants, or macros.

enum constants are recommended.

• Macros are replaced by their constant values after preprocessing. Therefore, they can expose the
loop boundary.

• enum constants are known at compilation time. Therefore, compilers can optimize the loops more
efficiently.

const-qualified variables are usually known at run time.

Example - Hard-Coded Buffer Size

int table[100];

 CERT C: Rec. DCL06-C

23-449

void read(int);

void func(void) {
 for (int i=0; i<100; i++)
 read(table[i]);
}

In this example, the size of the array table and the loop boundary in the for loop are hard-coded.

Correction — Use Symbolic Name

One possible correction is to replace the hard-coded size with a symbolic name.

const int MAX_1 = 100;
#define MAX_2 100
enum { MAX_3 = 100 };

int table_2[MAX_2];
int table_3[MAX_3];

void read(int);

void func(void) {
 int table_1[MAX_1];
 for (int i=0; i < MAX_1; i++)
 read(table_1[i]);
 for (int i=0; i < MAX_2; i++)
 read(table_2[i]);
 for (int i=0; i < MAX_3; i++)
 read(table_3[i]);
}

Hard-coded loop boundary

Issue

Hard-coded loop boundary occurs when you use a numerical value instead of symbolic constant for
the boundary of a for, while or do-while loop.

Risk

Hard-coded loop boundary causes the following issues:

• Hard-coded loop boundary makes the code vulnerable to denial of service attacks when the loop
involves time-consuming computation or resource allocation.

• Hard-coded loop boundary increases the likelihood of mistakes and maintenance costs. If a policy
change requires developers to change the loop boundary, they must change every occurrence of
the boundary in the code.

For instance, the loop boundary is 10000 and represents the maximum number of client
connections supported in a network server application. If the server supports more clients, you
must change all instances of the loop boundary in your code. Even if the loop boundary occurs
once, you have to search for a numerical value of 10000 in your code. The numerical value can
occur in places other than the loop boundary. You must browse through those places before you
find the loop boundary.

23 CERT C Rules and Recommendations

23-450

Fix

Use a symbolic name instead of a hard-coded constant for loop boundary. Symbolic names include
const-qualified variables, enum constants or macros.enum constants are recommended because:

• Macros are replaced by their constant values after preprocessing. Therefore, they can expose the
buffer size.

• enum constants are known at compilation time. Therefore, compilers can allocate storage for them
more efficiently.

const-qualified variables are usually known at run time.

Example - Hard-Coded Loop Boundary

void performOperation(int);

void func(void) {
 for (int i=0; i<100; i++)
 performOperation(i);
}

In this example, the boundary of the for loop is hard-coded.

Correction — Use Symbolic Name

One possible correction is to replace the hard-coded loop boundary with a symbolic name.

const int MAX_1 = 100;
#define MAX_2 100
enum { MAX_3 = 100 };

void performOperation_1(int);
void performOperation_2(int);
void performOperation_3(int);

void func(void) {
 for (int i=0; i<MAX_1; i++)
 performOperation_1(i);
 for (int i=0; i<MAX_2; i++)
 performOperation_2(i);
 for (int i=0; i<MAX_3; i++)
 performOperation_3(i);
}

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL06-C

 CERT C: Rec. DCL06-C

23-451

https://wiki.sei.cmu.edu/confluence/display/c/DCL06-C.+Use+meaningful+symbolic+constants+to+represent+literal+values

Introduced in R2019a

23 CERT C Rules and Recommendations

23-452

CERT C: Rec. DCL07-C
Include the appropriate type information in function declarators

Description
Rule Definition

Include the appropriate type information in function declarators.

Polyspace Implementation

This checker checks for these issues:

• Cast between function pointers with different types.
• Function declared implicitly.

Examples
Cast between function pointers with different types
Issue

The issues occurs when you perform a conversion between a pointer to a function and any other type.

Polyspace considers both explicit and implicit casts when checking this rule. However, casts from
NULL or (void*)0 do not violate this rule.
Risk

The rule forbids the following two conversions:

• Conversion from a function pointer to any other type. This conversion causes undefined behavior.
• Conversion from a function pointer to another function pointer, if the function pointers have
different argument and return types.

The conversion is forbidden because calling a function through a pointer with incompatible type
results in undefined behavior.

Example - Cast between two function pointers

typedef void (*fp16) (short n);
typedef void (*fp32) (int n);

#include <stdlib.h> /* To obtain macro NULL */

void func(void) { /* Exception 1 - Can convert a null pointer
 * constant into a pointer to a function */
 fp16 fp1 = NULL; /* Compliant - exception */
 fp16 fp2 = (fp16) fp1; /* Compliant */
 fp32 fp3 = (fp32) fp1; /* Non-compliant */
 if (fp2 != NULL) {} /* Compliant - exception */
 fp16 fp4 = (fp16) 0x8000; /* Non-compliant - integer to
 * function pointer */}

 CERT C: Rec. DCL07-C

23-453

In this example, the rule is violated when:

• The pointer fp1 of type fp16 is cast to type fp32. The function pointer types fp16 and fp32
have different argument types.

• An integer is cast to type fp16.

The rule is not violated when function pointers fp1 and fp2 are cast to NULL.

Function declared implicitly
Issue

The issue occurs when you declare a function implicitly.

Risk

An implicit declaration occurs when you call a function before declaring or defining it. When you
declare a function explicitly before calling it, the compiler can match the argument and return types
with the parameter types in the declaration. If an implicit declaration occurs, the compiler makes
assumptions about the argument and return types. For instance, it assumes a return type of int. The
assumptions might not agree with what you expect and cause undesired type conversions.

Example - Function Not Declared Before Call

#include <math.h>

extern double power3 (double val, int exponent);
int getChoice(void);

double func() {
 double res;
 int ch = getChoice();
 if(ch == 0) {
 res = power(2.0, 10); /* Non-compliant */
 }
 else if(ch==1) {
 res = power2(2.0, 10); /* Non-compliant */
 }
 else {
 res = power3(2.0, 10); /* Compliant */
 return res;
 }
}

double power2 (double val, int exponent) {
 return (pow(val, exponent));
}

In this example, the rule is violated when a function that is not declared is called in the code. Even if
a function definition exists later in the code, the rule violation occurs.

The rule is not violated when the function is declared before it is called in the code. If the function
definition exists in another file and is available only during the link phase, you can declare the
function in one of the following ways:

• Declare the function with the extern keyword in the current file.
• Declare the function in a header file and include the header file in the current file.

23 CERT C Rules and Recommendations

23-454

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL07-C

Introduced in R2019a

 CERT C: Rec. DCL07-C

23-455

https://wiki.sei.cmu.edu/confluence/display/c/DCL07-C.+Include+the+appropriate+type+information+in+function+declarators

CERT C: Rec. DCL10-C
Maintain the contract between the writer and caller of variadic functions

Description
Rule Definition

Maintain the contract between the writer and caller of variadic functions.

Polyspace Implementation

This checker checks for Format string specifiers and arguments mismatch.

Examples
Format string specifiers and arguments mismatch
Issue

Format string specifiers and arguments mismatch occurs when the format specifiers in the
formatted output functions such as printf do not match their corresponding arguments. For
example, an argument of type unsigned long must have a format specification of %lu.
Risk

Mismatch between format specifiers and the corresponding arguments result in undefined behavior.
Fix

Make sure that the format specifiers match the corresponding arguments. For instance, in this
example, the %d specifier does not match the string argument message and the %s specifier does not
match the integer argument err_number.

 const char *message = "License not available";
 int err_number = -4;
 printf("Error: %d (error type %s)\n", message, err_number);

Switching the two format specifiers fixes the issue. See the specifications for the printf function for
more information about format specifiers.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Printing a Float

#include <stdio.h>

void string_format(void) {

23 CERT C Rules and Recommendations

23-456

https://en.cppreference.com/w/cpp/io/c/fprintf

 unsigned long fst = 1;

 printf("%d\n", fst);
}

In the printf statement, the format specifier, %d, does not match the data type of fst.

Correction — Use an Unsigned Long Format Specifier

One possible correction is to use the %lu format specifier. This specifier matches the unsigned
integer type and long size of fst.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%lu\n", fst);
}

Correction — Use an Integer Argument

One possible correction is to change the argument to match the format specifier. Convert fst to an
integer to match the format specifier and print the value 1.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", (int)fst);
}

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL10-C

Introduced in R2019a

 CERT C: Rec. DCL10-C

23-457

https://wiki.sei.cmu.edu/confluence/display/c/DCL10-C.+Maintain+the+contract+between+the+writer+and+caller+of+variadic+functions

CERT C: Rec. DCL11-C
Understand the type issues associated with variadic functions

Description
Rule Definition

Understand the type issues associated with variadic functions.

Polyspace Implementation

This checker checks for Format string specifiers and arguments mismatch.

Examples
Format string specifiers and arguments mismatch
Issue

Format string specifiers and arguments mismatch occurs when the format specifiers in the
formatted output functions such as printf do not match their corresponding arguments. For
example, an argument of type unsigned long must have a format specification of %lu.
Risk

Mismatch between format specifiers and the corresponding arguments result in undefined behavior.
Fix

Make sure that the format specifiers match the corresponding arguments. For instance, in this
example, the %d specifier does not match the string argument message and the %s specifier does not
match the integer argument err_number.

 const char *message = "License not available";
 int err_number = -4;
 printf("Error: %d (error type %s)\n", message, err_number);

Switching the two format specifiers fixes the issue. See the specifications for the printf function for
more information about format specifiers.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Printing a Float

#include <stdio.h>

void string_format(void) {

23 CERT C Rules and Recommendations

23-458

https://en.cppreference.com/w/cpp/io/c/fprintf

 unsigned long fst = 1;

 printf("%d\n", fst);
}

In the printf statement, the format specifier, %d, does not match the data type of fst.

Correction — Use an Unsigned Long Format Specifier

One possible correction is to use the %lu format specifier. This specifier matches the unsigned
integer type and long size of fst.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%lu\n", fst);
}

Correction — Use an Integer Argument

One possible correction is to change the argument to match the format specifier. Convert fst to an
integer to match the format specifier and print the value 1.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", (int)fst);
}

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL11-C

Introduced in R2019a

 CERT C: Rec. DCL11-C

23-459

https://wiki.sei.cmu.edu/confluence/display/c/DCL11-C.+Understand+the+type+issues+associated+with+variadic+functions

CERT C: Rec. DCL12-C
Implement abstract data types using opaque types

Description
Rule Definition

Implement abstract data types using opaque types.

Polyspace Implementation

This checker checks for Structure or union object implementation visible in file where pointer
to this object is not dereferenced.

Examples
Structure or union object implementation visible in file where pointer to this object is not
dereferenced
Issue

The issue occurs when a pointer to a structure or union is never dereferenced within a translation
unit, but the implementation of the object is not hidden.

If a structure or union is defined in a file or a header file included in the file, a pointer to this
structure or union declared but the pointer never dereferenced in the file, the checker flags a coding
rule violation. The structure or union definition should not be visible to this file.

If you see a violation of this rule on a structure definition, identify if you have defined a pointer to the
structure in the same file or in a header file included in the file. Then check if you dereference the
pointer anywhere in the file. If you do not dereference the pointer, the structure definition should be
hidden from this file and included header files.

file.h: Contains structure implementation.

#ifndef TYPE_GUARD
#define TYPE_GUARD

typedef struct {
 int a;
} myStruct;

#endif

file.c: Includes file.h but does not dereference structure.

#include "file.h"

myStruct* getObj(void);
void useObj(myStruct*);

void func() {

23 CERT C Rules and Recommendations

23-460

 myStruct *sPtr = getObj();
 useObj(sPtr);
}

In this example, the pointer to the type myStruct is not dereferenced. The pointer is simply obtained
from the getObj function and passed to the useObj function.

The implementation of myStruct is visible in the translation unit consisting of file.c and file.h.

One possible correction is to define an opaque data type in the header file file.h. The opaque data
type ptrMyStruct points to the myStruct structure without revealing what the structure contains.
The structure myStruct itself can be defined in a separate translation unit, in this case, consisting of
the file file2.c. The common header file file.h must be included in both file.c and file2.c for
linking the structure definition to the opaque type definition.

file.h: Does not contain structure implementation.

#ifndef TYPE_GUARD
#define TYPE_GUARD

typedef struct myStruct *ptrMyStruct;

ptrMyStruct getObj(void);
void useObj(ptrMyStruct);

#endif

file.c: Includes file.h but does not dereference structure.

#include "file.h"

void func() {
 ptrMyStruct sPtr = getObj();
 useObj(sPtr);
}

file2.c: Includes file.h and dereferences structure.

#include "file.h"

struct myStruct {
 int a;
};

void useObj(ptrMyStruct ptr) {
 (ptr->a)++;
}

Risk

If a pointer to a structure or union is not dereferenced in a file, the implementation details of the
structure or union need not be available in the translation unit for the file. You can hide the
implementation details such as structure members and protect them from unintentional changes.

Define an opaque type that can be referenced via pointers but whose contents cannot be accessed.
Example - Object Implementation Revealed

file.h: Contains structure implementation.

 CERT C: Rec. DCL12-C

23-461

#ifndef TYPE_GUARD
#define TYPE_GUARD

typedef struct {
 int a;
} myStruct;

#endif

file.c: Includes file.h but does not dereference structure.

#include "file.h"

myStruct* getObj(void);
void useObj(myStruct*);

void func() {
 myStruct *sPtr = getObj();
 useObj(sPtr);
}

In this example, the pointer to the type myStruct is not dereferenced. The pointer is simply obtained
from the getObj function and passed to the useObj function.

The implementation of myStruct is visible in the translation unit consisting of file.c and file.h.
Correction — Define Opaque Type

One possible correction is to define an opaque data type in the header file file.h. The opaque data
type ptrMyStruct points to the myStruct structure without revealing what the structure contains.
The structure myStruct itself can be defined in a separate translation unit, in this case, consisting of
the file file2.c. The common header file file.h must be included in both file.c and file2.c for
linking the structure definition to the opaque type definition.

file.h: Does not contain structure implementation.

#ifndef TYPE_GUARD
#define TYPE_GUARD

typedef struct myStruct *ptrMyStruct;

ptrMyStruct getObj(void);
void useObj(ptrMyStruct);

#endif

file.c: Includes file.h but does not dereference structure.

#include "file.h"

void func() {
 ptrMyStruct sPtr = getObj();
 useObj(sPtr);
}

file2.c: Includes file.h and dereferences structure.

#include "file.h"

23 CERT C Rules and Recommendations

23-462

struct myStruct {
 int a;
};

void useObj(ptrMyStruct ptr) {
 (ptr->a)++;
}

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL12-C

Introduced in R2019a

 CERT C: Rec. DCL12-C

23-463

https://wiki.sei.cmu.edu/confluence/display/c/DCL12-C.+Implement+abstract+data+types+using+opaque+types

CERT C: Rec. DCL13-C
Declare function parameters that are pointers to values not changed by the function as const

Description
Rule Definition

Declare function parameters that are pointers to values not changed by the function as const.

Polyspace Implementation

This checker checks for Pointer to non-cont qualified function parameter.

Examples
Pointer to non-cont qualified function parameter
Issue

The rule checker flags a pointer to a non-const function parameter if the pointer does not modify the
addressed object. The assumption is that the pointer is not meant to modify the object and so must
point to a const-qualified type.
Risk

This rule ensures that you do not inadvertently use pointers to modify objects.
Example - Pointer That Should Point to const-Qualified Types

#include <string.h>

typedef unsigned short uint16_t;

uint16_t ptr_ex(uint16_t *p) { /* Non-compliant */
 return *p;
}

char last_char(char * const s){ /* Non-compliant */
 return s[strlen(s) - 1u];
}

uint16_t first(uint16_t a[5]){ /* Non-compliant */
 return a[0];
}

This example shows three different noncompliant pointer parameters.

• In the ptr_ex function, p does not modify an object. However, the type to which p points is not
const-qualified, so it is noncompliant.

• In last_char, the pointer s is const-qualified but the type it points to is not. This parameter is
noncompliant because s does not modify an object.

• The function first does not modify the elements of the array a. However, the element type is not
const-qualified, so a is also noncompliant.

23 CERT C Rules and Recommendations

23-464

Correction — Use const Keywords

One possible correction is to add const qualifiers to the definitions.

#include <string.h>

typedef unsigned short uint16_t;

uint16_t ptr_ex(const uint16_t *p){ /* Compliant */
 return *p;
}

char last_char(const char * const s){ /* Compliant */
 return s[strlen(s) - 1u];
}

uint16_t first(const uint16_t a[5]) { /* Compliant */
 return a[0];
}

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL13-C

Introduced in R2019a

 CERT C: Rec. DCL13-C

23-465

https://wiki.sei.cmu.edu/confluence/display/c/DCL13-C.+Declare+function+parameters+that+are+pointers+to+values+not+changed+by+the+function+as+const

CERT C: Rec. DCL15-C
Declare file-scope objects or functions that do not need external linkage as static

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

Rule Definition

Declare file-scope objects or functions that do not need external linkage as static.

Polyspace Implementation

This checker checks for Function or object with external linkage referenced in only one
translation unit.

Examples
Function or object with external linkage referenced in only one translation unit
Issue

The rule checker flags:

• Objects that are defined at file scope without the static specifier but used only in one file.
• Functions that are defined without the static specifier but called only in one file.

If you intend to use the object or function in one file only, declare it static.

Objects that are defined at file scope without the static specifier but used only in one file.

Functions that are defined without the static specifier but called only in one file.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The analyses can
produce different results.
Risk

Compliance with this rule avoids confusion between your identifier and an identical identifier in
another translation unit or library. If you restrict or reduce the visibility of an object by giving it
internal linkage or no linkage, you or someone else is less likely to access the object inadvertently.
Example - Variable with External Linkage Used in One File

Header file:

/* file.h */
extern int var;

First source file:

/* file1.c */
#include "file.h"

23 CERT C Rules and Recommendations

23-466

int var; /* Compliant */
int var2; /* Non compliant */
static int var3; /* Compliant */

void reset(void);

void reset(void) {
 var = 0;
 var2 = 0;
 var3 = 0;
}

Second source file:

/* file2.c */
#include "file.h"

void increment(int var2);

void increment(int var2) {
 var++;
 var2++;
}

In this example:

• The declaration of var is compliant because var is declared with external linkage and used in
multiple files.

• The declaration of var2 is noncompliant because var2 is declared with external linkage but used
in one file only.

It might appear that var2 is defined in both files. However, in the second file, var2 is a parameter
with no linkage and is not the same as the var2 in the first file.

• The declaration of var3 is compliant because var3 is declared with internal linkage (with the
static specifier) and used in one file only.

Example - Function with External Linkage Used in One File

Header file:

/* file.h */
extern int var;
extern void increment1 (void);

First source file:

/* file1.c */
#include "file.h"

int var;

void increment2(void);
static void increment3(void);
void func(void);

void increment2(void) { /* Non compliant */

 CERT C: Rec. DCL15-C

23-467

 var+=2;
}

static void increment3(void) { /* Compliant */
 var+=3;
}

void func(void) {
 increment1();
 increment2();
 increment3();
}

Second source file:

/* file2.c */
#include "file.h"

void increment1(void) { /* Compliant */
 var++;
}

In this example:

• The definition of increment1 is compliant because increment1 is defined with external linkage
and called in a different file.

• The declaration of increment2 is noncompliant because increment2 is defined with external
linkage but called in the same file and nowhere else.

• The declaration of increment3 is compliant because increment3 is defined with internal
linkage (with the static specifier) and called in the same file and nowhere else.

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL15-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-468

https://wiki.sei.cmu.edu/confluence/display/c/DCL15-C.+Declare+file-scope+objects+or+functions+that+do+not+need+external+linkage+as+static

CERT C: Rec. DCL16-C
Use 'L,' not 'l,' to indicate a long value

Description
Rule Definition

Use 'L,' not 'l,' to indicate a long value.

Polyspace Implementation

This checker checks for Use of lowercase "l" in literal suffix.

Examples
Use of lowercase "l" in literal suffix
Issue

The issue occurs when you use the lowercase character “l” in a literal suffix.

Risk

The lowercase character “l” can be confused with the digit “1”. Use the uppercase “L” instead.

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL16-C

Introduced in R2019a

 CERT C: Rec. DCL16-C

23-469

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152241

CERT C: Rec. DCL18-C
Do not begin integer constants with 0 when specifying a decimal value

Description
Rule Definition

Do not begin integer constants with 0 when specifying a decimal value.

Polyspace Implementation

This checker checks for Use of octal constants.

Examples
Use of octal constants
Issue

If you use octal constants in a macro definition, the rule checker flags the issue even if the macro is
not used.

Risk

Octal constants are denoted by a leading zero. Developers can mistake an octal constant as a decimal
constant with a redundant leading zero.

Example - Use of octal constants

#define CST 021
#define VALUE 010 /* Compliant - constant not used */
#if 010 == 01 /* Non-Compliant - constant used */
#define CST 021 /* Non-Compliant - constant not used */
#endif

extern short code[5];
static char* str2 = "abcd\0efg"; /* Compliant */

void main(void) {
 int value1 = 0; /* Compliant */
 int value2 = 01; /* Non-Compliant - decimal 01 */
 int value3 = 1; /* Compliant */
 int value4 = '\109'; /* Compliant */

 code[1] = 109; /* Compliant - decimal 109 */
 code[2] = 100; /* Compliant - decimal 100 */
 code[3] = 052; /* Non-Compliant - decimal 42 */
 code[4] = 071; /* Non-Compliant - decimal 57 */

 if (value1 != CST) {
 value1 = !(value1 != 0); /* Compliant */
 }
}

23 CERT C Rules and Recommendations

23-470

In this example, the rule is not violated when octal constants are used to define macros CST and
VALUE. The rule is violated only when the macros are used.

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL18-C

Introduced in R2019a

 CERT C: Rec. DCL18-C

23-471

https://wiki.sei.cmu.edu/confluence/display/c/DCL18-C.+Do+not+begin+integer+constants+with+0+when+specifying+a+decimal+value

CERT C: Rec. DCL19-C
Minimize the scope of variables and functions

Description
Rule Definition

Minimize the scope of variables and functions.

Polyspace Implementation

This checker checks for these issues:

• Function or object declared without static specifier and referenced in only one file.
• Object defined beyond necessary scope.

Examples
Function or object declared without static specifier and referenced in only one file
Issue

The rule checker flags:

• Objects that are defined at file scope without the static specifier but used only in one file.
• Functions that are defined without the static specifier but called only in one file.

If you intend to use the object or function in one file only, declare it static.

Objects that are defined at file scope without the static specifier but used only in one file.

Functions that are defined without the static specifier but called only in one file.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The analyses can
produce different results.

The checker does not flag this issue in a default Polyspace as You Code analysis. See “Checkers
Deactivated in Polyspace as You Code Default Analysis”.
Risk

Compliance with this rule avoids confusion between your identifier and an identical identifier in
another translation unit or library. If you restrict or reduce the visibility of an object by giving it
internal linkage or no linkage, you or someone else is less likely to access the object inadvertently.
Example - Variable with External Linkage Used in One File

Header file:

/* file.h */
extern int var;

First source file:

23 CERT C Rules and Recommendations

23-472

/* file1.c */
#include "file.h"

int var; /* Compliant */
int var2; /* Non compliant */
static int var3; /* Compliant */

void reset(void);

void reset(void) {
 var = 0;
 var2 = 0;
 var3 = 0;
}

Second source file:

/* file2.c */
#include "file.h"

void increment(int var2);

void increment(int var2) {
 var++;
 var2++;
}

In this example:

• The declaration of var is compliant because var is declared with external linkage and used in
multiple files.

• The declaration of var2 is noncompliant because var2 is declared with external linkage but used
in one file only.

It might appear that var2 is defined in both files. However, in the second file, var2 is a parameter
with no linkage and is not the same as the var2 in the first file.

• The declaration of var3 is compliant because var3 is declared with internal linkage (with the
static specifier) and used in one file only.

Example - Function with External Linkage Used in One File

Header file:

/* file.h */
extern int var;
extern void increment1 (void);

First source file:

/* file1.c */
#include "file.h"

int var;

void increment2(void);
static void increment3(void);
void func(void);

 CERT C: Rec. DCL19-C

23-473

void increment2(void) { /* Non compliant */
 var+=2;
}

static void increment3(void) { /* Compliant */
 var+=3;
}

void func(void) {
 increment1();
 increment2();
 increment3();
}

Second source file:

/* file2.c */
#include "file.h"

void increment1(void) { /* Compliant */
 var++;
}

In this example:

• The definition of increment1 is compliant because increment1 is defined with external linkage
and called in a different file.

• The declaration of increment2 is noncompliant because increment2 is defined with external
linkage but called in the same file and nowhere else.

• The declaration of increment3 is compliant because increment3 is defined with internal
linkage (with the static specifier) and called in the same file and nowhere else.

Object defined beyond necessary scope
Issue

The issue occurs when the identifier of an object only appears in a single function but the object is
defined beyond the block scope.

The rule checker flags static objects that are accessed in one function only but declared at file
scope.
Risk

If you define an object at block scope, you or someone else is less likely to access the object
inadvertently outside the block.
Example - Object Declared at File Scope but Used in One Function

static int ctr; /* Non compliant */

int checkStatus(void);
void incrementCount(void);

void incrementCount(void) {
 ctr=0;
 while(1) {

23 CERT C Rules and Recommendations

23-474

 if(checkStatus())
 ctr++;
 }
}

In this example, the declaration of ctr is noncompliant because it is declared at file scope but used
only in the function incrementCount. Declare ctr in the body of incrementCount to be MISRA C-
compliant.

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL19-C

Introduced in R2019a

 CERT C: Rec. DCL19-C

23-475

https://wiki.sei.cmu.edu/confluence/display/c/DCL19-C.+Minimize+the+scope+of+variables+and+functions

CERT C: Rec. DCL22-C
Use volatile for data that cannot be cached

Description
Rule Definition

Use volatile for data that cannot be cached.

Polyspace Implementation

This checker checks for Write without a further read.

Examples
Write without a further read
Issue

Write without a further read occurs when a value assigned to a variable is never read.

For instance, you write a value to a variable and then write a second value before reading the
previous value. The first write operation is redundant.

Risk

Redundant write operations often indicate programming errors. For instance, you forgot to read the
variable between two successive write operations or unintentionally read a different variable.

Fix

Identify the reason why you write to the variable but do not read it later. Look for common
programming errors such as accidentally reading a different variable with a similar name.

If you determine that the write operation is redundant, remove the operation.

Example - Write Without Further Read Error

void sensor_amplification(void)
{
 extern int getsensor(void);
 int level;

 level = 4 * getsensor();
 /* Defect: Useless write */
}

After the variable level gets assigned the value 4 * getsensor(), it is not read.

Correction — Use Value After Assignment

One possible correction is to use the variable level after the assignment.

23 CERT C Rules and Recommendations

23-476

#include <stdio.h>

void sensor_amplification(void)
{
 extern int getsensor(void);
 int level;

 level = 4 * getsensor();

 /* Fix: Use level after assignment */
 printf("The value is %d", level);

}

The variable level is printed, reading the new value.

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL22-C

Introduced in R2019a

 CERT C: Rec. DCL22-C

23-477

https://wiki.sei.cmu.edu/confluence/display/c/DCL22-C.+Use+volatile+for+data+that+cannot+be+cached

CERT C: Rec. DCL23-C
Guarantee that mutually visible identifiers are unique

Description
Rule Definition

Guarantee that mutually visible identifiers are unique.

Polyspace Implementation

This checker checks for these issues:

• External identifiers not distinct.
• Identifier in same scope and namespace not distinct.
• Macro identifier not distinct.
• Name for macros and identifiers not distinct.

Examples
External identifiers not distinct
Issue

The issue occurs when external identifiers have the same first six characters for C90 or the same first
31 characters for C99.

The checker does not flag this issue in a default Polyspace as You Code analysis. See “Checkers
Deactivated in Polyspace as You Code Default Analysis”.
Risk

External identifiers are ones declared with global scope or storage class extern.

Polyspace considers two names as distinct if there is a difference between their first 31 characters. If
the difference between two names occurs only beyond the first 31 characters, they can be easily
mistaken for each other. The readability of the code is reduced. For C90, the difference must occur
between the first six characters. To use the C90 rules checking, use the value c90 for the option C
standard version (-c-version).
Example - C90: First Six Characters of Identifiers Not Unique

int engine_temperature_raw;
int engine_temperature_scaled; /* Non-compliant */
int engin2_temperature; /* Compliant */

In this example, the identifier engine_temperature_scaled has the same first six characters as a
previous identifier, engine_temperature_raw.
Example - C99: First 31 Characters of Identifiers Not Unique

int engine_exhaust_gas_temperature_raw;
int engine_exhaust_gas_temperature_scaled; /* Non-compliant */

23 CERT C Rules and Recommendations

23-478

int eng_exhaust_gas_temp_raw;
int eng_exhaust_gas_temp_scaled; /* Compliant */

In this example, the identifier engine_exhaust_gas_temperature_scaled has the same first 31
characters as a previous identifier, engine_exhaust_gas_temperature_raw.

Example - C90: First Six Characters Identifiers in Different Translation Units Differ in Case Alone

/* file1.c */
int abc = 0;

/* file2.c */
int ABC = 0; /* Non-compliant */

In this example, the implementation supports six significant case-insensitive characters in external
identifiers. The identifiers in the two translations are different but are not distinct in their significant
characters.

Identifier in same scope and namespace not distinct
Issue

The issue occurs when you declare identifiers in the same scope and namespace and the identifiers
have the same first 31 characters in C90 or the same first 63 characters in C99.

Risk

Polyspace considers two names as distinct if there is a difference between their first 63 characters. If
the difference between two names occurs only beyond the first 63 characters, they can be easily
mistaken for each other. The readability of the code is reduced. For C90, the difference must occur
between the first 31 characters. To use the C90 rules checking, use the value c90 for the option C
standard version (-c-version).

Example - C90: First 31 Characters of Identifiers Not Unique

extern int engine_exhaust_gas_temperature_raw;
static int engine_exhaust_gas_temperature_scaled; /* Non-compliant */

extern double engine_exhaust_gas_temperature_raw;
static double engine_exhaust_gas_temperature2_scaled; /* Compliant */

void func (void)
{
 /* Not in the same scope */
 int engine_exhaust_gas_temperature_local; /* Compliant */
}

In this example, the identifier engine_exhaust_gas_temperature_scaled has the same 31
characters as a previous identifier, engine_exhaust_gas_temperature_raw.

The rule does not apply if the two identifiers have the same 31 characters but have different scopes.
For instance, engine_exhaust_gas_temperature_local has the same 31 characters as
engine_exhaust_gas_temperature_raw but different scope.

Example - C99: First 63 Characters of Identifiers Not Unique

extern int engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_raw;
static int engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_scale;

 CERT C: Rec. DCL23-C

23-479

 /* Non-compliant */

extern int engine_gas_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx__raw;
static int engine_gas_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx__scale;
 /* Compliant */

void func (void)
{
/* Not in the same scope */
 int engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_local;
 /* Compliant */
}

In this example, the identifier
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_scale has the
same 63 characters as a previous identifier,
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_raw.

Macro identifier not distinct
Issue

The issue occurs when you use macro identifiers that have the same first 31 characters in C90 or the
same first 63 characters in C99.

Risk

The names of macro identifiers must be distinct from both other macro identifiers and their
parameters.

Polyspace considers two names as distinct if there is a difference between their first 63 characters. If
the difference between two names occurs only beyond the first 63 characters, they can be easily
mistaken for each other. The readability of the code is reduced. For C90, the difference must occur
between the first 31 characters. To use the C90 rules checking, use the value c90 for the option C
standard version (-c-version).

Example - C90: First 31 Characters of Macro Names Not Unique

#define engine_exhaust_gas_temperature_raw egt_r
#define engine_exhaust_gas_temperature_scaled egt_s /* Non-compliant */

#define engine_exhaust_gas_temp_raw egt_r
#define engine_exhaust_gas_temp_scaled egt_s /* Compliant */

In this example, the macro engine_exhaust_gas_temperature_scaled egt_s has the same
first 31 characters as a previous macro engine_exhaust_gas_temperature_scaled.

Example - C99: First 63 Characters of Macro Names Not Unique

#define engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_raw egt_r
#define engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_raw_scaled egt_s
 /* Non-compliant */

/* 63 significant case-sensitive characters in macro identifiers */
#define new_engine_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_raw egt_r
#define new_engine_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_scaled egt_s
 /* Compliant */

23 CERT C Rules and Recommendations

23-480

In this example, the macro
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx___gaz_scaled has
the same first 63 characters as a previous macro
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx___raw.

Name for macros and identifiers not distinct
Issue

The issue occurs when identifiers are not distinct from macro names.

Risk

The rule requires that macro names that exist only prior to processing must be different from
identifier names that also exist after preprocessing. Keeping macro names and identifiers distinct
help avoid confusion.

Polyspace considers two names as distinct if there is a difference between their first 63 characters. If
the difference between two names occurs only beyond the first 63 characters, they can be easily
mistaken for each other. The readability of the code is reduced. For C90, the difference must occur
between the first 31 characters. To use the C90 rules checking, use the value c90 for the option C
standard version (-c-version).

Example - Macro Names Same as Identifier Names

#define Sum_1(x, y) ((x) + (y))
short Sum_1; /* Non-compliant */

#define Sum_2(x, y) ((x) + (y))
short x = Sum_2 (1, 2); /* Compliant */

In this example, Sum_1 is both the name of an identifier and a macro. Sum_2 is used only as a macro.

Example - C90: First 31 Characters of Macro Name Same as Identifier Name

#define low_pressure_turbine_temperature_1 lp_tb_temp_1
static int low_pressure_turbine_temperature_2; /* Non-compliant */

In this example, the identifier low_pressure_turbine_temperature_2 has the same first 31
characters as a previous macro low_pressure_turbine_temperature_1.

Check Information
Group: Rec. 02. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
DCL23-C

Introduced in R2019a

 CERT C: Rec. DCL23-C

23-481

https://wiki.sei.cmu.edu/confluence/display/c/DCL23-C.+Guarantee+that+mutually+visible+identifiers+are+unique

CERT C: Rec. EXP00-C
Use parentheses for precedence of operation

Description
Rule Definition

Use parentheses for precedence of operation.

Polyspace Implementation

This checker checks for Possibly unintended evaluation of expression because of operator
precedence rules.

Examples
Possibly unintended evaluation of expression because of operator precedence rules
Issue

Possibly unintended evaluation of expression because of operator precedence rules occurs
when an arithmetic expression result is possibly unintended because operator precedence rules
dictate an evaluation order that you do not expect.

The defect highlights expressions of the form x op_1 y op_2 z. Here, op_1 and op_2 are operator
combinations that commonly induce this error. For instance, x == y | z.

The checker does not flag all operator combinations. For instance, x == y || z is not flagged
because you most likely intended to perform a logical OR between x == y and z. Specifically, the
checker flags these combinations:

• && and ||: For instance, x || y && z or x && y || z.
• Assignment and bitwise operations: For instance, x = y | z.
• Assignment and comparison operations: For instance, x = y != z or x = y > z.
• Comparison operations: For instance, x > y > z (except when one of the comparisons is an

equality x == y > z).
• Shift and numerical operation: For instance, x << y + 2.
• Pointer dereference and arithmetic: For instance, *p++.

Risk

The defect can cause the following issues:

• If you or another code reviewer reviews the code, the intended order of evaluation is not
immediately clear.

• It is possible that the result of the evaluation does not meet your expectations. For instance:

• In the operation *p++, it is possible that you expect the dereferenced value to be incremented.
However, the pointer p is incremented before the dereference.

23 CERT C Rules and Recommendations

23-482

• In the operation (x == y | z), it is possible that you expect x to be compared with y | z.
However, the == operation happens before the | operation.

Fix

See if the order of evaluation is what you intend. If not, apply parentheses to implement the
evaluation order that you want.

For better readability of your code, it is good practice to apply parenthesis to implement an
evaluation order even when operator precedence rules impose that order.

Example - Expressions with Possibly Unintended Evaluation Order

int test(int a, int b, int c) {
 return(a & b == c);
}

In this example, the == operation happens first, followed by the & operation. If you intended the
reverse order of operations, the result is not what you expect.

Correction — Parenthesis For Intended Order

One possible correction is to apply parenthesis to implement the intended evaluation order.

int test(int a, int b, int c) {
 return((a & b) == c);
}

Check Information
Group: Rec. 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP00-C

Introduced in R2019a

 CERT C: Rec. EXP00-C

23-483

https://wiki.sei.cmu.edu/confluence/display/c/EXP00-C.+Use+parentheses+for+precedence+of+operation

CERT C: Rec. EXP05-C
Do not cast away a const qualification

Description
Rule Definition

Do not cast away a const qualification.

Polyspace Implementation

This checker checks for Cast to pointer that removes const qualification.

Examples
Cast to pointer that removes const qualification
Issue

Polyspace flags both implicit and explicit conversions that violate this rule.

Risk

This rule forbids casts from a pointer to a const object to a pointer that does not point to a const
object.

Such casts violate type qualification. For example, the const qualifier indicates the read-only status
of an object. If a cast removes the qualifier, the object is no longer read-only.

Example - Casts That Remove Qualifiers

void foo(void) {

 /* Cast on simple type */
 unsigned short x;
 unsigned short * const cpi = &x; /* const pointer */
 unsigned short * const *pcpi; /* pointer to const pointer */
 unsigned short **ppi;
 const unsigned short *pci; /* pointer to const */
 unsigned short *pi;

 pi = cpi; /* Compliant - no cast required */
 pi = (unsigned short *) pci; /* Non-compliant */
 ppi = (unsigned short **)pcpi; /* Non-compliant */
}

In this example, the variables pci and pcpi have the const qualifier in their type. The rule is
violated when the variables are cast to types that do not have the const qualifier.

Even though cpi has a const qualifier in its type, the rule is not violated in the statement p=cpi;.
The assignment does not cause a type conversion because both p and cpi have type unsigned
short.

23 CERT C Rules and Recommendations

23-484

Check Information
Group: Rec. 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP05-C

Introduced in R2019a

 CERT C: Rec. EXP05-C

23-485

https://wiki.sei.cmu.edu/confluence/display/c/EXP05-C.+Do+not+cast+away+a+const+qualification

CERT C: Rec. EXP08-C
Ensure pointer arithmetic is used correctly

Description
Rule Definition

Ensure pointer arithmetic is used correctly.

Polyspace Implementation

This checker checks for these issues:

• Array access out of bounds
• Pointer access out of bounds.
• Subtraction between pointers to different arrays.
• Incorrect pointer scaling.

Examples
Array access out of bounds
Issue

This issue occurs when an array index falls outside the range [0...array_size-1] during array
access.

Risk

Accessing an array outside its bounds is undefined behavior. You can read an unpredictable value or
try to access a location that is not allowed and encounter a segmentation fault.

Fix

The fix depends on the root cause of the defect. For instance, you accessed an array inside a loop and
one of these situations happened:

• The upper bound of the loop is too large.
• You used an array index that is the same as the loop index instead of being one less than the loop

index.

To fix the issue, you have to modify the loop bound or the array index.

Another reason why an array index can exceed array bounds is a prior conversion from signed to
unsigned integers. The conversion can result in a wrap around of the index value, eventually causing
the array index to exceed the array bounds.

Often the result details (or source code tooltips in Polyspace as You Code) show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show this event history, you can search for previous references of variables relevant to the defect
using right-click options in the source code and find related events. See also “Interpret Bug Finder

23 CERT C Rules and Recommendations

23-486

Results in Polyspace Desktop User Interface” or “Interpret Bug Finder Results in Polyspace Access
Web Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example – Array Access Out of Bounds Error

#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 printf("The 10-th Fibonacci number is %i .\n", fib[i]);
 /* Defect: Value of i is greater than allowed value of 9 */
}

The array fib is assigned a size of 10. An array index for fib has allowed values of [0,1,2,...,9].
The variable i has a value 10 when it comes out of the for-loop. Therefore, the printf statement
attempts to access fib[10] through i.

Correction – Keep Array Index Within Array Bounds

One possible correction is to print fib[i-1] instead of fib[i] after the for-loop.

#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 CERT C: Rec. EXP08-C

23-487

 /* Fix: Print fib[9] instead of fib[10] */
 printf("The 10-th Fibonacci number is %i .\n", fib[i-1]);
}

The printf statement accesses fib[9] instead of fib[10].

Pointer access out of bounds
Issue

This issue occurs when a pointer is dereferenced outside its bounds.

When a pointer is assigned an address, a block of memory is associated with the pointer. You cannot
access memory beyond that block using the pointer.
Risk

Dereferencing a pointer outside its bounds is undefined behavior. You can read an unpredictable
value or try to access a location that is not allowed and encounter a segmentation fault.
Fix

The fix depends on the root cause of the defect. For instance, you dereferenced a pointer inside a loop
and one of these situations happened:

• The upper bound of the loop is too large.
• You used pointer arithmetic to advance the pointer with an incorrect value for the pointer

increment.

To fix the issue, you have to modify the loop bound or the pointer increment value.

Often the result details (or source code tooltips in Polyspace as You Code) show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show this event history, you can search for previous references of variables relevant to the defect
using right-click options in the source code and find related events. See also “Interpret Bug Finder
Results in Polyspace Desktop User Interface” or “Interpret Bug Finder Results in Polyspace Access
Web Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example – Pointer access out of bounds error

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {

23 CERT C Rules and Recommendations

23-488

 ptr++;
 *ptr=i;
 /* Defect: ptr out of bounds for i=9 */
 }

 return(arr);
}

ptr is assigned the address arr that points to a memory block of size 10*sizeof(int). In the for-
loop, ptr is incremented 10 times. In the last iteration of the loop, ptr points outside the memory
block assigned to it. Therefore, it cannot be dereferenced.

Correction — Check Pointer Stays Within Bounds

One possible correction is to reverse the order of increment and dereference of ptr.

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 /* Fix: Dereference pointer before increment */
 *ptr=i;
 ptr++;
 }

 return(arr);
}

After the last increment, even though ptr points outside the memory block assigned to it, it is not
dereferenced more.

Subtraction between pointers to different arrays
Issue

This rule is raised whenever the analysis detects a Subtraction or comparison between
pointers to different arrays.

Risk

This rule applies to expressions of the form pointer_expression1 - pointer_expression2.
The behavior is undefined if pointer_expression1 and pointer_expression2:

• Do not point to elements of the same array,
• Or do not point to the element one beyond the end of the array.

Example - Subtracting Pointers

#include <stdint.h>
#include <stddef.h>

void f1 (int32_t *ptr)
{
 int32_t a1[10];
 int32_t a2[10];

 CERT C: Rec. EXP08-C

23-489

 int32_t *p1 = &a1[1];
 int32_t *p2 = &a2[10];
 ptrdiff_t diff1, diff2, diff3;

 diff1 = p1 - a1; // Compliant
 diff2 = p2 - a2; // Compliant
 diff3 = p1 - p2; // Non-compliant
}

In this example, the three subtraction expressions show the difference between compliant and
noncompliant pointer subtractions. The diff1 and diff2 subtractions are compliant because the
pointers point to the same array. The diff3 subtraction is not compliant because p1 and p2 point to
different arrays.

Incorrect pointer scaling

Issue

Incorrect pointer scaling occurs when Polyspace Bug Finder considers that you are ignoring the
implicit scaling in pointer arithmetic.

For instance, the defect can occur in the following situations.

Situation Risk Possible Fix
You use the sizeof operator in
arithmetic operations on a
pointer.

The sizeof operator returns
the size of a data type in
number of bytes.

Pointer arithmetic is already
implicitly scaled by the size of
the data type of the pointed
variable. Therefore, the use of
sizeof in pointer arithmetic
produces unintended results.

Do not use sizeof operator in
pointer arithmetic.

You perform arithmetic
operations on a pointer, and
then apply a cast.

Pointer arithmetic is implicitly
scaled. If you do not consider
this implicit scaling, casting the
result of a pointer arithmetic
produces unintended results.

Apply the cast before the
pointer arithmetic.

Fix

The fix depends on the root cause of the defect. See fixes in the table above and code examples with
fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

23 CERT C Rules and Recommendations

23-490

Example - Use of sizeof Operator

void func(void) {
 int arr[5] = {1,2,3,4,5};
 int *ptr = arr;

 int value_in_position_2 = *(ptr + 2*(sizeof(int)));
}

In this example, the operation 2*(sizeof(int)) returns twice the size of an int variable in bytes.
However, because pointer arithmetic is implicitly scaled, the number of bytes by which ptr is offset is
2*(sizeof(int))*(sizeof(int)).

In this example, the incorrect scaling shifts ptr outside the bounds of the array. Therefore, a Pointer
access out of bounds error appears on the * operation.

Correction — Remove sizeof Operator

One possible correction is to remove the sizeof operator.

void func(void) {
 int arr[5] = {1,2,3,4,5};
 int *ptr = arr;

 int value_in_position_2 = *(ptr + 2);
}

Example - Cast Following Pointer Arithmetic

int func(void) {
 int x = 0;
 char r = *(char *)(&x + 1);
 return r;
}

In this example, the operation &x + 1 offsets &x by sizeof(int). Following the operation, the
resulting pointer points outside the allowed buffer. When you dereference the pointer, a Pointer
access out of bounds error appears on the * operation.

Correction — Apply Cast Before Pointer Arithmetic

If you want to access the second byte of x, first cast &x to a char* pointer and then perform the
pointer arithmetic. The resulting pointer is offset by sizeof(char) bytes and still points within the
allowed buffer, whose size is sizeof(int) bytes.

int func(void) {
 int x = 0;
 char r = *((char *)(&x)+ 1);
 return r;
}

Check Information
Group: Rec. 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

 CERT C: Rec. EXP08-C

23-491

Topics
“Check for Coding Standard Violations”

External Websites
EXP08-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-492

https://wiki.sei.cmu.edu/confluence/display/c/EXP08-C.+Ensure+pointer+arithmetic+is+used+correctly

CERT C: Rec. EXP09-C
Use sizeof to determine the size of a type or variable

Description
Rule Definition

Use sizeof to determine the size of a type or variable.

Polyspace Implementation

This checker checks for Hard-coded object size used to manipulate memory.

Examples
Hard-coded object size used to manipulate memory
Issue

Hard-coded object size used to manipulate memory occurs on constants that are memory size
arguments for memory functions such as malloc or memset.

Risk

If you hard code object size, your code is not portable to architectures with different type sizes. If the
constant value is not the same as the object size, the buffer might or might not overflow.

Fix

For the size argument of memory functions, use sizeof(object).

Example - Assume 4-Byte Integer Pointers

#include <stddef.h>
#include <stdlib.h>
enum {
 SIZE3 = 3,
 SIZE20 = 20
};
extern void fill_ints(int **matrix, size_t nb, size_t s);

void bug_hardcodedmemsize()
{
 size_t i, s;

 s = 4;
 int **matrix = (int **)calloc(SIZE20, s);
 if (matrix == NULL) {
 return; /* Indicate calloc() failure */
 }
 fill_ints(matrix, SIZE20, s);
 free(matrix);
}

 CERT C: Rec. EXP09-C

23-493

In this example, the memory allocation function calloc is called with a memory size of 4. The
memory is allocated for an integer pointer, which can be a more or less than 4 bytes depending on
your target. If the integer pointer is not 4 bytes, your program can fail.

Correction — Use sizeof(int *)

When calling calloc, replace the hard-coded size with a call to sizeof. This change makes your
code more portable.

#include <stddef.h>
#include <stdlib.h>
enum {
 SIZE3 = 3,
 SIZE20 = 20
};
extern void fill_ints(int **matrix, size_t nb, size_t s);

void corrected_hardcodedmemsize()
{
 size_t i, s;

 s = sizeof(int *);
 int **matrix = (int **)calloc(SIZE20, s);
 if (matrix == NULL) {
 return; /* Indicate calloc() failure */
 }
 fill_ints(matrix, SIZE20, s);
 free(matrix);
}

Check Information
Group: Rec. 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP09-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-494

https://wiki.sei.cmu.edu/confluence/display/c/EXP09-C.+Use+sizeof+to+determine+the+size+of+a+type+or+variable

CERT C: Rec. EXP10-C
Do not depend on the order of evaluation of subexpressions or the order in which side effects take
place

Description
Rule Definition

Do not depend on the order of evaluation of subexpressions or the order in which side effects take
place.

Polyspace Implementation

This checker checks for Expression value depends on order of evaluation or of side effects.

Examples
Expression value depends on order of evaluation or of side effects
Issue

The issue occurs when the value of an expression and its persistent side effects is not the same under
all permitted evaluation orders.

An expression can have different values under the following conditions:

• The same variable is modified more than once in the expression, or is both read and written.
• The expression allows more than one order of evaluation.

Therefore, this rule forbids expressions where a variable is modified more than once and can cause
different results under different orders of evaluation.

Risk

If an expression results in different values depending on the order of evaluation, its value becomes
implementation-defined.

Example - Variable Modified More Than Once in Expression

int a[10], b[10];
#define COPY_ELEMENT(index) (a[(index)]=b[(index)])

void main () {
 int i=0, k=0;

 COPY_ELEMENT (k); /* Compliant */
 COPY_ELEMENT (i++); /* Noncompliant */
}

In this example, the rule is violated by the statement COPY_ELEMENT(i++) because i++ occurs twice
and the order of evaluation of the two expressions is unspecified.

 CERT C: Rec. EXP10-C

23-495

Example - Variable Modified and Used in Multiple Function Arguments

void f (unsigned int param1, unsigned int param2) {}

void main () {
 unsigned int i=0;
 f (i++, i); /* Non-compliant */
}

In this example, the rule is violated because it is unspecified whether the operation i++ occurs before
or after the second argument is passed to f. The call f(i++,i) can translate to either f(0,0) or
f(0,1).

Check Information
Group: Rec. 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP10-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-496

https://wiki.sei.cmu.edu/confluence/display/c/EXP10-C.+Do+not+depend+on+the+order+of+evaluation+of+subexpressions+or+the+order+in+which+side+effects+take+place

CERT C: Rec. EXP12-C
Do not ignore values returned by functions

Description
Rule Definition

Do not ignore values returned by functions.

Polyspace Implementation

This checker checks for Returned value of a sensitive function not checked.

Examples
Returned value of a sensitive function not checked
Issue

Returned value of a sensitive function not checked occurs when you call sensitive standard
functions, but you:

• Ignore the return value.
• Use an output or a return value without testing the validity of the return value.

For this defect, two type of functions are considered: sensitive and critical sensitive.

A sensitive function is a standard function that can encounter:

• Exhausted system resources (for example, when allocating resources)
• Changed privileges or permissions
• Tainted sources when reading, writing, or converting data from external sources
• Unsupported features despite an existing API

A critical sensitive function is a sensitive function that performs one of these critical or vulnerable
tasks:

• Set privileges (for example, setuid)
• Create a jail (for example, chroot)
• Create a process (for example, fork)
• Create a thread (for example, pthread_create)
• Lock or unlock mutex (for example, pthread_mutex_lock)
• Lock or unlock memory segments (for example, mlock)

Risk

If you do not check the return value of functions that perform sensitive or critical sensitive tasks,
your program can behave unexpectedly. Errors from these functions can propagate throughout the
program causing incorrect output, security vulnerabilities, and possibly system failures.

 CERT C: Rec. EXP12-C

23-497

Fix

Before continuing with the program, test the return value of critical sensitive functions.

For sensitive functions, you can explicitly ignore a return value by casting the function to void.
Polyspace does not raise this defect for sensitive functions cast to void. This resolution is not
accepted for critical sensitive functions because they perform more vulnerable tasks.

Example - Sensitive Function Return Ignored

#include <pthread.h>

void initialize() {
 pthread_attr_t attr;

 pthread_attr_init(&attr);
}

This example shows a call to the sensitive function pthread_attr_init. The return value of
pthread_attr_init is ignored, causing a defect.

Correction — Cast Function to (void)

One possible correction is to cast the function to void. This fix informs Polyspace and any reviewers
that you are explicitly ignoring the return value of the sensitive function.

#include <pthread.h>

void initialize() {
 pthread_attr_t attr;

 (void)pthread_attr_init(&attr);
}

Correction — Test Return Value

One possible correction is to test the return value of pthread_attr_init to check for errors.

#include <pthread.h>
#include <stdlib.h>
#define fatal_error() abort()

void initialize() {
 pthread_attr_t attr;
 int result;

 result = pthread_attr_init(&attr);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

Example - Critical Function Return Ignored

#include <pthread.h>
extern void *start_routine(void *);

void returnnotchecked() {

23 CERT C Rules and Recommendations

23-498

 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;

 (void)pthread_attr_init(&attr);
 (void)pthread_create(&thread_id, &attr, &start_routine, ((void *)0));
 pthread_join(thread_id, &res);
}

In this example, two critical functions are called: pthread_create and pthread_join. The return
value of the pthread_create is ignored by casting to void, but because pthread_create is a
critical function (not just a sensitive function), Polyspace does not ignore this Return value of a
sensitive function not checked defect. The other critical function, pthread_join, returns value that
is ignored implicitly. pthread_join uses the return value of pthread_create, which was not
checked.

Correction — Test the Return Value of Critical Functions

The correction for this defect is to check the return value of these critical functions to verify the
function performed as expected.

#include <pthread.h>
#include <stdlib.h>
#define fatal_error() abort()

extern void *start_routine(void *);

void returnnotchecked() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;
 int result;

 (void)pthread_attr_init(&attr);
 result = pthread_create(&thread_id, &attr, &start_routine, NULL);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }

 result = pthread_join(thread_id, &res);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

Check Information
Group: Rec. 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

 CERT C: Rec. EXP12-C

23-499

External Websites
EXP12-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-500

https://wiki.sei.cmu.edu/confluence/display/c/EXP12-C.+Do+not+ignore+values+returned+by+functions

CERT C: Rec. EXP13-C
Treat relational and equality operators as if they were nonassociative

Description
Rule Definition

Treat relational and equality operators as if they were nonassociative.

Polyspace Implementation

This checker checks for Possibly unintended evaluation of expression because of operator
precedence rules.

Examples
Possibly unintended evaluation of expression because of operator precedence rules
Issue

Possibly unintended evaluation of expression because of operator precedence rules occurs
when an arithmetic expression result is possibly unintended because operator precedence rules
dictate an evaluation order that you do not expect.

The defect highlights expressions of the form x op_1 y op_2 z. Here, op_1 and op_2 are operator
combinations that commonly induce this error. For instance, x == y | z.

The checker does not flag all operator combinations. For instance, x == y || z is not flagged
because you most likely intended to perform a logical OR between x == y and z. Specifically, the
checker flags these combinations:

• && and ||: For instance, x || y && z or x && y || z.
• Assignment and bitwise operations: For instance, x = y | z.
• Assignment and comparison operations: For instance, x = y != z or x = y > z.
• Comparison operations: For instance, x > y > z (except when one of the comparisons is an

equality x == y > z).
• Shift and numerical operation: For instance, x << y + 2.
• Pointer dereference and arithmetic: For instance, *p++.

Risk

The defect can cause the following issues:

• If you or another code reviewer reviews the code, the intended order of evaluation is not
immediately clear.

• It is possible that the result of the evaluation does not meet your expectations. For instance:

• In the operation *p++, it is possible that you expect the dereferenced value to be incremented.
However, the pointer p is incremented before the dereference.

 CERT C: Rec. EXP13-C

23-501

• In the operation (x == y | z), it is possible that you expect x to be compared with y | z.
However, the == operation happens before the | operation.

Fix

See if the order of evaluation is what you intend. If not, apply parentheses to implement the
evaluation order that you want.

For better readability of your code, it is good practice to apply parenthesis to implement an
evaluation order even when operator precedence rules impose that order.

Example - Expressions with Possibly Unintended Evaluation Order

int test(int a, int b, int c) {
 return(a & b == c);
}

In this example, the == operation happens first, followed by the & operation. If you intended the
reverse order of operations, the result is not what you expect.

Correction — Parenthesis For Intended Order

One possible correction is to apply parenthesis to implement the intended evaluation order.

int test(int a, int b, int c) {
 return((a & b) == c);
}

Check Information
Group: Rec. 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP13-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-502

https://wiki.sei.cmu.edu/confluence/display/c/EXP13-C.+Treat+relational+and+equality+operators+as+if+they+were+nonassociative

CERT C: Rec. EXP15-C
Do not place a semicolon on the same line as an if, for, or while statement

Description
Rule Definition

Do not place a semicolon on the same line as an if, for, or while statement.

Polyspace Implementation

This checker checks for Semicolon on same line as if, for or while statement.

Examples
Semicolon on same line as if, for or while statement
Issue

Semicolon on same line as if, for or while statement occurs when a semicolon on the same line
as the last token of an if, for or while statement results in an empty body.

The checker makes an exception for the case where the if statement is immediately followed by an
else statement:

if(condition);
else {
 //...
}

Risk

The semicolon following the if, for or while statement often indicates a programming error. The
spurious semicolon changes the execution flow and leads to unintended results.
Fix

If you want an empty body for the if, for or while statement , wrap the semicolon in a block and
place the block on a new line to explicitly indicate your intent:

if(condition)
 {;}

Otherwise, remove the spurious semicolon.
Example - Spurious Semicolon

int credentialsOK(void);

void login () {
 int loggedIn = 0;
 if(credentialsOK());
 loggedIn = 1;
}

 CERT C: Rec. EXP15-C

23-503

In this example, the spurious semicolon results in an empty if body. The assignment loggedIn=1 is
always performed. However, the assignment was probably to be performed only under a condition.

Correction – Remove Spurious Semicolon

If the semicolon was unintended, remove the semicolon.

int credentialsOK(void);

void login () {
 int loggedIn = 0;
 if(credentialsOK())
 loggedIn = 1;
}

Check Information
Group: Rec. 03. Expressions (EXP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP15-C

Introduced in R2020a

23 CERT C Rules and Recommendations

23-504

https://wiki.sei.cmu.edu/confluence/display/c/EXP15-C.+Do+not+place+a+semicolon+on+the+same+line+as+an+if%2C+for%2C+or+while+statement

CERT C: Rec. EXP19-C
Use braces for the body of an if, for, or while statement

Description
Rule Definition

Use braces for the body of an if, for, or while statement.

Polyspace Implementation

This checker checks for Iteration or selection statement body not enclosed in braces.

Examples
Iteration or selection statement body not enclosed in braces
Issue

The issue occurs when you do not enclose the body of an iteration-statement or a selection-statement
in braces.

Risk

The rule applies to:

• Iteration statements such as while, do ... while or for.
• Selection statements such as if ... else or switch.

If the block of code associated with an iteration or selection statement is not contained in braces, you
can make mistakes about the association. For example:

• You can wrongly associate a line of code with an iteration or selection statement because of its
indentation.

• You can accidentally place a semicolon following the iteration or selection statement. Because of
the semicolon, the line following the statement is no longer associated with the statement even
though you intended otherwise.

Example - Iteration Block

int data_available = 1;
void f1(void) {
 while(data_available) /* Non-compliant */
 process_data();

 while(data_available) { /* Compliant */
 process_data();
 }
}

In this example, the second while block is enclosed in braces and does not violate the rule.

 CERT C: Rec. EXP19-C

23-505

Example - Nested Selection Statements

#include <stdbool.h>

bool flag_1, flag_2;

void f1(void) {
 if(flag_1) /* Non-compliant */
 if(flag_2) /* Non-compliant */
 action_1();
 else /* Non-compliant */
 action_2();
}

In this example, the rule is violated because the if or else blocks are not enclosed in braces. Unless
indented as above, it is easy to associate the else statement with the inner if.

Correction — Place Selection Statement Block in Braces

One possible correction is to enclose each block associated with an if or else statement in braces.

#include <stdbool.h>

bool flag_1, flag_2;

void f1(void) {
 if(flag_1) { /* Compliant */
 if(flag_2) { /* Compliant */
 action_1();
 }
 }
 else { /* Compliant */
 action_2();
 }
}

Example - Spurious Semicolon After Iteration Statement

#include <stdbool.h>

bool flag_1;

void f1(void) {
 while(flag_1); /* Non-compliant */
 {
 flag_1 = action_1();
 }
}

In this example, the rule is violated even though the while statement is followed by a block in
braces. The semicolon following the while statement causes the block to dissociated from the while
statement.

The rule helps detect such spurious semicolons.

Check Information
Group: Rec. 03. Expressions (EXP)

23 CERT C Rules and Recommendations

23-506

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
EXP19-C

Introduced in R2019a

 CERT C: Rec. EXP19-C

23-507

https://wiki.sei.cmu.edu/confluence/display/c/EXP19-C.+Use+braces+for+the+body+of+an+if%2C+for%2C+or+while+statement

CERT C: Rec. INT00-C
Understand the data model used by your implementation(s)

Description
Rule Definition

Understand the data model used by your implementation(s).

Polyspace Implementation

This checker checks for these issues:

• Use of basic types declarations and definitions of variables or functions.
• Integer overflow.
• Integer constant overflow.
• Format string specifiers and arguments mismatch.

Examples
Use of basic types declarations and definitions of variables or functions
Issue

The issue occurs when you use basic numerical types instead of typedefs that indicate size and
signedness.

The rule checker flags use of basic data types in variable or function declarations and definitions. The
rule enforces use of typedefs instead.

The rule checker does not flag the use of basic types in the typedef statements themselves.
Risk

When the amount of memory being allocated is important, using specific-length types makes it clear
how much storage is being reserved for each object.
Example - Direct Use of Basic Types in Definitions

typedef unsigned int uint32_t;

int x = 0; /* Non compliant */
uint32_t y = 0; /* Compliant */

In this example, the declaration of x is noncompliant because it uses a basic type directly.

Integer overflow
Issue

Integer overflow occurs when an operation on integer variables can result in values that cannot be
represented by the result data type. The data type of a variable determines the number of bytes
allocated for the variable storage and constrains the range of allowed values.

23 CERT C Rules and Recommendations

23-508

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).

Risk

Integer overflows on signed integers result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. Use this event list to determine how the variables in the overflowing
computation acquire their current values. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click options in the
source code and see previous related events. See also “Interpret Bug Finder Results in Polyspace
Desktop User Interface”.

You can fix the defect by:

• Using a bigger data type for the result of the operation so that all values can be accommodated.
• Checking for values that lead to the overflow and performing appropriate error handling.

To avoid overflows in general, try one of these techniques:

• Keep integer variable values restricted to within half the range of signed integers.
• In operations that might overflow, check for conditions that can lead to the overflow and

implement wrap around or saturation behavior depending on how the result of the operation is
used. The result then becomes predictable and can be safely used in subsequent computations.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Addition of Maximum Integer

#include <limits.h>
typedef int int32;
int32 plusplus(void) {

 int32 var = INT_MAX;
 var++; //Noncompliant
 return var;
}

In the third statement of this function, the variable var is increased by one. But the value of var is
the maximum integer value, so an int cannot represent one plus the maximum integer value.

 CERT C: Rec. INT00-C

23-509

Correction — Different Storage Type

One possible correction is to change data types. Store the result of the operation in a larger data type
(Note that on a 32-bit machine, int and long has the same size). In this example, on a 32-bit
machine, by returning a long long instead of an int, the overflow error is fixed.

#include <limits.h>
typedef int int32;
typedef long long llint;
llint plusplus(void) {

 llint var = INT_MAX;
 var++; //Compliant
 return var;
}

Integer constant overflow
Issue

Integer constant overflow occurs when you assign a compile-time constant to a signed integer
variable whose data type cannot accommodate the value. An n-bit signed integer holds values in the
range [-2n-1, 2n-1-1].

For instance, c is an 8-bit signed char variable that cannot hold the value 255.

signed char c = 255;

To determine the sizes of fundamental types, Bug Finder uses your specification for Target
processor type (-target).

Risk

The default behavior for constant overflows can vary between compilers and platforms. Retaining
constant overflows can reduce the portability of your code.

Even if your compilers wraps around overflowing constants with a warning, the wrap-around
behavior can be unintended and cause unexpected results.

Fix

Check if the constant value is what you intended. If the value is correct, use a different, possibly
wider, data type for the variable.

Example - Overflowing Constant from Macro Expansion

#define MAX_UNSIGNED_CHAR 255
#define MAX_SIGNED_CHAR 127

void main() {
 char c1 = MAX_UNSIGNED_CHAR;
 char c2 = MAX_SIGNED_CHAR+1;
}

In this example, the defect appears on the macros because at least one use of the macro causes an
overflow. To reproduce these defects, use a Target processor type (-target) where char is
signed by default.

23 CERT C Rules and Recommendations

23-510

Correction — Use Different Data Type

One possible correction is to use a different data type for the variables that overflow.

#define MAX_UNSIGNED_CHAR 255
#define MAX_SIGNED_CHAR 127
typedef unsigned char uchar;
void main() {
 uchar c1 = MAX_UNSIGNED_CHAR;
 uchar c2 = MAX_SIGNED_CHAR+1;
}

Format string specifiers and arguments mismatch
Issue

Format string specifiers and arguments mismatch occurs when the format specifiers in the
formatted output functions such as printf do not match their corresponding arguments. For
example, an argument of type unsigned long must have a format specification of %lu.

Risk

Mismatch between format specifiers and the corresponding arguments result in undefined behavior.

Fix

Make sure that the format specifiers match the corresponding arguments. For instance, in this
example, the %d specifier does not match the string argument message and the %s specifier does not
match the integer argument err_number.

 const char *message = "License not available";
 int err_number = ;-4
 printf("Error: %d (error type %s)\n", message, err_number);

Switching the two format specifiers fixes the issue. See the specifications for the printf function for
more information about format specifiers.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Printing a Float

#include <stdio.h>
typedef unsigned long UL;
void string_format(void) {

 UL fst = 1;

 printf("%d\n", fst); //Noncompliant
}

In the printf statement, the format specifier, %d, does not match the data type of fst.

 CERT C: Rec. INT00-C

23-511

https://en.cppreference.com/w/cpp/io/c/fprintf

Correction — Use an Unsigned Long Format Specifier

One possible correction is to use the %lu format specifier. This specifier matches the unsigned
integer type and long size of fst.

#include <stdio.h>
typedef unsigned long UL;
typedef int int32;
void string_format(void) {

 UL fst = 1;

 printf("%lu\n", fst); //Compliant
}

Correction — Use an Integer Argument

One possible correction is to change the argument to match the format specifier. Convert fst to an
integer to match the format specifier and print the value 1.

#include <stdio.h>
typedef unsigned long UL;
typedef int int32;
void string_format(void) {

 UL fst = 1;

 printf("%d\n", (int32)fst); //Compliant
}

Check Information
Group: Rec. 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT00-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-512

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152417

CERT C: Rec. INT02-C
Understand integer conversion rules

Description
Rule Definition

Understand integer conversion rules.

Polyspace Implementation

This checker checks for Sign change integer conversion overflow.

Examples
Sign change integer conversion overflow
Issue

Sign change integer conversion overflow occurs when converting an unsigned integer to a signed
integer. If the variable does not have enough bytes to represent both the original constant and the
sign bit, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Convert from unsigned char to char

char sign_change(void) {
 unsigned char count = 255;

 return (char)count;
}

 CERT C: Rec. INT02-C

23-513

In the return statement, the unsigned character variable count is converted to a signed character.
However, char has 8 bits, 1 for the sign of the constant and 7 to represent the number. The
conversion operation overflows because 255 uses 8 bits.

Correction — Change conversion types

One possible correction is using a larger integer type. By using an int, there are enough bits to
represent the sign and the number value.

int sign_change(void) {
 unsigned char count = 255;

 return (int)count;
}

Check Information
Group: Rec. 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT02-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-514

https://wiki.sei.cmu.edu/confluence/display/c/INT02-C.+Understand+integer+conversion+rules

CERT C: Rec. INT04-C
Enforce limits on integer values originating from tainted sources

Description
Rule Definition

Enforce limits on integer values originating from tainted sources.

Polyspace Implementation

This checker checks for these issues:

• Array access with tainted index.
• Loop bounded with tainted value.
• Memory allocation with tainted size.
• Tainted size of variable length array.

Examples
Array access with tainted index
Issue

Array access with tainted index detects reading or writing to an array by using a tainted index that
has not been validated.

Risk

The index might be outside the valid array range. If the tainted index is outside the array range, it
can cause:

• Buffer underflow/underwrite — writing to memory before the beginning of the buffer.
• Buffer overflow — writing to memory after the end of a buffer.
• Over-reading a buffer — accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted buffer.

An attacker can use an invalid read or write operation create to problems in your program.

Fix

Before using the index to access the array, validate the index value to make sure that it is inside the
array range.

Example - Use Index to Return Buffer Value

#include <stdlib.h>
#include <stdio.h>
#define SIZE100 100
extern int tab[SIZE100];
static int tainted_int_source(void) {

 CERT C: Rec. INT04-C

23-515

 return strtol(getenv("INDEX"),NULL,10);
}
int taintedarrayindex(void) {
 int num = tainted_int_source();
 return tab[num];
}

In this example, the index num accesses the array tab. The index num is obtained from an unsecure
source and the function taintedarrayindex does not check to see if num is inside the range of tab.

Correction — Check Range Before Use

One possible correction is to check that num is in range before using it.

#include <stdlib.h>
#include <stdio.h>
#define SIZE100 100
extern int tab[SIZE100];
static int tainted_int_source(void) {
 return strtol(getenv("INDEX"),NULL,10);
}
int taintedarrayindex(void) {
 int num = tainted_int_source();
 if (num >= 0 && num < SIZE100) {
 return tab[num];
 } else {
 return -1;
 }
}

Loop bounded with tainted value
Issue

Loop bounded with tainted value detects loops that are bounded by values from an unsecure
source.

Risk

A tainted value can cause over looping or infinite loops. Attackers can use this vulnerability to crash
your program or cause other unintended behavior.

Fix

Before starting the loop, validate unknown boundary and iterator values.

Example - Loop Boundary From Input Argument

#include<stdio.h>
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedloopboundary(void) {
 int count;
 scanf("%d", &count);

23 CERT C Rules and Recommendations

23-516

 int res = 0;
 for (int i=0 ; i < count; ++i) {
 res += i;
 }
 return res;
}

In this example, the function uses the input argument to loop count times. count could be any
number because the value is not checked before starting the for loop.

Correction: Clamp Tainted Loop Control

One possible correction is to clamp the tainted loop control. To validate the tainted loop variable
count, this example limits count to a minimum value and a maximum value by using inline functions
min and max. Regardless of the user input, the value of count remains within a known range.

#include<stdio.h>
#include<algorithm>
#define MIN 50
#define MAX 128
static inline int max(int a, int b) { return a > b ? a : b;}
static inline int min(int a, int b) { return a < b ? a : b; }

int taintedloopboundary(void) {
 int count;
 scanf("%d", &count);
 int res = 0;
 count = max(MIN, min(count, MAX));
 for (int i=0 ; i<count ; ++i) {
 res += i;
 }
 return res;
}

Correction — Check Tainted Loop Control

Another possible correction is to check the low bound and the high bound of the tainted loop
boundary variable before starting the for loop. This example checks the low and high bounds of
count and executes the loop only when count is between 0 and 127.

#include<stdio.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedloopboundary(void) {
 int count;
 scanf("%d", &count);
 int res = 0;

 if (count>=0 && count<SIZE128) {
 for (int i=0 ; i<count ; ++i) {
 res += i;
 }

 CERT C: Rec. INT04-C

23-517

 }
 return res;
}

Memory allocation with tainted size
Issue

Memory allocation with tainted size checks memory allocation functions, such as calloc or
malloc, for size arguments from unsecured sources.

Risk

Uncontrolled memory allocation can cause your program to request too much system memory. This
consequence can lead to a crash due to an out-of-memory condition, or assigning too many resources.

Fix

Before allocating memory, check the value of your arguments to check that they do not exceed the
bounds.

Example - Allocate Memory Using Input From User

#include<stdio.h>
#include <stdlib.h>

int* bug_taintedmemoryallocsize(void) {
 size_t size;
 scanf("%zu", &size);
 int* p = (int*)malloc(size);
 return p;
}

In this example, malloc allocates size bytes of memory for the pointer p. The variable size comes
from the user of the program. Its value is not checked, and it could be larger than the amount of
available memory. If size is larger than the number of available bytes, your program could crash.

Correction — Check Size of Memory to be Allocated

One possible correction is to check the size of the memory that you want to allocate before
performing the malloc operation. This example checks to see if size is positive and less than the
maximum size.

#include<stdio.h>
#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int* corrected_taintedmemoryallocsize(void) {
 size_t size;
 scanf("%zu", &size);
 int* p = NULL;
 if (size>0 && size<SIZE128) { /* Fix: Check entry range before use */
 p = (int*)malloc((unsigned int)size);
 }

23 CERT C Rules and Recommendations

23-518

 return p;
}

Tainted size of variable length array
Issue

Tainted size of variable length array detects variable length arrays (VLA) whose size is from an
unsecure source.

Risk

If an attacker changed the size of your VLA to an unexpected value, it can cause your program to
crash or behave unexpectedly.

If the size is non-positive, the behavior of the VLA is undefined. Your program does not perform as
expected.

If the size is unbounded, the VLA can cause memory exhaustion or stack overflow.

Fix

Validate your VLA size to make sure that it is positive and less than a maximum value.

Example - Input Argument Used as Size of VLA

#include<stdio.h>
#inclule<stdlib.h>
#define LIM 40

long squaredSum(int size) {

 int tabvla[size];
 long res = 0;
 for (int i=0 ; i<LIM-1 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 return res;
}
int main(){
 int size;
 scanf("%d",&size);
 //...
 long result = squaredSum(size);
 //...
 return 0;
}

In this example, a variable length array size is based on an input argument. Because this input
argument value is not checked, the size may be negative or too large.

Correction — Check VLA Size

One possible correction is to check the size variable before creating the variable length array. This
example checks if the size is larger than 0 and less than 40, before creating the VLA

#include <stdio.h>
#include <stdlib.h>

 CERT C: Rec. INT04-C

23-519

#define LIM 40

long squaredSum(int size) {
 long res = 0;
 if (size>0 && size<LIM){
 int tabvla[size];
 for (int i=0 ; i<size || i<LIM-1 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 }else{
 res = -1;
 }
 return res;
}
int main(){
 int size;
 scanf("%d",&size);
 //...
 long result = squaredSum(size);
 //...
 return 0;
}

Check Information
Group: Rec. 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT04-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-520

https://wiki.sei.cmu.edu/confluence/display/c/INT04-C.+Enforce+limits+on+integer+values+originating+from+tainted+sources

CERT C: Rec. INT07-C
Use only explicitly signed or unsigned char type for numeric values

Description
Rule Definition

Use only explicitly signed or unsigned char type for numeric values.

Polyspace Implementation

This checker checks for Use of plain char type for numerical value.

Examples
Use of plain char type for numerical value
Issue

Use of plain char type for numerical value detects char variables without explicit signedness
that are being used in these ways:

• To store non-char constants
• In an arithmetic operation when the char is:

• A negative value.
• The result of a sign changing overflow.

• As a buffer offset.

char variables without a signed or unsigned qualifier can be either signed or unsigned depending
on your compiler.

Risk

Operations on a plain char can result in unexpected numerical values. If the char is used as an offset,
the char can cause buffer overflow or underflow.

Fix

When initializing a char variable, to avoid implementation-defined confusion, explicitly state whether
the char is signed or unsigned.

Example - Divide by char Variable

#include <stdio.h>

void badplaincharuse(void)
{
 char c = 200;
 int i = 1000;
 (void)printf("i/c = %d\n", i/c);
}

 CERT C: Rec. INT07-C

23-521

In this example, the char variable c can be signed or unsigned depending on your compiler. Assuming
8-bit, two's complement character types, the result is either i/c = 5 (unsigned char) or i/c = -17
(signed char). The correct result is unknown without knowing the signedness of char.

Correction — Add signed Qualifier

One possible correction is to add a signed qualifier to char. This clarification makes the operation
defined.

#include <stdio.h>

void badplaincharuse(void)
{
 signed char c = -56;
 int i = 1000;
 (void)printf("i/c = %d\n", i/c);
}

Check Information
Group: Rec. 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT07-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-522

https://wiki.sei.cmu.edu/confluence/display/c/INT07-C.+Use+only+explicitly+signed+or+unsigned+char+type+for+numeric+values

CERT C: Rec. INT08-C
Verify that all integer values are in range

Description
Rule Definition

Verify that all integer values are in range.

Polyspace Implementation

This checker checks for these issues:

• Integer overflow.
• Integer constant overflow.

Examples
Integer overflow
Issue

Integer overflow occurs when an operation on integer variables can result in values that cannot be
represented by the result data type. The data type of a variable determines the number of bytes
allocated for the variable storage and constrains the range of allowed values.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).

Risk

Integer overflows on signed integers result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. Use this event list to determine how the variables in the overflowing
computation acquire their current values. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click options in the
source code and see previous related events. See also “Interpret Bug Finder Results in Polyspace
Desktop User Interface”.

You can fix the defect by:

• Using a bigger data type for the result of the operation so that all values can be accommodated.
• Checking for values that lead to the overflow and performing appropriate error handling.

To avoid overflows in general, try one of these techniques:

• Keep integer variable values restricted to within half the range of signed integers.

 CERT C: Rec. INT08-C

23-523

• In operations that might overflow, check for conditions that can lead to the overflow and
implement wrap around or saturation behavior depending on how the result of the operation is
used. The result then becomes predictable and can be safely used in subsequent computations.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Addition of Maximum Integer

#include <limits.h>

int plusplus(void) {

 int var = INT_MAX;
 var++;
 return var;
}

In the third statement of this function, the variable var is increased by one. But the value of var is
the maximum integer value, so an int cannot represent one plus the maximum integer value.

Correction — Different Storage Type

One possible correction is to change data types. Store the result of the operation in a larger data type
(Note that on a 32-bit machine, int and long has the same size). In this example, on a 32-bit
machine, by returning a long long instead of an int, the overflow error is fixed.

#include <limits.h>

long long plusplus(void) {

 long long lvar = INT_MAX;
 lvar++;
 return lvar;
}

Integer constant overflow
Issue

Integer constant overflow occurs when you assign a compile-time constant to a signed integer
variable whose data type cannot accommodate the value. An n-bit signed integer holds values in the
range [-2n-1, 2n-1-1].

For instance, c is an 8-bit signed char variable that cannot hold the value 255.

signed char c = 255;

To determine the sizes of fundamental types, Bug Finder uses your specification for Target
processor type (-target).

23 CERT C Rules and Recommendations

23-524

Risk

The default behavior for constant overflows can vary between compilers and platforms. Retaining
constant overflows can reduce the portability of your code.

Even if your compilers wraps around overflowing constants with a warning, the wrap-around
behavior can be unintended and cause unexpected results.

Fix

Check if the constant value is what you intended. If the value is correct, use a different, possibly
wider, data type for the variable.

Example - Overflowing Constant from Macro Expansion

#define MAX_UNSIGNED_CHAR 255
#define MAX_SIGNED_CHAR 127

void main() {
 char c1 = MAX_UNSIGNED_CHAR;
 char c2 = MAX_SIGNED_CHAR+1;
}

In this example, the defect appears on the macros because at least one use of the macro causes an
overflow. To reproduce these defects, use a Target processor type (-target) where char is
signed by default.

Correction — Use Different Data Type

One possible correction is to use a different data type for the variables that overflow.

#define MAX_UNSIGNED_CHAR 255
#define MAX_SIGNED_CHAR 127

void main() {
 unsigned char c1 = MAX_UNSIGNED_CHAR;
 unsigned char c2 = MAX_SIGNED_CHAR+1;
}

Check Information
Group: Rec. 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT08-C

Introduced in R2019a

 CERT C: Rec. INT08-C

23-525

https://wiki.sei.cmu.edu/confluence/display/c/INT08-C.+Verify+that+all+integer+values+are+in+range

CERT C: Rec. INT09-C
Ensure enumeration constants map to unique values

Description
Rule Definition

Ensure enumeration constants map to unique values.

Polyspace Implementation

This checker checks for Enumeration constants map to same value.

Examples
Enumeration constants map to same value
Issue

The issue occurs when, within an enumerator list, the value of an implicitly-specified enumeration
constants are not unique.

The rule checker flags an enumeration if it has an implicitly specified enumeration constant with the
same value as another enumeration constant.

Risk

An implicitly specified enumeration constant has a value one greater than its predecessor. If the first
enumeration constant is implicitly specified, then its value is 0. An explicitly specified enumeration
constant has the specified value.

If implicitly and explicitly specified constants are mixed within an enumeration list, it is possible for
your program to replicate values. Such replications can be unintentional and can cause unexpected
behavior.

Example - Replication of Value in Implicitly Specified Enum Constants

enum color1 {red_1, blue_1, green_1}; /* Compliant */
enum color2 {red_2 = 1, blue_2 = 2, green_2 = 3}; /* Compliant */
enum color3 {red_3 = 1, blue_3, green_3}; /* Compliant */
enum color4 {red_4, blue_4, green_4 = 1}; /* Non Compliant */
enum color5 {red_5 = 2, blue_5, green_5 = 2}; /* Compliant */
enum color6 {red_6 = 2, blue_6, green_6 = 2, yellow_6}; /* Non Compliant */

Compliant situations:

• color1: All constants are implicitly specified.
• color2: All constants are explicitly specified.
• color3: Though there is a mix of implicit and explicit specification, all constants have unique

values.
• color5: The implicitly specified constants have unique values.

23 CERT C Rules and Recommendations

23-526

Noncompliant situations:

• color4: The implicitly specified constant blue_4 has the same value as green_4.
• color6: The implicitly specified constant blue_6 has the same value as yellow_6.

Check Information
Group: Rec. 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT09-C

Introduced in R2019a

 CERT C: Rec. INT09-C

23-527

https://wiki.sei.cmu.edu/confluence/display/c/INT09-C.+Ensure+enumeration+constants+map+to+unique+values

CERT C: Rec. INT10-C
Do not assume a positive remainder when using the % operator

Description
Rule Definition

Do not assume a positive remainder when using the % operator.

Polyspace Implementation

This checker checks for Tainted modulo operand.

Examples
Tainted modulo operand
Issue

Tainted modulo operand checks the operands of remainder % operations. Bug Finder flags modulo
operations with one or more tainted operands.
Risk

• If the second remainder operand is zero, your remainder operation fails, causing your program to
crash.

• If the second remainder operand is -1, your remainder operation can overflow if the remainder
operation is implemented based on the division operation that can overflow.

• If one of the operands is negative, the operation result is uncertain. For C89, the modulo operation
is not standardized, so the result from negative operands is implementation-defined.

These risks can be exploited by attackers to gain access to your program or the target in general.
Fix

Before performing the modulo operation, validate the values of the operands. Check the second
operand for values of 0 and -1. Check both operands for negative values.
Example — Modulo with User Input

#include <stdio.h>
extern void print_int(int);

int taintedintmod(void) {
 int userden;
 scanf("%d", &userden);
 int rem = 128%userden;
 print_int(rem);
 return rem;
}

In this example, the function performs a modulo operation by using a user input. The input is not
checked before calculating the remainder for values that can crash the program, such as 0 and -1.

23 CERT C Rules and Recommendations

23-528

Correction — Check Operand Values

One possible correction is to check the values of the operands before performing the modulo
operation. In this corrected example, the modulo operation continues only if the second operand is
greater than zero.

#include<stdio.h>
extern void print_int(int);

int taintedintmod(void) {
 int userden;
 scanf("%d", &userden);
 int rem = 0;
 if (userden > 0) {
 rem = 128 % userden;
 }
 print_int(rem);
 return rem;
}

Check Information
Group: Rec. 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT10-C

Introduced in R2019a

 CERT C: Rec. INT10-C

23-529

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152120

CERT C: Rec. INT12-C
Do not make assumptions about the type of a plain int bit-field when used in an expression

Description
Rule Definition

Do not make assumptions about the type of a plain int bit-field when used in an expression.

Polyspace Implementation

This checker checks for Bit-field declared without appropriate type.

Examples
Bit-field declared without appropriate type

Issue

The issue occurs when you declare a bit-filed without an appropriate type.

Risk

Using int is implementation-defined because bit-fields of type int can be either signed or
unsigned.

The use of enum, short char, or any other type of bit-field is not permitted in C90 because the
behavior is undefined.

In C99, the implementation can potentially define other integer types that are permitted in bit-field
declarations.

Check Information
Group: Rec. 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT12-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-530

https://wiki.sei.cmu.edu/confluence/display/c/INT12-C.+Do+not+make+assumptions+about+the+type+of+a+plain+int+bit-field+when+used+in+an+expression

CERT C: Rec. INT13-C
Use bitwise operators only on unsigned operands

Description
Rule Definition

Use bitwise operators only on unsigned operands.

Polyspace Implementation

This checker checks for Bitwise operation on negative value.

Examples
Bitwise operation on negative value
Issue

Bitwise operation on negative value detects bitwise operators (>>, ^, |, ~, but, not, &) used on
signed integer variables with negative values.
Risk

If the value of the signed integer is negative, bitwise operation results can be unexpected because:

• Bitwise operations on negative values are compiler-specific.
• Unexpected calculations can lead to additional vulnerabilities, such as buffer overflow.

Fix

When performing bitwise operations, use unsigned integers to avoid unexpected results.
Example - Right-Shift of Negative Integer

#include <stdio.h>
#include <stdarg.h>

static void demo_sprintf(const char *format, ...)
{
 int rc;
 va_list ap;
 char buf[sizeof("256")];

 va_start(ap, format);
 rc = vsprintf(buf, format, ap);
 if (rc == -1 || rc >= sizeof(buf)) {
 /* Handle error */
 }
 va_end(ap);
}

void bug_bitwiseneg()
{

 CERT C: Rec. INT13-C

23-531

 int stringify = 0x80000000;
 demo_sprintf("%u", stringify >> 24);
}

In this example, the statement demo_sprintf("%u", stringify >> 24) stops the program
unexpectedly. You expect the result of stringify >> 24 to be 0x80. However, the actual result is
0xffffff80 because stringify is signed and negative. The sign bit is also shifted.

Correction — Add unsigned Keyword

By adding the unsigned keyword, stringify is not negative and the right-shift operation gives the
expected result of 0x80.

#include <stdio.h>
#include <stdarg.h>

static void demo_sprintf(const char *format, ...)
{
 int rc;
 va_list ap;
 char buf[sizeof("256")];

 va_start(ap, format);
 rc = vsprintf(buf, format, ap);
 if (rc == -1 || rc >= sizeof(buf)) {
 /* Handle error */
 }
 va_end(ap);
}

void corrected_bitwiseneg()
{
 unsigned int stringify = 0x80000000;
 demo_sprintf("%u", stringify >> 24);
}

Check Information
Group: Rec. 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT13-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-532

https://wiki.sei.cmu.edu/confluence/display/c/INT13-C.+Use+bitwise+operators+only+on+unsigned+operands

CERT C: Rec. INT14-C
Avoid performing bitwise and arithmetic operations on the same data

Description
Rule Definition

Avoid performing bitwise and arithmetic operations on the same data.

Polyspace Implementation

This checker checks for Bitwise and arithmetic operation on the same data.

Examples
Bitwise and arithmetic operation on the same data
Issue

Bitwise and arithmetic operation on a same data detects statements with bitwise and arithmetic
operations on the same variable or expression.

Risk

Mixed bitwise and arithmetic operations do compile. However, the size of integer types affects the
result of these mixed operations. Mixed operations also reduce readability and maintainability.

Fix

Separate bitwise and arithmetic operations, or use only one type of operation per statement.

Example - Shift and Addition

unsigned int bitwisearithmix()
{
 unsigned int var = 50;
 var += (var << 2) + 1;
 return var;
}

This example shows bitwise and arithmetic operations on the variable var. var is shifted by two
(bitwise), then increased by 1 and added to itself (arithmetic).

Correction — Arithmetic Operations Only

You can reduce this expression to arithmetic-only operations: var + (var << 2) is equivalent to
var * 5.

unsigned int bitwisearithmix()
{
 unsigned int var = 50;
 var = var * 5 +1;
 return var;
}

 CERT C: Rec. INT14-C

23-533

Check Information
Group: Rec. 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT14-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-534

https://wiki.sei.cmu.edu/confluence/display/c/INT14-C.+Avoid+performing+bitwise+and+arithmetic+operations+on+the+same+data

CERT C: Rec. INT18-C
Evaluate integer expressions in a larger size before comparing or assigning to that size

Description
Rule Definition

Evaluate integer expressions in a larger size before comparing or assigning to that size.

Polyspace Implementation

This checker checks for these issues:

• Integer overflow.
• Unsigned integer overflow.

Examples
Integer overflow
Issue

Integer overflow occurs when an operation on integer variables can result in values that cannot be
represented by the result data type. The data type of a variable determines the number of bytes
allocated for the variable storage and constrains the range of allowed values.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).

Risk

Integer overflows on signed integers result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. Use this event list to determine how the variables in the overflowing
computation acquire their current values. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click options in the
source code and see previous related events. See also “Interpret Bug Finder Results in Polyspace
Desktop User Interface”.

You can fix the defect by:

• Using a bigger data type for the result of the operation so that all values can be accommodated.
• Checking for values that lead to the overflow and performing appropriate error handling.

To avoid overflows in general, try one of these techniques:

• Keep integer variable values restricted to within half the range of signed integers.

 CERT C: Rec. INT18-C

23-535

• In operations that might overflow, check for conditions that can lead to the overflow and
implement wrap around or saturation behavior depending on how the result of the operation is
used. The result then becomes predictable and can be safely used in subsequent computations.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Addition of Maximum Integer

#include <limits.h>

int plusplus(void) {

 int var = INT_MAX;
 var++;
 return var;
}

In the third statement of this function, the variable var is increased by one. But the value of var is
the maximum integer value, so an int cannot represent one plus the maximum integer value.

Correction — Different Storage Type

One possible correction is to change data types. Store the result of the operation in a larger data type
(Note that on a 32-bit machine, int and long has the same size). In this example, on a 32-bit
machine, by returning a long long instead of an int, the overflow error is fixed.

#include <limits.h>

long long plusplus(void) {

 long long lvar = INT_MAX;
 lvar++;
 return lvar;
}

Unsigned integer overflow

Issue

Unsigned integer overflow occurs when an operation on unsigned integer variables can result in
values that cannot be represented by the result data type. The data type of a variable determines the
number of bytes allocated for the variable storage and constrains the range of allowed values.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).

23 CERT C Rules and Recommendations

23-536

Risk

The C11 standard states that unsigned integer overflows result in wrap-around behavior. However, a
wrap around behavior might not always be desirable. For instance, if the result of a computation is
used as an array size and the computation overflows, the array size is much smaller than expected.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

You can fix the defect by:

• Using a bigger data type for the result of the operation so that all values can be accommodated.
• Checking for values that lead to the overflow and performing appropriate error handling. In the

error handling code, you can override the default wrap-around behavior for overflows and
implement saturation behavior, for instance.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Add One to Maximum Unsigned Integer

#include <limits.h>

unsigned int plusplus(void) {

 unsigned uvar = UINT_MAX;
 uvar++;
 return uvar;
}

In the third statement of this function, the variable uvar is increased by 1. However, the value of
uvar is the maximum unsigned integer value, so 1 plus the maximum integer value cannot be
represented by an unsigned int. The C programming language standard does not view unsigned
overflow as an error because the program automatically reduces the result by modulo the maximum
value plus 1. In this example, uvar is reduced by modulo UINT_MAX. The result is uvar = 1.

Correction — Different Storage Type

One possible correction is to store the operation result in a larger data type. In this example, by
returning an unsigned long long instead of an unsigned int, the overflow error is fixed.

#include <limits.h>

unsigned long long plusplus(void) {

 CERT C: Rec. INT18-C

23-537

 unsigned long long ullvar = UINT_MAX;
 ullvar++;
 return ullvar;
}

Check Information
Group: Rec. 04. Integers (INT)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
INT18-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-538

https://wiki.sei.cmu.edu/confluence/display/c/INT18-C.+Evaluate+integer+expressions+in+a+larger+size+before+comparing+or+assigning+to+that+size

CERT C: Rec. FLP00-C
Understand the limitations of floating-point numbers

Description
Rule Definition

Understand the limitations of floating-point numbers.

Polyspace Implementation

This checker checks for Absorption of float operand.

Examples
Absorption of float operand
Issue

Absorption of float operand occurs when one operand of an addition or subtraction operation is
always negligibly small compared to the other operand. Therefore, the result of the operation is
always equal to the value of the larger operand, making the operation redundant.

Risk

Redundant operations waste execution cycles of your processor.

The absorption of a float operand can indicate design issues elsewhere in the code. It is possible that
the developer expected a different range for one of the operands and did not expect the redundancy
of the operation. However, the operand range is different from what the developer expects because of
issues elsewhere in the code.

Fix

See if the operand ranges are what you expect. To see the ranges, place your cursor on the operation.

• If the ranges are what you expect, justify why you have the redundant operation in place. For
instance, the code is only partially written and you anticipate other values for one or both of the
operands from future unwritten code.

If you cannot justify the redundant operation, remove it.
• If the ranges are not what you expect, in your code, trace back to see where the ranges come

from. To begin your traceback, search for instances of the operand in your code. Browse through
previous instances of the operand and determine where the unexpected range originates.

To determine when one operand is negligible compared to the other operand, the defect uses rules
based on IEEE 754 standards. To fix the defect, instead of using the actual rules, you can use this
heuristic: the ratio of the larger to the smaller operand must be less than 2p-1 at least for some
values. Here, p is equal to 24 for 32-bit precision and 53 for 64-bit precision. To determine the
precision, the defect uses your specification for Target processor type (-target).

 CERT C: Rec. FLP00-C

23-539

This defect appears only if one operand is always negligibly smaller than the other operand. To see
instances of subnormal operands or results, use the check Subnormal Float in Polyspace Code
Prover.

Example - One Addition Operand Negligibly Smaller Than The Other Operand

#include <stdlib.h>

float get_signal(void);
void do_operation(float);

float input_signal1(void) {
 float temp = get_signal();
 if(temp > 0. && temp < 1e-30)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

float input_signal2(void) {
 float temp = get_signal();
 if(temp > 1.)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

void main() {
 float signal1 = input_signal1();
 float signal2 = input_signal2();
 float super_signal = signal1 + signal2;
 do_operation(super_signal);
}

In this example, the defect appears on the addition because the operand signal1 is in the range
(0,1e-30) but signal2 is greater than 1.

Correction — Remove Redundant Operation

One possible correction is to remove the redundant addition operation. In the following corrected
code, the operand signal2 and its associated code is also removed from consideration.

#include <stdlib.h>

float get_signal(void);
void do_operation(float);

float input_signal1(void) {
 float temp = get_signal();
 if(temp > 0. && temp < 1e-30)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);

23 CERT C Rules and Recommendations

23-540

 }
}

void main() {
 float signal1 = input_signal1();
 do_operation(signal1);
}

Correction — Verify Operand Range

Another possible correction is to see if the operand ranges are what you expect. For instance, if one
of the operand range is not supposed to be negligibly small, fix the issue causing the small range. In
the following corrected code, the range (0,1e-2) is imposed on signal2 so that it is not always
negligibly small as compared to signal1.

#include <stdlib.h>

float get_signal(void);
void do_operation(float);

float input_signal1(void) {
 float temp = get_signal();
 if(temp > 0. && temp < 1e-2)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

float input_signal2(void) {
 float temp = get_signal();
 if(temp > 1.)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

void main() {
 float signal1 = input_signal1();
 float signal2 = input_signal2();
 float super_signal = signal1 + signal2;
 do_operation(super_signal);
}

Check Information
Group: Rec. 05. Floating Point (FLP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

 CERT C: Rec. FLP00-C

23-541

External Websites
FLP00-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-542

https://wiki.sei.cmu.edu/confluence/display/c/FLP00-C.+Understand+the+limitations+of+floating-point+numbers

CERT C: Rec. FLP02-C
Avoid using floating-point numbers when precise computation is needed

Description
Rule Definition

Avoid using floating-point numbers when precise computation is needed.

Polyspace Implementation

This checker checks for Floating point comparison with equality operators.

Examples
Floating point comparison with equality operators
Issue

Floating point comparison with equality operators occurs when you use an equality (==) or
inequality (!=) operation with floating-point numbers.

Polyspace does not raise a defect for an equality or inequality operation with floating-point numbers
when:

• The comparison is between two float constants.

 float flt = 1.0;
 if (flt == 1.1)

• The comparison is between a constant and a variable that can take a finite, reasonably small
number of values.

float x;

int rand = random();
switch(rand) {
case 1: x = 0.0; break;
case 2: x = 1.3; break;
case 3: x = 1.7; break;
case 4: x = 2.0; break;
default: x = 3.5; break; }
//…
if (x==1.3)

• The comparison is between floating-point expressions that contain only integer values.

float x = 0.0;
for (x=0.0;x!=100.0;x+=1.0) {
//…
if (random) break;
}

if (3*x+4==2*x-1)

 CERT C: Rec. FLP02-C

23-543

//…
if (3*x+4 == 1.3)

• One of the operands is 0.0, unless you use the option flag -detect-bad-float-op-on-zero.

/* Defect detected when
you use the option flag */

if (x==0.0f)

If you are running an analysis through the user interface, you can enter this option in the Other
field, under the Advanced Settings node on the Configuration pane. See Other.

At the command line, add the flag to your analysis command.

polyspace-bug-finder -sources filename ^
-checkers BAD_FLOAT_OP -detect-bad-float-op-on-zero

Risk

Checking for equality or inequality of two floating-point values might return unexpected results
because floating-point representations are inexact and involve rounding errors.

Fix

Instead of checking for equality of floating-point values:

if (val1 == val2)

check if their difference is less than a predefined tolerance value (for instance, the value
FLT_EPSILON defined in float.h):

#include <float.h>
if(fabs(val1-val2) < FLT_EPSILON)

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Floats Inequality in for-loop

#include <stdio.h>
#include <math.h>
#include <float.h>

void func(void)
{
 float f;
 for (f = 1.0; f != 2.0; f = f + 0.1)
 (void)printf("Value: %f\n", f);
}

23 CERT C Rules and Recommendations

23-544

In this function, the for-loop tests the inequality of f and the number 2.0 as a stopping mechanism.
The number of iterations is difficult to determine, or might be infinite, because of the imprecision in
floating-point representation.

Correction — Change the Operator

One possible correction is to use a different operator that is not as strict. For example, an inequality
like >= or <=.

#include <stdio.h>
#include <math.h>
#include <float.h>

void func(void)
{
 float f;
 for (f = 1.0; f <= 2.0; f = f + 0.1)
 (void)printf("Value: %f\n", f);
}

Check Information
Group: Rec. 05. Floating Point (FLP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FLP02-C

Introduced in R2019a

 CERT C: Rec. FLP02-C

23-545

https://wiki.sei.cmu.edu/confluence/display/c/FLP02-C.+Avoid+using+floating-point+numbers+when+precise+computation+is+needed

CERT C: Rec. FLP03-C
Detect and handle floating-point errors

Description
Rule Definition

Detect and handle floating-point errors.

Polyspace Implementation

This checker checks for these issues:

• Float conversion overflow.
• Float overflow.
• Float division by zero.

Examples
Float conversion overflow
Issue

Float conversion overflow occurs when converting a floating point number to a smaller floating
point data type. If the variable does not have enough memory to represent the original number, the
conversion overflows.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).

Risk

Overflows can result in unpredictable values from computations. The result can be infinity or the
maximum finite value depending on the rounding mode used in the implementation. If you use the
result of an overflowing conversion in subsequent computations and do not account for the overflow,
you can see unexpected results.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. Use this event list to determine how the variable being converted acquires its
current value You can implement the fix on any event in the sequence. If the result details do not
show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

You can fix the defect by:

• Using a bigger data type for the result of the conversion so that all values can be accommodated.
• Checking for values that lead to the overflow and performing appropriate error handling.

In general, avoid conversions to smaller floating point types.

23 CERT C Rules and Recommendations

23-546

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Converting from double to float

float convert(void) {

 double diam = 1e100;
 return (float)diam;
}

In the return statement, the variable diam of type double (64 bits) is converted to a variable of type
float (32 bits). However, the value 1^100 requires more than 32 bits to be precisely represented.

Float overflow
Issue

Float overflow occurs when an operation on floating point variables can result in values that cannot
be represented by the result data type. The data type of a variable determines the number of bytes
allocated for the variable storage and constrains the range of allowed values.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).

Risk

Overflows can result in unpredictable values from computations. The result can be infinity or the
maximum finite value depending on the rounding mode used in the implementation. If you use the
result of an overflowing computation in subsequent computations and do not account for the overflow,
you can see unexpected results.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. Use this event list to determine how the variables in the overflowing
computation acquire their current values. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click options in the
source code and see previous related events. See also “Interpret Bug Finder Results in Polyspace
Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, for instance, when you handle infinities in your code, add
comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

 CERT C: Rec. FLP03-C

23-547

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Multiplication of Floats

#include <float.h>

float square(void) {

 float val = FLT_MAX;
 return val * val;
}

In the return statement, the variable val is multiplied by itself. The square of the maximum float
value cannot be represented by a float (the return type for this function) because the value of val is
the maximum float value.

Correction — Different Storage Type

One possible correction is to store the result of the operation in a larger data type. In this example,
by returning a double instead of a float, the overflow defect is fixed.

#include <float.h>

double square(void) {
 float val = FLT_MAX;

 return (double)val * (double)val;
}

Float division by zero
Issue

Float division by zero occurs when the denominator of a division operation can be a zero-valued
floating point number.

Risk

A division by zero can result in a program crash.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. Use this event list to determine how the denominator variable acquires a zero
value. You can implement the fix on any event in the sequence. If the result details do not show the
event history, you can trace back using right-click options in the source code and see previous related
events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

It is a good practice to check for zero values of a denominator before division and handle the error.
Instead of performing the division directly:

res = num/den;

use a library function that handles zero values of the denominator before performing the division:

res = div(num, den);

23 CERT C Rules and Recommendations

23-548

See examples of fixes below.

If you do not want to fix the issue, for instance, when you handle infinities in your code, add
comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Dividing a Floating Point Number by Zero

float fraction(float num)
{
 float denom = 0.0;
 float result = 0.0;

 result = num/denom;

 return result;
}

A division by zero error occurs at num/denom because denom is zero.

Correction — Check Before Division

float fraction(float num)
{
 float denom = 0.0;
 float result = 0.0;

 if(((int)denom) != 0)
 result = num/denom;

 return result;
}

Before dividing, add a test to see if the denominator is zero, checking before division occurs. If denom
is always zero, this correction can produce a dead code defect in your Polyspace results.

Correction — Change Denominator

One possible correction is to change the denominator value so that denom is not zero.

float fraction(float num)
{
 float denom = 2.0;
 float result = 0.0;

 result = num/denom;

 return result;
}

 CERT C: Rec. FLP03-C

23-549

Check Information
Group: Rec. 05. Floating Point (FLP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FLP03-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-550

https://wiki.sei.cmu.edu/confluence/display/c/FLP03-C.+Detect+and+handle+floating-point+errors

CERT C: Rec. FLP06-C
Convert integers to floating point for floating-point operations

Description
Rule Definition

Convert integers to floating point for floating-point operations.

Polyspace Implementation

This checker checks for Float overflow.

Examples
Float overflow
Issue

Float overflow occurs when an operation on floating point variables can result in values that cannot
be represented by the result data type. The data type of a variable determines the number of bytes
allocated for the variable storage and constrains the range of allowed values.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).

Risk

Overflows can result in unpredictable values from computations. The result can be infinity or the
maximum finite value depending on the rounding mode used in the implementation. If you use the
result of an overflowing computation in subsequent computations and do not account for the overflow,
you can see unexpected results.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. Use this event list to determine how the variables in the overflowing
computation acquire their current values. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click options in the
source code and see previous related events. See also “Interpret Bug Finder Results in Polyspace
Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, for instance, when you handle infinities in your code, add
comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

 CERT C: Rec. FLP06-C

23-551

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Multiplication of Floats

#include <float.h>

float square(void) {

 float val = FLT_MAX;
 return val * val;
}

In the return statement, the variable val is multiplied by itself. The square of the maximum float
value cannot be represented by a float (the return type for this function) because the value of val is
the maximum float value.

Correction — Different Storage Type

One possible correction is to store the result of the operation in a larger data type. In this example,
by returning a double instead of a float, the overflow defect is fixed.

#include <float.h>

double square(void) {
 float val = FLT_MAX;

 return (double)val * (double)val;
}

Check Information
Group: Rec. 05. Floating Point (FLP)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FLP06-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-552

https://wiki.sei.cmu.edu/confluence/display/c/FLP06-C.+Convert+integers+to+floating+point+for+floating-point+operations

CERT C: Rec. ARR01-C
Do not apply the sizeof operator to a pointer when taking the size of an array

Description
Rule Definition

Do not apply the sizeof operator to a pointer when taking the size of an array.

Polyspace Implementation

This checker checks for these issues:

• Wrong type used in sizeof.
• Possible misuse of sizeof.

Examples
Wrong type used in sizeof
Issue

Wrong type used in sizeof occurs when both of the following conditions hold:

• You assign the address of a block of memory to a pointer, or transfer data between two blocks of
memory. The assignment or copy uses the sizeof operator.

For instance, you initialize a pointer using malloc(sizeof(type)) or copy data between two
addresses using memcpy(destination_ptr, source_ptr, sizeof(type)).

• You use an incorrect type as argument of the sizeof operator. You use the pointer type instead of
the type that the pointer points to.

For instance, to initialize a type* pointer, you use malloc(sizeof(type*)) instead of
malloc(sizeof(type)).

Risk

Irrespective of what type stands for, the expression sizeof(type*) always returns a fixed size. The
size returned is the pointer size on your platform in bytes. The appearance of sizeof(type*) often
indicates an unintended usage. The error can cause allocation of a memory block that is much
smaller than what you need and lead to weaknesses such as buffer overflows.

For instance, assume that structType is a structure with ten int variables. If you initialize a
structType* pointer using malloc(sizeof(structType*)) on a 32-bit platform, the pointer is
assigned a memory block of four bytes. However, to be allocated completely for one structType
variable, the structType* pointer must point to a memory block of sizeof(structType) = 10 *
sizeof(int) bytes. The required size is much greater than the actual allocated size of four bytes.
Fix

To initialize a type* pointer, replace sizeof(type*) in your pointer initialization expression with
sizeof(type).

 CERT C: Rec. ARR01-C

23-553

Example - Allocate a Char Array With sizeof

#include <stdlib.h>

void test_case_1(void) {
 char* str;

 str = (char*)malloc(sizeof(char*) * 5);
 free(str);

}

In this example, memory is allocated for the character pointer str using a malloc of five char
pointers. However, str is a pointer to a character, not a pointer to a character pointer. Therefore the
sizeof argument, char*, is incorrect.

Correction — Match Pointer Type to sizeof Argument

One possible correction is to match the argument to the pointer type. In this example, str is a
character pointer, therefore the argument must also be a character.

#include <stdlib.h>

void test_case_1(void) {
 char* str;

 str = (char*)malloc(sizeof(char) * 5);
 free(str);

}

Possible misuse of sizeof
Issue

Possible misuse of sizeof occurs when Polyspace Bug Finder detects possibly unintended results
from the use of sizeof operator. For instance:

• You use the sizeof operator on an array parameter name, expecting the array size. However, the
array parameter name by itself is a pointer. The sizeof operator returns the size of that pointer.

• You use the sizeof operator on an array element, expecting the array size. However, the operator
returns the size of the array element.

• The size argument of certain functions such as strncmp or wcsncpy is incorrect because you
used the sizeof operator earlier with possibly incorrect expectations. For instance:

• In a function call strncmp(string1, string2, num), num is obtained from an incorrect
use of the sizeof operator on a pointer.

• In a function call wcsncpy(destination, source, num), num is the not the number of
wide characters but a size in bytes obtained by using the sizeof operator. For instance, you
use wcsncpy(destination, source, sizeof(destination) - 1) instead of
wcsncpy(destination, source, (sizeof(desintation)/sizeof(wchar_t)) - 1).

Risk

Incorrect use of the sizeof operator can cause the following issues:

23 CERT C Rules and Recommendations

23-554

• If you expect the sizeof operator to return array size and use the return value to constrain a
loop, the number of loop runs are smaller than what you expect.

• If you use the return value of sizeof operator to allocate a buffer, the buffer size is smaller than
what you require. Insufficient buffer can lead to resultant weaknesses such as buffer overflows.

• If you use the return value of sizeof operator incorrectly in a function call, the function does not
behave as you expect.

Fix

Possible fixes are:

• Do not use the sizeof operator on an array parameter name or array element to determine array
size.

The best practice is to pass the array size as a separate function parameter and use that
parameter in the function body.

• Use the sizeof operator carefully to determine the number argument of functions such as
strncmp or wcsncpy. For instance, for wide string functions such as wcsncpy, use the number of
wide characters as argument instead of the number of bytes.

Example - sizeof Used Incorrectly to Determine Array Size

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < sizeof(a)/sizeof(int); i++) {
 a[i] = i + 1;
 }
}

In this example, sizeof(a) returns the size of the pointer a and not the array size.

Correction — Determine Array Size in Another Way

One possible correction is to use another means to determine the array size.

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < MAX_SIZE; i++) {
 a[i] = i + 1;
 }
}

Check Information
Group: Rec. 06. Arrays (ARR)

See Also
Check SEI CERT-C (-cert-c)

 CERT C: Rec. ARR01-C

23-555

Topics
“Check for Coding Standard Violations”

External Websites
ARR01-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-556

https://wiki.sei.cmu.edu/confluence/display/c/ARR01-C.+Do+not+apply+the+sizeof+operator+to+a+pointer+when+taking+the+size+of+an+array

CERT C: Rec. ARR02-C
Explicitly specify array bounds, even if implicitly defined by an initializer

Description
Rule Definition

Explicitly specify array bounds, even if implicitly defined by an initializer.

Polyspace Implementation

This checker checks for the issue Improper array initialization.

Examples
Improper array initialization
Issue

Improper array initialization occurs when Polyspace Bug Finder considers that an array
initialization using initializers is incorrect.

This defect applies to normal and designated initializers. In C99, with designated initializers, you can
place the elements of an array initializer in any order and implicitly initialize some array elements.
The designated initializers use the array index to establish correspondence between an array element
and an array initializer element. For instance, the statement int arr[6] = { [4] = 29, [2] =
15 } is equivalent to int arr[6] = { 0, 0, 15, 0, 29, 0 }.

You can use initializers incorrectly in one of the following ways.

Issue Risk Possible Fix
In your initializer for a one-
dimensional array, you have
more elements than the array
size.

Unused array initializer
elements indicate a possible
coding error.

Increase the array size or
remove excess elements.

You place the braces enclosing
initializer values incorrectly.

Because of the incorrect
placement of braces, some array
initializer elements are not
used.

Unused array initializer
elements indicate a possible
coding error.

Place braces correctly.

In your designated initializer,
you do not initialize the first
element of the array explicitly.

The implicit initialization of the
first array element indicates a
possible coding error. You
possibly overlooked the fact that
array indexing starts from 0.

Initialize all elements explicitly.

 CERT C: Rec. ARR02-C

23-557

Issue Risk Possible Fix
In your designated initializer,
you initialize an element twice.

The first initialization is
overridden.

The redundant first initialization
indicates a possible coding
error.

Remove the redundant
initialization.

You use designated and
nondesignated initializers in the
same initialization.

You or another reviewer of your
code cannot determine the size
of the array by inspection.

Use either designated or
nondesignated initializers.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Incorrectly Placed Braces (C Only)

int arr[2][3]
= {{1, 2},
 {3, 4},
 {5, 6}
};

In this example, the array arr is initialized as {1,2,0,3,4,0}. Because the initializer contains
{5,6}, you might expect the array to be initialized {1,2,3,4,5,6}.

Correction — Place Braces Correctly

One possible correction is to place the braces correctly so that all elements are explicitly initialized.

int a1[2][3]
= {{1, 2, 3},
 {4, 5, 6}
};

Example - First Element Not Explicitly Initialized

int arr[5]
= {

23 CERT C Rules and Recommendations

23-558

 [1] = 2,
 [2] = 3,
 [3] = 4,
 [4] = 5
};

In this example, arr[0] is not explicitly initialized. It is possible that the programmer did not
consider that the array indexing starts from 0.
Correction — Explicitly Initialize All Elements

One possible correction is to initialize all elements explicitly.

int arr[5]
= {
 [0] = 1,
 [1] = 2,
 [2] = 3,
 [3] = 4,
 [4] = 5
};

Example - Element Initialized Twice

int arr[5]
= {
 [0] = 1,
 [1] = 2,
 [2] = 3,
 [2] = 4,
 [4] = 5
};

In this example, arr[2] is initialized twice. The first initialization is overridden. In this case, because
arr[3] was not explicitly initialized, it is possible that the programmer intended to initialize arr[3]
when arr[2] was initialized a second time.
Correction — Fix Redundant Initialization

One possible correction is to eliminate the redundant initialization.

int arr[5]
= {
 [0] = 1,
 [1] = 2,
 [2] = 3,
 [3] = 4,
 [4] = 5
};

Example - Mix of Designated and Nondesignated Initializers

int arr[]
= {
 [0] = 1,
 [3] = 3,
 4,
 [5] = 5,
 6
 };

 CERT C: Rec. ARR02-C

23-559

In this example, because a mix of designated and nondesignated initializers are used, it is difficult to
determine the size of arr by inspection.

Correction — Use Only Designated Initializers

One possible correction is to use only designated initializers for array initialization and to specify the
size of the array explicitly.

int arr[7]
= {
 [0] = 1,
 [3] = 3,
 [4] = 4,
 [5] = 5,
 [6] = 6
};

Check Information
Group: Rec. 06. Arrays (ARR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ARR02-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-560

https://wiki.sei.cmu.edu/confluence/display/c/ARR02-C.+Explicitly+specify+array+bounds%2C+even+if+implicitly+defined+by+an+initializer

CERT C: Rec. STR02-C
Sanitize data passed to complex subsystems

Description
Rule Definition

Sanitize data passed to complex subsystems.

Polyspace Implementation

This checker checks for these issues:

• Execution of externally controlled command.
• Command executed from externally controlled path.
• Library loaded from externally controlled path.

Examples
Execution of externally controlled command
Issue

Execution of externally controlled command checks for commands that are fully or partially
constructed from externally controlled input.

Risk

Attackers can use the externally controlled input as operating system commands, or arguments to the
application. An attacker could read or modify sensitive data can be read or modified, execute
unintended code, or gain access to other aspects of the program.

Fix

Validate the inputs to allow only intended input values. For example, create a whitelist of acceptable
inputs and compare the input against this list.

Example - Call External Command

#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "unistd.h"
#include "dlfcn.h"
#include "limits.h"
#define MAX 128

void taintedexternalcmd(void)
{
 char* usercmd;
 fgets(usercmd,MAX,stdin);
 char cmd[MAX] = "/usr/bin/cat ";

 CERT C: Rec. STR02-C

23-561

 strcat(cmd, usercmd);
 system(cmd);
}

This example function calls a command from a user input without checking the command variable.

Correction — Use a Predefined Command

One possible correction is to use a switch statement to run a predefined command, using the user
input as the switch variable.

#define _XOPEN_SOURCE
#define _GNU_SOURCE

#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "unistd.h"
#include "dlfcn.h"
#include "limits.h"

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
enum { CMD0 = 1, CMD1, CMD2 };

void taintedexternalcmd(void)
{
 int usercmd = strtol(getenv("cmd"),NULL,10);
 char cmd[SIZE128] = "/usr/bin/cat ";

 switch(usercmd) {
 case CMD0:
 strcat(cmd, "*.c");
 break;
 case CMD1:
 strcat(cmd, "*.h");
 break;
 case CMD2:
 strcat(cmd, "*.cpp");
 break;
 default:
 strcat(cmd, "*.c");
 }
 system(cmd);
}

Command executed from externally controlled path

Issue

Command executed from externally controlled path checks the path of commands that the
application controls. If the path of a command is from or constructed from external sources, Bug
Finder flags the command function.

23 CERT C Rules and Recommendations

23-562

Risk

An attacker can:

• Change the command that the program executes, possibly to a command that only the attack can
control.

• Change the environment in which the command executes, by which the attacker controls what the
command means and does.

Fix

Before calling the command, validate the path to make sure that it is the intended location.

Example - Executing Path from Environment Variable

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void bug_taintedpathcmd() {
 char cmd[SIZE128] = "";
 char* userpath = getenv("MYAPP_PATH");

 strncpy(cmd, userpath, SIZE100);
 strcat(cmd, "/ls *");
 /* Launching command */
 system(cmd);
}

This example obtains a path from an environment variable MYAPP_PATH. system runs a command
from that path without checking the value of the path. If the path is not the intended path, your
program executes in the wrong location.

Correction — Use Trusted Path

One possible correction is to use a list of allowed paths to match against the environment variable
path.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

/* Function to sanitize a string */
int sanitize_str(char* s, size_t n) {
 int res = 0;
 /* String is ok if */

 CERT C: Rec. STR02-C

23-563

 if (s && n>0 && n<SIZE128) {
 /* - string is not null */
 /* - string has a positive and limited size */
 s[n-1] = '\0'; /* Add a security \0 char at end of string */
 /* Tainted pointer detected above, used as "firewall" */
 res = 1;
 }
 return res;
}

/* Authorized path ids */
enum { PATH0=1, PATH1, PATH2 };

void taintedpathcmd() {
 char cmd[SIZE128] = "";

 char* userpathid = getenv("MYAPP_PATH_ID");
 if (sanitize_str(userpathid, SIZE100)) {
 int pathid = atoi(userpathid);

 char path[SIZE128] = "";
 switch(pathid) {
 case PATH0:
 strcpy(path, "/usr/local/my_app0");
 break;
 case PATH1:
 strcpy(path, "/usr/local/my_app1");
 break;
 case PATH2:
 strcpy(path, "/usr/local/my_app2");
 break;
 default:
 /* do nothing */
 break;
 }
 if (strlen(path)>0) {
 strncpy(cmd, path, SIZE100);
 strcat(cmd, "/ls *");
 system(cmd);
 }
 }
}

Library loaded from externally controlled path

Issue

Library loaded from externally controlled path looks for libraries loaded from fixed or controlled
paths. If unintended actors can control one or more locations on this fixed path, Bug Finder raises a
defect.

Risk

If an attacker knows or controls the path that you use to load a library, the attacker can change:

• The library that the program loads, replacing the intended library and commands.

23 CERT C Rules and Recommendations

23-564

• The environment in which the library executes, giving unintended permissions and capabilities to
the attacker.

Fix

When possible, use hard-coded or fully qualified path names to load libraries. It is possible the hard-
coded paths do not work on other systems. Use a centralized location for hard-coded paths, so that
you can easily modify the path within the source code.

Another solution is to use functions that require explicit paths. For example, system() does not
require a full path because it can use the PATH environment variable. However, execl() and
execv() do require the full path.

Example - Call Custom Library

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <dlfcn.h>
#include <limits.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void* taintedpathlib() {
 void* libhandle = NULL;
 char lib[SIZE128] = "";
 char* userpath = getenv("LD_LIBRARY_PATH");
 strncpy(lib, userpath, SIZE128);
 strcat(lib, "/libX.so");
 libhandle = dlopen(lib, 0x00001);
 return libhandle;
}

This example loads the library libX.so from an environment variable LD_LIBRARY_PATH. An
attacker can change the library path in this environment variable. The actual library you load could
be a different library from the one that you intend.

Correction — Change and Check Path

One possible correction is to change how you get the library path and check the path of the library
before opening the library. This example receives the path as an input argument. Then the path is
checked to make sure the library is not under /usr/.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <dlfcn.h>
#include <limits.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,

 CERT C: Rec. STR02-C

23-565

 SIZE128 = 128
};

/* Function to sanitize a string */
int sanitize_str(char* s, size_t n) {
 /* strlen is used here as a kind of firewall for tainted string errors */
 int res = (strlen(s) > 0 && strlen(s) < n);
 return res;
}
void* taintedpathlib(char* userpath) {
 void* libhandle = NULL;
 if (sanitize_str(userpath, SIZE128)) {
 char lib[SIZE128] = "";

 if (strncmp(userpath, "/usr", 4)!=0) {
 strncpy(lib, userpath, SIZE128);
 strcat(lib, "/libX.so");
 libhandle = dlopen(lib, RTLD_LAZY);
 }
 }
 return libhandle;
}

Check Information
Group: Rec. 07. Characters and Strings (STR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
STR02-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-566

https://wiki.sei.cmu.edu/confluence/display/c/STR02-C.+Sanitize+data+passed+to+complex+subsystems

CERT C: Rec. STR03-C
Do not inadvertently truncate a string

Description
Rule Definition

Do not inadvertently truncate a string.

Polyspace Implementation

This checker checks for Invalid use of standard library string routine.

Examples
Invalid use of standard library string routine
Issue

Invalid use of standard library string routine occurs when a string library function is called with
invalid arguments.
Risk

The risk depends on the type of invalid arguments. For instance, using the strcpy function with a
source argument larger than the destination argument can result in buffer overflows.
Fix

The fix depends on the standard library function involved in the defect. In some cases, you can
constrain the function arguments before the function call. For instance, if the strcpy function:

char * strcpy(char * destination, const char* source);

tries to copy too many bytes into the destination argument compared to the available buffer, constrain
the source argument before the call to strcpy. In some cases, you can use an alternative function to
avoid the error. For instance, instead of strcpy, you can use strncpy to control the number of bytes
copied. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Invalid Use of Standard Library String Routine Error

 #include <string.h>
 #include <stdio.h>

 CERT C: Rec. STR03-C

23-567

 char* Copy_String(void)
 {
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);
 /* Error: Size of text is less than gbuffer */

 return(res);
 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot copy text
into gbuffer.

Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger size than
the source string text.

#include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 /*Fix: gbuffer has equal or larger size than text */
 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);
 }

Check Information
Group: Rec. 07. Characters and Strings (STR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
STR03-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-568

https://wiki.sei.cmu.edu/confluence/display/c/STR03-C.+Do+not+inadvertently+truncate+a+string

CERT C: Rec. STR07-C
Use the bounds-checking interfaces for string manipulation

Description
Rule Definition

Use the bounds-checking interfaces for string manipulation.

Polyspace Implementation

This checker checks for these issues:

• Use of dangerous standard function.
• Destination buffer overflow in string manipulation.

Examples
Use of dangerous standard function
Issue

This issue occurs when your code uses standard functions that write data to a buffer in a way that can
result in buffer overflows.

The following table lists dangerous standard functions, the risks of using each function, and what
function to use instead. The checker flags:

• Any use of an inherently dangerous function.
• An use of a possibly dangerous function only if the size of the buffer to which data is written can

be determined at compile time. The checker does not flag an use of such a function with a
dynamically allocated buffer.

Dangerous
Function

Risk Level Safer Function

gets Inherently dangerous — You cannot
control the length of input from the
console.

fgets

cin Inherently dangerous — You cannot
control the length of input from the
console.

Avoid or prefaces calls to cin with
cin.width.

strcpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

strncpy

stpcpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

stpncpy

 CERT C: Rec. STR07-C

23-569

Dangerous
Function

Risk Level Safer Function

lstrcpy or StrCpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

StringCbCopy, StringCchCopy,
strncpy, strcpy_s, or strlcpy

strcat Possibly dangerous — If the
concatenated result is greater than the
destination, buffer overflow can occur.

strncat, strlcat, or strcat_s

lstrcat or StrCat Possibly dangerous — If the
concatenated result is greater than the
destination, buffer overflow can occur.

StringCbCat, StringCchCat,
strncay, strcat_s, or strlcat

wcpcpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

wcpncpy

wcscat Possibly dangerous — If the
concatenated result is greater than the
destination, buffer overflow can occur.

wcsncat, wcslcat, or wcncat_s

wcscpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

wcsncpy

sprintf Possibly dangerous — If the output
length depends on unknown lengths or
values, buffer overflow can occur.

snprintf

vsprintf Possibly dangerous — If the output
length depends on unknown lengths or
values, buffer overflow can occur.

vsnprintf

Risk

These functions can cause buffer overflow, which attackers can use to infiltrate your program.
Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Using sprintf

#include <stdio.h>
#include <string.h>

23 CERT C Rules and Recommendations

23-570

#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

 if (sprintf(dst, "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

This example function uses sprintf to copy the string str to dst. However, if str is larger than the
buffer, sprintf can cause buffer overflow.

Correction — Use snprintf with Buffer Size

One possible correction is to use snprintf instead and specify a buffer size.

#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

 if (snprintf(dst, sizeof(dst), "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

Destination buffer overflow in string manipulation

Issue

Destination buffer overflow in string manipulation occurs when certain string manipulation
functions write to their destination buffer argument at an offset greater than the buffer size.

For instance, when calling the function sprintf(char* buffer, const char* format), you
use a constant string format of greater size than buffer.

 CERT C: Rec. STR07-C

23-571

Risk

Buffer overflow can cause unexpected behavior such as memory corruption or stopping your system.
Buffer overflow also introduces the risk of code injection.

Fix

One possible solution is to use alternative functions to constrain the number of characters written.
For instance:

• If you use sprintf to write formatted data to a string, use snprintf, _snprintf or sprintf_s
instead to enforce length control. Alternatively, use asprintf to automatically allocate the
memory required for the destination buffer.

• If you use vsprintf to write formatted data from a variable argument list to a string, use
vsnprintf or vsprintf_s instead to enforce length control.

• If you use wcscpy to copy a wide string, use wcsncpy, wcslcpy, or wcscpy_s instead to enforce
length control.

Another possible solution is to increase the buffer size.

Example - Buffer Overflow in sprintf Use

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 sprintf(buffer, fmt_string);
}

In this example, buffer can contain 20 char elements but fmt_string has a greater size.

Correction — Use snprintf Instead of sprintf

One possible correction is to use the snprintf function to enforce length control.

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 snprintf(buffer, 20, fmt_string);
}

Check Information
Group: Rec. 07. Characters and Strings (STR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

23 CERT C Rules and Recommendations

23-572

External Websites
STR07-C

Introduced in R2019a

 CERT C: Rec. STR07-C

23-573

https://wiki.sei.cmu.edu/confluence/display/c/STR07-C.+Use+the+bounds-checking+interfaces+for+string+manipulation

CERT C: Rec. STR11-C
Do not specify the bound of a character array initialized with a string literal

Description
Rule Definition

Do not specify the bound of a character array initialized with a string literal.

Polyspace Implementation

This checker checks for Missing null in string array.

Examples
Missing null in string array
Issue

Missing null in string array occurs when a string does not have enough space to terminate with a
null character '\0'.

This defect applies only for projects in C.

Risk

A buffer overflow can occur if you copy a string to an array without assuming the implicit null
terminator.

Fix

If you initialize a character array with a literal, avoid specifying the array bounds.

char three[] = "THREE";

The compiler automatically allocates space for a null terminator. In the preceding example, the
compiler allocates sufficient space for five characters and a null terminator.

If the issue occurs after initialization, you might have to increase the size of the array by one to
account for the null terminator.

In certain circumstances, you might want to initialize the character array with a sequence of
characters instead of a string. In this situation, add comments to your result or code to avoid another
review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

23 CERT C Rules and Recommendations

23-574

Example - Array size is too small

void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[5] = "THREE";
}

The character array three has a size of 5 and 5 characters 'T', 'H', 'R', 'E', and 'E'. There is no
room for the null character at the end because three is only five bytes large.

Correction — Increase Array Size

One possible correction is to change the array size to allow for the five characters plus a null
character.

void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[6] = "THREE";
}

Correction — Change Initialization Method

One possible correction is to initialize the string by leaving the array size blank. This initialization
method allocates enough memory for the five characters and a terminating-null character.

void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[] = "THREE";
}

Check Information
Group: Rec. 07. Characters and Strings (STR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
STR11-C

Introduced in R2019a

 CERT C: Rec. STR11-C

23-575

https://wiki.sei.cmu.edu/confluence/display/c/STR11-C.+Do+not+specify+the+bound+of+a+character+array+initialized+with+a+string+literal

CERT C: Rec. MEM00-C
Allocate and free memory in the same module, at the same level of abstraction

Description
Rule Definition

Allocate and free memory in the same module, at the same level of abstraction.

Polyspace Implementation

This checker checks for these issues:

• Invalid free of pointer.
• Deallocation of previously deallocated pointer.
• Use of previously freed pointer.

Examples
Invalid free of pointer
Issue

Invalid free of pointer occurs when a block of memory released using the free function was not
previously allocated using malloc, calloc, or realloc.

Risk

The free function releases a block of memory allocated on the heap. If you try to access a location on
the heap that you did not allocate previously, a segmentation fault can occur.

The issue can highlight coding errors. For instance, you perhaps wanted to use the free function or a
previous malloc function on a different pointer.

Fix

In most cases, you can fix the issue by removing the free statement. If the pointer is not allocated
memory from the heap with malloc or calloc, you do not need to free the pointer. You can simply
reuse the pointer as required.

If the issue highlights a coding error such as use of free or malloc on the wrong pointer, correct the
error.

If the issue occurs because you use the free function to free memory allocated with the new
operator, replace the free function with the delete operator.

Example - Invalid Free of Pointer Error

#include <stdlib.h>

void Assign_Ones(void)
{

23 CERT C Rules and Recommendations

23-576

 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;

 free(p);
 /* Defect: p does not point to dynamically allocated memory */
}

The pointer p is deallocated using the free function. However, p points to a memory location that
was not dynamically allocated.

Correction — Remove Pointer Deallocation

If the number of elements of the array p is known at compile time, one possible correction is to
remove the deallocation of the pointer p.

#include <stdlib.h>

void Assign_Ones(void)
 {
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;
 /* Fix: Remove deallocation of p */
 }

Correction — Introduce Pointer Allocation

If the number of elements of the array p is not known at compile time, one possible correction is to
dynamically allocate memory to the array p.

#include <stdlib.h>

void Assign_Ones(int num)
{
 int *p;
 /* Fix: Allocate memory dynamically to p */
 p=(int*) calloc(10,sizeof(int));
 for(int i=0;i<10;i++)
 *(p+i)=1;
 free(p);
}

Deallocation of previously deallocated pointer

Issue

Deallocation of previously deallocated pointer occurs when a block of memory is freed more than
once using the free function without an intermediate allocation.

Risk

When a pointer is allocated dynamic memory with malloc, calloc or realloc, it points to a
memory location on the heap. When you use the free function on this pointer, the associated block of
memory is freed for reallocation. Trying to free this block of memory can result in a segmentation
fault.

 CERT C: Rec. MEM00-C

23-577

Fix

The fix depends on the root cause of the defect. See if you intended to allocate a memory block to the
pointer between the first deallocation and the second. Otherwise, remove the second free statement.

As a good practice, after you free a memory block, assign the corresponding pointer to NULL. Before
freeing pointers, check them for NULL values and handle the error. In this way, you are protected
against freeing an already freed block.

Example - Deallocation of Previously Deallocated Pointer Error

#include <stdlib.h>

void allocate_and_free(void)
{

 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return;

 *pi = 2;
 free(pi);
 free (pi);
 /* Defect: pi has already been freed */
}

The first free statement releases the block of memory that pi refers to. The second free statement
on pi releases a block of memory that has been freed already.

Correction — Remove Duplicate Deallocation

One possible correction is to remove the second free statement.

#include <stdlib.h>

void allocate_and_free(void)
{

 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return;

 *pi = 2;
 free(pi);
 /* Fix: remove second deallocation */
 }

Use of previously freed pointer
Issue

Use of previously freed pointer occurs when you access a block of memory after freeing the block
using the free function.

Risk

When a pointer is allocated dynamic memory with malloc, calloc or realloc, it points to a
memory location on the heap. When you use the free function on this pointer, the associated block of
memory is freed for reallocation. Trying to access this block of memory can result in unpredictable
behavior or even a segmentation fault.

23 CERT C Rules and Recommendations

23-578

Fix

The fix depends on the root cause of the defect. See if you intended to free the memory later or
allocate another memory block to the pointer before access.

As a good practice, after you free a memory block, assign the corresponding pointer to NULL. Before
dereferencing pointers, check them for NULL values and handle the error. In this way, you are
protected against accessing a freed block.

Example - Use of Previously Freed Pointer Error

#include <stdlib.h>
#include <stdio.h>
 int increment_content_of_address(int base_val, int shift)
 {
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;
 free(pi);

 j = *pi + shift;
 /* Defect: Reading a freed pointer */

 return j;
 }

The free statement releases the block of memory that pi refers to. Therefore, dereferencingpi after
the free statement is not valid.

Correction — Free Pointer After Use

One possible correction is to free the pointer pi only after the last instance where it is accessed.

#include <stdlib.h>

int increment_content_of_address(int base_val, int shift)
{
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;

 j = *pi + shift;
 *pi = 0;

 /* Fix: The pointer is freed after its last use */
 free(pi);
 return j;
}

Check Information
Group: Rec. 08. Memory Management (MEM)

 CERT C: Rec. MEM00-C

23-579

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM00-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-580

https://wiki.sei.cmu.edu/confluence/display/c/MEM00-C.+Allocate+and+free+memory+in+the+same+module%2C+at+the+same+level+of+abstraction

CERT C: Rec. MEM01-C
Store a new value in pointers immediately after free()

Description
Rule Definition

Store a new value in pointers immediately after free().

Polyspace Implementation

This checker checks for Missing reset of a freed pointer.

Examples
Missing reset of a freed pointer
Issue

Missing reset of a freed pointer detects pointers that have been freed and not reassigned another
value. After freeing a pointer, the memory data is still accessible. To clear this data, the pointer must
also be set to NULL or another value.

Risk

Not resetting pointers can cause dangling pointers. Dangling pointers can cause:

• Freeing already freed memory.
• Reading from or writing to already freed memory.
• Hackers executing code stored in freed pointers or with vulnerable permissions.

Fix

After freeing a pointer, if it is not immediately assigned to another valid address, set the pointer to
NULL.

Example - Free Without Reset

#include <stdlib.h>
enum {
 SIZE3 = 3,
 SIZE20 = 20
};

void missingfreedptrreset()
{
 static char *str = NULL;

 if (str == NULL)
 str = (char *)malloc(SIZE20);

 if (str != NULL)

 CERT C: Rec. MEM01-C

23-581

 free(str);
}

In this example, the pointer str is freed at the end of the program. The next call to
bug_missingfreedptrrese can fail because str is not NULL and the initialization to NULL can
be invalid.

Correction — Redefine free to Free and Reset

One possible correction is to customize free so that when you free a pointer, it is automatically reset.

#include <stdlib.h>
enum {
 SIZE3 = 3,
 SIZE20 = 20
};

static void sanitize_free(void **p)
{
 if ((p != NULL) && (*p != NULL))
 {
 free(*p);
 *p = NULL;
 }
}

#define free(X) sanitize_free((void **)&X)

void missingfreedptrreset()
{
 static char *str = NULL;

 if (str == NULL)
 str = (char *)malloc(SIZE20);

 if (str != ((void *)0))
 {
 free(str);
 }
}

Check Information
Group: Rec. 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM01-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-582

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152148

CERT C: Rec. MEM02-C
Immediately cast the result of a memory allocation function call into a pointer to the allocated type

Description
Rule Definition

Immediately cast the result of a memory allocation function call into a pointer to the allocated type.

Polyspace Implementation

This checker checks for Wrong allocated object size for cast.

Examples
Wrong allocated object size for cast
Issue

Wrong allocated object size for cast occurs during pointer conversion when the pointer’s address
is misaligned. If a pointer is converted to a different pointer type, the size of the allocated memory
must be a multiple of the size of the destination pointer.

Risk

Dereferencing a misaligned pointer has undefined behavior and can cause your program to crash.

Fix

Suppose you convert a pointer ptr1 to ptr2. If ptr1 points to a buffer of N bytes and ptr2 is a type
* pointer where sizeof(type) is n bytes, make sure that N is an integer multiple of n.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Dynamic Allocation of Pointers

#include <stdlib.h>

void dyn_non_align(void){
 void *ptr = malloc(13);
 long *dest;

 dest = (long*)ptr; //defect
}

 CERT C: Rec. MEM02-C

23-583

In this example, the software raises a defect on the conversion of ptr to a long*. The dynamically
allocated memory of ptr, 13 bytes, is not a multiple of the size of dest, 4 bytes. This misalignment
causes the Wrong allocated object size for cast defect.
Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In this
example, resolve the defect by changing the allocated memory to 12 instead of 13.

#include <stdlib.h>

void dyn_non_align(void){
 void *ptr = malloc(12);
 long *dest;

 dest = (long*)ptr;
}

Example - Static Allocation of Pointers

void static_non_align(void){
 char arr[13], *ptr;
 int *dest;

 ptr = &arr[0];
 dest = (int*)ptr; //defect
}

In this example, the software raises a defect on the conversion of ptr to an int* in line 6. ptr has a
memory size of 13 bytes because the array arr has a size of 13 bytes. The size of dest is 4 bytes,
which is not a multiple of 13. This misalignment causes the Wrong allocated object size for cast
defect.
Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In this
example, resolve the defect by changing the size of the array arr to a multiple of 4.

void static_non_align(void){
 char arr[12], *ptr;
 int *dest;

 ptr = &arr[0];
 dest = (int*)ptr;
}

Example - Allocation with a Function

#include <stdlib.h>

void *my_alloc(int size) {
 void *ptr_func = malloc(size);
 if(ptr_func == NULL) exit(-1);
 return ptr_func;
}

void fun_non_align(void){
 int *dest1;
 char *dest2;

23 CERT C Rules and Recommendations

23-584

 dest1 = (int*)my_alloc(13); //defect
 dest2 = (char*)my_alloc(13); //not a defect
}

In this example, the software raises a defect on the conversion of the pointer returned by
my_alloc(13) to an int* in line 11. my_alloc(13) returns a pointer with a dynamically allocated
size of 13 bytes. The size of dest1 is 4 bytes, which is not a divisor of 13. This misalignment causes
the Wrong allocated object size for cast defect. In line 12, the same function call, my_alloc(13),
does not call a defect for the conversion to dest2 because the size of char*, 1 byte, a divisor of 13.

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In this
example, resolve the defect by changing the argument for my_alloc to a multiple of 4.

#include <stdlib.h>

void *my_alloc(int size) {
 void *ptr_func = malloc(size);
 if(ptr_func == NULL) exit(-1);
 return ptr_func;
}

void fun_non_align(void){
 int *dest1;
 char *dest2;

 dest1 = (int*)my_alloc(12);
 dest2 = (char*)my_alloc(13);
}

Check Information
Group: Rec. 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM02-C

Introduced in R2019a

 CERT C: Rec. MEM02-C

23-585

https://wiki.sei.cmu.edu/confluence/display/c/MEM02-C.+Immediately+cast+the+result+of+a+memory+allocation+function+call+into+a+pointer+to+the+allocated+type

CERT C: Rec. MEM03-C
Clear sensitive information stored in reusable resources

Description
Rule Definition

Clear sensitive information stored in reusable resources.

Polyspace Implementation

This checker checks for these issues:

• Sensitive heap memory not cleared before release.
• Uncleared sensitive data in stack.

Examples
Sensitive heap memory not cleared before release
Issue

Sensitive heap memory not cleared before release detects dynamically allocated memory
containing sensitive data. If you do not clear the sensitive data when you free the memory, Bug
Finder raises a defect on the free function.

Risk

If the memory zone is reallocated, an attacker can still inspect the sensitive data in the old memory
zone.

Fix

Before calling free, clear out the sensitive data using memset or SecureZeroMemory.

Example - Sensitive Buffer Freed, Not Cleared

#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <pwd.h>

void sensitiveheapnotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char* buf = (char*) malloc(1024);
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 free(buf);
}

In this example, the function uses a buffer of passwords and frees the memory before the end of the
function. However, the data in the memory is not cleared by using the free command.

23 CERT C Rules and Recommendations

23-586

Correction — Nullify Data

One possible correction is to write over the data to clear out the sensitive information. This example
uses memset to write over the data with zeros.

#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <pwd.h>
#include <assert.h>

#define isNull(arr) for(int i=0;i<(sizeof(arr)/sizeof(arr[0]));i++) assert(arr[i]==0)

void sensitiveheapnotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char* buf = (char*) malloc(1024);

 if (buf) {
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 memset(buf, 0, (size_t)1024);
 isNull(buf);
 free(buf);
 }
}

Uncleared sensitive data in stack

Issue

Uncleared sensitive data in stack detects static memory containing sensitive data. If you do not
clear the sensitive data from your stack before exiting the function or program, Bug Finder raises a
defect on the last curly brace.

Risk

Leaving sensitive information in your stack, such as passwords or user information, allows an
attacker additional access to the information after your program has ended.

Fix

Before exiting a function or program, clear out the memory zones that contain sensitive data by using
memset or SecureZeroMemory.

Example - Static Buffer of Password Information

#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>

void bug_sensitivestacknotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
}

 CERT C: Rec. MEM03-C

23-587

In this example, a static buffer is filled with password information. The program frees the stack
memory at the end of the program. However, the data is still accessible from the memory.

Correction — Clear Memory

One possible correction is to write over the memory before exiting the function. This example uses
memset to clear the data from the buffer memory.

#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <pwd.h>
#include <assert.h>

#define isNull(arr) for(int i=0; i<(sizeof(arr)/sizeof(arr[0])); i++) assert(arr[i]==0)

void corrected_sensitivestacknotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 memset(buf, 0, (size_t)1024);
 isNull(buf);
}

Check Information
Group: Rec. 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM03-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-588

https://wiki.sei.cmu.edu/confluence/display/c/MEM03-C.+Clear+sensitive+information+stored+in+reusable+resources

CERT C: Rec. MEM04-C
Beware of zero-length allocations

Description
Rule Definition

Beware of zero-length allocations.

Polyspace Implementation

This checker checks for these issues:

• Zero length memory allocation
• Variable length array with nonpositive size.
• Tainted size of variable length array.

Examples
Zero length memory allocation
Issue

Zero length memory allocation occurs when a memory allocation function such as malloc or
calloc takes a size argument (or number of elements) that might contain the value zero.

Risk

According to the C Standard (C11, Subclause 7.22.3), if zero-sized memory is requested from a
memory allocation function, the behavior is implementation-defined. In some implementations, the
function might return NULL and your existing guards against NULL might suffice to protect against
the zero length allocation. In other cases, the function might return a memory region that must not
be accessed. Attempts to dereference this region results in undefined behavior.

Fix

Check the size to be passed to malloc, or the size and number of elements to be passed to calloc,
for zero.

Example – Possibly Zero Size Argument to malloc

#include <stdlib.h>

void func(unsigned int size) {
 int *list = (int *)malloc(size);//Noncompliant
 if (list == NULL) {
 /* Handle allocation error */
 }
 else {
 /* Continue processing list */
 }
}

 CERT C: Rec. MEM04-C

23-589

In this example, the variable size might contain the value zero leading to a zero length memory
allocation.
Correction – Check for Zero Before Using Variable as Size

Validate external inputs for zero values before using as size argument to the malloc function.

#include <stdlib.h>

void func(unsigned int size) {
 if(size == 0) {
 /* Handle zero size error */
 }
 else {
 int *list = (int *)malloc(size);
 if (list == NULL) {
 /* Handle allocation error */
 }
 else {
 /* Continue processing list */
 }
 }
}

Variable length array with nonpositive size
Issue

Variable length array with non-positive size occurs when size of a variable-length array is zero or
negative.
Risk

If the size of a variable-length array is zero or negative, unexpected behavior can occur, such as stack
overflow.
Fix

When you declare a variable-length array as a local variable in a function:

• If you use a function parameter as the array size, check that the parameter is positive.
• If you use the result of a computation on a function parameter as the array size, check that the

result is positive.

You can place a test for positive value either before the function call or the array declaration in the
function body.
Example - Nonpositive Array Size

int input(void);

void add_scalar(int n, int m) {
 int r=0;
 int arr[m][n];
 for (int i=0; i<m; i++) {
 for (int j=0; j<n; j++) {
 arr[i][j] = input();
 r += arr[i][j];
 }

23 CERT C Rules and Recommendations

23-590

 }
}

void main() {
 add_scalar(2,2);
 add_scalar(-1,2);
 add_scalar(2,0);
}

In this example, the second and third calls to add_scalar result in a negative and zero size of arr.
Correction — Make Array Size Positive

One possible correction is fix or remove calls that result in a nonpositive array size.

Tainted size of variable length array
Issue

Tainted size of variable length array detects variable length arrays (VLA) whose size is from an
unsecure source.
Risk

If an attacker changed the size of your VLA to an unexpected value, it can cause your program to
crash or behave unexpectedly.

If the size is non-positive, the behavior of the VLA is undefined. Your program does not perform as
expected.

If the size is unbounded, the VLA can cause memory exhaustion or stack overflow.
Fix

Validate your VLA size to make sure that it is positive and less than a maximum value.
Example - User Input Used as Size of VLA

#include<stdio.h>
#inclule<stdlib.h>
#define LIM 40

long squaredSum(int size) {

 int tabvla[size];
 long res = 0;
 for (int i=0 ; i<LIM-1 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 return res;
}
int main(){
 int size;
 scanf("%d",&size);
 //...
 long result = squaredSum(size);
 //...
 return 0;
}

 CERT C: Rec. MEM04-C

23-591

In this example, a variable length array size is based on an input argument. Because this input
argument value is not checked, the size may be negative or too large.

Correction — Check VLA Size

One possible correction is to check the size variable before creating the variable length array. This
example checks if the size is larger than 0 and less than 40, before creating the VLA

#include <stdio.h>
#include <stdlib.h>
#define LIM 40

long squaredSum(int size) {
 long res = 0;
 if (size>0 && size<LIM){
 int tabvla[size];
 for (int i=0 ; i<size || i<LIM-1 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 }else{
 res = -1;
 }
 return res;
}
int main(){
 int size;
 scanf("%d",&size);
 //...
 long result = squaredSum(size);
 //...
 return 0;
}

Check Information
Group: Rec. 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM04-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-592

https://wiki.sei.cmu.edu/confluence/display/c/MEM04-C.+Beware+of+zero-length+allocations

CERT C: Rec. MEM05-C
Avoid large stack allocations

Description
Rule Definition

Avoid large stack allocations.

Polyspace Implementation

This checker checks for these issues:

• Direct or indirect function call to itself.
• Variable length array with nonpositive size.
• Tainted size of variable length array.

Examples
Direct or indirect function call to itself

Issue

The issue occurs when your code contains functions that call themselves directly or indirectly.

Risk

Variables local to a function are stored in the call stack. If a function calls itself directly or indirectly
several times, the available stack space can be exceeded, causing serious failure. Unless the
recursion is tightly controlled, it is difficult to determine the maximum stack space required.

Example - Direct and Indirect Recursion

void foo1(void) { /* Non-compliant */
 /*- Indirect recursion foo1->foo2->foo1... */
 foo2();
 foo1(); /* Non-compliant - Direct recursion */
}

void foo2(void) {/*Noncompliant*/
 /* Indirect Recursion - Foo2->foo1->foo2*/
 foo1();
}

In this example, the rule is violated because of:

• Direct recursion foo1 → foo1.
• Indirect recursion foo1 → foo2 → foo1.
• Indirect recursion foo2 → foo1 → foo2.

 CERT C: Rec. MEM05-C

23-593

Variable length array with nonpositive size

Issue

Variable length array with non-positive size occurs when size of a variable-length array is zero or
negative.

Risk

If the size of a variable-length array is zero or negative, unexpected behavior can occur, such as stack
overflow.

Fix

When you declare a variable-length array as a local variable in a function:

• If you use a function parameter as the array size, check that the parameter is positive.
• If you use the result of a computation on a function parameter as the array size, check that the

result is positive.

You can place a test for positive value either before the function call or the array declaration in the
function body.

Example - Nonpositive Array Size

int input(void);

void add_scalar(int n, int m) {
 int r=0;
 int arr[m][n];
 for (int i=0; i<m; i++) {
 for (int j=0; j<n; j++) {
 arr[i][j] = input();
 r += arr[i][j];
 }
 }
}

void main() {
 add_scalar(2,2);
 add_scalar(-1,2);
 add_scalar(2,0);
}

In this example, the second and third calls to add_scalar result in a negative and zero size of arr.

Correction — Make Array Size Positive

One possible correction is fix or remove calls that result in a nonpositive array size.

Tainted size of variable length array

Issue

Tainted size of variable length array detects variable length arrays (VLA) whose size is from an
unsecure source.

23 CERT C Rules and Recommendations

23-594

Risk

If an attacker changed the size of your VLA to an unexpected value, it can cause your program to
crash or behave unexpectedly.

If the size is non-positive, the behavior of the VLA is undefined. Your program does not perform as
expected.

If the size is unbounded, the VLA can cause memory exhaustion or stack overflow.
Fix

Validate your VLA size to make sure that it is positive and less than a maximum value.
Example — User Input Argument Used as Size of VLA

#include<stdio.h>
#inclule<stdlib.h>
#define LIM 40

long squaredSum(int size) {

 int tabvla[size];
 long res = 0;
 for (int i=0 ; i<LIM-1 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 return res;
}
int main(){
 int size;
 scanf("%d",&size);
 //...
 long result = squaredSum(size);
 //...
 return 0;
}

In this example, a variable length array size is based on an input argument. Because this input
argument value is not checked, the size may be negative or too large.
Correction — Check VLA Size

One possible correction is to check the size variable before creating the variable length array. This
example checks if the size is larger than 10 and less than 100, before creating the VLA

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedvlasize(int size) {
 int res = 0;
 if (size>SIZE10 && size<SIZE100) {
 int tabvla[size];
 for (int i=0 ; i<SIZE10 ; ++i) {
 tabvla[i] = i*i;

 CERT C: Rec. MEM05-C

23-595

 res += tabvla[i];
 }
 }
 return res;
}

Check Information
Group: Rec. 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM05-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-596

https://wiki.sei.cmu.edu/confluence/display/c/MEM05-C.+Avoid+large+stack+allocations

CERT C: Rec. MEM06-C
Ensure that sensitive data is not written out to disk

Description
Rule Definition

Ensure that sensitive data is not written out to disk.

Polyspace Implementation

This checker checks for Sensitive data printed out.

Examples
Sensitive data printed out
Issue

Sensitive data printed out detects print functions, such as stdout or stderr, that print sensitive
information.

The checker considers the following as sensitive information:

• Return values of password manipulation functions such as getpw, getpwnam or getpwuid.
• Input values of functions such as the Windows-specific function LogonUser.

Risk

Printing sensitive information, such as passwords or user information, allows an attacker additional
access to the information.

Fix

One fix for this defect is to not print out sensitive information.

If you are saving your logfile to an external file, set the file permissions so that attackers cannot
access the logfile information.

Example - Printing Passwords

#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

extern void verify_null(const char* buf);
void bug_sensitivedataprint(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);

 CERT C: Rec. MEM06-C

23-597

 puts("Name\n");
 puts(pwd.pw_name);
 puts("PassWord\n");
 puts(pwd.pw_passwd);
 memset(buf, 0, sizeof(buf));
 verify_null(buf);
}

In this example, Bug Finder flags puts for printing out the password pwd.pw_passwd.

Correction — Obfuscate the Password

One possible correction is to obfuscate the password information so that the information is not
visible.

#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

extern void verify_null(const char* buf);

void sensitivedataprint(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 puts("Name\n");
 puts(pwd.pw_name);
 puts("PassWord\n");
 puts("XXXXXXXX\n");
 memset(buf, 0, sizeof(buf));
 verify_null(buf);
}

Check Information
Group: Rec. 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM06-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-598

https://wiki.sei.cmu.edu/confluence/display/c/MEM06-C.+Ensure+that+sensitive+data+is+not+written+out+to+disk

CERT C: Rec. MEM11-C
Do not assume infinite heap space

Description
Rule Definition

Do not assume infinite heap space.

Polyspace Implementation

This checker checks for Unprotected dynamic memory allocation.

Examples
Unprotected dynamic memory allocation
Issue

Unprotected dynamic memory allocation occurs when you do not check after dynamic memory
allocation whether the memory allocation succeeded.

Risk

When memory is dynamically allocated using malloc, calloc, or realloc, it returns a value NULL if
the requested memory is not available. If the code following the allocation accesses the memory block
without checking for this NULL value, this access is not protected from failures.

Fix

Check the return value of malloc, calloc, or realloc for NULL before accessing the allocated
memory location.

int *ptr = malloc(size * sizeof(int));

if(ptr) /* Check for NULL */
{
 /* Memory access through ptr */
}

Example - Unprotected dynamic memory allocation error

#include <stdlib.h>

void Assign_Value(void)
{
 int* p = (int*)calloc(5, sizeof(int));

 *p = 2;
 /* Defect: p is not checked for NULL value */

 free(p);
}

 CERT C: Rec. MEM11-C

23-599

If the memory allocation fails, the function calloc returns NULL to p. Before accessing the memory
through p, the code does not check whether p is NULL

Correction — Check for NULL Value

One possible correction is to check whether p has value NULL before dereference.

#include <stdlib.h>

void Assign_Value(void)
 {
 int* p = (int*)calloc(5, sizeof(int));

 /* Fix: Check if p is NULL */
 if(p!=NULL) *p = 2;

 free(p);
 }

Check Information
Group: Rec. 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM11-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-600

https://wiki.sei.cmu.edu/confluence/display/c/MEM11-C.+Do+not+assume+infinite+heap+space

CERT C: Rec. MEM12-C
Consider using a goto chain when leaving a function on error when using and releasing resources

Description
Rule Definition

Consider using a goto chain when leaving a function on error when using and releasing resources.

Polyspace Implementation

This checker checks for these issues:

• Memory leak.
• Resource leak.

Examples
Memory leak
Issue

Memory leak occurs when you do not free a block of memory allocated through malloc, calloc,
realloc, or new. If the memory is allocated in a function, the defect does not occur if:

• Within the function, you free the memory using free or delete.
• The function returns the pointer assigned by malloc, calloc, realloc, or new.
• The function stores the pointer in a global variable or in a parameter.

Risk

Dynamic memory allocation functions such as malloc allocate memory on the heap. If you do not
release the memory after use, you reduce the amount of memory available for another allocation. On
embedded systems with limited memory, you might end up exhausting available heap memory even
during program execution.
Fix

Determine the scope where the dynamically allocated memory is accessed. Free the memory block at
the end of this scope.

To free a block of memory, use the free function on the pointer that was used during memory
allocation. For instance:

ptr = (int*)malloc(sizeof(int));
//...
free(ptr);

It is a good practice to allocate and free memory in the same module at the same level of abstraction.
For instance, in this example, func allocates and frees memory at the same level but func2 does not.

void func() {
 ptr = (int*)malloc(sizeof(int));

 CERT C: Rec. MEM12-C

23-601

 {
 .//..
 }
 free(ptr);
}

void func2() {
 {
 ptr = (int*)malloc(sizeof(int));
 //...
 }
 free(ptr);
}

See CERT-C Rule MEM00-C.
Example - Dynamic Memory Not Released Before End of Function

#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return;
 }

 *pi = 42;
 /* Defect: pi is not freed */
}

In this example, pi is dynamically allocated by malloc. The function assign_memory does not free
the memory, nor does it return pi.
Correction — Free Memory

One possible correction is to free the memory referenced by pi using the free function. The free
function must be called before the function assign_memory terminates

#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return;
 }
 *pi = 42;

 /* Fix: Free the pointer pi*/
 free(pi);
}

23 CERT C Rules and Recommendations

23-602

https://wiki.sei.cmu.edu/confluence/x/FtYxBQ

Correction — Return Pointer from Dynamic Allocation

Another possible correction is to return the pointer pi. Returning pi allows the function calling
assign_memory to free the memory block using pi.

#include<stdlib.h>
#include<stdio.h>

int* assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return(pi);
 }
 *pi = 42;

 /* Fix: Return the pointer pi*/
 return(pi);
}

Resource leak
Issue

Resource leak occurs when you open a file stream by using a FILE pointer but do not close it
before:

• The end of the pointer’s scope.
• Assigning the pointer to another stream.

Risk

If you do not release file handles explicitly as soon as possible, a failure can occur due to exhaustion
of resources.

Fix

Close a FILE pointer before the end of its scope, or before you assign the pointer to another stream.

Example - FILE Pointer Not Released Before End of Scope

#include <stdio.h>

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");
 fclose (fp1);
}

In this example, the file pointer fp1 is pointing to a file data1.txt. Before fp1 is explicitly
dissociated from the file stream of data1.txt, it is used to access another file data2.txt.

 CERT C: Rec. MEM12-C

23-603

Correction — Release FILE Pointer

One possible correction is to explicitly dissociate fp1 from the file stream of data1.txt.

#include <stdio.h>

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");
 fclose(fp1);

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");
 fclose (fp1);
}

Check Information
Group: Rec. 08. Memory Management (MEM)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MEM12-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-604

https://wiki.sei.cmu.edu/confluence/display/c/MEM12-C.+Consider+using+a+goto+chain+when+leaving+a+function+on+error+when+using+and+releasing+resources

CERT C: Rec. FIO02-C
Canonicalize path names originating from tainted sources

Description
Rule Definition

Canonicalize path names originating from tainted sources.

Polyspace Implementation

This checker checks for Vulnerable path manipulation.

Examples
Vulnerable path manipulation
Issue

Vulnerable path manipulation detects relative or absolute path traversals. If the path traversal
contains a tainted source, or you use the path to open/create files, Bug Finder raises a defect.

Risk

Relative path elements, such as ".." can resolve to locations outside the intended folder. Absolute
path elements, such as "/abs/path" can also resolve to locations outside the intended folder.

An attacker can use these types of path traversal elements to traverse to the rest of the file system
and access other files or folders.

Fix

Avoid vulnerable path traversal elements such as /../ and /abs/path/. Use fixed file names and
locations wherever possible.

Example - Relative Path Traversal

include <stdio.h>
include <string.h>
include <wchar.h>
include <sys/types.h>
include <sys/stat.h>
include <fcntl.h>
include <unistd.h>
include <stdlib.h>
define BASEPATH "/tmp/"
define FILENAME_MAX 512

static void Relative_Path_Traversal(void)
{
 char * data;
 char data_buf[FILENAME_MAX] = BASEPATH;
 char sub_buf[FILENAME_MAX];

 CERT C: Rec. FIO02-C

23-605

 if (fgets(sub_buf, FILENAME_MAX, stdin) == NULL) exit (1);
 data = data_buf;
 strcat(data, sub_buf);

 FILE *file = NULL;
 file = fopen(data, "wb+");
 if (file != NULL) fclose(file);
}

int path_call(void){
 Relative_Path_Traversal();
}

This example opens a file from "/tmp/", but uses a relative path to the file. An external user can
manipulate this relative path when fopen opens the file.
Correction — Use Fixed File Name

One possible correction is to use a fixed file name instead of a relative path. This example uses
file.txt.

include <stdio.h>
include <string.h>
include <wchar.h>
include <sys/types.h>
include <sys/stat.h>
include <fcntl.h>
include <unistd.h>
include <stdlib.h>
define BASEPATH "/tmp/"
define FILENAME_MAX 512

static void Relative_Path_Traversal(void)
{
 char * data;
 char data_buf[FILENAME_MAX] = BASEPATH;
 data = data_buf;

 /* FIX: Use a fixed file name */
 strcat(data, "file.txt");
 FILE *file = NULL;
 file = fopen(data, "wb+");
 if (file != NULL) fclose(file);
}

int path_call(void){
 Relative_Path_Traversal();
}

Check Information
Group: Rec. 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

23 CERT C Rules and Recommendations

23-606

External Websites
FIO02-C

Introduced in R2019a

 CERT C: Rec. FIO02-C

23-607

https://wiki.sei.cmu.edu/confluence/display/c/FIO02-C.+Canonicalize+path+names+originating+from+tainted+sources

CERT C: Rec. FIO11-C
Take care when specifying the mode parameter of fopen()

Description
Rule Definition

Take care when specifying the mode parameter of fopen().

Polyspace Implementation

This checker checks for Bad file access mode or status.

Examples
Bad file access mode or status
Issue

Bad file access mode or status occurs when you use functions in the fopen or open group with
invalid or incompatible file access modes, file creation flags, or file status flags as arguments. For
instance, for the open function, examples of valid:

• Access modes include O_RDONLY, O_WRONLY, and O_RDWR
• File creation flags include O_CREAT, O_EXCL, O_NOCTTY, and O_TRUNC.
• File status flags include O_APPEND, O_ASYNC, O_CLOEXEC, O_DIRECT, O_DIRECTORY,

O_LARGEFILE, O_NOATIME, O_NOFOLLOW, O_NONBLOCK, O_NDELAY, O_SHLOCK, O_EXLOCK,
O_FSYNC, O_SYNC and so on.

The defect can occur in the following situations.

Situation Risk Fix
You pass an empty or invalid
access mode to the fopen
function.

According to the ANSI C
standard, the valid access
modes for fopen are:

• r,r+
• w,w+
• a,a+
• rb, wb, ab
• r+b, w+b, a+b
• rb+, wb+, ab+

fopen has undefined behavior
for invalid access modes.

Some implementations allow
extension of the access mode
such as:

• GNU: rb+cmxe,ccs=utf
• Visual C++: a+t, where t
specifies a text mode.

However, your access mode
string must begin with one of
the valid sequences.

Pass a valid access mode to
fopen.

23 CERT C Rules and Recommendations

23-608

Situation Risk Fix
You pass the status flag
O_APPEND to the open function
without combining it with either
O_WRONLY or O_RDWR.

O_APPEND indicates that you
intend to add new content at the
end of a file. However, without
O_WRONLY or O_RDWR, you
cannot write to the file.

The open function does not
return -1 for this logical error.

Pass either O_APPEND|
O_WRONLY or O_APPEND|
O_RDWR as access mode.

You pass the status flags
O_APPEND and O_TRUNC
together to the open function.

O_APPEND indicates that you
intend to add new content at the
end of a file. However, O_TRUNC
indicates that you intend to
truncate the file to zero.
Therefore, the two modes
cannot operate together.

The open function does not
return -1 for this logical error.

Depending on what you intend
to do, pass one of the two
modes.

You pass the status flag
O_ASYNC to the open function.

On certain implementations, the
mode O_ASYNC does not enable
signal-driven I/O operations.

Use the fcntl(pathname,
F_SETFL, O_ASYNC); instead.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Invalid Access Mode with fopen

#include <stdio.h>

void func(void) {
 FILE *file = fopen("data.txt", "rw");
 if(file!=NULL) {
 fputs("new data",file);
 fclose(file);
 }
}

In this example, the access mode rw is invalid. Because r indicates that you open the file for reading
and w indicates that you create a new file for writing, the two access modes are incompatible.

 CERT C: Rec. FIO11-C

23-609

Correction — Use Either r or w as Access Mode

One possible correction is to use the access mode corresponding to what you intend to do.

#include <stdio.h>

void func(void) {
 FILE *file = fopen("data.txt", "w");
 if(file!=NULL) {
 fputs("new data",file);
 fclose(file);
 }
}

Check Information
Group: Rec. 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO11-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-610

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152174

CERT C: Rec. FIO21-C
Do not create temporary files in shared directories

Description
Rule Definition

Do not create temporary files in shared directories.

Polyspace Implementation

This checker checks for Use of non-secure temporary file.

Examples
Use of non-secure temporary file
Issue

Use of non-secure temporary file looks for temporary file routines that are not secure.
Risk

If an attacker guesses the file name generated by a standard temporary file routine, the attacker can:

• Cause a race condition when you generate the file name.
• Precreate a file of the same name, filled with malicious content. If your program reads the file, the

attacker’s file can inject the malicious code.
• Create a symbolic link to a file storing sensitive data. When your program writes to the temporary
file, the sensitive data is deleted.

Fix

To create temporary files, use a more secure standard temporary file routine, such as mkstemp from
POSIX.1-2001.

Also, when creating temporary files with routines that allow flags, such as mkostemp, use the
exclusion flag O_EXCL to avoid race conditions.
Example - Temp File Created With tempnam

#define _BSD_SOURCE
#define _XOPEN_SOURCE
#define _GNU_SOURCE

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

int test_temp()

 CERT C: Rec. FIO21-C

23-611

{
 char tpl[] = "abcXXXXXX";
 char suff_tpl[] = "abcXXXXXXsuff";
 char *filename = NULL;
 int fd;

 filename = tempnam("/var/tmp", "foo_");

 if (filename != NULL)
 {
 printf("generated tmp name (%s) in (%s:%s:%s)\n",
 filename, getenv("TMPDIR") ? getenv("TMPDIR") : "$TMPDIR",
 "/var/tmp", P_tmpdir);

 fd = open(filename, O_CREAT, S_IRWXU|S_IRUSR);
 if (fd != -1)
 {
 close(fd);
 unlink(filename);
 return 1;
 }
 }
 return 0;
}

In this example, Bug Finder flags open because it tries to use an unsecure temporary file. The file is
opened without exclusive privileges. An attacker can access the file causing various risks on page 13-
73.

Correction — Add O_EXCL Flag

One possible correction is to add the O_EXCL flag when you open the temporary file.

#define _BSD_SOURCE
#define _XOPEN_SOURCE
#define _GNU_SOURCE

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

int test_temp()
{
 char tpl[] = "abcXXXXXX";
 char suff_tpl[] = "abcXXXXXXsuff";
 char *filename = NULL;
 int fd;

 filename = tempnam("/var/tmp", "foo_");

 if (filename != NULL)
 {
 printf("generated tmp name (%s) in (%s:%s:%s)\n",
 filename, getenv("TMPDIR") ? getenv("TMPDIR") : "$TMPDIR",
 "/var/tmp", P_tmpdir);

23 CERT C Rules and Recommendations

23-612

 fd = open(filename, O_CREAT|O_EXCL, S_IRWXU|S_IRUSR);
 if (fd != -1)
 {
 close(fd);
 unlink(filename);
 return 1;
 }
 }
 return 0;
}

Check Information
Group: Rec. 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO21-C

Introduced in R2019a

 CERT C: Rec. FIO21-C

23-613

https://wiki.sei.cmu.edu/confluence/display/c/FIO21-C.+Do+not+create+temporary+files+in+shared+directories

CERT C: Rec. FIO24-C
Do not open a file that is already open

Description
Rule Definition

Do not open a file that is already open.

Polyspace Implementation

This checker checks for Opening previously opened resource.

Examples
Opening previously opened resource
Issue

Opening previously opened resource checks for file opening functions that are opening an already
opened file.

Risk

If you open a resource multiple times, you can encounter:

• A race condition when accessing the file.
• Undefined or unexpected behavior for that file.
• Portability issues when you run your program on different targets.

Fix

Once a resource is open, close the resource before reopening.

Example - File Reopened With New Permissions

#include <stdio.h>
const char* logfile = "my_file.log";

void doubleresourceopen()
{
 FILE* fpa = fopen(logfile, "w");
 if (fpa == NULL) {
 return;
 }
 (void)fprintf(fpa, "Writing");
 FILE* fpb = fopen(logfile, "r");
 (void)fclose(fpa);
 (void)fclose(fpb);
}

In this example, a logfile is opened in the first line of this function with write privileges. Halfway
through the function, the logfile is opened again with read privileges.

23 CERT C Rules and Recommendations

23-614

Correction — Close Before Reopening

One possible correction is to close the file before reopening the file with different privileges.

#include <stdio.h>
const char* logfile = "my_file.log";

void doubleresourceopen()
{
 FILE* fpa = fopen(logfile, "w");
 if (fpa == NULL) {
 return;
 }
 (void)fprintf(fpa, "Writing");
 (void)fclose(fpa);
 FILE* fpb = fopen(logfile, "r");
 (void)fclose(fpb);
}

Check Information
Group: Rec. 09. Input Output (FIO)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
FIO24-C

Introduced in R2019a

 CERT C: Rec. FIO24-C

23-615

https://wiki.sei.cmu.edu/confluence/display/c/FIO24-C.+Do+not+open+a+file+that+is+already+open

CERT C: Rec. ENV01-C
Do not make assumptions about the size of an environment variable

Description
Rule Definition

Do not make assumptions about the size of an environment variable.

Polyspace Implementation

This checker checks for Tainted NULL or non-null-terminated string.

Examples
Tainted NULL or non-null-terminated string
Issue

Tainted NULL or non-null-terminated string looks for strings from unsecure sources that are
being used in string manipulation routines that implicitly dereference the string buffer. For example,
strcpy or sprintf.

Tainted NULL or non-null-terminated string raises no defect for a string returned from a call to
scanf-family variadic functions. Similarly, no defect is raised when you pass the string with a %s
specifier to printf-family variadic functions.

Note If you reference a string using the form ptr[i], *ptr, or pointer arithmetic, Bug Finder raises
a Use of tainted pointer defect instead. The Tainted NULL or non-null-terminated string defect
is raised only when the pointer is used as a string.

Risk

If a string is from an unsecure source, it is possible that an attacker manipulated the string or pointed
the string pointer to a different memory location.

If the string is NULL, the string routine cannot dereference the string, causing the program to crash.
If the string is not null-terminated, the string routine might not know when the string ends. This error
can cause you to write out of bounds, causing a buffer overflow.

Fix

Validate the string before you use it. Check that:

• The string is not NULL.
• The string is null-terminated
• The size of the string matches the expected size.

23 CERT C Rules and Recommendations

23-616

Example - Getting String from Input Argument

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define SIZE128 128
#define MAX 40
extern void print_str(const char*);
void warningMsg(void)
{
 char userstr[MAX];
 read(0,userstr,MAX);
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

In this example, the string str is concatenated with the argument userstr. The value of userstr is
unknown. If the size of userstr is greater than the space available, the concatenation overflows.
Correction — Validate the Data

One possible correction is to check the size of userstr and make sure that the string is null-
terminated before using it in strncat. This example uses a helper function, sansitize_str, to
validate the string. The defects are concentrated in this function.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define SIZE128 128
#define MAX 40
extern void print_str(const char*);
int sanitize_str(char* s) {
 int res = 0;
 if (s && (strlen(s) > 0)) { // TAINTED_STRING only flagged here
 // - string is not null
 // - string has a positive and limited size
 // - TAINTED_STRING on strlen used as a firewall
 res = 1;
 }
 return res;
}
void warningMsg(void)
{
 char userstr[MAX];
 read(0,userstr,MAX);
 char str[SIZE128] = "Warning: ";
 if (sanitize_str(userstr))
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

Correction — Validate the Data

Another possible correction is to call function errorMsg and warningMsg with specific strings.

 CERT C: Rec. ENV01-C

23-617

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

int manageSensorValue(int sensorValue) {
 int ret = sensorValue;
 if (sensorValue < 0) {
 errorMsg("sensor value should be positive");
 exit(1);
 } else if (sensorValue > 50) {
 warningMsg("sensor value greater than 50 (applying threshold)...");
 sensorValue = 50;
 }

 return sensorValue;
}

Check Information
Group: Rec. 10. Environment (ENV)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
ENV01-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-618

https://wiki.sei.cmu.edu/confluence/display/c/ENV01-C.+Do+not+make+assumptions+about+the+size+of+an+environment+variable

CERT C: Rec. ERR00-C
Adopt and implement a consistent and comprehensive error-handling policy

Description
Rule Definition

Adopt and implement a consistent and comprehensive error-handling policy.

Polyspace Implementation

This checker checks for Returned value of a sensitive function not checked.

Examples
Returned value of a sensitive function not checked
Issue

This issue occurs when you call sensitive standard functions, but you:

• Ignore the return value.
• Use an output or a return value without testing the validity of the return value.

For this defect, two type of functions are considered: sensitive and critical sensitive.

A sensitive function is a standard function that can encounter:

• Exhausted system resources (for example, when allocating resources)
• Changed privileges or permissions
• Tainted sources when reading, writing, or converting data from external sources
• Unsupported features despite an existing API

A critical sensitive function is a sensitive function that performs one of these critical or vulnerable
tasks:

• Set privileges (for example, setuid)
• Create a jail (for example, chroot)
• Create a process (for example, fork)
• Create a thread (for example, pthread_create)
• Lock or unlock mutex (for example, pthread_mutex_lock)
• Lock or unlock memory segments (for example, mlock)

Risk

If you do not check the return value of functions that perform sensitive or critical sensitive tasks,
your program can behave unexpectedly. Errors from these functions can propagate throughout the
program causing incorrect output, security vulnerabilities, and possibly system failures.

 CERT C: Rec. ERR00-C

23-619

Fix

Before continuing with the program, test the return value of critical sensitive functions.

For sensitive functions, you can explicitly ignore a return value by casting the function to void.
Polyspace does not raise this defect for sensitive functions cast to void. This resolution is not
accepted for critical sensitive functions because they perform more vulnerable tasks.

Example – Sensitive Function Return Ignored

#include <pthread.h>

void initialize() {
 pthread_attr_t attr;

 pthread_attr_init(&attr);
}

This example shows a call to the sensitive function pthread_attr_init. The return value of
pthread_attr_init is ignored, causing a defect.

Correction 1 – Cast Function to (void)

One possible correction is to cast the function to void. This fix informs Polyspace and any reviewers
that you are explicitly ignoring the return value of the sensitive function.

#include <pthread.h>

void initialize() {
 pthread_attr_t attr;

 (void)pthread_attr_init(&attr);
}

Correction 2 – Test Return Value

One possible correction is to test the return value of pthread_attr_init to check for errors.

#include <pthread.h>
#include <stdlib.h>
#define fatal_error() abort()

void initialize() {
 pthread_attr_t attr;
 int result;

 result = pthread_attr_init(&attr);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

Example – Critical Function Return Ignored

#include <pthread.h>
extern void *start_routine(void *);

void returnnotchecked() {

23 CERT C Rules and Recommendations

23-620

 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;

 (void)pthread_attr_init(&attr);
 (void)pthread_create(&thread_id, &attr, &start_routine, ((void *)0));
 pthread_join(thread_id, &res);
}

In this example, two critical functions are called: pthread_create and pthread_join. The return
value of the pthread_create is ignored by casting to void, but because pthread_create is a
critical function (not just a sensitive function), Polyspace does not ignore this Return value of a
sensitive function not checked defect. The other critical function, pthread_join, returns value that
is ignored implicitly. pthread_join uses the return value of pthread_create, which was not
checked.

Correction — Test the Return Value of Critical Functions

The correction for this defect is to check the return value of these critical functions to verify the
function performed as expected.

#include <pthread.h>
#include <stdlib.h>
#define fatal_error() abort()

extern void *start_routine(void *);

void returnnotchecked() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;
 int result;

 (void)pthread_attr_init(&attr);
 result = pthread_create(&thread_id, &attr, &start_routine, NULL);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }

 result = pthread_join(thread_id, &res);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

Check Information
Group: Rec. 12. Error Handling (ERR)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

 CERT C: Rec. ERR00-C

23-621

External Websites
ERR00-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-622

https://wiki.sei.cmu.edu/confluence/display/c/ERR00-C.+Adopt+and+implement+a+consistent+and+comprehensive+error-handling+policy

CERT C: Rec. API04-C
Provide a consistent and usable error-checking mechanism

Description
Rule Definition

Provide a consistent and usable error-checking mechanism.

Polyspace Implementation

This checker checks for Returned value of a sensitive function not checked.

Examples
Returned value of a sensitive function not checked
Issue

This issue occurs when you call sensitive standard functions, but you:

• Ignore the return value.
• Use an output or a return value without testing the validity of the return value.

For this defect, two type of functions are considered: sensitive and critical sensitive.

A sensitive function is a standard function that can encounter:

• Exhausted system resources (for example, when allocating resources)
• Changed privileges or permissions
• Tainted sources when reading, writing, or converting data from external sources
• Unsupported features despite an existing API

A critical sensitive function is a sensitive function that performs one of these critical or vulnerable
tasks:

• Set privileges (for example, setuid)
• Create a jail (for example, chroot)
• Create a process (for example, fork)
• Create a thread (for example, pthread_create)
• Lock or unlock mutex (for example, pthread_mutex_lock)
• Lock or unlock memory segments (for example, mlock)

Risk

If you do not check the return value of functions that perform sensitive or critical sensitive tasks,
your program can behave unexpectedly. Errors from these functions can propagate throughout the
program causing incorrect output, security vulnerabilities, and possibly system failures.

 CERT C: Rec. API04-C

23-623

Fix

Before continuing with the program, test the return value of critical sensitive functions.

For sensitive functions, you can explicitly ignore a return value by casting the function to void.
Polyspace does not raise this defect for sensitive functions cast to void. This resolution is not
accepted for critical sensitive functions because they perform more vulnerable tasks.

Example – Sensitive Function Return Ignored

#include <pthread.h>

void initialize() {
 pthread_attr_t attr;

 pthread_attr_init(&attr);
}

This example shows a call to the sensitive function pthread_attr_init. The return value of
pthread_attr_init is ignored, causing a defect.

Correction 1 – Cast Function to (void)

One possible correction is to cast the function to void. This fix informs Polyspace and any reviewers
that you are explicitly ignoring the return value of the sensitive function.

#include <pthread.h>

void initialize() {
 pthread_attr_t attr;

 (void)pthread_attr_init(&attr);
}

Correction 2 – Test Return Value

One possible correction is to test the return value of pthread_attr_init to check for errors.

#include <pthread.h>
#include <stdlib.h>
#define fatal_error() abort()

void initialize() {
 pthread_attr_t attr;
 int result;

 result = pthread_attr_init(&attr);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

Example – Critical Function Return Ignored

#include <pthread.h>
extern void *start_routine(void *);

void returnnotchecked() {

23 CERT C Rules and Recommendations

23-624

 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;

 (void)pthread_attr_init(&attr);
 (void)pthread_create(&thread_id, &attr, &start_routine, ((void *)0));
 pthread_join(thread_id, &res);
}

In this example, two critical functions are called: pthread_create and pthread_join. The return
value of the pthread_create is ignored by casting to void, but because pthread_create is a
critical function (not just a sensitive function), Polyspace does not ignore this Return value of a
sensitive function not checked defect. The other critical function, pthread_join, returns value that
is ignored implicitly. pthread_join uses the return value of pthread_create, which was not
checked.

Correction — Test the Return Value of Critical Functions

The correction for this defect is to check the return value of these critical functions to verify the
function performed as expected.

#include <pthread.h>
#include <stdlib.h>
#define fatal_error() abort()

extern void *start_routine(void *);

void returnnotchecked() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;
 int result;

 (void)pthread_attr_init(&attr);
 result = pthread_create(&thread_id, &attr, &start_routine, NULL);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }

 result = pthread_join(thread_id, &res);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

Check Information
Group: Rec. 13. Application Programming Interfaces (API)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

 CERT C: Rec. API04-C

23-625

External Websites
API04-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-626

https://wiki.sei.cmu.edu/confluence/display/c/API04-C.+Provide+a+consistent+and+usable+error-checking+mechanism

CERT C: Rec. CON01-C
Acquire and release synchronization primitives in the same module, at the same level of abstraction

Description
Rule Definition

Acquire and release synchronization primitives in the same module, at the same level of abstraction.

Polyspace Implementation

This checker checks for these issues:

• Missing lock.
• Missing unlock.
• Double lock.
• Double unlock.

Examples
Missing lock
Issue

Missing lock occurs when a task calls an unlock function before calling the corresponding lock
function.

In multitasking code, a lock function begins a critical section of code and an unlock function ends it.
When a task my_task calls a lock function my_lock, other tasks calling my_lock must wait till
my_task calls the corresponding unlock function. Polyspace requires that both lock and unlock
functions must have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify these options,
on the Configuration pane, select Multitasking.

Risk

A call to an unlock function without a corresponding lock function can indicate a coding error. For
instance, perhaps the unlock function does not correspond to the lock function that begins the critical
section.

Fix

The fix depends on the root cause of the defect. For instance, if the defect occurs because of a
mismatch between lock and unlock function, check the lock-unlock function pair in your Polyspace
analysis configuration and fix the mismatch.

See examples of fixes below. To avoid the issue, you can follow the practice of calling the lock and
unlock functions in the same module at the same level of abstraction. For instance, in this example,
func calls the lock and unlock function at the same level but func2 does not.

 CERT C: Rec. CON01-C

23-627

void func() {
 my_lock();
 {
 // ...
 }
 my_unlock();
}

void func2() {
 {
 my_lock();
 // ...
 }
 my_unlock();
}

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Missing lock

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset(void)
{
 begin_critical_section();
 global_var = 0;
 end_critical_section();
}

void my_task(void)
{
 global_var += 1;
 end_critical_section();
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure multitasking
manually on page 2-115
Tasks on page 2-119 my_task, reset
Critical section details on
page 2-130

Starting routine Ending routine

23 CERT C Rules and Recommendations

23-628

Option Specification
begin_critical_section end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder
 -entry-points my_task,reset
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset. my_task calls end_critical_section
before calling begin_critical_section.
Correction — Provide Lock

One possible correction is to call the lock function begin_critical_section before the
instructions in the critical section.

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset(void)
{
 begin_critical_section();
 global_var = 0;
 end_critical_section();
}

void my_task(void)
{
 begin_critical_section();
 global_var += 1;
 end_critical_section();
}

Example - Lock in Condition

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset() {
 begin_critical_section();
 global_var=0;
 end_critical_section();
}

void my_task(void) {

 CERT C: Rec. CON01-C

23-629

 int index=0;
 volatile int numCycles;

 while(numCycles) {
 if(index%10==0) {
 begin_critical_section();
 global_var ++;
 }
 end_critical_section();
 index++;
 }
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure multitasking
manually on page 2-115
Tasks on page 2-119 my_task, reset
Critical section details on
page 2-130

Starting routine Ending routine
begin_critical_section end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder
 -entry-points my_task,reset
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset.

In the while loop, my_task leaves a critical section through the call end_critical_section();.
In an iteration of the while loop:

• If my_task enters the if condition branch, the critical section begins through a call to
begin_critical_section.

• If my_task does not enter the if condition branch and leaves the while loop, the critical section
does not begin. Therefore, a Missing lock defect occurs.

• If my_task does not enter the if condition branch and continues to the next iteration of the
while loop, the unlock function end_critical_section is called again. A Double unlock
defect occurs.

Because numCycles is a volatile variable, it can take any value. Any of the cases above are
possible. Therefore, a Missing lock defect and a Double unlock defect appear on the call
end_critical_section.

Missing unlock
Issue

Missing unlock occurs when:

• A task calls a lock function.

23 CERT C Rules and Recommendations

23-630

• The task ends without a call to an unlock function.

In multitasking code, a lock function begins a critical section of code and an unlock function ends it.
When a task, my_task, calls a lock function, my_lock, other tasks calling my_lock must wait until
my_task calls the corresponding unlock function. Polyspace requires that both lock and unlock
functions must have the form void func(void).

To find this defect, before analysis, you must specify the multitasking options. On the Configuration
pane, select Multitasking.
Risk

An unlock function ends a critical section so that other waiting tasks can enter the critical section. A
missing unlock function can result in tasks blocked for an unnecessary length of time.
Fix

Identify the critical section of code, that is, the section that you want to be executed as an atomic
block. At the end of this section, call the unlock function that corresponds to the lock function used at
the beginning of the section.

There can be other reasons and corresponding fixes for the defect. Perhaps you called the incorrect
unlock function. Check the lock-unlock function pair in your Polyspace analysis configuration and fix
the mismatch.

See examples of fixes below. To avoid the issue, you can follow the practice of calling the lock and
unlock functions in the same module at the same level of abstraction. For instance, in this example,
func calls the lock and unlock function at the same level but func2 does not.

void func() {
 my_lock();
 {
 // ...
 }
 my_unlock();
}

void func2() {
 {
 my_lock();
 // ...
 }
 my_unlock();
}

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Missing Unlock

 CERT C: Rec. CON01-C

23-631

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset()
{
 begin_critical_section();
 global_var = 0;
 end_critical_section();
}

void my_task(void)
{
 begin_critical_section();
 global_var += 1;
}

In this example, to emulate multitasking behavior, specify the following options:

Option Specification
Configure multitasking
manually on page 2-115
Tasks on page 2-119 my_task, reset
Critical section details on
page 2-130

Starting routine Ending routine
begin_critical_section end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder
 -entry-points my_task,reset
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset. my_task enters a critical section through
the call begin_critical_section();. my_task ends without calling end_critical_section.
Correction — Provide Unlock

One possible correction is to call the unlock function end_critical_section after the instructions
in the critical section.

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset(void)
{
 begin_critical_section();
 global_var = 0;

23 CERT C Rules and Recommendations

23-632

 end_critical_section();
}

void my_task(void)
{
 begin_critical_section();
 global_var += 1;
 end_critical_section();
}

Example - Unlock in Condition

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset() {
 begin_critical_section();
 global_var=0;
 end_critical_section();
}

void my_task(void) {
 int index=0;
 volatile int numCycles;

 while(numCycles) {
 begin_critical_section();
 global_var ++;
 if(index%10==0) {
 global_var = 0;
 end_critical_section();
 }
 index++;
 }
}

In this example, to emulate multitasking behavior, specify the following options.

Option Specification
Configure multitasking
manually on page 2-115
Tasks on page 2-119 my_task, reset
Critical section details on
page 2-130

Starting routine Ending routine
begin_critical_section end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder
 -entry-points my_task,reset

 CERT C: Rec. CON01-C

23-633

 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset.

In the while loop, my_task enters a critical section through the call
begin_critical_section();. In an iteration of the while loop:

• If my_task enters the if condition branch, the critical section ends through a call to
end_critical_section.

• If my_task does not enter the if condition branch and leaves the while loop, the critical section
does not end. Therefore, a Missing unlock defect occurs.

• If my_task does not enter the if condition branch and continues to the next iteration of the
while loop, the lock function begin_critical_section is called again. A Double lock defect
occurs.

Because numCycles is a volatile variable, it can take any value. Any of the cases above is possible.
Therefore, a Missing unlock defect and a Double lock defect appear on the call
begin_critical_section.

Correction — Place Unlock Outside Condition

One possible correction is to call the unlock function end_critical_section outside the if
condition.

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset() {
 begin_critical_section();
 global_var=0;
 end_critical_section();
}

void my_task(void) {
 int index=0;
 volatile int numCycles;

 while(numCycles) {
 begin_critical_section();
 global_var ++;
 if(index%10==0) {
 global_var=0;
 }
 end_critical_section();
 index++;
 }
}

23 CERT C Rules and Recommendations

23-634

Correction — Place Unlock in Every Conditional Branch

Another possible correction is to call the unlock function end_critical_section in every branches
of the if condition.

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset() {
 begin_critical_section();
 global_var=0;
 end_critical_section();
}

void my_task(void) {
 int index=0;
 volatile int numCycles;

 while(numCycles) {
 begin_critical_section();
 global_var ++;
 if(index%10==0) {
 global_var=0;
 end_critical_section();
 }
 else
 end_critical_section();
 index++;
 }
}

Double lock
Issue

Double lock occurs when:

• A task calls a lock function my_lock.
• The task calls my_lock again before calling the corresponding unlock function.

In multitasking code, a lock function begins a critical section of code and an unlock function ends it.
When a task task1 calls a lock function lock, other tasks calling lock must wait until task calls the
corresponding unlock function. Polyspace requires that both lock and unlock functions must have the
form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify these options,
on the Configuration pane, select Multitasking.
Risk

A call to a lock function begins a critical section so that other tasks have to wait to enter the same
critical section. If the same lock function is called again within the critical section, the task blocks
itself.

 CERT C: Rec. CON01-C

23-635

Fix

The fix depends on the root cause of the defect. A double lock defect often indicates a coding error.
Perhaps you omitted the call to an unlock function to end a previous critical section and started the
next critical section. Perhaps you wanted to use a different lock function for the second critical
section.

Identify each critical section of code, that is, the section that you want to be executed as an atomic
block. Call a lock function at the beginning of the section. Within the critical section, make sure that
you do not call the lock function again. At the end of the section, call the unlock function that
corresponds to the lock function.

See examples of fixes below. To avoid the issue, you can follow the practice of calling the lock and
unlock functions in the same module at the same level of abstraction. For instance, in this example,
func calls the lock and unlock function at the same level but func2 does not.

void func() {
 my_lock();
 {
 // ...
 }
 my_unlock();
}

void func2() {
 {
 my_lock();
 // ...
 }
 my_unlock();
}

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Double Lock

int global_var;

void lock(void);
void unlock(void);

void task1(void)
{
 lock();
 global_var += 1;
 lock();
 global_var += 1;

23 CERT C Rules and Recommendations

23-636

 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure multitasking
manually on page 2-115
Tasks on page 2-119 my_task, reset
Critical section details on
page 2-130

Starting routine Ending routine
lock unlock

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2
 -critical-section-begin lock:cs1
 -critical-section-end unlock:cs1

task1 enters a critical section through the call lock();. task1 calls lock again before it leaves the
critical section through the call unlock();.

Correction — Remove First Lock

If you want the first global_var+=1; to be outside the critical section, one possible correction is to
remove the first call to lock. However, if other tasks are using global_var, this code can produce a
Data race error.

int global_var;

void lock(void);
void unlock(void);

void task1(void)
{
 global_var += 1;
 lock();
 global_var += 1;
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;

 CERT C: Rec. CON01-C

23-637

 unlock();
}

Correction — Remove Second Lock

If you want the first global_var+=1; to be inside the critical section, one possible correction is to
remove the second call to lock.

int global_var;

void lock(void);
void unlock(void);

void task1(void)
{
 lock();
 global_var += 1;
 global_var += 1;
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

Correction — Add Another Unlock

If you want the second global_var+=1; to be inside a critical section, another possible correction is
to add another call to unlock.

int global_var;

void lock(void);
void unlock(void);

void task1(void)
{
 lock();
 global_var += 1;
 unlock();
 lock();
 global_var += 1;
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;

23 CERT C Rules and Recommendations

23-638

 unlock();
}

Example - Double Lock with Function Call

int global_var;

void lock(void);
void unlock(void);

void performOperation(void) {
 lock();
 global_var++;
}

void task1(void)
{
 lock();
 global_var += 1;
 performOperation();
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure multitasking
manually on page 2-115
Tasks on page 2-119 my_task, reset
Critical section details on
page 2-130

Starting routine Ending routine
lock unlock

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2
 -critical-section-begin lock:cs1
 -critical-section-end unlock:cs1

task1 enters a critical section through the call lock();. task1 calls the function
performOperation. In performOperation, lock is called again even though task1 has not left
the critical section through the call unlock();.

In the result details for the defect, you see the sequence of instructions leading to the defect. For
instance, you see that following the first entry into the critical section, the execution path:

 CERT C: Rec. CON01-C

23-639

• Enters function performOperation.
• Inside performOperation, attempts to enter the same critical section once again.

You can click each event to navigate to the corresponding line in the source code.

Correction — Remove Second Lock

One possible correction is to remove the call to lock in task1.

int global_var;

void lock(void);
void unlock(void);

void performOperation(void) {
 global_var++;
}

void task1(void)
{
 lock();
 global_var += 1;
 performOperation();
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

Double unlock
Issue

Double unlock occurs when:

• A task calls a lock function my_lock.
• The task calls the corresponding unlock function my_unlock.

23 CERT C Rules and Recommendations

23-640

• The task calls my_unlock again. The task does not call my_lock a second time between the two
calls to my_unlock.

In multitasking code, a lock function begins a critical section of code and an unlock function ends it.
When a task task1 calls a lock function my_lock, other tasks calling my_lock must wait until task1
calls the corresponding unlock function. Polyspace requires that both lock and unlock functions must
have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify these options,
on the Configuration pane, select Multitasking.
Risk

A double unlock defect can indicate a coding error. Perhaps you wanted to call a different unlock
function to end a different critical section. Perhaps you called the unlock function prematurely the
first time and only the second call indicates the end of the critical section.
Fix

The fix depends on the root cause of the defect.

Identify each critical section of code, that is, the section that you want to be executed as an atomic
block. Call a lock function at the beginning of the section. Only at the end of the section, call the
unlock function that corresponds to the lock function. Remove any other redundant call to the unlock
function.

See examples of fixes below. To avoid the issue, you can follow the practice of calling the lock and
unlock functions in the same module at the same level of abstraction. For instance, in this example,
func calls the lock and unlock function at the same level but func2 does not.

void func() {
 my_lock();
 {
 // ...
 }
 my_unlock();
}

void func2() {
 {
 my_lock();
 // ...
 }
 my_unlock();
}

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Double Unlock

 CERT C: Rec. CON01-C

23-641

int global_var;

void BEGIN_CRITICAL_SECTION(void);
void END_CRITICAL_SECTION(void);

void task1(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

void task2(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Value
Configure multitasking
manually on page 2-115
Tasks on page 2-119 task1

task2
Critical section details on
page 2-130

Starting routine Ending routine
BEGIN_CRITICAL_SECTION END_CRITICAL_SECTION

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2
 -critical-section-begin BEGIN_CRITICAL_SECTION:cs1
 -critical-section-end END_CRITICAL_SECTION:cs1

task1 enters a critical section through the call BEGIN_CRITICAL_SECTION();. task1 leaves the
critical section through the call END_CRITICAL_SECTION();. task1 calls END_CRITICAL_SECTION
again without an intermediate call to BEGIN_CRITICAL_SECTION.

Correction — Remove Second Unlock

If you want the second global_var+=1; to be outside the critical section, one possible correction is
to remove the second call to END_CRITICAL_SECTION. However, if other tasks are using
global_var, this code can produce a Data race error.

int global_var;

23 CERT C Rules and Recommendations

23-642

void BEGIN_CRITICAL_SECTION(void);
void END_CRITICAL_SECTION(void);

void task1(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
 global_var += 1;
}

void task2(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

Correction — Remove First Unlock

If you want the second global_var+=1; to be inside the critical section, one possible correction is
to remove the first call to END_CRITICAL_SECTION.

int global_var;

void BEGIN_CRITICAL_SECTION(void);
void END_CRITICAL_SECTION(void);

void task1(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 global_var += 1;
 END_CRITICAL_SECTION();
}

void task2(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

Correction — Add Another Lock

If you want the second global_var+=1; to be inside a critical section, another possible correction is
to add another call to BEGIN_CRITICAL_SECTION.

int global_var;

void BEGIN_CRITICAL_SECTION(void);
void END_CRITICAL_SECTION(void);

 CERT C: Rec. CON01-C

23-643

void task1(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

void task2(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

Check Information
Group: Rec. 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
CON01-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-644

https://wiki.sei.cmu.edu/confluence/display/c/CON01-C.+Acquire+and+release+synchronization+primitives+in+the+same+module%2C+at+the+same+level+of+abstraction

CERT C: Rec. CON05-C
Do not perform operations that can block while holding a lock

Description
Rule Definition

Do not perform operations that can block while holding a lock.

Polyspace Implementation

This checker checks for Blocking operation while holding lock.

Examples
Blocking operation while holding lock
Issue

Blocking operation while holding lock occurs when a task (thread) performs a potentially lengthy
operation while holding a lock.

The checker considers calls to these functions as potentially lengthy:

• Functions that access a network such as recv
• System call functions such as fork, pipe and system
• Functions for I/O operations such as getchar and scanf
• File handling functions such as fopen, remove and lstat
• Directory manipulation functions such as mkdir and rmdir

The checker automatically detects certain primitives that hold and release a lock, for instance,
pthread_mutex_lock and pthread_mutex_unlock. For the full list of primitives that are
automatically detected, see “Auto-Detection of Thread Creation and Critical Section in Polyspace”.
Risk

If a thread performs a lengthy operation when holding a lock, other threads that use the lock have to
wait for the lock to be available. As a result, system performance can slow down or deadlocks can
occur.
Fix

Perform the blocking operation before holding the lock or after releasing the lock.

Some functions detected by this checker can be called in a way that does not make them potentially
lengthy. For instance, the function recv can be called with the parameter O_NONBLOCK which causes
the call to fail if no message is available. When called with this parameter, recv does not wait for a
message to become available.
Example - Network I/O Operations with recv While Holding Lock

#include <pthread.h>
#include <sys/socket.h>

 CERT C: Rec. CON05-C

23-645

pthread_mutexattr_t attr;
pthread_mutex_t mutex;

void thread_foo(void *ptr) {
 unsigned int num;
 int result;
 int sock;

 /* sock is a connected TCP socket */

 if ((result = pthread_mutex_lock(&mutex)) != 0) {
 /* Handle Error */
 }

 if ((result = recv(sock, (void *)&num, sizeof(unsigned int), 0)) < 0) {
 /* Handle Error */
 }

 /* ... */

 if ((result = pthread_mutex_unlock(&mutex)) != 0) {
 /* Handle Error */
 }
}

int main() {
 pthread_t thread;
 int result;

 if ((result = pthread_mutexattr_settype(
 &attr, PTHREAD_MUTEX_ERRORCHECK)) != 0) {
 /* Handle Error */
 }

 if ((result = pthread_mutex_init(&mutex, &attr)) != 0) {
 /* Handle Error */
 }

 if (pthread_create(&thread, NULL,(void*(*)(void*))& thread_foo, NULL) != 0) {
 /* Handle Error */
 }

 /* ... */

 pthread_join(thread, NULL);

 if ((result = pthread_mutex_destroy(&mutex)) != 0) {
 /* Handle Error */
 }

 return 0;
}

In this example, in each thread created with pthread_create, the function thread_foo performs a
network I/O operation with recv after acquiring a lock with pthread_mutex_lock. Other threads

23 CERT C Rules and Recommendations

23-646

using the same lock variable mutex have to wait for the operation to complete and the lock to
become available.

Correction — Perform Blocking Operation Before Acquiring Lock

One possible correction is to call recv before acquiring the lock.

#include <pthread.h>
#include <sys/socket.h>

pthread_mutexattr_t attr;
pthread_mutex_t mutex;

void thread_foo(void *ptr) {
 unsigned int num;
 int result;
 int sock;

 /* sock is a connected TCP socket */
 if ((result = recv(sock, (void *)&num, sizeof(unsigned int), 0)) < 0) {
 /* Handle Error */
 }

 if ((result = pthread_mutex_lock(&mutex)) != 0) {
 /* Handle Error */
 }

 /* ... */

 if ((result = pthread_mutex_unlock(&mutex)) != 0) {
 /* Handle Error */
 }
}

int main() {
 pthread_t thread;
 int result;

 if ((result = pthread_mutexattr_settype(
 &attr, PTHREAD_MUTEX_ERRORCHECK)) != 0) {
 /* Handle Error */
 }

 if ((result = pthread_mutex_init(&mutex, &attr)) != 0) {
 /* Handle Error */
 }

 if (pthread_create(&thread, NULL,(void*(*)(void*))& thread_foo, NULL) != 0) {
 /* Handle Error */
 }

 /* ... */

 pthread_join(thread, NULL);

 if ((result = pthread_mutex_destroy(&mutex)) != 0) {
 /* Handle Error */
 }

 CERT C: Rec. CON05-C

23-647

 return 0;
}

Check Information
Group: Rec. 14. Concurrency (CON)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
CON05-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-648

https://wiki.sei.cmu.edu/confluence/display/c/CON05-C.+Do+not+perform+operations+that+can+block+while+holding+a+lock

CERT C: Rec. MSC01-C
Strive for logical completeness

Description
Rule Definition

Strive for logical completeness.

Polyspace Implementation

This checker checks for Missing case for switch condition.

Examples
Missing case for switch condition
Issue

Missing case for switch condition occurs when the switch variable can take values that are not
covered by a case statement.

Note Bug Finder only raises a defect if the switch variable is not full range.

Risk

If the switch variable takes a value that is not covered by a case statement, your program can have
unintended behavior.

A switch-statement that makes a security decision is particularly vulnerable when all possible values
are not explicitly handled. An attacker can use this situation to deviate the normal execution flow.

Fix

It is good practice to use a default statement as a catch-all for values that are not covered by a
case statement. Even if the switch variable takes an unintended value, the resulting behavior can
be anticipated.

Example - Missing Default Condition

#include <stdio.h>
#include <string.h>

typedef enum E
{
 ADMIN=1,
 GUEST,
 UNKNOWN = 0
} LOGIN;

static LOGIN system_access(const char *username) {

 CERT C: Rec. MSC01-C

23-649

 LOGIN user = UNKNOWN;

 if (strcmp(username, "root") == 0)
 user = ADMIN;

 if (strcmp(username, "friend") == 0)
 user = GUEST;

 return user;
}

int identify_bad_user(const char * username)
{
 int r=0;

 switch(system_access(username))
 {
 case ADMIN:
 r = 1;
 break;
 case GUEST:
 r = 2;
 }

 printf("Welcome!\n");
 return r;
}

In this example, the enum parameter User can take a value UNKNOWN that is not covered by a case
statement.

Correction — Add a Default Condition

One possible correction is to add a default condition for possible values that are not covered by a
case statement.

#include <stdio.h>
#include <string.h>

typedef enum E
{
 ADMIN=1,
 GUEST,
 UNKNOWN = 0
} LOGIN;

static LOGIN system_access(const char *username) {
 LOGIN user = UNKNOWN;

 if (strcmp(username, "root") == 0)
 user = ADMIN;

 if (strcmp(username, "friend") == 0)
 user = GUEST;

 return user;
}

23 CERT C Rules and Recommendations

23-650

int identify_bad_user(const char * username)
{
 int r=0;

 switch(system_access(username))
 {
 case ADMIN:
 r = 1;
 break;
 case GUEST:
 r = 2;
 break;
 default:
 printf("Invalid login credentials!\n");
 }

 printf("Welcome!\n");
 return r;
}

Check Information
Group: Rec. 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC01-C

Introduced in R2019a

 CERT C: Rec. MSC01-C

23-651

https://wiki.sei.cmu.edu/confluence/display/c/MSC01-C.+Strive+for+logical+completeness

CERT C: Rec. MSC04-C
Use comments consistently and in a readable fashion

Description
Rule Definition

Use comments consistently and in a readable fashion.

Polyspace Implementation

This checker checks for Use of /* and // within a comment.

Examples
Use of /* and // within a comment
Issue

The issue occurs when you use the character sequences /* and // within a comment.

You cannot annotate this rule in the source code. For information on annotations, see “Annotate Code
and Hide Known or Acceptable Results”.

Risk

These character sequences are not allowed in code comments because:

• If your code contains a /* or a // in a /* */ comment, it typically means that you have
inadvertently commented out code.

• If your code contains a /* in a // comment, it typically means that you have inadvertently
uncommented a /* */ comment.

Example - /* Used in // Comments

int x;
int y;
int z;

void non_compliant_comments (void)
{
 x = y // /* Non-compliant
 + z
 // */
 ;
 z++; // Compliant with exception: // permitted within a // comment
}

void compliant_comments (void)
{
 x = y /* Compliant
 + z
 */

23 CERT C Rules and Recommendations

23-652

 ;
 z++; // Compliant with exception: // is permitted within a // comment
}

In this example, in the non_compliant_comments function, the /* character occurs in what
appears to be a // comment, violating the rule. Because of the comment structure, the operation that
takes place is x = y + z;. However, without the two //-s, an entirely different operation x=y;
takes place. It is not clear which operation is intended.

Use a comment format that makes your intention clear. For instance, in the compliant_comments
function, it is clear that the operation x=y; is intended.

Check Information
Group: Rec. 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC04-C

Introduced in R2019a

 CERT C: Rec. MSC04-C

23-653

https://wiki.sei.cmu.edu/confluence/display/c/MSC04-C.+Use+comments+consistently+and+in+a+readable+fashion

CERT C: Rec. MSC12-C
Detect and remove code that has no effect or is never executed

Description
Rule Definition

Detect and remove code that has no effect or is never executed.

Polyspace Implementation

This checker checks for these issues:

• Unreachable code.
• Dead code.
• Useless if.
• Write without a further read.

Examples
Unreachable code
Issue

The issue occurs when your project contains code that is unreachable.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The analyses can
produce different results.

The Code Prover run-time check for unreachable code shows more cases than the MISRA checker for
this rule. See also Unreachable code. The run-time check performs a more exhaustive analysis. In
the process, the check can show some instances that are not strictly unreachable code but
unreachable only in the context of the analysis. For instance, in the following code, the run-time
check shows a potential division by zero in the first line and then removes the zero value of flag for
the rest of the analysis. Therefore, it considers the if block unreachable.

val=1.0/flag;
if(!flag) {}

The MISRA checker is designed to prevent these kinds of results.
Risk

Unless a program exhibits any undefined behavior, unreachable code cannot execute. The
unreachable code cannot affect the program output. The presence of unreachable code can indicate
an error in the program logic. Unreachable code that the compiler does not remove wastes resources,
for example:

• It occupies space in the target machine memory.
• Its presence can cause a compiler to select longer, slower jump instructions when transferring

control around the unreachable code.

23 CERT C Rules and Recommendations

23-654

• Within a loop, it can prevent the entire loop from residing in an instruction cache.

Example - Code Following return Statement

enum light { red, amber, red_amber, green };
void report_color(enum light);
enum light next_light (enum light color)
{
 enum light res;

 switch (color)
 {
 case red:
 res = red_amber;
 break;
 case red_amber:
 res = green;
 break;
 case green:
 res = amber;
 break;
 case amber:
 res = red;
 break;
 default:
 {
 error_handler ();
 break;
 }
 }

 report_color(res);
 return res;
 res = color; /* Non-compliant */
}

In this example, the rule is violated because there is an unreachable operation following the return
statement.

Dead code
Issue

The issue occurs when the analysis detects a reachable operation that does not affect program
behavior if the operation is removed.

Polyspace Bug Finder detects useless write operations during analysis.

Polyspace Code Prover does not detect useless write operations. For instance, if you assign a value to
a local variable but do not read it later, Polyspace Code Prover does not detect this useless
assignment. Use Polyspace Bug Finder to detect such useless write operations. For more information,
see MISRA C:2012 in Polyspace Bug Finder on page 21-48.

Risk

If an operation is reachable but removing the operation does not affect program behavior, the
operation constitutes dead code.

 CERT C: Rec. MSC12-C

23-655

The presence of dead code can indicate an error in the program logic. Because a compiler can
remove dead code, its presence can cause confusion for code reviewers.

Operations involving language extensions such as __asm ("NOP"); are not considered dead
code.

Example - Redundant Operations

extern volatile unsigned int v;
extern char *p;

void f (void) {
 unsigned int x;

 (void) v; /* Compliant - Exception*/
 (int) v; /* Non-compliant */
 v >> 3; /* Non-compliant */

 x = 3; /* Non-compliant - Detected in Bug Finder only */

 p++; / Non-compliant */
 (*p)++; /* Compliant */
}

In this example, the rule is violated when an operation is performed on a variable, but the result of
that operation is not used. For instance,

• The operations (int) and >> on the variable v are redundant because the results are not used.
• The operation = is redundant because the local variable x is not read after the operation.
• The operation * on p++ is redundant because the result is not used.

The rule is not violated when:

• A variable is cast to void. The cast indicates that you are intentionally not using the value.
• The result of an operation is used. For instance, the operation * on p is not redundant, because *p

is incremented.

Useless if
Issue

This issue occurs on if-statements where the condition is always true. This defect occurs only on if-
statements that do not have an else-statement.

This defect shows unnecessary if-statements when there is no difference in code execution if the if-
statement is removed.

Risk

Unnecessary if statements often indicate a coding error. Perhaps the if condition is coded
incorrectly or the if statement is not required at all.

Fix

The fix depends on the root cause of the defect. For instance, the root cause can be an error condition
that is checked twice on the same execution path, making the second check redundant.

23 CERT C Rules and Recommendations

23-656

The fix depends on the root cause of the defect. Often the result details (or source code tooltips in
Polyspace as You Code) show a sequence of events that led to the defect. You can implement the fix
on any event in the sequence. If the result details do not show this event history, you can search for
previous references of variables relevant to the defect using right-click options in the source code
and find related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”
or “Interpret Bug Finder Results in Polyspace Access Web Interface”.

See examples of fixes below.

If the redundant condition represents defensive coding practices and you do not want to fix the issue,
add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example – if with Enumerated Type

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void do_something(suit s);

void bridge(void)
{
 suit card = nextcard();
 if ((card < SPADES) || (card > CLUBS)){
 card = UNKNOWN_SUIT;
 }

 if (card < 7) {
 do_something(card);
 }
}

The type suit is enumerated with five options. However, the conditional expression card < 7
always evaluates to true because card can be at most 5. The if statement is unnecessary.
Correction 1 — Change Condition

One possible correction is to change the if-condition in the code. In this correction, the 7 is changed
to UNKNOWN_SUIT to relate directly to the type of card.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void do_something(suit s);

void bridge(void)
{
 suit card = nextcard();
 if ((card < SPADES) || (card > CLUBS)){
 card = UNKNOWN_SUIT;
 }

 if (card > UNKNOWN_SUIT) {
 do_something(card);

 CERT C: Rec. MSC12-C

23-657

 }
}

Correction — Remove If

Another possible correction is to remove the if-condition in the code. Because the condition is always
true, you can remove the condition to simplify your code.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void do_something(suit s);

void bridge(void)
{
 suit card = nextcard();
 if ((card < SPADES) || (card > CLUBS)){
 card = UNKNOWN_SUIT;
 }

 do_something(card);
}

Write without a further read
Issue

This issue occurs when a value assigned to a variable is never read.

For instance, you write a value to a variable and then write a second value before reading the
previous value. The first write operation is redundant.
Risk

Redundant write operations often indicate programming errors. For instance, you forgot to read the
variable between two successive write operations or unintentionally read a different variable.
Fix

Identify the reason why you write to the variable but do not read it later. Look for common
programming errors such as accidentally reading a different variable with a similar name.

If you determine that the write operation is redundant, remove the operation.
Example – Write Without Further Read Error

void sensor_amplification(void)
{
 extern int getsensor(void);
 int level;

 level = 4 * getsensor();
 /* Defect: Useless write */
}

After the variable level gets assigned the value 4 * getsensor(), it is not read.
Correction — Use Value After Assignment

One possible correction is to use the variable level after the assignment.

23 CERT C Rules and Recommendations

23-658

#include <stdio.h>

void sensor_amplification(void)
{
 extern int getsensor(void);
 int level;

 level = 4 * getsensor();

 /* Fix: Use level after assignment */
 printf("The value is %d", level);

}

The variable level is printed, reading the new value.

Check Information
Group: Rec. 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC12-C

Introduced in R2019a

 CERT C: Rec. MSC12-C

23-659

https://wiki.sei.cmu.edu/confluence/display/c/MSC12-C.+Detect+and+remove+code+that+has+no+effect+or+is+never+executed

CERT C: Rec. MSC13-C
Detect and remove unused values

Description
Rule Definition

Detect and remove unused values.

Polyspace Implementation

This checker checks for these issues:

• Unused parameter.
• Write without a further read.

Examples
Unused parameter
Issue

Unused parameter occurs when a function parameter is neither read nor written in the function
body.

Risk

Unused function parameters cause the following issues:

• Indicate that the code is possibly incomplete. The parameter is possibly intended for an operation
that you forgot to code.

• If the copied objects are large, redundant copies can slow down performance.

Fix

Determine if you intend to use the parameters. Otherwise, remove parameters that you do not use in
the function body.

You can intentionally have unused parameters. For instance, you have parameters that you intend to
use later when you add enhancements to the function. Add a code comment indicating your intention
for later use. The code comment helps you or a code reviewer understand why your function has
unused parameters.

Alternatively, add a statement such as (void)var; in the function body. var is the unused
parameter. You can define a macro that expands to this statement and add the macro to the function
body.

Example - Unused Parameter

void func(int* xptr, int* yptr, int flag) {
 if(flag==1) {
 *xptr=0;

23 CERT C Rules and Recommendations

23-660

 }
 else {
 *xptr=1;
 }
}

int main() {
 int x,y;
 func(&x,&y,1);
 return 0;
}

In this example, the parameter yptr is not used in the body of func.

Correction — Use Parameter

One possible correction is to check if you intended to use the parameter. Fix your code if you
intended to use the parameter.

void func(int* xptr, int* yptr, int flag) {
 if(flag==1) {
 *xptr=0;
 *yptr=1;
 }
 else {
 *xptr=1;
 *yptr=0;
 }
}

int main() {
 int x,y;
 func(&x,&y,1);
 return 0;
}

Correction — Explicitly Indicate Unused Parameter

Another possible correction is to explicitly indicate that you are aware of the unused parameter.

#define UNUSED(x) (void)x

void func(int* xptr, int* yptr, int flag) {
 UNUSED(yptr);
 if(flag==1) {
 *xptr=0;
 }
 else {
 *xptr=1;
 }
}

int main() {
 int x,y;
 func(&x,&y,1);
 return 0;
}

 CERT C: Rec. MSC13-C

23-661

Write without a further read
Issue

Write without a further read occurs when a value assigned to a variable is never read.

For instance, you write a value to a variable and then write a second value before reading the
previous value. The first write operation is redundant.

Risk

Redundant write operations often indicate programming errors. For instance, you forgot to read the
variable between two successive write operations or unintentionally read a different variable.

Fix

Identify the reason why you write to the variable but do not read it later. Look for common
programming errors such as accidentally reading a different variable with a similar name.

If you determine that the write operation is redundant, remove the operation.

Example - Write Without Further Read Error

void sensor_amplification(void)
{
 extern int getsensor(void);
 int level;

 level = 4 * getsensor();
 /* Defect: Useless write */
}

After the variable level gets assigned the value 4 * getsensor(), it is not read.

Correction — Use Value After Assignment

One possible correction is to use the variable level after the assignment.

#include <stdio.h>

void sensor_amplification(void)
{
 extern int getsensor(void);
 int level;

 level = 4 * getsensor();

 /* Fix: Use level after assignment */
 printf("The value is %d", level);

}

The variable level is printed, reading the new value.

Check Information
Group: Rec. 48. Miscellaneous (MSC)

23 CERT C Rules and Recommendations

23-662

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC13-C

Introduced in R2019a

 CERT C: Rec. MSC13-C

23-663

https://wiki.sei.cmu.edu/confluence/display/c/MSC13-C.+Detect+and+remove+unused+values

CERT C: Rec. MSC15-C
Do not depend on undefined behavior

Description
Rule Definition

Do not depend on undefined behavior.

Polyspace Implementation

This checker checks for Undefined behavior.

Examples
Undefined behavior
Issue

The issue occurs when the analysis detects undefined or critical unspecified behaviour. Specifically,
Polyspace flags these instances of undefined or critical undefined behavior:

• Use of offsetof on bit fields.
• Use of offsetof when the second argument is not a struct field of the first argument.
• Use of defined without an identifier.
• Use of an array of incomplete types.
• Use of a function like macros by using incorrect number of arguments.

Risk

C code that results in undefined or critical unspecified behavior might produce unexpected or
incorrect results. Such code might behave differently in different implementations. Issues caused by
undefined behavior in the code might be difficult to analyze because compilers might optimize the
code assuming that undefined behavior does not occur.

Fix

Avoid code that might result in undefined or critically unspecified behavior.

Example — Avoid Undefined Behaviors

#include <stddef.h> /* offsetof */

struct str {
 char a:8;
 char b[10];
 char c;
};
void foo() {

 offsetof(struct str, a);//Noncompliant

23 CERT C Rules and Recommendations

23-664

 offsetof(struct str, d);//Noncompliant
}

In this example, the function foo uses the macro offsetof on the bit field str.a. This behavior is
undefined. Polyspace flags it. The function then calls offsetof on str.d. Because d is not a field of
str, Polyspace flags it. These issues might cause compilation errors.

Check Information
Group: Rec. 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC15-C

Introduced in R2019a

 CERT C: Rec. MSC15-C

23-665

https://wiki.sei.cmu.edu/confluence/display/c/MSC15-C.+Do+not+depend+on+undefined+behavior

CERT C: Rec. MSC17-C
Finish every set of statements associated with a case label with a break statement

Description
Rule Definition

Finish every set of statements associated with a case label with a break statement.

Polyspace Implementation

This checker checks for Missing break of switch case.

Examples
Missing break of switch case
Issue

Missing break of switch case looks for switch cases that do not end in a break statement.

If the last entry in the case block is a code comment, for instance:

switch (wt)
 {
 case WE_W:
 do_something_for_WE_W();
 do_something_else_for_WE_W();
 /* fall through to WE_X*/
 case WE_X:
 ...
 }

Polyspace assumes that the missing break is intentional and does not raise a defect.

Risk

Switch cases without break statements fall through to the next switch case. If this fall-through is not
intended, the switch case can unintentionally execute code and end the switch with unexpected
results.

Fix

If you do not want a break for the highlighted switch case, add a comment to your code to document
why this case falls through to the next case. This comment removes the defect from your results and
makes your code more maintainable.

If you forgot the break, add it before the end of the switch case.

Example - Switch Without Break Statements

enum WidgetEnum { WE_W, WE_X, WE_Y, WE_Z } widget_type;

extern void demo_do_something_for_WE_W(void);

23 CERT C Rules and Recommendations

23-666

extern void demo_do_something_for_WE_X(void);
extern void demo_report_error(void);

void bug_missingswitchbreak(enum WidgetEnum wt)
{
 /*
 In this non-compliant code example, the case where widget_type is WE_W lacks a
 break statement. Consequently, statements that should be executed only when
 widget_type is WE_X are executed even when widget_type is WE_W.
 */
 switch (wt)
 {
 case WE_W:
 demo_do_something_for_WE_W();
 case WE_X:
 demo_do_something_for_WE_X();
 default:
 /* Handle error condition */
 demo_report_error();
 }
}

In this example, there are two cases without break statements. When wt is WE_W, the statements for
WE_W, WE_X, and the default case execute because the program falls through the two cases without
a break. No defect is raised on the default case or last case because it does not need a break
statement.

Correction — Add a Comment or break

To fix this example, either add a comment to mark and document the acceptable fall-through or add a
break statement to avoid fall-through. In this example, case WE_W is supposed to fall through, so a
comment is added to explicitly state this action. For the second case, a break statement is added to
avoid falling through to the default case.

enum WidgetEnum { WE_W, WE_X, WE_Y, WE_Z } widget_type;

extern void demo_do_something_for_WE_W(void);
extern void demo_do_something_for_WE_X(void);
extern void demo_report_error(void);

void corrected_missingswitchbreak(enum WidgetEnum wt)
{
 switch (wt)
 {
 case WE_W:
 demo_do_something_for_WE_W();
 /* fall through to WE_X*/
 case WE_X:
 demo_do_something_for_WE_X();
 break;
 default:
 /* Handle error condition */
 demo_report_error();
 }
}

 CERT C: Rec. MSC17-C

23-667

Check Information
Group: Rec. 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC17-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-668

https://wiki.sei.cmu.edu/confluence/display/c/MSC17-C.+Finish+every+set+of+statements+associated+with+a+case+label+with+a+break+statement

CERT C: Rec. MSC18-C
Be careful while handling sensitive data, such as passwords, in program code

Description
Rule Definition

Be careful while handling sensitive data, such as passwords, in program code.

Polyspace Implementation

This checker checks for these issues:

• Constant block cipher initialization vector.
• Constant cipher key.
• Predictable block cipher initialization vector.
• Predictable cipher key.
• Sensitive heap memory not cleared before release.
• Uncleared sensitive data in stack.
• Unsafe standard encryption function.

Examples
Constant block cipher initialization vector
Issue

Constant block cipher initialization vector occurs when you use a constant for the initialization
vector (IV) during encryption.
Risk

Using a constant IV is equivalent to not using an IV. Your encrypted data is vulnerable to dictionary
attacks.

Block ciphers break your data into blocks of fixed size. Block cipher modes such as CBC (Cipher
Block Chaining) protect against dictionary attacks by XOR-ing each block with the encrypted output
from the previous block. To protect the first block, these modes use a random initialization vector
(IV). If you use a constant IV to encrypt multiple data streams that have a common beginning, your
data becomes vulnerable to dictionary attacks.
Fix

Produce a random IV by using a strong random number generator.

For a list of random number generators that are cryptographically weak, see Vulnerable pseudo-
random number generator.
Example - Constants Used for Initialization Vector

 CERT C: Rec. MSC18-C

23-669

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

/* Using the cryptographic routines */

int func(EVP_CIPHER_CTX *ctx, unsigned char *key){
 unsigned char iv[SIZE16] = {'1', '2', '3', '4','5','6','b','8','9',
 '1','2','3','4','5','6','7'};
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

In this example, the initialization vector iv has constants only. The constant initialization vector
makes your cipher vulnerable to dictionary attacks.

Correction — Use Random Initialization Vector

One possible correction is to use a strong random number generator to produce the initialization
vector. The corrected code here uses the function RAND_bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

/* Using the cryptographic routines */

int func(EVP_CIPHER_CTX *ctx, unsigned char *key){
 unsigned char iv[SIZE16];
 RAND_bytes(iv, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

Constant cipher key
Issue

Constant cipher key occurs when you use a constant for the encryption or decryption key.

Risk

If you use a constant for the encryption or decryption key, an attacker can retrieve your key easily.

You use a key to encrypt and later decrypt your data. If a key is easily retrieved, data encrypted using
that key is not secure.

Fix

Produce a random key by using a strong random number generator.

For a list of random number generators that are cryptographically weak, see Vulnerable pseudo-
random number generator.

Example - Constants Used for Key

23 CERT C Rules and Recommendations

23-670

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){
 unsigned char key[SIZE16] = {'1', '2', '3', '4','5','6','b','8','9',
 '1','2','3','4','5','6','7'};
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

In this example, the cipher key, key, has constants only. An attacker can easily retrieve a constant
key.

Correction — Use Random Key

Use a strong random number generator to produce the cipher key. The corrected code here uses the
function RAND_bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){
 unsigned char key[SIZE16];
 RAND_bytes(key, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

Predictable block cipher initialization vector
Issue

Predictable block cipher initialization vector occurs when you use a weak random number
generator for the block cipher initialization vector.

Risk

If you use a weak random number generator for the initiation vector, your data is vulnerable to
dictionary attacks.

Block ciphers break your data into blocks of fixed size. Block cipher modes such as CBC (Cipher
Block Chaining) protect against dictionary attacks by XOR-ing each block with the encrypted output
from the previous block. To protect the first block, these modes use a random initialization vector
(IV). If you use a weak random number generator for your IV, your data becomes vulnerable to
dictionary attacks.

Fix

Use a strong pseudo-random number generator (PRNG) for the initialization vector. For instance, use:

• OS-level PRNG such as /dev/random on UNIX or CryptGenRandom() on Windows
• Application-level PRNG such as Advanced Encryption Standard (AES) in Counter (CTR) mode,

HMAC-SHA1, etc.

 CERT C: Rec. MSC18-C

23-671

For a list of random number generators that are cryptographically weak, see Vulnerable pseudo-
random number generator.

Example - Predictable Initialization Vector

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *key){
 unsigned char iv[SIZE16];
 RAND_pseudo_bytes(iv, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

In this example, the function RAND_pseudo_bytes declared in openssl/rand.h produces the
initialization vector. The byte sequences that RAND_pseudo_bytes generates are not necessarily
unpredictable.

Correction — Use Strong Random Number Generator

Use a strong random number generator to produce the initialization vector. The corrected code here
uses the function RAND_bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *key){
 unsigned char iv[SIZE16];
 RAND_bytes(iv, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

Predictable cipher key
Issue

Predictable cipher key occurs when you use a weak random number generator for the encryption
or decryption key.

Risk

If you use a weak random number generator for the encryption or decryption key, an attacker can
retrieve your key easily.

You use a key to encrypt and later decrypt your data. If a key is easily retrieved, data encrypted using
that key is not secure.

Fix

Use a strong pseudo-random number generator (PRNG) for the key. For instance:

23 CERT C Rules and Recommendations

23-672

• Use an OS-level PRNG such as /dev/random on UNIX or CryptGenRandom() on Windows
• Use an application-level PRNG such as Advanced Encryption Standard (AES) in Counter (CTR)

mode, HMAC-SHA1, etc.

For a list of random number generators that are cryptographically weak, see Vulnerable pseudo-
random number generator.

Example - Predictable Cipher Key

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){
 unsigned char key[SIZE16];
 RAND_pseudo_bytes(key, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

In this example, the function RAND_pseudo_bytes declared in openssl/rand.h produces the
cipher key. However, the byte sequences that RAND_pseudo_bytes generates are not necessarily
unpredictable.

Correction — Use Strong Random Number Generator

One possible correction is to use a strong random number generator to produce the cipher key. The
corrected code here uses the function RAND_bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){
 unsigned char key[SIZE16];
 RAND_bytes(key, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

Sensitive heap memory not cleared before release

Issue

Sensitive heap memory not cleared before release detects dynamically allocated memory
containing sensitive data. If you do not clear the sensitive data when you free the memory, Bug
Finder raises a defect on the free function.

Risk

If the memory zone is reallocated, an attacker can still inspect the sensitive data in the old memory
zone.

 CERT C: Rec. MSC18-C

23-673

Fix

Before calling free, clear out the sensitive data using memset or SecureZeroMemory.

Example - Sensitive Buffer Freed, Not Cleared

#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <pwd.h>

void sensitiveheapnotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char* buf = (char*) malloc(1024);
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 free(buf);
}

In this example, the function uses a buffer of passwords and frees the memory before the end of the
function. However, the data in the memory is not cleared by using the free command.

Correction — Nullify Data

One possible correction is to write over the data to clear out the sensitive information. This example
uses memset to write over the data with zeros.

#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <pwd.h>
#include <assert.h>

#define isNull(arr) for(int i=0;i<(sizeof(arr)/sizeof(arr[0]));i++) assert(arr[i]==0)

void sensitiveheapnotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char* buf = (char*) malloc(1024);

 if (buf) {
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 memset(buf, 0, (size_t)1024);
 isNull(buf);
 free(buf);
 }
}

Uncleared sensitive data in stack

Issue

Uncleared sensitive data in stack detects static memory containing sensitive data. If you do not
clear the sensitive data from your stack before exiting the function or program, Bug Finder raises a
defect on the last curly brace.

23 CERT C Rules and Recommendations

23-674

Risk

Leaving sensitive information in your stack, such as passwords or user information, allows an
attacker additional access to the information after your program has ended.
Fix

Before exiting a function or program, clear out the memory zones that contain sensitive data by using
memset or SecureZeroMemory.
Example - Static Buffer of Password Information

#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>

void bug_sensitivestacknotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
}

In this example, a static buffer is filled with password information. The program frees the stack
memory at the end of the program. However, the data is still accessible from the memory.
Correction — Clear Memory

One possible correction is to write over the memory before exiting the function. This example uses
memset to clear the data from the buffer memory.

#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <pwd.h>
#include <assert.h>

#define isNull(arr) for(int i=0; i<(sizeof(arr)/sizeof(arr[0])); i++) assert(arr[i]==0)

void corrected_sensitivestacknotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 memset(buf, 0, (size_t)1024);
 isNull(buf);
}

Unsafe standard encryption function
Issue

Unsafe standard encryption function detects use of functions with a broken or weak
cryptographic algorithm. For example, crypt is not reentrant and is based on the risky Data
Encryption Standard (DES).
Risk

The use of a broken, weak, or nonstandard algorithm can expose sensitive information to an attacker.
A determined hacker can access the protected data using various techniques.

 CERT C: Rec. MSC18-C

23-675

If the weak function is nonreentrant, when you use the function in concurrent programs, there is an
additional race condition risk.
Fix

Avoid functions that use these encryption algorithms. Instead, use a reentrant function that uses a
stronger encryption algorithm.

Note Some implementations of crypt support additional, possibly more secure, encryption
algorithms.

Example - Decrypting Password Using crypt

#define _GNU_SOURCE
#include <pwd.h>
#include <string.h>
#include <crypt.h>

volatile int rd = 1;

const char *salt = NULL;
struct crypt_data input, output;

int verif_pwd(const char *pwd, const char *cipher_pwd, int safe)
{
 int r = 0;
 char *decrypted_pwd = NULL;

 switch(safe)
 {
 case 1:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;

 case 2:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;

 default:
 decrypted_pwd = crypt(pwd, cipher_pwd);
 break;
 }

 r = (strcmp(cipher_pwd, decrypted_pwd) == 0);

 return r;
}

In this example, crypt_r and crypt decrypt a password. However, crypt is nonreentrant and uses
the unsafe Data Encryption Standard algorithm.
Correction — Use crypt_r

One possible correction is to replace crypt with crypt_r.

#define _GNU_SOURCE
#include <pwd.h>

23 CERT C Rules and Recommendations

23-676

#include <string.h>
#include <crypt.h>

volatile int rd = 1;

const char *salt = NULL;
struct crypt_data input, output;

int verif_pwd(const char *pwd, const char *cipher_pwd, int safe)
{
 int r = 0;
 char *decrypted_pwd = NULL;

 switch(safe)
 {
 case 1:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;

 case 2:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;

 default:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;
 }

 r = (strcmp(cipher_pwd, decrypted_pwd) == 0);

 return r;
}

Check Information
Group: Rec. 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC18-C

Introduced in R2019a

 CERT C: Rec. MSC18-C

23-677

https://wiki.sei.cmu.edu/confluence/display/c/MSC18-C.+Be+careful+while+handling+sensitive+data%2C+such+as+passwords%2C+in+program+code

CERT C: Rec. MSC20-C
Do not use a switch statement to transfer control into a complex block

Description
Rule Definition

Do not use a switch statement to transfer control into a complex block.

Polyspace Implementation

This checker checks for Switch label not at outermost level of body of switch statement.

Examples
Switch label not at outermost level of body of switch statement
Issue

The issue occurs when you use a switch label and the most closely-enclosing compound statement is
not the body of the switch statement. For instance a case label is enclosed inside a for loop that is
enclosed inside the switch statement.

Risk

The C Standard permits placing a switch label (for instance, case or default) before any statement
contained in the body of a switch statement. This flexibility can lead to unstructured code. To prevent
unstructured code, make sure a switch label appears only at the outermost level of the body of a
switch statement.

Check Information
Group: Rec. 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC20-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-678

https://wiki.sei.cmu.edu/confluence/display/c/MSC20-C.+Do+not+use+a+switch+statement+to+transfer+control+into+a+complex+block

CERT C: Rec. MSC21-C
Use robust loop termination conditions

Description
Rule Definition

Use robust loop termination conditions.

Polyspace Implementation

This checker checks for Loop bounded with tainted value.

Examples
Loop bounded with tainted value
Issue

Loop bounded with tainted value detects loops that are bounded by values from an unsecure
source.

Risk

A tainted value can cause over looping or infinite loops. Attackers can use this vulnerability to crash
your program or cause other unintended behavior.

Fix

Before starting the loop, validate unknown boundary and iterator values.

Example — Loop Boundary From User Input

#include<stdio.h>
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedloopboundary(void) {
 int count;
 scanf("%d", &count);
 int res = 0;
 for (int i=0 ; i < count; ++i) {
 res += i;
 }
 return res;
}

In this example, the function uses a user input to loop count times. count could be any number
because the value is not checked before starting the for loop.

 CERT C: Rec. MSC21-C

23-679

Correction: Clamp Tainted Loop Control

One possible correction is to clamp the tainted loop control. To validate the tainted loop variable
count, this example limits count to a minimum value and a maximum value by using inline functions
min and max. Regardless of the user input, the value of count remains within a known range.

#include<stdio.h>
#include<algorithm>
#define MIN 50
#define MAX 128
static inline int max(int a, int b) { return a > b ? a : b;}
static inline int min(int a, int b) { return a < b ? a : b; }

int taintedloopboundary(void) {
 int count;
 scanf("%d", &count);
 int res = 0;
 count = max(MIN, min(count, MAX));
 for (int i=0 ; i<count ; ++i) {
 res += i;
 }
 return res;
}

Correction — Check Tainted Loop Control

Another possible correction is to check the low bound and the high bound of the tainted loop
boundary variable before starting the for loop. This example checks the low and high bounds of
count and executes the loop only when count is between 0 and 127.

#include<stdio.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedloopboundary(void) {
 int count;
 scanf("%d", &count);
 int res = 0;

 if (count>=0 && count<SIZE128) {
 for (int i=0 ; i<count ; ++i) {
 res += i;
 }
 }
 return res;
}

Check Information
Group: Rec. 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

23 CERT C Rules and Recommendations

23-680

Topics
“Check for Coding Standard Violations”

External Websites
MSC21-C

Introduced in R2019a

 CERT C: Rec. MSC21-C

23-681

https://wiki.sei.cmu.edu/confluence/display/c/MSC21-C.+Use+robust+loop+termination+conditions

CERT C: Rec. MSC22-C
Use the setjmp(), longjmp() facility securely

Description
Rule Definition

Use the setjmp(), longjmp() facility securely.

Polyspace Implementation

This checker checks for Use of setjmp/longjmp.

Examples
Use of setjmp/longjmp
Issue

Use of setjmp/longjmp occurs when you use a combination of setjmp and longjmp or sigsetjmp
and siglongjmp to deviate from normal control flow and perform non-local jumps in your code.

Risk

Using setjmp and longjmp, or sigsetjmp and siglongjmp has the following risks:

• Nonlocal jumps are vulnerable to attacks that exploit common errors such as buffer overflows.
Attackers can redirect the control flow and potentially execute arbitrary code.

• Resources such as dynamically allocated memory and open files might not be closed, causing
resource leaks.

• If you use setjmp and longjmp in combination with a signal handler, unexpected control flow can
occur. POSIX does not specify whether setjmp saves the signal mask.

• Using setjmp and longjmp or sigsetjmp and siglongjmp makes your program difficult to
understand and maintain.

Fix

Perform nonlocal jumps in your code using setjmp/longjmp or sigsetjmp/siglongjmp only in
contexts where such jumps can be performed securely. Alternatively, use POSIX threads if possible.

In C++, to simulate throwing and catching exceptions, use standard idioms such as throw
expressions and catch statements.

Example - Use of setjmp and longjmp

#include <setjmp.h>
#include <signal.h>

extern int update(int);
extern void print_int(int);

static jmp_buf env;

23 CERT C Rules and Recommendations

23-682

void sighandler(int signum) {
 longjmp(env, signum);
}
void func_main(int i) {
 signal(SIGINT, sighandler);
 if (setjmp(env)==0) {
 while(1) {
 /* Main loop of program, iterates until SIGINT signal catch */
 i = update(i);
 }
 } else {
 /* Managing longjmp return */
 i = -update(i);
 }

 print_int(i);
 return;
}

In this example, the initial return value of setjmp is 0. The update function is called in an infinite
while loop until the user interrupts it through a signal.

In the signal handling function, the longjmp statement causes a jump back to main and the return
value of setjmp is now 1. Therefore, the else branch is executed.

Correction — Use Alternative to setjmp and longjmp

To emulate the same behavior more securely, use a volatile global variable instead of a
combination of setjmp and longjmp.

#include <setjmp.h>
#include <signal.h>

extern int update(int);
extern void print_int(int);

volatile sig_atomic_t eflag = 0;

void sighandler(int signum) {
 eflag = signum; /* Fix: using global variable */
}

void func_main(int i) {
 /* Fix: Better design to avoid use of setjmp/longjmp */
 signal(SIGINT, sighandler);
 while(!eflag) { /* Fix: using global variable */
 /* Main loop of program, iterates until eflag is changed */
 i = update(i);
 }

 print_int(i);
 return;
}

Check Information
Group: Rec. 48. Miscellaneous (MSC)

 CERT C: Rec. MSC22-C

23-683

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC22-C

Introduced in R2019a

23 CERT C Rules and Recommendations

23-684

https://wiki.sei.cmu.edu/confluence/display/c/MSC22-C.+Use+the+setjmp%28%29%2C+longjmp%28%29+facility+securely

CERT C: Rec. MSC24-C
Do not use deprecated or obsolescent functions

Description
Rule Definition

Do not use deprecated or obsolescent functions.

Polyspace Implementation

This checker checks for Use of obsolete standard function.

Examples
Use of obsolete standard function

Issue

Use of obsolete standard function detects calls to standard function routines that are considered
legacy, removed, deprecated, or obsolete by C/C++ coding standards.

Obsolete Function Standards Risk Replacement
Function

asctime Deprecated in POSIX.1-2008 Not thread-safe. strftime or
asctime_s

asctime_r Deprecated in POSIX.1-2008 Implementation based on
unsafe function sprintf.

strftime or
asctime_s

bcmp Deprecated in 4.3BSD

Marked as legacy in POSIX.1-2001.

Returns from function
after finding the first
differing byte, making it
vulnerable to timing
attacks.

memcmp

bcopy Deprecated in 4.3BSD

Marked as legacy in POSIX.1-2001.

Returns from function
after finding the first
differing byte, making it
vulnerable to timing
attacks.

memcpy or memmove

brk and sbrk Marked as legacy in SUSv2 and
POSIX.1-2001.

 malloc

bsd_signal Removed in POSIX.1-2008 sigaction
bzero Marked as legacy in POSIX.1-2001.

Removed in POSIX.1-2008.
 memset

ctime Deprecated in POSIX.1-2008 Not thread-safe. strftime or
asctime_s

 CERT C: Rec. MSC24-C

23-685

Obsolete Function Standards Risk Replacement
Function

ctime_r Deprecated in POSIX.1-2008 Implementation based on
unsafe function sprintf.

strftime or
asctime_s

cuserid Removed in POSIX.1-2001. Not reentrant. Precise
functionality not
standardized causing
portability issues.

getpwuid

ecvt and fcvt Marked as legacy in POSIX.1-2001.
Removed in POSIX.1-2008

Not reentrant snprintf

ecvt_r and fcvt_r Marked as legacy in POSIX.1-2001.
Removed in POSIX.1-2008

 snprintf

ftime Removed in POSIX.1-2008 time,
gettimeofday,
clock_gettime

gamma, gammaf,
gammal

Function not specified in any
standard because of historical
variations

Portability issues. tgamma, lgamma

gcvt Marked as legacy in POSIX.1-2001.
Removed in POSIX.1-2008.

 snprintf

getcontext Removed in POSIX.1-2008. Portability issues. Use POSIX thread
instead.

getdtablesize BSD API function not included in
POSIX.1-2001

Portability issues. sysconf(_SC_OPEN
_MAX)

gethostbyaddr Removed in POSIX.1-2008 Not reentrant getaddrinfo
gethostbyname Removed in POSIX.1-2008 Not reentrant getnameinfo
getpagesize BSD API function not included in

POSIX.1-2001
Portability issues. sysconf(_SC_PAGE

SIZE)
getpass Removed in POSIX.1-2001. Not reentrant. getpwuid
getw Not present in POSIX.1-2001. fread
getwd Marked legacy in POSIX.1-2001.

Removed in POSIX.1-2008.
 getcwd

index Marked as legacy in POSIX.1-2001.
Removed in POSIX.1-2008.

 strchr

makecontext Removed in POSIX.1-2008. Portability issues. Use POSIX thread
instead.

memalign Appears in SunOS 4.1.3. Not in 4.4
BSD or POSIX.1-2001

 posix_memalign

mktemp Removed in POSIX.1-2008. Generated names are
predictable and can
cause a race condition.

mkstemp removes
race risk

23 CERT C Rules and Recommendations

23-686

Obsolete Function Standards Risk Replacement
Function

pthread_attr_
getstackaddr and
pthread_attr_
setstackaddr

 Ambiguities in the
specification of the
stackaddr attribute
cause portability issues

pthread_attr_
getstack and
pthread_attr_
setstack

putw Not present in POSIX.1-2001. Portability issues. fwrite
qecvt and qfcvt Marked as legacy in POSIX.1-2001,

removed in POSIX.1-2008
 snprintf

qecvt_r and qfcvt_r Marked as legacy in POSIX.1-2001,
removed in POSIX.1-2008

 snprintf

rand_r Marked as obsolete in
POSIX.1-2008

re_comp BSD API function Portability issues regcomp
re_exes BSD API function Portability issues regexec
rindex Marked as legacy in POSIX.1-2001.

Removed in POSIX.1-2008.
 strrchr

scalb Removed in POSIX.1-2008 scalbln, scalblnf,
or scalblnl

sigblock 4.3BSD signal API whose origin is
unclear

 sigprocmask

sigmask 4.3BSD signal API whose origin is
unclear

 sigprocmask

sigsetmask 4.3BSD signal API whose origin is
unclear

 sigprocmask

sigstack Interface is obsolete and not
implemented on most platforms.

Portability issues. sigaltstack

sigvec 4.3BSD signal API whose origin is
unclear

 sigaction

swapcontext Removed in POSIX.1-2008 Portability issues. Use POSIX threads.
tmpnam and tmpnam_r Marked as obsolete in

POSIX.1-2008.
This function generates a
different string each time
it is called, up to
TMP_MAX times. If it is
called more than
TMP_MAX times, the
behavior is
implementation-defined.

mkstemp, tmpfile

ttyslot Removed in POSIX.1-2001.
ualarm Marked as legacy in POSIX.1-2001.

Removed in POSIX.1-2008.
Errors are under-
specified

setitimer or POSIX
timer_create

usleep Removed in POSIX.1-2008. nanosleep
utime SVr4, POSIX.1-2001. POSIX.1-2008

marks as obsolete.

 CERT C: Rec. MSC24-C

23-687

Obsolete Function Standards Risk Replacement
Function

valloc Marked as obsolete in 4.3BSD.

Marked as legacy in SUSv2.

Removed from POSIX.1-2001

 posix_memalign

vfork Removed from POSIX.1-2008 Under-specified in
previous standards.

fork

wcswcs This function was not included in
the final ISO/IEC 9899:1990/
Amendment 1:1995 (E).

 wcsstr

WinExec WinAPI provides this function only
for 16-bit Windows compatibility.

 CreateProcess

LoadModule WinAPI provides this function only
for 16-bit Windows compatibility.

 CreateProcess

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Printing Out Time

#include <stdio.h>
#include <time.h>

void timecheck_bad(int argc, char *argv[])
{
 time_t ticks;

 ticks = time(NULL);
 printf("%.24s\r\n", ctime(&ticks));
}

In this example, the function ctime formats the current time and prints it out. However, ctime was
removed after C99 because it does not work on multithreaded programs.

Correction — Different Time Function

One possible correction is to use strftime instead because this function uses a set buffer size.

23 CERT C Rules and Recommendations

23-688

#include <stdio.h>
#include <string.h>
#include <time.h>

void timecheck_good(int argc, char *argv[])
{
 char outBuff[1025];
 time_t ticks;
 struct tm * timeinfo;

 memset(outBuff, 0, sizeof(outBuff));

 ticks = time(NULL);
 timeinfo = localtime(&ticks);
 strftime(outBuff,sizeof(outBuff),"%I:%M%p.",timeinfo);
 fprintf(stdout, outBuff);
}

Check Information
Group: Rec. 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
MSC24-C

Introduced in R2019a

 CERT C: Rec. MSC24-C

23-689

https://wiki.sei.cmu.edu/confluence/display/c/MSC24-C.+Do+not+use+deprecated+or+obsolescent+functions

CERT C: Rec. POS05-C
Limit access to files by creating a jail

Description
Rule Definition

Limit access to files by creating a jail.

Polyspace Implementation

This checker checks for File manipulation after chroot without chdir.

Examples
File manipulation after chroot without chdir
Issue

File manipulation after chroot() without chdir("/") detects access to the file system outside
of the jail created by chroot. By calling chroot, you create a file system jail that confines access to
a specific file subsystem. However, this jail is ineffective if you do not call chdir("/").

Risk

If you do not call chdir("/") after creating a chroot jail, file manipulation functions that takes a
path as an argument can access files outside of the jail. An attacker can still manipulate files outside
the subsystem that you specified, making the chroot jail ineffective.

Fix

After calling chroot, call chdir("/") to make your chroot jail more secure.

Example - Open File in chroot-jail

#include <unistd.h>
#include <stdio.h>

const char root_path[] = "/var/ftproot";
const char log_path[] = "file.log";
FILE* chrootmisuse() {
 FILE* res;
 chroot(root_path);
 chdir("base");
 res = fopen(log_path, "r");
 return res;
}

This example uses chroot to create a chroot-jail. However, to use the chroot jail securely, you must
call chdir("\") afterward. This example calls chdir("base"), which is not equivalent. Bug Finder
also flags fopen because fopen opens a file in the vulnerable chroot-jail.

23 CERT C Rules and Recommendations

23-690

Correction — Call chdir("/")

Before opening files, call chdir("/").

#include <unistd.h>
#include <stdio.h>

const char root_path[] = "/var/ftproot";
const char log_path[] = "file.log";
FILE* chrootmisuse() {
 FILE* res;
 chroot(root_path);
 chdir("/");
 res = fopen(log_path, "r");
 return res;
}

Check Information
Group: Rec. 50. POSIX (POS)

See Also
Check SEI CERT-C (-cert-c)

Topics
“Check for Coding Standard Violations”

External Websites
POS05-C

Introduced in R2019a

 CERT C: Rec. POS05-C

23-691

https://wiki.sei.cmu.edu/confluence/display/c/POS05-C.+Limit+access+to+files+by+creating+a+jail

CERT C: Rec. WIN00-C
Be specific when dynamically loading libraries

Description
Rule Definition

Be specific when dynamically loading libraries.

Polyspace Implementation

This checker checks for these issues:

• Load of library from a relative path can be controlled by an external actor.
• Library loaded from externally controlled path.

Examples
Load of library from a relative path can be controlled by an external actor
Issue

Load of library from a relative path can be controlled by an external actor detects library
loading routines that load an external library. If you load the library using a relative path or no path,
Bug Finder flags the loading routine as a defect.

Risk

By using a relative path or no path to load an external library, your program uses an unsafe search
process to find the library. An attacker can control the search process and replace the intended
library with a library of their own.

Fix

When you load an external library, specify the full path.

Example - Open Library with Library Name

#include <dlfcn.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <stdio.h>

void relative_path()
{
 dlopen("liberty.dll",RTLD_LAZY);
}

In this example, dlopen opens the liberty library by calling only the name of the library. However,
this call to the library uses a relative path to find the library, which is unsafe.

23 CERT C Rules and Recommendations

23-692

Correction — Use Full Path to Library

One possible correction is to use the full path to the library when you load it into your program.

#include <dlfcn.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <stdio.h>

void relative_path()
{
 dlopen("/home/my_libs/library/liberty.dll",RTLD_LAZY);
}

Library loaded from externally controlled path
Issue

Library loaded from externally controlled path looks for libraries loaded from fixed or controlled
paths. If unintended actors can control one or more locations on this fixed path, Bug Finder raises a
defect.

Risk

If an attacker knows or controls the path that you use to load a library, the attacker can change:

• The library that the program loads, replacing the intended library and commands.
• The environment in which the library executes, giving unintended permissions and capabilities to

the attacker.

Fix

When possible, use hard-coded or fully qualified path names to load libraries. It is possible the hard-
coded paths do not work on other systems. Use a centralized location for hard-coded paths, so that
you can easily modify the path within the source code.

Another solution is to use functions that require explicit paths. For example, system() does not
require a full path because it can use the PATH environment variable. However, execl() and
execv() do require the full path.

Example - Call Custom Library

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <dlfcn.h>
#include <limits.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void* taintedpathlib() {
 void* libhandle = NULL;

 CERT C: Rec. WIN00-C

23-693

 char lib[SIZE128] = "";
 char* userpath = getenv("LD_LIBRARY_PATH");
 strncpy(lib, userpath, SIZE128);
 strcat(lib, "/libX.so");
 libhandle = dlopen(lib, 0x00001);
 return libhandle;
}

This example loads the library libX.so from an environment variable LD_LIBRARY_PATH. An
attacker can change the library path in this environment variable. The actual library you load could
be a different library from the one that you intend.

Correction — Change and Check Path

One possible correction is to change how you get the library path and check the path of the library
before opening the library. This example receives the path as an input argument. Then the path is
checked to make sure the library is not under /usr/.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <dlfcn.h>
#include <limits.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

/* Function to sanitize a string */
int sanitize_str(char* s, size_t n) {
 /* strlen is used here as a kind of firewall for tainted string errors */
 int res = (strlen(s) > 0 && strlen(s) < n);
 return res;
}
void* taintedpathlib(char* userpath) {
 void* libhandle = NULL;
 if (sanitize_str(userpath, SIZE128)) {
 char lib[SIZE128] = "";

 if (strncmp(userpath, "/usr", 4)!=0) {
 strncpy(lib, userpath, SIZE128);
 strcat(lib, "/libX.so");
 libhandle = dlopen(lib, RTLD_LAZY);
 }
 }
 return libhandle;
}

Check Information
Group: Rec. 51. Microsoft Windows (WIN)

See Also
Check SEI CERT-C (-cert-c)

23 CERT C Rules and Recommendations

23-694

Topics
“Check for Coding Standard Violations”

External Websites
WIN00-C

Introduced in R2019a

 CERT C: Rec. WIN00-C

23-695

https://wiki.sei.cmu.edu/confluence/display/c/WIN00-C.+Be+specific+when+dynamically+loading+libraries

CERT C++ Rules

24

Acknowledgement
This software has been created by MathWorks incorporating portions of: the “SEI CERT-C Website,”
© 2017 Carnegie Mellon University, the SEI CERT-C++ Web site © 2017 Carnegie Mellon
University, ”SEI CERT C Coding Standard – Rules for Developing safe, Reliable and Secure systems –
2016 Edition,” © 2016 Carnegie Mellon University, and “SEI CERT C++ Coding Standard – Rules for
Developing safe, Reliable and Secure systems in C++ – 2016 Edition” © 2016 Carnegie Mellon
University, with special permission from its Software Engineering Institute.

ANY MATERIAL OF CARNEGIE MELLON UNIVERSITY AND/OR ITS SOFTWARE ENGINEERING
INSTITUTE CONTAINED HEREIN IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This software and associated documentation has not been reviewed nor is it endorsed by Carnegie
Mellon University or its Software Engineering Institute.

24 CERT C++ Rules

24-2

CERT C++: DCL30-C
Declare objects with appropriate storage durations

Description
Rule Definition

Declare objects with appropriate storage durations.

Polyspace Implementation

This checker checks for Pointer or reference to stack variable leaving scope.

Examples
Pointer or reference to stack variable leaving scope
Issue

Pointer or reference to stack variable leaving scope occurs when a pointer or reference to a
local variable leaves the scope of the variable. For instance:

• A function returns a pointer to a local variable.
• A function performs the assignment globPtr = &locVar. globPtr is a global pointer variable

and locVar is a local variable.
• A function performs the assignment *paramPtr = &locVar. paramPtr is a function parameter

that is, for instance, an int** pointer and locVar is a local int variable.
• A C++ method performs the assignment memPtr = &locVar. memPtr is a pointer data member

of the class the method belongs to. locVar is a variable local to the method.

The defect also applies to memory allocated using the alloca function. The defect does not apply to
static, local variables.
Risk

Local variables are allocated an address on the stack. Once the scope of a local variable ends, this
address is available for reuse. Using this address to access the local variable value outside the
variable scope can cause unexpected behavior.

If a pointer to a local variable leaves the scope of the variable, Polyspace Bug Finder highlights the
defect. The defect appears even if you do not use the address stored in the pointer. For maintainable
code, it is a good practice to not allow the pointer to leave the variable scope. Even if you do not use
the address in the pointer now, someone else using your function can use the address, causing
undefined behavior.
Fix

Do not allow a pointer or reference to a local variable to leave the variable scope.
Example - Pointer to Local Variable Returned from Function

void func2(int *ptr) {
 *ptr = 0;

 CERT C++: DCL30-C

24-3

}

int* func1(void) {
 int ret = 0;
 return &ret ;
}
void main(void) {
 int* ptr = func1() ;
 func2(ptr) ;
}

In this example, func1 returns a pointer to local variable ret.

In main, ptr points to the address of the local variable. When ptr is accessed in func2, the access is
illegal because the scope of ret is limited to func1,

Example - Pointer to Local Variable Escapes Through Lambda Expression

auto createAdder(int amountToAdd) {
 int addThis = amountToAdd;
 auto adder = [&] (int initialAmount) {
 return (initialAmount + addThis);
 };
 return adder;
}

void func() {
 auto AddByTwo = createAdder(2);
 int res = AddByTwo(10);
}

In this example, the createAdder function defines a lambda expression adder that captures the
local variable addThis by reference. The scope of addThis is limited to the createAdder function.
When the object returned by createAdder is called, a reference to the variable addThis is accessed
outside its scope. When accessed in this way, the value of addThis is undefined.

Correction – Capture Local Variables by Copy in Lambda Expression Instead of Reference

If a function returns a lambda expression object, avoid capturing local variables by reference in the
lambda object. Capture the variables by copy instead.

Variables captured by copy have the same lifetime as the lambda object, but variables captured by
reference often have a smaller lifetime than the lambda object itself. When the lambda object is used,
these variables accessed outside scope have undefined values.

auto createAdder(int amountToAdd) {
 int addThis = amountToAdd;
 auto adder = [=] (int initialAmount) {
 return (initialAmount + addThis);
 };
 return adder;
}

void func() {
 auto AddByTwo = createAdder(2);
 int res = AddByTwo(10);
}

24 CERT C++ Rules

24-4

Check Information
Group: 01. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
DCL30-C

Introduced in R2019a

 CERT C++: DCL30-C

24-5

https://wiki.sei.cmu.edu/confluence/display/c/DCL30-C.+Declare+objects+with+appropriate+storage+durations

CERT C++: DCL39-C
Avoid information leakage in structure padding

Description
Rule Definition

Avoid information leakage in structure padding.

Polyspace Implementation

This checker checks for Information leak via structure padding.

Examples
Information leak via structure padding
Issue

Information leak via structure padding occurs when you do not initialize the padding data of a
structure or union before passing it across a trust boundary. A compiler adds padding bytes to the
structure or union to ensure a proper memory alignment of its members. The bit-fields of the storage
units can also have padding bits.

Information leak via structure padding raises a defect when:

• You call an untrusted function with structure or union pointer type argument containing
uninitialized padding data.

All external functions are considered untrusted.
• You copy or assign a structure or union containing uninitialized padding data to an untrusted

object.

All external structure or union objects, the output parameters of all externally linked functions,
and the return pointer of all external functions are considered untrusted objects.

Risk

The padding bytes of the passed structure or union might contain sensitive information that an
untrusted source can access.
Fix

• Prevent the addition of padding bytes for memory alignment by using the pack pragma or
attribute supported by your compiler.

• Explicitly declare and initialize padding bytes as fields within the structure or union.
• Explicitly declare and initialize bit-fields corresponding to padding bits, even if you use the pack

pragma or attribute supported by your compiler.

Example - Structure with Padding Bytes Passed to External Function

#include <stddef.h>
#include <stdlib.h>

24 CERT C++ Rules

24-6

#include <string.h>

typedef struct s_padding
{
 /* Padding bytes may be introduced between
 * 'char c' and 'int i'
 */
 char c;
 int i;

/*Padding bits may be introduced around the bit-fields
* even if you use "#pragma pack" (Windows) or
* __attribute__((__packed__)) (GNU)*/

 unsigned int bf1:1;
 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

/* External function */
extern void copy_object(void *out, void *in, size_t s);

void func(void *out_buffer)
{
/*Padding bytes not initialized*/

 S_Padding s = {'A', 10, 1, 3, {}};
/*Structure passed to external function*/

 copy_object((void *)out_buffer, (void *)&s, sizeof(s));
}

void main(void)
{
 S_Padding s1;
 func(&s1);
}

In this example, structure s1 can have padding bytes between the char c and int i members. The
bit-fields of the storage units of the structure can also contain padding bits. The content of the
padding bytes and bits is accessible to an untrusted source when s1 is passed to func.

Correction — Use pack Pragma to Prevent Padding Bytes

One possible correction in Microsoft Visual Studio is to use #pragma pack() to prevent padding
bytes between the structure members. To prevent padding bits in the bit-fields of s1, explicitly
declare and initialize the bit-fields even if you use #pragma pack().

 #include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>

#define CHAR_BIT 8

#pragma pack(push, 1)

 CERT C++: DCL39-C

24-7

typedef struct s_padding
{
/*No Padding bytes when you use "#pragma pack" (Windows) or
* __attribute__((__packed__)) (GNU)*/
 char c;
 int i;
 unsigned int bf1:1;
 unsigned int bf2:2;
/* Padding bits explicitely declared */
 unsigned int bf_filler : sizeof(unsigned) * CHAR_BIT - 3;
 unsigned char buffer[20];
}

 S_Padding;

#pragma pack(pop)

/* External function */
extern void copy_object(void *out, void *in, size_t s);

void func(void *out_buffer)
{
 S_Padding s = {'A', 10, 1, 3, 0 /* padding bits */, {}};
 copy_object((void *)out_buffer, (void *)&s, sizeof(s));
}

void main(void)
{
 S_Padding s1;
 func(&s1);
}

Check Information
Group: 01. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
DCL39-C

Introduced in R2019a

24 CERT C++ Rules

24-8

https://wiki.sei.cmu.edu/confluence/display/c/DCL39-C.+Avoid+information+leakage+when+passing+a+structure+across+a+trust+boundary

CERT C++: DCL40-C
Do not create incompatible declarations of the same function or object

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

Rule Definition

Do not create incompatible declarations of the same function or object.

Polyspace Implementation

This checker checks for Declaration mismatch.

Examples
Declaration mismatch
Issue

Declaration mismatch occurs when a function or variable declaration does not match other
instances of the function or variable.

Risk

When a mismatch occurs between two variable declarations in different compilation units, a typical
linker follows an algorithm to pick one declaration for the variable. If you expect a variable
declaration that is different from the one chosen by the linker, you can see unexpected results when
the variable is used.

A similar issue can occur with mismatch in function declarations.

Fix

The fix depends on the type of declaration mismatch. If both declarations indeed refer to the same
object, use the same declaration. If the declarations refer to different objects, change the names of
the one of the variables. If you change a variable name, remember to make the change in all places
that use the variable.

Sometimes, declaration mismatches can occur because the declarations are affected by previous
preprocessing directives. For instance, a declaration occurs in a macro, and the macro is defined on
one inclusion path but undefined in another. These declaration mismatches can be tricky to debug.
Identify the divergence between the two inclusion paths and fix the conflicting macro definitions.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

 CERT C++: DCL40-C

24-9

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Inconsistent Declarations in Two Files

file1.c

int foo(void) {
 return 1;
}

file2.c

double foo(void);

int bar(void) {
 return (int)foo();
}

In this example, file1.cpp declares foo() as returning an integer. In file2.cpp, foo() is declared as
returning a double. This difference raises a defect on the second instance of foo in file2.

Correction — Align the Function Return Values

One possible correction is to change the function declarations so that they match. In this example, by
changing the declaration of foo in file2.cpp to match file1.cpp, the defect is fixed.

file1.c

int foo(void) {
 return 1;
}

file2.c

int foo(void);

int bar(void) {
 return foo();
}

Example - Inconsistent Structure Alignment

test1.c

#include "square.h"
#include "circle.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

test2.c

#include "circle.h"
#include "square.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

24 CERT C++ Rules

24-10

circle.h

#pragma pack(1)

extern struct aCircle{
 int radius;
} circle;

square.h

extern struct aSquare {
 unsigned int side:1;
} square;

In this example, a declaration mismatch defect is raised on square in square.h because Polyspace
infers that square in square.h does not have the same alignment as square in test2.cpp. This error
occurs because the #pragma pack(1) statement in circle.h declares specific alignment. In
test2.cpp, circle.h is included before square.h. Therefore, the #pragma pack(1) statement from
circle.h is not reset to the default alignment after the aCircle structure. Because of this omission,
test2.cpp infers that the aSquare square structure also has an alignment of 1 byte.

Correction — Close Packing Statements

One possible correction is to reset the structure alignment after the aCircle struct declaration. For
the GNU or Microsoft Visual compilers, fix the defect by adding a #pragma pack() statement at the
end of circle.h.

test1.c

#include "square.h"
#include "circle.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

test2.c

#include "circle.h"
#include "square.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

circle.h

#pragma pack(1)

extern struct aCircle{
 int radius;
} circle;

#pragma pack()

square.h

extern struct aSquare {
 unsigned int side:1;
} square;

Other compilers require different #pragma pack syntax. For your syntax, see the documentation for
your compiler.

Correction — Use the Ignore pragma pack directives Option

One possible correction is to add the Ignore pragma pack directives option to your Bug Finder
analysis. If you want the structure alignment to change for each structure, and you do not want to see
this Declaration mismatch defect, use this correction.

1 On the Configuration pane, select the Advanced Settings pane.
2 In the Other box, enter -ignore-pragma-pack.
3 Rerun your analysis.

 CERT C++: DCL40-C

24-11

The Declaration mismatch defect is resolved.

Check Information
Group: 01. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
DCL40-C

Introduced in R2019a

24 CERT C++ Rules

24-12

https://wiki.sei.cmu.edu/confluence/display/c/DCL40-C.+Do+not+create+incompatible+declarations+of+the+same+function+or+object

CERT C++: DCL50-CPP
Do not define a C-style variadic function

Description
Rule Definition

Do not define a C-style variadic function.

Polyspace Implementation

This checker checks for Function definition with ellipsis notation.

Examples
Function definition with ellipsis notation
Issue

The issue occurs when you define a function using the ellipsis notation.

int func(const char* format, ...);

Check Information
Group: 01. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
DCL50-CPP

Introduced in R2019a

 CERT C++: DCL50-CPP

24-13

https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL50-CPP.+Do+not+define+a+C-style+variadic+function

CERT C++: DCL51-CPP
Do not declare or define a reserved identifier

Description
Rule Definition

Do not declare or define a reserved identifier.

Polyspace Implementation

This checker checks for:

• Defining or undefining reserved identifier or macro
• User-defined literal operator not starting with underscore

Examples
Defining or undefining reserved identifier or macro
Issue

The issue occurs when you define, redefine, or undefine a reserved identifier, macro, or function in
the Standard Library.

In general, the checker considers identifiers and macros that begin with an underscore followed by
an uppercase letter as reserved for the Standard Library.

User-defined literal operator not starting with underscore
Issue

This issue occurs when you define operators of the form

operator "" suffix

where suffix does not begin with an underscore or following the underscore, contains characters
other than letters (numbers, special characters, and so on).

Risk

Since C++11, you can add suffixes to literals that convert numeric values under the hood. For
instance, in code where you perform all calculations in a common unit, you can leave unit conversions
to dedicated operators and simply use literal suffixes for the units when defining constant values.

In this example, the literal suffixes _m and _km resolve to calls to operator"" _m() and
operator"" _km() respectively. The operators ensure that all values are converted to the same
unit.

constexpr long double operator"" _m(long double metres) {
 return metres;
}

24 CERT C++ Rules

24-14

constexpr long double operator"" _km(long double kilometres) {
 return 1000*kilometres;
}
...
long double minSteps = 100.0_m;
long double interCityDist = 100.0_km;

User defined literal suffixes must begin with an underscore (_). Literal suffixes not beginning with
underscore are reserved for Standard Library.

Fix

Make sure that user-defined literal operators begin with an underscore followed by letters only.

Check Information
Group: 01. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
DCL51-CPP

Introduced in R2019a

 CERT C++: DCL51-CPP

24-15

https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL51-CPP.+Do+not+declare+or+define+a+reserved+identifier

CERT C++: DCL52-CPP
Never qualify a reference type with const or volatile

Description
Rule Definition

Never qualify a reference type with const or volatile.

Polyspace Implementation

This checker checks for these issues:

• C++ reference type qualified with const or volatile.
• C++ reference to const-qualified type with subsequent modification.

Examples
C++ reference type qualified with const or volatile
Issue

const-Qualified Reference Type occurs when a variable with reference type is declared with the
const or volatile qualifier, for instance:

char &const c;

Risk

The C++14 Standard states that const or volatile qualified references are ill formed (unless they
are introduced through a typedef, in which case they are ignored). For instance, a reference to one
variable cannot be made to refer to another variable. Therefore, using the const qualifier is not
required for a variable with a reference type.

Often the use of these qualifiers indicate a coding error. For instance, you meant to declare a
reference to a const-qualified type:

char const &c;

but instead declared a const-qualified reference:

char &const c;

If your compiler does not detect the error, you can see unexpected results. For instance, you might
expect c to be immutable but see a different value of c compared to its value at declaration.
Fix

See if the const or volatile qualifier is incorrectly placed. For instance, see if you wanted to refer
to a const-qualified type and entered:

char &const c;

instead of:

24 CERT C++ Rules

24-16

char const &c;

If the qualifier is incorrectly placed, fix the error. Place the const or volatilequalifier before the &
operator. Otherwise, remove the redundant qualifier.

Example – const-Qualified Reference Type

int func (int &const iRef) {
 iRef++;
 return iRef%2;
}

In this example, iRef is a const-qualified reference type. Since iRef cannot refer to another
variable, the const qualifier is redundant.

Correction — Remove const Qualifier

Remove the redundant const qualifier. Since iRef is modified in func, it is not meant to refer to a
const-qualified variable. Moving the const qualifier before & will cause a compilation error.

int func (int &iRef) {
 iRef++;
 return iRef%2;
}

Correction — Fix Placement of const Qualifier

If you do not identify to modify iRef in func, declare iRef as a reference to a const-qualified
variable. Place the const qualifier before the & operator. Make sure you do not modify iRef in func.

int func (int const &iRef) {
 return (iRef+1)%2;
}

C++ reference to const-qualified type with subsequent modification
Issue

This defect occurs when a variable that refers to a const-qualified type is modified after declaration.

For instance, in this example, refVal has a type const int &, but its value is modified in a
subsequent statement.

using constIntRefType = const int &;
void func(constIntRefType refVal, int val){
 ...
 refVal = val; //refVal is modified
 ...
}

Risk

The const qualifier on a reference type implies that a variable of the type is initialized at declaration
and will not be subsequently modified.

Compilers can detect modification of references to const-qualified types as a compilation error. If the
compiler does not detect the error, the behavior is undefined. Polyspace flags this defect regardless of
a compilation error.

 CERT C++: DCL52-CPP

24-17

Fix

Avoid modification of const-qualified reference types. If the modification is required, remove the
const qualifier from the reference type declaration.

Example – Modification of const-qualified Reference Types

typedef const int cint;
typedef cint& ref_to_cint;

void func(ref_to_cint refVal, int initVal){
 refVal = initVal;
}

In this example, ref_to_cint is a reference to a const-qualified type. The variable refVal of type
ref_to_cint is supposed to be initialized when func is called and not modified subsequently. The
modification violates the contract implied by the const qualifier. Because refVal is a const
reference, the compilation might fail. Polyspace flags the violation.

Correction — Avoid Modification of const-qualified Reference Types

One possible correction is to avoid the const in the declaration of the reference type.

typedef int& ref_to_int;

void func(ref_to_int refVal, int initVal){
 refVal = initVal;
}

Check Information
Group: 01. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
DCL52-CPP

Introduced in R2019a

24 CERT C++ Rules

24-18

https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL52-CPP.+Never+qualify+a+reference+type+with+const+or+volatile

CERT C++: DCL53-CPP
Do not write syntactically ambiguous declarations

Description
Rule Definition

Do not write syntactically ambiguous declarations.

Polyspace Implementation

This checker checks for Ambiguous Declaration Syntax.

Examples
Ambiguous declaration syntax
Issue

This defect occurs when it is not clear from a declaration whether an object declaration or function/
parameter declaration is intended. The ambiguity is often referred to as most vexing parse.

For instance, these declarations are ambiguous:

• ResourceType aResource();

It is not immediately clear if aResource is a function returning a variable of type ResourceType
or an object of type ResourceType.

• TimeKeeper aTimeKeeper(Timer());

It is not immediately clear if aTimeKeeper is an object constructed with an unnamed object of
type Timer or a function with an unnamed function pointer type as parameter. The function
pointer refers to a function with no argument and return type Timer.

The checker does not flag ambiguous declarations with global scope. For instance, the analysis does
not flag declarations with global scope using the format Type a() where Type is a class type with a
default constructor. The analysis interprets a as a function returning the type Type.
Risk

In case of an ambiguous declaration, the C++ Standard chooses a specific interpretation of the
syntax. For instance:

• ResourceType aResource();

is interpreted as a declaration of a function aResource.
• TimeKeeper aTimeKeeper(Timer());

is interpreted as a declaration of a function aTimeKeeper with an unnamed parameter of function
pointer type.

If you or another developer or code reviewer expects a different interpretation, the results can be
unexpected.

 CERT C++: DCL53-CPP

24-19

For instance, later you might face a compilation error that is difficult to understand. Since the default
interpretation indicates a function declaration, if you use the function as an object, compilers might
report a compilation error. The compilation error indicates that a conversion from a function to an
object is being attempted without a suitable constructor.
Fix

Make the declaration unambiguous. For instance, fix these ambiguous declarations as follows:

• ResourceType aResource();

Object declaration:

If the declaration refers to an object initialized with the default constructor, rewrite it as:

ResourceType aResource;

prior to C++11, or as:

ResourceType aResource{};

after C++11.

Function declaration:

If the declaration refers to a function, use a typedef for the function.

typedef ResourceType(*resourceFunctionType)();
resourceFunctionType aResource;

• TimeKeeper aTimeKeeper(Timer());

Object declaration:

If the declaration refers to an object aTimeKeeper initialized with an unnamed object of class
Timer, add an extra pair of parenthesis:

TimeKeeper aTimeKeeper((Timer()));

prior to C++11, or use braces:

TimeKeeper aTimeKeeper{Timer{}};

after C++11.

Function declaration:

If the declaration refers to a function aTimeKeeper with a unnamed parameter of function
pointer type, use a named parameter instead.

typedef Timer(*timerType)();
TimeKeeper aTimeKeeper(timerType aTimer);

Example – Function or Object Declaration

class ResourceType {
 int aMember;
 public:
 int getMember();
};

24 CERT C++ Rules

24-20

void getResource() {
 ResourceType aResource();
}

In this example, aResource might be used as an object but the declaration syntax indicates a
function declaration.

Correction — Use {} for Object Declaration

One possible correction (after C++11) is to use braces for object declaration.

class ResourceType {
 int aMember;
 public:
 int getMember();
};

void getResource() {
 ResourceType aResource{};
}

Example – Unnamed Object or Unnamed Function Parameter Declaration

class MemberType {};

class ResourceType {
 MemberType aMember;
 public:
 ResourceType(MemberType m) {aMember = m;}
 int getMember();
};

void getResource() {
 ResourceType aResource(MemberType());
}

In this example, aResource might be used as an object initialized with an unnamed object of type
MemberType but the declaration syntax indicates a function with an unnamed parameter of function
pointer type. The function pointer points to a function with no arguments and type MemberType.

Correction — Use {} for Object Declaration

One possible correction (after C++11) is to use braces for object declaration.

class MemberType {};

class ResourceType {
 MemberType aMember;
 public:
 ResourceType(MemberType m) {aMember = m;}
 int getMember();
};

void getResource() {

 CERT C++: DCL53-CPP

24-21

 ResourceType aResource{MemberType()};
}

Example – Unnamed Object or Named Function Parameter Declaration

class Integer {
 int aMember;
public:
 Integer(int d) {aMember = d;}
 int getMember();
};

int aInt = 0;
void foo(){
 Integer aInteger(Integer(aInt));
}

In this example, aInteger might be an object constructed with an unnamed object Integer(aInt)
(an object of class Integer which itself is constructed using the variable aInt). However, the
declaration syntax indicates that aInteger is a function with a named parameter aInt of type
Integer (the superfluous parenthesis is ignored).

Correction — Use of {} for Object Declaration

One possible correction (after C++11) is to use {} for object declaration.

class Integer {
 int aMember;
public:
 Integer(int d) {aMember = d;}
 int getMember();
};

int aInt = 0;
void foo(){
 Integer aInteger(Integer{aInt});
}

Correction — Remove Superfluous Parenthesis for Named Parameter Declaration

If aInteger is a function with a named parameter aInt, remove the superfluous () around aInt.

class Integer {
 int aMember;
 public:
 Integer(int d) {aMember = d;}
 int getMember();
};

Integer aInteger(Integer aInt);

Check Information
Group: 01. Declarations and Initialization (DCL)

24 CERT C++ Rules

24-22

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
DCL53-CPP

Introduced in R2019a

 CERT C++: DCL53-CPP

24-23

https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL53-CPP.+Do+not+write+syntactically+ambiguous+declarations

CERT C++: DCL54-CPP
Overload allocation and deallocation functions as a pair in the same scope

Description
Rule Definition

Overload allocation and deallocation functions as a pair in the same scope.

Polyspace Implementation

This checker checks for Missing overload of allocation or deallocation function.

Examples
Missing overload of allocation or deallocation function
Issue

Missing overload of allocation or deallocation function occurs when you overload operator
new but do not overload the corresponding operator delete, or vice versa.

Risk

You typically overload operator new to perform some bookkeeping in addition to allocating memory
on the free store. Unless you overload the corresponding operator delete, it is likely that you
omitted some corresponding bookkeeping when deallocating the memory.

The defect can also indicate a coding error. For instance, you overloaded the placement form of
operator new[]:

void *operator new[](std::size_t count, void *ptr);

but the non-placement form of operator delete[]:

void operator delete[](void *ptr);

instead of the placement form:

void operator delete[](void *ptr, void *p);

Fix

When overloading operator new, make sure that you overload the corresponding operator
delete in the same scope, and vice versa.

For instance, in a class, if you overload the placement form of operator new:

class MyClass {
 void* operator new (std::size_t count, void* ptr){
 //...
 }
};

24 CERT C++ Rules

24-24

Make sure that you also overload the placement form of operator delete:

class MyClass {
 void operator delete (void* ptr, void* place){
 ...
 }
};

To find the operator delete corresponding to an operator new, see the reference pages for
operator new and operator delete.

Example – Mismatch Between Overloaded operator new and operator delete

#include <new>
#include <cstdlib>

int global_store;

void update_bookkeeping(void *allocated_ptr, bool alloc) {
 if(alloc)
 global_store++;
 else
 global_store--;
}

void *operator new(std::size_t size, const std::nothrow_t& tag);
void *operator new(std::size_t size, const std::nothrow_t& tag) {
 void *ptr = (void*)malloc(size);
 if (ptr != nullptr)
 update_bookkeeping(ptr, true);
 return ptr;
}

void operator delete[](void *ptr, const std::nothrow_t& tag);
void operator delete[](void* ptr, const std::nothrow_t& tag) {
 update_bookkeeping(ptr, false);
 free(ptr);
}

In this example, the operators operator new and operator delete[] are overloaded but there
are no overloads of the corresponding operator delete and operator new[] operators.

The overload of operator new calls a function update_bookkeeping to change the value of a
global variable global_store. If the default operator delete is called, this global variable is
unaffected, which might defy developer's expectations.

Correction – Overload the Correct Form of operator delete

If you want to overload operator new, overload the corresponding form of operator delete in
the same scope.

#include <new>
#include <cstdlib>

int global_store;

void update_bookkeeping(void *allocated_ptr, bool alloc) {

 CERT C++: DCL54-CPP

24-25

https://en.cppreference.com/w/cpp/memory/new/operator_new
https://en.cppreference.com/w/cpp/memory/new/operator_delete

 if(alloc)
 global_store++;
 else
 global_store--;
}

void *operator new(std::size_t size, const std::nothrow_t& tag);
void *operator new(std::size_t size, const std::nothrow_t& tag) {
 void *ptr = (void*)malloc(size);
 if (ptr != nullptr)
 update_bookkeeping(ptr, true);
 return ptr;
}

void operator delete(void *ptr, const std::nothrow_t& tag);
void operator delete(void* ptr, const std::nothrow_t& tag) {
 update_bookkeeping(ptr, false);
 free(ptr);
}

Check Information
Group: 01. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
DCL54-CPP

Introduced in R2019a

24 CERT C++ Rules

24-26

https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL54-CPP.+Overload+allocation+and+deallocation+functions+as+a+pair+in+the+same+scope

CERT C++: DCL57-CPP
Do not let exceptions escape from destructors or deallocation functions

Description
Rule Definition

Do not let exceptions escape from destructors or deallocation functions.

Polyspace Implementation

This checker checks for Class destructor exiting with an exception.

Examples
Class destructor exiting with an exception
Issue

The checker flags:

• Explicit throw statements in the body of a destructor outside of a try-catch block. If the
destructor calls another function, the checker does not detect if the called function raises an
exception.

• The exception specification noexcept(false) in the declaration of the destructor.

The checker does not detect:

• A catch statement that does not catch exceptions of all types that are thrown.

The checker considers the presence of a catch statement corresponding to a try block as an
indication that an exception is caught.

• throw statements inside catch blocks.

Risk

Destructors are invoked at the end of code execution. When exceptions arise at this stage, they
become unhandled. When such unhandled exceptions arise, depending on the hardware and software
that you use, the compiler might abruptly terminate the program execution without deleting the
objects in stack. Such abrupt termination might result in a resource leak and security vulnerabilities.
Fix

To avoid this issue:

• Declare destructors as noexcept(true).
• Handle exceptions that might arise in destructors by using a try-catch block that includes a

catch(...) block.

Example

#include<stdexcept>
class C {

 CERT C++: DCL57-CPP

24-27

 //...
 ~C() noexcept(false) { //Noncompliant
 //...
 throw std::logic_error("Error"); //Noncompliant
 }

};

In this example, the destructor of class C is specified as noexcept(false). Polyspace flags the
declaration. The destructor contains an explicit throw statement without encasing it in a try-catch
block. Polyspace flags the throw statement.

Correction

One possible correction is to declare destructors as noexcept(true), and then encase any throw
statement in a try-catch block.

#include<stdexcept>
class C {
 //...
 ~C() noexcept(true) { //Compliant
 //...
 try{
 throw std::logic_error("Error"); //Compliant
 }catch(...){

 }
 }

};

Check Information
Group: 01. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
DCL57-CPP

Introduced in R2019a

24 CERT C++ Rules

24-28

https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL57-CPP.+Do+not+let+exceptions+escape+from+destructors+or+deallocation+functions

CERT C++: DCL58-CPP
Do not modify the standard namespaces

Description
Rule Definition

Do not modify the standard namespaces.

Polyspace Implementation

This checker checks for Modification of standard namespaces.

Examples
Modification of standard namespaces
Issue

Modification of standard namespaces occurs when you make additions to the namespaces std,
posix, or their subspaces, or you specialize class or function templates from these namespaces.
Risk

Adding declarations or definitions to namespace std or its subspaces, or to posix or its subspaces,
leads to undefined behavior. Likewise, explicitly specializing a member function or member class of a
standard library leads to undefined behavior.

The standard allows exceptions to the specialization aspect of the rule for standard library templates
that require a user-defined type. If you have a process that all rule violations must be justified and an
issue flagged by the checker belongs to this category of exceptions, justify the issue using comments
in your result or code. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Check Information
Group: 01. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
DCL58-CPP

 CERT C++: DCL58-CPP

24-29

https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL58-CPP.+Do+not+modify+the+standard+namespaces

Introduced in R2019b

24 CERT C++ Rules

24-30

CERT C++: DCL59-CPP
Do not define an unnamed namespace in a header file

Description
Rule Definition

Do not define an unnamed namespace in a header file.

Polyspace Implementation

This checker checks for Unnamed namespace in header file.

Examples
Unnamed namespace in header file
Issue

Unnamed namespace in header file detects an unnamed namespace in a header file, which can
lead to multiple definitions of objects in the namespace.

Risk

According to the C++ standard, names in an unnamed namespace, for instance, aVar here:

namespace {
 int aVar;
}

have internal linkage by default. If a header file contains an unnamed namespace, each translation
unit #include-ing the header file defines its own instance of objects in the namespace. The multiple
definitions are probably not what you intended and can lead to unexpected results, undesired
memory usage or inadvertently violating the one-definition rule.

Fix

Specify names for namespaces in header files or avoid using namespaces in header files.

Example – Unexpected Results from Unnamed Namespaces in Header Files

Header File: aHeader.h

namespace {
 int aVar;
}

First source file: aSource.cpp

#include "aHeader.h"
#include <iostream>

void setVar(int arg) {
 std::cout << "Current value: " << aVar << std::endl;

 CERT C++: DCL59-CPP

24-31

 aVar = arg;
 std::cout << "Value set at: " << aVar << std::endl;
}

Second source file: anotherSource.cpp

#include "aHeader.h"
#include <iostream>

extern void setVar(int);

void resetVar() {
 std::cout << "Current value: " << aVar << std::endl;
 aVar = 0;
 std::cout << "Value set at: 0" << std::endl;
}

void main() {
 setVar(1);
 resetVar();
}

In this example, the unnamed namespace leads to two definitions of aVar in the translation unit from
aSource.cpp and the translation unit from anotherSource.cpp. The two definitions lead to the
possibly unexpected output:

Current value: 0
Value set at: 1
Current value: 0
Value set at: 0

Correction – Avoid the Unnamed Namespace

One possible correction is to simply avoid a namespace in the header file.

Header File: aHeader.h

extern int aVar;

First source file: aSource.cpp

#include "aHeader.h"
#include <iostream>

void setVar(int arg) {
 std::cout << "Current value: " << aVar << std::endl;
 aVar = arg;
 std::cout << "Value set at: " << aVar << std::endl;
}

Second source file: anotherSource.cpp

#include "aHeader.h"
#include <iostream>

extern void setVar(int);
int aVar;

void resetVar() {

24 CERT C++ Rules

24-32

 std::cout << "Current value: " << aVar << std::endl;
 aVar = 0;
 std::cout << "Value set at: 0" << std::endl;
}

void main() {
 setVar(1);
 resetVar();
}

You now see the expected sequence in the output:

Current value: 0
Value set at: 1
Current value: 1
Value set at: 0

Check Information
Group: 01. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
DCL59-CPP

Introduced in R2019a

 CERT C++: DCL59-CPP

24-33

https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL59-CPP.+Do+not+define+an+unnamed+namespace+in+a+header+file

CERT C++: DCL60-CPP
Obey the one-definition rule

Description
Rule Definition

Obey the one-definition rule.

Polyspace Implementation

This checker checks for:

• Inline constraint not respected
• Nonidentical definitions of function or object across modules

Examples
Inline Constraint Not Respected
Issue

Inline constraint not respected occurs when you refer to a file scope modifiable static variable or
define a local modifiable static variable in a nonstatic inlined function. The checker considers a
variable as modifiable if it is not const-qualified.

For instance, var is a modifiable static variable defined in an inline function func. g_step is a
file scope modifiable static variable referred to in the same inlined function.

static int g_step;
inline void func (void) {
 static int var = 0;
 var += g_step;
}

Risk

When you modify a static variable in multiple function calls, you expect to modify the same variable in
each call. For instance, each time you call func, the same instance of var1 is incremented but a
separate instance of var2 is incremented.

void func(void) {
 static var1 = 0;
 var2 = 0;
 var1++;
 var2++;
}

If a function has an inlined and a noninlined definition in separate files, when you call the function,
the C standard allows compilers to use either the inlined or the noninlined form (see ISO/IEC
9899:2011, sec. 6.7.4). If your compiler uses an inlined definition in one call and the noninlined
definition in another, you are no longer modifying the same variable in both calls. This behavior defies
the expectations from a static variable.

24 CERT C++ Rules

24-34

Fix

Use one of these fixes:

• If you do not intend to modify the variable, declare it as const.

If you do not modify the variable, there is no question of unexpected modification.
• Make the variable non-static. Remove the static qualifier from the declaration.

If the variable is defined in the function, it becomes a regular local variable. If defined at file
scope, it becomes an extern variable. Make sure that this change in behavior is what you intend.

• Make the function static. Add a static qualifier to the function definition.

If you make the function static, the file with the inlined definition uses the inlined definition
when the function is called. Other files use another definition of the function. The compiler does
not decide which function definition is used.

Example - Static Variable Use in Inlined and External Definition

/* file1. c : contains inline definition of get_random()*/

inline unsigned int get_random(void)
{

 static unsigned int m_z = 0xdeadbeef; //Noncompliant
 static unsigned int m_w = 0xbaddecaf; //Noncompliant

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

int call_get_random(void)
{
 unsigned int rand_no;
 int ii;
 for (ii = 0; ii < 100; ii++) {
 rand_no = get_random();
 }
 rand_no = get_random();
 return 0;
}

/* file2. c : contains external definition of get_random()*/

extern unsigned int get_random(void)
{
 /* Initialize seeds */
 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

 CERT C++: DCL60-CPP

24-35

In this example, get_random() has an inline definition in file1.c and an external definition in
file2.c. When get_random is called in file1.c, compilers can to choose whether to use the inline
or the external definition.

Depending on the definition used, you might or might not modify the version of m_z and m_w in the
inlined version of get_random(). This behavior contradicts the usual expectations from a static
variable. When you call get_random(), you expect to modify the same m_z and m_w.

Correction — Make Inlined Function Static

One possible correction is to make the inlined get_random() static. Irrespective of your compiler,
calls to get_random() in file1.c then use the inlined definition. Calls to get_random() in other
files use the external definition. This fix removes the ambiguity about which definition is used and
whether the static variables in that definition are modified.

/* file1. c : contains inline definition of get_random()*/

static inline unsigned int get_random(void)
{

 static unsigned int m_z = 0xdeadbeef; //Compliant
 static unsigned int m_w = 0xbaddecaf; //Compliant

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

int call_get_random(void)
{
 unsigned int rand_no;
 int ii;
 for (ii = 0; ii < 100; ii++) {
 rand_no = get_random();
 }
 rand_no = get_random();
 return 0;
}

/* file2. c : contains external definition of get_random()*/

extern unsigned int get_random(void)
{
 /* Initialize seeds */
 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

24 CERT C++ Rules

24-36

Nonidentical Definitions of Function or Object Across Modules
Issue

Nonidentical definitions of function or object across modules occurs when a function or object
is defined in multiple modules, but with differences in tokens like identifiers, keywords, literals,
operators, punctuators, and other separators. The checker is not raised on unused code such as

• Noninstantiated templates
• Uncalled static or extern functions
• Uncalled and undefined local functions
• Unused types and variables

The checker does not flag this issue in a default Polyspace as You Code analysis. See “Checkers
Deactivated in Polyspace as You Code Default Analysis”.

Risk

Having different definitions of the same object or noninlined function in different modules results in
unexpected behavior. The program might crash and leak memory depending on the software and
hardware that you use.

Fix

Define objects and noninlined functions without any differences in tokens. Use the same sequence
and types of tokens in the definitions of objects and noninline functions across modules.

Example: Definition of Object Has Token Difference

This example uses two files:

• file1.cpp:

typedef struct S
{
 int x;
 int y;
}S;
void foo(S& s){
//...
}

• file2.cpp:

typedef struct S //Noncompliant
{
 int y;
 int x;
}S ;
void bar(S& s){
//...
}

In this example, both file1.cpp and file2.cpp define the structure S. The definitions switch the
order of the structure fields.

 CERT C++: DCL60-CPP

24-37

Correction: Use Identical Definition Across Modules

One possible correction is to define the structure S in a header file and include the header in the two
modules.

• S.h:

struct S //Compliant
{
 int x;
 int y;
};

• file1.cpp:

#include"S.h"
void foo(S& s){
//...
}

• file2.cpp:

#include"S.h"
void bar(S& s){
//...
}

Check Information
Group: 01. Declarations and Initialization (DCL)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
DCL60-CPP

Introduced in R2019a

24 CERT C++ Rules

24-38

https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL60-CPP.+Obey+the+one-definition+rule

CERT C++: EXP34-C
Do not dereference null pointers

Description
Rule Definition

Do not dereference null pointers.

Polyspace Implementation

This checker checks for Null pointer.

Examples
Null pointer
Issue

Null pointer occurs when you use a pointer with a value of NULL as if it points to a valid memory
location.
Risk

Dereferencing a null pointer is undefined behavior. In most implementations, the dereference can
cause your program to crash.
Fix

Check a pointer for NULL before dereference.

If the issue occurs despite an earlier check for NULL, look for intermediate events between the check
and the subsequent dereference. Often the result details show a sequence of events that led to the
defect. You can implement the fix on any event in the sequence. If the result details do not show the
event history, you can trace back using right-click options in the source code and see previous related
events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.
Example - Null pointer error

#include <stdlib.h>

int FindMax(int *arr, int Size)
{
 int* p=NULL;

 *p=arr[0];
 /* Defect: Null pointer dereference */

 for(int i=0;i<Size;i++)
 {
 if(arr[i] > (*p))
 *p=arr[i];

 CERT C++: EXP34-C

24-39

 }

 return *p;
}

The pointer p is initialized with value of NULL. However, when the value arr[0] is written to *p, p is
assumed to point to a valid memory location.

Correction — Assign Address to Null Pointer Before Dereference

One possible correction is to initialize p with a valid memory address before dereference.

#include <stdlib.h>

int FindMax(int *arr, int Size)
{
 /* Fix: Assign address to null pointer */
 int* p=&arr[0];

 for(int i=0;i<Size;i++)
 {
 if(arr[i] > (*p))
 *p=arr[i];
 }

 return *p;
}

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP34-C

Introduced in R2019a

24 CERT C++ Rules

24-40

https://wiki.sei.cmu.edu/confluence/display/c/EXP34-C.+Do+not+dereference+null+pointers

CERT C++: EXP35-C
Do not modify objects with temporary lifetime

Description
Rule Definition

Do not modify objects with temporary lifetime.

Polyspace Implementation

This checker checks for Accessing object with temporary lifetime.

Examples
Accessing object with temporary lifetime
Issue

Accessing object with temporary lifetime occurs when you attempt to read from or write to an
object with temporary lifetime that is returned by a function call. In a structure or union returned by
a function, and containing an array, the array members are temporary objects. The lifetime of
temporary objects ends:

• When the full expression or full declarator containing the call ends, as defined in the C11
Standard.

• After the next sequence point, as defined in the C90 and C99 Standards. A sequence point is a
point in the execution of a program where all previous evaluations are complete and no
subsequent evaluation has started yet.

For C++ code, Accessing object with temporary lifetime raises a defect only when you write to an
object with a temporary lifetime.

If the temporary lifetime object is returned by address, no defect is raised.

Risk

Modifying objects with temporary lifetime is undefined behavior and can cause abnormal program
termination and portability issues.

Fix

Assign the object returned from the function call to a local variable. The content of the temporary
lifetime object is copied to the variable. You can now modify it safely.

Example - Modifying Temporary Lifetime Object Returned by Function Call

#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>

#define SIZE6 6

 CERT C++: EXP35-C

24-41

struct S_Array
{
 int t;
 int a[SIZE6];
};

struct S_Array func_temp(void);

/* func_temp() returns a struct value containing
* an array with a temporary lifetime.
*/
int func(void) {

/*Writing to temporary lifetime object is
 undefined behavior
 */
 return ++(func_temp().a[0]);
}

void main(void) {
 (void)func();
}

In this example, func_temp() returns by value a structure with an array member a. This member
has temporary lifetime. Incrementing it is undefined behavior.

Correction — Assign Returned Value to Local Variable Before Writing

One possible correction is to assign the return of the call to func_temp() to a local variable. The
content of the temporary object a is copied to the variable, which you can safely increment.

 #include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>

#define SIZE6 6

struct S_Array
{
 int t;
 int a[SIZE6];
};

struct S_Array func_temp(void);

int func(void) {

/* Assign object returned by function call to
 *local variable
 */
 struct S_Array s = func_temp();

/* Local variable can safely be
 *incremented
 */
 ++(s.a[0]);

24 CERT C++ Rules

24-42

 return s.a[0];
}

void main(void) {
 (void)func();
}

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP35-C

Introduced in R2019a

 CERT C++: EXP35-C

24-43

https://wiki.sei.cmu.edu/confluence/display/c/EXP35-C.+Do+not+modify+objects+with+temporary+lifetime

CERT C++: EXP36-C
Do not cast pointers into more strictly aligned pointer types

Description
Rule Definition

Do not cast pointers into more strictly aligned pointer types.

Polyspace Implementation

This checker checks for Source buffer misaligned with destination buffer.

Examples
Source buffer misaligned with destination buffer
Issue

Source buffer misaligned with destination buffer occurs when the source pointer in a pointer-to-
pointer conversion has one of the following issues:

• Points to a buffer that is smaller than what the destination pointer points to.
• Points to a buffer that is larger than what the destination pointer points to but the buffer size is

not an exact multiple of the destination buffer size.

The alignment of the source pointer changes in these conversions.

Risk

If the alignment of a pointer changes in a pointer-to-pointer conversion, dereferencing the result of
the conversion can cause abnormal program termination.

Fix

Avoid changing the alignment of a pointer in a pointer-to-pointer conversion.

Example - Change in Pointer Alignment During Conversion

#include <cstring>
struct record {
 int len;
 /* ... */
};

int copyBuffer (char *data, int offset)
{
 struct record *tmp;
 struct record dest;
 tmp = (struct record *) (data + offset); //Noncompliant
 memcpy (&dest, tmp, sizeof (dest));
 /* ... */

24 CERT C++ Rules

24-44

 return dest.len;
}

In this example, a char* pointer is converted to a struct record* pointer, followed by a memcpy
operation. The memcpy operation might assume a struct record* alignment of tmp and lead to
undefined behavior. The checker flags the prior conversion to prevent this undefined behavior.

To avoid the issue, use data + offset as the source argument of the memcpy instead of using an
intermediate struct record* pointer.

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP36-C

Introduced in R2019a

 CERT C++: EXP36-C

24-45

https://wiki.sei.cmu.edu/confluence/display/c/EXP36-C.+Do+not+cast+pointers+into+more+strictly+aligned+pointer+types

CERT C++: EXP37-C
Call functions with the correct number and type of arguments

Description
Rule Definition

Call functions with the correct number and type of arguments.

Polyspace Implementation

This checker checks for these issues:

• Bad file access mode or status.
• Unreliable cast of function pointer.
• Standard function call with incorrect arguments.
• Function declaration mismatch
• Incompatible Argument

Examples
Bad file access mode or status
Issue

Bad file access mode or status occurs when you use functions in the fopen or open group with
invalid or incompatible file access modes, file creation flags, or file status flags as arguments. For
instance, for the open function, examples of valid:

• Access modes include O_RDONLY, O_WRONLY, and O_RDWR
• File creation flags include O_CREAT, O_EXCL, O_NOCTTY, and O_TRUNC.
• File status flags include O_APPEND, O_ASYNC, O_CLOEXEC, O_DIRECT, O_DIRECTORY,

O_LARGEFILE, O_NOATIME, O_NOFOLLOW, O_NONBLOCK, O_NDELAY, O_SHLOCK, O_EXLOCK,
O_FSYNC, O_SYNC and so on.

The defect can occur in the following situations.

24 CERT C++ Rules

24-46

Situation Risk Fix
You pass an empty or invalid
access mode to the fopen
function.

According to the ANSI C
standard, the valid access
modes for fopen are:

• r,r+
• w,w+
• a,a+
• rb, wb, ab
• r+b, w+b, a+b
• rb+, wb+, ab+

fopen has undefined behavior
for invalid access modes.

Some implementations allow
extension of the access mode
such as:

• GNU: rb+cmxe,ccs=utf
• Visual C++: a+t, where t
specifies a text mode.

However, your access mode
string must begin with one of
the valid sequences.

Pass a valid access mode to
fopen.

You pass the status flag
O_APPEND to the open function
without combining it with either
O_WRONLY or O_RDWR.

O_APPEND indicates that you
intend to add new content at the
end of a file. However, without
O_WRONLY or O_RDWR, you
cannot write to the file.

The open function does not
return -1 for this logical error.

Pass either O_APPEND|
O_WRONLY or O_APPEND|
O_RDWR as access mode.

You pass the status flags
O_APPEND and O_TRUNC
together to the open function.

O_APPEND indicates that you
intend to add new content at the
end of a file. However, O_TRUNC
indicates that you intend to
truncate the file to zero.
Therefore, the two modes
cannot operate together.

The open function does not
return -1 for this logical error.

Depending on what you intend
to do, pass one of the two
modes.

You pass the status flag
O_ASYNC to the open function.

On certain implementations, the
mode O_ASYNC does not enable
signal-driven I/O operations.

Use the fcntl(pathname,
F_SETFL, O_ASYNC); instead.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

 CERT C++: EXP37-C

24-47

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Invalid Access Mode with fopen

#include <stdio.h>

void func(void) {
 FILE *file = fopen("data.txt", "rw");
 if(file!=NULL) {
 fputs("new data",file);
 fclose(file);
 }
}

In this example, the access mode rw is invalid. Because r indicates that you open the file for reading
and w indicates that you create a new file for writing, the two access modes are incompatible.

Correction — Use Either r or w as Access Mode

One possible correction is to use the access mode corresponding to what you intend to do.

#include <stdio.h>

void func(void) {
 FILE *file = fopen("data.txt", "w");
 if(file!=NULL) {
 fputs("new data",file);
 fclose(file);
 }
}

Unreliable cast of function pointer
Issue

Unreliable cast of function pointer occurs when a function pointer is cast to another function
pointer that has a different argument or return type.

Risk

If you cast a function pointer to another function pointer that has a different argument or return type,
and then use the latter function pointer to call a function, the behavior is undefined.

Fix

Avoid a cast between two function pointers that have a mismatch in argument or return types.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

24 CERT C++ Rules

24-48

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Unreliable Cast of Function Pointer Error

int f(char c) {
 return c;
}

int g(int i) {
 return i;
}

typedef int (*fptr_t)(char);
typedef int (*gptr_t)(int);

void call() {
 gptr_t ptr = (gptr_t) f;//Noncompliant
 int i = ptr(511); // Undefined behavior
}

In this example, the pointer to function f is cast to gptr_t, which is the type of the function g. When
the function pointer is used to call f by using integers, the code behavior is undefined. Polyspace
flags the unreliable cast of the function pointer.

Correction — Avoid Function Pointer Cast

To avoid undefined behavior, refactor your code so that the function f is not cast into a different
argument type. For instance:

 int f(int c) { //Fix: declare f with int argument
 return c;
}

int g(int i) {
 return i;
}

typedef int (*fptr_t)(char);
typedef int (*gptr_t)(int);

void call() {
 gptr_t ptr = (gptr_t) f;//Compliant
 int i = ptr(511);
}

Standard function call with incorrect arguments
Issue

Standard function call with incorrect arguments occurs when the arguments to certain standard
functions do not meet the requirements for their use in the functions.

For instance, the arguments to these functions can be invalid in the following ways.

 CERT C++: EXP37-C

24-49

Function Type Situation Risk Fix
String manipulation
functions such as
strlen and strcpy

The pointer arguments
do not point to a NULL-
terminated string.

The behavior of the
function is undefined.

Pass a NULL-terminated
string to string
manipulation functions.

File handling functions
in stdio.h such as
fputc and fread

The FILE* pointer
argument can have the
value NULL.

The behavior of the
function is undefined.

Test the FILE* pointer
for NULL before using it
as function argument.

File handling functions
in unistd.h such as
lseek and read

The file descriptor
argument can be -1.

The behavior of the
function is undefined.

Most implementations
of the open function
return a file descriptor
value of -1. In addition,
they set errno to
indicate that an error
has occurred when
opening a file.

Test the return value of
the open function for -1
before using it as
argument for read or
lseek.

If the return value is -1,
check the value of
errno to see which
error has occurred.

The file descriptor
argument represents a
closed file descriptor.

The behavior of the
function is undefined.

Close the file descriptor
only after you have
completely finished
using it. Alternatively,
reopen the file
descriptor before using
it as function argument.

Directory name
generation functions
such as mkdtemp and
mkstemps

The last six characters
of the string template
are not XXXXXX.

The function replaces
the last six characters
with a string that makes
the file name unique. If
the last six characters
are not XXXXXX, the
function cannot
generate a unique
enough directory name.

Test if the last six
characters of a string
are XXXXXX before
using the string as
function argument.

Functions related to
environment variables
such as getenv and
setenv

The string argument is
"".

The behavior is
implementation-defined.

Test the string
argument for "" before
using it as getenv or
setenv argument.

The string argument
terminates with an
equal sign, =. For
instance, "C=" instead
of "C".

The behavior is
implementation-defined.

Do not terminate the
string argument with =.

24 CERT C++ Rules

24-50

Function Type Situation Risk Fix
String handling
functions such as
strtok and strstr

• strtok: The
delimiter argument
is "".

• strstr: The search
string argument is
"".

Some implementations
do not handle these
edge cases.

Test the string for ""
before using it as
function argument.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - NULL Pointer Passed as strnlen Argument

#include <string.h>
#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE20 = 20
};

int func() {
 char* s = NULL;
 return strnlen(s, SIZE20);
}

In this example, a NULL pointer is passed as strnlen argument instead of a NULL-terminated string.

Before running analysis on the code, specify a GNU compiler. See Compiler (-compiler).

Correction — Pass NULL-terminated String

Pass a NULL-terminated string as the first argument of strnlen.

#include <string.h>
#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE20 = 20
};

 CERT C++: EXP37-C

24-51

int func() {
 char* s = "";
 return strnlen(s, SIZE20);
}

Function declaration mismatch
Issue

Note In C++ code, this checker applies to functions that are specified as extern "C".

Function declaration mismatch occurs when the prototype of a extern "C" function does not
match its definition. Type mismatch between the arguments of the function definition and the
function prototype might depend on your environment. Polyspace considers two types as compatible
if they have the same size and signedness in the environment that you use. For instance, if your
specify -target as i386, Polyspace considers long and int as compatible types.

In C++, if a function is not specified as extern "C" and its prototype does not match any function
definition, the compiler treats the prototype as that of an undefined overload of the function.
Polyspace does not flag calls to such undefined functions.

The checker does not flag this issue in a default Polyspace as You Code analysis. See “Checkers
Deactivated in Polyspace as You Code Default Analysis”.

Risk

Function declaration mismatch might result in undefined behavior. When function declarations are
specified with extern "C", mismatches between definition and declaration of a function might
produce only warnings during compilation, resulting in code that compiles but behaves in an
unexpected way.

Fix

• Before you call a function, provide its complete prototype, even if you define the function later in
the same file.

• Avoid any mismatch between the number arguments in the function prototype declaration and the
function definition.

• Avoid any mismatch between the argument types of the function prototype declaration and the
function definition.

24 CERT C++ Rules

24-52

Example — Noncompliant Function Calls

// file1.c
extern "C" void foo(int iVar){
 //...
}
extern "C" void bar(int iVar){
 //...
}
extern "C" void fubar(int A, ...){
 //...
}

//prototype.h
extern "C" void foo(void);
extern "C" void fubar(int A, ...);
extern "C" void bar(long iVar);

//file2.c
//file2.c
#include"prototype.h"
void call_funcs(){
 int iTemp;
 float fTemp;
 long lTemp;
 foo(); //Noncompliant
 bar(lTemp);//Noncompliant in x86_64
 fubar(iTemp,fTemp);//Compliant

}

In this example, the functions foo, bar, and fubar are defined in the file file1.c. Their prototypes
are declared in prototype.h. These functions are then called in the file file2.c.

• The function foo is defined with an int argument but its prototype is declared without any
argument. Because of this mismatch, Polyspace flags the function call.

• The function bar is defined with an int argument but its prototype is declared with a long
argument. These two types are not compatible in x86_64 environment. When you specify -
target as x86_64, Polyspace flags the function call.

• The call to the variadic function fubar is compliant because its call signature, prototype, and
definition matches.

Correction — Compliant Function Calls

The fix for this defect is to declare complete and accurate prototypes for the called functions. In this
case, fix the raised issues by resolving the mismatches between the function definition and prototype
declaration. Update the function calls to match the updated prototypes.

// file1.c
extern "C" void foo(int iVar){
 //...
}
extern "C" void bar(int iVar){
 //...
}
extern "C" void fubar(int A, ...){
 //...
}

//prototype.h
extern "C" void foo(int);
extern "C" void fubar(int A, ...);
extern "C" void bar(int iVar);

//file2.c
//file2.c
#include"prototype.h"
void call_funcs(){
 int iTemp;
 float fTemp;
 long lTemp;
 foo(iTemp); //Compliant
 bar(iTemp);//Compliant in x86_64
 fubar(iTemp,fTemp);//Compliant

}

Incompatible Argument
Issue

Incompatible Argument occurs when an external function is called by using an argument that is
not compatible with the prototype. The compatibility of types might depend on the set of hardware
and software that you use. For instance, consider this code:

extern long foo(int);

 CERT C++: EXP37-C

24-53

long bar(long i) {
 return foo(i); //Noncompliant: calls foo(int) with a long
}

The external function foo is called with a long when an int is expected. In environments where the
size of an int is smaller than the size of a long, this function call is incompatible with the prototype,
resulting in a defect.

In C++, this defect might cause a compilation error.

Risk

Calling external functions with arguments that are incompatible with the parameter is undefined
behavior. Depending on your environment, the code might compile but behave in an unexpected way.

Fix

When calling external functions, use argument types that are smaller or equal in size compared to the
parameter type defined in the prototype. Check the sizes of various integer types in your environment
to determine compatibility of argument and parameter types.

Example — Call External Functions with Incompatible argument

extern long foo1(int);
extern long foo2(long);
void bar(){
 int varI;
 long varL;
 foo1(varL);//Noncompliant
 foo2(varI);//Compliant
}

In this example, the external function foo1 is called with a long argument, while the prototype
specifies the parameter as an int. In x86 architecture, the size of long is larger than the size of
int. The call foo1(varL) might result in undefined behavior. Polyspace flags the call. The call
foo2(varI) uses an int argument while the parameter is specified as a long. This type of
mismatch is compliant with this rule because the size of int is not larger than the size of long.

To run this example in Polyspace, use these options:

• -target x86_64

See Target processor type (-target).

Correction — Cast Variables Explicitly to Match Argument to Parameter

To fix this issue, cast the argument of foo1 explicitly so that argument type and parameter type
matches.

extern long foo1(int);
extern long foo2(long);
void bar(){
 int varI;
 long varL;
 foo1((int)varL);//Compliant

24 CERT C++ Rules

24-54

 foo2(varI);//Compliant
}

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP37-C

Introduced in R2019a

 CERT C++: EXP37-C

24-55

https://wiki.sei.cmu.edu/confluence/display/c/EXP37-C.+Call+functions+with+the+correct+number+and+type+of+arguments

CERT C++: EXP39-C
Do not access a variable through a pointer of an incompatible type

Description
Rule Definition

Do not access a variable through a pointer of an incompatible type.

Polyspace Implementation

This checker checks for these issues:

• Pointer conversion to unrelated pointer type
• Reading memory reallocated from object of another type without reinitializing first

.

Examples
Pointer conversion to unrelated pointer type
Issue

This issue occurs when you convert a pointer to an unrelated pointer type. The checker flags all
pointer conversions including between a pointer to a struct object and a pointer to the first member
of the same struct type. Indirect conversions from a pointer to non-pointer type are not detected.
Risk

The outcome of the conversion between pointers of unrelated types is unspecified in the C standard.
Such conversion might result in unexpected behavior.
Fix

Avoid converting pointers to unrelated types. Refactor your code and logic to reduce the necessity of
pointer conversions.

Reading memory reallocated from object of another type without reinitializing first
Issue

This issue occurs when you do the following in sequence:

1 Reallocate memory to an object with a type that is different from the original allocation.

For instance, in this code snippet, a memory originally allocated to a pointer with type struct
A* is reallocated to a pointer with type struct B*:

struct A;
struct B;

struct A *Aptr = (struct A*) malloc(sizeof(struct A));
struct B *Bptr = (struct B*) realloc(Aptr, sizeof(struct B));

24 CERT C++ Rules

24-56

2 Read from this reallocated memory without reinitializing the memory first.

Read accesses on the pointer to the reallocated memory can happen through pointer dereference
or array indexing. Passing the pointer to a function that takes a pointer to a const-qualified
object as the corresponding parameter also counts as a read access.

Risk

Reading from reallocated memory that has not been reinitialized is undefined behavior.

Fix

Reinitialize memory after reallocation and before the first read access.

The checker considers any write access on the pointer to the reallocated memory as satisfying the
reinitialization requirement (even if the object might only be partially reinitialized). Write accesses on
the pointer to the reallocated memory can happen through pointer dereference or array indexing.
Passing the pointer to a function that takes a pointer to a non-const-qualified object as the
corresponding parameter also counts as a write access.

Example – Noncompliant: Reading from Reallocated Memory Without Reinitializing First

#include<cstdlib>

struct group {
 char *groupFirst;
 int groupSize;
};

struct groupWithID {
 int groupID;
 char *groupFirst;
 int groupSize;
};

char* readName();
int readSize();

void createGroup(int nextAvailableID) {
 struct group *aGroup;
 struct groupWithID *aGroupWithID;

 aGroup = (struct group*) malloc(sizeof(struct group));
 aGroup->groupFirst = readName();
 aGroup->groupSize = readSize();

 if(!aGroup) {
 /*Handle error*/
 }

 /* Reassign to group with ID */
 aGroupWithID = (struct groupWithID*) realloc(aGroup, sizeof(struct groupWithID));
 if(!aGroupWithID) {
 free(aGroup);
 /*Handle error*/
 }

 if(aGroupWithID -> groupSize > 0) { /* Noncompliant */

 CERT C++: EXP39-C

24-57

 /* ... */
 }

 /* ...*/
 free(aGroupWithID);
}

In this example, the memory allocated to a group* pointer using the malloc function is reallocated
to a groupWithID* pointer using the realloc function. There is a read access on the reallocated
memory before the memory is reinitialized.

Correction – Reinitialize Memory After Reallocation and Before First Read

Reinitialize the memory assigned to the groupWithID* pointer before the first read access. All bits
of the memory can be reinitialized using the memset function.

#include<cstdlib>
#include<cstring>

struct group {
 char *groupFirst;
 int groupSize;
};

struct groupWithID {
 int groupID;
 char *groupFirst;
 int groupSize;
};

char* readName();
int readSize();

void createGroup(int nextAvailableID) {
 struct group *aGroup;
 struct groupWithID *aGroupWithID;

 aGroup = (struct group*) malloc(sizeof(struct group));
 aGroup->groupFirst = readName();
 aGroup->groupSize = readSize();

 if(!aGroup) {
 /*Handle error*/
 }

 /* Reassign to group with ID */
 aGroupWithID = (struct groupWithID*) realloc(aGroup, sizeof(struct groupWithID));
 if(!aGroupWithID) {
 free(aGroup);
 /*Handle error*/
 }

 memset(aGroupWithID, 0 , sizeof(struct groupWithID));
 /* Reinitialize group */
 if(aGroupWithID -> groupSize > 0) {
 /* ... */
 }

24 CERT C++ Rules

24-58

 /* ...*/
 free(aGroupWithID);
}

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP39-C

Introduced in R2019a

 CERT C++: EXP39-C

24-59

https://wiki.sei.cmu.edu/confluence/display/c/EXP39-C.+Do+not+access+a+variable+through+a+pointer+of+an+incompatible+type

CERT C++: EXP42-C
Do not compare padding data

Description
Rule Definition

Do not compare padding data.

Polyspace Implementation

This checker checks for Memory comparison of padding data.

Examples
Memory comparison of padding data
Issue

Memory comparison of padding data occurs when you use the memcmp function to compare two
structures as a whole. In the process, you compare meaningless data stored in the structure padding.

For instance:

struct structType {
 char member1;
 int member2;
 //...
 //...
};

structType var1;
structType var2;
//...
//...
if(memcmp(&var1,&var2,sizeof(var1)))
{...}

Risk

If members of a structure have different data types, your compiler introduces additional padding for
data alignment in memory. For an example of padding, see Higher Estimate of Size of Local
Variables.

The content of these extra padding bytes is meaningless. The C Standard allows the content of these
bytes to be indeterminate, giving different compilers latitude to implement their own padding. If you
perform a byte-by-byte comparison of structures with memcmp, you compare even the meaningless
data stored in the padding. You might reach the false conclusion that two data structures are not
equal, even if their corresponding members have the same value.

Fix

Instead of comparing two structures in one attempt, compare the structures member by member.

24 CERT C++ Rules

24-60

For efficient code, write a function that does the comparison member by member. Use this function
for comparing two structures.

You can use memcmp for byte-by-byte comparison of structures only if you know that the structures do
not contain padding. Typically, to prevent padding, you use specific attributes or pragmas such as
#pragma pack. However, these attributes or pragmas are not supported by all compilers and make
your code implementation-dependent. If your structures contain bit-fields, using these attributes or
pragmas cannot prevent padding.

Example - Structures Compared with memcmp

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define fatal_error() abort()

typedef struct s_padding
{
 char c;
 int i;
 unsigned int bf1:1;
 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

/* Function that guarantees safe access to the input memory */
extern int trusted_memory_zone(void *ptr, size_t sz);

int func(const S_Padding *left, const S_Padding *right)
{

 if (!trusted_memory_zone((void *)left, sizeof(S_Padding)) ||
 !trusted_memory_zone((void *)right, sizeof(S_Padding))) {
 fatal_error();
 }

 if (0 == memcmp(left, right, sizeof(S_Padding)))
 {
 return 1;
 }
 else
 return 0;
}

In this example, memcmp compares byte-by-byte the two structures that left and right point to.
Even if the values stored in the structure members are the same, the comparison can show an
inequality if the meaningless values in the padding bytes are not the same.

Correction — Compare Structures Member by Member

One possible correction is to compare individual structure members.

Note You can compare entire arrays by using memcmp. All members of an array have the same data
type. Padding bytes are not required to store arrays.

 CERT C++: EXP42-C

24-61

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define fatal_error() abort()

typedef struct s_padding
{
 char c;
 int i;
 unsigned int bf1:1;
 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

/* Function that guarantees safe access to the input memory */
extern int trusted_memory_zone(void *ptr, size_t sz);

int func(const S_Padding *left, const S_Padding *right)
{
 if (!trusted_memory_zone((void *)left, sizeof(S_Padding)) ||
 !trusted_memory_zone((void *)right, sizeof(S_Padding))) {
 fatal_error();
 }

 return ((left->c == right->c) &&
 (left->i == right->i) &&
 (left->bf1 == right->bf1) &&
 (left->bf2 == right->bf2) &&
 (memcmp(left->buffer, right->buffer, 20) == 0));
}

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP42-C

Introduced in R2019a

24 CERT C++ Rules

24-62

https://wiki.sei.cmu.edu/confluence/display/c/EXP42-C.+Do+not+compare+padding+data

CERT C++: EXP45-C
Do not perform assignments in selection statements

Description
Rule Definition

Do not perform assignments in selection statements.

Polyspace Implementation

This checker checks for Invalid use of = (assignment) operator.

Examples
Invalid use of = (assignment) operator
Issue

Invalid use of = operator occurs when an assignment is made inside the predicate of a conditional,
such as if or while.

In C and C++, a single equal sign is an assignment not a comparison. Using a single equal sign in a
conditional statement can indicate a typo or a mistake.

Risk

• Conditional statement tests the wrong values— The single equal sign operation assigns the value
of the right operand to the left operand. Then, because this assignment is inside the predicate of a
conditional, the program checks whether the new value of the left operand is nonzero or not
NULL.

• Maintenance and readability issues — Even if the assignment is intended, someone reading or
updating the code can misinterpret the assignment as an equality comparison instead of an
assignment.

Fix

• If the assignment is a bug, to check for equality, add a second equal sign (==).
• If the assignment inside the conditional statement was intentional, to improve readability,

separate the assignment and the test. Move the assignment outside the control statement. In the
control statement, simply test the result of the assignment.

If you do not want to fix the issue, add comments to your result or code to avoid another review.
See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results
in a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

 CERT C++: EXP45-C

24-63

Example - Single Equal Sign Inside an if Condition

#include <stdio.h>

void bad_equals_ex(int alpha, int beta)
{
 if(alpha = beta)
 {
 printf("Equal\n");
 }
}

The equal sign is flagged as a defect because the assignment operator is used within the predicate of
the if-statement. The predicate assigns the value beta to alpha, then implicitly tests whether alpha
is true or false.
Correction — Change Expression to Comparison

One possible correction is adding an additional equal sign. This correction changes the assignment to
a comparison. The if condition compares whether alpha and beta are equal.

#include <stdio.h>

void equality_test(int alpha, int beta)
{
 if(alpha == beta)
 {
 printf("Equal\n");
 }
}

Correction — Assignment and Comparison Inside the if Condition

If an assignment must be made inside the predicate, a possible correction is adding an explicit
comparison. This correction assigns the value of beta to alpha, then explicitly checks whether
alpha is nonzero. The code is clearer.

#include <stdio.h>

int assignment_not_zero(int alpha, int beta)
{
 if((alpha = beta) != 0)
 {
 return alpha;
 }
 else
 {
 return 0;
 }
}

Correction — Move Assignment Outside the if Statement

If the assignment can be made outside the control statement, one possible correction is to separate
the assignment and comparison. This correction assigns the value of beta to alpha before the if.
Inside the if-condition, only alpha is given to test if alpha is nonzero or not NULL.

#include <stdio.h>

24 CERT C++ Rules

24-64

void assign_and_print(int alpha, int beta)
{
 alpha = beta;
 if(alpha)
 {
 printf("%d", alpha);
 }
}

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP45-C

Introduced in R2019a

 CERT C++: EXP45-C

24-65

https://wiki.sei.cmu.edu/confluence/display/c/EXP45-C.+Do+not+perform+assignments+in+selection+statements

CERT C++: EXP46-C
Do not use a bitwise operator with a Boolean-like operand

Description
Rule Definition

Do not use a bitwise operator with a Boolean-like operand.

Polyspace Implementation

This checker checks for Use of bitwise operator with a Boolean-like operand.

Examples
Use of bitwise operator with a Boolean-like operand
Issue

Use of bitwise operator with a Boolean-like operand occurs when you use bitwise operators,
such as:

• Bitwise AND (&, &=)
• Bitwise OR (|, |=)
• Bitwise XOR (^, ^=)
• Bitwise NOT(~)

with:

• Boolean type variables
• Outputs of relational or equality expressions

Using Boolean type variables as array indices, in Boolean arithmetic expression, and in shifting
operations does not raise this defect.
Risk

Boolean-like operands, such as variables of type bool and outputs of relational operators typically
appear in logical expressions. Using a bitwise operator in an expression containing Boolean variables
and relational operators might be a sign of logic error. Because bitwise operators and logical
operators look similar, you might inadvertently use a bitwise operator instead of a logical operator.
Such logic errors do not raise any compilation error and can introduce bugs in your code that are
difficult to find.
Fix

Use logical operators in expressions that contain Boolean variables and relational operator. To
indicate that you intend to use a bitwise operator in such an expression, use parentheses.
Example — Possible Bug Due to Using Bitwise Operator

class User{
 //...

24 CERT C++ Rules

24-66

 int uid;
 int euid;
public:
 int getuid();
 int geteuid();
};
void Noncompliant ()
{
 User nU;
 if (nU.getuid () & nU.geteuid () == 0) { //Noncompliant
 //...
 }else{
 //...
 }
}

In this example, the if-else block is executed conditionally. The conditional statement uses the
bitwise AND (&) instead of the logical AND (&&), perhaps by mistake. Consider when the function
nU.geteuid() evaluates to 0, and nU.getuid() evaluates to 2. In this case, the else block of code
executes if you use & because 2&1 evaluates to false. Conversely, the if block of code executes
when you use && because 2&&1 evaluates to true. Using & instead of && might introduce logic errors
and bugs in your code that are difficult to find. Polyspace flags the use of bitwise operators in these
kinds of expressions where relational operators are also used.

Correction — Use Logical Operators with Boolean-Like Operands

One possible correction is to use logical operators in expressions that contain relational operators
and Boolean variables.

class User{
 //...
 int uid;
 int euid;
public:
 int getuid();
 int geteuid();
};
void Noncompliant ()
{
 User nU;
 if (nU.getuid () && nU.geteuid () == 0) { //Compliant
 //...
 }else{
 //...
 }
}

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

 CERT C++: EXP46-C

24-67

External Websites
EXP46-C

Introduced in R2019a

24 CERT C++ Rules

24-68

https://wiki.sei.cmu.edu/confluence/display/c/EXP46-C.+Do+not+use+a+bitwise+operator+with+a+Boolean-like+operand

CERT C++: EXP47-C
Do not call va_arg with an argument of the incorrect type

Description
Rule Definition

Do not call va_arg with an argument of the incorrect type.

Polyspace Implementation

This checker checks for these issues:

• Incorrect data type passed to va_arg.
• Too many va_arg calls for current argument list.

Examples
Incorrect data type passed to va_arg
Issue

Incorrect data type passed to va_arg when the data type in a va_arg call does not match the data
type of the variadic function argument that va_arg reads.

For instance, you pass an unsigned char argument to a variadic function func. Because of default
argument promotion, the argument is promoted to int. When you use a va_arg call that reads an
unsigned char argument, a type mismatch occurs.

void func (int n, ...) {
 ...
 va_list args;
 va_arg(args, unsigned char);
 //...
}

void main(void) {
 unsigned char c;
 func(1,c);
}

Risk

In a variadic function (function with variable number of arguments), you use va_arg to read each
argument from the variable argument list (va_list). The va_arg use does not guarantee that there
actually exists an argument to read or that the argument data type matches the data type in the
va_arg call. You have to make sure that both conditions are true.

Reading an incorrect type with a va_arg call can result in undefined behavior. Because function
arguments reside on the stack, you might access an unwanted area of the stack.

 CERT C++: EXP47-C

24-69

Fix

Make sure that the data type of the argument passed to the variadic function matches the data type
in the va_arg call.

Arguments of a variadic function undergo default argument promotions. The argument data types of
a variadic function cannot be determined from a prototype. The arguments of such functions undergo
default argument promotions (see Sec. 6.5.2.2 and 7.15.1.1 in the C99 Standard). Integer arguments
undergo integer promotion and arguments of type float are promoted to double. For integer
arguments, if a data type can be represented by an int, for instance, char or short, it is promoted
to an int. Otherwise, it is promoted to an unsigned int. All other arguments do not undergo
promotion.

To avoid undefined and implementation-defined behavior, minimize the use of variadic functions. Use
the checkers for MISRA C:2012 Rule 17.1 or MISRA C++:2008 Rule 8-4-1 to detect use of
variadic functions.
Example - char Used as Function Argument Type and va_arg argument

#include <stdarg.h>
#include <stdio.h>

unsigned char func(size_t count, ...) {
 va_list ap;
 unsigned char result = 0;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, unsigned char);
 }
 va_end(ap);
 return result;
}

void func_caller(void) {
 unsigned char c = 0x12;
 (void)func(1, c);
}

In this example, func takes an unsigned char argument, which undergoes default argument
promotion to int. The data type in the va_arg call is still unsigned char, which does not match
the int argument type.
Correction — Use int as va_arg Argument

One possible correction is to read an int argument with va_arg.

#include <stdarg.h>
#include <stdio.h>

unsigned char func(size_t count, ...) {
 va_list ap;
 unsigned char result = 0;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 }
 va_end(ap);
 return result;

24 CERT C++ Rules

24-70

}

void func_caller(void) {
 unsigned char c = 0x12;
 (void)func(1, c);
}

Too many va_arg calls for current argument list
Issue

Too many va_arg calls for current argument list occurs when the number of calls to va_arg
exceeds the number of arguments passed to the corresponding variadic function. The analysis raises
a defect only when the variadic function is called.

Too many va_arg calls for current argument list does not raise a defect when:

• The number of calls to va_arg inside the variadic function is indeterminate. For example, if the
calls are from an external source.

• The va_list used in va_arg is invalid.

Risk

When you call va_arg and there is no next argument available in va_list, the behavior is
undefined. The call to va_arg might corrupt data or return an unexpected result.

Fix

Ensure that you pass the correct number of arguments to the variadic function.

Example - No Argument Available When Calling va_arg

#include <stdarg.h>
#include <stddef.h>
#include <math.h>

/* variadic function defined with
* one named argument 'count'
*/
int variadic_func(int count, ...) {
 int result = -1;
 va_list ap;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 count --;
 if (count > 0) {
/* No further argument available
* in va_list when calling va_arg
*/

 result += va_arg(ap, int);
 }
 }
 va_end(ap);
 return result;
}

 CERT C++: EXP47-C

24-71

void func(void) {

 (void)variadic_func(2, 100);

}

In this example, the named argument and only one variadic argument are passed to
variadic_func() when it is called inside func(). On the second call to va_arg, no further
variadic argument is available in ap and the behavior is undefined.
Correction — Pass Correct Number of Arguments to Variadic Function

One possible correction is to ensure that you pass the correct number of arguments to the variadic
function.

#include <stdarg.h>
#include <stddef.h>
#include <math.h>

/* variadic function defined with
* one named argument 'count'
*/

int variadic_func(int count, ...) {
 int result = -1;
 va_list ap;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 count --;
 if (count > 0) {

/* The correct number of arguments is
* passed to va_list when variadic_func()
* is called inside func()
*/
 result += va_arg(ap, int);
 }
 }
 va_end(ap);
 return result;
}

void func(void) {

 (void)variadic_func(2, 100, 200);

}

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

24 CERT C++ Rules

24-72

External Websites
EXP47-C

Introduced in R2019a

 CERT C++: EXP47-C

24-73

https://wiki.sei.cmu.edu/confluence/display/c/EXP47-C.+Do+not+call+va_arg+with+an+argument+of+the+incorrect+type

CERT C++: EXP50-CPP
Do not depend on the order of evaluation for side effects

Description
Rule Definition

Do not depend on the order of evaluation for side effects.

Polyspace Implementation

This checker checks for Expression value depends on order of evaluation.

Examples
Expression value depends on order of evaluation
Issue

The issue occurs when the value of an expression is not the same depending on the order of
evaluation of the expression.

An expression can have different values under the following conditions:

• The same variable is modified more than once in the expression, or is both read and written.
• The expression allows more than one order of evaluation.

Therefore, the rule checker forbids expressions where a variable is modified more than once and can
cause different results under different orders of evaluation. The rule checker also detects cases
where a volatile variable is read more than once in an expression.

Risk

If an expression results in different values depending on the order of evaluation, its value becomes
implementation-defined.

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP50-CPP

Introduced in R2019a

24 CERT C++ Rules

24-74

https://wiki.sei.cmu.edu/confluence/display/cplusplus/EXP50-CPP.+Do+not+depend+on+the+order+of+evaluation+for+side+effects

CERT C++: EXP52-CPP
Do not rely on side effects in unevaluated operands

Description
Rule Definition

Do not rely on side effects in unevaluated operands.

Polyspace Implementation

This checker checks for the following:

• Logical operator operand with side effects
• sizeof, alignof or decltype operand with side effects

Examples
Logical operator operand with side effects
Issue

The issue occurs when the right hand operand of a logical && or || operator contains side effects.
When evaluated, an expression with side effect modifies at least one of the variables in the
expression.

The checker does not consider volatile accesses and function calls as potential side effects.

Risk

When evaluated, an expression with side effect modifies at least one of the variables in the
expression. For instance, n++ is an expression with side effect.

The right-hand operand of a:

• Logical && operator is evaluated only if the left-hand operand evaluates to true.
• Logical || operator is evaluated only if the left-hand operand evaluates to false.

In other cases, the right-hand operands are not evaluated, so side effects of the expression do not
take place. If your program relies on the side effects, you might see unexpected results in those
cases.

Fix

If you want the expression in the right-hand operand evaluated, perform the evaluation in a separate
statement.

For instance, instead of:

if(isOK && n++) {}

perform the operation in two steps:

 CERT C++: EXP52-CPP

24-75

n++;
if(isOK && n) {}

sizeof, alignof, or decltype operand with side effects
Issue

This issue occurs when the sizeof, alignof or decltype operator operates on an expression with
a side effect. When evaluated, an expression with side effect modifies at least one of the variables in
the expression.

For instance, the defect checker does not flag sizeof(n+1) because n+1 does not modify n. The
checker flags sizeof(n++) because n++ is intended to modify n.

Risk

Side effects in an alignof operator or decltype operator do not persist beyond the operation. The
expression in a sizeof operator is evaluated only if it is required for calculating the size of a
variable-length array, for instance, sizeof(a[n++]).

When an expression with a side effect is not evaluated, the variable modification from the side effect
does not happen. If you rely on the modification, you can see unexpected results.

Fix

Evaluate the expression with a side effect in a separate statement, and then use the result in a
sizeof, _Alignof, or _Generic operator.

For instance, instead of:

a = sizeof(n++);

perform the operation in two steps:

n++;
a = sizeof(n);

The checker considers a function call as an expression with a side effect. Even if the function does not
have side effects now, it might have side effects on later additions. The code is more maintainable if
you call the function outside the sizeof operator. If you call a function in a decltype, for instance,
to select the correct overload of a function and then determine its return type, the checker considers
such a call as an exception.

Example – Increment Operator in sizeof

#include <stdio.h>

void func(void) {
 unsigned int a = 1U;
 unsigned int b = (unsigned int)sizeof(++a);
 printf ("%u, %u\n", a, b);
}

In this example, sizeof operates on ++a, which is intended to modify a. Because the expression is
not evaluated, the modification does not happen. The printf statement shows that a still has the
value 1.

24 CERT C++ Rules

24-76

Correction — Perform Increment Outside sizeof

One possible correction is to perform the increment first, and then provide the result to the sizeof
operator.

#include <stdio.h>

void func(void) {
 unsigned int a = 1U;
 ++a;
 unsigned int b = (unsigned int)sizeof (a);
 printf ("%u, %u\n", a, b);
}

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP52-CPP

Introduced in R2019a

 CERT C++: EXP52-CPP

24-77

https://wiki.sei.cmu.edu/confluence/display/cplusplus/EXP52-CPP.+Do+not+rely+on+side+effects+in+unevaluated+operands

CERT C++: EXP53-CPP
Do not read uninitialized memory

Description
Rule Definition

Do not read uninitialized memory.

Polyspace Implementation

This checker checks for these issues:

• Non-initialized pointer.
• Non-initialized variable.

Examples
Non-initialized pointer
Issue

Non-initialized pointer occurs when a pointer is not assigned an address before dereference.
Risk

Unless a pointer is explicitly assigned an address, it points to an unpredictable location.
Fix

The fix depends on the root cause of the defect. For instance, you assigned an address to the pointer
but the assignment is unreachable.

Often the result details show a sequence of events that led to the defect. You can implement the fix on
any event in the sequence. If the result details do not show the event history, you can trace back
using right-click options in the source code and see previous related events. See also “Interpret Bug
Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below. It is a good practice to initialize a pointer to NULL when declaring the
pointer.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Non-initialized pointer error

#include <stdlib.h>

24 CERT C++ Rules

24-78

int* assign_pointer(int* prev)
{
 int j = 42;
 int* pi;

 if (prev == NULL)
 {
 pi = new int(0);
 if (pi == NULL)
 return NULL;
 }

 *pi = j; //Noncompliant

 return pi;
}

If prev is not NULL, the pointer pi is not assigned an address. However, pi is dereferenced on every
execution paths, irrespective of whether prev is NULL or not. Because pi might be accessed without
being initialized first, Polyspace flags it.
Correction — Initialize Pointer on Every Execution Path

One possible correction is to assign an address to pi in each branch of the execution path so that pi
is not accessed before it is initialized.

#include <stdlib.h>

int* assign_pointer(int* prev)
{
 int j = 42;
 int* pi;

 if (prev == NULL)
 {
 pi = new int(0);
 if (pi == NULL)
 return NULL;
 }
 /* Fix: Initialize pi in branches of if statement */
 else
 pi = prev;

 *pi = j;//Compliant

 return pi;
}

Non-initialized variable
Issue

Non-initialized variable occurs when a variable is not initialized before its value is read.
Risk

Unless a variable is explicitly initialized, the variable value is unpredictable. You cannot rely on the
variable having a specific value.

 CERT C++: EXP53-CPP

24-79

Fix

The fix depends on the root cause of the defect. For instance, you assigned a value to the variable but
the assignment is unreachable or you assigned a value to the variable in one of two branches of a
conditional statement. Fix the unreachable code or missing assignment.

Often the result details show a sequence of events that led to the defect. You can implement the fix on
any event in the sequence. If the result details do not show the event history, you can trace back
using right-click options in the source code and see previous related events. See also “Interpret Bug
Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below. It is a good practice to initialize a variable at declaration.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Non-initialized variable error

int get_sensor_value(void)
{
 extern int getsensor(void);
 int command;
 int val;

 command = getsensor();
 if (command == 2)
 {
 val = getsensor();
 }

 return val;
 /* Defect: val does not have a value if command is not 2 */
}

If command is not 2, the variable val is unassigned. In this case, the return value of function
get_sensor_value is undetermined.
Correction — Initialize During Declaration

One possible correction is to initialize val during declaration so that the initialization is not bypassed
on some execution paths.

int get_sensor_value(void)
{
 extern int getsensor(void);
 int command;
 /* Fix: Initialize val */
 int val=0;

 command = getsensor();
 if (command == 2)
 {

24 CERT C++ Rules

24-80

 val = getsensor();
 }

 return val;
 }

val is assigned an initial value of 0. When command is not equal to 2, the function
get_sensor_value returns this value.

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP53-CPP

Introduced in R2019a

 CERT C++: EXP53-CPP

24-81

https://wiki.sei.cmu.edu/confluence/display/cplusplus/EXP53-CPP.+Do+not+read+uninitialized+memory

CERT C++: EXP54-CPP
Do not access an object outside of its lifetime

Description
Rule Definition

Do not access an object outside of its lifetime.

Polyspace Implementation

This checker checks for these issues:

• Non-initialized pointer.
• Non-initialized variable.
• Use of previously freed pointer.
• Pointer or reference to stack variable leaving scope.
• Accessing object with temporary lifetime.

Examples
Non-initialized pointer
Issue

Non-initialized pointer occurs when a pointer is not assigned an address before dereference.

Risk

Unless a pointer is explicitly assigned an address, it points to an unpredictable location.

Fix

The fix depends on the root cause of the defect. For instance, you assigned an address to the pointer
but the assignment is unreachable.

Often the result details show a sequence of events that led to the defect. You can implement the fix on
any event in the sequence. If the result details do not show the event history, you can trace back
using right-click options in the source code and see previous related events. See also “Interpret Bug
Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below. It is a good practice to initialize a pointer to NULL when declaring the
pointer.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

24 CERT C++ Rules

24-82

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Non-initialized pointer error

#include <stdlib.h>

int* assign_pointer(int* prev)
{
 int j = 42;
 int* pi;

 if (prev == nullptr)
 {
 pi = new int;
 if (pi == nullptr) return NULL;
 }
 *pi = j;
 /* Defect: Writing to uninitialized pointer */

 return pi;
}

If prev is not nullptr, the pointer pi is not assigned an address. However, pi is dereferenced on
every execution paths, irrespective of whether prev is nullptr or not.

Correction — Initialize Pointer on Every Execution Path

One possible correction is to assign an address to pi when prev is not nullptr. Alternatively,
initialize pi as a nullptr during its declaration.

#include <cstdlib>

int* assign_pointer(int* prev)
{
 int j = 42;
/*Fix: Initialize pointers by using nullptr during declaration*/
 int* pi = nullptr;

 if (prev == NULL)
 {
 pi = new int;
 if (pi == nullptr) return NULL;
 }
 /* Fix: Initialize pi in branches of if statement */
 else
 pi = prev;
 *pi = j;
 return pi;
}

Non-initialized variable
Issue

Non-initialized variable occurs when a variable is not initialized before its value is read.

 CERT C++: EXP54-CPP

24-83

Risk

Unless a variable is explicitly initialized, the variable value is unpredictable. You cannot rely on the
variable having a specific value.

Fix

The fix depends on the root cause of the defect. For instance, you assigned a value to the variable but
the assignment is unreachable or you assigned a value to the variable in one of two branches of a
conditional statement. Fix the unreachable code or missing assignment.

Often the result details show a sequence of events that led to the defect. You can implement the fix on
any event in the sequence. If the result details do not show the event history, you can trace back
using right-click options in the source code and see previous related events. See also “Interpret Bug
Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below. It is a good practice to initialize a variable at declaration.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Non-initialized variable error

int get_sensor_value(void)
{
 extern int getsensor(void);
 int command;
 int val;

 command = getsensor();
 if (command == 2)
 {
 val = getsensor();
 }

 return val;
 /* Defect: val does not have a value if command is not 2 */
}

If command is not 2, the variable val is unassigned. In this case, the return value of function
get_sensor_value is undetermined.

Correction — Initialize During Declaration

One possible correction is to initialize val during declaration so that the initialization is not bypassed
on some execution paths.

int get_sensor_value(void)
{
 extern int getsensor(void);
 int command;
 /* Fix: Initialize val */

24 CERT C++ Rules

24-84

 int val=0;

 command = getsensor();
 if (command == 2)
 {
 val = getsensor();
 }

 return val;
 }

val is assigned an initial value of 0. When command is not equal to 2, the function
get_sensor_value returns this value.

Use of previously freed pointer
Issue

Use of previously freed pointer occurs when you access a block of memory after deallocating the
block, for instance, by using the free function or the delete operator.

Risk

When a pointer is allocated dynamic memory by using the functions malloc, calloc, realloc or
the operator new, it points to a memory location on the heap. When you use the free function or the
delete operator on this pointer, the associated block of memory is deallocated. Trying to access this
block of memory can result in unpredictable behavior or even a segmentation fault.

Fix

The fix depends on the root cause of the defect. See if you intended to deallocate the memory later or
allocate another memory block to the pointer before access.

As a good practice, after you deallocate a memory block, assign the corresponding pointer to
nullptr. Before dereferencing pointers, check if they are nullptr and handle the error. In this way,
you are protected against accessing a deallocated block.

Example - Use of Previously Freed Pointer Error

#include <cstdlib>
int increment_content_of_address(int base_val, int shift)
 {
 int j;
 int* pi = new int;
 if (pi == NULL) return 0;

 *pi = base_val;
 delete pi;

 j = *pi + shift;
 /* Defect: Reading a deallocated pointer */

 return j;
 }

The delete operator deallocates the block of memory that pi refers to. Therefore, dereferencingpi
after the delete pi; statement is not valid.

 CERT C++: EXP54-CPP

24-85

Correction — Deallocate Pointer After Use

One possible correction is to deallocate the pointer pi only after the last instance where it is
accessed.

#include <cstdlib>

int increment_content_of_address(int base_val, int shift)
{
 int j;
 int* pi = new int;
 if (pi == NULL) return 0;

 *pi = base_val;

 j = *pi + shift;
 *pi = 0;

 /* Fix: The pointer is deallocated after its last use */
 delete pi;
 return j;
}

Correction — Use std::unique_ptr

Another possible correction is to use a std::unique_ptr instead of a raw pointer. Smart pointers
such as std::unique_ptr manages their own resources. because you don't have to deallocate
smart pointers explicitly, they are not inadvertently accessed after deallocation.

#include <cstdlib>
#include <memory>

int increment_content_of_address(int base_val, int shift)
{
 int j;
 /* Fix: A smart pointer is used*/
 std::unique_ptr<int> pi(new int(3));
 if (pi == nullptr) return 0;

 *pi = base_val;

 j = *pi + shift;
 *pi = 0;
 return j;
}

Pointer or reference to stack variable leaving scope
Issue

Pointer or reference to stack variable leaving scope occurs when a pointer or reference to a
local variable leaves the scope of the variable. For instance:

• A function returns a pointer to a local variable.
• A function performs the assignment globPtr = &locVar. globPtr is a global pointer variable

and locVar is a local variable.
• A function performs the assignment *paramPtr = &locVar. paramPtr is a function parameter

that is, for instance, an int** pointer and locVar is a local int variable.

24 CERT C++ Rules

24-86

• A C++ method performs the assignment memPtr = &locVar. memPtr is a pointer data member
of the class the method belongs to. locVar is a variable local to the method.

The defect also applies to memory allocated using the alloca function. The defect does not apply to
static, local variables.
Risk

Local variables are allocated an address on the stack. Once the scope of a local variable ends, this
address is available for reuse. Using this address to access the local variable value outside the
variable scope can cause unexpected behavior.

If a pointer to a local variable leaves the scope of the variable, Polyspace Bug Finder highlights the
defect. The defect appears even if you do not use the address stored in the pointer. For maintainable
code, it is a good practice to not allow the pointer to leave the variable scope. Even if you do not use
the address in the pointer now, someone else using your function can use the address, causing
undefined behavior.
Fix

Do not allow a pointer or reference to a local variable to leave the variable scope.
Example - Pointer to Local Variable Returned from Function

void func2(int *ptr) {
 *ptr = 0;
}

int* func1(void) {
 int ret = 0;
 return &ret ;
}
void main(void) {
 int* ptr = func1() ;
 func2(ptr) ;
}

In this example, func1 returns a pointer to local variable ret.

In main, ptr points to the address of the local variable. When ptr is accessed in func2, the access is
illegal because the scope of ret is limited to func1,
Example - Pointer to Local Variable Escapes Through Lambda Expression

auto createAdder(int amountToAdd) {
 int addThis = amountToAdd;
 auto adder = [&] (int initialAmount) {
 return (initialAmount + addThis);
 };
 return adder;
}

void func() {
 auto AddByTwo = createAdder(2);
 int res = AddByTwo(10);
}

In this example, the createAdder function defines a lambda expression adder that captures the
local variable addThis by reference. The scope of addThis is limited to the createAdder function.

 CERT C++: EXP54-CPP

24-87

When the object returned by createAdder is called, a reference to the variable addThis is accessed
outside its scope. When accessed in this way, the value of addThis is undefined.
Correction – Capture Local Variables by Copy in Lambda Expression Instead of Reference

If a function returns a lambda expression object, avoid capturing local variables by reference in the
lambda object. Capture the variables by copy instead.

Variables captured by copy have the same lifetime as the lambda object, but variables captured by
reference often have a smaller lifetime than the lambda object itself. When the lambda object is used,
these variables accessed outside scope have undefined values.

auto createAdder(int amountToAdd) {
 int addThis = amountToAdd;
 auto adder = [=] (int initialAmount) {
 return (initialAmount + addThis);
 };
 return adder;
}

void func() {
 auto AddByTwo = createAdder(2);
 int res = AddByTwo(10);
}

Accessing object with temporary lifetime
Issue

Accessing object with temporary lifetime occurs when you attempt to read from or write to an
object with temporary lifetime that is returned by a function call. In a structure or union returned by
a function, and containing an array, the array members are temporary objects. The lifetime of
temporary objects ends:

• When the full expression or full declarator containing the call ends, as defined in the C11
Standard.

• After the next sequence point, as defined in the C90 and C99 Standards. A sequence point is a
point in the execution of a program where all previous evaluations are complete and no
subsequent evaluation has started yet.

For C++ code, Accessing object with temporary lifetime raises a defect only when you write to an
object with a temporary lifetime.

If the temporary lifetime object is returned by address, no defect is raised.
Risk

Modifying objects with temporary lifetime is undefined behavior and can cause abnormal program
termination and portability issues.
Fix

Assign the object returned from the function call to a local variable. The content of the temporary
lifetime object is copied to the variable. You can now modify it safely.
Example - Modifying Temporary Lifetime Object Returned by Function Call

#include <stdio.h>
#include <assert.h>

24 CERT C++ Rules

24-88

#include <stdlib.h>
#include <string.h>

#define SIZE6 6

struct S_Array
{
 int t;
 int a[SIZE6];
};

struct S_Array func_temp(void);

/* func_temp() returns a struct value containing
* an array with a temporary lifetime.
*/
int func(void) {

/*Writing to temporary lifetime object is
 undefined behavior
 */
 return ++(func_temp().a[0]);
}

void main(void) {
 (void)func();
}

In this example, func_temp() returns by value a structure with an array member a. This member
has temporary lifetime. Incrementing it is undefined behavior.

Correction — Assign Returned Value to Local Variable Before Writing

One possible correction is to assign the return of the call to func_temp() to a local variable. The
content of the temporary object a is copied to the variable, which you can safely increment.

 #include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>

#define SIZE6 6

struct S_Array
{
 int t;
 int a[SIZE6];
};

struct S_Array func_temp(void);

int func(void) {

/* Assign object returned by function call to
 *local variable
 */
 struct S_Array s = func_temp();

 CERT C++: EXP54-CPP

24-89

/* Local variable can safely be
 *incremented
 */
 ++(s.a[0]);
 return s.a[0];
}

void main(void) {
 (void)func();
}

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP54-CPP

Introduced in R2019a

24 CERT C++ Rules

24-90

https://wiki.sei.cmu.edu/confluence/display/cplusplus/EXP54-CPP.+Do+not+access+an+object+outside+of+its+lifetime

CERT C++: EXP55-CPP
Do not access a cv-qualified object through a cv-unqualified type

Description
Rule Definition

Do not access a cv-qualified object through a cv-unqualified type.

Polyspace Implementation

This checker checks for Cast removes cv-qualification of pointer.

Examples
Cast removes cv-qualification of pointer
Issue

The issue occurs when a cast removes a const or volatile qualification from the type of a pointer
or reference.

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP55-CPP

Introduced in R2019a

 CERT C++: EXP55-CPP

24-91

https://wiki.sei.cmu.edu/confluence/display/cplusplus/EXP55-CPP.+Do+not+access+a+cv-qualified+object+through+a+cv-unqualified+type

CERT C++: EXP57-CPP
Do not cast or delete pointers to incomplete classes

Description
Rule Definition

Do not cast or delete pointers to incomplete classes.

Polyspace Implementation

This checker checks for Conversion or deletion of incomplete class pointer.

Examples
Conversion or deletion of incomplete class pointer
Issue

Conversion or deletion of incomplete class pointer occurs when you delete or cast to a pointer to
an incomplete class. An incomplete class is one whose definition is not visible at the point where the
class is used.

For instance, the definition of class Body is not visible when the delete operator is called on a
pointer to Body:

class Handle {
 class Body *impl;
public:
 ~Handle() { delete impl; }
 // ...
};

Risk

When you delete a pointer to an incomplete class, it is not possible to call any nontrivial destructor
that the class might have. If the destructor performs cleanup activities such as memory deallocation,
these activities do not happen.

A similar problem happens, for instance, when you downcast to a pointer to an incomplete class
(downcasting is casting from a pointer to a base class to a pointer to a derived class). At the point of
downcasting, the relationship between the base and derived class is not known. In particular, if the
derived class inherits from multiple classes, at the point of downcasting, this information is not
available. The downcasting cannot make the necessary adjustments for multiple inheritance and the
resulting pointer cannot be dereferenced.

A similar statement can be made for upcasting (casting from a pointer to derived class to a pointer to
a base class).

Fix

When you delete or downcast to a pointer to a class, make sure that the class definition is visible.

24 CERT C++ Rules

24-92

Alternatively, you can perform one of these actions:

• Instead of a regular pointer, use the std::shared_ptr type to point to the incomplete class.
• When downcasting, make sure that the result is valid. Write error-handling code for invalid

results.

Example - Deletion of Pointer to Incomplete Class

class Handle {
 class Body *impl;
public:
 ~Handle() { delete impl; }
 // ...
};

In this example, the definition of class Body is not visible when the pointer to Body is deleted.
Correction — Define Class Before Deletion

One possible correction is to make sure that the class definition is visible when a pointer to the class
is deleted.

class Handle {
 class Body *impl;
public:
 ~Handle();
 // ...
};

// Elsewhere
class Body { /* ... */ };

Handle::~Handle() {
 delete impl;
}

Correction — Use std::shared_ptr

Another possible correction is to use the std::shared_ptr type instead of a regular pointer.

#include <memory>

class Handle {
 std::shared_ptr<class Body> impl;
 public:
 Handle();
 ~Handle() {}
 // ...
};

Example - Downcasting to Pointer to Incomplete Class

File1.h:

">class Base {
protected:
 double var;
public:
 Base() : var(1.0) {}

 CERT C++: EXP57-CPP

24-93

 virtual void do_something();
 virtual ~Base();
};

File2.h:

">void funcprint(class Derived *);
class Base *get_derived();

File1.cpp:

#include "File1.h"
#include "File2.h"

void getandprint() {
 Base *v = get_derived();
 funcprint(reinterpret_cast<class Derived *>(v));
}

File2.cpp:

#include "File2.h"
#include "File1.h"
#include <iostream>

class Base2 {
protected:
 short var2;
public:
 Base2() : var2(12) {}
};

class Derived : public Base2, public Base {
 float var_derived;
public:
 Derived() : Base2(), Base(), var_derived(1.2f) {}
 void do_something()
 {
 std::cout << "var_derived: "
 << var_derived << ", var : " << var
 << ", var2: " << var2 << std::endl;
 }
 };

void funcprint(Derived *d) {
 d->do_something();
}

Base *get_derived() {
 return new Derived;
}

In this example, the definition of class Derived is not visible in File1.cpp when a Base* pointer to
downcast to a Derived* pointer.

In File2.cpp, class Derived derives from two classes, Base and Base2. This information about
multiple inheritance is not available at the point of downcasting in File1.cpp. The result of

24 CERT C++ Rules

24-94

downcasting is passed to the function funcprint and dereferenced in the body of funcprint.
Because the downcasting was done with incomplete information, the dereference can be invalid.

Correction — Define Class Before Downcasting

One possible correction is to define the class Derived before downcasting a Base* pointer to a
Derived* pointer.

In this corrected example, the downcasting is done in File2.cpp in the body of funcprint at a
point where the definition of class Derived is visible. The downcasting is not done in File1.cpp
where the definition of Derived is not visible. The changes from the previous incorrect example are
highlighted.

File1.h:

class Base {
protected:
 double var;
public:
 Base() : var(1.0) {}
 virtual void do_something();
 virtual ~Base();
};

File2.h:

void funcprint(class Base *);
class Base *get_derived();

File1.cpp:

#include "File1.h"
#include "File2.h"

void getandprint() {
 Base *v = get_derived();
 funcprint(v);
}

File2.cpp:

#include "File2_corr.h"
#include "File1_corr.h"
#include <iostream>

class Base2 {
protected:
 short var2;
public:
 Base2() : var2(12) {}
};

class Derived : public Base2, public Base {
 float var_derived;

public:
 Derived() : Base2(), Base(), var_derived(1.2f) {}
 void do_something()

 CERT C++: EXP57-CPP

24-95

 {
 std::cout << "var_derived: "
 << var_derived << ", var : " << var
 << ", var2: " << var2 << std::endl;
 }
};

void funcprint(Base *d) {
 Derived *temp = dynamic_cast<Derived*>(d);
 if(temp) {
 d->do_something();
 }
 else {
 //Handle error
 }
}

Base *get_derived() {
 return new Derived;
}

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP57-CPP

Introduced in R2019a

24 CERT C++ Rules

24-96

https://wiki.sei.cmu.edu/confluence/display/cplusplus/EXP57-CPP.+Do+not+cast+or+delete+pointers+to+incomplete+classes

CERT C++: EXP58-CPP
Pass an object of the correct type to va_start

Description
Rule Definition

Pass an object of the correct type to va_start.

Polyspace Implementation

This checker checks for Incorrect type data passed to va_start.

Examples
Incorrect type data passed to va_start
Issue

Incorrect type data passed to va_start occurs when the second argument of the va_start macro
has one of these data types:

• A data type that changes when undergoing default argument promotion.

For instance, char and short undergo promotion to int or unsigned int and float
undergoes promotion to double. The types int and double do not change under default
argument promotion.

• (C only) A register type or a data type declared with the register qualifier.
• (C++ only) A reference data type.
• (C++ only) A data type that has a nontrivial copy constructor or a nontrivial move constructor.

Risk

In a variadic function or function with variable number of arguments:

void multipleArgumentFunction(int someArg, short rightmostFixedArg, ...) {
 va_list myList;
 va_start(myList, rightmostFixedArg);
 ...
 va_end(myList);
}

The va_start macro initializes a variable argument list so that additional arguments to the variadic
function after the fixed parameters can be captured in the list. According to the C11 and C++14
Standards, if you use one of the flagged data types for the second argument of the va_start macro
(for instance, rightmostFixedArg in the preceding example), the behavior is undefined.

If the data type involves a nontrivial copy constructor, the behavior is implementation-defined. For
instance, whether the copy constructor is invoked in the call to va_start depends on the compiler.

 CERT C++: EXP58-CPP

24-97

Fix

When using the va_start macro, try to use the types int, unsigned int or double for the
rightmost named parameter of the variadic function. Then, use this parameter as the second
argument of the va_start macro.

For instance, in this example, the rightmost named parameter of the variadic function has a
supported data type int:

void multipleArgumentFunction(int someArg, int rightmostFixedArg, ...) {
 va_list myList;
 va_start(myList, rightmostFixedArg);
 ...
 va_end(myList);
}

To avoid undefined and implementation-defined behavior, minimize the use of variadic functions. Use
the checkers for MISRA C:2012 Rule 17.1 or MISRA C++:2008 Rule 8-4-1 to detect use of
variadic functions.
Example – Incorrect Data Types for Second Argument of va_start

#include <string>
#include <cstdarg>

double addVariableNumberOfDoubles(double* weight, short num, ...) {
 double sum=0.0;
 va_list list;
 va_start(list, num);
 for(int i=0; i < num; i++) {
 sum+=weight[i]*va_arg(list, double);
 }
 va_end(list);
 return sum;
}

double addVariableNumberOfFloats(float* weight, int num, std::string s, ...) {
 float sum=0.0;
 va_list list;
 va_start(list, s);
 for(int i=0; i < num; i++) {
 sum+=weight[i]*va_arg(list, float);
 }
 va_end(list);
 return sum;
}

In this example, the checker flags the call to va_start in:

• addVariableNumberOfDoubles because the argument has type short, which undergoes
default argument promotion to int.

• addVariableNumberOfFloats because the argument has type std::string, which has a
nontrivial copy constructor.

Correction — Fix Data Type for Second Argument of va_start

Make sure that the second argument of the va_start macro has a supported data type. In the
following corrected example:

24 CERT C++ Rules

24-98

• In addVariableNumberOfDoubles, the data type of the last named parameter of the variadic
function is changed to int.

• In addVariableNumberOfFloats, the second and third parameters of the variadic function are
switched so that data type of the last named parameter is int.

#include <string>
#include <cstdarg>

double addVariableNumberOfDoubles(double* weight, int num, ...) {
 double sum=0.0;
 va_list list;
 va_start(list, num);
 for(int i=0; i < num; i++) {
 sum+=weight[i]*va_arg(list, double);
 }
 va_end(list);
 return sum;
}

double addVariableNumberOfFloats(double* weight, std::string s, int num, ...) {
 double sum=0.0;
 va_list list;
 va_start(list, num);
 for(int i=0; i < num; i++) {
 sum+=weight[i]*va_arg(list, double);
 }
 va_end(list);
 return sum;
}

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP58-CPP

Introduced in R2019a

 CERT C++: EXP58-CPP

24-99

https://wiki.sei.cmu.edu/confluence/display/cplusplus/EXP58-CPP.+Pass+an+object+of+the+correct+type+to+va_start

CERT C++: EXP59-CPP
Use offsetof() on valid types and members

Description
Rule Definition

Use offsetof() on valid types and members.

Polyspace Implementation

This checker checks for Incorrect use of offsetof in C++.

Examples
Incorrect use of offsetof in C++
Issue

This defect occurs when you pass arguments to the offsetof macro for which the behavior of the
macro is not defined.

The offsetof macro:

offsetof(classType, aMember)

returns the offset in bytes of the data member aMember from the beginning of an object of type
classType. For use in offsetof, classType and aMember have certain restrictions:

• classType must be a standard layout class.

For instance, it must not have virtual member functions. For more information on the
requirements for a standard layout class, see C++ named requirements: StandardLayoutType.

• aMember must not be static.
• aMember must not be a member function.

The checker flags uses of the offsetof macro where the arguments violate one or more of these
restrictions.

Risk

Violating the restrictions on the arguments of the offsetof macro leads to undefined behavior.

Fix

Use the offsetof macro only on nonstatic data members of a standard layout class.

The result details state which restriction on the offsetof macro is violated. Fix the violation.

Example – Use of offsetof Macro with Nonstandard Layout Class

#include <cstddef>

24 CERT C++ Rules

24-100

https://en.cppreference.com/w/cpp/named_req/StandardLayoutType

class myClass {
 int privateData;
 public:
 int publicData;
};

void func() {
 size_t off = offsetof(myClass, publicData);
 // ...
}

In this example, the class myClass has two data members with different access control, one private
and the other public. Therefore, the class does not satisfy the requirements of a standard layout class
and cannot be used with the offsetof macro.

Correction — Use Uniform Access Control for All Data Members

If the use of offsetof is important for the application, make sure that the first argument is a class
with a standard layout. For instance, see if you can work around the need for a public data member.

#include <cstddef>

class myClass {
 int member1;
 int member2;
 public:
 int getMember2(void) { return member2;}
 friend void func(void);
};

void func() {
 size_t off = offsetof(myClass, member2);
 // ...
}

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
EXP59-CPP

Introduced in R2019a

 CERT C++: EXP59-CPP

24-101

https://wiki.sei.cmu.edu/confluence/display/cplusplus/EXP59-CPP.+Use+offsetof%28%29+on+valid+types+and+members

CERT C++: EXP61-CPP
A lambda object must not outlive any of its reference captured objects

Description
Rule Definition

A lambda object must not outlive any of its reference captured objects.

Polyspace Implementation

This checker checks for Object Escapes Scope Through Lambda Expression.

Examples
Object Escapes Scope Through Lambda Expression
Issue

The issue occurs when a lambda expression captures an object by reference and the lambda
expression object outlives the captured object. For instance, the captured object is a local variable
but the lambda expression object has a much larger scope.
Risk

If a lambda expression object outlives one of its reference captured objects, the captured object can
be accessed outside its scope.

For instance, consider this function createFunction:

std::function<std::int32_t()> createFunction() {
 std::int32_t localVar = 0;
 return ([&localVar]() -> std::int32_t {
 localVar = 1;
 return localVar;
 });
}

createFunction returns a lambda expression object that captures the local variable localVar by
reference. The scope of localVar is limited to createFunction but the lambda expression object
returned has a much larger scope.

This situation can result in an attempt to access the local object localVar outside its scope. For
instance, when you call createFunction and assign the returned lambda expression object to
another object aFunction:

auto aFunction = createFunction();

and then invoke the new object aFunction:

std::int32_t someValue = aFunction();

the captured variable localVar is no longer in scope. Therefore, the value returned from
aFunction is undefined.

24 CERT C++ Rules

24-102

Fix

If a function returns a lambda expression, to avoid accessing a captured object outside its scope,
make sure that the lambda expression captures all objects by copy. For instance, you can rewrite
createFunction as:

std::function<std::int32_t()> createFunction() {
 std::int32_t localVar = 0;
 return ([localVar]() mutable -> std::int32_t {
 localVar = 1;
 return localVar;
 });
}

Example – Pointer to Local Variable Escapes Through Lambda Expression

auto createAdder(int amountToAdd) {
 int addThis = amountToAdd;
 auto adder = [&] (int initialAmount) {
 return (initialAmount + addThis);
 };
 return adder;
}

void func() {
 auto AddByTwo = createAdder(2);
 int res = AddByTwo(10);
}

In this example, the createAdder function defines a lambda expression adder that captures the
local variable addThis by reference. The scope of addThis is limited to the createAdder function.
When the object returned by createAdder is called, a reference to the variable addThis is accessed
outside its scope. When accessed in this way, the value of addThis is undefined.
Correction – Capture Local Variables by Copy in Lambda Expression Instead of Reference

If a function returns a lambda expression object, avoid capturing local variables by reference in the
lambda object. Capture the variables by copy instead.

auto createAdder(int amountToAdd) {
 int addThis = amountToAdd;
 auto adder = [=] (int initialAmount) {
 return (initialAmount + addThis);
 };
 return adder;
}

void func() {
 auto AddByTwo = createAdder(2);
 int res = AddByTwo(10);
}

Check Information
Group: 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp))

 CERT C++: EXP61-CPP

24-103

Topics
“Check for Coding Standard Violations”

External Websites
EXP61-CPP

Introduced in R2019b

24 CERT C++ Rules

24-104

https://wiki.sei.cmu.edu/confluence/display/cplusplus/EXP61-CPP.+A+lambda+object+must+not+outlive+any+of+its+reference+captured+objects

CERT C++: EXP63-CPP
Do not rely on the value of a moved-from object

Description
Rule Definition

Do not rely on the value of a moved-from object.2

Polyspace Implementation

This checker checks for Reading the Value of a Moved-from Object.

Examples
Reading the Value of a Moved-from Object
Issue

This issue occurs when the value of a source object is read after its content is moved to a destination
object by calling the std::move function explicitly. Polyspace does not flag accessing the value of a
moved-from object if:

• The source object of an explicit move operation is of these types:

• std::unique_ptr
• std::shared_ptr
• std::weak_ptr
• std::basic_ios
• std::basic_filebuf
• std::thread
• std::unique_lock
• std::shared_lock
• std::promise

2. This software has been created by MathWorks incorporating portions of: the “SEI CERT-C Website,” © 2017 Carnegie
Mellon University, the SEI CERT-C++ Web site © 2017 Carnegie Mellon University, ”SEI CERT C Coding Standard –
Rules for Developing safe, Reliable and Secure systems – 2016 Edition,” © 2016 Carnegie Mellon University, and “SEI
CERT C++ Coding Standard – Rules for Developing safe, Reliable and Secure systems in C++ – 2016 Edition” © 2016
Carnegie Mellon University, with special permission from its Software Engineering Institute.

ANY MATERIAL OF CARNEGIE MELLON UNIVERSITY AND/OR ITS SOFTWARE ENGINEERING INSTITUTE
CONTAINED HEREIN IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM
USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This software and associated documentation has not been reviewed nor is it endorsed by Carnegie Mellon University or
its Software Engineering Institute.

 CERT C++: EXP63-CPP

24-105

• std::future
• std::shared_future
• std::packaged_task

These objects do not remain in an unspecified state after their state is moved explicitly.
• The move operation is performed implicitly. For instance, the function std::remove might access

the state of a source object after an implicit move operation. Polyspace does not flag it. A best
practice is to avoid such operations and use safer alternatives that prevent accidental access, such
as std::erase.

• The source object is of a built-in base type, such as: int, enum, float, double, pointer,
std::intptr_t, std::nullptr_t.

Risk

Because the state of a source object is generally unspecified after a move operation, it is unsafe to
perform operations that rely on the state of the source object after a move operation. Accessing the
state of the source object after a move operation might result in a data integrity violation, an
unexpected value, or an illegal dereferencing of a pointer.

Fix

Avoid operations that might read a source object after its content is moved.

Example — Reading Value of Source Object After Calling std::move

#include<string>
#include<iostream>
void F1()
{
 std::string s1{"string"};
 std::string s2{std::move(s1)};
 // ...
 std::cout
 << // Noncompliant
 s1
 << "\n";
 // value after move operation
}
void g(std::string v)
{
 std::cout << v << std::endl;
}

void F3()
{
 std::string s;
 for (unsigned i = 0; i < 10; ++i) {
 s.append(1, static_cast<char>('0' + i)); //Noncompliant
 g(std::move(s));
 }
}

• In the function F1, the string s1 is explicitly moved to s2 by calling std::move. After the move
operation, the function attempts to read s1. Polyspace flags this attempt of reading a source
object after an explicit move.

24 CERT C++ Rules

24-106

• In the function F3, the string s is explicitly moved and then it is read by the
std::string::append function. Polyspace flags this attempt of reading a source object after an
explicit move.

Correction — Read Values of Source Objects in Specified State

#include<string>
#include<iostream>
void F2()
{
 std::unique_ptr<std::int32_t> ptr1 = std::make_unique<std::int32_t>(0);
 std::unique_ptr<std::int32_t> ptr2{std::move(ptr1)};
 std::cout << ptr1.get() << std::endl; // Compliant by exception
}
void g(std::string v)
{
 std::cout << v << std::endl;
}
void F4()
{
 for (unsigned i = 0; i < 10; ++i) {
 std::string s(1, static_cast<char>('0' + i)); // Compliant
 g(std::move(s));
 }
}

• In the function F2, the unique pointer ptr1 is explicitly moved to ptr2. Because the state of
std::unique_ptr remains in a specified state after the move, reading a source unique pointer
after an explicit move is compliant.

• In the function F4, the string s is explicitly moved. In each iteration of the loop, s is initiated to
specific content before the move operation is triggered. As a result, the state of s is specified
before the object is accessed. This method of accessing the source object after a move operation is
compliant with this rule.

Check Information
Group: Rule 02. Expressions (EXP)

See Also
Check SEI CERT-C++ (-cert-cpp)) | AUTOSAR C++14 Rule A12-8-3

Topics
“Check for Coding Standard Violations”

External Websites
EXP63-CPP

Introduced in R2021a

 CERT C++: EXP63-CPP

24-107

https://wiki.sei.cmu.edu/confluence/display/cplusplus/EXP63-CPP.+Do+not+rely+on+the+value+of+a+moved-from+object

CERT C++: INT30-C
Ensure that unsigned integer operations do not wrap

Description
Rule Definition

Ensure that unsigned integer operations do not wrap.

Polyspace Implementation

This checker checks for these issues:

• Unsigned integer overflow.
• Unsigned integer constant overflow.

Examples
Unsigned integer overflow
Issue

Unsigned integer overflow occurs when an operation on unsigned integer variables can result in
values that cannot be represented by the result data type. The data type of a variable determines the
number of bytes allocated for the variable storage and constrains the range of allowed values.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).
Risk

The C11 standard states that unsigned integer overflows result in wrap-around behavior. However, a
wrap around behavior might not always be desirable. For instance, if the result of a computation is
used as an array size and the computation overflows, the array size is much smaller than expected.
Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

You can fix the defect by:

• Using a bigger data type for the result of the operation so that all values can be accommodated.
• Checking for values that lead to the overflow and performing appropriate error handling. In the

error handling code, you can override the default wrap-around behavior for overflows and
implement saturation behavior, for instance.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

24 CERT C++ Rules

24-108

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Add One to Maximum Unsigned Integer

#include <limits.h>

unsigned int plusplus(void) {

 unsigned uvar = UINT_MAX;
 uvar++;
 return uvar;
}

In the third statement of this function, the variable uvar is increased by 1. However, the value of
uvar is the maximum unsigned integer value, so 1 plus the maximum integer value cannot be
represented by an unsigned int. The C programming language standard does not view unsigned
overflow as an error because the program automatically reduces the result by modulo the maximum
value plus 1. In this example, uvar is reduced by modulo UINT_MAX. The result is uvar = 1.

Correction — Different Storage Type

One possible correction is to store the operation result in a larger data type. In this example, by
returning an unsigned long long instead of an unsigned int, the overflow error is fixed.

#include <limits.h>

unsigned long long plusplus(void) {

 unsigned long long ullvar = UINT_MAX;
 ullvar++;
 return ullvar;
}

Unsigned integer constant overflow
Issue

Unsigned integer constant overflow occurs when you assign a compile-time constant to a
unsigned integer variable whose data type cannot accommodate the value. An n-bit unsigned integer
holds values in the range [0, 2n-1].

For instance, c is an 8-bit unsigned char variable that cannot hold the value 256.

unsigned char c = 256;

To determine the sizes of fundamental types, Bug Finder uses your specification for Target
processor type (-target).

Risk

The C standard states that overflowing unsigned integers must be wrapped around (see, for instance,
the C11 standard, section 6.2.5). However, the wrap-around behavior can be unintended and cause
unexpected results.

 CERT C++: INT30-C

24-109

Fix

Check if the constant value is what you intended. If the value is correct, use a wider data type for the
variable.

Example - Overflowing Constant from Macro Expansion

#define MAX_UNSIGNED_CHAR 255
#define MAX_UNSIGNED_SHORT 65535

void main() {
 unsigned char c1 = MAX_UNSIGNED_CHAR + 1;
 unsigned short c2 = MAX_UNSIGNED_SHORT + 1;
}

In this example, the defect appears on the macros because at least one use of the macro causes an
overflow.

Correction — Use Wider Data Type

One possible correction is to use a wider data type for the variables that overflow.

#define MAX_UNSIGNED_CHAR 255
#define MAX_UNSIGNED_SHORT 65535

void main() {
 unsigned short c1 = MAX_UNSIGNED_CHAR + 1;
 unsigned int c2 = MAX_UNSIGNED_SHORT + 1;
}

Check Information
Group: 03. Integers (INT)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
INT30-C

Introduced in R2019a

24 CERT C++ Rules

24-110

https://wiki.sei.cmu.edu/confluence/display/c/INT30-C.+Ensure+that+unsigned+integer+operations+do+not+wrap

CERT C++: INT31-C
Ensure that integer conversions do not result in lost or misinterpreted data

Description
Rule Definition

Ensure that integer conversions do not result in lost or misinterpreted data.

Polyspace Implementation

This checker checks for these issues:

• Integer conversion overflow.
• Call to memset with unintended value.
• Sign change integer conversion overflow.
• Tainted sign change conversion.
• Unsigned integer conversion overflow.

Examples
Integer conversion overflow
Issue

Integer conversion overflow occurs when converting an integer to a smaller integer type. If the
variable does not have enough bytes to represent the original value, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).

Risk

Integer conversion overflows result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. Use this event list to determine how the variables in the overflowing
computation acquire their current values. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click options in the
source code and see previous related events. See also “Interpret Bug Finder Results in Polyspace
Desktop User Interface”.

You can fix the defect by:

• Using a bigger data type for the result of the conversion so that all values can be accommodated.
• Checking for values that lead to the overflow and performing appropriate error handling.

In general, avoid conversions to smaller integer types.

 CERT C++: INT31-C

24-111

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Converting from int to char

char convert(void) {

 int num = 1000000;

 return (char)num;
}

In the return statement, the integer variable num is converted to a char. However, an 8-bit or 16-bit
character cannot represent 1000000 because it requires at least 20 bits. So the conversion operation
overflows.

Correction — Change Conversion Type

One possible correction is to convert to a different integer type that can represent the entire number.

long convert(void) {

 int num = 1000000;

 return (long)num;
}

Call to memset with unintended value

Issue

Call to memset with unintended value occurs when Polyspace Bug Finder detects a use of the
memset or wmemset function with possibly incorrect arguments.

void *memset (void *ptr, int value, size_t num) fills the first num bytes of the memory
block that ptr points to with the specified value. If the argument value is incorrect, the memory
block is initialized with an unintended value.

The unintended initialization can occur in the following cases.

Issue Risk Possible Fix
The second argument is '0'
instead of 0 or '\0'.

The ASCII value of character
'0' is 48 (decimal), 0x30
(hexadecimal), 069 (octal) but
not 0 (or '\0') .

If you want to initialize with
'0', use one of the ASCII
values. Otherwise, use 0 or
'\0'.

24 CERT C++ Rules

24-112

Issue Risk Possible Fix
The second and third arguments
are probably reversed. For
instance, the third argument is
a literal and the second
argument is not a literal.

If the order is reversed, a
memory block of unintended
size is initialized with incorrect
arguments.

Reverse the order of the
arguments.

The second argument cannot be
represented in a byte.

If the second argument cannot
be represented in a byte, and
you expect each byte of a
memory block to be filled with
that argument, the initialization
does not occur as intended.

Apply a bit mask to the
argument to produce a wrapped
or truncated result that can be
represented in a byte. When you
apply a bit mask, make sure that
it produces an expected result.

For instance, replace
memset(a, -13,
sizeof(a)) with memset(a,
(-13) & 0xFF, sizeof(a)).

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Value Cannot Be Represented in a Byte

#include <string.h>

#define SIZE 32
void func(void) {
 char buf[SIZE];
 int c = -2;
 memset(buf, (char)c, sizeof(buf));
}

In this example, (char)c cannot be represented in a byte.
Correction — Apply Bit Mask

One possible correction is to apply a bit mask so that the result can be represented in a byte.
However, check that the result is an acceptable initialization value.

#include <string.h>

 CERT C++: INT31-C

24-113

#define SIZE 32
void func(void) {
 char buf[SIZE];
 int c = -2;
 memset(buf, c & 0xFF, sizeof(buf));
}

Sign change integer conversion overflow
Issue

Sign change integer conversion overflow occurs when converting an unsigned integer to a signed
integer. If the variable does not have enough bytes to represent both the original constant and the
sign bit, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Convert from unsigned char to char

char sign_change(void) {
 unsigned char count = 255;

 return (char)count;
}

In the return statement, the unsigned character variable count is converted to a signed character.
However, char has 8 bits, 1 for the sign of the constant and 7 to represent the number. The
conversion operation overflows because 255 uses 8 bits.

Correction — Change conversion types

One possible correction is using a larger integer type. By using an int, there are enough bits to
represent the sign and the number value.

int sign_change(void) {
 unsigned char count = 255;

 return (int)count;
}

24 CERT C++ Rules

24-114

Tainted sign change conversion
Issue

Tainted sign change conversion looks for values from unsecure sources that are converted,
implicitly or explicitly, from signed to unsigned values.

For example, functions that use size_t as arguments implicitly convert the argument to an unsigned
integer. Some functions that implicitly convert size_t are:

bcmp
memcpy
memmove
strncmp
strncpy
calloc
malloc
memalign

Risk

If you convert a small negative number to unsigned, the result is a large positive number. The large
positive number can create security vulnerabilities. For example, if you use the unsigned value in:

• Memory size routines — causes allocating memory issues.
• String manipulation routines — causes buffer overflow.
• Loop boundaries — causes infinite loops.

Fix

To avoid converting unsigned negative values, check that the value being converted is within an
acceptable range. For example, if the value represents a size, validate that the value is not negative
and less than the maximum value size.

Example - Set Memory Value with Size Argument

#include <stdlib.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void bug_taintedsignchange(int size) {
 char str[SIZE128] = "";
 if (size<SIZE128) {
 memset(str, 'c', size);
 }
}

In this example, a char buffer is created and filled using memset. The size argument to memset is an
input argument to the function.

The call to memset implicitly converts size to unsigned integer. If size is a large negative number,
the absolute value could be too large to represent as an integer, causing a buffer overflow.

 CERT C++: INT31-C

24-115

Correction — Check Value of size

One possible correction is to check if size is inside the valid range. This correction checks if size is
greater than zero and less than the buffer size before calling memset.

#include <stdlib.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void corrected_taintedsignchange(int size) {
 char str[SIZE128] = "";
 if (size>0 && size<SIZE128) {
 memset(str, 'c', size);
 }
}

Unsigned integer conversion overflow
Issue

Unsigned integer conversion overflow occurs when converting an unsigned integer to a smaller
unsigned integer type. If the variable does not have enough bytes to represent the original constant,
the conversion overflows.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).
Risk

Integer conversion overflows result in undefined behavior.
Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

You can fix the defect by:

• Using a bigger data type for the result of the conversion so that all values can be accommodated.
• Checking for values that lead to the overflow and performing appropriate error handling.

In general, avoid conversions to smaller integer types.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

24 CERT C++ Rules

24-116

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Converting from int to char

unsigned char convert(void) {
 unsigned int unum = 1000000U;

 return (unsigned char)unum;
}

In the return statement, the unsigned integer variable unum is converted to an unsigned character
type. However, the conversion overflows because 1000000 requires at least 20 bits. The C
programming language standard does not view unsigned overflow as an error because the program
automatically reduces the result by modulo the maximum value plus 1. In this example, unum is
reduced by modulo 2^8 because a character data type can only represent 2^8-1.

Correction — Change Conversion Type

One possible correction is to convert to a different integer type that can represent the entire number.
For example, long.

unsigned long convert(void) {
 unsigned int unum = 1000000U;

 return (unsigned long)unum;
}

Check Information
Group: 03. Integers (INT)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
INT31-C

Introduced in R2019a

 CERT C++: INT31-C

24-117

https://wiki.sei.cmu.edu/confluence/display/c/INT31-C.+Ensure+that+integer+conversions+do+not+result+in+lost+or+misinterpreted+data

CERT C++: INT32-C
Ensure that operations on signed integers do not result in overflow

Description
Rule Definition

Ensure that operations on signed integers do not result in overflow.

Polyspace Implementation

This checker checks for these issues:

• Integer overflow.
• Tainted division operand.
• Tainted modulo operand.

Examples
Integer overflow
Issue

Integer overflow occurs when an operation on integer variables can result in values that cannot be
represented by the result data type. The data type of a variable determines the number of bytes
allocated for the variable storage and constrains the range of allowed values.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).

Risk

Integer overflows on signed integers result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. Use this event list to determine how the variables in the overflowing
computation acquire their current values. You can implement the fix on any event in the sequence. If
the result details do not show the event history, you can trace back using right-click options in the
source code and see previous related events. See also “Interpret Bug Finder Results in Polyspace
Desktop User Interface”.

You can fix the defect by:

• Using a bigger data type for the result of the operation so that all values can be accommodated.
• Checking for values that lead to the overflow and performing appropriate error handling.

To avoid overflows in general, try one of these techniques:

• Keep integer variable values restricted to within half the range of signed integers.

24 CERT C++ Rules

24-118

• In operations that might overflow, check for conditions that can lead to the overflow and
implement wrap around or saturation behavior depending on how the result of the operation is
used. The result then becomes predictable and can be safely used in subsequent computations.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Addition of Maximum Integer

#include <limits.h>

int plusplus(void) {

 int var = INT_MAX;
 var++;
 return var;
}

In the third statement of this function, the variable var is increased by one. But the value of var is
the maximum integer value, so an int cannot represent one plus the maximum integer value.

Correction — Different Storage Type

One possible correction is to change data types. Store the result of the operation in a larger data type
(Note that on a 32-bit machine, int and long has the same size). In this example, on a 32-bit
machine, by returning a long long instead of an int, the overflow error is fixed.

#include <limits.h>

long long plusplus(void) {

 long long lvar = INT_MAX;
 lvar++;
 return lvar;
}

Tainted division operand
Issue

Tainted division operand detects division operations where one or both of the integer operands is
from an unsecure source.

Risk

• If the numerator is the minimum possible value and the denominator is -1, your division operation
overflows because the result cannot be represented by the current variable size.

• If the denominator is zero, your division operation fails possibly causing your program to crash.

 CERT C++: INT32-C

24-119

These risks can be used to execute arbitrary code. This code is usually outside the scope of a
program's implicit security policy.

Fix

Before performing the division, validate the values of the operands. Check for denominators of 0 or
-1, and numerators of the minimum integer value.

Example - Division of Function Arguments

#include <limits.h>
#include <stdio.h>

extern void print_int(int);

int taintedintdivision(void) {
 long num, denum;
 scanf("%lf %lf", &num, &denum);
 int r = num/denum;
 print_int(r);
 return r;
}

This example function divides two argument variables, then prints and returns the result. The
argument values are unknown and can cause division by zero or integer overflow.

Correction — Check Values

One possible correction is to check the values of the numerator and denominator before performing
the division.

#include <limits.h>
#include <stdio.h>

extern void print_long(long);

int taintedintdivision(void) {
 long num, denum;
 scanf("%lf %lf", &num, &denum);
 long res= 0;
 if (denum!=0 && !(num==INT_MIN && denum==-1)) {
 res = num/denum;
 }
 print_long(res);
 return res;
}

Tainted modulo operand
Issue

Tainted modulo operand checks the operands of remainder % operations. Bug Finder flags modulo
operations with one or more tainted operands.

Risk

• If the second remainder operand is zero, your remainder operation fails, causing your program to
crash.

24 CERT C++ Rules

24-120

• If the second remainder operand is -1, your remainder operation can overflow if the remainder
operation is implemented based on the division operation that can overflow.

• If one of the operands is negative, the operation result is uncertain. For C89, the modulo operation
is not standardized, so the result from negative operands is implementation-defined.

These risks can be exploited by attackers to gain access to your program or the target in general.

Fix

Before performing the modulo operation, validate the values of the operands. Check the second
operand for values of 0 and -1. Check both operands for negative values.

Example - Modulo with Function Arguments

#include <stdio.h>
extern void print_int(int);

int taintedintmod(void) {
 int userden;
 scanf("%d", &userden);
 int rem = 128%userden;
 print_int(rem);
 return rem;
}

In this example, the function performs a modulo operation by using an input argument. The argument
is not checked before calculating the remainder for values that can crash the program, such as 0 and
-1.

Correction — Check Operand Values

One possible correction is to check the values of the operands before performing the modulo
operation. In this corrected example, the modulo operation continues only if the second operand is
greater than zero.

#include<stdio.h>
extern void print_int(int);

int taintedintmod(void) {
 int userden;
 scanf("%d", &userden);
 int rem = 0;
 if (userden > 0) {
 rem = 128 % userden;
 }
 print_int(rem);
 return rem;
}

Check Information
Group: 03. Integers (INT)

See Also
Check SEI CERT-C++ (-cert-cpp))

 CERT C++: INT32-C

24-121

Topics
“Check for Coding Standard Violations”

External Websites
INT32-C

Introduced in R2019a

24 CERT C++ Rules

24-122

https://wiki.sei.cmu.edu/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow

CERT C++: INT33-C
Ensure that division and remainder operations do not result in divide-by-zero errors

Description
Rule Definition

Ensure that division and remainder operations do not result in divide-by-zero errors.

Polyspace Implementation

This checker checks for these issues:

• Integer division by zero.
• Tainted division operand.
• Tainted modulo operand.

Examples
Integer division by zero
Issue

Integer division by zero occurs when the denominator of a division or modulo operation can be a
zero-valued integer.
Risk

A division by zero can result in a program crash.
Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. Use this event list to determine how the denominator variable acquires a zero
value. You can implement the fix on any event in the sequence. If the result details do not show the
event history, you can trace back using right-click options in the source code and see previous related
events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

It is a good practice to check for zero values of a denominator before division and handle the error.
Instead of performing the division directly:

res = num/den;

use a library function that handles zero values of the denominator before performing the division:

res = div(num, den);

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

 CERT C++: INT33-C

24-123

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Dividing an Integer by Zero

int fraction(int num)
{
 int denom = 0;
 int result = 0;

 result = num/denom;

 return result;
}

A division by zero error occurs at num/denom because denom is zero.

Correction — Check Before Division

int fraction(int num)
{
 int denom = 0;
 int result = 0;

 if (denom != 0)
 result = num/denom;

 return result;
}

Before dividing, add a test to see if the denominator is zero, checking before division occurs. If denom
is always zero, this correction can produce a dead code defect in your Polyspace results.

Correction — Change Denominator

One possible correction is to change the denominator value so that denom is not zero.

int fraction(int num)
{
 int denom = 2;
 int result = 0;

 result = num/denom;

 return result;
}

Example - Modulo Operation with Zero

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 arr[i] = input % i;
 }

24 CERT C++ Rules

24-124

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

In this example, Polyspace flags the modulo operation as a division by zero. Because modulo is
inherently a division operation, the divisor (right hand argument) cannot be zero. The modulo
operation uses the for loop index as the divisor. However, the for loop starts at zero, which cannot
be an iterator.

Correction — Check Divisor Before Operation

One possible correction is checking the divisor before the modulo operation. In this example, see if
the index i is zero before the modulo operation.

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 if(i != 0)
 {
 arr[i] = input % i;
 }
 else
 {
 arr[i] = input;
 }
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

Correction — Change Divisor

Another possible correction is changing the divisor to a nonzero integer. In this example, add one to
the index before the % operation to avoid dividing by zero.

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 arr[i] = input % (i+1);
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

Tainted division operand
Issue

Tainted division operand detects division operations where one or both of the integer operands is
from an unsecure source.

Risk

• If the numerator is the minimum possible value and the denominator is -1, your division operation
overflows because the result cannot be represented by the current variable size.

 CERT C++: INT33-C

24-125

• If the denominator is zero, your division operation fails possibly causing your program to crash.

These risks can be used to execute arbitrary code. This code is usually outside the scope of a
program's implicit security policy.
Fix

Before performing the division, validate the values of the operands. Check for denominators of 0 or
-1, and numerators of the minimum integer value.
Example - Division of Function Arguments

#include <limits.h>
#include <stdio.h>

extern void print_int(int);

int taintedintdivision(void) {
 long num, denum;
 scanf("%lf %lf", &num, &denum);
 int r = num/denum;
 print_int(r);
 return r;
}

This example function divides two argument variables, then prints and returns the result. The
argument values are unknown and can cause division by zero or integer overflow.
Correction — Check Values

One possible correction is to check the values of the numerator and denominator before performing
the division.

#include <limits.h>
#include <stdio.h>

extern void print_long(long);

int taintedintdivision(void) {
 long num, denum;
 scanf("%lf %lf", &num, &denum);
 long res= 0;
 if (denum!=0 && !(num==INT_MIN && denum==-1)) {
 res = num/denum;
 }
 print_long(res);
 return res;
}

Tainted modulo operand
Issue

Tainted modulo operand checks the operands of remainder % operations. Bug Finder flags modulo
operations with one or more tainted operands.
Risk

• If the second remainder operand is zero, your remainder operation fails, causing your program to
crash.

24 CERT C++ Rules

24-126

• If the second remainder operand is -1, your remainder operation can overflow if the remainder
operation is implemented based on the division operation that can overflow.

• If one of the operands is negative, the operation result is uncertain. For C89, the modulo operation
is not standardized, so the result from negative operands is implementation-defined.

These risks can be exploited by attackers to gain access to your program or the target in general.

Fix

Before performing the modulo operation, validate the values of the operands. Check the second
operand for values of 0 and -1. Check both operands for negative values.

Example - Modulo with Function Arguments

#include <stdio.h>
extern void print_int(int);

int taintedintmod(void) {
 int userden;
 scanf("%d", &userden);
 int rem = 128%userden;
 print_int(rem);
 return rem;
}

In this example, the function performs a modulo operation by using an input argument. The argument
is not checked before calculating the remainder for values that can crash the program, such as 0 and
-1.

Correction — Check Operand Values

One possible correction is to check the values of the operands before performing the modulo
operation. In this corrected example, the modulo operation continues only if the second operand is
greater than zero.

#include<stdio.h>
extern void print_int(int);

int taintedintmod(void) {
 int userden;
 scanf("%d", &userden);
 int rem = 0;
 if (userden > 0) {
 rem = 128 % userden;
 }
 print_int(rem);
 return rem;
}

Check Information
Group: 03. Integers (INT)

See Also
Check SEI CERT-C++ (-cert-cpp))

 CERT C++: INT33-C

24-127

Topics
“Check for Coding Standard Violations”

External Websites
INT33-C

Introduced in R2019a

24 CERT C++ Rules

24-128

https://wiki.sei.cmu.edu/confluence/display/c/INT33-C.+Ensure+that+division+and+remainder+operations+do+not+result+in+divide-by-zero+errors

CERT C++: INT34-C
Do not shift an expression by a negative number of bits or by greater than or equal to the number of
bits that exist in the operand

Description
Rule Definition

Do not shift an expression by a negative number of bits or by greater than or equal to the number of
bits that exist in the operand.

Polyspace Implementation

This checker checks for these issues:

• Shift of a negative value.
• Shift operation overflow.

Examples
Shift of a negative value
Issue

Shift of a negative value occurs when a bit-wise shift is used on a variable that can have negative
values.

Risk

Shifts on negative values overwrite the sign bit that identifies a number as negative. The shift
operation can result in unexpected values.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. Use this event list to determine how the variable being shifted acquires
negative values. You can implement the fix on any event in the sequence. If the result details do not
show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

To fix the defect, check for negative values before the bit-wise shift operation and perform
appropriate error handling.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

 CERT C++: INT34-C

24-129

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Shifting a negative variable

int shifting(int val)
{
 int res = -1;
 return res << val;
}

In the return statement, the variable res is shifted a certain number of bits to the left. However,
because res is negative, the shift might overwrite the sign bit.

Correction — Change the Data Type

One possible correction is to change the data type of the shifted variable to unsigned. This correction
eliminates the sign bit, so left shifting does not change the sign of the variable.

int shifting(int val)
{
 unsigned int res = -1;
 return res << val;
}

Shift operation overflow
Issue

Shift operation overflow occurs when a shift operation can result in values that cannot be
represented by the result data type. The data type of a variable determines the number of bytes
allocated for the variable storage and constrains the range of allowed values.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).

Risk

Shift operation overflows can result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. Use this event list to determine how the variables in the shift operation acquire
their current values. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

You can fix the defect by:

• Using a bigger data type for the result of the shift operation so that all values can be
accommodated.

• Checking for values that lead to the overflow and performing appropriate error handling.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

24 CERT C++ Rules

24-130

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Left Shift of Integer

int left_shift(void) {

 int foo = 33;
 return 1 << foo;
}

In the return statement of this function, bit-wise shift operation is performed shifting 1 foo bits to
the left. However, an int has only 32 bits, so the range of the shift must be between 0 and 31.
Therefore, this shift operation causes an overflow.

Correction — Different storage type

One possible correction is to store the shift operation result in a larger data type. In this example, by
returning a long long instead of an int, the overflow defect is fixed.

long long left_shift(void) {

 int foo = 33;
 return 1LL << foo;
}

Check Information
Group: 03. Integers (INT)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
INT34-C

Introduced in R2019a

 CERT C++: INT34-C

24-131

https://wiki.sei.cmu.edu/confluence/display/c/INT34-C.+Do+not+shift+an+expression+by+a+negative+number+of+bits+or+by+greater+than+or+equal+to+the+number+of+bits+that+exist+in+the+operand

CERT C++: INT35-C
Use correct integer precisions

Description
Rule Definition

Use correct integer precisions.

Polyspace Implementation

This checker checks for Integer precision exceeded.

Examples
Integer precision exceeded
Issue

Integer precision exceeded occurs when an integer expression uses the integer size in an
operation that exceeds the integer precision. On some architectures, the size of an integer in memory
can include sign and padding bits. On these architectures, the integer size is larger than the precision
which is just the number of bits that represent the value of the integer.
Risk

Using the size of an integer in an operation on the integer precision can result in integer overflow,
wrap around, or unexpected results. For instance, an unsigned integer can be stored in memory in 64
bits, but uses only 48 bits to represent its value. A 56 bits left-shift operation on this integer is
undefined behavior.

Assuming that the size of an integer is equal to its precision can also result in program portability
issues between different architectures.
Fix

Do not use the size of an integer instead of its precision. To determine the integer precision,
implement a precision computation routine or use a builtin function such as
__builtin_popcount().
Example - Using Size of unsigned int for Left Shift Operation

#include <limits.h>

unsigned int func(unsigned int exp)
{
 if (exp >= sizeof(unsigned int) * CHAR_BIT) {
 /* Handle error */
 }
 return 1U << exp;
}

In this example, the function uses a left shift operation to return the value of 2 raised to the power of
exp. The operation shifts the bits of 1U by exp positions to the left. The if statement ensures that

24 CERT C++ Rules

24-132

the operation does not shift the bits by a number of positions exp greater than the size of an
unsigned int. However, if unsigned int contains padding bits, the value returned by sizeof()
is larger than the precision of unsigned int. As a result, some values of exp might be too large,
and the shift operation might be undefined behavior.

Correction — Implement Function to Compute Precision of unsigned int

One possible correction is to implement a function popcount() that computes the precision of
unsigned int by counting the number of set bits.

#include <stddef.h>
#include <stdint.h>
#include <limits.h>

size_t popcount(uintmax_t);
#define PRECISION(umax_value) popcount(umax_value)

unsigned int func(unsigned int exp)
{
 if (exp >= PRECISION(UINT_MAX)) {
 /* Handle error */
 }
 return 1 << exp;
}

size_t popcount(uintmax_t num)
{
 size_t precision = 0;
 while (num != 0) {
 if (num % 2 == 1) {
 precision++;
 }
 num >>= 1;
 }
 return precision;
}

Check Information
Group: 03. Integers (INT)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
INT35-C

Introduced in R2019a

 CERT C++: INT35-C

24-133

https://wiki.sei.cmu.edu/confluence/display/c/INT35-C.+Use+correct+integer+precisions

CERT C++: INT36-C
Converting a pointer to integer or integer to pointer

Description
Rule Definition

Converting a pointer to integer or integer to pointer.

Polyspace Implementation

This checker checks for Unsafe conversion between pointer and integer.

Examples
Unsafe conversion between pointer and integer
Issue

Unsafe conversion between pointer and integer checks for pointer to integer and integer to
pointers conversions. If you convert between a pointer, intptr_t, or uintprt_t and an integer
type, such as enum, ptrdiff_t, or pid_t, Polyspace raises a defect if the size of pointers and
integer types are different in your environment. For instance, in i386 environment, both pointers and
integer types have a size of 32 bits. In this environment, Polyspace does not flag conversion between
a pointer and integer of same size. But in x86_64 environment where pointers are 64 bits and
unsigned integers are 32 bits, Polyspace flags conversion between pointers and integers of different
sizes.

Risk

The mapping between pointers and integers is not always consistent with the addressing structure of
the environment.

Converting from pointers to integers can create:

• Truncated or out of range integer values.
• Invalid integer types.

Converting from integers to pointers can create:

• Misaligned pointers or misaligned objects.
• Invalid pointer addresses.

Fix

Where possible, avoid pointer-to-integer or integer-to-pointer conversions. If you want to convert a
void pointer to an integer, so that you do not change the value, use types:

• C99 — intptr_t or uintptr_t
• C90 — size_t or ssize_t

24 CERT C++ Rules

24-134

Example - Integer to Pointer Conversions

unsigned int *badintptrcast(void)
{
 unsigned int *ptr0 = (unsigned int *)0xdeadbeef;
 char *ptr1 = (char *)0xdeadbeef;
 return (unsigned int *)(ptr0 - (unsigned int *)ptr1);
}

In this example, there are three conversions, two unsafe conversions and one safe conversion. The
first conversion of 0xdeadbeef to unsigned int* causes alignment issues for the pointer. The
second conversion of 0xdeadbeef to char * is safe because there are no alignment issues for char.
The third conversion in the return casts ptrdiff_t to a pointer. This pointer might or might not
point to an invalid address.

Correction — Use intptr_t

One possible correction is to use intptr_t types to store the pointer address 0xdeadbeef. Also, you
can change the second pointer to an integer offset so that there is no longer a conversion from
ptrdiff_t to a pointer.

#include <stdint.h>

unsigned int *badintptrcast(void)
{
 intptr_t iptr0 = (intptr_t)0xdeadbeef;
 int offset = 0;
 return (unsigned int *)(iptr0 - offset);
}

Check Information
Group: 03. Integers (INT)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
INT36-C

Introduced in R2019a

 CERT C++: INT36-C

24-135

https://wiki.sei.cmu.edu/confluence/display/c/INT36-C.+Converting+a+pointer+to+integer+or+integer+to+pointer

CERT C++: ARR30-C
Do not form or use out-of-bounds pointers or array subscripts

Description
Rule Definition

Do not form or use out-of-bounds pointers or array subscripts.

Polyspace Implementation

This checker checks for these issues:

• Array access out of bounds.
• Pointer access out of bounds.
• Array access with tainted index.
• Pointer dereference with tainted offset.

Examples
Array access out of bounds
Issue

Array access out of bounds occurs when an array index falls outside the range
[0...array_size-1] during array access.

Risk

Accessing an array outside its bounds is undefined behavior. You can read an unpredictable value or
try to access a location that is not allowed and encounter a segmentation fault.

Fix

The fix depends on the root cause of the defect. For instance, you accessed an array inside a loop and
one of these situations happened:

• The upper bound of the loop is too large.
• You used an array index that is the same as the loop index instead of being one less than the loop

index.

To fix the issue, you have to modify the loop bound or the array index.

Another reason why an array index can exceed array bounds is a prior conversion from signed to
unsigned integers. The conversion can result in a wrap around of the index value, eventually causing
the array index to exceed the array bounds.

Often the result details show a sequence of events that led to the defect. You can implement the fix on
any event in the sequence. If the result details do not show the event history, you can trace back
using right-click options in the source code and see previous related events. See also “Interpret Bug
Finder Results in Polyspace Desktop User Interface”.

24 CERT C++ Rules

24-136

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Array Access Out of Bounds Error

#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 printf("The 10-th Fibonacci number is %i .\n", fib[i]);
 /* Defect: Value of i is greater than allowed value of 9 */
}

The array fib is assigned a size of 10. An array index for fib has allowed values of [0,1,2,...,9].
The variable i has a value 10 when it comes out of the for-loop. Therefore, the printf statement
attempts to access fib[10] through i.

Correction — Keep Array Index Within Array Bounds

One possible correction is to print fib[i-1] instead of fib[i] after the for-loop.

#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 /* Fix: Print fib[9] instead of fib[10] */
 printf("The 10-th Fibonacci number is %i .\n", fib[i-1]);
}

 CERT C++: ARR30-C

24-137

The printf statement accesses fib[9] instead of fib[10].

Pointer access out of bounds
Issue

Pointer access out of bounds occurs when a pointer is dereferenced outside its bounds.

When a pointer is assigned an address, a block of memory is associated with the pointer. You cannot
access memory beyond that block using the pointer.

Risk

Dereferencing a pointer outside its bounds is undefined behavior. You can read an unpredictable
value or try to access a location that is not allowed and encounter a segmentation fault.

Fix

The fix depends on the root cause of the defect. For instance, you dereferenced a pointer inside a loop
and one of these situations happened:

• The upper bound of the loop is too large.
• You used pointer arithmetic to advance the pointer with an incorrect value for the pointer

increment.

To fix the issue, you have to modify the loop bound or the pointer increment value.

Often the result details show a sequence of events that led to the defect. You can implement the fix on
any event in the sequence. If the result details do not show the event history, you can trace back
using right-click options in the source code and see previous related events. See also “Interpret Bug
Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Pointer access out of bounds error

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 ptr++;
 *ptr=i;
 /* Defect: ptr out of bounds for i=9 */
 }

24 CERT C++ Rules

24-138

 return(arr);
}

ptr is assigned the address arr that points to a memory block of size 10*sizeof(int). In the for-
loop, ptr is incremented 10 times. In the last iteration of the loop, ptr points outside the memory
block assigned to it. Therefore, it cannot be dereferenced.
Correction — Check Pointer Stays Within Bounds

One possible correction is to reverse the order of increment and dereference of ptr.

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 /* Fix: Dereference pointer before increment */
 *ptr=i;
 ptr++;
 }

 return(arr);
}

After the last increment, even though ptr points outside the memory block assigned to it, it is not
dereferenced more.

Array access with tainted index
Issue

Array access with tainted index detects reading or writing to an array by using a tainted index that
has not been validated.
Risk

The index might be outside the valid array range. If the tainted index is outside the array range, it
can cause:

• Buffer underflow/underwrite — writing to memory before the beginning of the buffer.
• Buffer overflow — writing to memory after the end of a buffer.
• Over-reading a buffer — accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted buffer.

An attacker can use an invalid read or write operation create to problems in your program.
Fix

Before using the index to access the array, validate the index value to make sure that it is inside the
array range.
Example - Use Index to Return Buffer Value

#include <stdlib.h>
#include <stdio.h>
#define SIZE100 100

 CERT C++: ARR30-C

24-139

extern int tab[SIZE100];
static int tainted_int_source(void) {
 return strtol(getenv("INDEX"),NULL,10);
}
int taintedarrayindex(void) {
 int num = tainted_int_source();
 return tab[num];//Noncompliant
}

In this example, the index num accesses the array tab. The function does not check to see if num is
inside the range of tab.

Correction — Check Range Before Use

One possible correction is to check that num is in range before using it.

#include <stdlib.h>
#include <stdio.h>
#define SIZE100 100
extern int tab[SIZE100];
static int tainted_int_source(void) {
 return strtol(getenv("INDEX"),NULL,10);
}
int taintedarrayindex(void) {
 int num = tainted_int_source();
 if (num >= 0 && num < SIZE100) {
 return tab[num];
 } else {
 return -1;
 }
}

Pointer dereference with tainted offset

Issue

Pointer dereference with tainted offset detects pointer dereferencing, either reading or writing,
using an offset variable from an unknown or unsecure source.

This check focuses on dynamically allocated buffers. For static buffer offsets, see Array access
with tainted index.

Risk

The index might be outside the valid array range. If the tainted index is outside the array range, it
can cause:

• Buffer underflow/underwrite, or writing to memory before the beginning of the buffer.
• Buffer overflow, or writing to memory after the end of a buffer.
• Over reading a buffer, or accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted buffer.

An attacker can use an invalid read or write to compromise your program.

24 CERT C++ Rules

24-140

Fix

Validate the index before you use the variable to access the pointer. Check to make sure that the
variable is inside the valid range and does not overflow.
Example - Dereference Pointer Array

#include <stdio.h>
#include <stdlib.h>
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(void) {
 int offset;
 scanf("%d",&offset);
 int* pint = new int [SIZE10];
 int c = 0;
 if(pint) {
 /* Filling array */
 read_pint(pint);
 c = pint[offset];//Noncompliant
 delete pint;
 }
 return c;
}

In this example, the function initializes an integer pointer pint. The pointer is dereferenced using
the input index i. The value of i could be outside the pointer range, causing an out-of-range error.
Correction — Check Index Before Dereference

One possible correction is to validate the value of the index. If the index is inside the valid range,
continue with the pointer dereferencing.

#include <stdlib.h>
#include <stdio.h>
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(void) {
 int offset;
 scanf("%d",&offset);
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if (pint) {
 /* Filling array */
 read_pint(pint);
 if (offset>0 && offset<SIZE10) {
 c = pint[offset];
 }

 CERT C++: ARR30-C

24-141

 free(pint);
 }
 return c;
}

Check Information
Group: 04. Containers (CTR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ARR30-C

Introduced in R2019a

24 CERT C++ Rules

24-142

https://wiki.sei.cmu.edu/confluence/display/c/ARR30-C.+Do+not+form+or+use+out-of-bounds+pointers+or+array+subscripts

CERT C++: ARR37-C
Do not add or subtract an integer to a pointer to a non-array object

Description
Rule Definition

Do not add or subtract an integer to a pointer to a non-array object.

Polyspace Implementation

This checker checks for Invalid assumptions about memory organization.

Examples
Invalid assumptions about memory organization
Issue

Invalid assumptions about memory organization occurs when you compute the address of a
variable in the stack by adding or subtracting from the address of another non-array variable.

Risk

When you compute the address of a variable in the stack by adding or subtracting from the address of
another variable, you assume a certain memory organization. If your assumption is incorrect,
accessing the computed address can be invalid.

Fix

Do not perform an access that relies on assumptions about memory organization.

Example - Reliance on Memory Organization

void func(void) {
 int var1 = 0x00000011, var2;
 *(&var1 + 1) = 0;
}

In this example, the programmer relies on the assumption that &var1 + 1 provides the address of
var2. Therefore, an Invalid assumptions about memory organization appears on the +
operation. In addition, a Pointer access out of bounds error also appears on the dereference.

Correction — Do Not Rely on Memory Organization

One possible correction is not perform direct computation on addresses to access separately declared
variables.

Check Information
Group: 04. Containers (CTR)

 CERT C++: ARR37-C

24-143

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ARR37-C

Introduced in R2019a

24 CERT C++ Rules

24-144

https://wiki.sei.cmu.edu/confluence/display/c/ARR37-C.+Do+not+add+or+subtract+an+integer+to+a+pointer+to+a+non-array+object

CERT C++: ARR38-C
Guarantee that library functions do not form invalid pointers

Description
Rule Definition

Guarantee that library functions do not form invalid pointers.

Polyspace Implementation

This checker checks for these issues:

• Mismatch between data length and size.
• Invalid use of standard library memory routine.
• Possible misuse of sizeof.
• Buffer overflow from incorrect string format specifier.
• Invalid use of standard library string routine.
• Destination buffer overflow in string manipulation.
• Destination buffer underflow in string manipulation.

Examples
Mismatch between data length and size
Issue

Mismatch between data length and size looks for memory copying functions such as memcpy,
memset, or memmove. If you do not control the length argument and data buffer argument properly,
Bug Finder raises a defect.

Risk

If an attacker can manipulate the data buffer or length argument, the attacker can cause buffer
overflow by making the actual data size smaller than the length.

This mismatch in length allows the attacker to copy memory past the data buffer to a new location. If
the extra memory contains sensitive information, the attacker can now access that data.

This defect is similar to the SSL Heartbleed bug.

Fix

When copying or manipulating memory, compute the length argument directly from the data so that
the sizes match.

Example - Copy Buffer of Data

#include <stdlib.h>
#include <string.h>

 CERT C++: ARR38-C

24-145

typedef struct buf_mem_st {
 char *data;
 size_t max; /* size of buffer */
} BUF_MEM;

extern BUF_MEM beta;

int cpy_data(BUF_MEM *alpha)
{
 BUF_MEM *os = alpha;
 int num, length;

 if (alpha == 0x0) return 0;
 num = 0;

 length = *(unsigned short *)os->data;
 memcpy(&(beta.data[num]), os->data + 2, length);

 return(1);
}

This function copies the buffer alpha into a buffer beta. However, the length variable is not related
to data+2.

Correction — Check Buffer Length

One possible correction is to check the length of your buffer against the maximum value minus 2.
This check ensures that you have enough space to copy the data to the beta structure.

#include <stdlib.h>
#include <string.h>

typedef struct buf_mem_st {
 char *data;
 size_t max; /* size of buffer */
} BUF_MEM;

extern BUF_MEM beta;

int cpy_data(BUF_MEM *alpha)
{
 BUF_MEM *os = alpha;
 int num, length;

 if (alpha == 0x0) return 0;
 num = 0;

 length = *(unsigned short *)os->data;
 if (length<(os->max -2)) {
 memcpy(&(beta.data[num]), os->data + 2, length);
 }

 return(1);

}

24 CERT C++ Rules

24-146

Invalid use of standard library memory routine
Issue

Invalid use of standard library memory routine occurs when a memory library function is called
with invalid arguments. For instance, the memcpy function copies to an array that cannot
accommodate the number of bytes copied.
Risk

Use of a memory library function with invalid arguments can result in issues such as buffer overflow.
Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Invalid Use of Standard Library Memory Routine Error

#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void)
 {
 char str1[10],str2[5];

 printf("Enter string:\n");
 sscanf("%10c",str1);

 memcpy(str2,str1,6);
 /* Defect: Arguments of memcpy invalid: str2 has size < 6 */

 return str2;
 }

The size of string str2 is 5, but six characters of string str1 are copied into str2 using the memcpy
function.
Correction — Call Function with Valid Arguments

One possible correction is to adjust the size of str2 so that it accommodates the characters copied
with the memcpy function.

#include <string.h>
#include <stdio.h>

 CERT C++: ARR38-C

24-147

char* Copy_First_Six_Letters(void)
 {
 /* Fix: Declare str2 with size 6 */
 char str1[12],str2[6];

 printf("Enter string:\n");
 sscanf("%12c",str1);

 memcpy(str2,str1,6);
 return str2;
 }

Possible misuse of sizeof

Issue

Possible misuse of sizeof occurs when Polyspace Bug Finder detects possibly unintended results
from the use of sizeof operator. For instance:

• You use the sizeof operator on an array parameter name, expecting the array size. However, the
array parameter name by itself is a pointer. The sizeof operator returns the size of that pointer.

• You use the sizeof operator on an array element, expecting the array size. However, the operator
returns the size of the array element.

• The size argument of certain functions such as strncmp or wcsncpy is incorrect because you
used the sizeof operator earlier with possibly incorrect expectations. For instance:

• In a function call strncmp(string1, string2, num), num is obtained from an incorrect
use of the sizeof operator on a pointer.

• In a function call wcsncpy(destination, source, num), num is the not the number of
wide characters but a size in bytes obtained by using the sizeof operator. For instance, you
use wcsncpy(destination, source, sizeof(destination) - 1) instead of
wcsncpy(destination, source, (sizeof(desintation)/sizeof(wchar_t)) - 1).

Risk

Incorrect use of the sizeof operator can cause the following issues:

• If you expect the sizeof operator to return array size and use the return value to constrain a
loop, the number of loop runs are smaller than what you expect.

• If you use the return value of sizeof operator to allocate a buffer, the buffer size is smaller than
what you require. Insufficient buffer can lead to resultant weaknesses such as buffer overflows.

• If you use the return value of sizeof operator incorrectly in a function call, the function does not
behave as you expect.

Fix

Possible fixes are:

• Do not use the sizeof operator on an array parameter name or array element to determine array
size.

The best practice is to pass the array size as a separate function parameter and use that
parameter in the function body.

24 CERT C++ Rules

24-148

• Use the sizeof operator carefully to determine the number argument of functions such as
strncmp or wcsncpy. For instance, for wide string functions such as wcsncpy, use the number of
wide characters as argument instead of the number of bytes.

Example - sizeof Used Incorrectly to Determine Array Size

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < sizeof(a)/sizeof(int); i++) {
 a[i] = i + 1;
 }
}

In this example, sizeof(a) returns the size of the pointer a and not the array size.
Correction — Determine Array Size in Another Way

One possible correction is to use another means to determine the array size.

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < MAX_SIZE; i++) {
 a[i] = i + 1;
 }
}

Buffer overflow from incorrect string format specifier
Issue

Buffer overflow from incorrect string format specifier occurs when the format specifier
argument for functions such as sscanf leads to an overflow or underflow in the memory buffer
argument.
Risk

If the format specifier specifies a precision that is greater than the memory buffer size, an overflow
occurs. Overflows can cause unexpected behavior such as memory corruption.
Fix

Use a format specifier that is compatible with the memory buffer size.
Example - Memory Buffer Overflow

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%33c", buf);
}

In this example, buf can contain 32 char elements. Therefore, the format specifier %33c causes a
buffer overflow.

 CERT C++: ARR38-C

24-149

Correction — Use Smaller Precision in Format Specifier

One possible correction is to use a smaller precision in the format specifier.

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%32c", buf);
}

Invalid use of standard library string routine
Issue

Invalid use of standard library string routine occurs when a string library function is called with
invalid arguments.
Risk

The risk depends on the type of invalid arguments. For instance, using the strcpy function with a
source argument larger than the destination argument can result in buffer overflows.
Fix

The fix depends on the standard library function involved in the defect. In some cases, you can
constrain the function arguments before the function call. For instance, if the strcpy function:

char * strcpy(char * destination, const char* source);

tries to copy too many bytes into the destination argument compared to the available buffer, constrain
the source argument before the call to strcpy. In some cases, you can use an alternative function to
avoid the error. For instance, instead of strcpy, you can use strncpy to control the number of bytes
copied. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Invalid Use of Standard Library String Routine Error

 #include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);
 /* Error: Size of text is less than gbuffer */

24 CERT C++ Rules

24-150

 return(res);
 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot copy text
into gbuffer.
Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger size than
the source string text.

#include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 /*Fix: gbuffer has equal or larger size than text */
 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);
 }

Destination buffer overflow in string manipulation
Issue

Destination buffer overflow in string manipulation occurs when certain string manipulation
functions write to their destination buffer argument at an offset greater than the buffer size.

For instance, when calling the function sprintf(char* buffer, const char* format), you
use a constant string format of greater size than buffer.
Risk

Buffer overflow can cause unexpected behavior such as memory corruption or stopping your system.
Buffer overflow also introduces the risk of code injection.
Fix

One possible solution is to use alternative functions to constrain the number of characters written.
For instance:

• If you use sprintf to write formatted data to a string, use snprintf, _snprintf or sprintf_s
instead to enforce length control. Alternatively, use asprintf to automatically allocate the
memory required for the destination buffer.

• If you use vsprintf to write formatted data from a variable argument list to a string, use
vsnprintf or vsprintf_s instead to enforce length control.

• If you use wcscpy to copy a wide string, use wcsncpy, wcslcpy, or wcscpy_s instead to enforce
length control.

Another possible solution is to increase the buffer size.
Example - Buffer Overflow in sprintf Use

#include <stdio.h>

 CERT C++: ARR38-C

24-151

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 sprintf(buffer, fmt_string);
}

In this example, buffer can contain 20 char elements but fmt_string has a greater size.

Correction — Use snprintf Instead of sprintf

One possible correction is to use the snprintf function to enforce length control.

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 snprintf(buffer, 20, fmt_string);
}

Destination buffer underflow in string manipulation
Issue

Destination buffer underflow in string manipulation occurs when certain string manipulation
functions write to their destination buffer argument at a negative offset from the beginning of the
buffer.

For instance, for the function sprintf(char* buffer, const char* format), you obtain the
buffer from an operation buffer = (char*)arr; ... buffer += offset;. arr is an array
and offset is a negative value.

Risk

Buffer underflow can cause unexpected behavior such as memory corruption or stopping your system.
Buffer underflow also introduces the risk of code injection.

Fix

If the destination buffer argument results from pointer arithmetic, see if you are decrementing a
pointer. Fix the pointer decrement by modifying either the original value before decrement or the
decrement value.

Example - Buffer Underflow in sprintf Use

#include <stdio.h>
#define offset -2

void func(void) {
 char buffer[20];
 char *fmt_string ="Text";

 sprintf(&buffer[offset], fmt_string);
}

In this example, &buffer[offset] is at a negative offset from the memory allocated to buffer.

24 CERT C++ Rules

24-152

Correction — Change Pointer Decrementer

One possible correction is to change the value of offset.

#include <stdio.h>
#define offset 2

void func(void) {
 char buffer[20];
 char *fmt_string ="Text";

 sprintf(&buffer[offset], fmt_string);
}

Check Information
Group: 04. Containers (CTR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ARR38-C

Introduced in R2019a

 CERT C++: ARR38-C

24-153

https://wiki.sei.cmu.edu/confluence/display/c/ARR38-C.+Guarantee+that+library+functions+do+not+form+invalid+pointers

CERT C++: ARR39-C
Do not add or subtract a scaled integer to a pointer

Description
Rule Definition

Do not add or subtract a scaled integer to a pointer.

Polyspace Implementation

This checker checks for Incorrect pointer scaling.

Examples
Incorrect Pointer Scaling
Issue

Incorrect pointer scaling occurs when you ignore the implicit scaling in pointer arithmetic.

For instance, the defect can occur in these situations.

Situation Risk Possible Fix
You use the sizeof operator in
arithmetic operations on a
pointer.

The sizeof operator returns
the size of a data type in
number of bytes.

When you perform arithmetic
operations on a pointer, the
argument is implicitly scaled by
the size of the data type of the
pointed variable. The use of
sizeof in pointer arithmetic
produces unintended results.

Do not use sizeof operator in
pointer arithmetic.

You perform arithmetic
operations on a pointer, and
then apply a cast.

The implicit scaling in pointer
arithmetic depends on the type
of an object. Performing these
scaled arithmetic and then
changing the pointer type by
casting might produce
unintended results.

Perform the pointer arithmetic
after the casting operation.

Fix

The fix depends on the root cause of the defect. Often, the Result Details pane shows a sequence of
events that led to the defect. You can implement the fix on any event in the sequence. If the Result
Details pane does not show the event history, investigate the root cause of the defect by checking
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

24 CERT C++ Rules

24-154

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example — Use of sizeof Operator

#include <string.h>
#include <stddef.h>
#include <stdlib.h>
#include <wchar.h>
#include <stdio.h>

enum { INTBUFSIZE = 80 };
extern int getdata (void);
int buf[INTBUFSIZE];
void foo (void)
{
 int *buf_ptr = buf;

 while (buf_ptr < (buf + sizeof (buf))) {
 *buf_ptr++ = getdata ();
 }
}

In this example, the operation sizeof(buf) is used for obtaining a pointer to the end of the array
buf. The output of sizeof(buf) is scaled by int. Because pointer arithmetic is implicitly scaled,
the output of sizeof(buf) is again scaled by int when it is added to buf, resulting in unexpected
behavior. Polyspace flags the use of sizeof operator.
Correction — Remove sizeof Operator

One possible correction is to use unscaled numbers as offsets.

#include <string.h>
#include <stddef.h>
#include <stdlib.h>
#include <wchar.h>
#include <stdio.h>

enum { INTBUFSIZE = 80 };
extern int getdata (void);
int buf[INTBUFSIZE];
void foo (void)
{
 int *buf_ptr = buf;

 while (buf_ptr < (buf + INTBUFSIZE)) {
 *buf_ptr++ = getdata ();
 }
}

 CERT C++: ARR39-C

24-155

Example — Cast Following Pointer Arithmetic

int func(void) {
 int x = 0;
 char r = *(char *)(&x + 1);
 return r;
}

In this example, the operation &x + 1 offsets &x by sizeof(int). Following the operation, the
resulting pointer points outside the allowed buffer. When you dereference the pointer, a Pointer
access out of bounds error appears on the * operation.
Correction — Apply Cast Before Pointer Arithmetic

If you want to access the second byte of x, first cast &x to a char* pointer, and then perform the
pointer arithmetic. The resulting pointer is offset by sizeof(char) bytes and still points within the
allowed buffer, whose size is sizeof(int) bytes.

int func(void) {
 int x = 0;
 char r = *((char *)(&x)+ 1);
 return r;
}

Example — Use of sizeof in Function Arguments

#include <stddef.h>
#include <stdlib.h>
#include <wchar.h>
enum { WCHAR_BUF = 128 };
FILE* pFile;
//...
void func2_ko (void)
{
 wchar_t error_msg[WCHAR_BUF];
 wcscpy (error_msg, L"Error: ");
 fgetws (error_msg + wcslen (error_msg)
 * sizeof (wchar_t), WCHAR_BUF - 7, pFile); //Noncompliant
}

In this example, an error message is read from the file pointer pFile stream and copied to
error_msg after an offset. The intended offset here is wcslen(error_msg), which is already
implicitly scaled when it is added to the wchar pointer error_msg. Because the offset is then
explicitly scaled again by using sizeof, Polyspace flags the incorrect scaling.
Correction — Remove sizeof Operator

One possible correction is to remove the sizeof operator.

#include <stddef.h>
#include <stdlib.h>
#include <wchar.h>
enum { WCHAR_BUF = 128 };
const wchar_t ERROR_PREFIX[8] = L"Error: ";
FILE* pFile;
//...

void func2_ok (void)
{

24 CERT C++ Rules

24-156

 const size_t prefix_len = wcslen (ERROR_PREFIX);
 wchar_t error_msg[WCHAR_BUF];
 wcscpy (error_msg, ERROR_PREFIX);
 fgetws (error_msg + prefix_len, WCHAR_BUF - prefix_len, pFile); //Compliant
 /* ... */
}

Check Information
Group: 04. Containers (CTR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ARR39-C

Introduced in R2019a

 CERT C++: ARR39-C

24-157

https://wiki.sei.cmu.edu/confluence/display/c/ARR39-C.+Do+not+add+or+subtract+a+scaled+integer+to+a+pointer

CERT C++: CTR50-CPP
Guarantee that container indices and iterators are within the valid range

Description
Rule Definition

Guarantee that container indices and iterators are within the valid range.

Polyspace Implementation

This checker checks for these issues:

• Array access out of bounds.
• Array access with tainted index.
• Pointer dereference with tainted offset.

Examples
Array access out of bounds
Issue

Array access out of bounds occurs when an array index falls outside the range
[0...array_size-1] during array access.
Risk

Accessing an array outside its bounds is undefined behavior. You can read an unpredictable value or
try to access a location that is not allowed and encounter a segmentation fault.
Fix

The fix depends on the root cause of the defect. For instance, you accessed an array inside a loop and
one of these situations happened:

• The upper bound of the loop is too large.
• You used an array index that is the same as the loop index instead of being one less than the loop

index.

To fix the issue, you have to modify the loop bound or the array index.

Another reason why an array index can exceed array bounds is a prior conversion from signed to
unsigned integers. The conversion can result in a wrap around of the index value, eventually causing
the array index to exceed the array bounds.

Often the result details show a sequence of events that led to the defect. You can implement the fix on
any event in the sequence. If the result details do not show the event history, you can trace back
using right-click options in the source code and see previous related events. See also “Interpret Bug
Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

24 CERT C++ Rules

24-158

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Array Access Out of Bounds Error

#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 printf("The 10-th Fibonacci number is %i .\n", fib[i]);
 /* Defect: Value of i is greater than allowed value of 9 */
}

The array fib is assigned a size of 10. An array index for fib has allowed values of [0,1,2,...,9].
The variable i has a value 10 when it comes out of the for-loop. Therefore, the printf statement
attempts to access fib[10] through i.

Correction — Keep Array Index Within Array Bounds

One possible correction is to print fib[i-1] instead of fib[i] after the for-loop.

#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 /* Fix: Print fib[9] instead of fib[10] */
 printf("The 10-th Fibonacci number is %i .\n", fib[i-1]);
}

The printf statement accesses fib[9] instead of fib[10].

 CERT C++: CTR50-CPP

24-159

Array access with tainted index
Issue

Array access with tainted index detects reading or writing to an array by using a tainted index that
has not been validated.

Risk

The index might be outside the valid array range. If the tainted index is outside the array range, it
can cause:

• Buffer underflow/underwrite — writing to memory before the beginning of the buffer.
• Buffer overflow — writing to memory after the end of a buffer.
• Over-reading a buffer — accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted buffer.

An attacker can use an invalid read or write operation create to problems in your program.

Fix

Before using the index to access the array, validate the index value to make sure that it is inside the
array range.

Example - Use Index to Return Buffer Value

#include <stdlib.h>
#include <stdio.h>
#define SIZE100 100
extern int tab[SIZE100];
static int tainted_int_source(void) {
 return strtol(getenv("INDEX"),NULL,10);
}
int taintedarrayindex(void) {
 int num = tainted_int_source();
 return tab[num];
}

In this example, the index num accesses the array tab. The index num is obtained from an unsecure
source and the function taintedarrayindex does not check to see if num is inside the range of tab.

Correction — Check Range Before Use

One possible correction is to check that num is in range before using it.

#include <stdlib.h>
#include <stdio.h>
#define SIZE100 100
extern int tab[SIZE100];
static int tainted_int_source(void) {
 return strtol(getenv("INDEX"),NULL,10);
}
int taintedarrayindex(void) {
 int num = tainted_int_source();
 if (num >= 0 && num < SIZE100) {
 return tab[num];
 } else {
 return -1;

24 CERT C++ Rules

24-160

 }
}

Pointer dereference with tainted offset
Issue

Pointer dereference with tainted offset detects pointer dereferencing, either reading or writing,
using an offset variable from an unknown or unsecure source.

This check focuses on dynamically allocated buffers. For static buffer offsets, see Array access
with tainted index.

Risk

The index might be outside the valid array range. If the tainted index is outside the array range, it
can cause:

• Buffer underflow/underwrite, or writing to memory before the beginning of the buffer.
• Buffer overflow, or writing to memory after the end of a buffer.
• Over reading a buffer, or accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted buffer.

An attacker can use an invalid read or write to compromise your program.

Fix

Validate the index before you use the variable to access the pointer. Check to make sure that the
variable is inside the valid range and does not overflow.

Example - Dereference Pointer Array

#include <stdio.h>
#include <stdlib.h>
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(void) {
 int offset;
 scanf("%d",&offset);
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if(pint) {
 /* Filling array */
 read_pint(pint);
 c = pint[offset];
 free(pint);
 }
 return c;
}

 CERT C++: CTR50-CPP

24-161

In this example, the function initializes an integer pointer pint. The pointer is dereferenced using
the input index offset. The value of offset could be outside the pointer range, causing an out-of-
range error.

Correction — Check Index Before Dereference

One possible correction is to validate the value of offset. Continue with the pointer dereferencing
only if offset is inside the valid range.

#include <stdlib.h>
#include <stdio.h>
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(void) {
 int offset;
 scanf("%d",&offset);
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if (pint) {
 /* Filling array */
 read_pint(pint);
 if (offset>0 && offset<SIZE10) {
 c = pint[offset];
 }
 free(pint);
 }
 return c;
}

Check Information
Group: 04. Containers (CTR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
CTR50-CPP

Introduced in R2019a

24 CERT C++ Rules

24-162

https://wiki.sei.cmu.edu/confluence/display/cplusplus/CTR50-CPP.+Guarantee+that+container+indices+and+iterators+are+within+the+valid+range

CERT C++: STR30-C
Do not attempt to modify string literals

Description
Rule Definition

Do not attempt to modify string literals.

Polyspace Implementation

This checker checks for Writing to const qualified object.

Examples
Writing to const qualified object

Issue

Writing to const qualified object occurs when you do one of the following:

• Use a const-qualified object as the destination of an assignment.
• Pass a const-qualified object to a function that modifies the argument.

For instance, the defect can occur in the following situations:

• You pass a const-qualified object as first argument of one of the following functions:

• mkstemp
• mkostemp
• mkostemps
• mkdtemp

• You pass a const-qualified object as the destination argument of one of the following functions:

• strcpy
• strncpy
• strcat
• memset

• You perform a write operation on a const-qualified object.

Risk

The risk depends upon the modifications made to the const-qualified object.

 CERT C++: STR30-C

24-163

Situation Risk
Passing to mkstemp, mkostemp, mkostemps,
mkdtemp, and so on.

These functions replace the last six characters of
their first argument with a string. Therefore, they
expect a modifiable char array as their first
argument.

Passing to strcpy, strncpy, strcat, memset
and so on.

These functions modify their destination
argument. Therefore, they expect a modifiable
char array as their destination argument.

Writing to the object The const qualifier implies an agreement that
the value of the object will not be modified. By
writing to a const-qualified object, you break the
agreement. The result of the operation is
undefined.

Fix

The fix depends on the modification made to the const-qualified object.

Situation Fix
Passing to mkstemp, mkostemp, mkostemps,
mkdtemp, and so on.

Pass a non-const object as first argument of the
function.

Passing to strcpy, strncpy, strcat, memset
and so on.

Pass a non-const object as destination argument
of the function.

Writing to the object Perform the write operation on a non-const
object.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Writing to const-Qualified Object

#include <string.h>

const char* buffer = "abcdeXXXXXXX";

void func(char* string) {
 char *ptr = (char*)strchr(buffer,'X');
 if(ptr)
 strcpy(ptr,string);
}

In this example, because buffer is const-qualified, strchr(buffer,'X') returns a const-
qualified char* pointer. When this char* pointer is used as the destination argument of strcpy, a
Writing to const qualified object error appears.

24 CERT C++ Rules

24-164

Correction — Copy const-Qualified Object to Non-const Object

One possible correction is to assign the constant string to a non-const object and use the non-const
object as destination argument of strchr.

#include <string.h>

char buffer[] = "abcdeXXXXXXX";

void func(char* string) {
 char *ptr = (char*)strchr(buffer,'X');
 if(ptr)
 strcpy(ptr,string);
}

Check Information
Group: 05. Characters and Strings (STR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
STR30-C

Introduced in R2019a

 CERT C++: STR30-C

24-165

https://wiki.sei.cmu.edu/confluence/display/c/STR30-C.+Do+not+attempt+to+modify+string+literals

CERT C++: STR31-C
Guarantee that storage for strings has sufficient space for character data and the null terminator

Description
Rule Definition

Guarantee that storage for strings has sufficient space for character data and the null terminator.

Polyspace Implementation

This checker checks for these issues:

• Use of dangerous standard function.
• Buffer overflow from incorrect string format specifier.
• Destination buffer overflow in string manipulation.

Examples
Use of dangerous standard function
Issue

The Use of dangerous standard function check highlights uses of functions that are inherently
dangerous or potentially dangerous given certain circumstances. The following table lists possibly
dangerous functions, the risks of using each function, and what function to use instead.

Dangerous
Function

Risk Level Safer Function

gets Inherently dangerous — You cannot
control the length of input from the
console.

fgets

cin Inherently dangerous — You cannot
control the length of input from the
console.

Avoid or prefaces calls to cin with
cin.width.

strcpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

strncpy

stpcpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

stpncpy

lstrcpy or StrCpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

StringCbCopy, StringCchCopy,
strncpy, strcpy_s, or strlcpy

strcat Possibly dangerous — If the
concatenated result is greater than the
destination, buffer overflow can occur.

strncat, strlcat, or strcat_s

24 CERT C++ Rules

24-166

Dangerous
Function

Risk Level Safer Function

lstrcat or StrCat Possibly dangerous — If the
concatenated result is greater than the
destination, buffer overflow can occur.

StringCbCat, StringCchCat,
strncay, strcat_s, or strlcat

wcpcpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

wcpncpy

wcscat Possibly dangerous — If the
concatenated result is greater than the
destination, buffer overflow can occur.

wcsncat, wcslcat, or wcncat_s

wcscpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

wcsncpy

sprintf Possibly dangerous — If the output
length depends on unknown lengths or
values, buffer overflow can occur.

snprintf

vsprintf Possibly dangerous — If the output
length depends on unknown lengths or
values, buffer overflow can occur.

vsnprintf

Risk

These functions can cause buffer overflow, which attackers can use to infiltrate your program.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Using sprintf

#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)

 CERT C++: STR31-C

24-167

{
 char dst[BUFF_SIZE];
 int r = 0;

 if (sprintf(dst, "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

This example function uses sprintf to copy the string str to dst. However, if str is larger than the
buffer, sprintf can cause buffer overflow.

Correction — Use snprintf with Buffer Size

One possible correction is to use snprintf instead and specify a buffer size.

#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

 if (snprintf(dst, sizeof(dst), "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

Buffer overflow from incorrect string format specifier

Issue

Buffer overflow from incorrect string format specifier occurs when the format specifier
argument for functions such as sscanf leads to an overflow or underflow in the memory buffer
argument.

Risk

If the format specifier specifies a precision that is greater than the memory buffer size, an overflow
occurs. Overflows can cause unexpected behavior such as memory corruption.

Fix

Use a format specifier that is compatible with the memory buffer size.

24 CERT C++ Rules

24-168

Example - Memory Buffer Overflow

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%33c", buf);
}

In this example, buf can contain 32 char elements. Therefore, the format specifier %33c causes a
buffer overflow.

Correction — Use Smaller Precision in Format Specifier

One possible correction is to use a smaller precision in the format specifier.

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%32c", buf);
}

Destination buffer overflow in string manipulation
Issue

Destination buffer overflow in string manipulation occurs when certain string manipulation
functions write to their destination buffer argument at an offset greater than the buffer size.

For instance, when calling the function sprintf(char* buffer, const char* format), you
use a constant string format of greater size than buffer.

Risk

Buffer overflow can cause unexpected behavior such as memory corruption or stopping your system.
Buffer overflow also introduces the risk of code injection.

Fix

One possible solution is to use alternative functions to constrain the number of characters written.
For instance:

• If you use sprintf to write formatted data to a string, use snprintf, _snprintf or sprintf_s
instead to enforce length control. Alternatively, use asprintf to automatically allocate the
memory required for the destination buffer.

• If you use vsprintf to write formatted data from a variable argument list to a string, use
vsnprintf or vsprintf_s instead to enforce length control.

• If you use wcscpy to copy a wide string, use wcsncpy, wcslcpy, or wcscpy_s instead to enforce
length control.

Another possible solution is to increase the buffer size.

Example - Buffer Overflow in sprintf Use

#include <stdio.h>

void func(void) {

 CERT C++: STR31-C

24-169

 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 sprintf(buffer, fmt_string);
}

In this example, buffer can contain 20 char elements but fmt_string has a greater size.

Correction — Use snprintf Instead of sprintf

One possible correction is to use the snprintf function to enforce length control.

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 snprintf(buffer, 20, fmt_string);
}

Check Information
Group: 05. Characters and Strings (STR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
STR31-C

Introduced in R2019a

24 CERT C++ Rules

24-170

https://wiki.sei.cmu.edu/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator

CERT C++: STR32-C
Do not pass a non-null-terminated character sequence to a library function that expects a string

Description
Rule Definition

Do not pass a non-null-terminated character sequence to a library function that expects a string.

Polyspace Implementation

This checker checks for these issues:

• Invalid use of standard library string routine.
• Tainted NULL or non-null-terminated string.

Examples
Invalid use of standard library string routine
Issue

Invalid use of standard library string routine occurs when a string library function is called with
invalid arguments.

Risk

The risk depends on the type of invalid arguments. For instance, using the strcpy function with a
source argument larger than the destination argument can result in buffer overflows.

Fix

The fix depends on the standard library function involved in the defect. In some cases, you can
constrain the function arguments before the function call. For instance, if the strcpy function:

char * strcpy(char * destination, const char* source);

tries to copy too many bytes into the destination argument compared to the available buffer, constrain
the source argument before the call to strcpy. In some cases, you can use an alternative function to
avoid the error. For instance, instead of strcpy, you can use strncpy to control the number of bytes
copied. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

 CERT C++: STR32-C

24-171

Example - Invalid Use of Standard Library String Routine Error

 #include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);
 /* Error: Size of text is less than gbuffer */

 return(res);
 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot copy text
into gbuffer.

Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger size than
the source string text.

#include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 /*Fix: gbuffer has equal or larger size than text */
 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);
 }

Tainted NULL or non-null-terminated string
Issue

Tainted NULL or non-null-terminated string looks for strings from unsecure sources that are
being used in string manipulation routines that implicitly dereference the string buffer. For example,
strcpy or sprintf.

Tainted NULL or non-null-terminated string raises no defect for a string returned from a call to
scanf-family variadic functions. Similarly, no defect is raised when you pass the string with a %s
specifier to printf-family variadic functions.

Note If you reference a string using the form ptr[i], *ptr, or pointer arithmetic, Bug Finder raises
a Use of tainted pointer defect instead. The Tainted NULL or non-null-terminated string defect
is raised only when the pointer is used as a string.

24 CERT C++ Rules

24-172

Risk

If a string is from an unsecure source, it is possible that an attacker manipulated the string or pointed
the string pointer to a different memory location.

If the string is NULL, the string routine cannot dereference the string, causing the program to crash.
If the string is not null-terminated, the string routine might not know when the string ends. This error
can cause you to write out of bounds, causing a buffer overflow.

Fix

Validate the string before you use it. Check that:

• The string is not NULL.
• The string is null-terminated
• The size of the string matches the expected size.

Example - Getting String from Input Argument

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define SIZE128 128
#define MAX 40
extern void print_str(const char*);
void warningMsg(void)
{
 char userstr[MAX];
 read(0,userstr,MAX);
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

In this example, the string str is concatenated with the argument userstr. The value of userstr is
unknown. If the size of userstr is greater than the space available, the concatenation overflows.

Correction — Validate the Data

One possible correction is to check the size of userstr and make sure that the string is null-
terminated before using it in strncat. This example uses a helper function, sansitize_str, to
validate the string. The defects are concentrated in this function.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define SIZE128 128
#define MAX 40
extern void print_str(const char*);
int sanitize_str(char* s) {
 int res = 0;
 if (s && (strlen(s) > 0)) { // Noncompliant
 //TAINTED_STRING confined to the sanitizer function.
 // - string is not null
 // - string has a positive and limited size

 CERT C++: STR32-C

24-173

 // - TAINTED_STRING on strlen used as a firewall
 res = 1;
 }
 return res;
}
void warningMsg(void)
{
 char userstr[MAX];
 read(0,userstr,MAX);
 char str[SIZE128] = "Warning: ";
 if (sanitize_str(userstr))
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

Correction — Validate the Data

Another possible correction is to call function errorMsg and warningMsg with specific strings.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

int manageSensorValue(int sensorValue) {
 int ret = sensorValue;
 if (sensorValue < 0) {
 errorMsg("sensor value should be positive");
 exit(1);
 } else if (sensorValue > 50) {
 warningMsg("sensor value greater than 50 (applying threshold)...");
 sensorValue = 50;
 }

 return sensorValue;
}

Check Information
Group: 05. Characters and Strings (STR)

24 CERT C++ Rules

24-174

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
STR32-C

Introduced in R2019a

 CERT C++: STR32-C

24-175

https://wiki.sei.cmu.edu/confluence/display/c/STR32-C.+Do+not+pass+a+non-null-terminated+character+sequence+to+a+library+function+that+expects+a+string

CERT C++: STR34-C
Cast characters to unsigned char before converting to larger integer sizes

Description
Rule Definition

Cast characters to unsigned char before converting to larger integer sizes.

Polyspace Implementation

This checker checks for Misuse of sign-extended character value.

Examples
Misuse of sign-extended character value
Issue

Misuse of sign-extended character value occurs when you convert a signed or plain char data
type to a wider integer data type with sign extension. You then use the resulting sign-extended value
as array index, for comparison with EOF or as argument to a character-handling function.

Risk

Comparison with EOF: Suppose, your compiler implements the plain char type as signed. In this
implementation, the character with the decimal form of 255 (–1 in two’s complement form) is stored
as a signed value. When you convert a char variable to the wider data type int for instance, the sign
bit is preserved (sign extension). This sign extension results in the character with the decimal form
255 being converted to the integer –1, which cannot be distinguished from EOF.

Use as array index: By similar reasoning, you cannot use sign-extended plain char variables as array
index. If the sign bit is preserved, the conversion from char to int can result in negative integers.
You must use positive integer values for array index.

Argument to character-handling function: By similar reasoning, you cannot use sign-extended plain
char variables as arguments to character-handling functions declared in ctype.h, for instance,
isalpha() or isdigit(). According to the C11 standard (Section 7.4), if you supply an integer
argument that cannot be represented as unsigned char or EOF, the resulting behavior is
undefined.

Fix

Before conversion to a wider integer data type, cast the signed or plain char value explicitly to
unsigned char.

Example - Sign-Extended Character Value Compared with EOF

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

extern char parsed_token_buffer[20];

24 CERT C++ Rules

24-176

static int parser(char *buf)
{
 int c = EOF;
 if (buf && *buf) {
 c = *buf++;
 }
 return c;
}

void func()
{
 if (parser(parsed_token_buffer) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

In this example, the function parser can traverse a string input buf. If a character in the string has
the decimal form 255, when converted to the int variable c, its value becomes –1, which is
indistinguishable from EOF. The later comparison with EOF can lead to a false positive.

Correction — Cast to unsigned char Before Conversion

One possible correction is to cast the plain char value to unsigned char before conversion to the
wider int type.

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

extern char parsed_token_buffer[20];

static int parser(char *buf)
{
 int c = EOF;
 if (buf && *buf) {
 c = (unsigned char)*buf++;
 }
 return c;
}

void func()
{
 if (parser(parsed_token_buffer) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

Check Information
Group: 05. Characters and Strings (STR)

See Also
Check SEI CERT-C++ (-cert-cpp))

 CERT C++: STR34-C

24-177

Topics
“Check for Coding Standard Violations”

External Websites
STR34-C

Introduced in R2019a

24 CERT C++ Rules

24-178

https://wiki.sei.cmu.edu/confluence/display/c/STR34-C.+Cast+characters+to+unsigned+char+before+converting+to+larger+integer+sizes

CERT C++: STR37-C
Arguments to character-handling functions must be representable as an unsigned char

Description
Rule Definition

Arguments to character-handling functions must be representable as an unsigned char.

Polyspace Implementation

This checker checks for Invalid arguments to character-handling functions.

Examples
Invalid arguments to character-handling functions

Issue

Invalid arguments to character-handling functions occurs when you use a signed or plain char
variable with a negative value as argument to a character-handling function declared in <cctype>,
for instance, isalpha() or isdigit().

Risk

You cannot use plain char variables as arguments to these character-handling functions. On certain
platforms, plain char variables can have negative values that cannot be represented as unsigned
char or EOF, resulting in undefined behavior.

Fix

To avoid unexpected results, explicitly cast plain char variables to unsigned char before passing to
character-handling functions.

Check Information
Group: 05. Characters and Strings (STR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
STR37-C

Introduced in R2019a

 CERT C++: STR37-C

24-179

https://wiki.sei.cmu.edu/confluence/display/c/STR37-C.+Arguments+to+character-handling+functions+must+be+representable+as+an+unsigned+char

CERT C++: STR38-C
Do not confuse narrow and wide character strings and functions

Description
Rule Definition

Do not confuse narrow and wide character strings and functions.

Polyspace Implementation

This checker checks for Misuse of narrow or wide character string.

Examples
Misuse of narrow or wide character string
Issue

Misuse of narrow or wide character string occurs when you pass a narrow character string to a
wide string function, or a wide character string to a narrow string function.

Misuse of narrow or wide character string raises no defect on operating systems where narrow
and wide character strings have the same size.

Risk

Using a narrow character string with a wide string function, or vice versa, can result in unexpected
or undefined behavior.

If you pass a wide character string to a narrow string function, you can encounter these issues:

• Data truncation. If the string contains null bytes, a copy operation using strncpy() can
terminate early.

• Incorrect string length. strlen() returns the number of characters of a string up to the first null
byte. A wide string can have additional characters after its first null byte.

If you pass a narrow character string to a wide string function, you can encounter this issue:

• Buffer overflow. In a copy operation using wcsncpy(), the destination string might have
insufficient memory to store the result of the copy.

Fix

Use the narrow string functions with narrow character strings. Use the wide string functions with
wide character strings.

Example - Passing Wide Character Strings to strncpy()

#include <string.h>
#include <wchar.h>

void func(void)

24 CERT C++ Rules

24-180

{
 wchar_t wide_str1[] = L"0123456789";
 wchar_t wide_str2[] = L"0000000000";
 strncpy(reinterpret_cast<char *>(wide_str2), reinterpret_cast<const char *>(wide_str1), 10);
}

In this example, strncpy() copies 10 wide characters from wide_strt1 to wide_str2. If
wide_str1 contains null bytes, the copy operation can end prematurely and truncate the wide
character string.

Correction — Use wcsncpy() to Copy Wide Character Strings

One possible correction is to use wcsncpy() to copy wide_str1 to wide_str2.

#include <string.h>
#include <wchar.h>

void func(void)
{
 wchar_t wide_str1[] = L"0123456789";
 wchar_t wide_str2[] = L"0000000000";
 wcsncpy(wide_str2, wide_str1, 10);
}

Check Information
Group: 05. Characters and Strings (STR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
STR38-C

Introduced in R2019a

 CERT C++: STR38-C

24-181

https://wiki.sei.cmu.edu/confluence/display/c/STR38-C.+Do+not+confuse+narrow+and+wide+character+strings+and+functions

CERT C++: STR50-CPP
Guarantee that storage for strings has sufficient space for character data and the null terminator

Description
Rule Definition

Guarantee that storage for strings has sufficient space for character data and the null terminator.

Polyspace Implementation

This checker checks for these issues:

• Use of dangerous standard function.
• Buffer overflow from incorrect string format specifier.
• Destination buffer overflow in string manipulation.

Examples
Use of dangerous standard function
Issue

The Use of dangerous standard function check highlights uses of functions that are inherently
dangerous or potentially dangerous given certain circumstances. The following table lists possibly
dangerous functions, the risks of using each function, and what function to use instead.

Dangerous
Function

Risk Level Safer Function

gets Inherently dangerous — You cannot
control the length of input from the
console.

fgets

cin Inherently dangerous — You cannot
control the length of input from the
console.

Avoid or prefaces calls to cin with
cin.width.

strcpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

strncpy

stpcpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

stpncpy

lstrcpy or StrCpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

StringCbCopy, StringCchCopy,
strncpy, strcpy_s, or strlcpy

strcat Possibly dangerous — If the
concatenated result is greater than the
destination, buffer overflow can occur.

strncat, strlcat, or strcat_s

24 CERT C++ Rules

24-182

Dangerous
Function

Risk Level Safer Function

lstrcat or StrCat Possibly dangerous — If the
concatenated result is greater than the
destination, buffer overflow can occur.

StringCbCat, StringCchCat,
strncay, strcat_s, or strlcat

wcpcpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

wcpncpy

wcscat Possibly dangerous — If the
concatenated result is greater than the
destination, buffer overflow can occur.

wcsncat, wcslcat, or wcncat_s

wcscpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

wcsncpy

sprintf Possibly dangerous — If the output
length depends on unknown lengths or
values, buffer overflow can occur.

snprintf

vsprintf Possibly dangerous — If the output
length depends on unknown lengths or
values, buffer overflow can occur.

vsnprintf

Risk

These functions can cause buffer overflow, which attackers can use to infiltrate your program.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Using sprintf

#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)

 CERT C++: STR50-CPP

24-183

{
 char dst[BUFF_SIZE];
 int r = 0;

 if (sprintf(dst, "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

This example function uses sprintf to copy the string str to dst. However, if str is larger than the
buffer, sprintf can cause buffer overflow.

Correction — Use snprintf with Buffer Size

One possible correction is to use snprintf instead and specify a buffer size.

#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

 if (snprintf(dst, sizeof(dst), "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

Buffer overflow from incorrect string format specifier

Issue

Buffer overflow from incorrect string format specifier occurs when the format specifier
argument for functions such as sscanf leads to an overflow or underflow in the memory buffer
argument.

Risk

If the format specifier specifies a precision that is greater than the memory buffer size, an overflow
occurs. Overflows can cause unexpected behavior such as memory corruption.

Fix

Use a format specifier that is compatible with the memory buffer size.

24 CERT C++ Rules

24-184

Example - Memory Buffer Overflow

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%33c", buf);
}

In this example, buf can contain 32 char elements. Therefore, the format specifier %33c causes a
buffer overflow.

Correction — Use Smaller Precision in Format Specifier

One possible correction is to use a smaller precision in the format specifier.

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%32c", buf);
}

Destination buffer overflow in string manipulation
Issue

Destination buffer overflow in string manipulation occurs when certain string manipulation
functions write to their destination buffer argument at an offset greater than the buffer size.

For instance, when calling the function sprintf(char* buffer, const char* format), you
use a constant string format of greater size than buffer.

Risk

Buffer overflow can cause unexpected behavior such as memory corruption or stopping your system.
Buffer overflow also introduces the risk of code injection.

Fix

One possible solution is to use alternative functions to constrain the number of characters written.
For instance:

• If you use sprintf to write formatted data to a string, use snprintf, _snprintf or sprintf_s
instead to enforce length control. Alternatively, use asprintf to automatically allocate the
memory required for the destination buffer.

• If you use vsprintf to write formatted data from a variable argument list to a string, use
vsnprintf or vsprintf_s instead to enforce length control.

• If you use wcscpy to copy a wide string, use wcsncpy, wcslcpy, or wcscpy_s instead to enforce
length control.

Another possible solution is to increase the buffer size.

Example - Buffer Overflow in sprintf Use

#include <stdio.h>

void func(void) {

 CERT C++: STR50-CPP

24-185

 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 sprintf(buffer, fmt_string);
}

In this example, buffer can contain 20 char elements but fmt_string has a greater size.

Correction — Use snprintf Instead of sprintf

One possible correction is to use the snprintf function to enforce length control.

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 snprintf(buffer, 20, fmt_string);
}

Check Information
Group: 05. Characters and Strings (STR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
STR50-CPP

Introduced in R2019a

24 CERT C++ Rules

24-186

https://wiki.sei.cmu.edu/confluence/display/cplusplus/STR50-CPP.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator

CERT C++: STR53-CPP
Range check element access

Description
Rule Definition

Range check element access.

Polyspace Implementation

This checker checks for these issues:

• Array access out of bounds.
• Array access with tainted index.
• Pointer dereference with tainted offset.

Examples
Array access out of bounds
Issue

Array access out of bounds occurs when an array index falls outside the range
[0...array_size-1] during array access.
Risk

Accessing an array outside its bounds is undefined behavior. You can read an unpredictable value or
try to access a location that is not allowed and encounter a segmentation fault.
Fix

The fix depends on the root cause of the defect. For instance, you accessed an array inside a loop and
one of these situations happened:

• The upper bound of the loop is too large.
• You used an array index that is the same as the loop index instead of being one less than the loop

index.

To fix the issue, you have to modify the loop bound or the array index.

Another reason why an array index can exceed array bounds is a prior conversion from signed to
unsigned integers. The conversion can result in a wrap around of the index value, eventually causing
the array index to exceed the array bounds.

Often the result details show a sequence of events that led to the defect. You can implement the fix on
any event in the sequence. If the result details do not show the event history, you can trace back
using right-click options in the source code and see previous related events. See also “Interpret Bug
Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

 CERT C++: STR53-CPP

24-187

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Array Access Out of Bounds Error

#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 printf("The 10-th Fibonacci number is %i .\n", fib[i]);
 /* Defect: Value of i is greater than allowed value of 9 */
}

The array fib is assigned a size of 10. An array index for fib has allowed values of [0,1,2,...,9].
The variable i has a value 10 when it comes out of the for-loop. Therefore, the printf statement
attempts to access fib[10] through i.

Correction — Keep Array Index Within Array Bounds

One possible correction is to print fib[i-1] instead of fib[i] after the for-loop.

#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 /* Fix: Print fib[9] instead of fib[10] */
 printf("The 10-th Fibonacci number is %i .\n", fib[i-1]);
}

The printf statement accesses fib[9] instead of fib[10].

24 CERT C++ Rules

24-188

Array access with tainted index
Issue

Array access with tainted index detects reading or writing to an array by using a tainted index that
has not been validated.

Risk

The index might be outside the valid array range. If the tainted index is outside the array range, it
can cause:

• Buffer underflow/underwrite — writing to memory before the beginning of the buffer.
• Buffer overflow — writing to memory after the end of a buffer.
• Over-reading a buffer — accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted buffer.

An attacker can use an invalid read or write operation create to problems in your program.

Fix

Before using the index to access the array, validate the index value to make sure that it is inside the
array range.

Example - Use Index to Return Buffer Value

#include <stdlib.h>
#include <stdio.h>
#define SIZE100 100
extern int tab[SIZE100];
static int tainted_int_source(void) {
 return strtol(getenv("INDEX"),NULL,10);
}
int taintedarrayindex(void) {
 int num = tainted_int_source();
 return tab[num];
}

In this example, the index num accesses the array tab. The index num is obtained from an unsecure
source and the function taintedarrayindex does not check to see if num is inside the range of tab.

Correction — Check Range Before Use

One possible correction is to check that num is in range before using it.

#include <stdlib.h>
#include <stdio.h>
#define SIZE100 100
extern int tab[SIZE100];
static int tainted_int_source(void) {
 return strtol(getenv("INDEX"),NULL,10);
}
int taintedarrayindex(void) {
 int num = tainted_int_source();
 if (num >= 0 && num < SIZE100) {
 return tab[num];
 } else {
 return -1;

 CERT C++: STR53-CPP

24-189

 }
}

Pointer dereference with tainted offset
Issue

Pointer dereference with tainted offset detects pointer dereferencing, either reading or writing,
using an offset variable from an unknown or unsecure source.

This check focuses on dynamically allocated buffers. For static buffer offsets, see Array access
with tainted index.

Risk

The index might be outside the valid array range. If the tainted index is outside the array range, it
can cause:

• Buffer underflow/underwrite, or writing to memory before the beginning of the buffer.
• Buffer overflow, or writing to memory after the end of a buffer.
• Over reading a buffer, or accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted buffer.

An attacker can use an invalid read or write to compromise your program.

Fix

Validate the index before you use the variable to access the pointer. Check to make sure that the
variable is inside the valid range and does not overflow.

Example - Dereference Pointer Array

#include <stdio.h>
#include <stdlib.h>
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(void) {
 int offset;
 scanf("%d",&offset);
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if(pint) {
 /* Filling array */
 read_pint(pint);
 c = pint[offset];
 free(pint);
 }
 return c;
}

24 CERT C++ Rules

24-190

In this example, the function initializes an integer pointer pint. The pointer is dereferenced using
the input index offset. The value of offset could be outside the pointer range, causing an out-of-
range error.

Correction — Check Index Before Dereference

One possible correction is to validate the value of offset. Continue with the pointer dereferencing
only if offset is inside the valid range.

#include <stdlib.h>
#include <stdio.h>
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(void) {
 int offset;
 scanf("%d",&offset);
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if (pint) {
 /* Filling array */
 read_pint(pint);
 if (offset>0 && offset<SIZE10) {
 c = pint[offset];
 }
 free(pint);
 }
 return c;
}

Check Information
Group: 05. Characters and Strings (STR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
STR53-CPP

Introduced in R2019a

 CERT C++: STR53-CPP

24-191

https://wiki.sei.cmu.edu/confluence/display/cplusplus/STR53-CPP.+Range+check+element+access

CERT C++: MEM30-C
Do not access freed memory

Description
Rule Definition

Do not access freed memory.

Polyspace Implementation

This checker checks for:

• Accessing previously freed pointer
• Freeing previously freed pointer

Examples
Accessing previously freed pointer
Issue

Accessing previously freed pointer occurs when you attempt to access a block of memory after
freeing the block by using the free function.

Risk

When a pointer is allocated dynamic memory by using malloc, calloc or realloc, it points to a
memory location on the heap. When you use the free function on this pointer, the associated block of
memory is freed for reallocation and the pointer becomes a dangling pointer. Attempting to access
this block of memory by dereferencing the dangling pointer can result in unpredictable behavior or a
segmentation fault.

Fix

The fix depends on the root cause of the defect. Determine if you intended to free the memory later or
allocate another memory block to the pointer before access.

As a best practice, after you free a memory block, assign the corresponding pointer to NULL. Before
dereferencing pointers, check them for NULL values and handle the error. In this way, you are
protected against accessing a freed block.

Example — Accessing Previously Freed Pointer Error

#include <stdlib.h>
#include <stdio.h>
 int increment_content_of_address(int base_val, int shift)
 {
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;

24 CERT C++ Rules

24-192

 free(pi);

 j = *pi + shift;
 /* Defect: Reading a freed pointer */

 return j;
 }

The free statement releases the block of memory that pi refers to. Therefore, dereferencing pi
after the free statement is not valid.

Correction — Free Pointer After Last Use

One possible correction is to free the pointer pi only after the last instance where it is accessed.

#include <stdlib.h>

int increment_content_of_address(int base_val, int shift)
{
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;

 j = *pi + shift;
 *pi = 0;

 /* Fix: The pointer is freed after its last use */
 free(pi);
 return j;
}

Freeing previously freed pointer
Issue

Freeing previously freed pointer occurs when you attempt to free the memory allocated to a
pointer after already freeing the pointer by using the free function.

Risk

Attempting to free the memory associated with a previously freed pointer might corrupt the memory
management of the program and cause a memory leak. This defect might allow an attacker to access
the memory and execute arbitrary code.

Fix

To avoid this defect, assign pointers to NULL after freeing them. Check the pointers for NULL value
before attempting to access the memory associated with the pointer. In this way, you are protected
against accessing a freed block.

Example — Freeing Previously Freed Pointer

#include <stdlib.h>
#include <stdio.h>
int getStatus();
void double_deallocation(void)
{

 CERT C++: MEM30-C

24-193

 int* pi = (int*)malloc(sizeof(int));
 if (pi == 0) return;

 *pi = 2;
 /*...*/
 if(getStatus()==1)
 {
 /*...*/
 free(pi);
 }
 free(pi); //Noncompliant
}

The second free statement attempts to release the block of memory that pi refers to, but the pointer
pi might already be freed in the if block of code. This second free statement might cause a
memory leak and security vulnerabilities in the code. Polyspace flags the second free statement.

Correction — Check Pointers Before Calling free

One possible correction is to assign freed pointers to NULL and to check pointers for NULL before
freeing them.

#include <stdlib.h>
#include <stdio.h>
int getStatus();
void double_deallocation(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == 0) return;

 *pi = 2;
 /*...*/
 if(getStatus()==1)
 {
 /*...*/
 if(pi!=NULL)
 {
 free(pi);
 pi= NULL;
 }
 }
 /*...*/
 if(pi!=NULL)
 {
 free(pi);
 pi= NULL;
 } //Compliant
}

In this case, the memory allocated to pointer pi is freed only if it is not already freed.

Check Information
Group: 06. Memory Management (MEM)

See Also
Check SEI CERT-C++ (-cert-cpp))

24 CERT C++ Rules

24-194

Topics
“Check for Coding Standard Violations”

External Websites
MEM30-C

Introduced in R2019a

 CERT C++: MEM30-C

24-195

https://wiki.sei.cmu.edu/confluence/display/c/MEM30-C.+Do+not+access+freed+memory

CERT C++: MEM31-C
Free dynamically allocated memory when no longer needed

Description
Rule Definition

Free dynamically allocated memory when no longer needed.

Polyspace Implementation

This checker checks for Memory leak.

Examples
Memory leak
Issue

Memory leak occurs when you do not free a block of memory allocated through malloc, calloc,
realloc, or new. If the memory is allocated in a function, the defect does not occur if:

• Within the function, you free the memory using free or delete.
• The function returns the pointer assigned by malloc, calloc, realloc, or new.
• The function stores the pointer in a global variable or in a parameter.

Risk

Dynamic memory allocation functions such as malloc allocate memory on the heap. If you do not
release the memory after use, you reduce the amount of memory available for another allocation. On
embedded systems with limited memory, you might end up exhausting available heap memory even
during program execution.

Fix

Determine the scope where the dynamically allocated memory is accessed. Free the memory block at
the end of this scope.

To free a block of memory, use the free function on the pointer that was used during memory
allocation. For instance:

ptr = (int*)malloc(sizeof(int));
...
free(ptr);

It is a good practice to allocate and free memory in the same module at the same level of abstraction.
For instance, in this example, func allocates and frees memory at the same level but func2 does not.

void func() {
 ptr = (int*)malloc(sizeof(int));
 {
 ...

24 CERT C++ Rules

24-196

 }
 free(ptr);
}

void func2() {
 {
 ptr = (int*)malloc(sizeof(int));
 ...
 }
 free(ptr);
}

See CERT-C Rule MEM00-C.

Example - Dynamic Memory Not Released Before End of Function

#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return;
 }

 *pi = 42;
 /* Defect: pi is not freed */
}

In this example, pi is dynamically allocated by malloc. The function assign_memory does not free
the memory, nor does it return pi.

Correction — Free Memory

One possible correction is to free the memory referenced by pi using the free function. The free
function must be called before the function assign_memory terminates

#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return;
 }
 *pi = 42;

 /* Fix: Free the pointer pi*/
 free(pi);
}

 CERT C++: MEM31-C

24-197

https://wiki.sei.cmu.edu/confluence/x/FtYxBQ

Correction — Return Pointer from Dynamic Allocation

Another possible correction is to return the pointer pi. Returning pi allows the function calling
assign_memory to free the memory block using pi.

#include<stdlib.h>
#include<stdio.h>

int* assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return(pi);
 }
 *pi = 42;

 /* Fix: Return the pointer pi*/
 return(pi);
}

Example - Memory Leak with New/Delete

#define NULL '\0'

void initialize_arr1(void)
{
 int *p_scalar = new int(5);
}

void initialize_arr2(void)
{
 int *p_array = new int[5];
}

In this example, the functions create two variables, p_scalar and p_array, using the new keyword.
However, the functions end without cleaning up the memory for these pointers. Because the functions
used new to create these variables, you must clean up their memory by calling delete at the end of
each function.

Correction — Add Delete

To correct this error, add a delete statement for every new initialization. If you used brackets [] to
instantiate a variable, you must call delete with brackets as well.

#define NULL '\0'

void initialize_arrs(void)
{
 int *p_scalar = new int(5);
 int *p_array = new int[5];

 delete p_scalar;
 p_scalar = NULL;

24 CERT C++ Rules

24-198

 delete[] p_array;
 p_scalar = NULL;
}

Check Information
Group: 06. Memory Management (MEM)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MEM31-C

Introduced in R2019a

 CERT C++: MEM31-C

24-199

https://wiki.sei.cmu.edu/confluence/display/c/MEM31-C.+Free+dynamically+allocated+memory+when+no+longer+needed

CERT C++: MEM34-C
Only free memory allocated dynamically

Description
Rule Definition

Only free memory allocated dynamically.

Polyspace Implementation

This checker checks for Invalid free of pointer.

Examples
Invalid free of pointer
Issue

Invalid free of pointer occurs when a block of memory released using the free function was not
previously allocated using malloc, calloc, or realloc.

Risk

The free function releases a block of memory allocated on the heap. If you try to access a location on
the heap that you did not allocate previously, a segmentation fault can occur.

The issue can highlight coding errors. For instance, you perhaps wanted to use the free function or a
previous malloc function on a different pointer.

Fix

In most cases, you can fix the issue by removing the free statement. If the pointer is not allocated
memory from the heap with malloc or calloc, you do not need to free the pointer. You can simply
reuse the pointer as required.

If the issue highlights a coding error such as use of free or malloc on the wrong pointer, correct the
error.

If the issue occurs because you use the free function to free memory allocated with the new
operator, replace the free function with the delete operator.

Example - Invalid Free of Pointer Error

#include <stdlib.h>

void Assign_Ones(void)
{
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;

 free(p);

24 CERT C++ Rules

24-200

 /* Defect: p does not point to dynamically allocated memory */
}

The pointer p is deallocated using the free function. However, p points to a memory location that
was not dynamically allocated.

Correction — Remove Pointer Deallocation

If the number of elements of the array p is known at compile time, one possible correction is to
remove the deallocation of the pointer p.

#include <stdlib.h>

void Assign_Ones(void)
 {
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;
 /* Fix: Remove deallocation of p */
 }

Correction — Introduce Pointer Allocation

If the number of elements of the array p is not known at compile time, one possible correction is to
dynamically allocate memory to the array p.

#include <stdlib.h>

void Assign_Ones(int num)
{
 int *p;
 /* Fix: Allocate memory dynamically to p */
 p=(int*) calloc(10,sizeof(int));
 for(int i=0;i<10;i++)
 *(p+i)=1;
 free(p);
}

Check Information
Group: 06. Memory Management (MEM)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MEM34-C

Introduced in R2019a

 CERT C++: MEM34-C

24-201

https://wiki.sei.cmu.edu/confluence/display/c/MEM34-C.+Only+free+memory+allocated+dynamically

CERT C++: MEM35-C
Allocate sufficient memory for an object

Description
Rule Definition

Allocate sufficient memory for an object.

Polyspace Implementation

This checker checks for these issues:

• Pointer access out of bounds.
• Memory allocation with tainted size.
• Wrong type used in sizeof during memory allocation

Examples
Pointer access out of bounds
Issue

Pointer access out of bounds occurs when a pointer is dereferenced outside its bounds.

When a pointer is assigned an address, a block of memory is associated with the pointer. You cannot
access memory beyond that block using the pointer.
Risk

Dereferencing a pointer outside its bounds is undefined behavior. You can read an unpredictable
value or try to access a location that is not allowed and encounter a segmentation fault.
Fix

The fix depends on the root cause of the defect. For instance, you dereferenced a pointer inside a loop
and one of these situations happened:

• The upper bound of the loop is too large.
• You used pointer arithmetic to advance the pointer with an incorrect value for the pointer

increment.

To fix the issue, you have to modify the loop bound or the pointer increment value.

Often the result details show a sequence of events that led to the defect. You can implement the fix on
any event in the sequence. If the result details do not show the event history, you can trace back
using right-click options in the source code and see previous related events. See also “Interpret Bug
Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

24 CERT C++ Rules

24-202

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example — Pointer access out of bounds error

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 ptr++;
 *ptr=i;
 /* Defect: ptr out of bounds for i=9 */
 }

 return(arr);
}

ptr is assigned the address arr that points to a memory block of size 10*sizeof(int). In the for-
loop, ptr is incremented 10 times. In the last iteration of the loop, ptr points outside the memory
block assigned to it. Therefore, it cannot be dereferenced.

Correction — Check Pointer Stays Within Bounds

One possible correction is to reverse the order of increment and dereference of ptr.

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 /* Fix: Dereference pointer before increment */
 *ptr=i;
 ptr++;
 }

 return(arr);
}

After the last increment, even though ptr points outside the memory block assigned to it, it is not
dereferenced more.

Memory allocation with tainted size

Issue

Memory allocation with tainted size checks memory allocation functions, such as calloc or
malloc, for size arguments from unsecured sources.

 CERT C++: MEM35-C

24-203

Risk

Uncontrolled memory allocation can cause your program to request too much system memory. This
consequence can lead to a crash due to an out-of-memory condition, or assigning too many resources.

Fix

Before allocating memory, check the value of your arguments to check that they do not exceed the
bounds.

Example — Allocate Memory Using Input Argument

#include<stdio.h>
#include <stdlib.h>

int* bug_taintedmemoryallocsize(void) {
 size_t size;
 scanf("%zu", &size);
 int* p = (int*)malloc(size);
 return p;
}

In this example, malloc allocates size amount of memory for the pointer p. size comes from the
user of the program and its value is not checked. If the size is larger than the amount of memory you
have available, your program could crash.

Correction — Check Size of Memory to be Allocated

One possible correction is to check the size of the memory that you want to allocate before
performing the malloc operation. This example checks to see if the size is positive and less than the
maximum size.

#include "stdlib.h"

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int* corrected_taintedmemoryallocsize(int size) {
 int* p = NULL;
 /* Fix: Check entry range before use */
 if (size>0 && size<SIZE128) {
 p = (int*)malloc((unsigned int)size);
 }
 return p;
}

Wrong type used in sizeof during memory allocation
Issue

Wrong type used in sizeof during memory allocation occurs when you use a pointer as the
argument of the sizeof operator instead of using the object that the pointer points to when
allocating memory for the pointer dynamically. For instance, this issue is raised if you use
malloc(sizeof(type*)) instead of malloc(sizeof(type)) when initializing a type* pointer.

24 CERT C++ Rules

24-204

Risk

Irrespective of what type stands for, the expression sizeof(type*) always returns the pointer size
on your platform in bytes. If you inadvertantly use sizeof(type*) instead of sizeof(type) in
your malloc statement, the allocated memory block might be smaller than what you need. This error
might cause defects such as buffer overflows.

Consider a structure structType, which contains 10 int variables. If you initialize a structType*
pointer by using malloc(sizeof(structType*)) on a 32-bit platform, the pointer is assigned a
memory block of four bytes. This memory block is insufficient for a structType structure, which
requires at least 10 * sizeof(int) bytes. Because the required size is much greater than the
actual allocated size, using structType* instead of structType as the argument of sizeof results
in an overflow.

Fix

When allocating memory blocks for pointers, use sizeof(type) instead of sizeof(type*).
Alternatively, avoid using malloc or similar memory allocation commands that require you to specify
the memory block size to be allocated. Use the new operator to allocate memory without specifying
size and the delete operator to deallocate the memory.

Example — Allocate an Array by Using sizeof Operator in malloc Statement

#include <stdlib.h>
class USER{
 long uid;
 long euid;
 int number;
 int address;
 int value;
};

void Noncompliant(void) {
 USER* user_list;
 user_list = (USER*)malloc(sizeof(USER*) * 5);
 /*...*/
 free(user_list);

}

In this example, memory is dynamically allocated for the array user_list which contains five
objects of the class USER. This array requires at least 50 bytes of memory because each element of
the array requires at least 10 bytes of memory. In the malloc statement, USER* is used as the
argument for the sizeof operator instead of USER, perhaps inadvertently. As a result, the size of the
allocated memory block might be 20 bytes, which is much less than the required memory. This error
might result in an buffer overflow.

Correction — Use Correct Type

One possible correction is to use the type of the object that the pointer points to as the input to
sizeof. For instance, use USER instead of USER* when allocating memory for an array of USER.

#include <stdlib.h>
class USER{
 long uid;
 long euid;

 CERT C++: MEM35-C

24-205

 int number;
 int address;
 int value;
};

void Compliant(void) {
 USER* user_list;
 user_list = (USER*)malloc(sizeof(USER) * 5);
 /*...*/
 free(user_list);

}

Correction — Avoid Using malloc

Another possible correction is to use the new and delete operators to allocate memory.

#include <stdlib.h>
class USER{
 long uid;
 long euid;
 int number;
 int address;
 int value;
};

void Compliant(void) {
 USER* user_list = new USER[5];
 //...
 delete(user_list);
}

Check Information
Group: 06. Memory Management (MEM)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MEM35-C

Introduced in R2019a

24 CERT C++ Rules

24-206

https://wiki.sei.cmu.edu/confluence/display/c/MEM35-C.+Allocate+sufficient+memory+for+an+object

CERT C++: MEM36-C
Do not modify the alignment of objects by calling realloc()

Description
Rule Definition

Do not modify the alignment of objects by calling realloc().

Polyspace Implementation

This checker checks for Alignment changed after memory reallocation.

Examples
Alignment changed after memory reallocation
Issue

Alignment changed after memory reallocation occurs when you use realloc() to modify the
size of objects with strict memory alignment requirements.

Risk

The pointer returned by realloc() can be suitably assigned to objects with less strict alignment
requirements. A misaligned memory allocation can lead to buffer underflow or overflow, an illegally
dereferenced pointer, or access to arbitrary memory locations. In processors that support misaligned
memory, the allocation impacts the performance of the system.

Fix

To reallocate memory:

1 Resize the memory block.

• In Windows, use _aligned_realloc() with the alignment argument used in
_aligned_malloc() to allocate the original memory block.

• In UNIX/Linux, use the same function with the same alignment argument used to allocate the
original memory block.

2 Copy the original content to the new memory block.
3 Free the original memory block.

Note This fix has implementation-defined behavior. The implementation might not support the
requested memory alignment and can have additional constraints for the size of the new memory.

Example - Memory Reallocated Without Preserving the Original Alignment

#include <stdio.h>
#include <stdlib.h>

 CERT C++: MEM36-C

24-207

#define SIZE1024 1024

void func(void)
{
 size_t resize = SIZE1024;
 size_t alignment = 1 << 12; /* 4096 bytes alignment */
 int *ptr = NULL;
 int *ptr1;

 /* Allocate memory with 4096 bytes alignment */

 if (posix_memalign((void **)&ptr, alignment, sizeof(int)) != 0)
 {
 /* Handle error */
 }

 /*Reallocate memory without using the original alignment.
 ptr1 may not be 4096 bytes aligned. */

 ptr1 = (int *)realloc(ptr, sizeof(int) * resize);

 if (ptr1 == NULL)
 {
 /* Handle error */
 }

 /* Processing using ptr1 */

 /* Free before exit */
 free(ptr1);
}

In this example, the allocated memory is 4096-bytes aligned. realloc() then resizes the allocated
memory. The new pointer ptr1 might not be 4096-bytes aligned.

Correction — Specify the Alignment for the Reallocated Memory

When you reallocate the memory, use posix_memalign() and pass the alignment argument that you
used to allocate the original memory.

#include <stdio.h>
#include <stdlib.h>

#define SIZE1024 1024

void func(void)
{
 size_t resize = SIZE1024;
 size_t alignment = 1 << 12; /* 4096 bytes alignment */
 int *ptr = NULL;

 /* Allocate memory with 4096 bytes alignment */
 if (posix_memalign((void **)&ptr, alignment, sizeof(int)) != 0)
 {
 /* Handle error */

24 CERT C++ Rules

24-208

 }

 /* Reallocate memory using the original alignment. */
 if (posix_memalign((void **)&ptr, alignment, sizeof(int) * resize) != 0)
 {
 /* Handle error */
 free(ptr);
 ptr = NULL;
 }

 /* Processing using ptr */

 /* Free before exit */
 free(ptr);
}

Check Information
Group: 06. Memory Management (MEM)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MEM36-C

Introduced in R2019a

 CERT C++: MEM36-C

24-209

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152255

CERT C++: MEM50-CPP
Do not access freed memory

Description
Rule Definition

Do not access freed memory.

Polyspace Implementation

This checker checks for these issues:

• Pointer access out of bounds.
• Deallocation of previously deallocated pointer.
• Use of previously freed pointer.

Examples
Pointer access out of bounds
Issue

Pointer access out of bounds occurs when a pointer is dereferenced outside its bounds.

When a pointer is assigned an address, a block of memory is associated with the pointer. You cannot
access memory beyond that block using the pointer.
Risk

Dereferencing a pointer outside its bounds is undefined behavior. You can read an unpredictable
value or try to access a location that is not allowed and encounter a segmentation fault.
Fix

The fix depends on the root cause of the defect. For instance, you dereferenced a pointer inside a loop
and one of these situations happened:

• The upper bound of the loop is too large.
• You used pointer arithmetic to advance the pointer with an incorrect value for the pointer

increment.

To fix the issue, you have to modify the loop bound or the pointer increment value.

Often the result details show a sequence of events that led to the defect. You can implement the fix on
any event in the sequence. If the result details do not show the event history, you can trace back
using right-click options in the source code and see previous related events. See also “Interpret Bug
Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

24 CERT C++ Rules

24-210

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Pointer access out of bounds error

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 ptr++;
 *ptr=i;
 /* Defect: ptr out of bounds for i=9 */
 }

 return(arr);
}

ptr is assigned the address arr that points to a memory block of size 10*sizeof(int). In the for-
loop, ptr is incremented 10 times. In the last iteration of the loop, ptr points outside the memory
block assigned to it. Therefore, it cannot be dereferenced.

Correction — Check Pointer Stays Within Bounds

One possible correction is to reverse the order of increment and dereference of ptr.

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 /* Fix: Dereference pointer before increment */
 *ptr=i;
 ptr++;
 }

 return(arr);
}

After the last increment, even though ptr points outside the memory block assigned to it, it is not
dereferenced more.

Deallocation of previously deallocated pointer

Issue

Deallocation of previously deallocated pointer occurs when a block of memory is freed more than
once using the free function without an intermediate allocation.

 CERT C++: MEM50-CPP

24-211

Risk

When a pointer is allocated dynamic memory with malloc, calloc or realloc, it points to a
memory location on the heap. When you use the free function on this pointer, the associated block of
memory is freed for reallocation. Trying to free this block of memory can result in a segmentation
fault.

Fix

The fix depends on the root cause of the defect. See if you intended to allocate a memory block to the
pointer between the first deallocation and the second. Otherwise, remove the second free statement.

As a good practice, after you free a memory block, assign the corresponding pointer to NULL. Before
freeing pointers, check them for NULL values and handle the error. In this way, you are protected
against freeing an already freed block.

Example - Deallocation of Previously Deallocated Pointer Error

#include <stdlib.h>

void allocate_and_free(void)
{

 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return;

 *pi = 2;
 free(pi);
 free (pi);
 /* Defect: pi has already been freed */
}

The first free statement releases the block of memory that pi refers to. The second free statement
on pi releases a block of memory that has been freed already.

Correction — Remove Duplicate Deallocation

One possible correction is to remove the second free statement.

#include <stdlib.h>

void allocate_and_free(void)
{

 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return;

 *pi = 2;
 free(pi);
 /* Fix: remove second deallocation */
 }

Use of previously freed pointer
Issue

Use of previously freed pointer occurs when you access a block of memory after freeing the block
using the free function.

24 CERT C++ Rules

24-212

Risk

When a pointer is allocated dynamic memory with malloc, calloc or realloc, it points to a
memory location on the heap. When you use the free function on this pointer, the associated block of
memory is freed for reallocation. Trying to access this block of memory can result in unpredictable
behavior or even a segmentation fault.
Fix

The fix depends on the root cause of the defect. See if you intended to free the memory later or
allocate another memory block to the pointer before access.

As a good practice, after you free a memory block, assign the corresponding pointer to NULL. Before
dereferencing pointers, check them for NULL values and handle the error. In this way, you are
protected against accessing a freed block.
Example - Use of Previously Freed Pointer Error

#include <stdlib.h>
#include <stdio.h>
 int increment_content_of_address(int base_val, int shift)
 {
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;
 free(pi);

 j = *pi + shift;
 /* Defect: Reading a freed pointer */

 return j;
 }

The free statement releases the block of memory that pi refers to. Therefore, dereferencingpi after
the free statement is not valid.
Correction — Free Pointer After Use

One possible correction is to free the pointer pi only after the last instance where it is accessed.

#include <stdlib.h>

int increment_content_of_address(int base_val, int shift)
{
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;

 j = *pi + shift;
 *pi = 0;

 /* Fix: The pointer is freed after its last use */
 free(pi);
 return j;
}

 CERT C++: MEM50-CPP

24-213

Check Information
Group: 06. Memory Management (MEM)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MEM50-CPP

Introduced in R2019a

24 CERT C++ Rules

24-214

https://wiki.sei.cmu.edu/confluence/display/cplusplus/MEM50-CPP.+Do+not+access+freed+memory

CERT C++: MEM51-CPP
Properly deallocate dynamically allocated resources

Description
Rule Definition

Properly deallocate dynamically allocated resources.

Polyspace Implementation

This checker checks for these issues:

• Invalid deletion of pointer.
• Invalid free of pointer.
• Deallocation of previously deallocated pointer.

Examples
Invalid deletion of pointer
Issue

Invalid deletion of pointer occurs when:

• You release a block of memory with the delete operator but the memory was previously not
allocated with the new operator.

• You release a block of memory with the delete operator using the single-object notation but the
memory was previously allocated as an array with the new operator.

This defect applies only to C++ source files.
Risk

The risk depends on the cause of the issue:

• The delete operator releases a block of memory allocated on the heap. If you try to access a
location on the heap that you did not allocate previously, a segmentation fault can occur.

• If you use the single-object notation for delete on a pointer that is previously allocated with the
array notation for new, the behavior is undefined.

The issue can also highlight other coding errors. For instance, you perhaps wanted to use the delete
operator or a previous new operator on a different pointer.
Fix

The fix depends on the cause of the issue:

• In most cases, you can fix the issue by removing the delete statement. If the pointer is not
allocated memory from the heap with the new operator, you do not need to release the pointer
with delete. You can simply reuse the pointer as required or let the object be destroyed at the
end of its scope.

 CERT C++: MEM51-CPP

24-215

• In case of mismatched notation for new and delete, correct the mismatch. For instance, to
allocate and deallocate a single object, use this notation:

classType* ptr = new classType;
delete ptr;

To allocate and deallocate an array objects, use this notation:

classType* p2 = new classType[10];
delete[] p2;

If the issue highlights a coding error such as use of delete or new on the wrong pointer, correct the
error.
Example - Deleting Static Memory

void assign_ones(void)
{
 int ptr[10];

 for(int i=0;i<10;i++)
 *(ptr+i)=1;

 delete[] ptr;
}

The pointer ptr is released using the delete operator. However, ptr points to a memory location
that was not dynamically allocated.
Correction: Remove Pointer Deallocation

If the number of elements of the array ptr is known at compile time, one possible correction is to
remove the deallocation of the pointer ptr.

void assign_ones(void)
{
 int ptr[10];

 for(int i=0;i<10;i++)
 *(ptr+i)=1;
}

Correction — Add Pointer Allocation

If the number of array elements is not known at compile time, one possible correction is to
dynamically allocate memory to the array ptr using the new operator.

void assign_ones(int num)
{
 int *ptr = new int[num];

 for(int i=0; i < num; i++)
 *(ptr+i) = 1;

 delete[] ptr;
 }

Example - Mismatched new and delete

int main (void)
{

24 CERT C++ Rules

24-216

 int *p_scale = new int[5];

 //more code using scal

 delete p_scale;
}

In this example, p_scale is initialized to an array of size 5 using new int[5]. However, p_scale is
deleted with delete instead of delete[]. The new-delete pair does not match. Do not use delete
without the brackets when deleting arrays.
Correction — Match delete to new

One possible correction is to add brackets so the delete matches the new [] declaration.

int main (void)
{
 int *p_scale = new int[5];

 //more code using p_scale

 delete[] p_scale;
}

Correction — Match new to delete

Another possible correction is to change the declaration of p_scale. If you meant to initialize
p_scale as 5 itself instead of an array of size 5, you must use different syntax. For this correction,
change the square brackets in the initialization to parentheses. Leave the delete statement as it is.

int main (void)
{
 int *p_scale = new int(5);

 //more code using p_scale

 delete p_scale;
}

Invalid free of pointer
Issue

Invalid free of pointer occurs when a block of memory released using the free function was not
previously allocated using malloc, calloc, or realloc.
Risk

The free function releases a block of memory allocated on the heap. If you try to access a location on
the heap that you did not allocate previously, a segmentation fault can occur.

The issue can highlight coding errors. For instance, you perhaps wanted to use the free function or a
previous malloc function on a different pointer.
Fix

In most cases, you can fix the issue by removing the free statement. If the pointer is not allocated
memory from the heap with malloc or calloc, you do not need to free the pointer. You can simply
reuse the pointer as required.

 CERT C++: MEM51-CPP

24-217

If the issue highlights a coding error such as use of free or malloc on the wrong pointer, correct the
error.

If the issue occurs because you use the free function to free memory allocated with the new
operator, replace the free function with the delete operator.

Example - Invalid Free of Pointer Error

#include <stdlib.h>

void Assign_Ones(void)
{
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;

 free(p);
 /* Defect: p does not point to dynamically allocated memory */
}

The pointer p is deallocated using the free function. However, p points to a memory location that
was not dynamically allocated.

Correction — Remove Pointer Deallocation

If the number of elements of the array p is known at compile time, one possible correction is to
remove the deallocation of the pointer p.

#include <stdlib.h>

void Assign_Ones(void)
 {
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;
 /* Fix: Remove deallocation of p */
 }

Correction — Introduce Pointer Allocation

If the number of elements of the array p is not known at compile time, one possible correction is to
dynamically allocate memory to the array p.

#include <stdlib.h>

void Assign_Ones(int num)
{
 int *p;
 /* Fix: Allocate memory dynamically to p */
 p=(int*) calloc(10,sizeof(int));
 for(int i=0;i<10;i++)
 *(p+i)=1;
 free(p);
}

24 CERT C++ Rules

24-218

Deallocation of previously deallocated pointer
Issue

Deallocation of previously deallocated pointer occurs when a block of memory is freed more than
once using the free function without an intermediate allocation.

Risk

When a pointer is allocated dynamic memory with malloc, calloc or realloc, it points to a
memory location on the heap. When you use the free function on this pointer, the associated block of
memory is freed for reallocation. Trying to free this block of memory can result in a segmentation
fault.

Fix

The fix depends on the root cause of the defect. See if you intended to allocate a memory block to the
pointer between the first deallocation and the second. Otherwise, remove the second free statement.

As a good practice, after you free a memory block, assign the corresponding pointer to NULL. Before
freeing pointers, check them for NULL values and handle the error. In this way, you are protected
against freeing an already freed block.

Example - Deallocation of Previously Deallocated Pointer Error

#include <stdlib.h>

void allocate_and_free(void)
{

 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return;

 *pi = 2;
 free(pi);
 free (pi);
 /* Defect: pi has already been freed */
}

The first free statement releases the block of memory that pi refers to. The second free statement
on pi releases a block of memory that has been freed already.

Correction — Remove Duplicate Deallocation

One possible correction is to remove the second free statement.

#include <stdlib.h>

void allocate_and_free(void)
{

 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return;

 *pi = 2;
 free(pi);
 /* Fix: remove second deallocation */
 }

 CERT C++: MEM51-CPP

24-219

Check Information
Group: 06. Memory Management (MEM)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MEM51-CPP

Introduced in R2019a

24 CERT C++ Rules

24-220

https://wiki.sei.cmu.edu/confluence/display/cplusplus/MEM51-CPP.+Properly+deallocate+dynamically+allocated+resources

CERT C++: MEM52-CPP
Detect and handle memory allocation errors

Description
Rule Definition

Detect and handle memory allocation errors.

Polyspace Implementation

This checker checks for Unprotected dynamic memory allocation.

Examples
Unprotected dynamic memory allocation
Issue

Unprotected dynamic memory allocation occurs when you do not check after dynamic memory
allocation whether the memory allocation succeeded.

Risk

When memory is dynamically allocated using malloc, calloc, or realloc, it returns a value NULL if
the requested memory is not available. If the code following the allocation accesses the memory block
without checking for this NULL value, this access is not protected from failures.

Fix

Check the return value of malloc, calloc, or realloc for NULL before accessing the allocated
memory location.

int *ptr = malloc(size * sizeof(int));

if(ptr) /* Check for NULL */
{
 /* Memory access through ptr */
}

Example - Unprotected dynamic memory allocation error

#include <stdlib.h>

void Assign_Value(void)
{
 int* p = (int*)calloc(5, sizeof(int));

 *p = 2;
 /* Defect: p is not checked for NULL value */

 free(p);
}

 CERT C++: MEM52-CPP

24-221

If the memory allocation fails, the function calloc returns NULL to p. Before accessing the memory
through p, the code does not check whether p is NULL

Correction — Check for NULL Value

One possible correction is to check whether p has value NULL before dereference.

#include <stdlib.h>

void Assign_Value(void)
 {
 int* p = (int*)calloc(5, sizeof(int));

 /* Fix: Check if p is NULL */
 if(p!=NULL) *p = 2;

 free(p);
 }

Check Information
Group: 06. Memory Management (MEM)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MEM52-CPP

Introduced in R2019a

24 CERT C++ Rules

24-222

https://wiki.sei.cmu.edu/confluence/display/cplusplus/MEM52-CPP.+Detect+and+handle+memory+allocation+errors

CERT C++: MEM54-CPP
Provide placement new with properly aligned pointers to sufficient storage capacity

Description
Rule Definition

Provide placement new with properly aligned pointers to sufficient storage capacity

Polyspace Implementation

This checker checks for Placement new used with insufficient storage or misaligned pointers.

Examples
Placement new used with insufficient storage or misaligned pointers

Issue

Placement new used with insufficient storage or misaligned pointers occurs when the pointer
passed to a placement new operator does not have sufficient storage for the memory allocation or is
not properly aligned.

Suppose that a pointer ptr is preallocated m bytes of memory on the stack and has alignment n. For
instance, if ptr is an array:

uint8_t ptr[5];

the allocated storage is sizeof(uint8_t) * 5 and the alignment is alignof(uint8_t). If you
allocate more than m bytes to this pointer in a placement new expression or if the alignment required
for the allocation is greater than n, the checker raises a violation. When determining the pointer
alignment, the checker takes into account explicit alignments such as with std::align.

The checker does not consider pointers that are preallocated memory on the heap since the available
storage depends on the memory availability, which is known only at run time.

Risk

The new operator allocates the required amount of memory for storing an object on the heap and
constructs a new object in the allocated memory in a single operation. If you want to separate the
allocation and the construction and place an object in preallocated memory on either the stack or the
heap, you use placement new. Placement new has advantages over new in certain situations, for
example, when you need to place the object at a known memory location.

The new operator automatically allocates the correct amount of aligned memory that the object
requires. But when using placement new, you must manually make sure that the pointer you pass has
sufficient allocated storage capacity and is properly aligned. Violating these constraints results in the
construction of an object at a misaligned location or memory initialization outside of allocated
bounds, which might lead to unexpected or implementation-dependent behavior.

 CERT C++: MEM54-CPP

24-223

Fix

Make sure that the pointer used in the placement new operation has sufficient memory for the
allocation and the alignments match.
Example — Placement new Used with Insufficient Storage Capacity and Misaligned Pointers

#include <new>
#include<memory>
#include <cstdint>

void Foo()
{
 uint8_t c;
 uint64_t* ptr =
 new // Non-compliant (insufficient storage, misaligned)
 (&c) uint64_t;
}

void Bar()
{
 uint8_t buf[sizeof(uint64_t)];
 uint64_t* ptr =
 new // Non-compliant (sufficient storage, misaligned)
 (buf) uint64_t;
}

void Baz()
{
 void* buf;
 std::size_t sp = 64;
 std::align(alignof(uint64_t), sizeof(uint64_t), buf, sp);
 uint64_t* ptr =
 new // Compliant (sufficient storage, aligned)
 (buf) uint64_t;
}

In the function Foo, the &c points to an uint8_t value and has one byte memory in stack with one-
byte alignment. The pointer is passed to placement new, which constructs an instance of uint64_t
that requires 8 bytes of memory and a 4-byte alignment. This usage violates the rule.

In the function Bar, the pointer buf is properly allocated and has sufficient storage capacity. But,
because it points to the uint8_t data type, it has one-byte alignment. This usage still violates the
rule.

The function Baz calls the std::align function to create a pointer with correct storage capacity (8
byte) and alignment (4-byte) for uint64_t. This usage complies with the rule.

Check Information
Group: 06. Memory Management (MEM)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

24 CERT C++ Rules

24-224

External Websites
MEM54-CPP

Introduced in R2020b

 CERT C++: MEM54-CPP

24-225

https://wiki.sei.cmu.edu/confluence/display/cplusplus/MEM54-CPP.+Provide+placement+new+with+properly+aligned+pointers+to+sufficient+storage+capacity

CERT C++: MEM55-CPP
Honor replacement dynamic storage management requirements

Description
Rule Definition

Honor replacement dynamic storage management requirements.

Polyspace Implementation

This checker checks for Replacement allocation/deallocation functions that do not meet
requirements of the Standard.

Examples
Replacement allocation/deallocation functions that do not meet requirements of the
Standard
Issue

The issue occurs when you provide these replacement implementations of dynamic allocation and
deallocation functions in the global namespace:

• Replacement operator new that returns nullptr.

The expected behavior is to throw a bad_alloc exception on failure.
• Replacement operator new or operator delete that throws directly or indirectly on failure.

The expected behavior is that dynamic allocation or deallocation functions must not throw.
Polyspace also highlights the location of the throw in your code.

Risk

The C++ Standard ([new.delete]) specifies certain required behaviors for the dynamic allocation and
deallocation functions. If you implement a global replacement allocation or deallocation function that
does not meet these semantic requirements, other functions that rely on the required behaviors
might behave in an undefined manner.

For instance, void* operator new (std::size_t count) is expected to throw a bad_alloc
exception if it fails to allocate the requested amount of memory. If you implement a replacement
allocation function that returns nullptr instead of throwing, a function that expect the memory
allocation to throw on failure might try to dereference a null pointer instead.

Fix

If you provide global replacements for dynamic allocation/deallocation functions, implement the
semantic requirements specified by the standard in the corresponding required behavior paragraphs.

Non-Throwing operator new That Throws

#include<cstdlib>
#include<new>

24 CERT C++ Rules

24-226

extern void* custom_alloc(std::size_t);

void* operator new (std::size_t count, const std::nothrow_t& tag) //Non-compliant
{
 if (void* ret = custom_alloc(count)) {
 return ret;
 }
 throw std::bad_alloc();
}

void func()
{
 int* ptr1 = new int;
 if (ptr1) {
 //Use ptr1
 }

}

In this example, the replacement dynamic allocation function is specified as non-throwing
(std::nothrow_t) but throws a bad_alloc exception on failure. Function func, which expects
operator new to return a null pointer on failure, does not handle the exception and this might
result in an abrupt program termination.

Correction

One possible correction is to provide a replacement operator new function that does not throw.
#include<cstdlib>
#include<new>

extern void* custom_alloc(std::size_t);

void* operator new (std::size_t count, const std::nothrow_t& tag)
{
 return custom_alloc(count);
}

void func()
{
 int* ptr1 = new int;
 if (ptr1) {
 //Use ptr1
 }

}

Check Information
Group: 06. Memory Management (MEM)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MEM55-CPP

Introduced in R2020b

 CERT C++: MEM55-CPP

24-227

https://wiki.sei.cmu.edu/confluence/display/cplusplus/MEM55-CPP.+Honor+replacement+dynamic+storage+management+requirements

CERT C++: MEM56-CPP
Do not store an already-owned pointer value in an unrelated smart pointer

Description
Rule Definition

Do not store an already-owned pointer value in an unrelated smart pointer.3

Polyspace Implementation

This checker checks for Use of already-owned pointers

Examples
Use of already-owned pointers
Issue

This issue occurs when you use an already-owned pointer as the argument of:

• A smart pointer constructor. For instance, in this code snippet, raw_ptr is already owned by
s_ptr1 and is used to initialize s_ptr2:
char *raw_ptr = new char;
std::shared_ptr<char> s_ptr1(raw_ptr);
std::shared_ptr<char> s_ptr2(raw_ptr); //raw_ptr is already owned by s_ptr1

• A smart pointer reset operation. For instance, in this code snippet, the reset of s_ptr2 replaces
raw_ptr2 with already-owned raw_ptr1:
char *raw_ptr1 = new char;
char *raw_ptr2 = new char;

std::shared_ptr<char> s_ptr1(raw_ptr1);
std::shared_ptr<char> s_ptr2(raw_ptr2);

s_ptr2.reset(raw_ptr1); // s_ptr2 releases raw_ptr2 and owns already owned raw_ptr1

Polyspace checks only smart pointer types std::shared_ptr and std::unique_ptr and considers
that user-defined allocators and deleters have standard allocation and deallocation behavior.

A pointer is already owned by a smart pointer if the pointer type is not std::nullptr_t and either:

3. This software has been created by MathWorks incorporating portions of: the “SEI CERT-C Website,” © 2017 Carnegie
Mellon University, the SEI CERT-C++ Web site © 2017 Carnegie Mellon University, ”SEI CERT C Coding Standard –
Rules for Developing safe, Reliable and Secure systems – 2016 Edition,” © 2016 Carnegie Mellon University, and “SEI
CERT C++ Coding Standard – Rules for Developing safe, Reliable and Secure systems in C++ – 2016 Edition” © 2016
Carnegie Mellon University, with special permission from its Software Engineering Institute.

ANY MATERIAL OF CARNEGIE MELLON UNIVERSITY AND/OR ITS SOFTWARE ENGINEERING INSTITUTE
CONTAINED HEREIN IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM
USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This software and associated documentation has not been reviewed nor is it endorsed by Carnegie Mellon University or
its Software Engineering Institute.

24 CERT C++ Rules

24-228

• The pointer was used to initialize the smart pointer.
• The pointer was used as an argument to the smart pointer reset() member function.
• The pointer is the return value of the smart pointer get() member function.
• The pointer is the return value of the smart pointer operator-> member function.

Risk

You use smart pointers to ensure that the memory a pointer points to is automatically deallocated
when the pointer is destroyed, for example if the pointer goes out of scope. When unrelated smart
pointers manage the same pointer value, one of the smart pointers might attempt to deallocate
memory that was already deallocated by the other smart pointer. This results in a double free
vulnerability, which corrupts your program's memory management data structure.

Fix

Use std::make_shared to create a smart pointer and then use copy construction to create a related
smart pointer. The underlying pointer value is managed by both smart pointers and the memory
pointed to is not deallocated until all the smart pointers are destroyed.

If you do not intend to allow multiple smart pointers to manage the same pointer value, use
std::make_unique to construct a std::unique_ptr smart pointer. A std::unique_ptr can only
be moved, which relinquishes ownership of the underlying managed pointer value.

Example — Use of an Already-Owned Pointer

#include <memory>
#include <string>

struct Profile
{
 virtual ~Profile()=default;
};

struct Player : public Profile
{
 std::string name;
 std::int8_t rank;

 Player();
 Player(const std::string& name_, const std::int8_t& rank_) :
 name{ name_ }, rank{ rank_ } {}
};

void func(){

 Player * player = new Player("Richard Roll",1);
 std::shared_ptr<Player> player1(player);
 std::shared_ptr<Player> top_rank(player); //Non-compliant

}

In this example, the use of pointer value player to construct smart pointer top_rank in function
func is non-compliant. player is already owned by smart pointer player1. When player1 is
destroyed, it might attempt to delete pointer value player which was already deleted by top_rank.

 CERT C++: MEM56-CPP

24-229

Correction — Use std::make_shared and Copy Construction to Create Related Smart Pointers

#include <memory>
#include <string>

struct Profile
{
 virtual ~Profile()=default;
};

struct Player : public Profile
{
 std::string name;
 std::int8_t rank;

 Player();
 Player(const std::string& name_, const std::int8_t& rank_) :
 name{ name_ }, rank{ rank_ } {}
};

void func2(){

 std::shared_ptr<Player> player1_shared =
 std::make_shared<Player>("Richard Roll",1);
 std::shared_ptr<Player> top_rank_shared(player1_shared); //Compliant

}

One possible correction is to use std::make_shared to declare player1_shared, and then use
copy construction to create related smart pointer top_rank_shared. The underlying pointer value is
not deleted until all smart pointers are destroyed.

Check Information
Group: Rule 06. Memory Management (MEM)

See Also
Check SEI CERT-C++ (-cert-cpp)) | AUTOSAR C++14 Rule A20-8-1

Topics
“Check for Coding Standard Violations”

External Websites
MEM56-CPP

Introduced in R2021a

24 CERT C++ Rules

24-230

https://wiki.sei.cmu.edu/confluence/display/cplusplus/MEM56-CPP.+Do+not+store+an+already-owned+pointer+value+in+an+unrelated+smart+pointer

CERT C++: MEM57-CPP
Avoid using default operator new for over-aligned types

Description
Rule Definition

Avoid using default operator new for over-aligned types.

Polyspace Implementation

This checker checks for Operator new not overloaded for possibly overaligned class.

Examples
Operator new not overloaded for possibly overaligned class
Issue

Operator new not overloaded for possibly overaligned class occurs when you do not adequately
overload operator new/new[] and you use this operator to create an object with an alignment
requirement specified with alignas. The checker raises a defect for these versions of throwing and
non-throwing operator new/new[].

• void* operator new(std::size_t size)
• void* operator new(std::size_t size, const std::nothrow_t&)
• void* operator new[](std::size_t size)
• void* operator new[](std::size_t size, const std::nothrow_t&)

The use of alignas indicates that you do not expect the default operator new/new[] to satisfy the
alignment requirement or the object, and that the object is possibly over aligned. A type is over
aligned if you use alignas to make the alignment requirement of the type larger than
std::max_align_t. For instance, foo is over aligned in this code snippet because its alignment
requirement is 32 bytes, but std::max_align_t has an alignment of 16 bytes in most
implementations.

struct alignas(32) foo {
 char elems[32];
};

Operator new not overloaded for possibly overaligned class raises no defect if you do not
overload the operator new/new[] and you use version C++17 or later of the Standard. The default
operator new/new[] in C++17 or later supports over alignment by passing the alignment
requirement as an argument of type std::align_val_t, for instance void* operator
new(std::size_t size, std::align_val_t alignment).

Risk

The default operator new/new[] allocates storage with the alignment requirement of
std::align_val_t at most. If you do not overload the operator when you create an object with

 CERT C++: MEM57-CPP

24-231

over aligned type, the resulting object may be misaligned. Accessing this object might cause illegal
access errors or abnormal program terminations.
Fix

If you use version C++14 or earlier of the Standard, pass the alignment requirement of over aligned
types to the operator new/new[] by overloading the operator.
Example - Allocated Memory Is Smaller Than Alignment Requirement of Type foo
#include <new>
#include <cstdlib>
#include <iostream>

struct alignas(64) foo {
 char elems[32];
};

foo* func()
{
 foo* bar = 0x0;
 try {
 bar = new foo ;
 } catch (...) { return nullptr; }
 delete bar;
}

In this example, structure foo is declared with an alignment requirement of 32 bytes. When you use
the default operator new to create object bar, the allocated memory for bar is smaller than the
alignment requirement of type foo and bar might be misaligned.
Correction — Define Overloaded Operator new to Handle Alignment Requirement of Type foo

One possible correction, if you use C11 stdlib.h or POSIX-C malloc.h, is to define an overloaded
operator new that uses aligned_alloc() or posix_memalign() or to obtain storage with the
correct alignment.
#include <new>
#include <cstdlib>
#include <iostream>

struct alignas(64) foo {
 char elems[32];
 static void* operator new (size_t nbytes)
 {
 if (void* p =
 ::aligned_alloc(alignof(foo), nbytes)) {
 return p;
 }
 throw std::bad_alloc();
 }
 static void operator delete(void *p) {
 free(p);
 }
};

foo* func()
{
 foo* bar = 0x0;
 try {
 bar = new foo ;
 } catch (...) { return nullptr; }
 delete bar;
}

Check Information
Group: Rule 06. Memory Management (MEM)

See Also
Check SEI CERT-C++ (-cert-cpp))

24 CERT C++ Rules

24-232

Topics
“Check for Coding Standard Violations”

External Websites
MEM57-CPP

Introduced in R2019b

 CERT C++: MEM57-CPP

24-233

https://wiki.sei.cmu.edu/confluence/display/cplusplus/MEM57-CPP.+Avoid+using+default+operator+new+for+over-aligned+types

CERT C++: FIO30-C
Exclude user input from format strings

Description
Rule Definition

Exclude user input from format strings.

Polyspace Implementation

This checker checks for Tainted string format.

Examples
Tainted string format
Issue

Tainted string format detects string formatting with printf-style functions that contain elements
from unsecure sources.

Risk

If you use externally controlled elements to format a string, you can cause buffer overflow or data-
representation problems. An attacker can use these string formatting elements to view the contents
of a stack using %x or write to a stack using %n.

Fix

Pass a static string to format string functions. This fix ensures that an external actor cannot control
the string.

Another possible fix is to allow only the expected number of arguments. If possible, use functions that
do not support the vulnerable %n operator in format strings.

Example - Get Elements from User Input

#include <stdio.h>
#include <unistd.h>
#define MAX 40
void taintedstringformat(void) {
 char userstr[MAX];
 read(0,userstr,MAX);
 printf(userstr);
}

This example prints the input argument userstr. The string is unknown. If it contains elements such
as %, printf can interpret userstr as a string format instead of a string, causing your program to
crash.

Correction — Print as String

One possible correction is to print userstr explicitly as a string so that there is no ambiguity.

24 CERT C++ Rules

24-234

#include "stdio.h"
#include <unistd.h>
#define MAX 40

void taintedstringformat(void) {
 char userstr[MAX];
 read(0,userstr,MAX);
 printf("%.20s", userstr);
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO30-C

Introduced in R2019a

 CERT C++: FIO30-C

24-235

https://wiki.sei.cmu.edu/confluence/display/c/FIO30-C.+Exclude+user+input+from+format+strings

CERT C++: FIO32-C
Do not perform operations on devices that are only appropriate for files

Description
Rule Definition

Do not perform operations on devices that are only appropriate for files.

Polyspace Implementation

This checker checks for Inappropriate I/O operation on device files.

Examples
Inappropriate I/O operation on device files
Issue

Inappropriate I/O operation on device files occurs when you do not check whether a file name
parameter refers to a device file before you pass it to these functions:

• fopen()
• fopen_s()
• freopen()
• remove()
• rename()
• CreateFile()
• CreateFileA()
• CreateFileW()
• _wfopen()
• _wfopen_s()

Device files are files in a file system that provide an interface to device drivers. You can use these files
to interact with devices.

Inappropriate I/O operation on device files does not raise a defect when:

• You use stat or lstat-family functions to check the file name parameter before calling the
previously listed functions.

• You use a string comparison function to compare the file name against a list of device file names.

Risk

Operations appropriate only for regular files but performed on device files can result in denial-of-
service attacks, other security vulnerabilities, or system failures.

24 CERT C++ Rules

24-236

Fix

Before you perform an I/O operation on a file:

• Use stat(), lstat(), or an equivalent function to check whether the file name parameter refers
to a regular file.

• Use a string comparison function to compare the file name against a list of device file names.

Example - Using fopen() Without Checking file_name

#include <stdio.h>
#include <string.h>

#define SIZE1024 1024

FILE* func()
{

 FILE* f;
 const char file_name[SIZE1024] = "./tmp/file";

 if ((f = fopen(file_name, "w")) == NULL) {
 /*handle error */
 };
 /*operate on file */
}

In this example, func() operates on the file file_name without checking whether it is a regular file.
If file_name is a device file, attempts to access it can result in a system failure.

Correction — Check File with lstat() Before Calling fopen()

One possible correction is to use lstat() and the S_ISREG macro to check whether the file is a
regular file. This solution contains a TOCTOU race condition that can allow an attacker to modify the
file after you check it but before the call to fopen(). To prevent this vulnerability, ensure that
file_name refers to a file in a secure folder.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>

#define SIZE1024 1024

FILE* func()
{

 FILE* f;
 const char file_name[SIZE1024] = "./tmp/file";
 struct stat orig_st;
 if ((lstat(file_name, &orig_st) != 0) ||
 (!S_ISREG(orig_st.st_mode))) {
 exit(0);
 }
 if ((f = fopen(file_name, "w")) == NULL) {
 /*handle error */
 };

 CERT C++: FIO32-C

24-237

 /*operate on file */
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO32-C

Introduced in R2019a

24 CERT C++ Rules

24-238

https://wiki.sei.cmu.edu/confluence/display/c/FIO32-C.+Do+not+perform+operations+on+devices+that+are+only+appropriate+for+files

CERT C++: FIO34-C
Distinguish between characters read from a file and EOF or WEOF

Description
Rule Definition

Distinguish between characters read from a file and EOF or WEOF.

Polyspace Implementation

This checker checks for Character value absorbed into EOF.

Examples
Character value absorbed into EOF
Issue

Character value absorbed into EOF occurs when you perform a data type conversion that makes a
valid character value indistinguishable from EOF (End-of-File). Bug Finder flags the defect in one of
the following situations:

• End-of-File: You perform a data type conversion such as from int to char that converts a non-
EOF character value into EOF.

char ch = (char)getchar()

You then compare the result with EOF.

if((int)ch == EOF)

The conversion can be explicit or implicit.
• Wide End-of-File: You perform a data type conversion that can convert a non-WEOF wide

character value into WEOF, and then compare the result with WEOF.

Risk

The data type char cannot hold the value EOF that indicates the end of a file. Functions such as
getchar have return type int to accommodate EOF. If you convert from int to char, the values
UCHAR_MAX (a valid character value) and EOF get converted to the same value -1 and become
indistinguishable from each other. When you compare the result of this conversion with EOF, the
comparison can lead to false detection of EOF. This rationale also applies to wide character values
and WEOF.

Fix

Perform the comparison with EOF or WEOF before conversion.

Example - Return Value of getchar Converted to char

#include <stdio.h>
#include <stdlib.h>

 CERT C++: FIO34-C

24-239

#define fatal_error() abort()

char func(void)
{
 char ch;
 ch = getchar();
 if (EOF == (int)ch) {
 fatal_error();
 }
 return ch;
}

In this example, the return value of getchar is implicitly converted to char. If getchar returns
UCHAR_MAX, it is converted to -1, which is indistinguishable from EOF. When you compare with EOF
later, it can lead to a false positive.

Correction — Perform Comparison with EOF Before Conversion

One possible correction is to first perform the comparison with EOF, and then convert from int to
char.

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

char func(void)
{
 int i;
 i = getchar();
 if (EOF == i) {
 fatal_error();
 }
 else {
 return (char)i;
 }
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO34-C

Introduced in R2019a

24 CERT C++ Rules

24-240

https://wiki.sei.cmu.edu/confluence/display/c/FIO34-C.+Distinguish+between+characters+read+from+a+file+and+EOF+or+WEOF

CERT C++: FIO37-C
Do not assume that fgets() or fgetws() returns a nonempty string when successful

Description
Rule Definition

Do not assume that fgets() or fgetws() returns a nonempty string when successful.

Polyspace Implementation

This checker checks for Use of indeterminate string.

Examples
Use of indeterminate string
Issue

Use of indeterminate string occurs when you do not check the validity of the buffer returned from
fgets-family functions. The checker raises a defect when such a buffer is used as:

• An argument in standard functions that print or manipulate strings or wide strings.
• A return value.
• An argument in external functions with parameter type const char * or const wchar_t *.

Risk

If an fgets-family function fails, the content of its output buffer is indeterminate. Use of such a
buffer has undefined behavior and can result in a program that stops working or other security
vulnerabilities.

Fix

Reset the output buffer of an fgets-family function to a known string value when the function fails.

Example - Output of fgets() Passed to External Function

#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <stdlib.h>

#define SIZE20 20

extern void display_text(const char *txt);

void func(void) {
 char buf[SIZE20];

 /* Check fgets() error */
 if (fgets (buf, sizeof (buf), stdin) == NULL)
 {

 CERT C++: FIO37-C

24-241

 /* 'buf' may contain an indeterminate string. */
 ;
 }
 /* 'buf passed to external function */
 display_text(buf);
}

In this example, the output buf is passed to the external function display_text(), but its value is
not reset if fgets() fails.

Correction — Reset fgets() Output on Failure

If fgets() fails, reset buf to a known value before you pass it to an external function.

#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <stdlib.h>

#define SIZE20 20

extern void display_text(const char *txt);

void func1(void) {
 char buf[SIZE20];
 /* Check fgets() error */
 if (fgets (buf, sizeof (buf), stdin) == NULL)
 {
 /* value of 'buf' reset after fgets() failure. */
 buf[0] = '\0';
 }
 /* 'buf' passed to external function */
 display_text(buf);
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO37-C

Introduced in R2019a

24 CERT C++ Rules

24-242

https://wiki.sei.cmu.edu/confluence/display/c/FIO37-C.+Do+not+assume+that+fgets%28%29+or+fgetws%28%29+returns+a+nonempty+string+when+successful

CERT C++: FIO38-C
Do not copy a FILE object

Description
Rule Definition

Do not copy a FILE object.

Polyspace Implementation

This checker checks for Misuse of a FILE object.

Examples
Misuse of a FILE object
Issue

Misuse of a FILE object occurs when:

• You dereference a pointer to a FILE object, including indirect dereference by using memcmp().
• You modify an entire FILE object or one of its components through its pointer.
• You take the address of FILE object that was not returned from a call to an fopen-family function.

No defect is raised if a macro defines the pointer as the address of a built-in FILE object, such as
#define ptr (&__stdout).

Risk

In some implementations, the address of the pointer to a FILE object used to control a stream is
significant. A pointer to a copy of a FILE object is interpreted differently than a pointer to the original
object, and can potentially result in operations on the wrong stream. Therefore, the use of a copy of a
FILE object can cause the software to stop responding, which an attacker might exploit in denial-of-
service attacks.

Fix

Do not make a copy of a FILE object. Do not use the address of a FILE object that was not returned
from a successful call to an fopen-family function.

Example - Copy of FILE Object Used in fputs()

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>

void fatal_error(void);

int func(void)
{

 CERT C++: FIO38-C

24-243

 /*'stdout' dereferenced and contents
 copied to 'my_stdout'. */
 FILE my_stdout = *stdout;

 /* Address of 'my_stdout' may not point to correct stream. */
 if (fputs("Hello, World!\n", &my_stdout) == EOF)
 {
 /* Handler error */
 fatal_error();
 }
 return 0;
}

In this example, FILE object stdout is dereferenced and its contents are copied to my_stdout. The
contents of stdout might not be significant. fputs() is then called with the address of my_stdout
as an argument. Because no call to fopen() or a similar function was made, the address of
my_stdout might not point to the correct stream.
Correction — Copy the FILE Object Pointer

Declare my_stdout to point to the same address as stdout to ensure that you write to the correct
stream when you call fputs().

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>

void fatal_error(void);

int func(void)
{
 /* 'my_stdout' and 'stdout' point to the same object. */
 FILE *my_stdout = stdout;
 if (fputs("Hello, World!\n", my_stdout) == EOF)
 {
 /* Handler error */
 fatal_error();
 }
 return 0;
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO38-C

24 CERT C++ Rules

24-244

https://wiki.sei.cmu.edu/confluence/display/c/FIO38-C.+Do+not+copy+a+FILE+object

Introduced in R2019a

 CERT C++: FIO38-C

24-245

CERT C++: FIO39-C
Do not alternately input and output from a stream without an intervening flush or positioning call

Description
Rule Definition

Do not alternately input and output from a stream without an intervening flush or positioning call.

Polyspace Implementation

This checker checks for Alternating input and output from a stream without flush or
positioning call.

Examples
Alternating input and output from a stream without flush or positioning call
Issue

Alternating input and output from a stream without flush or positioning call occurs when:

• You do not perform a flush or function positioning call between an output operation and a
following input operation on a file stream in update mode.

• You do not perform a function positioning call between an input operation and a following output
operation on a file stream in update mode.

Risk

Alternating input and output operations on a stream without an intervening flush or positioning call is
undefined behavior.

Fix

Call fflush() or a file positioning function such as fseek() or fsetpos() between output and
input operations on an update stream.

Call a file positioning function between input and output operations on an update stream.

Example - Read After Write Without Intervening Flush

#include <stdio.h>
#define SIZE20 20

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void func()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

24 CERT C++ Rules

24-246

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Read operation after write without
 intervening flush. */
 if (fread(data, 1, SIZE20, file) < SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;
 }
}

In this example, the file demo.txt is opened for reading and appending. After the call to fwrite(),
a call to fread() without an intervening flush operation is undefined behavior.

Correction — Call fflush() Before the Read Operation

After writing data to the file, before calling fread(), perform a flush call.

#include <stdio.h>
#define SIZE20 20

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void func()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)

 CERT C++: FIO39-C

24-247

 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Buffer flush after write and before read */
 if (fflush(file) != 0)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 if (fread(data, 1, SIZE20, file) < SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;
 }
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO39-C

Introduced in R2019a

24 CERT C++ Rules

24-248

https://wiki.sei.cmu.edu/confluence/display/c/FIO39-C.+Do+not+alternately+input+and+output+from+a+stream+without+an+intervening+flush+or+positioning+call

CERT C++: FIO40-C
Reset strings on fgets() or fgetws() failure

Description
Rule Definition

Reset strings on fgets() or fgetws() failure.

Polyspace Implementation

This checker checks for Use of indeterminate string.

Examples
Use of indeterminate string
Issue

Use of indeterminate string occurs when you do not check if a write operation using an fgets-
family function such as:

char * fgets(char* buf, int n, FILE *stream)

succeeded and the buffer written has valid content, or you do not reset the buffer on failure. You then
perform an operation that assumes a buffer with valid content. For instance, if the buffer with
possibly indeterminate content is buf (as shown above), the checker raises a defect if:

• You pass buf as argument to standard functions that print or manipulate strings or wide strings.
• You return buf from a function.
• You pass buf as argument to external functions with parameter type const char * or const

wchar_t *.
• You read buf as buf[index] or *(buf + offset), where index or offset is a numerical

value representing the distance from the beginning of the buffer.

Risk

If an fgets-family function fails, the content of its output buffer is indeterminate. Use of such a
buffer has undefined behavior and can result in a program that stops working or other security
vulnerabilities.

Fix

Reset the output buffer of an fgets-family function to a known string value when the function fails.

Example - Output of fgets() Passed to External Function

#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <stdlib.h>

 CERT C++: FIO40-C

24-249

#define SIZE20 20

extern void display_text(const char *txt);

void func(void) {
 char buf[SIZE20];

 /* Check fgets() error */
 if (fgets (buf, sizeof (buf), stdin) == NULL)
 {
 /* 'buf' may contain an indeterminate string. */
 ;
 }
 /* 'buf passed to external function */
 display_text(buf);
}

In this example, the output buf is passed to the external function display_text(), but its value is
not reset if fgets() fails.

Correction — Reset fgets() Output on Failure

If fgets() fails, reset buf to a known value before you pass it to an external function.

#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <stdlib.h>

#define SIZE20 20

extern void display_text(const char *txt);

void func1(void) {
 char buf[SIZE20];
 /* Check fgets() error */
 if (fgets (buf, sizeof (buf), stdin) == NULL)
 {
 /* value of 'buf' reset after fgets() failure. */
 buf[0] = '\0';
 }
 /* 'buf' passed to external function */
 display_text(buf);
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

24 CERT C++ Rules

24-250

External Websites
FIO40-C

Introduced in R2019a

 CERT C++: FIO40-C

24-251

https://wiki.sei.cmu.edu/confluence/display/c/FIO40-C.+Reset+strings+on+fgets%28%29++or+fgetws%28%29+failure

CERT C++: FIO41-C
Do not call getc(), putc(), getwc(), or putwc() with a stream argument that has side effects

Description
Rule Definition

Do not call getc(), putc(), getwc(), or putwc() with a stream argument that has side effects.

Polyspace Implementation

This checker checks for Stream argument with possibly unintended side effects.

Examples
Stream argument with possibly unintended side effects
Issue

Stream argument with possibly unintended side effects occurs when you call getc(), putc(),
getwc(), or putwc() with a stream argument that has side effects.

Stream argument with possibly unintended side effects considers the following as stream side
effects:

• Any assignment of a variable of a stream, such as FILE *, or any assignment of a variable of a
deeper stream type, such as an array of FILE *.

• Any call to a function that manipulates a stream or a deeper stream type.

The number of defects raised corresponds to the number of side effects detected. When a stream
argument is evaluated multiple times in a function implemented as a macro, a defect is raised for
each evaluation that has a side effect.

A defect is also raised on functions that are not implemented as macros but that can be implemented
as macros on another operating system.

Risk

If the function is implemented as an unsafe macro, the stream argument can be evaluated more than
once, and the stream side effect happens multiple times. For instance, a stream argument calling
fopen() might open the same file multiple times, which is unspecified behavior.

Fix

To ensure that the side effect of a stream happens only once, use a separate statement for the stream
argument.

Example - Stream Argument of getc() Has Side Effect fopen()

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

24 CERT C++ Rules

24-252

#define fatal_error() abort()

const char* myfile = "my_file.log";

void func(void)
{
 int c;
 FILE* fptr;
 /* getc() has stream argument fptr with
 * 2 side effects: call to fopen(), and assignment
 * of fptr
 */
 c = getc(fptr = fopen(myfile, "r"));//Noncompliant
 if (c == EOF) {
 /* Handle error */
 (void)fclose(fptr);
 fatal_error();
 }
 if (fclose(fptr) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

void main(void)
{
 func();

}

In this example, getc() is called with stream argument fptr. The stream argument has two side
effects: the call to fopen() and the assignment of fptr. If getc() is implemented as an unsafe
macro, the side effects happen multiple times.

Correction — Use Separate Statement for fopen()

One possible correction is to use a separate statement for fopen(). The call to fopen() and the
assignment of fptr happen in this statement so there are no side effects when you pass fptr to
getc().

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

#define fatal_error() abort()

const char* myfile = "my_file.log";

void func(void)
{
 int c;
 FILE* fptr;

 /* Separate statement for fopen()
 * before call to getc()
 */
 fptr = fopen(myfile, "r");

 CERT C++: FIO41-C

24-253

 if (fptr == NULL) {
 /* Handle error */
 fatal_error();
 }
 c = getc(fptr);
 if (c == EOF) {
 /* Handle error */
 (void)fclose(fptr);
 fatal_error();
 }
 if (fclose(fptr) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

void main(void)
{
 func();

}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO41-C

Introduced in R2019a

24 CERT C++ Rules

24-254

https://wiki.sei.cmu.edu/confluence/display/c/FIO41-C.+Do+not+call+getc%28%29%2C+putc%28%29%2C+getwc%28%29%2C+or+putwc%28%29+with+a+stream+argument+that+has+side+effects

CERT C++: FIO42-C
Close files when they are no longer needed

Description
Rule Definition

Close files when they are no longer needed.

Polyspace Implementation

This checker checks for Resource leak.

Examples
Resource leak
Issue

Resource leak occurs when you open a file stream by using a FILE pointer but do not close it
before:

• The end of the pointer’s scope.
• Assigning the pointer to another stream.

Risk

If you do not release file handles explicitly as soon as possible, a failure can occur due to exhaustion
of resources.
Fix

Close a FILE pointer before the end of its scope, or before you assign the pointer to another stream.
Example - FILE Pointer Not Released Before End of Scope

#include <stdio.h>

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");
 fclose (fp1);
}

In this example, the file pointer fp1 is pointing to a file data1.txt. Before fp1 is explicitly
dissociated from the file stream of data1.txt, it is used to access another file data2.txt.
Correction — Release FILE Pointer

One possible correction is to explicitly dissociate fp1 from the file stream of data1.txt.

 CERT C++: FIO42-C

24-255

#include <stdio.h>

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");
 fclose(fp1);

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");
 fclose (fp1);
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO42-C

Introduced in R2019a

24 CERT C++ Rules

24-256

https://wiki.sei.cmu.edu/confluence/display/c/FIO42-C.+Close+files+when+they+are+no+longer+needed

CERT C++: FIO44-C
Only use values for fsetpos() that are returned from fgetpos()

Description
Rule Definition

Only use values for fsetpos() that are returned from fgetpos().

Polyspace Implementation

This checker checks for Invalid file position.

Examples
Invalid file position
Issue

Invalid file position occurs when the file position argument of fsetpos() uses a value that is not
obtained from fgetpos().

Risk

The function fgetpos(FILE *stream, fpos_t *pos) gets the current file position of the stream.
When you use any other value as the file position argument of fsetpos(FILE *stream, const
fpos_t *pos), you might access an unintended location in the stream.

Fix

Use the value returned from a successful call to fgetpos() as the file position argument of
fsetpos().

Example - memset() Sets File Position Argument

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

FILE *func(FILE *file)
{
 fpos_t offset;
 if (file == NULL)
 {
 /* Handle error */
 }
 /* Store initial position in variable 'offset' */
 (void)memset(&offset, 0, sizeof(offset));

 /* Read data from file */

 /* Return to the initial position. offset was not
 returned from a call to fgetpos() */

 CERT C++: FIO44-C

24-257

 if (fsetpos(file, &offset) != 0)
 {
 /* Handle error */
 }
 return file;
}

In this example, fsetpos() uses offset as its file position argument. However, the value of offset
is set by memset(). The preceding code might access the wrong location in the stream.

Correction — Use a File Position Returned From fgetpos()

Call fgetpos(), and if it returns successfully, use the position argument in your call to fsetpos().

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

FILE *func(FILE *file)
{
 fpos_t offset;
 if (file == NULL)
 {
 /* Handle error */
 }
 /* Store initial position in variable 'offset'
 using fgetpos() */
 if (fgetpos(file, &offset) != 0)
 {
 /* Handle error */
 }

 /* Read data from file */

 /* Back to the initial position */
 if (fsetpos(file, &offset) != 0)
 {
 /* Handle error */
 }
 return file;
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO44-C

24 CERT C++ Rules

24-258

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152071

Introduced in R2019a

 CERT C++: FIO44-C

24-259

CERT C++: FIO45-C
Avoid TOCTOU race conditions while accessing files

Description
Rule Definition

Avoid TOCTOU race conditions while accessing files.

Polyspace Implementation

This checker checks for File access between time of check and use (TOCTOU).

Examples
File access between time of check and use (TOCTOU)
Issue

File access between time of check and use (TOCTOU) detects race condition issues between
checking the existence of a file or folder, and using a file or folder.
Risk

An attacker can access and manipulate your file between your check for the file and your use of a file.
Symbolic links are particularly risky because an attacker can change where your symbolic link points.
Fix

Before using a file, do not check its status. Instead, use the file and check the results afterward.
Example - Check File Before Using

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

extern void print_tofile(FILE* f);

void toctou(char * log_path) {
 if (access(log_path, W_OK)==0) {
 FILE* f = fopen(log_path, "w");
 if (f) {
 print_tofile(f);
 fclose(f);
 }
 }
}

In this example, before opening and using the file, the function checks if the file exists. However, an
attacker can change the file between the first and second lines of the function.
Correction — Open Then Check

One possible correction is to open the file, and then check the existence and contents afterward.

24 CERT C++ Rules

24-260

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

extern void print_tofile(FILE* f);

void toctou(char * log_path) {
 int fd = open(log_path, O_WRONLY);
 if (fd!=-1) {
 FILE *f = fdopen(fd, "w");
 if (f) {
 print_tofile(f);
 fclose(f);
 }
 }
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO45-C

Introduced in R2019a

 CERT C++: FIO45-C

24-261

https://wiki.sei.cmu.edu/confluence/display/c/FIO45-C.+Avoid+TOCTOU+race+conditions+while+accessing+files

CERT C++: FIO46-C
Do not access a closed file

Description
Rule Definition

Do not access a closed file.

Polyspace Implementation

This checker checks for Use of previously closed resource.

Examples
Use of previously closed resource
Issue

Use of previously closed resource occurs when a function operates on a stream that you closed
earlier in your code.

Risk

The standard states that the value of a FILE* pointer is indeterminate after you close the stream
associated with it. Operations using the FILE* pointer can produce unintended results.

Fix

One possible fix is to close the stream only at the end of operations. Another fix is to reopen the
stream before using it again.

Example - Use of FILE* Pointer After Closing Stream

#include <stdio.h>

void func(void) {
 FILE *fp;
 void *ptr;

 fp = fopen("tmp","w");
 if(fp != NULL) {
 fclose(fp);
 fprintf(fp,"text");
 }
}

In this example, fclose closes the stream associated with fp. When you use fprintf on fp after
fclose, the Use of previously closed resource defect appears.

Correction — Close Stream After All Operations

One possible correction is to reverse the order of the fprintf and fclose operations.

24 CERT C++ Rules

24-262

#include <stdio.h>

void func(void) {
 FILE *fp;
 void *ptr;

 fp = fopen("tmp","w");
 if(fp != NULL) {
 fprintf(fp,"text");
 fclose(fp);
 }
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO46-C

Introduced in R2019a

 CERT C++: FIO46-C

24-263

https://wiki.sei.cmu.edu/confluence/display/c/FIO46-C.+Do+not+access+a+closed+file

CERT C++: FIO47-C
Use valid format strings

Description
Rule Definition

Use valid format strings.

Polyspace Implementation

This checker checks for Format string specifiers and arguments mismatch.

Examples
Format string specifiers and arguments mismatch
Issue

Format string specifiers and arguments mismatch occurs when the format specifiers in the
formatted output functions such as printf do not match their corresponding arguments. For
example, an argument of type unsigned long must have a format specification of %lu.
Risk

Mismatch between format specifiers and the corresponding arguments result in undefined behavior.
Fix

Make sure that the format specifiers match the corresponding arguments. For instance, in this
example, the %d specifier does not match the string argument message and the %s specifier does not
match the integer argument err_number.

 const char *message = "License not available";
 int err_number = -4;
 printf("Error: %d (error type %s)\n", message, err_number);

Switching the two format specifiers fixes the issue. See the specifications for the printf function for
more information about format specifiers.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Printing a Float

#include <stdio.h>

void string_format(void) {

24 CERT C++ Rules

24-264

https://en.cppreference.com/w/cpp/io/c/fprintf

 unsigned long fst = 1;

 printf("%d\n", fst);
}

In the printf statement, the format specifier, %d, does not match the data type of fst.

Correction — Use an Unsigned Long Format Specifier

One possible correction is to use the %lu format specifier. This specifier matches the unsigned
integer type and long size of fst.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%lu\n", fst);
}

Correction — Use an Integer Argument

One possible correction is to change the argument to match the format specifier. Convert fst to an
integer to match the format specifier and print the value 1.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", (int)fst);
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO47-C

Introduced in R2019a

 CERT C++: FIO47-C

24-265

https://wiki.sei.cmu.edu/confluence/display/c/FIO47-C.+Use+valid+format+strings

CERT C++: FIO50-CPP
Do not alternately input and output from a file stream without an intervening positioning call

Description
Rule Definition

Do not alternately input and output from a file stream without an intervening positioning call.

Polyspace Implementation

This checker checks for Alternating input and output from a stream without flush or
positioning call.

Examples
Alternating input and output from a stream without flush or positioning call
Issue

Alternating input and output from a stream without flush or positioning call occurs when:

• You do not perform a flush or function positioning call between an output operation and a
following input operation on a file stream in update mode.

• You do not perform a function positioning call between an input operation and a following output
operation on a file stream in update mode.

Risk

Alternating input and output operations on a stream without an intervening flush or positioning call is
undefined behavior.

Fix

Call fflush() or a file positioning function such as fseek() or fsetpos() between output and
input operations on an update stream.

Call a file positioning function between input and output operations on an update stream.

Example - Read After Write Without Intervening Flush

#include <stdio.h>
#define SIZE20 20

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void func()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

24 CERT C++ Rules

24-266

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Read operation after write without
 intervening flush. */
 if (fread(data, 1, SIZE20, file) < SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;
 }
}

In this example, the file demo.txt is opened for reading and appending. After the call to fwrite(),
a call to fread() without an intervening flush operation is undefined behavior.

Correction — Call fflush() Before the Read Operation

After writing data to the file, before calling fread(), perform a flush call.

#include <stdio.h>
#define SIZE20 20

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void func()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)

 CERT C++: FIO50-CPP

24-267

 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Buffer flush after write and before read */
 if (fflush(file) != 0)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 if (fread(data, 1, SIZE20, file) < SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;
 }
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO50-CPP

Introduced in R2019a

24 CERT C++ Rules

24-268

https://wiki.sei.cmu.edu/confluence/display/cplusplus/FIO50-CPP.+Do+not+alternately+input+and+output+from+a+file+stream+without+an+intervening+positioning+call

CERT C++: FIO51-CPP
Close files when they are no longer needed

Description
Rule Definition

Close files when they are no longer needed.

Polyspace Implementation

This checker checks for Resource leak.

Examples
Resource leak
Issue

Resource leak occurs when you open a file stream by using a FILE pointer but do not close it
before:

• The end of the pointer’s scope.
• Assigning the pointer to another stream.

Risk

If you do not release file handles explicitly as soon as possible, a failure can occur due to exhaustion
of resources.
Fix

Close a FILE pointer before the end of its scope, or before you assign the pointer to another stream.
Example - FILE Pointer Not Released Before End of Scope

#include <stdio.h>

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");
 fclose (fp1);
}

In this example, the file pointer fp1 is pointing to a file data1.txt. Before fp1 is explicitly
dissociated from the file stream of data1.txt, it is used to access another file data2.txt.
Correction — Release FILE Pointer

One possible correction is to explicitly dissociate fp1 from the file stream of data1.txt.

 CERT C++: FIO51-CPP

24-269

#include <stdio.h>

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");
 fclose(fp1);

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");
 fclose (fp1);
}

Check Information
Group: 07. Input Output (FIO)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FIO51-CPP

Introduced in R2019a

24 CERT C++ Rules

24-270

https://wiki.sei.cmu.edu/confluence/display/cplusplus/FIO51-CPP.+Close+files+when+they+are+no+longer+needed

CERT C++: ERR30-C
Set errno to zero before calling a library function known to set errno, and check errno only after the
function returns a value indicating failure

Description
Rule Definition

Set errno to zero before calling a library function known to set errno, and check errno only after the
function returns a value indicating failure.

Polyspace Implementation

This checker checks for these issues:

• Misuse of errno.
• Errno not reset.

Examples
Misuse of errno
Issue

Misuse of errno occurs when you check errno for error conditions in situations where checking
errno does not guarantee the absence of errors. In some cases, checking errno can lead to false
positives.

For instance, you check errno following calls to the functions:

• fopen: If you follow the ISO Standard, the function might not set errno on errors.
• atof: If you follow the ISO Standard, the function does not set errno.
• signal: The errno value indicates an error only if the function returns the SIG_ERR error

indicator.

Risk

The ISO C Standard does not enforce that these functions set errno on errors. Whether the functions
set errno or not is implementation-dependent.

To detect errors, if you check errno alone, the validity of this check also becomes implementation-
dependent.

In some cases, the errno value indicates an error only if the function returns a specific error
indicator. If you check errno before checking the function return value, you can see false positives.

Fix

For information on how to detect errors, see the documentation for that specific function.

Typically, the functions return an out-of-band error indicator to indicate errors. For instance:

 CERT C++: ERR30-C

24-271

• fopen returns a null pointer if an error occurs.
• signal returns the SIG_ERR error indicator and sets errno to a positive value. Check errno

only after you have checked the function return value.

Example - Incorrectly Checking for errno After fopen Call

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

#define fatal_error() abort()

const char *temp_filename = "/tmp/demo.txt";

FILE *func()
{
 FILE *fileptr;
 errno = 0;
 fileptr = fopen(temp_filename, "w+b");
 if (errno != 0) {
 if (fileptr != NULL) {
 (void)fclose(fileptr);
 }
 /* Handle error */
 fatal_error();
 }
 return fileptr;
}

In this example, errno is the first variable that is checked after a call to fopen. You might expect
that fopen changes errno to a nonzero value if an error occurs. If you run this code with an
implementation of fopen that does not set errno on errors, you might miss an error condition. In
this situation, fopen can return a null pointer that escapes detection.

Correction — Check Return Value of fopen After Call

One possible correction is to only check the return value of fopen for a null pointer.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

#define fatal_error() abort()

const char *temp_filename = "/tmp/demo.txt";

FILE *func()
{
 FILE *fileptr;
 fileptr = fopen(temp_filename, "w+b");
 if (fileptr == NULL) {
 fatal_error();
 }
 return fileptr;
}

24 CERT C++ Rules

24-272

Errno not reset
Issue

Errno not reset occurs when you do not reset errno before calling a function that sets errno to
indicate error conditions. However, you check errno for those error conditions after the function
call.

Risk

The errno is not clean and can contain values from a previous call. Checking errno for errors can
give the false impression that an error occurred.

errno is set to zero at program startup but subsequently, errno is not reset by a C standard library
function. You must explicitly set errno to zero when required.

Fix

Before calling a function that sets errno to indicate error conditions, reset errno to zero explicitly.

Example - errno Not Reset Before Call to strtod

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <float.h>

#define fatal_error() abort()

double func(const char *s1, const char *s2)
{
 double f1;
 f1 = strtod (s1, NULL);
 if (0 == errno) {
 double f2 = strtod (s2, NULL);
 if (0 == errno) {
 long double result = (long double)f1 + f2;
 if ((result <= (long double)DBL_MAX) && (result >= (long double)-DBL_MAX))
 {
 return (double)result;
 }
 }
 }
 fatal_error();
 return 0.0;
}

In this example, errno is not reset to 0 before the first call to strtod. Checking errno for 0 later
can lead to a false positive.

Correction — Reset errno Before Call

One possible correction is to reset errno to 0 before calling strtod.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <float.h>

 CERT C++: ERR30-C

24-273

#define fatal_error() abort()

double func(const char *s1, const char *s2)
{
 double f1;
 errno = 0;
 f1 = strtod (s1, NULL);
 if (0 == errno) {
 double f2 = strtod (s2, NULL);
 if (0 == errno) {
 long double result = (long double)f1 + f2;
 if ((result <= (long double)DBL_MAX) && (result >= (long double)-DBL_MAX))
 {
 return (double)result;
 }
 }
 }
 fatal_error();
 return 0.0;
}

Check Information
Group: 08. Exceptions and Error Handling (ERR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ERR30-C

Introduced in R2019a

24 CERT C++ Rules

24-274

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152351

CERT C++: ERR32-C
Do not rely on indeterminate values of errno

Description
Rule Definition

Do not rely on indeterminate values of errno.

Polyspace Implementation

This checker checks for Misuse of errno in a signal handler.

Examples
Misuse of errno in a signal handler
Issue

Misuse of errno in a signal handler occurs when you call one of these functions in a signal
handler:

• signal: You call the signal function in a signal handler and then read the value of errno.

For instance, the signal handler function handler calls signal and then calls perror, which
reads errno.

void handler(int signum) {
 pfv old_handler = signal(signum, SIG_DFL);
 if (old_handler == SIG_ERR) {
 perror("SIGINT handler");
 }
}

• errno-setting POSIX function: You call an errno-setting POSIX function in a signal handler but
do not restore errno when returning from the signal handler.

For instance, the signal handler function handler calls waitpid, which changes errno, but does
not restore errno before returning.

void handler(int signum) {
 int rc = waitpid(-1, NULL, WNOHANG);
 if (ECHILD != errno) {
 }
}

Risk

In each case that the checker flags, you risk relying on an indeterminate value of errno.

• signal: If the call to signal in a signal handler fails, the value of errno is indeterminate (see
C11 Standard, Sec. 7.14.1.1). If you rely on a specific value of errno, you can see unexpected
results.

 CERT C++: ERR32-C

24-275

• errno-setting POSIX function: An errno-setting function sets errno on failure. If you read
errno after a signal handler is called and the signal handler itself calls an errno-setting function,
you can see unexpected results.

Fix

Avoid situations where you risk relying on an indeterminate value of errno.

• signal: After calling the signal function in a signal handler, do not read errno or use a
function that reads errno.

• errno-setting POSIX function: Before calling an errno-setting function in a signal handler, save
errno to a temporary variable. Restore errno from this variable before returning from the signal
handler.

Example - Reading errno After signal Call in Signal Handler

#include <signal.h>
#include <stdlib.h>
#include <stdio.h>

#define fatal_error() abort()

void handler(int signum) {
 if (signal(signum, SIG_DFL) == SIG_ERR) {
 perror("SIGINT handler");
 }
}

int func(void) {
 if (signal(SIGINT, handler) == SIG_ERR) {
 /* Handle error */
 fatal_error();
 }
 /* Program code */
 if (raise(SIGINT) != 0) {
 /* Handle error */
 fatal_error();
 }
 return 0;
}

In this example, the function handler is called to handle the SIGINT signal. In the body of handler,
the signal function is called. Following this call, the value of errno is indeterminate. The checker
raises a defect when the perror function is called because perror relies on the value of errno.

Correction — Avoid Reading errno After signal Call

One possible correction is to not read errno after calling the signal function in a signal handler.
The corrected code here calls the abort function via the fatal_error macro instead of the perror
function.

#include <signal.h>
#include <stdlib.h>
#include <stdio.h>

#define fatal_error() abort()

24 CERT C++ Rules

24-276

void handler(int signum) {
 if (signal(signum, SIG_DFL) == SIG_ERR) {
 fatal_error();
 }
}

int func(void) {
 if (signal(SIGINT, handler) == SIG_ERR) {
 /* Handle error */
 fatal_error();
 }
 /* Program code */
 if (raise(SIGINT) != 0) {
 /* Handle error */
 fatal_error();
 }
 return 0;
}

Check Information
Group: 08. Exceptions and Error Handling (ERR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ERR32-C

Introduced in R2019a

 CERT C++: ERR32-C

24-277

https://wiki.sei.cmu.edu/confluence/display/c/ERR32-C.+Do+not+rely+on+indeterminate+values+of+errno

CERT C++: ERR33-C
Detect and handle standard library errors

Description
Rule Definition

Detect and handle standard library errors.

Polyspace Implementation

This checker checks for these issues:

• Errno not checked.
• Returned value of a sensitive standard function not checked.
• Unprotected dynamic memory allocation.

Examples
Errno not checked
Issue

Errno not checked occurs when you call a function that sets errno to indicate error conditions, but
do not check errno after the call. For these functions, checking errno is the only reliable way to
determine if an error occurred.

Functions that set errno on errors include:

• fgetwc, strtol, and wcstol.

For a comprehensive list of functions, see documentation about errno.
• POSIX errno-setting functions such as encrypt and setkey.

Risk

To see if the function call completed without errors, check errno for error values.

The return values of these errno-setting functions do not indicate errors. The return value can be
one of the following:

• void
• Even if an error occurs, the return value can be the same as the value from a successful call. Such

return values are called in-band error indicators.

You can determine if an error occurred only by checking errno.

For instance, strtol converts a string to a long integer and returns the integer. If the result of
conversion overflows, the function returns LONG_MAX and sets errno to ERANGE. However, the
function can also return LONG_MAX from a successful conversion. Only by checking errno can you
distinguish between an error and a successful conversion.

24 CERT C++ Rules

24-278

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152351

Fix

Before calling the function, set errno to zero.

After the function call, to see if an error occurred, compare errno to zero. Alternatively, compare
errno to known error indicator values. For instance, strtol sets errno to ERANGE to indicate
errors.

The error message in the Polyspace result shows the error indicator value that you can compare to.

Example - errno Not Checked After Call to strtol

#include<stdio.h>
#include<stdlib.h>
#include<errno.h>

int main(int argc, char *argv[]) {
 char *str, *endptr;
 int base;

 str = argv[1];
 base = 10;

 long val = strtol(str, &endptr, base);
 printf("Return value of strtol() = %ld\n", val);
}

You are using the return value of strtol without checking errno.

Correction — Check errno After Call

Before calling strtol, set errno to zero . After a call to strtol, check the return value for
LONG_MIN or LONG_MAX and errno for ERANGE.

#include<stdlib.h>
#include<stdio.h>
#include<errno.h>
#include<limits.h>

int main(int argc, char *argv[]) {
 char *str, *endptr;
 int base;

 str = argv[1];
 base = 10;

 errno = 0;
 long val = strtol(str, &endptr, base);
 if((val == LONG_MIN || val == LONG_MAX) && errno == ERANGE) {
 printf("strtol error");
 exit(EXIT_FAILURE);
 }
 printf("Return value of strtol() = %ld\n", val);
}

 CERT C++: ERR33-C

24-279

Returned value of a sensitive standard function not checked
Issue

Returned value of a sensitive standard function not checked occurs when you call sensitive
standard functions, but you:

• Ignore the return value.
• Use an output or a return value without testing the validity of the return value.

For this defect, two type of functions are considered: sensitive and critical sensitive.

A sensitive function is a standard function that can encounter:

• Exhausted system resources (for example, when allocating resources)
• Changed privileges or permissions
• Tainted sources when reading, writing, or converting data from external sources
• Unsupported features despite an existing API

A critical sensitive function is a sensitive function that performs one of these critical or vulnerable
tasks:

• Set privileges (for example, setuid)
• Create a jail (for example, chroot)
• Create a process (for example, fork)
• Create a thread (for example, thrd_create)
• Lock or unlock memory segments (for example, mlock)

Risk

If you do not check the return value of functions that perform sensitive or critical sensitive tasks,
your program can behave unexpectedly. Errors from these functions can propagate throughout the
program causing incorrect output, security vulnerabilities, and possibly system failures.

Fix

Before continuing with the program, test the return value of critical sensitive functions.

For sensitive functions, you can explicitly ignore a return value by casting the function to void.
Polyspace does not raise this defect for sensitive functions cast to void. This resolution is not
accepted for critical sensitive functions because they perform more vulnerable tasks.

Example - Sensitive Function Return Ignored

#include<cstdlib>
#include<cstdio>
#include <wchar.h>
#include <locale.h>
void initialize(size_t n, size_t* size, wchar_t *wcs, const char *utf8) {

 scanf("%d",&n); //Noncompliant
 setlocale (LC_CTYPE, "en_US.UTF-8"); //Noncompliant
 *size = mbstowcs (wcs, utf8, n);
}

24 CERT C++ Rules

24-280

This example shows a call to the sensitive function scanf(). The return value of scanf() is ignored,
causing a defect. Similarly, the pointer returned by setlocale is not checked. When setlocal
returns a NULL pointer, the call to mbstowcs might fail or produce unexpected results. Polyspace
flags these calls to sensitive functions when their returns are not checked.

Correction — Cast Function to (void)

One possible correction is to cast the functions to void. This fix informs Polyspace and any reviewers
that you are explicitly ignoring the return value of these sensitive functions.

#include<cstdlib>
#include<cstdio>
#include <wchar.h>
#include <locale.h>
void initialize(size_t n, size_t* size, wchar_t *wcs, const char *utf8) {

 (void)scanf("%d",&n); //Compliant
 (void)setlocale (LC_CTYPE, "en_US.UTF-8"); //Compliant
 *size = mbstowcs (wcs, utf8, n);
}

Correction — Test Return Value

One possible correction is to test the return value of scanf and setlocale to check for errors.

#include<cstdlib>
#include<cstdio>
#include <wchar.h>
#include <locale.h>
void initialize(size_t n, size_t* size, wchar_t *wcs, const char *utf8) {

 int flag = scanf("%d",&n);
 if(flag>0){ //Compliant
 // action
 }
 char* status = setlocale (LC_CTYPE, "en_US.UTF-8");
 if(status!=NULL){//Compliant
 *size = mbstowcs (wcs, utf8, n);
 }

}

Example — Unchecked Dynamic Memory Allocation

#include <stddef.h>
#include <stdlib.h>

void unchecked_memory_allocation(void) {
 int * p = (int*)calloc(5, sizeof(int));// C-style allocation
 *p = 2; //Noncompliant
 //...
 delete[] p;
}

In this example, memory is dynamically allocated for the pointer *p. The pointer is then used without
checking the output of the dynamic memory allocation operation. Polyspace raises this defect when
pointers are used after an unchecked dynamic memory allocation operation.

 CERT C++: ERR33-C

24-281

Correction — Check Output of Dynamic Memory Allocation

The correction for this defect is to check the return value of the operation new to verify that the
function performed as expected.

#include <stddef.h>
#include <stdlib.h>

void checked_memory_allocation(void) {
 int * p = new int[5];
 if(p==NULL){// Check output of new
 //Handle memory allocation error
 }else{
 *p = 2; //Compliant
 //...
 delete[] p;
 }

}

Unprotected dynamic memory allocation
Issue

Unprotected dynamic memory allocation occurs when you do not check after dynamic memory
allocation whether the memory allocation succeeded.

Risk

When memory is dynamically allocated using malloc, calloc, or realloc, it returns a value NULL if
the requested memory is not available. If the code following the allocation accesses the memory block
without checking for this NULL value, this access is not protected from failures.

Fix

Check the return value of malloc, calloc, or realloc for NULL before accessing the allocated
memory location.

#DEFINE SIZE 8;

int *ptr = malloc(SIZE * sizeof(int));

if(ptr) /* Check for NULL */
{
 /* Memory access through ptr */
}

Example - Unprotected Dynamic Memory Allocation Error

#include <stdlib.h>

void Assign_Value(void)
{
 int* p = (int*)calloc(5, sizeof(int));
 *p = 2; //Noncompliant
 /* Defect: p is not checked for NULL value */
 free(p);
} /*Defect: p is not checked for NULL before deallocating*/

24 CERT C++ Rules

24-282

If the memory allocation fails, the function calloc returns NULL to p. Before accessing the memory
through p or freeing p, the code does not check whether p is NULL. These operations might result in
memory leaks.

Correction — Check for NULL Value

One possible correction is to check whether p has value NULL before dereference.

#include <stdlib.h>

void Assign_Value(void)
 {
 int* p = (int*)calloc(5, sizeof(int));
 /* Fix: Check if p is NULL */
 if(p!=NULL) *p = 2;
 free(p);
 }

Pointer overwritten during reallocation
Issue

Pointer overwritten during reallocation occurs when you overwrite the original pointer by the
return value of realloc(). For instance:

p = realloc(p,SIZE);

Risk

The function realloc() returns a NULL value when memory allocation fails. In the preceding code,
because you overwrite p by the return of realloc(), it becomes NULL when the reallocation
operation fails. You lose the connection between the original memory block and p, resulting in a
memory leak.

Fix

When reallocating pointers, preserve the original pointer. For instance, you might use a temporary
variable to store the reallocated memory.

Example — Avoid Overwriting Original Pointer When Reallocating Memory

#include <stdlib.h>

void foo (int* ptrI, size_t new_size)
{

 if (new_size == 0) {
 /* Handle error */
 return;
 }

 ptrI = (int*)realloc (ptrI, new_size); //Noncompliant

 if (ptrI == NULL) {
 /* Handle error */
 return;
 }
}

 CERT C++: ERR33-C

24-283

Overwriting the pointer ptrI by the pointer returned by realloc destroys the association between
ptrI and the original memory block. If realloc fails, such overwriting might cause a memory leak
and data loss.

Correction — Store Reallocated Memory in Temporary Variable

When reallocating a pointer, use a temporary variable to hold the reallocated memory. Before
assigning the temporary variable to ptrI, check it for NULL value to avoid memory leaks and data
loss.

#include <stdlib.h>

void foo (int* ptrI, size_t new_size)
{
int* temp;
 if (new_size == 0) {
 /* Handle error */
 return;
 }

 temp = (int*)realloc (ptrI, new_size); //Compliant

 if (temp == NULL) {
 /* Handle error */
 return;
 }else{
 ptrI = temp;
 }
}

Check Information
Group: 08. Exceptions and Error Handling (ERR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ERR33-C

Introduced in R2019a

24 CERT C++ Rules

24-284

https://wiki.sei.cmu.edu/confluence/display/c/ERR33-C.+Detect+and+handle+standard+library+errors

CERT C++: ERR34-C
Detect errors when converting a string to a number

Description
Rule Definition

Detect errors when converting a string to a number.

Polyspace Implementation

This checker checks for Unsafe conversion from string to numerical value.

Examples
Unsafe conversion from string to numerical value
Issue

Unsafe conversion from string to numerical value detects conversions from strings to integer or
floating-point values. If your conversion method does not include robust error handling, a defect is
raised.

Risk

Converting a string to numerical value can cause data loss or misinterpretation. Without validation of
the conversion or error handling, your program continues with invalid values.

Fix

• Add additional checks to validate the numerical value.
• Use a more robust string-to-numeric conversion function such as strtol, strtoll, strtoul, or

strtoull.

Example - Conversion With atoi

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static int demo_check_string_not_empty(char *s)
{
 if (s != NULL)
 return strlen(s) > 0; /* check string null-terminated and not empty */
 else
 return 0;
}

int unsafestrtonumeric(char* argv1)
{
 int s = 0;
 if (demo_check_string_not_empty(argv1))
 {

 CERT C++: ERR34-C

24-285

 s = atoi(argv1);
 }
 return s;
}

In this example, argv1 is converted to an integer with atoi. atoi does not provide errors for an
invalid integer string. The conversion can fail unexpectedly.

Correction — Use strtol instead

One possible correction is to use strtol to validate the input string and the converted integer.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <errno.h>

static int demo_check_string_not_empty(char *s)
{
 if (s != NULL)
 return strlen(s) > 0; /* check string null-terminated and not empty */
 else
 return 0;
}

int unsafestrtonumeric(char *argv1)
{
 char *c_str = argv1;
 char *end;
 long sl;

 if (demo_check_string_not_empty(c_str))
 {
 errno = 0; /* set errno for error check */
 sl = strtol(c_str, &end, 10);
 if (end == c_str)
 {
 (void)fprintf(stderr, "%s: not a decimal number\n", c_str);
 }
 else if ('\0' != *end)
 {
 (void)fprintf(stderr, "%s: extra characters: %s\n", c_str, end);
 }
 else if ((LONG_MIN == sl || LONG_MAX == sl) && ERANGE == errno)
 {
 (void)fprintf(stderr, "%s out of range of type long\n", c_str);
 }
 else if (sl > INT_MAX)
 {
 (void)fprintf(stderr, "%ld greater than INT_MAX\n", sl);
 }
 else if (sl < INT_MIN)
 {
 (void)fprintf(stderr, "%ld less than INT_MIN\n", sl);
 }
 else
 {

24 CERT C++ Rules

24-286

 return (int)sl;
 }
 }
 return 0;
}

Check Information
Group: 08. Exceptions and Error Handling (ERR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ERR34-C

Introduced in R2019a

 CERT C++: ERR34-C

24-287

https://wiki.sei.cmu.edu/confluence/display/c/ERR34-C.+Detect+errors+when+converting+a+string+to+a+number

CERT C++: ERR50-CPP
Do not abruptly terminate the program

Description
Rule Definition

Do not abruptly terminate the program.

Polyspace Implementation

This checker checks for Implicit call to terminate() function.

Examples
Implicit call to terminate() function
Issue

The checker flags situations that might result in calling the function std::terminate() implicitly.
These situations might include:

• An exception remains unhandled. For instance:

• While handling an exception, it escapes through another function that raises an unhandled
exception. For instance, a catch statement or exception handler invokes another function that
raises an unhandled exception.

• An empty throw statement raises an unhandled exception again.
• A class destructor raises an exception.
• A termination handler that is passed to std::atexit raises an unhandled exception.

Risk

Depending on the hardware and software that you use, calling terminate() implicitly might result
in a call to std::abort(), which aborts program execution without deleting the variables in the
stack. Such an abnormal termination results in memory leaks and security vulnerabilities.

Fix

To avoid implicit calls to terminate():

• Avoid unhandled exceptions. For instance, execute the operations of main() or task main
functions in a try-catch block. In the catch blocks:

• Handle exceptions of type std::exception explicitly in appropriate catch blocks.
• Handle the base class of exceptions arising from third-party libraries.
• Handle unexpected exceptions in a catch(...) block.

• Declare destructors as noexcept and handle the exceptions in destructors.
• Handle all exceptions in termination handlers.

24 CERT C++ Rules

24-288

Example — Implicit Call to terminate

#include <stdexcept>
int main(){ // Noncompliant
 try {
 // program code
 } catch (std::runtime_error& e) {
 // Handle runtime errors
 } catch (std::logic_error& e) {
 // Handle logic errors
 } catch (std::exception& e) {
 // Handle all expected exceptions
 }
 return 0;
}

In this example, main() handles specific types of exceptions. An unexpected exception remains
unhandled, resulting in an implicit call to the function terminate that terminates the program
abruptly. Because main() calls terminate implicitly, Polyspace raises this defect.

Correction — Handle Unexpected Exceptions

One possible correction is to include a catch(...) block to handle unexpected exceptions so that
the program can exit gracefully.

#include <stdexcept>
[[noreturn]] void gracefulExit(){
 // unwind stack and report errors
 std::terminate();
}
int main() // Compliant
{
 try {
 // program code
 } catch (std::runtime_error& e) {
 // Handle runtime errors
 } catch (std::logic_error& e) {
 // Handle logic errors
 } catch (std::exception& e) {
 // Handle all expected exceptions
 }
 catch(...){
 //Exit gracefully
 gracefulExit();
 }
 return 0;
}

Example — Unhandled Exceptions in Termination Handlers

The termination handler atexit_handler raises an uncaught exception. The function
atexit_handler executes after the main finishes execution. Unhandled exceptions in this function
cannot be handled elsewhere, leading to an implicit call to std::terminate(). Polyspace flags the
function.

#include <stdexcept>
void atexit_handler(){//Noncompliant
 throw std::runtime_error("Error in atexit function");

 CERT C++: ERR50-CPP

24-289

}
void main(){
 try{
 //...
 std::atexit(atexit_handler);
 }catch(...){

 }
}

Correction — Handle All Exceptions in Termination Handlers

To correct the issue, use a catch(...) block to handle all exceptions in the termination handler
atexit_handler.

#include <stdexcept>
void atexit_handler(){
 try{
 //..
 throw std::runtime_error("Error in atexit function");
 }catch(...){
 //...
 }
}
void main(){
 try{
 //...
 std::atexit(atexit_handler);
 }catch(...){

 }
}

Check Information
Group: 08. Exceptions and Error Handling (ERR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ERR50-CPP

Introduced in R2019a

24 CERT C++ Rules

24-290

https://wiki.sei.cmu.edu/confluence/display/cplusplus/ERR50-CPP.+Do+not+abruptly+terminate+the+program

CERT C++: ERR51-CPP
Handle all exceptions

Description
Rule Definition

Handle all exceptions.

Polyspace Implementation

This checker checks for Unhandled exception not caught.

Examples
Unhandled exception not caught
Issue

The checker shows a violation if there is no try/catch in the main function or the catch block does
not handle all exceptions by using a catch(...) block. The rule is not checked if a main function
does not exist.

The checker does not determine if an exception of an unhandled type actually propagates to main.

Bug Finder and Code Prover interpret this coding rule differently. Their analyses can produce
different results.

Risk

Depending on the hardware and software that you use, unhandled exceptions might result in a call to
std::abort(), which aborts program execution without deleting the variables in the stack. Such an
abnormal termination results in memory leaks and security vulnerabilities.

Fix

Avoid unhandled exceptions. For instance, execute the operations of main() or task main functions in
a try-catch block. In the catch blocks:

• Handle exceptions of type std::exception explicitly in appropriate catch blocks.
• Handle the base class of exceptions arising from third-party libraries.
• Handle unexpected exceptions in a catch(...) block.

Example — Exceptions Might Remain Unhandled

#include <stdexcept>
int main(){ // Noncompliant
 try {
 // program code
 } catch (std::runtime_error& e) {
 // Handle runtime errors
 } catch (std::logic_error& e) {

 CERT C++: ERR51-CPP

24-291

 // Handle logic errors
 } catch (std::exception& e) {
 // Handle all expected exceptions
 }
 return 0;
}

In this example, main() handles specific types of exceptions, but lacks a catch(...) block. An
unexpected exception remains unhandled. Because main() does not handle all exceptions, Polyspace
raises this defect.

Correction

One possible correction is to include a catch(...) block to handle unexpected exceptions.

#include <stdexcept>
int main(){ // Compliant
 try {
 // program code
 } catch (std::runtime_error& e) {
 // Handle runtime errors
 } catch (std::logic_error& e) {
 // Handle logic errors
 } catch (std::exception& e) {
 // Handle all expected exceptions
 }
 catch(...){
 //Exit gracefully
 }
 return 0;
}

Check Information
Group: 08. Exceptions and Error Handling (ERR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ERR51-CPP

Introduced in R2019a

24 CERT C++ Rules

24-292

https://wiki.sei.cmu.edu/confluence/display/cplusplus/ERR51-CPP.+Handle+all+exceptions

CERT C++: ERR52-CPP
Do not use setjmp() or longjmp()

Description
Rule Definition

Do not use setjmp() or longjmp().

Polyspace Implementation

This checker checks for Use of setjmp/longjmp.

Examples
Use of setjmp/longjmp
Issue

Use of setjmp/longjmp occurs when you use a combination of setjmp and longjmp or sigsetjmp
and siglongjmp to deviate from normal control flow and perform non-local jumps in your code.

Risk

Using setjmp and longjmp, or sigsetjmp and siglongjmp has the following risks:

• Nonlocal jumps are vulnerable to attacks that exploit common errors such as buffer overflows.
Attackers can redirect the control flow and potentially execute arbitrary code.

• Resources such as dynamically allocated memory and open files might not be closed, causing
resource leaks.

• If you use setjmp and longjmp in combination with a signal handler, unexpected control flow can
occur. POSIX does not specify whether setjmp saves the signal mask.

• Using setjmp and longjmp or sigsetjmp and siglongjmp makes your program difficult to
understand and maintain.

Fix

Perform nonlocal jumps in your code using setjmp/longjmp or sigsetjmp/siglongjmp only in
contexts where such jumps can be performed securely. Alternatively, use POSIX threads if possible.

In C++, to simulate throwing and catching exceptions, use standard idioms such as throw
expressions and catch statements.

Example - Use of setjmp and longjmp

#include <setjmp.h>
#include <signal.h>

extern int update(int);
extern void print_int(int);

static jmp_buf env;

 CERT C++: ERR52-CPP

24-293

void sighandler(int signum) {
 longjmp(env, signum);
}
void func_main(int i) {
 signal(SIGINT, sighandler);
 if (setjmp(env)==0) {
 while(1) {
 /* Main loop of program, iterates until SIGINT signal catch */
 i = update(i);
 }
 } else {
 /* Managing longjmp return */
 i = -update(i);
 }

 print_int(i);
 return;
}

In this example, the initial return value of setjmp is 0. The update function is called in an infinite
while loop until the user interrupts it through a signal.

In the signal handling function, the longjmp statement causes a jump back to main and the return
value of setjmp is now 1. Therefore, the else branch is executed.

Correction — Use Alternative to setjmp and longjmp

To emulate the same behavior more securely, use a volatile global variable instead of a
combination of setjmp and longjmp.

#include <setjmp.h>
#include <signal.h>

extern int update(int);
extern void print_int(int);

volatile sig_atomic_t eflag = 0;

void sighandler(int signum) {
 eflag = signum; /* Fix: using global variable */
}

void func_main(int i) {
 /* Fix: Better design to avoid use of setjmp/longjmp */
 signal(SIGINT, sighandler);
 while(!eflag) { /* Fix: using global variable */
 /* Main loop of program, iterates until eflag is changed */
 i = update(i);
 }

 print_int(i);
 return;
}

Check Information
Group: 08. Exceptions and Error Handling (ERR)

24 CERT C++ Rules

24-294

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ERR52-CPP

Introduced in R2019a

 CERT C++: ERR52-CPP

24-295

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046492

CERT C++: ERR53-CPP
Do not reference base classes or class data members in a constructor or destructor function-try-block
handler

Description
Rule Definition

Do not reference base classes or class data members in a constructor or destructor function-try-block
handler.

Polyspace Implementation

This checker checks for Constructor or destructor function-try-block handler references base
classes or class data members.

Examples
Constructor or destructor function-try-block handler references base classes or class data
members
Issue

The issue occurs when handlers of a function-try-block implementation of a class constructor or
destructor references non-static members from this class or its bases.

Check Information
Group: 08. Exceptions and Error Handling (ERR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ERR53-CPP

Introduced in R2019a

24 CERT C++ Rules

24-296

https://wiki.sei.cmu.edu/confluence/display/cplusplus/ERR53-CPP.+Do+not+reference+base+classes+or+class+data+members+in+a+constructor+or+destructor+function-try-block+handler

CERT C++: ERR54-CPP
Catch handlers should order their parameter types from most derived to least derived

Description
Rule Definition

Catch handlers should order their parameter types from most derived to least derived.

Polyspace Implementation

This checker checks for these issues:

• Exception handlers not ordered from most-derived to base class.
• Incorrect order of ellipsis handler.

Examples
Exception handlers not ordered from most-derived to base class

Issue

The issue occurs when you provide multiple handlers in a single try-catch statement or function-try-
block for a derived class and some or all of its bases, and the handlers are not ordered from most-
derived to base class.

Incorrect order of ellipsis handler

Issue

The issue occurs when you provide multiple handlers in a single try-catch statement or function-try-
block, and the ellipsis (catch-all) handler does not occur last.

Check Information
Group: 08. Exceptions and Error Handling (ERR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ERR54-CPP

Introduced in R2019a

 CERT C++: ERR54-CPP

24-297

https://wiki.sei.cmu.edu/confluence/display/cplusplus/ERR54-CPP.+Catch+handlers+should+order+their+parameter+types+from+most+derived+to+least+derived

CERT C++: ERR55-CPP
Honor exception specifications

Description
Rule Definition

Honor exception specifications

Polyspace Implementation

This checker checks for Noexcept functions exiting with exception.

Examples
Noexcept functions exiting with exception

Issue

This defect occurs when a noexcept entity might exit with an exception. The compiler omits the
exception handing process for noexcept entities. When such an entity exits with an exception, the
exception becomes unhandled, leading to abnormal program termination.

When a noexcept entity invokes other callable entities, Polyspace makes certain assumptions to
calculate whether there might be unhandled exceptions.

• Function: When a noexcept function calls another function, Polyspace checks whether the called
function might raise an exception only if it is specified as noexcept(<false>). If the called
function is specified as noexcept, Polyspace assumes that it does not raise an exception. Some
standard library functions, such as the constructor of std::string, use pointers to functions to
perform memory allocation, which might raise exceptions. Because these functions are not
specified as noexcept(<false>), Polyspace does not flag a function that calls these standard
library functions.

• External function: When a noexcept function calls an external function, Polyspace flags the
function declaration if the external function is specified as noexcept(<false>).

• Virtual function: When a function calls a virtual function, Polyspace flags the function declaration
if the virtual function is specified as noexcept(<false>) in a derived class. For instance, if a
noexcept function calls a virtual function that is declared as noexcept(<true>) in the base
class, and noexcept(<false>) in a subsequent derived class, Polyspace flags the declaration of
the noexcept function.

• Pointers to function: When a noexcept function invokes a pointer to a function, Polyspace
assumes that the pointer to the function does not raise exceptions.

When analyzing whether a function raises unhandled exceptions, Polyspace ignores:

• Exceptions raised in destructors
• Exceptions raised in atexit() operations

24 CERT C++ Rules

24-298

Polyspace also ignores the dynamic context when checking for exceptions. For instance, a function
might raise unhandled exceptions only in certain dynamic contexts. Polyspace flags such a function
even if the exception might not be raised.

Risk

If a noexcept function exits with an exception, the compiler invokes std::terminate() implicitly.
The function std::terminate() terminates the program execution in an implementation-defined
manner. That is, the exact process of program termination depends on the particular set of software
and hardware that you use. For instance, std:terminate() might invoke std::abort() to
abnormally abort the execution without unwinding the stack, leading to resource leak and security
vulnerabilities.

Fix

Specify a function as noexcept or noexcept(true) only when you know that the function does not
exit with an exception. If you are not sure, specify it by using noexcept(false)

Example

Consider this code where two functions are specified as noexcept. Polyspace statically analyzes
these functions and the functions that they call.

#include <stdexcept>
#include <typeinfo>
bool f(bool flag){
 if(flag==true)
 throw flag;
 return flag;

}
void LibraryFunc_noexcept_false() noexcept(false);
void SpecFalseCT() noexcept // Noncompliant
{
 try {
 LibraryFunc_noexcept_false();
 } catch (int &e) {
 LibraryFunc_noexcept_false();
 } catch (std::exception &e) {
 } catch (...) {
 }
}
bool flag = false;
void Caller() noexcept { //Noncompliant
 try {
 if(f(flag)){
 //...
 }
 } catch (int i) {
 //...
 }
}

• Polyspace flags the noexcept function SpecFaleCT() because this function calls the
noexcept(false) external function LibraryFunc_noexcept_false() without handling any
exceptions that can be raised from it. These exceptions can cause the noexcept function to exit
with an exception.

 CERT C++: ERR55-CPP

24-299

• Polyspace flags the noexcept function Caller because this function calls the noexcept(false)
function f(), which contains an explicit throw statement. Even though the throw statement is
not executed when flag is false, Polyspace ignores the dynamic context and flags Caller.

Correction

When defining functions, specify them as noexcept only when all possible exceptions are handled
within the function. Otherwise, specify them as noexcept(false). In cases where an exception is
not raised in the dynamic context, justify this defect by using comments.

#include <stdexcept>
#include <typeinfo>
bool f(bool flag){
 if(flag==true)
 throw flag;
 return flag;

}
void LibraryFunc_noexcept_false() noexcept(false);
void SpecFalseCT() noexcept(false)// Compliant
{
 try {
 LibraryFunc_noexcept_false();
 } catch (int &e) {
 LibraryFunc_noexcept_false();
 } catch (std::exception &e) {
 } catch (...) {
 }
}
bool flag = false;
void Caller() noexcept{//Noncompliant // polyspace CERT-CPP:ERR55-CPP
//[Justified:Unset] "Exception is not thrown when flag is false"
 try {
 if(f(flag)){
 //...
 }
 } catch (int i) {
 //...
 }
}

• The function SpecFalseCT is now specified as noexcept(false) because it calls an external
function that can raise exceptions. This function is compliant with this rule.

• The function f() does not raise an exception when flag is false. The function Caller honors
its exception specification, but Polyspace flags it because Polyspace ignores dynamic context. This
defect is justified by using a comment.

Check Information
Group: 08. Exceptions and Error Handling (ERR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

24 CERT C++ Rules

24-300

External Websites
ERR55-CPP

Introduced in R2020b

 CERT C++: ERR55-CPP

24-301

https://wiki.sei.cmu.edu/confluence/display/cplusplus/ERR55-CPP.+Honor+exception+specifications

CERT C++: ERR57-CPP
Do not leak resources when handling exceptions

Description
Rule Definition

Do not leak resources when handling exceptions.4

Polyspace Implementation

This checker checks for these issues:

• Resource leak caused by exception
• Object left in partially initialized state
• Bad allocation in constructor

Examples
Resource leak caused by exception
Issue

Resource leak caused by exception occurs when a function raises an unhandled exception by
using a throw statement but does not deallocate the resources that were allocated before the
exception.

Risk

When a function raises an unhandled exception it immediately goes out of scope. If the function
manages resources and they are not deallocated prior to raising the exception, the resource is leaked.
Consider this code:

FILE* FilePtr;
//...
void foo(){
 FilePtr = fopen("some_file.txt", "r");

4. This software has been created by MathWorks incorporating portions of: the “SEI CERT-C Website,” © 2017 Carnegie
Mellon University, the SEI CERT-C++ Web site © 2017 Carnegie Mellon University, ”SEI CERT C Coding Standard –
Rules for Developing safe, Reliable and Secure systems – 2016 Edition,” © 2016 Carnegie Mellon University, and “SEI
CERT C++ Coding Standard – Rules for Developing safe, Reliable and Secure systems in C++ – 2016 Edition” © 2016
Carnegie Mellon University, with special permission from its Software Engineering Institute.

ANY MATERIAL OF CARNEGIE MELLON UNIVERSITY AND/OR ITS SOFTWARE ENGINEERING INSTITUTE
CONTAINED HEREIN IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM
USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This software and associated documentation has not been reviewed nor is it endorsed by Carnegie Mellon University or
its Software Engineering Institute.

24 CERT C++ Rules

24-302

//...
 if(/*error condition*/)
 throw ERROR_CODE;
 //...
 fclose(FilePtr);
}

The allocated file pointer is intended to be deallocated before the function finishes execution. When
an exception takes place, the function exits without deleting the pointer, which results in a resource
leak.

Fix

To fix this defect, a function must set all resources that it allocates to a valid state before it goes out
of scope. In the preceding code example, the function must delete the pointer FilePtr before the
throw statement.

Instead of manually tracking the allocation and deallocation of resources, the best practice is to
follow either the Resource Acquisition Is Initialization (RAII) or the Constructor Acquires, Destructor
Releases (CADre) design patterns. Resource allocation is performed in constructors and resource
deallocation is performed in destructors. The lifecycle of resources are controlled by scope-bound
objects. When functions reach the end of their scope, the acquired resources are properly released.
Consider this code:

void releaseFile(std::FILE* fp) { std::fclose(fp); }
std::unique_ptr<std::FILE, decltype(&releaseFile)> FilePtr;
//...
void foo(){
 FilePtr(std::fopen("some_file.txt"),&releaseFile);
//...
 if(/*error condition*/)
 throw ERROR_CODE;
}

The unique pointer FilePTR invokes the function releaseFile to delete the allocated resource
once the function foo reaches the end of its scope. Whether the function exits normally with an
unhandled exception, the allocated resources are deallocated.

C++ smart pointers such as std::unique_ptr and std::shared_ptr follow the RAII pattern.
They simplify managing the lifecycle of resources during exception handling. Whenever possible,
avoid using raw pointers.

Example — Resource Leak Caused by Exception

#include <cstdint>
#include <memory>
#include <stdexcept>
extern int sensorFlag() noexcept;
namespace Noncompliant{
 void func(){
 int* intPtr = new int;
 int data = sensorFlag();
 if(data==-1)//Error
 throw std::runtime_error("Unexpected value");//Noncompliant
 //...
 delete intPtr;

 CERT C++: ERR57-CPP

24-303

 }
}

In this example, the function Noncompliant::func() manages the raw pointer inPtr. The
function allocates memory for it, and then releases the memory after some operations. The function
exits with an exception when data is -1. In this case, the function exits before releasing the allocated
memory, resulting in a memory leak. Polyspace flags the throw statement.

Correction — Deallocate Resources Before throw Statements

To prevent memory leak, the allocated memory must be released before raising the exception, as
shown in Compliant::func.

The best practice is to follow the RAII design pattern. For instance, when C++14 is available, use
unique_ptr instead of a raw pointer. BestPractice::func shows an implementation of func that
follows the RAII pattern. The memory lifecycle is managed by the object itself. That is, once func is
out of scope, the smart pointer intPtr deletes itself and releases the memory. Because the memory
management is performed correctly by the smart pointer, BestPractice::func is simpler and
safer.

#include <cstdint>
#include <memory>
#include <stdexcept>

extern int sensorFlag() noexcept;
 namespace Compliant{
 void func(){
 int* intPtr = new int;
 int data = sensorFlag();
 if(data==-1){//Error
 delete intPtr;
 throw std::runtime_error("Unexpected value");//Compliant
 }
 //...
 delete intPtr;
 }
}
namespace BestPractice{// C++14
 void func(){
 std::unique_ptr<int> intPtr = std::make_unique<int>();
 int data = sensorFlag();
 if(data==-1){//Error
 throw std::runtime_error("Unexpected value");//Compliant
 }
 //...

 }
}

Object left in partially initialized state
Issue

Object left in partially initialized state occurs when a noexcept(false) constructor raises an
unhandled exception but does not deallocate the resources that were allocated before the exception.
This issue is detected only in classes that your code uses.

24 CERT C++ Rules

24-304

Risk

A constructor goes out of scope when it raises an unhandled exception. If the constructor manages
resources and they are not deallocated prior to raising the exception, the object is left in a partially
initialized state. This behavior is undefined and can produce unexpected results.

Fix

To fix this defect, keep track of the allocated resources and deallocate them before raising exception.

Instead of manually tracking the allocation and deallocation of resources, the best practice is to
follow either the Resource Acquisition Is Initialization (RAII) or the Constructor Acquires, Destructor
Releases (CADre) design patterns. Resource allocation is performed in constructors and resource
deallocation is performed in destructors. The lifecycle of resources are controlled by scope-bound
objects. When functions reach the end of their scope, the acquired resources are properly released.
Consider this code:

class complex_ptr{
 complex_ptr() = default;
 ~complex_ptr() = default;
 private:
 std::unique_ptr<std::complex<double> > z;

};

The class complex_ptr uses the implicit default constructor because the resource management is
performed by the smart pointer class unique_ptr. The default constructor does not raise exceptions
and the object is not left in a partially initialized state.

C++ smart pointers such as std::unique_ptr and std::shared_ptr follow the RAII pattern.
They simplify managing the lifecycle of resources during exception handling. Whenever possible,
avoid using raw pointers.

Example — Partially Constructed Object Caused by Exceptions

#include<cstdlib>
 class complex_ptr{

 complex_ptr(){
 real = (double*)malloc(sizeof(double));
 imag = (double*)malloc(sizeof(double));
 if(real==nullptr || imag==nullptr){
 throw; //Noncompliant
 }
 }
 ~complex_ptr(){
 free(real);
 free(imag);
 }
 private:
 double* real;
 double* imag;

};void foo(void){
 complex_ptr Z;

 CERT C++: ERR57-CPP

24-305

 //...
}

In this example, the class complex_ptr is responsible for allocating and deallocating two raw
pointers to double. The constructor complex_ptr::complex_ptr() terminates with an exception
when a memory allocation operation fails. The constructor exits without deallocating the allocated
resources, resulting in a partially constructed object. Polyspace flags the throw statement in the
constructor.

Correction — Deallocate Resources Before raising Exceptions in Constructors

To correct this defect, deallocate the allocated resources before raising exceptions in constructor. In
this code, before raising the exception, the constructor deallocates the allocated memory by calling
deallocate(). This constructor is compliant with this rule.

#include<cstdlib>
 class complex_ptr{

 complex_ptr(){
 real = (double*)malloc(sizeof(double));
 imag = (double*)malloc(sizeof(double));
 if(real==nullptr || imag==nullptr){
 deallocate();
 throw; //Compliant
 }
 }
 void deallocate(){
 free(real);
 free(imag);
 }
 ~complex_ptr(){
 deallocate();
 }
 private:
 double* real;
 double* imag;

};void foo(void){
 complex_ptr Z;
 //...
}

Bad allocation in constructor
Issue

Bad allocation in constructor occurs when a new operation is performed in a constructor without
using the argument std::nothrow or outside exception handling blocks such as try or function-
try.

Risk

The new operations might fail and raise a std::bad_alloc exception. If these statements are not
enclosed in a try or function-try block, the exception might cause an abrupt termination of a
constructor. Such an abrupt termination might leave the object in a partially constructed state, which
is undefined behavior in the C++ standard.

24 CERT C++ Rules

24-306

Fix

When using the new operator, enclose it in a try or function-try block.

Example — Bad Allocation in Constructors

#include<cstdlib>
#include <stdexcept>
#include <new>
 class complex_ptr{

 complex_ptr(): real(new double), imag(new double){ //Noncompliant

 }
 ~complex_ptr(){
 delete real;
 delete imag;
 }
 private:
 double* real;
 double* imag;

};
void foo(void){
 complex_ptr Z;
 //...
}

In this example, the constructor of complex_ptr performs new operations that might raise
exceptions. Because the constructor has no mechanism for handling these exceptions, they might
cause the constructor to abruptly terminate. Such termination might leave the object in partially
defined state because the allocated resources are not deallocated. Polyspace flags the constructor.

Correction — Handle Exceptions Arising from new Operations in Constructors

To correct this defect, perform the new operation in a try or function-try block.

#include<cstdlib>
#include <stdexcept>
#include <new>
 class complex_ptr{

 complex_ptr()try: real(new double), imag(new double){ //Compliant

 }catch(std::bad_alloc){
 //...
 }
 ~complex_ptr(){
 delete real;
 delete imag;
 }
 private:
 double* real;
 double* imag;

};
void foo(void){
 complex_ptr Z;

 CERT C++: ERR57-CPP

24-307

 //...
}

Check Information
Group: Rule 08. Exceptions and Error Handling (ERR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ERR57-CPP

Introduced in R2021a

24 CERT C++ Rules

24-308

https://wiki.sei.cmu.edu/confluence/display/cplusplus/ERR57-CPP.+Do+not+leak+resources+when+handling+exceptions

CERT C++: ERR58-CPP
Handle all exceptions thrown before main() begins executing

Description
Rule Definition

Handle all exceptions thrown before main() begins executing.

Polyspace Implementation

This checker checks for Exceptions raised during program startup.

Examples
Exceptions raised during program startup
Issue

This defect occurs when an exception might arise during the construction of global and static
variables before main() begins executing. If an exception is raised during the startup phase, you
cannot write an exception handler that the compiler can execute to handle the raised exception. This
exception becomes an unhandled exception. For instance, you might implement main() as a
function-try-catch block to handle exceptions. None of the catch blocks can handle exceptions
raised during the startup phase and these raised exceptions become unhandled exceptions.

When you invoke callable entities to initialize or declare global or static variables, these entities are
executed during program startup. Polyspace checks whether these entities might raise exceptions
during program startup by making certain assumptions.

• Function: When you call an initializer function or constructor directly to initialize a global or static
variable, Polyspace checks whether the function raises an exception and flags the variable
declaration if the function might raise an exception. Polyspace deduces whether a function might
raise an exception regardless of its exception specification. For instance, if a noexcept
constructor raises an exception, Polyspace flags it. If the initializer or constructor calls another
function, Polyspace assumes the called function might raise an exception only if it is specified as
noexcept(<false>). Some standard library functions, such as the constructor of std::string,
use pointers to functions to perform memory allocation, which might raise exceptions. Polyspace
does not flag the variable declaration when these functions are used.

• External function: When you call external functions to initialize a global or static variable,
Polyspace flags the declaration if the external function is specified as noexcept(<false>).

• Virtual function: When you call a virtual function to initialize a global or static variable, Polyspace
flags it if the virtual function is specified as noexcept(<false>) in any derived class. For
instance, if you use a virtual initializer function that is declared as noexcept(<true>) in the
base class, and noexcept(<false>) in a subsequent derived class, Polyspace flags it.

• Pointers to function: When you use a pointer to a function to initialize a global or static variable,
Polyspace assumes that pointer to a function do not raise exceptions.

Polyspace ignores:

 CERT C++: ERR58-CPP

24-309

• Exceptions raised in destructors
• Exceptions raised in atexit() operations

Polyspace also ignores the dynamic context when checking for exceptions. For instance, you might
initialize a global or static variable by using a function that raises exceptions only in a certain
dynamic context. Polyspace flags such a declaration even if the exception might never be raised. You
can justify such a violation by using comments in Polyspace.
Risk

When exceptions are not handled, the compiler might abnormally terminate the code execution
without unwinding the stack depending on the set of hardware and software that you use. Consider
this code where the construction of the static object obj might cause an exception.

class A{
 A(){throw(0);}
};

static A obj;

main(){
 //...
}

The static object obj is constructed by calling A() before main() starts. When A() raises an
exception, a handler cannot be matched with the raised exception. Based on the set of software and
hardware that you use, such an exception can result in program termination without stack unwinding,
leading to memory leak and security vulnerabilities.
Fix

Avoid operations that might raise an exception in the parts of your code that might be executed
before startup or after termination of the program. For instance, avoid operations that might raise
exceptions in the constructor and destructor of static or global objects.
Example

Consider this code where the construction of the global pointer arr requires dynamic memory
allocation.

#include <stdexcept>
void* alloc(size_t s) noexcept {
 return new int[s];
}
int* arr = (int*)alloc(5);//Noncompliant
int main(){
 //..
 return 0;
}

Dynamic memory allocation by using the new operator can raise an exception. Because constructing
arr can raise an exception before main() begins execution, Polyspace flags the declaration.
Correction

Avoid operations that might raise exception when constructing global objects. For instance, you can
initialize the global pointer arr by using a nullptr. Then allocate memory for arr in main() in a
try-catch code block.

24 CERT C++ Rules

24-310

#include <stdexcept>
#include<vector>
void* alloc(size_t s) noexcept {
 return new int[s];
}
int* arr =nullptr;
int main(){
 try{
 arr = (int*)alloc(5);
 }
 catch(std::bad_alloc e){
 //..
 }
 //..
 return 0;
}

In this case, the dynamic memory allocation operation raises the std::bad_alloc exception in
main() where it can be handled by the catch blocks of code.

Check Information
Group: 08. Exceptions and Error Handling (ERR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ERR58-CPP

Introduced in R2020b

 CERT C++: ERR58-CPP

24-311

https://wiki.sei.cmu.edu/confluence/display/cplusplus/ERR58-CPP.+Handle+all+exceptions+thrown+before+main%28%29+begins+executing

CERT C++: ERR61-CPP
Catch exceptions by lvalue reference

Description
Rule Definition

Catch exceptions by lvalue reference.

Polyspace Implementation

This checker checks for Exception object initialized by copy in catch statement.

Examples
Exception object initialized by copy in catch statement
Issue

The issue occurs when a catch statement

catch (exceptionType customExc) {
 //...
}

initializes the exception object customExc by copy.

Risk

If exceptionType has a nontrivial copy constructor or if the exception thrown belongs to a class
derived from exceptionType, the copying can produce object slicing or undefined behavior.

Fix

Catch the exception by reference or const reference.

catch (exceptionType &customExc) {
 //...
}

Example - Derived Class Exception Caught by Value

#include <exception>
#include <string>
#include <typeinfo>
#include <iostream>

// Class declarations
class BaseExc {
public:
 explicit BaseExc();
 virtual ~BaseExc() {};
protected:
 BaseExc(const std::string& type);

24 CERT C++ Rules

24-312

private:
 std::string _id;
};

class IOExc: public BaseExc {
public:
 explicit IOExc();
};

//Class method declarations
BaseExc::BaseExc():_id(typeid(this).name()) {
}
BaseExc::BaseExc(const std::string& type): _id(type) {
}
IOExc::IOExc(): BaseExc(typeid(this).name()) {
}

int input(void);

int main(void) {
 int rnd = input();
 try {
 if (rnd==0) {
 throw IOExc();
 } else {
 throw BaseExc();
 }
 }

 catch(BaseExc exc) {
 std::cout << "Intercept BaseExc" << std::endl;
 }
 return 0;
}

In this example, the catch statement takes a BaseExc object by value. Catching exceptions by value
causes copying of the object. The copying can cause:

• Undefined behavior of the exception if it fails.
• Object slicing if an exception of the derived class IOExc is caught.

Correction — Catch Exceptions by Reference

One possible correction is to catch exceptions by reference.

#include <exception>
#include <string>
#include <typeinfo>
#include <iostream>

// Class declarations
class BaseExc {
public:
 explicit BaseExc();
 virtual ~BaseExc() {};
protected:
 BaseExc(const std::string& type);

 CERT C++: ERR61-CPP

24-313

private:
 std::string _id;
};

class IOExc: public BaseExc {
public:
 explicit IOExc();
};

//Class method declarations
BaseExc::BaseExc():_id(typeid(this).name()) {
}
BaseExc::BaseExc(const std::string& type): _id(type) {
}
IOExc::IOExc(): BaseExc(typeid(this).name()) {
}

int input(void);

int main(void) {
 int rnd = input();
 try {
 if (rnd==0) {
 throw IOExc();
 } else {
 throw BaseExc();
 }
 }

 catch(BaseExc& exc) {
 std::cout << "Intercept BaseExc" << std::endl;
 }
 return 0;
}

Check Information
Group: 08. Exceptions and Error Handling (ERR)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ERR61-CPP

Introduced in R2019b

24 CERT C++ Rules

24-314

https://wiki.sei.cmu.edu/confluence/display/cplusplus/ERR61-CPP.+Catch+exceptions+by+lvalue+reference

CERT C++: OOP50-CPP
Do not invoke virtual functions from constructors or destructors

Description
Rule Definition

Do not invoke virtual functions from constructors or destructors.5

Polyspace Implementation

This checker checks for Virtual function call from constructors and destructors.

Examples
Virtual function call from constructors and destructors
Issue

Virtual function call from constructors and destructors occurs when you invoke virtual
functions in a constructor or a destructor with possibly unexpected results.

When you call virtual functions in the constructor or destructor of a class in a hierarchy, it is not clear
which instance of the virtual function you intend to invoke. Calls to virtual functions in a constructor
or a destructor resolves to the implementation of the virtual function in the currently executing class
instead of the most derived override.

There are two cases where calling virtual functions from a constructor or destructor does not raise
this defect.

• When you use the explicitly qualified ID to call the virtual function. Consider this code:

Base(){
 Base::foo();
}

The call to Base::foo uses the explicitly qualified ID of the function. This call is compliant with
this rule because it explicitly states that the implementation of foo belonging to Base is invoked.

5. This software has been created by MathWorks incorporating portions of: the “SEI CERT-C Website,” © 2017 Carnegie
Mellon University, the SEI CERT-C++ Web site © 2017 Carnegie Mellon University, ”SEI CERT C Coding Standard –
Rules for Developing safe, Reliable and Secure systems – 2016 Edition,” © 2016 Carnegie Mellon University, and “SEI
CERT C++ Coding Standard – Rules for Developing safe, Reliable and Secure systems in C++ – 2016 Edition” © 2016
Carnegie Mellon University, with special permission from its Software Engineering Institute.

ANY MATERIAL OF CARNEGIE MELLON UNIVERSITY AND/OR ITS SOFTWARE ENGINEERING INSTITUTE
CONTAINED HEREIN IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM
USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This software and associated documentation has not been reviewed nor is it endorsed by Carnegie Mellon University or
its Software Engineering Institute.

 CERT C++: OOP50-CPP

24-315

• When the you specify the called virtual function as final in the currently executing class.
Consider this code:

Base(){
 foo();
}
//...
void foo() override final{
//...
}

In this case, a call to foo implies a call to Base::foo because the function is specified as the final
override.

Risk

When you call a virtual function, you expect the compiler to resolve the call to the most derived
override of the virtual function at runtime. Unlike in other functions, virtual function calls in
constructors and destructors are resolved differently, resulting in unexpected behavior. Invoking
virtual functions in constructor and destructors might cause undefined behavior, resulting in a
memory leak and security vulnerabilities. Consider this code:

#include <iostream>

class Base
{
public:
 Base() { foo(); } //Noncompliant
 ~Base(){bar();} //Noncompliant
 virtual void foo() {
 std::cout<<"Base Constructor\n";
 }
 virtual void bar(){
 std::cout<<"Base Destructor\n";
 }

};
class Derived : public Base
{
public:
 Derived() : Base() {}
 ~Derived() = default;
 virtual void foo() {
 std::cout<<"Derived constructor\n";
 }
 virtual void bar() {
 std::cout<<"Derived Constructor\n";
 }
};
int main(){
 Derived d;
 return 1;
}

The constructor of d calls the constructor for Base class, which invokes the virtual function foo.
Because the derived class is not constructed yet, the compiler cannot invoke Derived::foo. Only
the function Base::foo() is invoked. Similarly, when the virtual function bar is invoked in the

24 CERT C++ Rules

24-316

destructor of Base, the derived class Derived is already destroyed. The compiler cannot invoke
Derived::bar. Only the function Base::bar is invoked. The output of this code is:

Base Constructor
Base Destructor

instead of:

Base Constructor
Derived constructor
Derived Constructor
Base Destructor

The portion of d belonging to the class Derived is neither allocated nor deallocated. This behavior
might result in memory leaks or security vulnerabilities.
Fix

To fix this issue, avoid calling virtual functions in constructors and destructors. For typical
constructor or destructor tasks such as memory allocation and deallocation, initialization, or message
logging, use functions that are specific to each class in a hierarchy.
Example — Class-Specific Memory Management

#include <iostream>

class Base {
public:
 Base()
 {
 allocator(); //Noncompliant
 }
 virtual ~Base()
 {
 deallocator(); //Noncompliant
 }

 virtual void allocator(){
 //...
 }
 virtual void deallocator(){
 //...
 }
};

class Derived : public Base {
public:
 Derived() : Base() {}
 virtual ~Derived() = default;
protected:
 void allocator() override
 {
 Base::allocator();
 // Get derived resources...
 }
 void deallocator() override
 {
 // Release derived resources...

 CERT C++: OOP50-CPP

24-317

 Base::deallocator();
 }
};

int main(){
 Derived dObj;
 //...
 return 1;
}

In this example, the code attempts class-specific memory management by implementing the functions
allocator and deallocator as virtual. A call to these functions does not resolve to the most
derived override.

• During the construction of the Derived object dObj, only the function Base::allocator() is
invoked. Because the Derived class is not constructed yet, the function Derived::allocator is
not invoked.

• During the destruction of dObj, only the function Base::deallocator is invoked because the
class Derived is already destroyed.

Because of the use of virtual functions in the constructor and destructor of dObj, the Derived
portion of dObj is neither allocated nor deallocated. This behavior is unexpected and might lead to
memory leaks and security vulnerabilities.

Correction — Class-Specific Memory Management

One possible correction is to use class-specific nonvirtual functions for tasks that are commonly
performed in constructors and destructors. In this code, allocation and deallocation tasks are
performed by class-specific nonvirtual functions.

#include <iostream>

class Base {
public:
 Base()
 {
 allocator_base();
 }
 virtual ~Base()
 {
 deallocator_base();
 }
protected:
 void allocator_base(){
 // Allocate base resources
 }
 void deallocator_base(){
 // Deallocate base resources
 }
};

class Derived : public Base {
public:
 Derived(){
 allocator_derived();
 }
 virtual ~Derived(){

24 CERT C++ Rules

24-318

 deallocator_derived();
 }
protected:
 void allocator_derived()
 {
 // Allocate derived resources...
 }
 void deallocator_derived()
 {
 // Deallocate derived resources...
 }
};

int main(){
 Derived dObj;
 //...
 return 1;
}

Check Information
Group: Rule 09. Object Oriented Programming (OOP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
OOP50-CPP

Introduced in R2021a

 CERT C++: OOP50-CPP

24-319

https://wiki.sei.cmu.edu/confluence/display/cplusplus/OOP50-CPP.+Do+not+invoke+virtual+functions+from+constructors+or+destructors

CERT C++: OOP51-CPP
Do not slice derived objects

Description
Rule Definition

Do not slice derived objects.

Polyspace Implementation

This checker checks for Object slicing.

Examples
Object slicing
Issue

Object slicing occurs when you pass a derived class object by value to a function, but the function
expects a base class object as parameter.

Risk

If you pass a derived class object by value to a function, you expect the derived class copy constructor
to be called. If the function expects a base class object as parameter:

• The base class copy constructor is called.
• In the function body, the parameter is considered as a base class object.

In C++, virtual methods of a class are resolved at run time according to the actual type of the
object. Because of object slicing, an incorrect implementation of a virtual method can be called.
For instance, the base class contains a virtual method and the derived class contains an
implementation of that method. When you call the virtual method from the function body, the base
class method is called, even though you pass a derived class object to the function.

Fix

One possible fix is to pass the object by reference or pointer. Passing by reference or pointer does not
cause invocation of copy constructors. If you do not want the object to be modified, use a const
qualifier with your function parameter.

Another possible fix is to overload the function with another function that accepts the derived class
object as parameter.

Example - Function Call Causing Object Slicing

#include <iostream>

class Base {
public:
 explicit Base(int b) {
 _b = b;

24 CERT C++ Rules

24-320

 }
 virtual ~Base() {}
 virtual int update() const;
protected:
 int _b;
};

class Derived: public Base {
public:
 explicit Derived(int b):Base(b) {}
 int update() const;
};

//Class methods definition

int Base::update() const {
 return (_b + 1);
}

int Derived::update() const {
 return (_b -1);
}

//Other function definitions
void funcPassByValue(const Base bObj) {
 std::cout << "Updated _b=" << bObj.update() << std::endl;
}

int main() {
 Derived dObj(0);
 funcPassByValue(dObj); //Function call slices object
 return 0;
 }

In this example, the call funcPassByValue(dObj) results in the output Updated _b=1 instead of
the expected Updated _b=-1. Because funcPassByValue expects a Base object parameter, it calls
the Base class copy constructor.

Therefore, even though you pass the Derived object dObj, the function funcPassByValue treats its
parameter b as a Base object. It calls Base::update() instead of Derived::update().

Correction — Pass Object by Reference or Pointer

One possible correction is to pass the Derived object dObj by reference or by pointer. In the
following, corrected example, funcPassByReference and funcPassByPointer have the same
objective as funcPassByValue in the preceding example. However, funcPassByReference
expects a reference to a Base object and funcPassByPointer expects a pointer to a Base object.

Passing the Derived object d by a pointer or by reference does not slice the object. The calls
funcPassByReference(dObj) and funcPassByPointer(&dObj) produce the expected result
Updated _b=-1.

#include <iostream>

class Base {

 CERT C++: OOP51-CPP

24-321

public:
 explicit Base(int b) {
 _b = b;
 }
 virtual ~Base() {}
 virtual int update() const;
protected:
 int _b;
};

class Derived: public Base {
public:
 explicit Derived(int b):Base(b) {}
 int update() const;
};

//Class methods definition

int Base::update() const {
 return (_b + 1);
}

int Derived::update() const {
 return (_b -1);
}

//Other function definitions
void funcPassByReference(const Base& bRef) {
 std::cout << "Updated _b=" << bRef.update() << std::endl;
}

void funcPassByPointer(const Base* bPtr) {
 std::cout << "Updated _b=" << bPtr->update() << std::endl;
}

int main() {
 Derived dObj(0);
 funcPassByReference(dObj); //Function call does not slice object
 funcPassByPointer(&dObj); //Function call does not slice object
 return 0;
 }

Note If you pass by value, because a copy of the object is made, the original object is not modified.
Passing by reference or by pointer makes the object vulnerable to modification. If you are concerned
about your original object being modified, add a const qualifier to your function parameter, as in the
preceding example.

Check Information
Group: 09. Object Oriented Programming (OOP)

See Also
Check SEI CERT-C++ (-cert-cpp))

24 CERT C++ Rules

24-322

Topics
“Check for Coding Standard Violations”

External Websites
OOP51-CPP

Introduced in R2019a

 CERT C++: OOP51-CPP

24-323

https://wiki.sei.cmu.edu/confluence/display/cplusplus/OOP51-CPP.+Do+not+slice+derived+objects

CERT C++: OOP52-CPP
Do not delete a polymorphic object without a virtual destructor

Description
Rule Definition

Do not delete a polymorphic object without a virtual destructor.

Polyspace Implementation

This checker checks for Base class destructor not virtual.

Examples
Base class destructor not virtual
Issue

Base class destructor not virtual occurs when a class has virtual functions but not a virtual
destructor.
Risk

The presence of virtual functions indicates that the class is intended for use as a base class.
However, if the class does not have a virtual destructor, it cannot behave polymorphically for
deletion of derived class objects.

If a pointer to this class refers to a derived class object, and you use the pointer to delete the object,
only the base class destructor is called. Additional resources allocated in the derived class are not
released and can cause a resource leak.
Fix

One possible fix is to always use a virtual destructor in a class that contains virtual functions.
Example - Base Class Destructor Not Virtual

class Base {
 public:
 Base(): _b(0) {};
 virtual void update() {_b += 1;};
 private:
 int _b;
};

class Derived: public Base {
 public:
 Derived(): _d(0) {};
 ~Derived() {_d = 0;};
 virtual void update() {_d += 1;};
 private:
 int _d;
};

24 CERT C++ Rules

24-324

In this example, the class Base does not have a virtual destructor. Therefore, if a Base* pointer
points to a Derived object that is allocated memory dynamically, and the delete operation is
performed on that Base* pointer, the Base destructor is called. The memory allocated for the
additional member _d is not released.

The defect appears on the base class definition. Following are some tips for navigating in the source
code:

• To find classes derived from the base class, right-click the base class name and select Search For
All References. Browse through each search result to find derived class definitions.

• To find if you are using a pointer or reference to a base class to point to a derived class object,
right-click the base class name and select Search For All References. Browse through search
results that start with Base* or Base& to locate pointers or references to the base class. You can
then see if you are using a pointer or reference to point to a derived class object.

Correction — Make Base Class Destructor Virtual

One possible correction is to declare a virtual destructor for the class Base.

class Base {
 public:
 Base(): _b(0) {};
 virtual ~Base() {_b = 0;};
 virtual void update() {_b += 1;};
 private:
 int _b;
};

class Derived: public Base {
 public:
 Derived(): _d(0) {};
 ~Derived() {_d = 0;};
 virtual void update() {_d += 1;};
 private:
 int _d;
};

Check Information
Group: 09. Object Oriented Programming (OOP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
OOP52-CPP

Introduced in R2019a

 CERT C++: OOP52-CPP

24-325

https://wiki.sei.cmu.edu/confluence/display/cplusplus/OOP52-CPP.+Do+not+delete+a+polymorphic+object+without+a+virtual+destructor

CERT C++: OOP53-CPP
Write constructor member initializers in the canonical order

Description
Rule Definition

Write constructor member initializers in the canonical order.

Polyspace Implementation

This checker checks for Members not initialized in canonical order.

Examples
Members not initialized in canonical order
Description

Members not initialized in canonical order occurs when the initializer list of a class constructor:

• Does not initialize data members of the class in the order in which they are declared.

For instance:

class aClass {
 int var1;
 int var2;
public:
 aClass(int val): var2(val), var1(val) {}
};

• Does not call base class constructors in the order in which they appear in the base-specifier list.

For instance:

class aClass: baseClass1, baseClass2 {
 aClass(int val): baseClass2(val), baseClass1(val) {}
}

Risk

The order in which data members or base class constructors appear in the initializer list does not
reflect the actual order of initialization. Data members are initialized in the order of declaration and
base class constructors are called in the order in which they appear in the base-specifier list.

However, you or another developer can mistake the order in the initializer list as the actual
initialization order. As a result, you might introduce dependencies between the initializations that
results in reading an uninitialized region of memory. For instance, this initializer list might indicate
that bVar is first initialized with the constructor argument x and then aVar is initialized with bVar:

class aClass {

24 CERT C++ Rules

24-326

 int aVar;
 int bVar;
public:
 aClass(int x): bVar(x), aVar(bVar) {}
};

However, the initialization happens in the order of declaration and an uninitialized bVar is read first.

Fix

In the initializer list of a class constructor:

• Specify class data members in the same order as you declare them in the class

For instance:

class aClass {
 int var1;
 int var2;
public:
 aClass(int val): var1(val), var2(val) {}
};

• Call base constructors in the same order as you specify them in the base-specifier list.

For instance:

class aClass: baseClass1, baseClass2 {
 aClass(int val): baseClass1(val), baseClass2(val) {}
}

Check Information
Group: 09. Object Oriented Programming (OOP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
OOP53-CPP

Introduced in R2020a

 CERT C++: OOP53-CPP

24-327

https://wiki.sei.cmu.edu/confluence/display/cplusplus/OOP53-CPP.+Write+constructor+member+initializers+in+the+canonical+order

CERT C++: OOP54-CPP
Gracefully handle self-copy assignment

Description
Rule Definition

Gracefully handle self-copy assignment.

Polyspace Implementation

This checker checks for Self assignment not tested in operator.

Examples
Self assignment not tested in operator
Issue

Self assignment not tested in operator occurs when you do not test if the argument to the copy
assignment operator of an object is the object itself.

Risk

Self-assignment causes unnecessary copying. Though it is unlikely that you assign an object to itself,
because of aliasing, you or users of your class cannot always detect a self-assignment.

Self-assignment can cause subtle errors if a data member is a pointer and you allocate memory
dynamically to the pointer. In your copy assignment operator, you typically perform these steps:

1 Deallocate the memory originally associated with the pointer.

delete ptr;
2 Allocate new memory to the pointer. Initialize the new memory location with contents obtained

from the operator argument.

 ptr = new ptrType(*(opArgument.ptr));

If the argument to the operator, opArgument, is the object itself, after your first step, the pointer
data member in the operator argument, opArgument.ptr, is not associated with a memory location.
*opArgument.ptr contains unpredictable values. Therefore, in the second step, you initialize the
new memory location with unpredictable values.

Fix

Test for self-assignment in the copy assignment operator of your class. Only after the test, perform
the assignments in the copy assignment operator.

Example - Missing Test for Self-Assignment

class MyClass1 { };
class MyClass2 {
public:

24 CERT C++ Rules

24-328

 MyClass2() : p_(new MyClass1()) { }
 MyClass2(const MyClass2& f) : p_(new MyClass1(*f.p_)) { }
 ~MyClass2() {
 delete p_;
 }
 MyClass2& operator= (const MyClass2& f)
 {
 delete p_;
 p_ = new MyClass1(*f.p_);
 return *this;
 }
private:
 MyClass1* p_;
};

In this example, the copy assignment operator in MyClass2 does not test for self-assignment. If the
parameter f is the current object, after the statement delete p_, the memory allocated to pointer
f.p_ is also deallocated. Therefore, the statement p_ = new MyClass1(*f.p_) initializes the
memory location that p_ points to with unpredictable values.

Correction — Test for Self-Assignment

One possible correction is to test for self-assignment in the copy assignment operator.

class MyClass1 { };
class MyClass2 {
public:
 MyClass2() : p_(new MyClass1()) { }
 MyClass2(const MyClass2& f) : p_(new MyClass1(*f.p_)) { }
 ~MyClass2() {
 delete p_;
 }
 MyClass2& operator= (const MyClass2& f)
 {
 if(&f != this) {
 delete p_;
 p_ = new MyClass1(*f.p_);
 }
 return *this;
 }
private:
 MyClass1* p_;
};

Check Information
Group: 09. Object Oriented Programming (OOP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
OOP54-CPP

 CERT C++: OOP54-CPP

24-329

https://wiki.sei.cmu.edu/confluence/display/cplusplus/OOP54-CPP.+Gracefully+handle+self-copy+assignment

Introduced in R2019a

24 CERT C++ Rules

24-330

CERT C++: OOP57-CPP
Prefer special member functions and overloaded operators to C Standard Library functions

Description
Rule Definition

Prefer special member functions and overloaded operators to C Standard Library functions.

Polyspace Implementation

This checker checks for Bytewise operations on nontrivial class object.

Examples
Bytewise operations on nontrivial class object
Issue

Bytewise operations on nontrivial class object occurs when you use C Standard library functions
to perform bytewise operation on non-trivial or non-standard layout class type objects. For definitions
of trivial and standard layout classes, see the C++ Standard, [class], paragraphs 6 and 7 respectively.

The checker raises a defect you initialize or copy non-trivial class type objects using these functions:

• std::memset
• std::memcpy
• std::strcpy
• std::memmove

Or when you compare non-standard layout class type objects using these functions:

• std::memcmp
• std::strcmp

Bytewise operations on nontrivial class object raises no defect if the bytewise operation is
performed through an alias. For example no defect is raised in the bytewise comparison and copy
operations in this code. The bytewise operations use dptr and sptr, the aliases of non-trivial or non-
standard layout class objects d and s.

void func(NonTrivialNonStdLayout *d, const NonTrivialNonStdLayout *s)
{
 void* dptr = (void*)d;
 const void* sptr = (void*)s;
 // ...
 // ...
 // ...
 if (!std::memcmp(dptr, sptr, sizeof(NonTrivialNonStdLayout))) {
 (void)std::memcpy(dptr, sptr, sizeof(NonTrivialNonStdLayout));
 // ...
 }
}

 CERT C++: OOP57-CPP

24-331

https://www.iso.org/standard/68564.html

Risk

Performing bytewise comparison operations by using C Standard library functions on non-trivial or
non-standard layout class type object might result in unexpected values due to implementation
details. The object representation depends on the implementation details, such as the order of private
and public members, or the use of virtual function pointer tables to represent the object.

Performing bytewise setting operations by using C Standard library functions on non-trivial or non-
standard layout class type object can change the implementation details. The operation might result
in abnormal program behavior or a code execution vulnerability. For instance, if the address of a
member function is overwritten, the call to this function invokes an unexpected function.
Fix

To perform bytewise operations non-trivial or non-standard layout class type object, use these C++
special member functions instead of C Standard library functions.

C Standard Library Functions C++ Member Functions
std::memset Class constructor
std::memcpy

std::strcpy

std::memmove

Class copy constructor

Class move constructor

Copy assignment operator

Move assignment operator
std::memcmp

std::strcmp

operator<()

operator>()

operator==()

operator!=()

Example - Using memset with non-trivial class object

#include <cstring>
#include <iostream>
#include <utility>

class nonTrivialClass
{
 int scalingFactor;
 int otherData;
public:
 nonTrivialClass() : scalingFactor(1) {}
 void set_other_data(int i);
 int f(int i)
 {
 return i / scalingFactor;
 }
 // ...
};

void func()
{

24 CERT C++ Rules

24-332

 nonTrivialClass c;
 // ... Code that mutates c ...
 std::memset(&c, 0, sizeof(nonTrivialClass));
 std::cout << c.f(100) << std::endl;
}

In this example, func() uses std::memset to reinitialize non-trivial class object c after it is first
initialized with its default constructor. This bytewise operation might not properly initialize the value
representation of c.
Correction — Define Function Template That Uses std::swap

One possible correction is to define a function template clear() that uses std::swap to perform a
swap operation. The call to clear()properly reinitializes object c by swapping the contents of c and
default initialized object empty.

 #include <cstring>
#include <iostream>
#include <utility>

class nonTrivialClass
{
 int scalingFactor;
 int otherData;
public:
 nonTrivialClass() : scalingFactor(1) {}
 void set_other_data(int i);
 int f(int i)
 {
 return i / scalingFactor;
 }
 // ...
};

template <typename T>
T& clear(T& o)
{
 using std::swap;
 T empty;
 swap(o, empty);
 return o;
}

void func()
{
 nonTrivialClass c;
 // ... Code that mutates c ...

 clear(c);
 std::cout << c.f(100) << std::endl;
}

Check Information
Group: Rule 09. Object Oriented Programming (OOP)

See Also
Check SEI CERT-C++ (-cert-cpp))

 CERT C++: OOP57-CPP

24-333

Topics
“Check for Coding Standard Violations”

External Websites
OOP57-CPP

Introduced in R2019b

24 CERT C++ Rules

24-334

https://wiki.sei.cmu.edu/confluence/display/cplusplus/OOP57-CPP.+Prefer+special+member+functions+and+overloaded+operators+to+C+Standard+Library+functions

CERT C++: OOP58-CPP
Copy operations must not mutate the source object

Description
Rule Definition

Copy operations must not mutate the source object.

Polyspace Implementation

This checker checks for Copy operation modifying source operand.

Examples
Copy operation modifying source operand
Issue

Copy operation modifying source operand occurs when a copy constructor or copy assignment
operator modifies a mutable data member of its source operand.

For instance, this copy constructor A modifies the data member m of its source operand other:

class A {
 mutable int m;

public:
 ...
 A(const A &other) : m(other.m) {
 other.m = 0; //Modification of source
 }
}

Risk

A copy operation with a copy constructor (or copy assignment operator):

className new_object = old_object; //Calls copy constructor of className

copies its source operand old_object to its destination operand new_object. After the operation,
you expect the destination operand to be a copy of the unmodified source operand. If the source
operand is modified during copy, this assumption is violated.
Fix

Do not modify the source operand in the copy operation.

If you are modifying the source operand in a copy constructor to implement a move operation, use a
move constructor instead. Move constructors are defined in the C++11 standard and later.
Example - Copy Constructor Modifying Source

#include <algorithm>

 CERT C++: OOP58-CPP

24-335

#include <vector>

class A {
 mutable int m;

public:
 A() : m(0) {}
 explicit A(int m) : m(m) {}

 A(const A &other) : m(other.m) {
 other.m = 0;
 }

 A& operator=(const A &other) {
 if (&other != this) {
 m = other.m;
 other.m = 0;
 }
 return *this;
 }

 int get_m() const { return m; }
};

void f() {
 std::vector<A> v{10};
 A obj(12);
 std::fill(v.begin(), v.end(), obj);
}

In this example, a vector of ten objects of type A is created. The std::fill function copies an object
of type A, which has a data member with value 12, to each of the ten objects. After this operation, you
might expect that all ten objects in the vector have a data member with value 12.

However, the first copy modifies the data member of the source to the value 0. The remaining nine
copies copy this value. After the std::fill call, the first object in the vector has a data member
with value 12 and the remaining objects have data members with value 0.
Correction — Use Move Constructor for Modifying Source

Do not modify data members of the source operand in a copy constructor or copy assignment
operator. If you want your class to have a move operation, use a move constructor instead of a copy
constructor.

In this corrected example, the copy constructor and copy assignment operator of class A do not
modify the data member m. A separate move constructor modifies the source operand.

#include <algorithm>
#include <vector>

class A {
 int m;

public:
 A() : m(0) {}
 explicit A(int m) : m(m) {}

24 CERT C++ Rules

24-336

 A(const A &other) : m(other.m) {}
 A(A &&other) : m(other.m) { other.m = 0; }

 A& operator=(const A &other) {
 if (&other != this) {
 m = other.m;
 }
 return *this;
 }

 //Move constructor
 A& operator=(A &&other) {
 m = other.m;
 other.m = 0;
 return *this;
 }

 int get_m() const { return m; }
};

void f() {
 std::vector<A> v{10};
 A obj(12);
 std::fill(v.begin(), v.end(), obj);
}

Check Information
Group: 09. Object Oriented Programming (OOP)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
OOP58-CPP

Introduced in R2019a

 CERT C++: OOP58-CPP

24-337

https://wiki.sei.cmu.edu/confluence/display/cplusplus/OOP58-CPP.+Copy+operations+must+not+mutate+the+source+object

CERT C++: CON33-C
Avoid race conditions when using library functions

Description
Rule Definition

Avoid race conditions when using library functions.

Polyspace Implementation

This checker checks for Data race through standard library function call.

Examples
Data race through standard library function call
Issue

Data race through standard library function call occurs when:

• Multiple tasks call the same standard library function.

For instance, multiple tasks call the strerror function.
• The calls are not protected using a common protection.

For instance, the calls are not protected by the same critical section.

Functions flagged by this defect are not guaranteed to be reentrant. A function is reentrant if it can
be interrupted and safely called again before its previous invocation completes execution. If a
function is not reentrant, multiple tasks calling the function without protection can cause
concurrency issues. For the list of functions that are flagged, see CON33-C: Avoid race conditions
when using library functions.

To find this defect, you must specify the multitasking options before analysis. To specify these options,
on the Configuration pane, select Multitasking. For more information, see “Configuring Polyspace
Multitasking Analysis Manually”.

Risk

The functions flagged by this defect are nonreentrant because their implementations can use global
or static variables. When multiple tasks call the function without protection, the function call from
one task can interfere with the call from another task. The two invocations of the function can
concurrently access the global or static variables and cause unpredictable results.

The calls can also cause more serious security vulnerabilities, such as abnormal termination, denial-
of-service attack, and data integrity violations.

Fix

To fix this defect, do one of the following:

24 CERT C++ Rules

24-338

https://wiki.sei.cmu.edu/confluence/display/c/CON33-C.+Avoid+race+conditions+when+using+library+functions
https://wiki.sei.cmu.edu/confluence/display/c/CON33-C.+Avoid+race+conditions+when+using+library+functions

• Use a reentrant version of the standard library function if it exists.

For instance, instead of strerror(), use strerror_r() or strerror_s(). For alternatives to
functions flagged by this defect, see the documentation for CON33-C.

• Protect the function calls using common critical sections or temporal exclusion.

See Critical section details (-critical-section-begin -critical-section-
end) and Temporally exclusive tasks (-temporal-exclusions-file).

To identify existing protections that you can reuse, see the table and graphs associated with the
result. The table shows each pair of conflicting calls. The Access Protections column shows
existing protections on the calls. To see the function call sequence leading to the conflicts, click

the icon. For an example, see below.

Example - Unprotected Call to Standard Library Function from Multiple Tasks

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin_critical_section(void);
void end_critical_section(void);

FILE *getFilePointer(void);

void func(FILE *fp) {
 fpos_t pos;
 errno = 0;
 if (0 != fgetpos(fp, &pos)) {
 char *errmsg = strerror(errno);
 printf("Could not get the file position: %s\n", errmsg);
 }
}

void task1(void) {
 FILE* fptr1 = getFilePointer();
 func(fptr1);
}

void task2(void) {
 FILE* fptr2 = getFilePointer();
 func(fptr2);
}

void task3(void) {
 FILE* fptr3 = getFilePointer();
 begin_critical_section();
 func(fptr3);
 end_critical_section();
}

In this example, to emulate multitasking behavior, specify the following options:

 CERT C++: CON33-C

24-339

https://wiki.sei.cmu.edu/confluence/display/c/CON33-C.+Avoid+race+conditions+when+using+library+functions

Option Specification
Configure multitasking
manually
Tasks (-entry-points) task1

task2

task3
Critical section details
(-critical-section-begin
-critical-section-end)

Starting routine Ending routine
begin_critical_section end_critical_section

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2,task3
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

In this example, the tasks, task1, task2 and task3, call the function func. func calls the
nonreentrant standard library function, strerror.

Though task3 calls func inside a critical section, other tasks do not use the same critical section.
Operations in the critical section of task3 are not mutually exclusive with operations in other tasks.

These three tasks are calling a nonreentrant standard library function without common protection. In
your result details, you see each pair of conflicting function calls.

If you click the icon, you see the function call sequence starting from the entry point to the
standard library function call. You also see that the call starting from task3 is in a critical section.
The Access Protections entry shows the lock and unlock function that begin and end the critical
section. In this example, you see the functions begin_critical_section and
end_critical_section.

24 CERT C++ Rules

24-340

Correction — Use Reentrant Version of Standard Library Function

One possible correction is to use a reentrant version of the standard library function strerror. You
can use the POSIX version strerror_r which has the same functionality but also guarantees thread-
safety.

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin_critical_section(void);
void end_critical_section(void);

FILE *getFilePointer(void);
enum { BUFFERSIZE = 64 };

void func(FILE *fp) {
 fpos_t pos;
 errno = 0;
 if (0 != fgetpos(fp, &pos)) {
 char errmsg[BUFFERSIZE];
 if (strerror_r(errno, errmsg, BUFFERSIZE) != 0) {
 /* Handle error */
 }
 printf("Could not get the file position: %s\n", errmsg);
 }
}

void task1(void) {
 FILE* fptr1 = getFilePointer();
 func(fptr1);
}

void task2(void) {
 FILE* fptr2 = getFilePointer();
 func(fptr2);
}

void task3(void) {
 FILE* fptr3 = getFilePointer();

 CERT C++: CON33-C

24-341

 begin_critical_section();
 func(fptr3);
 end_critical_section();
}

Correction — Place Function Call in Critical Section

One possible correction is to place the call to strerror in critical section. You can implement the
critical section in multiple ways.

For instance, you can place the call to the intermediate function func in the same critical section in
the three tasks. When task1 enters its critical section, the other tasks cannot enter their critical
sections until task1 leaves its critical section. The calls to func and therefore the calls to strerror
from the three tasks cannot interfere with each other.

To implement the critical section, in each of the three tasks, call func between calls to
begin_critical_section and end_critical_section.

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin_critical_section(void);
void end_critical_section(void);

FILE *getFilePointer(void);

void func(FILE *fp) {
 fpos_t pos;
 errno = 0;
 if (0 != fgetpos(fp, &pos)) {
 char *errmsg = strerror(errno);
 printf("Could not get the file position: %s\n", errmsg);
 }
}

void task1(void) {
 FILE* fptr1 = getFilePointer();
 begin_critical_section();
 func(fptr1);
 end_critical_section();
}

void task2(void) {
 FILE* fptr2 = getFilePointer();
 begin_critical_section();
 func(fptr2);
 end_critical_section();
}

void task3(void) {
 FILE* fptr3 = getFilePointer();
 begin_critical_section();
 func(fptr3);
 end_critical_section();
}

24 CERT C++ Rules

24-342

Correction — Make Tasks Temporally Exclusive

Another possible correction is to make the tasks, task1, task2 and task3, temporally exclusive.
Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

Option Value
Temporally exclusive
tasks (-temporal-
exclusions-file)

task1 task2 task3

On the command-line, you can use the following:

 polyspace-bug-finder
 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

task1 task2 task3

Check Information
Group: 10. Concurrency (CON)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
CON33-C

Introduced in R2019a

 CERT C++: CON33-C

24-343

https://wiki.sei.cmu.edu/confluence/display/c/CON33-C.+Avoid+race+conditions+when+using+library+functions

CERT C++: CON37-C
Do not call signal() in a multithreaded program

Description
Rule Definition

Do not call signal() in a multithreaded program.

Polyspace Implementation

This checker checks for Signal call in multithreaded program.

Examples
Signal call in multithreaded program
Issue

Signal call in multithreaded program occurs when you use the signal() function in a program
with multiple threads.

Risk

According to the C11 standard (Section 7.14.1.1), use of the signal() function in a multithreaded
program is undefined behavior.

Fix

Depending on your intent, use other ways to perform an asynchronous action on a specific thread.

Example - Use of signal() Function to Terminate Loop in Thread

#include <signal.h>
#include <stddef.h>
#include <thread>

volatile sig_atomic_t flag = 0;

void handler(int signum) {
 flag = 1;
}

/* Runs until user sends SIGUSR1 */
int func(int data) {
 while (!flag) {
 /* ... */
 }
 return 0;
}

int main(void) {
 signal(SIGINT, handler); /* Undefined behavior */
 int data;

24 CERT C++ Rules

24-344

 //...
 std::thread th1(func, data);

 return 0;
}

In this example, the signal function is used to terminate a while loop in the thread.

Correction — Use atomic_bool Variable to Terminate Loop

One possible correction is to use an std::atomic variable of bool type that multiple threads can
access. In the corrected example, the std::atomic<bool> variable flag can be accessed by both
the main thread and the child thread th1. Before every loop iteration, the child thread checks flag.
After completing the program, you can modify this variable so that the child thread exits the loop.

#include <thread>
#include <atomic>
std::atomic<bool> flag(false);

int func(int data) {
 while (!flag) {
 /* ... */
 }
 return 0;
}

int main(void) {
 int data;
 //...
 std::thread th1(func, data);
 th1.join();
 flag = true;
 return 0;
}

Check Information
Group: 10. Concurrency (CON)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
CON37-C

Introduced in R2019a

 CERT C++: CON37-C

24-345

https://wiki.sei.cmu.edu/confluence/display/c/CON37-C.+Do+not+call+signal%28%29+in+a+multithreaded+program

CERT C++: CON40-C
Do not refer to an atomic variable twice in an expression

Description
Rule Definition

Do not refer to an atomic variable twice in an expression.

Polyspace Implementation

This checker checks for these issues:

• Atomic variable accessed twice in an expression.
• Atomic load and store sequence not atomic.

Examples
Atomic variable accessed twice in an expression
Issue

Atomic variable accessed twice in an expression occurs when C atomic types or C++
std::atomic class variables appear twice in an expression and there are:

• Two atomic read operations on the variable.
• An atomic read and a distinct atomic write operation on the variable.

The C standard defines certain operations on atomic variables that are thread safe and do not cause
data race conditions. Unlike individual operations, a pair of operations on the same atomic variable in
an expression is not thread safe.

Risk

A thread can modify the atomic variable between the pair of atomic operations, which can result in a
data race condition.

Fix

Do not reference an atomic variable twice in the same expression.

Example - Referencing Atomic Variable Twice in an Expression

To run this example, use these options:

• -cpp-version cpp11
• -compiler gnu4.9

#include <atomic>
std::atomic<int> n(5);
int compute_sum(void)
{

24 CERT C++ Rules

24-346

https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic

 return n * (n + 1) / 2;
}

In this example, the global variable n is referenced twice in the return statement of compute_sum().
The value of n can change between the two distinct read operations. compute_sum() can return an
incorrect value.

Correction — Pass Variable as Function Argument

One possible correction is to pass the variable as a function argument n. The variable is copied to
memory and the read operations on the copy guarantee that compute_sum() returns a correct
result. If you pass a variable of type int instead of type atomic_int, the correction is still valid.

#include <atomic>
int compute_sum(std::atomic<int> n)
{
 return n * (n + 1) / 2;
}

Atomic load and store sequence not atomic
Issue

Atomic load and store sequence not atomic occurs when you use these functions to load, and
then store an atomic variable.

• C functions:

• atomic_load()
• atomic_load_explicit()
• atomic_store()
• atomic_store_explicit()

• C++ functions:

• std::atomic_load()
• std::atomic_load_explicit()
• std::atomic_store()
• std::atomic_store_explicit()
• std::atomic::load()
• std::atomic::store()

A thread cannot interrupt an atomic load or an atomic store operation on a variable, but a thread can
interrupt a store, and then load sequence.

Risk

A thread can modify a variable between the load and store operations, resulting in a data race
condition.

Fix

To read, modify, and store a variable atomically, use a compound assignment operator such as +=,
atomic_compare_exchange() or atomic_fetch_*-family functions.

 CERT C++: CON40-C

24-347

Example - Loading Then Storing an Atomic Variable

To run this example, use these options:

• -cpp-version cpp11
• -compiler gnu4.9

#include <atomic>
#include <stdbool.h>
using namespace std;
static atomic<bool> flag(false);

void init_flag(void)
{
 atomic_init(&flag, false);
}

void toggle_flag(void)
{
 bool temp_flag = atomic_load(&flag);
 temp_flag = !temp_flag;
 atomic_store(&flag, temp_flag);
}

bool get_flag(void)
{
 return atomic_load(&flag);
}

In this example, variable flag of type atomic_bool is referenced twice inside the toggle_flag()
function. The function loads the variable, negates its value, then stores the new value back to the
variable. If two threads call toggle_flag(), the second thread can access flag between the load
and store operations of the first thread. flag can end up in an incorrect state.
Correction — Use Compound Assignment to Modify Variable

One possible correction is to use the function atomic_compare_exchange_weak to perform a safe
and atomic compare-and-exchange. When you use this function, the changes to flag are visible to
other threads, and the expected result is stored in flag.

#include <atomic>
#include <stdbool.h>
using namespace std;
static atomic<bool> flag(false);

void toggle_flag(void)
{
 bool old_flag = atomic_load(&flag);
 bool new_flag;
 do {
 new_flag = !old_flag;
 } while (!atomic_compare_exchange_weak(&flag, &old_flag, new_flag));

}

bool get_flag(void)
{

24 CERT C++ Rules

24-348

 return atomic_load(&flag);
}

Check Information
Group: 10. Concurrency (CON)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
CON40-C

Introduced in R2019a

 CERT C++: CON40-C

24-349

https://wiki.sei.cmu.edu/confluence/display/c/CON40-C.+Do+not+refer+to+an+atomic+variable+twice+in+an+expression

CERT C++: CON41-C
Wrap functions that can fail spuriously in a loop

Description
Rule Definition

Wrap functions that can fail spuriously in a loop.

Polyspace Implementation

This checker checks for Function that can spuriously fail not wrapped in loop.

Examples
Function that can spuriously fail not wrapped in loop
Issue

Function that can spuriously fail not wrapped in loop occurs when the following atomic compare
and exchange functions that can fail spuriously are called from outside a loop.

• C atomic functions:

• atomic_compare_exchange_weak()
• atomic_compare_exchange_weak_explicit()

• C++ atomic functions:

• std::atomic<T>::compare_exchange_weak(T* expected, T desired)
• std::atomic<T>::compare_exchange_weak_explicit(T* expected, T desired,

std::memory_order succ, std::memory_order fail)
• std::atomic_compare_exchange_weak(std::atomic<T>* obj, T* expected, T

desired)
• std::atomic_compare_exchange_weak_explicit(volatile std::atomic<T>* obj,

T* expected, T desired, std::memory_order succ, std::memory_order fail)

The functions compare the memory contents of the object representations pointed to by obj and
expected. The comparison can spuriously return false even if the memory contents are equal. This
spurious failure makes the functions faster on some platforms.

Risk

An atomic compare and exchange function that spuriously fails can cause unexpected results and
unexpected control flow.

Fix

Wrap atomic compare and exchange functions that can spuriously fail in a loop. The loop checks the
failure condition after a possible spurious failure.

24 CERT C++ Rules

24-350

Example - atomic_compare_exchange_weak() Not Wrapped in Loop

#include <atomic>
#include <stdbool.h>
using namespace std;
static atomic<bool> flag(false);
void toggle_flag(void)
{
 bool old_flag = atomic_load(&flag);
 bool new_flag;
 if (!atomic_compare_exchange_weak(&flag, &old_flag, new_flag)){//Noncompliant
 new_flag = !old_flag;
 }

}

bool get_flag(void)
{
 return atomic_load(&flag);
}

In this example, the functiontoggle_flag uses atomic_compare_exchange_weak() to compare
flag and old_flag. If the variables are identical, flag is toggles to new_flag. When
atomic_compare_exchange_weak() fails spuriously, the flag is toggled unnecessarily.

Correction — Wrap atomic_compare_exchange_weak() in a do-while Loop

One possible correction is to wrap the call to atomic_compare_exchange_weak() in a while loop.
The loop checks the failure condition after a possible spurious failure.

#include <atomic>
#include <stdbool.h>
using namespace std;
static atomic<bool> flag(false);

void toggle_flag(void)
{
 bool old_flag = atomic_load(&flag);
 bool new_flag;
 do {
 new_flag = !old_flag;
 } while (!atomic_compare_exchange_weak(&flag, &old_flag, new_flag));

}

bool get_flag(void)
{
 return atomic_load(&flag);
}

Check Information
Group: 10. Concurrency (CON)

See Also
Check SEI CERT-C++ (-cert-cpp))

 CERT C++: CON41-C

24-351

Topics
“Check for Coding Standard Violations”

External Websites
CON41-C

Introduced in R2019a

24 CERT C++ Rules

24-352

https://wiki.sei.cmu.edu/confluence/display/c/CON41-C.+Wrap+functions+that+can+fail+spuriously+in+a+loop

CERT C++: CON43-C
Do not allow data races in multithreaded code

Description
Rule Definition

Do not allow data races in multithreaded code.

Polyspace Implementation

This checker checks for Data race.

Examples
Data race
Issue

Data race occurs when:

• Multiple tasks perform unprotected operations on a shared variable.
• At least one task performs a write operation.
• At least one operation is nonatomic. For data race on both atomic and nonatomic operations, see

Data race including atomic operations.

See “Define Atomic Operations in Multitasking Code”.

To find this defect, you must specify the multitasking options before analysis. To specify these options,
on the Configuration pane, select Multitasking. For more information, see “Configuring Polyspace
Multitasking Analysis Manually”.

Risk

Data race can result in unpredictable values of the shared variable because you do not control the
order of the operations in different tasks.

Data races between two write operations are more serious than data races between a write and read
operation. Two write operations can interfere with each other and result in indeterminate values. To
identify write-write conflicts, use the filters on the Detail column of the Results List pane. For these
conflicts, the Detail column shows the additional line:

 Variable value may be altered by write-write concurrent access.

See “Filter and Group Results in Polyspace Desktop User Interface” or “Filter and Sort Results in
Polyspace Access Web Interface”.

Fix

To fix this defect, protect the operations on the shared variable using critical sections, temporal
exclusion or another means. See “Protections for Shared Variables in Multitasking Code”.

 CERT C++: CON43-C

24-353

To identify existing protections that you can reuse, see the table and graphs associated with the
result. The table shows each pair of conflicting calls. The Access Protections column shows existing

protections on the calls. To see the function call sequence leading to the conflicts, click the icon.
For an example, see below.
Example - Unprotected Operation on Global Variable from Multiple Tasks

int var;
void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 var++;
}

void task1(void) {
 increment();
}

void task2(void) {
 increment();
}

void task3(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

In this example, to emulate multitasking behavior, specify the following options:

Option Specification
Configure multitasking
manually
Tasks (-entry-points) task1

task2

task3
Critical section details
(-critical-section-begin
-critical-section-end)

Starting routine Ending routine
begin_critical_section end_critical_section

On the command-line, you can use the following:

 polyspace-bug-finder
 -entry-points task1,task2,task3
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

In this example, the tasks task1, task2, and task3 call the function increment. increment
contains the operation var++ that can involve multiple machine instructions including:

24 CERT C++ Rules

24-354

• Reading var.
• Writing an increased value to var.

These machine instructions, when executed from task1 and task2, can occur concurrently in an
unpredictable sequence. For example, reading var from task1 can occur either before or after
writing to var from task2. Therefore the value of var can be unpredictable.

Though task3 calls increment inside a critical section, other tasks do not use the same critical
section. The operations in the critical section of task3 are not mutually exclusive with operations in
other tasks.

Therefore, the three tasks are operating on a shared variable without common protection. In your
result details, you see each pair of conflicting function calls.

If you click the icon, you see the function call sequence starting from the entry point to the read
or write operation. You also see that the operation starting from task3 is in a critical section. The
Access Protections entry shows the lock and unlock function that begin and end the critical section.
In this example, you see the functions begin_critical_section and end_critical_section.

Correction — Place Operation in Critical Section

One possible correction is to place the operation in critical section. You can implement the critical
section in multiple ways. For instance:

• You can place var++ in a critical section. When task1 enters its critical section, the other tasks
cannot enter their critical sections until task1 leaves its critical section. The operation var++
from the three tasks cannot interfere with each other.

 CERT C++: CON43-C

24-355

To implement the critical section, in the function increment, place the operation var++ between
calls to begin_critical_section and end_critical_section.

int var;

void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 begin_critical_section();
 var++;
 end_critical_section();
}

void task1(void) {
 increment();
}

void task2(void) {
 increment();
}

void task3(void) {
 increment();
}

• You can place the call to increment in the same critical section in the three tasks. When task1
enters its critical section, the other tasks cannot enter their critical sections until task1 leaves its
critical section. The calls to increment from the three tasks cannot interfere with each other.

To implement the critical section, in each of the three tasks, call increment between calls to
begin_critical_section and end_critical_section.

int var;

void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 var++;
}

void task1(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

void task2(void) {
 begin_critical_section();
 increment();
 end_critical_section();

24 CERT C++ Rules

24-356

}

void task3(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

Correction — Make Tasks Temporally Exclusive

Another possible correction is to make the tasks, task1, task2 and task3, temporally exclusive.
Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

Option Value
Temporally exclusive
tasks (-temporal-
exclusions-file)

task1 task2 task3

On the command-line, you can use the following:

 polyspace-bug-finder
 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

task1 task2 task3

Example - Unprotected Operation in Threads Created with pthread_create

#include <pthread.h>

pthread_mutex_t count_mutex;
long long count;

void* increment_count(void* args)
{
 count = count + 1;
 return NULL;
}

void* set_count(void *args)
{
 long long c;
 c = count;
 return NULL;
}

int main(void)
{
 pthread_t thread_increment;
 pthread_t thread_get;

 pthread_create(&thread_increment, NULL, increment_count, NULL);
 pthread_create(&thread_get, NULL, set_count, NULL);

 CERT C++: CON43-C

24-357

 pthread_join(thread_get, NULL);
 pthread_join(thread_increment, NULL);

 return 1;
}

In this example, Bug Finder detects the creation of separate threads with pthread_create. The
Data race defect is raised because the operation count = count + 1 in the thread with id
thread_increment conflicts with the operation c = count in the thread with id thread_get. The
variable count is accessed in multiple threads without a common protection.

The two conflicting operations are nonatomic. The operation c = count is nonatomic on 32-bit
targets. See “Define Atomic Operations in Multitasking Code”.

Correction — Protect Operations with pthread_mutex_lock and pthread_mutex_unlock Pair

To prevent concurrent access on the variable count, protect operations on count with a critical
section. Use the functions pthread_mutex_lock and pthread_mutex_unlock to implement the
critical section.

#include <pthread.h>

pthread_mutex_t count_mutex;
long long count;

void* increment_count(void* args)
{
 pthread_mutex_lock(&count_mutex);
 count = count + 1;
 pthread_mutex_unlock(&count_mutex);
 return NULL;
}

void* set_count(void *args)
{
 long long c;
 pthread_mutex_lock(&count_mutex);
 c = count;
 pthread_mutex_unlock(&count_mutex);
 return NULL;
}

int main(void)
{
 pthread_t thread_increment;
 pthread_t thread_get;

 pthread_create(&thread_increment, NULL, increment_count, NULL);
 pthread_create(&thread_get, NULL, set_count, NULL);

 pthread_join(thread_get, NULL);
 pthread_join(thread_increment, NULL);

 return 1;
}

24 CERT C++ Rules

24-358

Check Information
Group: 10. Concurrency (CON)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
CON43-C

Introduced in R2019a

 CERT C++: CON43-C

24-359

https://wiki.sei.cmu.edu/confluence/display/c/CON43-C.+Do+not+allow+data+races+in+multithreaded+code

CERT C++: CON50-CPP
Do not destroy a mutex while it is locked

Description
Rule Definition

Do not destroy a mutex while it is locked.

Polyspace Implementation

This checker checks for Destruction of locked mutex.

Examples
Destruction of locked mutex
Issue

Destruction of locked mutex occurs when a task destroys a mutex after it is locked (and before it is
unlocked). The locking and destruction can happen in the same task or different tasks.

Risk

A mutex is locked to protect shared variables from concurrent access. If a mutex is destroyed in the
locked state, the protection does not apply.

Fix

To fix this defect, destroy the mutex only after you unlock it. It is a good design practice to:

• Initialize a mutex before creating the threads where you use the mutex.
• Destroy a mutex after joining the threads that you created.

On the Result Details pane, you see two events, the locking and destruction of the mutex, and the
tasks that initiated the events. To navigate to the corresponding line in your source code, click the
event.

Example - Locking and Destruction in Different Tasks

#include <pthread.h>

pthread_mutex_t lock1;
pthread_mutex_t lock2;
pthread_mutex_t lock3;

void t0 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);
 pthread_mutex_lock (&lock3);
 pthread_mutex_unlock (&lock2);

24 CERT C++ Rules

24-360

 pthread_mutex_unlock (&lock1);
 pthread_mutex_unlock (&lock3);
}

void t1 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);
 pthread_mutex_destroy (&lock3);
 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

In this example, after task t0 locks the mutex lock3, task t1 can destroy it. The destruction occurs if
the following events happen in sequence:

1 t0 acquires lock3.
2 t0 releases lock2.
3 t0 releases lock1.
4 t1 acquires the lock lock1 released by t0.
5 t1 acquires the lock lock2 released by t0.
6 t1 destroys lock3.

For simplicity, this example uses a mix of automatic and manual concurrency detection. The tasks t0
and t1 are manually specified as entry points by using the option Tasks (-entry-points).The
critical sections are implemented through primitives pthread_mutex_lock and
pthread_mutex_unlock that the software detects automatically. In practice, for entry point
specification (thread creation), you will use primitives such as pthread_create. The next example
shows how the defect can appear when you use pthread_create.

Correction — Place Lock-Unlock Pair Together in Same Critical Section as Destruction

The locking and destruction of lock3 occurs inside the critical section imposed by lock1 and lock2,
but the unlocking occurs outside. One possible correction is to place the lock-unlock pair in the same
critical section as the destruction of the mutex. Use one of these critical sections:

• Critical section imposed by lock1 alone.
• Critical section imposed by lock1 and lock2.

In this corrected code, the lock-unlock pair and the destruction is placed in the critical section
imposed by lock1 and lock2. When t0 acquires lock1 and lock2, t1 has to wait for their release
before it executes the instruction pthread_mutex_destroy (&lock3);. Therefore, t1 cannot
destroy mutex lock3 in the locked state.

#include <pthread.h>

pthread_mutex_t lock1;
pthread_mutex_t lock2;
pthread_mutex_t lock3;

void t0 (void) {
 pthread_mutex_lock (&lock1);

 CERT C++: CON50-CPP

24-361

 pthread_mutex_lock (&lock2);

 pthread_mutex_lock (&lock3);
 pthread_mutex_unlock (&lock3);

 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

void t1 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);

 pthread_mutex_destroy (&lock3);

 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

Example - Locking and Destruction in Start Routine of Thread

#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 4
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
void atomic_operation(void);

void *do_create(void *arg) {
 /* Creation thread */
 pthread_mutex_init(&lock, NULL);
 pthread_exit((void*) 0);
}

void *do_work(void *arg) {
 /* Worker thread */
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_exit((void*) 0);
}

void *do_destroy(void *arg) {
 /* Destruction thread */
 pthread_mutex_destroy(&lock);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;
 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);

24 CERT C++ Rules

24-362

 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Thread that initializes mutex */
 pthread_create(&callThd[0], &attr, do_create, NULL);

 /* Threads that use mutex for atomic operation*/
 for(i=0; i<NUMTHREADS-1; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 /* Thread that destroys mutex */
 pthread_create(&callThd[NUMTHREADS -1], &attr, do_destroy, NULL);

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 pthread_exit(NULL);
}

In this example, four threads are created. The threads are assigned different actions.

• The first thread callThd[0] initializes the mutex lock.
• The second and third threads, callThd[1] and callThd[2], perform an atomic operation

protected by the mutex lock.
• The fourth thread callThd[3] destroys the mutex lock.

The threads can interrupt each other. Therefore, immediately after the second or third thread locks
the mutex, the fourth thread can destroy it.

Correction — Initialize and Destroy Mutex Outside Start Routine

One possible correction is to initialize and destroy the mutex in the main function outside the start
routine of the threads. The threads perform only the atomic operation. You need two fewer threads
because the mutex initialization and destruction threads are not required.

#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 2
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
void atomic_operation(void);

void *do_work(void *arg) {
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;

 CERT C++: CON50-CPP

24-363

 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Initialize mutex */
 pthread_mutex_init(&lock, NULL);

 for(i=0; i<NUMTHREADS; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 /* Destroy mutex */
 pthread_mutex_destroy(&lock);

 pthread_exit(NULL);
}

Correction — Use A Second Mutex To Protect Lock-Unlock Pair and Destruction

Another possible correction is to use a second mutex and protect the lock-unlock pair from the
destruction. This corrected code uses the mutex lock2 to achieve this protection. The second mutex
is initialized in the main function outside the start routine of the threads.

#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 4
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
pthread_mutex_t lock2;
void atomic_operation(void);

void *do_create(void *arg) {
 /* Creation thread */
 pthread_mutex_init(&lock, NULL);
 pthread_exit((void*) 0);
}

void *do_work(void *arg) {
 /* Worker thread */
 pthread_mutex_lock (&lock2);
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_mutex_unlock (&lock2);
 pthread_exit((void*) 0);
}

24 CERT C++ Rules

24-364

void *do_destroy(void *arg) {
 /* Destruction thread */
 pthread_mutex_lock (&lock2);
 pthread_mutex_destroy(&lock);
 pthread_mutex_unlock (&lock2);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;
 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Initialize second mutex */
 pthread_mutex_init(&lock2, NULL);

 /* Thread that initializes first mutex */
 pthread_create(&callThd[0], &attr, do_create, NULL);

 /* Threads that use first mutex for atomic operation */
 /* The threads use second mutex to protect first from destruction in locked state*/
 for(i=0; i<NUMTHREADS-1; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 /* Thread that destroys first mutex */
 /* The thread uses the second mutex to prevent destruction of locked mutex */
 pthread_create(&callThd[NUMTHREADS -1], &attr, do_destroy, NULL);

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 /* Destroy second mutex */
 pthread_mutex_destroy(&lock2);

 pthread_exit(NULL);
}

Check Information
Group: 10. Concurrency (CON)

See Also
Check SEI CERT-C++ (-cert-cpp))

 CERT C++: CON50-CPP

24-365

Topics
“Check for Coding Standard Violations”

External Websites
CON50-CPP

Introduced in R2019a

24 CERT C++ Rules

24-366

https://wiki.sei.cmu.edu/confluence/display/cplusplus/CON50-CPP.+Do+not+destroy+a+mutex+while+it+is+locked

CERT C++: CON52-CPP
Prevent data races when accessing bit-fields from multiple threads

Description
Rule Definition

Prevent data races when accessing bit-fields from multiple threads.

Polyspace Implementation

This checker checks for Data race on adjacent bit fields.

Examples
Data race on adjacent bit fields
Issue

This defect occurs when:

• Multiple tasks perform unprotected operations on bit fields that are part of the same structure.

For instance, a task operates on field errorFlag1 and another task on field errorFlag2 in a
variable of this type:

struct errorFlags {
 unsigned int errorFlag1 : 1;
 unsigned int errorFlag2 : 1;
 ...
}

Suppose that the operations are not atomic with respect to each other. In other words, you have
not implemented protection mechanisms to ensure that one operation is completed before another
operation begins.

• At least one of the unprotected operations is a write operation.

To find this defect, before analysis, you must specify the multitasking options. To specify these
options, on the Configuration pane, select Multitasking. For more information, see “Configuring
Polyspace Multitasking Analysis Manually”.

Risk

Adjacent bit fields that are part of the same structure might be stored in one byte in the same
memory location. Read or write operations on all variables including bit fields occur one byte or word
at a time. To modify only specific bits in a byte, steps similar to these steps occur in sequence:

1 The byte is loaded into RAM.
2 A mask is created so that only specific bits are modified to the intended value and the remaining

bits remain unchanged.
3 A bitwise OR operation is performed between the copy of the byte in RAM and the mask.

 CERT C++: CON52-CPP

24-367

4 The byte with specific bits modified is copied back from RAM.

When you access two different bit fields, these four steps have to be performed for each bit field. If
the accesses are not protected, all four steps for one bit field might not be completed before the four
steps for the other bit field begin. As a result, the modification of one bit field might undo the
modification of an adjacent bit field. For instance, in the preceding example, the modification of
errorFlag1 and errorFlag2 can occur in the following sequence. Steps 1,2 and 5 relate to
modification of errorFlag1 and while steps 3,4 and 6 relate to that of errorFlag2.

1 The byte with both errorFlag1 and errorFlag2 unmodified is copied into RAM, for purposes
of modifying errorFlag1.

2 A mask that modifies only errorFlag1 is bitwise OR-ed with this copy.
3 The byte containing both errorFlag1 and errorFlag2 unmodified is copied into RAM a second

time, for purposes of modifying errorFlag2.
4 A mask that modifies only errorFlag2 is bitwise OR-ed with this second copy.
5 The version with errorFlag1 modified is copied back. This version has errorFlag2

unmodified.
6 The version with errorFlag2 modified is copied back. This version has errorFlag1 unmodified

and overwrites the previous modification.

Fix

To fix this defect, protect the operations on bit fields that are part of the same structure by using
critical sections, temporal exclusion, or another means. See “Protections for Shared Variables in
Multitasking Code”.

To identify existing protections that you can reuse, see the table and graphs associated with the
result. The table shows each pair of conflicting calls. The Access Protections column shows existing

protections on the calls. To see the function call sequence leading to the conflicts, click the icon.

Example - Unprotected Operation on Global Variable from Multiple Tasks

typedef struct
{
 unsigned int IOFlag :1;
 unsigned int InterruptFlag :1;
 unsigned int Register1Flag :1;
 unsigned int SignFlag :1;
 unsigned int SetupFlag :1;
 unsigned int Register2Flag :1;
 unsigned int ProcessorFlag :1;
 unsigned int GeneralFlag :1;
} InterruptConfigbits_t;

InterruptConfigbits_t InterruptConfigbitsProc12;

void task1 (void) {
 InterruptConfigbitsProc12.IOFlag = 0;
}

void task2 (void) {
 InterruptConfigbitsProc12.SetupFlag = 0;
}

24 CERT C++ Rules

24-368

In this example, task1 and task2 access different bit fields IOFlag and SetupFlag, which belong
to the same structured variable InterruptConfigbitsProc12.

To emulate multitasking behavior, specify the options listed in this table.

Option Specification
Configure multitasking
manually on page 2-115
Tasks on page 2-119 task1

task2

At the command-line, use:

 polyspace-bug-finder
 -entry-points task1,task2

Correction – Use Critical Sections

One possible correction is to wrap the bit field access in a critical section. A critical section lies
between a call to a lock function and an unlock function. In this correction, the critical section lies
between the calls to functions begin_critical_section and end_critical_section.

typedef struct
{
 unsigned int IOFlag :1;
 unsigned int InterruptFlag :1;
 unsigned int Register1Flag :1;
 unsigned int SignFlag :1;
 unsigned int SetupFlag :1;
 unsigned int Register2Flag :1;
 unsigned int ProcessorFlag :1;
 unsigned int GeneralFlag :1;
} InterruptConfigbits_t;

InterruptConfigbits_t InterruptConfigbitsProc12;

void begin_critical_section(void);
void end_critical_section(void);

void task1 (void) {
 begin_critical_section();
 InterruptConfigbitsProc12.IOFlag = 0;
 end_critical_section();
}

void task2 (void) {
 begin_critical_section();
 InterruptConfigbitsProc12.SetupFlag = 0;
 end_critical_section();
}

In this example, to emulate multitasking behavior, specify options listed in this table.

 CERT C++: CON52-CPP

24-369

Option Specification
Configure multitasking
manually on page 2-115
Tasks on page 2-119 task1

task2
Critical section details on
page 2-130

Starting routine Ending routine
begin_critical_section end_critical_section

At the command-line, use:

 polyspace-bug-finder
 -entry-points task1,task2
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

Correction – Avoid Bit Fields

If you do not have memory constraints, use the char data type instead of bit fields. The char
variables in a structure occupy at least one byte and do not have the thread-safety issues that come
from bit manipulations in a byte-sized operation. Data races do not result from unprotected
operations on different char variables that are part of the same structure.

typedef struct
{
 unsigned char IOFlag;
 unsigned char InterruptFlag;
 unsigned char Register1Flag;
 unsigned char SignFlag;
 unsigned char SetupFlag;
 unsigned char Register2Flag;
 unsigned char ProcessorFlag;
 unsigned char GeneralFlag;
} InterruptConfigbits_t;

InterruptConfigbits_t InterruptConfigbitsProc12;

void task1 (void) {
 InterruptConfigbitsProc12.IOFlag = 0;
}

void task2 (void) {
 InterruptConfigbitsProc12.SetupFlag = 0;
}

Though the checker does not flag this correction, do not use this correction for C99 or earlier. Only
from C11 and later does the C Standard mandate that distinct char variables cannot be accessed
using the same word.
Correction – Insert Bit Field of Size 0

You can enter a non-bit field member or an unnamed bit field member of size 0 between two adjacent
bit fields that might be accessed concurrently. A non-bit field member or size 0 bit field member
ensures that the subsequent bit field starts from a new memory location. In this corrected example,
the size 0 bit field member ensures that IOFlag and SetupFlag are stored in distinct memory
locations.

24 CERT C++ Rules

24-370

typedef struct
{
 unsigned int IOFlag :1;
 unsigned int InterruptFlag :1;
 unsigned int Register1Flag :1;
 unsigned int SignFlag :1;
 unsigned int : 0;
 unsigned int SetupFlag :1;
 unsigned int Register2Flag :1;
 unsigned int ProcessorFlag :1;
 unsigned int GeneralFlag :1;
} InterruptConfigbits_t;

InterruptConfigbits_t InterruptConfigbitsProc12;

void task1 (void) {
 InterruptConfigbitsProc12.IOFlag = 0;
}

void task2 (void) {
 InterruptConfigbitsProc12.SetupFlag = 0;
}

Check Information
Group: 10. Concurrency (CON)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
CON52-CPP

Introduced in R2019a

 CERT C++: CON52-CPP

24-371

https://wiki.sei.cmu.edu/confluence/display/cplusplus/CON52-CPP.+Prevent+data+races+when+accessing+bit-fields+from+multiple+threads

CERT C++: CON53-CPP
Avoid deadlock by locking in a predefined order

Description
Rule Definition

Avoid deadlock by locking in a predefined order.

Polyspace Implementation

This checker checks for Deadlock.

Examples
Deadlock
Issue

Deadlock occurs when multiple tasks are stuck in their critical sections (CS) because:

• Each CS waits for another CS to end.
• The critical sections (CS) form a closed cycle. For example:

• CS #1 waits for CS #2 to end, and CS #2 waits for CS #1 to end.
• CS #1 waits for CS #2 to end, CS #2 waits for CS #3 to end and CS #3 waits for CS #1 to

end.

Polyspace expects critical sections of code to follow a specific format. A critical section lies between a
call to a lock function and a call to an unlock function. When a task my_task calls a lock function
my_lock, other tasks calling my_lock must wait until my_task calls the corresponding unlock
function. Both lock and unlock functions must have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify these options,
on the Configuration pane, select Multitasking.
Risk

Each task waits for a critical section in another task to end and is unable to proceed. The program
can freeze indefinitely.
Fix

The fix depends on the root cause of the defect. You can try to break the cyclic order between the
tasks in one of these ways:

• Write down all critical sections involved in the deadlock in a certain sequence. Whenever you call
the lock functions of the critical sections within a task, respect the order in that sequence. See an
example below.

• If one of the critical sections involved in a deadlock occurs in an interrupt, try to disable all
interrupts during critical sections in all tasks. See Disabling all interrupts (-routine-
disable-interrupts -routine-enable-interrupts).

24 CERT C++ Rules

24-372

Reviewing this defect is an opportunity to check if all operations in your critical section are really
meant to be executed as an atomic block. It is a good practice to keep critical sections at a bare
minimum.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Deadlock with Two Tasks

void task1(void);
void task2(void);

int var;
void perform_task_cycle(void) {
 var++;
}

void begin_critical_section_1(void);
void end_critical_section_1(void);

void begin_critical_section_2(void);
void end_critical_section_2(void);

void task1() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

void task2() {
 while(1) {
 begin_critical_section_2();
 begin_critical_section_1();
 perform_task_cycle();
 end_critical_section_1();
 end_critical_section_2();
 }
}

In this example, to emulate multitasking behavior, you must specify the following options:

 CERT C++: CON53-CPP

24-373

Option Specification
Configure
multitasking
manually
Entry points task1

task2
Critical section
details

Starting routine Ending routine
begin_critical_section_1 end_critical_section_1
begin_critical_section_2 end_critical_section_2

A Deadlock occurs because the instructions can execute in the following sequence:

1 task1 calls begin_critical_section_1.
2 task2 calls begin_critical_section_2.
3 task1 reaches the instruction begin_critical_section_2();. Since task2 has already

called begin_critical_section_2, task1 waits for task2 to call
end_critical_section_2.

4 task2 reaches the instruction begin_critical_section_1();. Since task1 has already
called begin_critical_section_1, task2 waits for task1 to call
end_critical_section_1.

Correction-Follow Same Locking Sequence in Both Tasks

One possible correction is to follow the same sequence of calls to lock and unlock functions in both
task1 and task2.

void task1(void);
void task2(void);
void perform_task_cycle(void);

void begin_critical_section_1(void);
void end_critical_section_1(void);

void begin_critical_section_2(void);
void end_critical_section_2(void);

void task1() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

void task2() {
 while(1) {
 begin_critical_section_1();

24 CERT C++ Rules

24-374

 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

Example - Deadlock with More Than Two Tasks

int var;
void performTaskCycle() {
 var++;
}

void lock1(void);
void lock2(void);
void lock3(void);

void unlock1(void);
void unlock2(void);
void unlock3(void);

void task1() {
 while(1) {
 lock1();
 lock2();
 performTaskCycle();
 unlock2();
 unlock1();
 }
}

void task2() {
 while(1) {
 lock2();
 lock3();
 performTaskCycle();
 unlock3();
 unlock2();
 }
}

void task3() {
 while(1) {
 lock3();
 lock1();
 performTaskCycle();
 unlock1();
 unlock3();
 }
}

In this example, to emulate multitasking behavior, you must specify the following options:

 CERT C++: CON53-CPP

24-375

Option Specification
Configure multitasking
manually
Entry points task1

task2

task3
Critical section details Starting routine Ending routine

lock1 unlock1
lock2 unlock2
lock3 unlock3

A Deadlock occurs because the instructions can execute in the following sequence:

1 task1 calls lock1.
2 task2 calls lock2.
3 task3 calls lock3.
4 task1 reaches the instruction lock2();. Since task2 has already called lock2, task1 waits

for call to unlock2.
5 task2 reaches the instruction lock3();. Since task3 has already called lock3, task2 waits

for call to unlock3.
6 task3 reaches the instruction lock1();. Since task1 has already called lock1, task3 waits

for call to unlock1.

Correction — Break Cyclic Order

To break the cyclic order between critical sections, note every lock function in your code in a certain
sequence, for example:

1 lock1
2 lock2
3 lock3

If you use more than one lock function in a task, use them in the order in which they appear in the
sequence. For example, you can use lock1 followed by lock2 but not lock2 followed by lock1.

int var;
void performTaskCycle() {
 var++;
}

void lock1(void);
void lock2(void);
void lock3(void);

void unlock1(void);
void unlock2(void);

24 CERT C++ Rules

24-376

void unlock3(void);

void task1() {
 while(1) {
 lock1();
 lock2();
 performTaskCycle();
 unlock2();
 unlock1();
 }
}

void task2() {
 while(1) {
 lock2();
 lock3();
 performTaskCycle();
 unlock3();
 unlock2();
 }
}

void task3() {
 while(1) {
 lock1();
 lock3();
 performTaskCycle();
 unlock3();
 unlock1();
 }
}

Check Information
Group: 10. Concurrency (CON)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
CON53-CPP

Introduced in R2019a

 CERT C++: CON53-CPP

24-377

https://wiki.sei.cmu.edu/confluence/display/cplusplus/CON53-CPP.+Avoid+deadlock+by+locking+in+a+predefined+order

CERT C++: CON54-CPP
Wrap functions that can spuriously wake up in a loop

Description
Rule Definition

Wrap functions that can spuriously wake up in a loop.

Polyspace Implementation

This checker checks for Function that can spuriously wake up not wrapped in loop.

Examples
Function that can spuriously wake up not wrapped in loop
Issue

Function that can spuriously wake up not wrapped in loop occurs when the following wait-on-
condition functions are called from outside a loop:

• C functions:

• cnd_wait()
• cnd_timedwait()

• POSIX functions:

• pthread_cond_wait()
• pthread_cond_timedwait()

• C++ std::condition_variable and std::condition_variable_any class member
functions:

• wait()
• wait_until()
• wait_for()

Wait-on-condition functions pause the execution of the calling thread when a specified condition is
met. The thread wakes up and resumes once another thread notifies it with cnd_broadcast() or an
equivalent function. The wake-up notification can be spurious or malicious.
Risk

If a thread receives a spurious wake-up notification and the condition of the wait-on-condition
function is not checked, the thread can wake up prematurely. The wake-up can cause unexpected
control flow, indefinite blocking of other threads, or denial of service.
Fix

Wrap wait-on-condition functions that can wake up spuriously in a loop. The loop checks the wake-up
condition after a possible spurious wake-up notification.

24 CERT C++ Rules

24-378

Example - std::condition_variable::wait Not Wrapped in Loop

#include <stdio.h>
#include <stddef.h>
#include <thread>
#include <mutex>

#define THRESHOLD 100

std::mutex myMutex;
std::condition_variable cv;

void func(int input)
{
 std::unique_lock<std::mutex> lk(myMutex);
 // test condition to pause thread
 if (input > THRESHOLD) {
 //pause current thread
 cv.wait(lk);//Noncompliant
 }
}

In this example, the thread uses std::condition_variable::wait to pause execution when
input is greater than THRESHOLD. The paused thread can resume if another thread uses
std::condition_variable::notify_all, which notifies all the threads. This notification causes
the thread to wake up even if the pause condition is still true.
Correction — Wrap std::condition_variable::wait in a while Loop Explicitly

One possible correction is to wrap the call to std::condition_variable::wait in a while loop.
The loop checks the pause condition after the thread receives a possible spurious wake-up
notification.

#include <stdio.h>
#include <stddef.h>
#include <thread>
#include <mutex>

#define THRESHOLD 100

std::mutex myMutex;
std::condition_variable cv;

void func(int input)
{
 std::unique_lock<std::mutex> lk(myMutex);
 // test condition to pause thread
 while (input > THRESHOLD) {
 //pause current thread
 cv.wait(lk);
 }
}

Correction — Wrap std::condition_variable::wait in a Loop Implicitly

The std::condition_variable::wait function has an overload that accepts a lambda function as
a second argument. The predicate of the Lambda function indicates when it is safe to stop waiting

 CERT C++: CON54-CPP

24-379

and proceed with the code execution. This overload of the std::condition_variable::wait
function behaves as if it is implicitly wrapped in a loop. In this code, the
functionstd::condition_variable::wait is invoked by using a Lambda function. Here,
unwanted waking of the thread is prevented because the thread wakes up when the predicate of the
Lambda function is true.

#include <stdio.h>
#include <stdio.h>
#include <stddef.h>
#include <thread>
#include <mutex>
#define THRESHOLD 100

std::mutex myMutex;
std::condition_variable cv;

void func(int input)
{
 std::unique_lock<std::mutex> lk(myMutex);
 cv.wait(lk,[&input]{ return !(input>THRESHOLD); });

}

Check Information
Group: 10. Concurrency (CON)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
CON54-CPP

Introduced in R2019a

24 CERT C++ Rules

24-380

https://wiki.sei.cmu.edu/confluence/display/cplusplus/CON54-CPP.+Wrap+functions+that+can+spuriously+wake+up+in+a+loop

CERT C++: ENV30-C
Do not modify the object referenced by the return value of certain functions

Description
Rule Definition

Do not modify the object referenced by the return value of certain functions.

Polyspace Implementation

This checker checks for Modification of internal buffer returned from nonreentrant standard
function.

Examples
Modification of internal buffer returned from nonreentrant standard function
Issue

Modification of internal buffer returned from nonreentrant standard function occurs when
the following happens:

• A nonreentrant standard function returns a pointer.
• You attempt to write to the memory location that the pointer points to.

Nonreentrant standard functions that return a non const-qualified pointer to an internal buffer
include getenv, getlogin, crypt, setlocale, localeconv, strerror and others.
Risk

Modifying the internal buffer that a nonreentrant standard function returns can cause the following
issues:

• It is possible that the modification does not succeed or alters other internal data.

For instance, getenv returns a pointer to an environment variable value. If you modify this value,
you alter the environment of the process and corrupt other internal data.

• Even if the modification succeeds, it is possible that a subsequent call to the same standard
function does not return your modified value.

For instance, you modify the environment variable value that getenv returns. If another process,
thread, or signal handler calls setenv, the modified value is overwritten. Therefore, a subsequent
call to getenv does not return your modified value.

Fix

Avoid modifying the internal buffer using the pointer returned from the function.
Example - Modification of getenv Return Value

#include <stdlib.h>
#include <string.h>

 CERT C++: ENV30-C

24-381

void printstr(const char*);

void func() {
 char* env = getenv("LANGUAGE");
 if (env != NULL) {
 strncpy(env, "C", 1);
 printstr(env);
 }
}

In this example, the first argument of strncpy is the return value from a nonreentrant standard
function getenv. The behavior can be undefined because strncpy modifies this argument.

Correction - Copy Return Value of getenv and Modify Copy

One possible solution is to copy the return value of getenv and pass the copy to the strncpy
function.

#include <stdlib.h>
#include <string.h>
enum {
 SIZE20 = 20
};

void printstr(const char*);

void func() {
 char* env = getenv("LANGUAGE");
 if (env != NULL) {
 char env_cp[SIZE20];
 strncpy(env_cp, env, SIZE20);
 strncpy(env_cp, "C", 1);
 printstr(env_cp);
 }
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ENV30-C

Introduced in R2019a

24 CERT C++ Rules

24-382

https://wiki.sei.cmu.edu/confluence/display/c/ENV30-C.+Do+not+modify+the+object+referenced+by+the+return+value+of+certain+functions

CERT C++: ENV31-C
Do not rely on an environment pointer following an operation that may invalidate it

Description
Rule Definition

Do not rely on an environment pointer following an operation that may invalidate it.

Polyspace Implementation

This checker checks for Environment pointer invalidated by previous operation.

Examples
Environment pointer invalidated by previous operation
Issue

Environment pointer invalidated by previous operation occurs when you use the third argument
of main() in a hosted environment to access the environment after an operation modifies the
environment. In a hosted environment, many C implementations support the nonstandard syntax:

main (int argc, char *argv[], char *envp[])

A call to a setenv or putenv family function modifies the environment pointed to by *envp.
Risk

When you modify the environment through a call to a setenv or putenv family function, the
environment memory can potentially be reallocated. The hosted environment pointer is not updated
and might point to an incorrect location. A call to this pointer can return unexpected results or cause
an abnormal program termination.
Fix

Do not use the hosted environment pointer. Instead, use global external variable environ in Linux,
_environ or _wenviron in Windows, or their equivalent. When you modify the environment, these
variables are updated.
Example - Access Environment Through Pointer envp

#include <stdio.h>
#include <stdlib.h>

extern int check_arguments(int argc, char **argv, char **envp);
extern void use_envp(char **envp);

/* envp is from main function */
int func(char **envp)
{
 /* Call to setenv may cause environment
 *memory to be reallocated
 */

 CERT C++: ENV31-C

24-383

 if (setenv(("MY_NEW_VAR"),("new_value"),1) != 0)
 {
 /* Handle error */
 return -1;
 }
 /* envp not updated after call to setenv, and may
 *point to incorrect location.
 **/
 if (envp != ((void *)0)) {
 use_envp(envp);
/* No defect on second access to
*envp because defect already raised */
 }
 return 0;
}

void main(int argc, char **argv, char **envp)
{
 if (check_arguments(argc, argv, envp))
 {
 (void)func(envp);
 }
}

In this example, envp is accessed inside func() after a call to setenv that can reallocate the
environment memory. envp can point to an incorrect location because it is not updated after setenv
modifies the environment. No defect is raised when use_envp() is called because the defect is
already raised on the previous line of code.
Correction — Use Global External Variable environ

One possible correction is to access the environment by using a variable that is always updated after
a call to setenv. For instance, in the following code, the pointer envp is still available from main(),
but the environment is accessed in func() through the global external variable environ.

#include <stdio.h>
#include <stdlib.h>
extern char **environ;

extern int check_arguments(int argc, char **argv, char **envp);
extern void use_envp(char **envp);

int func(void)
{
 if (setenv(("MY_NEW_VAR"), ("new_value"),1) != 0) {
 /* Handle error */
 return -1;
 }
 /* Use global external variable environ
 *which is always updated after a call to setenv */

 if (environ != NULL) {
 use_envp(environ);
 }
 return 0;
}

void main(int argc, char **argv, char **envp)

24 CERT C++ Rules

24-384

{
 if (check_arguments(argc, argv, envp))
 {
 (void)func();
 }
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ENV31-C

Introduced in R2019a

 CERT C++: ENV31-C

24-385

https://wiki.sei.cmu.edu/confluence/display/c/ENV31-C.+Do+not+rely+on+an+environment+pointer+following+an+operation+that+may+invalidate+it

CERT C++: ENV32-C
All exit handlers must return normally

Description
Rule Definition

All exit handlers must return normally.

Polyspace Implementation

This checker checks for Abnormal termination of exit handler.

Examples
Abnormal termination of exit handler
Issue

Abnormal termination of exit handler looks for registered exit handlers. Exit handlers are
registered with specific functions such as atexit, (WinAPI) _onexit, or at_quick_exit(). If the
exit handler calls a function that interrupts the program’s expected termination sequence, Polyspace
raises a defect. Some functions that can cause abnormal exits are exit, abort, longjmp, or
(WinAPI) _onexit.
Risk

If your exit handler terminates your program, you can have undefined behavior. Abnormal program
termination means other exit handlers are not invoked. These additional exit handlers may do
additional clean up or other required termination steps.
Fix

In inside exit handlers, remove calls to functions that prevent the exit handler from terminating
normally.
Example - Exit Handler With Call to exit

#include <stdlib.h>

volatile int some_condition = 1;
void demo_exit1(void)
{
 /* ... Cleanup code ... */
 return;
}
void exitabnormalhandler(void)
{
 if (some_condition)
 {
 /* Clean up */
 exit(0);
 }
 return;

24 CERT C++ Rules

24-386

}

int demo_install_exitabnormalhandler(void)
{

 if (atexit(demo_exit1) != 0) /* demo_exit1() performs additional cleanup */
 {
 /* Handle error */
 }
 if (atexit(exitabnormalhandler) != 0)
 {
 /* Handle error */
 }
 /* ... Program code ... */
 return 0;
}

In this example, demo_install_exitabnormalhandler registers two exit handlers, demo_exit1
and exitabnormalhandler. Exit handlers are invoked in the reverse order of which they are
registered. When the program ends, exitabnormalhandler runs, then demo_exit1. However,
exitabnormalhandler calls exit interrupting the program exit process. Having this exit inside
an exit handler causes undefined behavior because the program is not finished cleaning up safely.
Correction — Remove exit from Exit Handler

One possible correction is to let your exit handlers terminate normally. For this example, exit is
removed from exitabnormalhandler, allowing the exit termination process to complete as
expected.

#include <stdlib.h>

volatile int some_condition = 1;
void demo_exit1(void)
{
 /* ... Cleanup code ... */
 return;
}
void exitabnormalhandler(void)
{
 if (some_condition)
 {
 /* Clean up */
 /* Return normally */
 }
 return;
}

int demo_install_exitabnormalhandler(void)
{

 if (atexit(demo_exit1) != 0) /* demo_exit1() continues clean up */
 {
 /* Handle error */
 }
 if (atexit(exitabnormalhandler) != 0)
 {
 /* Handle error */
 }

 CERT C++: ENV32-C

24-387

 /* ... Program code ... */
 return 0;
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ENV32-C

Introduced in R2019a

24 CERT C++ Rules

24-388

https://wiki.sei.cmu.edu/confluence/display/c/ENV32-C.+All+exit+handlers+must+return+normally

CERT C++: ENV33-C
Do not call system()

Description
Rule Definition

Do not call system().

Polyspace Implementation

This checker checks for Unsafe call to a system function.

Examples
Unsafe call to a system function
Issue

Unsafe call to a system function occurs when you use a function that invokes an implementation-
defined command processor. These functions include:

• The C standard system() function.
• The POSIX popen() function.
• The Windows _popen() and _wpopen() functions.

Risk

If the argument of a function that invokes a command processor is not sanitized, it can cause
exploitable vulnerabilities. An attacker can execute arbitrary commands or read and modify data
anywhere on the system.
Fix

Do not use a system-family function to invoke a command processor. Instead, use safer functions
such as POSIX execve() and WinAPI CreateProcess().
Example - system() Called

include <string.h>
include <stdlib.h>
include <stdio.h>
include <unistd.h>

enum {
SIZE512=512,
SIZE3=3};

void func(char *arg)
{
 char buf[SIZE512];
 int retval=sprintf(buf, "/usr/bin/any_cmd %s", arg);

 CERT C++: ENV33-C

24-389

 if (retval<=0 || retval>SIZE512){
 /* Handle error */
 abort();
 }
 /* Use of system() to pass any_cmd with
 unsanitized argument to command processor */

 if (system(buf) == -1) {
 /* Handle error */
 }
}

In this example, system() passes its argument to the host environment for the command processor
to execute. This code is vulnerable to an attack by command-injection.

Correction — Sanitize Argument and Use execve()

In the following code, the argument of any_cmd is sanitized, and then passed to execve() for
execution. exec-family functions are not vulnerable to command-injection attacks.

include <string.h>
include <stdlib.h>
include <stdio.h>
include <unistd.h>

enum {
SIZE512=512,
SIZE3=3};

void func(char *arg)
{
 char *const args[SIZE3] = {"any_cmd", arg, NULL};
 char *const env[] = {NULL};

 /* Sanitize argument */

 /* Use execve() to execute any_cmd. */

 if (execve("/usr/bin/time", args, env) == -1) {
 /* Handle error */
 }
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ENV33-C

24 CERT C++ Rules

24-390

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152177

Introduced in R2019a

 CERT C++: ENV33-C

24-391

CERT C++: ENV34-C
Do not store pointers returned by certain functions

Description
Rule Definition

Do not store pointers returned by certain functions.

Polyspace Implementation

This checker checks for Misuse of return value from nonreentrant standard function.

Examples
Misuse of return value from nonreentrant standard function
Issue

Misuse of return value from nonreentrant standard function occurs when these events happen
in this sequence:

1 You point to the buffer returned from a nonreentrant standard function such as getenv or
setlocale.

user = getenv("USER");
2 You call that nonreentrant standard function again.

user2 = getenv("USER2");
3 You use or dereference the pointer from the first step expecting the buffer to remain unmodified

since that step. In the meantime, the call in the second step has modified the buffer.

For instance:

var=*user;

In some cases, the defect might appear even if you do not call the getenv function a second time but
simply return the pointer. For instance:

char* func() {
 user=getenv("USER");
 .
 .
 return user;
}

For information on which functions are covered by this defect, see documentation on nonreentrant
standard functions.
Risk

The C Standard allows nonreentrant functions such as getenv to return a pointer to a static buffer.
Because the buffer is static, a second call to getenv modifies the buffer. If you continue to use the

24 CERT C++ Rules

24-392

https://www.securecoding.cert.org/confluence/display/c/ENV34-C.+Do+not+store+pointers+returned+by+certain+functions
https://www.securecoding.cert.org/confluence/display/c/ENV34-C.+Do+not+store+pointers+returned+by+certain+functions

pointer returned from the first call past the second call, you can see unexpected results. The buffer
that it points to no longer has values from the first call.

The defect appears even if you do not call getenv a second time but simply return the pointer. The
reason is that someone calling your function might use the returned pointer after a second call to
getenv. By returning the pointer from your call to getenv, you make your function unsafe to use.

The same rationale is true for other nonreentrant functions covered by this defect.

Fix

After the first call to getenv, make a copy of the buffer that the returned pointer points to. After the
second call to getenv, use this copy. Even if the second call modifies the buffer, your copy is
untouched.

Example - Return from getenv Used After Second Call to getenv

#include <stdlib.h>
#include <string.h>

int func()
{
 int result = 0;

 char *home = getenv("HOME"); /* First call */
 if (home != NULL) {
 char *user = NULL;
 char *user_name_from_home = strrchr(home, '/');

 if (user_name_from_home != NULL) {
 user = getenv("USER"); /* Second call */
 if ((user != NULL) &&
 (strcmp(user, user_name_from_home) == 0))
 {
 result = 1;
 }
 }
 }
 return result;
}

In this example, the pointer user_name_from_home is derived from the pointer home. home points
to the buffer returned from the first call to getenv. Therefore, user_name_from_home points to a
location in the same buffer.

After the second call to getenv, the buffer is modified. If you continue to use
user_name_from_home, you can get unexpected results.

Correction — Make Copy of Buffer Before Second Call

If you want to access the buffer from the first call to getenv past the second call, make a copy of the
buffer after the first call. One possible correction is to use the strdup function to make the copy.

#include <stdlib.h>
#include <string.h>

int func()
{

 CERT C++: ENV34-C

24-393

 int result = 0;

 char *home = getenv("HOME");
 if (home != NULL) {
 char *user = NULL;
 char *user_name_from_home = strrchr(home, '/');
 if (user_name_from_home != NULL) {
 /* Make copy before second call */
 char *saved_user_name_from_home = strdup(user_name_from_home);
 if (saved_user_name_from_home != NULL) {
 user = getenv("USER");
 if ((user != NULL) &&
 (strcmp(user, saved_user_name_from_home) == 0))
 {
 result = 1;
 }
 free(saved_user_name_from_home);
 }
 }
 }
 return result;
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
ENV34-C

Introduced in R2019a

24 CERT C++ Rules

24-394

https://wiki.sei.cmu.edu/confluence/display/c/ENV34-C.+Do+not+store+pointers+returned+by+certain+functions

CERT C++: FLP30-C
Do not use floating-point variables as loop counters

Description
Rule Definition

Do not use floating-point variables as loop counters.

Polyspace Implementation

This checker checks for Floating type or multiple for loop counters.

Examples
Floating type or multiple for loop counters
Issue

The checker flags these situations:

• The for loop index has a floating point type.
• More than one loop counter is incremented in the for loop increment statement.

For instance:

for(i=0, j=0; i<10 && j < 10;i++, j++) {}

• A loop counter is not incremented in the for loop increment statement.

For instance:

for(i=0; i<10;) {}

Even if you increment the loop counter in the loop body, the checker still raises a violation.

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FLP30-C

Introduced in R2019a

 CERT C++: FLP30-C

24-395

https://wiki.sei.cmu.edu/confluence/display/c/FLP30-C.+Do+not+use+floating-point+variables+as+loop+counters

CERT C++: FLP32-C
Prevent or detect domain and range errors in math functions

Description
Rule Definition

Prevent or detect domain and range errors in math functions.

Polyspace Implementation

This checker checks for Invalid use of standard library floating point routine.

Examples
Invalid use of standard library floating point routine
Issue

Invalid use of standard library floating point routine occurs when you use invalid arguments
with a floating point function from the standard library. This defect picks up:

• Rounding and absolute value routines

ceil, fabs, floor, fmod
• Fractions and division routines

fmod, modf
• Exponents and log routines

frexp, ldexp, sqrt, pow, exp, log, log10
• Trigonometry function routines

cos, sin, tan, acos, asin, atan, atan2, cosh, sinh, tanh, acosh, asinh,
atanh

Risk

Domain errors on standard library floating point functions result in implementation-defined values. If
you use the function return value in subsequent computations, you can see unexpected results.
Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. Use this event list to determine how the function argument acquires invalid
values. You can implement the fix on any event in the sequence. If the result details do not show the
event history, you can trace back using right-click options in the source code and see previous related
events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

It is a good practice to handle for domain errors before using a standard library floating point
function. For instance, before calling the acos function, check if the argument is in [-1.0, 1.0] and
handle the error.

24 CERT C++ Rules

24-396

See examples of fixes below.

If you do not want to fix the issue, for instance, when you handle infinities in your code, add
comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Arc Cosine Operation

#include <math.h>

double arccosine(void) {
 double degree = 5.0;
 return acos(degree);
}

The input value to acos must be in the interval [-1,1]. This input argument, degree, is outside this
range.

Correction — Change Input Argument

One possible correction is to change the input value to fit the specified range. In this example, change
the input value from degrees to radians to fix this defect.

#include <math.h>

double arccosine(void) {
 double degree = 5.0;
 double radian = degree * 3.14159 / 180.;
 return acos(radian);
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FLP32-C

Introduced in R2019a

 CERT C++: FLP32-C

24-397

https://wiki.sei.cmu.edu/confluence/display/c/FLP32-C.+Prevent+or+detect+domain+and+range+errors+in+math+functions

CERT C++: FLP34-C
Ensure that floating-point conversions are within range of the new type

Description
Rule Definition

Ensure that floating-point conversions are within range of the new type.

Polyspace Implementation

This checker checks for:

• Float conversion overflow
• Floating point to integer conversion overflow

Examples
Float conversion overflow
Issue

Float conversion overflow occurs when converting a floating point number to a smaller floating
point data type. If the variable does not have enough memory to represent the original number, the
conversion overflows.

The exact storage allocation for different floating point types depends on your processor. See Target
processor type (-target).

Risk

Overflows can result in unpredictable values from computations. The result can be infinity or the
maximum finite value depending on the rounding mode used in the implementation. If you use the
result of an overflowing conversion in subsequent computations and do not account for the overflow,
you can see unexpected results.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. Use this event list to determine how the variable being converted acquires its
current value You can implement the fix on any event in the sequence. If the result details do not
show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

You can fix the defect by:

• Using a bigger data type for the result of the conversion so that all values can be accommodated.
• Checking for values that lead to the overflow and performing appropriate error handling.

In general, avoid conversions to smaller floating point types.

See examples of fixes below.

24 CERT C++ Rules

24-398

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Converting from double to float

float convert(void) {

 double diam = 1e100;
 return (float)diam;
}

In the return statement, the variable diam of type double (64 bits) is converted to a variable of type
float (32 bits). However, the value 1^100 requires more than 32 bits to be precisely represented.

Floating point to integer conversion overflow
Issue

Floating point to integer conversion overflow occurs when converting a floating-point value to an
integer data type. If the integer part of the value cannot be represented within the storage available
for the integer data type, the conversion overflows.
Risk

When converting from floating point to integer types, if the floating point value is outside the range
that can be represented by the integer type, the behavior is undefined.
Fix

You can fix the defect by:

• Using a bigger data type for the result of the conversion so that all values can be accommodated.
• Checking for values that lead to the overflow and performing appropriate error handling.

A check for overflowing values on a float variable var can be like this:

if isnan(var)
 || popcount(INT_MAX) < log2f(fabsf(var))
 || (var != 0.0F && fabsf(var) < FLT_MIN)){
 // Handle error
}
else {
 // Perform operations on var
}

The check determines if the floating point value is representable within an integer type:

• The value is not NaN.
• The number of bits required to store the value is less than the number of bits in INT_MAX (the

largest integer that the int type can represent). The popcount function (not defined here)
counts the number of 1's (or set bits) in a number.

 CERT C++: FLP34-C

24-399

• The floating point value is not lower than the smallest representable value.

Example – Floating Point Value Converted to Integer Without Handling Overflows

void func(float fVar) {
 int iVar;
 iVar = fVar; //Noncompliant
}

In this example, the floating point value of fVar is not checked for overflows before converting to an
integer type. Since the argument fVar can contain values that are not representable within the int
data type, the analysis flags a potential overflow.

Note that func is not called in this example, and the overflow is only a possibility. To see issues of
these types, add the analysis option Run stricter checks considering all values of
system inputs (-checks-using-system-input-values).

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FLP34-C

Introduced in R2019a

24 CERT C++ Rules

24-400

https://wiki.sei.cmu.edu/confluence/display/c/FLP34-C.+Ensure+that+floating-point+conversions+are+within+range+of+the+new+type

CERT C++: FLP36-C
Preserve precision when converting integral values to floating-point type

Description
Rule Definition

Preserve precision when converting integral values to floating-point type.

Polyspace Implementation

This checker checks for Precision loss in integer to float conversion.

Examples
Precision loss in integer to float conversion
Issue

Precision loss from integer to float conversion occurs when you cast an integer value to a
floating-point type that cannot represent the original integer value.

For instance, the long int value 1234567890L is too large for a variable of type float .

Risk

If the floating-point type cannot represent the integer value, the behavior is undefined (see C11
standard, 6.3.1.4, paragraph 2). For instance, least significant bits of the variable value can be
dropped leading to unexpected results.

Fix

Convert to a floating-point type that can represent the integer value.

For instance, if the float data type cannot represent the integer value, use the double data type
instead.

When writing a function that converts an integer to floating point type, before the conversion, check
if the integer value can be represented in the floating-point type. For instance, DBL_MANT_DIG *
log2(FLT_RADIX) represents the number of base-2 digits in the type double. Before conversion to
the type double, check if this number is greater than or equal to the precision of the integer that you
are converting. To determine the precision of an integer num, use this code:

 size_t precision = 0;
 while (num != 0) {
 if (num % 2 == 1) {
 precision++;
 }
 num >>= 1;
 }

Some implementations provide a builtin function to determine the precision of an integer. For
instance, GCC provides the function __builtin_popcount.

 CERT C++: FLP36-C

24-401

Example - Conversion of Large Integer to Floating-Point Type

#include <stdio.h>

int main(void) {
 long int big = 1234567890L;
 float approx = big;//Noncompliant
 printf("%ld\n", (big - (long int)approx));
 return 0;
}

In this example, the long int variable big is converted to float.

Correction — Use a Wider Floating-Point Type

One possible correction is to convert to the double data type instead of float.

#include <stdio.h>

int main(void) {
 long int big = 1234567890L;
 double approx = big;
 printf("%ld\n", (big - (long int)approx));
 return 0;
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FLP36-C

Introduced in R2019a

24 CERT C++ Rules

24-402

https://wiki.sei.cmu.edu/confluence/display/c/FLP36-C.+Preserve+precision+when+converting+integral+values+to+floating-point+type

CERT C++: FLP37-C
Do not use object representations to compare floating-point values

Description
Rule Definition

Do not use object representations to compare floating-point values.

Polyspace Implementation

This checker checks for Memory comparison of float-point values.

Examples
Memory comparison of float-point values
Issue

Memory comparison of float-point values occurs when you compare the object representation of
floating-point values or the object representation of structures containing floating-point members.
When you use the functions memcmp, bcmp, or wmemcmp to perform the bit pattern comparison, the
defect is raised.

Risk

The object representation of floating-point values uses specific bit patterns to encode those values.
Floating-point values that are equal, for instance -0.0 and 0.0 in the IEC 60559 standard, can have
different bit patterns in their object representation. Similarly, floating-point values that are not equal
can have the same bit pattern in their object representation.

Fix

When you compare structures containing floating-point members, compare the structure members
individually.

To compare two floating-point values, use the == or != operators. If you follow a standard that
discourages the use of these operators, such as MISRA, ensure that the difference between the
floating-point values is within an acceptable range.

Example - Using memcmp to Compare Structures with Floating-Point Members

#include <string.h>

typedef struct {
 int i;
 float f;
} myStruct;

extern void initialize_Struct(myStruct *);

int func_cmp(myStruct *s1, myStruct *s2) {
/* Comparison between structures containing

 CERT C++: FLP37-C

24-403

* floating-point members */
 return memcmp
 ((const void *)s1, (const void *)s2, sizeof(myStruct));
}

void func(void) {
 myStruct s1, s2;
 initialize_Struct(&s1);
 initialize_Struct(&s2);
 (void)func_cmp(&s1, &s2);
}

In this example, func_cmp() calls memcmp() to compare the object representations of structures s1
and s2. The comparison might be inaccurate because the structures contain floating-point members.

Correction — Compare Structure Members Individually

One possible correction is to compare the structure members individually and to ensure that the
difference between the floating-point values is within an acceptable range defined by ESP.

 #include <string.h>
#include <math.h>
typedef struct {
 int i;
 float f;
} myStruct;

extern void initialize_Struct(myStruct *);

#define ESP 0.00001

int func_cmp(myStruct *s1, myStruct *s2) {

/*Structure members are compared individually */
 return ((s1->i == s2->i) &&
 (fabsf(s1->f - s2->f) <= ESP));
}

void func(void) {
 myStruct s1, s2;
 initialize_Struct(&s1);
 initialize_Struct(&s2);
 (void)func_cmp(&s1, &s2);
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
FLP37-C

24 CERT C++ Rules

24-404

https://wiki.sei.cmu.edu/confluence/display/c/FLP37-C.+Do+not+use+object+representations+to+compare+floating-point+values

Introduced in R2019a

 CERT C++: FLP37-C

24-405

CERT C++: MSC30-C
Do not use the rand() function for generating pseudorandom numbers

Description
Rule Definition

Do not use the rand() function for generating pseudorandom numbers.

Polyspace Implementation

This checker checks for Vulnerable pseudo-random number generator.

Examples
Vulnerable pseudo-random number generator
Issue

The Vulnerable pseudo-random number generator identifies the use of cryptographically weak
pseudo-random number generator (PRNG) routine, rand.

Risk

The rand function has a predictable output and must not be used for security purposes. When a
predictable random value controls the execution flow, your program is vulnerable to malicious
attacks.

Fix

Use more cryptographically sound random number generators, such as CryptGenRandom (Windows),
OpenSSL/RAND_bytes(Linux/UNIX).

Example - Random Loop Numbers

#include <stdio.h>
#include <stdlib.h>

volatile int rd = 1;
int main(int argc, char *argv[])
{
 int j, r, nloops;
 struct random_data buf;
 int i = 0;

 nloops = rand();

 for (j = 0; j < nloops; j++) {
 if (random_r(&buf, &i))
 exit(1);
 printf("random_r: %ld\n", (long)i);
 }

24 CERT C++ Rules

24-406

 return 0;
}

This example uses rand and random_r to generate random numbers. If you use these functions for
security purposes, these PRNGs can be the source of malicious attacks. The CERT C checker flags the
use of the rand function.

Correction — Use Stronger PRNG

One possible correction is to replace the vulnerable PRNG with a stronger random number generator.

#include <stdio.h>
#include <stdlib.h>
#include <openssl/rand.h>

volatile int rd = 1;
int main(int argc, char* argv[])
{
 int j, r, nloops;
 unsigned char buf;
 unsigned int seed;
 int i = 0;

 if (argc != 3)
 {
 fprintf(stderr, "Usage: %s <seed> <nloops>\n", argv[0]);
 exit(EXIT_FAILURE);
 }

 seed = atoi(argv[1]);
 nloops = atoi(argv[2]);

 for (j = 0; j < nloops; j++) {
 if (RAND_bytes(&buf, i) != 1)
 exit(1);
 printf("RAND_bytes: %u\n", (unsigned)buf);
 }
 return 0;
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MSC30-C

Introduced in R2019a

 CERT C++: MSC30-C

24-407

https://wiki.sei.cmu.edu/confluence/display/c/MSC30-C.+Do+not+use+the+rand%28%29+function+for+generating+pseudorandom+numbers

CERT C++: MSC32-C
Properly seed pseudorandom number generators

Description
Rule Definition

Properly seed pseudorandom number generators.

Polyspace Implementation

This checker checks for these issues:

• Deterministic random output from constant seed.
• Predictable random output from predictable seed.

Examples
Deterministic random output from constant seed

Issue

Deterministic random output from constant seed detects random standard functions that when
given a constant seed, have deterministic output.

Risk

When some random functions, such as srand, srandom, and initstate, have constant seeds, the
results produce the same output every time that your program is run. A hacker can disrupt your
program if they know how your program behaves.

Fix

Use a different random standard function or use a nonconstant seed.

Some standard random routines are inherently cryptographically weak on page 13-86, and should not
be used for security purposes.

Example - Random Number Generator Initialization

#include <stdlib.h>

void random_num(void)
{
 srand(12345U);
 /* ... */
}

This example initializes a random number generator using srand with a constant seed. The random
number generation is deterministic, making this function cryptographically weak.

24 CERT C++ Rules

24-408

Correction — Use Different Random Number Generator

One possible correction is to use a random number generator that does not require a seed. This
example uses rand_s.

#define _CRT_RAND_S
#include <stdlib.h>
#include <stdio.h>

unsigned int random_num_time(void)
{

 unsigned int number;
 errno_t err;
 err = rand_s(&number);

 if(err != 0)
 {
 return number;
 }
 else
 {
 return err;
 }
}

Predictable random output from predictable seed
Issue

Predictable random output from predictable seed looks for random standard functions that use a
nonconstant but predictable seed. Examples of predictable seed generators are time,
gettimeofday, and getpid.
Risk

When you use predictable seed values for random number generation, your random numbers are also
predictable. A hacker can disrupt your program if they know how your program behaves.
Fix

You can use a different function to generate less predictable seeds.

You can also use a different random number generator that does not require a seed. For example, the
Windows API function rand_s seeds itself by default. It uses information from the entire system, for
example, system time, thread ids, system counter, and memory clusters. This information is more
random and a user cannot access this information.

Some standard random routines are inherently cryptographically weak on page 13-86, and should not
be used for security purposes.
Example - Seed as an Argument

#include <stdlib.h>
#include <time.h>

void seed_rng(int seed)

 CERT C++: MSC32-C

24-409

{
 srand(seed);
}

int generate_num(void)
{
 seed_rng(time(NULL) + 3);
 /* ... */
}

This example uses srand to start the random number generator with seed as the seed. However,
seed is predictable because the function time generates it. So, an attacker can predict the random
numbers generated by srand.

Correction — Use Different Random Number Generator

One possible correction is to use a random number generator that does not require a seed. This
example uses rand_s.

#define _CRT_RAND_S

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>

int generate_num(void)
{
 unsigned int number;
 errno_t err;
 err = rand_s(&number);

 if(err != 0)
 {
 return number;
 }
 else
 {
 return err;
 }
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MSC32-C

24 CERT C++ Rules

24-410

https://wiki.sei.cmu.edu/confluence/display/c/MSC32-C.+Properly+seed+pseudorandom+number+generators

Introduced in R2019a

 CERT C++: MSC32-C

24-411

CERT C++: MSC33-C
Do not pass invalid data to the asctime() function

Description
Rule Definition

Do not pass invalid data to the asctime() function.

Polyspace Implementation

This checker checks for Use of obsolete standard function.

Examples
Use of obsolete standard function

Issue

Use of obsolete standard function detects calls to standard function routines that are considered
legacy, removed, deprecated, or obsolete by C/C++ coding standards.

Obsolete Function Standards Risk Replacement
Function

asctime Deprecated in POSIX.1-2008 Not thread-safe. strftime or
asctime_s

asctime_r Deprecated in POSIX.1-2008 Implementation based on
unsafe function sprintf.

strftime or
asctime_s

bcmp Deprecated in 4.3BSD

Marked as legacy in POSIX.1-2001.

Returns from function
after finding the first
differing byte, making it
vulnerable to timing
attacks.

memcmp

bcopy Deprecated in 4.3BSD

Marked as legacy in POSIX.1-2001.

Returns from function
after finding the first
differing byte, making it
vulnerable to timing
attacks.

memcpy or memmove

brk and sbrk Marked as legacy in SUSv2 and
POSIX.1-2001.

 malloc

bsd_signal Removed in POSIX.1-2008 sigaction
bzero Marked as legacy in POSIX.1-2001.

Removed in POSIX.1-2008.
 memset

ctime Deprecated in POSIX.1-2008 Not thread-safe. strftime or
asctime_s

24 CERT C++ Rules

24-412

Obsolete Function Standards Risk Replacement
Function

ctime_r Deprecated in POSIX.1-2008 Implementation based on
unsafe function sprintf.

strftime or
asctime_s

cuserid Removed in POSIX.1-2001. Not reentrant. Precise
functionality not
standardized causing
portability issues.

getpwuid

ecvt and fcvt Marked as legacy in POSIX.1-2001.
Removed in POSIX.1-2008

Not reentrant snprintf

ecvt_r and fcvt_r Marked as legacy in POSIX.1-2001.
Removed in POSIX.1-2008

 snprintf

ftime Removed in POSIX.1-2008 time,
gettimeofday,
clock_gettime

gamma, gammaf,
gammal

Function not specified in any
standard because of historical
variations

Portability issues. tgamma, lgamma

gcvt Marked as legacy in POSIX.1-2001.
Removed in POSIX.1-2008.

 snprintf

getcontext Removed in POSIX.1-2008. Portability issues. Use POSIX thread
instead.

getdtablesize BSD API function not included in
POSIX.1-2001

Portability issues. sysconf(_SC_OPEN
_MAX)

gethostbyaddr Removed in POSIX.1-2008 Not reentrant getaddrinfo
gethostbyname Removed in POSIX.1-2008 Not reentrant getnameinfo
getpagesize BSD API function not included in

POSIX.1-2001
Portability issues. sysconf(_SC_PAGE

SIZE)
getpass Removed in POSIX.1-2001. Not reentrant. getpwuid
getw Not present in POSIX.1-2001. fread
getwd Marked legacy in POSIX.1-2001.

Removed in POSIX.1-2008.
 getcwd

index Marked as legacy in POSIX.1-2001.
Removed in POSIX.1-2008.

 strchr

makecontext Removed in POSIX.1-2008. Portability issues. Use POSIX thread
instead.

memalign Appears in SunOS 4.1.3. Not in 4.4
BSD or POSIX.1-2001

 posix_memalign

mktemp Removed in POSIX.1-2008. Generated names are
predictable and can
cause a race condition.

mkstemp removes
race risk

 CERT C++: MSC33-C

24-413

Obsolete Function Standards Risk Replacement
Function

pthread_attr_
getstackaddr and
pthread_attr_
setstackaddr

 Ambiguities in the
specification of the
stackaddr attribute
cause portability issues

pthread_attr_
getstack and
pthread_attr_
setstack

putw Not present in POSIX.1-2001. Portability issues. fwrite
qecvt and qfcvt Marked as legacy in POSIX.1-2001,

removed in POSIX.1-2008
 snprintf

qecvt_r and qfcvt_r Marked as legacy in POSIX.1-2001,
removed in POSIX.1-2008

 snprintf

rand_r Marked as obsolete in
POSIX.1-2008

re_comp BSD API function Portability issues regcomp
re_exes BSD API function Portability issues regexec
rindex Marked as legacy in POSIX.1-2001.

Removed in POSIX.1-2008.
 strrchr

scalb Removed in POSIX.1-2008 scalbln, scalblnf,
or scalblnl

sigblock 4.3BSD signal API whose origin is
unclear

 sigprocmask

sigmask 4.3BSD signal API whose origin is
unclear

 sigprocmask

sigsetmask 4.3BSD signal API whose origin is
unclear

 sigprocmask

sigstack Interface is obsolete and not
implemented on most platforms.

Portability issues. sigaltstack

sigvec 4.3BSD signal API whose origin is
unclear

 sigaction

swapcontext Removed in POSIX.1-2008 Portability issues. Use POSIX threads.
tmpnam and tmpnam_r Marked as obsolete in

POSIX.1-2008.
This function generates a
different string each time
it is called, up to
TMP_MAX times. If it is
called more than
TMP_MAX times, the
behavior is
implementation-defined.

mkstemp, tmpfile

ttyslot Removed in POSIX.1-2001.
ualarm Marked as legacy in POSIX.1-2001.

Removed in POSIX.1-2008.
Errors are under-
specified

setitimer or POSIX
timer_create

usleep Removed in POSIX.1-2008. nanosleep
utime SVr4, POSIX.1-2001. POSIX.1-2008

marks as obsolete.

24 CERT C++ Rules

24-414

Obsolete Function Standards Risk Replacement
Function

valloc Marked as obsolete in 4.3BSD.

Marked as legacy in SUSv2.

Removed from POSIX.1-2001

 posix_memalign

vfork Removed from POSIX.1-2008 Under-specified in
previous standards.

fork

wcswcs This function was not included in
the final ISO/IEC 9899:1990/
Amendment 1:1995 (E).

 wcsstr

WinExec WinAPI provides this function only
for 16-bit Windows compatibility.

 CreateProcess

LoadModule WinAPI provides this function only
for 16-bit Windows compatibility.

 CreateProcess

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Printing Out Time

#include <stdio.h>
#include <time.h>

void timecheck_bad(int argc, char *argv[])
{
 time_t ticks;

 ticks = time(NULL);
 printf("%.24s\r\n", ctime(&ticks));
}

In this example, the function ctime formats the current time and prints it out. However, ctime was
removed after C99 because it does not work on multithreaded programs.

Correction — Different Time Function

One possible correction is to use strftime instead because this function uses a set buffer size.

 CERT C++: MSC33-C

24-415

#include <stdio.h>
#include <string.h>
#include <time.h>

void timecheck_good(int argc, char *argv[])
{
 char outBuff[1025];
 time_t ticks;
 struct tm * timeinfo;

 memset(outBuff, 0, sizeof(outBuff));

 ticks = time(NULL);
 timeinfo = localtime(&ticks);
 strftime(outBuff,sizeof(outBuff),"%I:%M%p.",timeinfo);
 fprintf(stdout, outBuff);
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MSC33-C

Introduced in R2019a

24 CERT C++ Rules

24-416

https://wiki.sei.cmu.edu/confluence/display/c/MSC33-C.+Do+not+pass+invalid+data+to+the+asctime%28%29+function

CERT C++: MSC37-C
Ensure that control never reaches the end of a non-void function

Description
Rule Definition

Ensure that control never reaches the end of a non-void function.

Polyspace Implementation

This checker checks for Missing return statement.

Examples
Missing return statement
Issue

Missing return statement occurs when a function does not return a value along at least one
execution path. If the return type of the function is void, this error does not occur.

Risk

If a function has a non-void return value in its signature, it is expected to return a value. The return
value of this function can be used in later computations. If the execution of the function body goes
through a path where a return statement is missing, the function return value is indeterminate.
Computations with this return value can lead to unpredictable results.

Fix

In most cases, you can fix this defect by placing the return statement at the end of the function
body.

Alternatively, you can identify which execution paths through the function body do not have a return
statement and add a return statement on those paths. Often the result details show a sequence of
events that indicate this execution path. You can add a return statement at an appropriate point in
the path. If the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Bug Finder Results in
Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

 CERT C++: MSC37-C

24-417

Example - Missing or invalid return statement error

int AddSquares(int n)
 {
 int i=0;
 int sum=0;

 if(n!=0)
 {
 for(i=1;i<=n;i++)
 {
 sum+=i^2;
 }
 return(sum);
 }
 }
/* Defect: No return value if n is not 0*/

If n is equal to 0, the code does not enter the if statement. Therefore, the function AddSquares
does not return a value if n is 0.

Correction — Place Return Statement on Every Execution Path

One possible correction is to return a value in every branch of the if...else statement.

 int AddSquares(int n)
 {
 int i=0;
 int sum=0;

 if(n!=0)
 {
 for(i=1;i<=n;i++)
 {
 sum+=i^2;
 }
 return(sum);
 }

 /*Fix: Place a return statement on branches of if-else */
 else
 return 0;
 }

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MSC37-C

24 CERT C++ Rules

24-418

https://wiki.sei.cmu.edu/confluence/display/c/MSC37-C.+Ensure+that+control+never+reaches+the+end+of+a+non-void+function

Introduced in R2019a

 CERT C++: MSC37-C

24-419

CERT C++: MSC38-C
Do not treat a predefined identifier as an object if it might only be implemented as a macro

Description
Rule Definition

Do not treat a predefined identifier as an object if it might only be implemented as a macro.

Polyspace Implementation

This checker checks for Predefined macro used as an object.

Examples
Predefined macro used as an object
Issue

Predefined macro used as an object occurs when you use certain identifiers in a way that requires
an underlying object to be present. These identifiers are defined as macros. The C Standard does not
allow you to redefine them as objects. You use the identifiers in such a way that macro expansion of
the identifiers cannot occur.

For instance, you refer to an external variable errno:

extern int errno;

However, errno does not occur as a variable but a macro.

The defect applies to these macros: assert, errno, math_errhandling, setjmp, va_arg,
va_copy, va_end, and va_start. The checker looks for the defect only in source files (not header
files).

Risk

The C11 Standard (Sec. 7.1.4) allows you to redefine most macros as objects. To access the object
and not the macro in a source file, you do one of these:

• Redeclare the identifier as an external variable or function.
• For function-like macros, enclose the identifier name in parentheses.

If you try to use these strategies for macros that cannot be redefined as objects, an error occurs.

Fix

Do not use the identifiers in such a way that a macro expansion is suppressed.

• Do not redeclare the identifiers as external variables or functions.
• For function-like macros, do not enclose the macro name in parentheses.

24 CERT C++ Rules

24-420

Example - Use of assert as Function

#include<assert.h>
typedef void (*err_handler_func)(int);

extern void demo_handle_err(err_handler_func, int);

void func(int err_code) {
 extern void assert(int);
 demo_handle_err(&(assert), err_code);
}

In this example, the assert macro is redefined as an external function. When passed as an argument
to demo_handle_err, the identifier assert is enclosed in parentheses, which suppresses use of the
assert macro.

Correction — Use assert as Macro

One possible correction is to directly use the assert macro from assert.h. A different
implementation of the function demo_handle_err directly uses the assert macro instead of taking
the address of an assert function.

#include<assert.h>
void demo_handle_err(int err_code) {
 assert(err_code == 0);
}

void func(int err_code) {
 demo_handle_err(err_code);
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MSC38-C

Introduced in R2019a

 CERT C++: MSC38-C

24-421

https://wiki.sei.cmu.edu/confluence/display/c/MSC38-C.+Do+not+treat+a+predefined+identifier+as+an+object+if+it+might+only+be+implemented+as+a+macro

CERT C++: MSC39-C
Do not call va_arg() on a va_list that has an indeterminate value

Description
Rule Definition

Do not call va_arg() on a va_list that has an indeterminate value.

Polyspace Implementation

This checker checks for Use of indeterminate va_list values.

Examples
Use of indeterminate va_list values
Issue

This issue occurs when:

• You use a local va_list without initializing it first using va_start or va_copy.

You might be using the local va_list in va_arg or a vprintf-like function (function that takes
variable number of arguments).

• You use a va_list (variable argument list) from a function parameter directly instead of making
a copy using va_copy and using the copy.

Note that the checker works on a per-function basis. If you initialize a va_list with va_start
within a block, the checker considers the list as initialized beyond the block for the remainder of the
function. Likewise, if you end the list with va_end within a block, the checker considers the list as
ended beyond the block for the remainder of the function.

Risk

If you use a local va_list without initializing it first, the behavior is undefined.

If you pass a va_list to another function and use it there, the va_list has indeterminate values in
the original calling function. Using the va_list in the calling function following the function call can
produce unexpected results.

Fix

Initialize a local va_list with va_start or va_copy before using it.

Pass a va_list by reference. In the called function, make a copy of the passed va_list and use the
copy. You can then continue to access the original va_list in the calling function.

Example – Direct Use of va_list From Another Function

#include <cstdarg>
#include <cstdio>
#include <climits>

24 CERT C++ Rules

24-422

int containsOutliers(size_t count, va_list ap) {
 for (size_t i = 1; i < count; ++i) {
 if (va_arg(ap, int) > INT_MAX) {
 return 1;
 }
 }
 return 0;
}

int printList(size_t count, ...) {
 va_list ap;
 va_start(ap, count);

 if (containsOutliers(count, ap)) {
 va_end(ap);
 return 1;
 }

 for (size_t i = 0; i < count; ++i) {
 printf("%d", va_arg(ap, int));
 }

 va_end(ap);
 return 0;
}

In this example, the checker flags the direct use of the va_list variable ap obtained as argument in
the containsOutliers function.

Correction – Copy va_list Obtained from Another Function

To avoid the violation, pass the va_list by reference and make a copy of the variable in the
containsOutliers function. Perform further operations on the copy.

#include <cstdarg>
#include <cstdio>
#include <climits>

int containsOutliers(size_t count, va_list* ap) {
 va_list copiedAp;
 va_copy (copiedAp, *ap);

 for (size_t i = 1; i < count; ++i) {
 if (va_arg(copiedAp, int) > INT_MAX) {
 return 1;
 }
 }
 return 0;
}

int printList(size_t count, ...) {
 va_list ap;
 va_start(ap, count);

 if (containsOutliers(count, &ap)) {
 va_end(ap);
 return 1;

 CERT C++: MSC39-C

24-423

 }

 for (size_t i = 0; i < count; ++i) {
 printf("%d", va_arg(ap, int));
 }

 va_end(ap);
 return 0;
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MSC39-C

Introduced in R2019a

24 CERT C++ Rules

24-424

https://wiki.sei.cmu.edu/confluence/display/c/MSC39-C.+Do+not+call+va_arg%28%29+on+a+va_list+that+has+an+indeterminate+value

CERT C++: MSC40-C
Do not violate constraints

Description
Rule Definition

Do not violate constraints.

Polyspace Implementation

This checker checks for Inline constraint not respected.

Examples
Inline constraint not respected

Issue

Inline constraint not respected occurs when you refer to a file scope modifiable static variable or
define a local modifiable static variable in a nonstatic inlined function. The checker considers a
variable as modifiable if it is not const-qualified.

For instance, var is a modifiable static variable defined in an inline function func. g_step is a
file scope modifiable static variable referred to in the same inlined function.

static int g_step;
inline void func (void) {
 static int var = 0;
 var += g_step;
}

Risk

When you modify a static variable in multiple function calls, you expect to modify the same variable in
each call. For instance, each time you call func, the same instance of var1 is incremented but a
separate instance of var2 is incremented.

void func(void) {
 static var1 = 0;
 int var2 = 0;
 var1++;
 var2++;
}

If a function has an inlined and non-inlined definition (in separate files), when you call the function,
the C standard allows compilers to use either the inlined or the non-inlined form (see ISO/IEC
9899:2011, sec. 6.7.4). If your compiler uses an inlined definition in one call and the non-inlined
definition in another, you are no longer modifying the same variable in both calls. This behavior defies
the expectations from a static variable.

 CERT C++: MSC40-C

24-425

Fix

Use one of these fixes:

• If you do not intend to modify the variable, declare it as const.

If you do not modify the variable, there is no question of unexpected modification.
• Make the variable non-static. Remove the static qualifier from the declaration.

If the variable is defined in the function, it becomes a regular local variable. If defined at file
scope, it becomes an extern variable. Make sure that this change in behavior is what you intend.

• Make the function static. Add a static qualifier to the function definition.

If you make the function static, the file with the inlined definition always uses the inlined
definition when the function is called. Other files use another definition of the function. The
question of which function definition gets used is not left to the compiler.

Example - Static Variable Use in Inlined and External Definition

/* file1. c : contains inline definition of get_random()*/

inline unsigned int get_random(void)
{

 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

int call_get_random(void)
{
 unsigned int rand_no;
 int ii;
 for (ii = 0; ii < 100; ii++) {
 rand_no = get_random();
 }
 rand_no = get_random();
 return 0;
}

/* file2. c : contains external definition of get_random()*/

extern unsigned int get_random(void)
{
 /* Initialize seeds */
 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

24 CERT C++ Rules

24-426

In this example, get_random() has an inline definition in file1.c and an external definition in
file2.c. When get_random is called in file1.c, compilers are free to choose whether to use the
inline or the external definition.

Depending on the definition used, you might or might not modify the version of m_z and m_w in the
inlined version of get_random(). This behavior contradicts the usual expectations from a static
variable. When you call get_random(), you expect to always modify the same m_z and m_w.

Correction — Make Inlined Function Static

One possible correction is to make the inlined get_random() static. Irrespective of your compiler,
calls to get_random() in file1.c then use the inlined definition. Calls to get_random() in other
files use the external definition. This fix removes the ambiguity about which definition is used and
whether the static variables in that definition are modified.

/* file1. c : contains inline definition of get_random()*/

static inline unsigned int get_random(void)
{

 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

int call_get_random(void)
{
 unsigned int rand_no;
 int ii;
 for (ii = 0; ii < 100; ii++) {
 rand_no = get_random();
 }
 rand_no = get_random();
 return 0;
}

/* file2. c : contains external definition of get_random()*/

extern unsigned int get_random(void)
{
 /* Initialize seeds */
 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

 CERT C++: MSC40-C

24-427

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MSC40-C

Introduced in R2019a

24 CERT C++ Rules

24-428

https://wiki.sei.cmu.edu/confluence/display/c/MSC40-C.+Do+not+violate+constraints

CERT C++: MSC41-C
Never hard code sensitive information

Description
Rule Definition

Never hard code sensitive information.

Polyspace Implementation

This checker checks for Hard coded sensitive data.

Examples
Hard coded sensitive data

Hard coded sensitive data occurs when data that is potentially sensitive is directly exposed in the
code, for instance, as string literals. The checker identifies data as sensitive from their use in certain
functions such as password encryption functions.

Following data can be potentially sensitive.

Type of Data Functions That Indicate Sensitive Nature of
Information

Host name • sethostname, setdomainname,
gethostbyname, gethostbyname2,
getaddrinfo, gethostbyname_r,
gethostbyname2_r (string argument)

• inet_aton, inet_pton, inet_net_pton,
inet_addr, inet_network (string
argument)

• mysql_real_connect,
mysql_real_connect_nonblocking,
mysql_connect (2nd argument)

Password • CreateProcessWithLogonW, LogonUser
(1st argument)

• mysql_real_connect,
mysql_real_connect_nonblocking,
mysql_connect (3rd argument)

 CERT C++: MSC41-C

24-429

Type of Data Functions That Indicate Sensitive Nature of
Information

Database • MySQL: mysql_real_connect,
mysql_real_connect_nonblocking,
mysql_connect (4th argument)

• SQLite: sqlite3_open, sqlite3_open16,
sqlite3_open_v2 (1st argument)

• PostgreSQL: PQconnectdb
• Microsoft SQL: SQLDriverConnect (3rd

argument)
User name • getpw, getpwnam, getpwnam_r, getpwuid,

getpwuid_r
Salt crypt, crypt_r (2nd argument)
Cryptography keys and initialization vectors OpenSSL:

• EVP_CipherInit, EVP_EncryptInit,
EVP_DecryptInit (3rd argument)

• EVP_CipherInit_ex,
EVP_EncryptInit_ex,
EVP_DecryptInit_ex (4th argument)

Seed • srand, srandom, initstate (1st argument)
• OpenSSL: RAND_seed, RAND_add

Risk

Information that is hardcoded can be queried from binaries generated from the code.

Fix

Avoid hard coding sensitive information.

Check Information
Group: Rule 48. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MSC41-C

Introduced in R2020a

24 CERT C++ Rules

24-430

https://wiki.sei.cmu.edu/confluence/display/c/MSC41-C.+Never+hard+code+sensitive+information

CERT C++: MSC50-CPP
Do not use std::rand() for generating pseudorandom numbers

Description
Rule Definition

Do not use std::rand() for generating pseudorandom numbers.

Polyspace Implementation

This checker checks for Vulnerable pseudo-random number generator.

Examples
Vulnerable pseudo-random number generator
Issue

The Vulnerable pseudo-random number generator identifies uses of cryptographically weak
pseudo-random number generator (PRNG) routines.

The list of cryptographically weak routines flagged by this checker include:

• rand, random
• drand48, lrand48, mrand48, erand48, nrand48, jrand48, and their _r equivalents such as

drand48_r
• RAND_pseudo_bytes

Risk

These cryptographically weak routines are predictable and must not be used for security purposes.
When a predictable random value controls the execution flow, your program is vulnerable to
malicious attacks.
Fix

Use more cryptographically sound random number generators, such as CryptGenRandom (Windows),
OpenSSL/RAND_bytes(Linux/UNIX).
Example - Random Loop Numbers

#include <stdio.h>
#include <stdlib.h>

volatile int rd = 1;
int main(int argc, char *argv[])
{
 int j, r, nloops;
 struct random_data buf;
 int i = 0;

 CERT C++: MSC50-CPP

24-431

 nloops = rand();

 for (j = 0; j < nloops; j++) {
 if (random_r(&buf, &i))
 exit(1);
 printf("random_r: %ld\n", (long)i);
 }
 return 0;
}

This example uses rand and random_r to generate random numbers. If you use these functions for
security purposes, these PRNGs can be the source of malicious attacks.

Correction — Use Stronger PRNG

One possible correction is to replace the vulnerable PRNG with a stronger random number generator.

#include <stdio.h>
#include <stdlib.h>
#include <openssl/rand.h>

volatile int rd = 1;
int main(int argc, char* argv[])
{
 int j, r, nloops;
 unsigned char buf;
 unsigned int seed;
 int i = 0;

 if (argc != 3)
 {
 fprintf(stderr, "Usage: %s <seed> <nloops>\n", argv[0]);
 exit(EXIT_FAILURE);
 }

 seed = atoi(argv[1]);
 nloops = atoi(argv[2]);

 for (j = 0; j < nloops; j++) {
 if (RAND_bytes(&buf, i) != 1)
 exit(1);
 printf("RAND_bytes: %u\n", (unsigned)buf);
 }
 return 0;
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

24 CERT C++ Rules

24-432

External Websites
MSC50-CPP

Introduced in R2019a

 CERT C++: MSC50-CPP

24-433

https://wiki.sei.cmu.edu/confluence/display/cplusplus/MSC50-CPP.+Do+not+use+std%3A%3Arand%28%29+for+generating+pseudorandom+numbers

CERT C++: MSC51-CPP
Ensure your random number generator is properly seeded

Description
Rule Definition

Ensure your random number generator is properly seeded.

Polyspace Implementation

This checker checks for these issues:

• Deterministic random output from constant seed.
• Predictable random output from predictable seed.

Examples
Deterministic random output from constant seed

Issue

Deterministic random output from constant seed detects random standard functions that when
given a constant seed, have deterministic output.

Risk

When some random functions, such as srand, srandom, and initstate, have constant seeds, the
results produce the same output every time that your program is run. A hacker can disrupt your
program if they know how your program behaves.

Fix

Use a different random standard function or use a nonconstant seed.

Some standard random routines are inherently cryptographically weak on page 13-86, and should not
be used for security purposes.

Example - Random Number Generator Initialization

#include <stdlib.h>

void random_num(void)
{
 srand(12345U);
 /* ... */
}

This example initializes a random number generator using srand with a constant seed. The random
number generation is deterministic, making this function cryptographically weak.

24 CERT C++ Rules

24-434

Correction — Use Different Random Number Generator

One possible correction is to use a random number generator that does not require a seed. This
example uses rand_s.

#define _CRT_RAND_S
#include <stdlib.h>
#include <stdio.h>

unsigned int random_num_time(void)
{

 unsigned int number;
 errno_t err;
 err = rand_s(&number);

 if(err != 0)
 {
 return number;
 }
 else
 {
 return err;
 }
}

Predictable random output from predictable seed
Issue

Predictable random output from predictable seed looks for random standard functions that use a
nonconstant but predictable seed. Examples of predictable seed generators are time,
gettimeofday, and getpid.
Risk

When you use predictable seed values for random number generation, your random numbers are also
predictable. A hacker can disrupt your program if they know how your program behaves.
Fix

You can use a different function to generate less predictable seeds.

You can also use a different random number generator that does not require a seed. For example, the
Windows API function rand_s seeds itself by default. It uses information from the entire system, for
example, system time, thread ids, system counter, and memory clusters. This information is more
random and a user cannot access this information.

Some standard random routines are inherently cryptographically weak on page 13-86, and should not
be used for security purposes.
Example - Seed as an Argument

#include <stdlib.h>
#include <time.h>

void seed_rng(int seed)

 CERT C++: MSC51-CPP

24-435

{
 srand(seed);
}

int generate_num(void)
{
 seed_rng(time(NULL) + 3);
 /* ... */
}

This example uses srand to start the random number generator with seed as the seed. However,
seed is predictable because the function time generates it. So, an attacker can predict the random
numbers generated by srand.

Correction — Use Different Random Number Generator

One possible correction is to use a random number generator that does not require a seed. This
example uses rand_s.

#define _CRT_RAND_S

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>

int generate_num(void)
{
 unsigned int number;
 errno_t err;
 err = rand_s(&number);

 if(err != 0)
 {
 return number;
 }
 else
 {
 return err;
 }
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MSC51-CPP

24 CERT C++ Rules

24-436

https://wiki.sei.cmu.edu/confluence/display/cplusplus/MSC51-CPP.+Ensure+your+random+number+generator+is+properly+seeded

Introduced in R2019a

 CERT C++: MSC51-CPP

24-437

CERT C++: MSC52-CPP
Value-returning functions must return a value from all exit paths

Description
Rule Definition

Value-returning functions must return a value from all exit paths.

Polyspace Implementation

This checker checks for Missing return statement.

Examples
Missing return statement
Issue

Missing return statement occurs when a function does not return a value along at least one
execution path. If the return type of the function is void, this error does not occur.

Risk

If a function has a non-void return value in its signature, it is expected to return a value. The return
value of this function can be used in later computations. If the execution of the function body goes
through a path where a return statement is missing, the function return value is indeterminate.
Computations with this return value can lead to unpredictable results.

Fix

In most cases, you can fix this defect by placing the return statement at the end of the function
body.

Alternatively, you can identify which execution paths through the function body do not have a return
statement and add a return statement on those paths. Often the result details show a sequence of
events that indicate this execution path. You can add a return statement at an appropriate point in
the path. If the result details do not show the event history, you can trace back using right-click
options in the source code and see previous related events. See also “Interpret Bug Finder Results in
Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

24 CERT C++ Rules

24-438

Example - Missing or invalid return statement error

int AddSquares(int n)
 {
 int i=0;
 int sum=0;

 if(n!=0)
 {
 for(i=1;i<=n;i++)
 {
 sum+=i^2;
 }
 return(sum);
 }
 }
/* Defect: No return value if n is not 0*/

If n is equal to 0, the code does not enter the if statement. Therefore, the function AddSquares
does not return a value if n is 0.

Correction — Place Return Statement on Every Execution Path

One possible correction is to return a value in every branch of the if...else statement.

 int AddSquares(int n)
 {
 int i=0;
 int sum=0;

 if(n!=0)
 {
 for(i=1;i<=n;i++)
 {
 sum+=i^2;
 }
 return(sum);
 }

 /*Fix: Place a return statement on branches of if-else */
 else
 return 0;
 }

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MSC52-CPP

 CERT C++: MSC52-CPP

24-439

https://wiki.sei.cmu.edu/confluence/display/cplusplus/MSC52-CPP.+Value-returning+functions+must+return+a+value+from+all+exit+paths

Introduced in R2019a

24 CERT C++ Rules

24-440

CERT C++: MSC53-CPP
Do not return from a function declared [[noreturn]]

Description
Rule Definition

Do not return from a function declared [[noreturn]]

Polyspace Implementation

This checker checks for [[noreturn]] functions returning to Caller.

Examples
[[noreturn]] functions returning to caller
Issue

This defect occurs when a [[noreturn]] function eventually returns the flow of execution to the
caller function. The compiler expects that a function declared by using the [[noreturn]] attribute
does not return the flow of execution. That is, if a [[noreturn]] function f() is called from
main(), then the compiler expects that the flow of execution is not returned to main(). If such a
function eventually returns the flow of execution, it leads to undefined behavior.

Risk

If a [[noreturn]] function eventually returns the flow of execution, it leads to undefined behavior,
which can be exploited to cause data integrity violations.

Fix

If a function has no return statement, then the final closing brace of a function implies an implicit
return. Omitting a return statement in the function does not prevent the flow of execution from
returning. A [[noreturn]] function can prohibit returning the flow of execution to the calling
function by:

• Entering an infinite loop
• Raising an exception
• Calling another [[noreturn]] function

Example

Consider the following code containing the function noncompliant(), which is declared as
[[noreturn]].

#include <cstdlib>
[[noreturn]] void bad_f(int i)
{
 if (i > 0)
 throw "Received positive input";
 else if (i < 0)

 CERT C++: MSC53-CPP

24-441

 std::exit(0);
} //Noncompliant

When the input i is zero, the flow of execution skips the if-else-if block of code and returns to
the caller implicitly. Because the [[noreturn]] function returns the flow of execution in a code
path, this function is noncompliant with this rule.

Correction

A [[noreturn]] function must not return the flow of execution in a code path. You can prevent
returning in several ways. Consider the following code where the [[noreturn]] function does not
return the flow of execution in a code path.

#include <cstdlib>
[[noreturn]] void compliant(int i)
{
 if (i > 0)
 throw "Received positive input";
 else if (i < 0)
 std::exit(0);
 else if(i==0)
 while(true){
 //...
 }
}//Compliant

This function is compliant with this rule because:

• When i > 0, the function raises an exception.
• When i < 0, the function calls the [[noreturn]] function std::exit().
• When i==0, the function enters an infinite loop.

Because the [[noreturn]] function does not return the flow of execution in a call path, it is
compliant with this rule.

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
MSC53-CPP

Introduced in R2020b

24 CERT C++ Rules

24-442

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046346

CERT C++: PRE30-C
Do not create a universal character name through concatenation

Description
Rule Definition

Do not create a universal character name through concatenation.

Polyspace Implementation

This checker checks for Universal character name from token concatenation.

Examples
Universal character name from token concatenation
Issue

Universal character name from token concatenation occurs when two preprocessing tokens
joined with a ## operator create a universal character name. A universal character name begins with
\u or \U followed by hexadecimal digits. It represents a character not found in the basic character
set.

For instance, you form the character \u0401 by joining two tokens:

#define assign(uc1, uc2, val) uc1##uc2 = val
...
assign(\u04, 01, 4);

Risk

The C11 Standard (Sec. 5.1.1.2) states that if a universal character name is formed by token
concatenation, the behavior is undefined.

Fix

Use the universal character name directly instead of producing it through token concatenation.

Example - Universal Character Name from Token Concatenation

#define assign(uc1, uc2, val) uc1##uc2 = val

int func(void) {
 int \u0401 = 0;
 assign(\u04, 01, 4);
 return \u0401;
}

In this example, the assign macro, when expanded, joins the two tokens \u04 and 01 to form the
universal character name \u0401.

 CERT C++: PRE30-C

24-443

Correction — Use Universal Character Name Directly

One possible correction is to use the universal character name \u0401 directly. The correction
redefines the assign macro so that it does not join tokens.

#define assign(ucn, val) ucn = val

int func(void) {
 int \u0401 = 0;
 assign(\u0401, 4);
 return \u0401;
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
PRE30-C

Introduced in R2019a

24 CERT C++ Rules

24-444

https://wiki.sei.cmu.edu/confluence/display/c/PRE30-C.+Do+not+create+a+universal+character+name+through+concatenation

CERT C++: PRE31-C
Avoid side effects in arguments to unsafe macros

Description
Rule Definition

Avoid side effects in arguments to unsafe macros.

Polyspace Implementation

This checker checks for Side effect in arguments to unsafe macro.

Examples
Side effect in arguments to unsafe macro
Issue

Side effect in arguments to unsafe macro occurs when you call an unsafe macro with an
expression that has a side effect.

• Unsafe macro: When expanded, an unsafe macro evaluates its arguments multiple times or does
not evaluate its argument at all.

For instance, the ABS macro evaluates its argument x twice.

#define ABS(x) (((x) < 0) ? -(x) : (x))
• Side effect: When evaluated, an expression with a side effect modifies at least one of the variables

in the expression.

For instance, ++n modifies n, but n+1 does not modify n.

The checker does not consider side effects in nested macros. The checker also does not consider
function calls or volatile variable access as side effects.

Risk

If you call an unsafe macro with an expression that has a side effect, the expression is evaluated
multiple times or not evaluated at all. The side effect can occur multiple times or not occur at all,
causing unexpected behavior.

For instance, in the call MACRO(++n), you expect only one increment of the variable n. If MACRO is an
unsafe macro, the increment happens more than once or does not happen at all.

The checker flags expressions with side effects in the assert macro because the assert macro is
disabled in non-debug mode. To compile in non-debug mode, you define the NDEBUG macro during
compilation. For instance, in GCC, you use the flag -DNDEBUG.
Fix

Evaluate the expression with a side effect in a separate statement, and then use the result as a macro
argument.

 CERT C++: PRE31-C

24-445

For instance, instead of:

MACRO(++n);

perform the operation in two steps:

++n;
MACRO(n);

Alternatively, use an inline function instead of a macro. Pass the expression with side effect as
argument to the inline function.

The checker considers modifications of a local variable defined only in the block scope of a macro
body as a side effect. This defect cannot happen since the variable is visible only in the macro body. If
you see a defect of this kind, ignore the defect.

Example - Macro Argument with Side Effects

#define ABS(x) (((x) < 0) ? -(x) : (x))

void func(int n) {
 /* Validate that n is within the desired range */
 int m = ABS(++n);

 /* ... */
}

In this example, the ABS macro evaluates its argument twice. The second evaluation can result in an
unintended increment.

Correction — Separate Evaluation of Expression from Macro Usage

One possible correction is to first perform the increment, and then pass the result to the macro.

#define ABS(x) (((x) < 0) ? -(x) : (x))

void func(int n) {
 /* Validate that n is within the desired range */
 ++n;
 int m = ABS(n);

 /* ... */
}

Correction — Evaluate Expression in Inline Function

Another possible correction is to evaluate the expression in an inline function.

static inline int iabs(int x) {
 return (((x) < 0) ? -(x) : (x));
}

void func(int n) {
 /* Validate that n is within the desired range */

int m = iabs(++n);

 /* ... */
}

24 CERT C++ Rules

24-446

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
PRE31-C

Introduced in R2019a

 CERT C++: PRE31-C

24-447

https://wiki.sei.cmu.edu/confluence/display/c/PRE31-C.+Avoid+side+effects+in+arguments+to+unsafe+macros

CERT C++: PRE32-C
Do not use preprocessor directives in invocations of function-like macros

Description
Rule Definition

Do not use preprocessor directives in invocations of function-like macros.

Polyspace Implementation

This checker checks for Preprocessor directive in macro argument.

Examples
Preprocessor directive in macro argument
Issue

Preprocessor directive in macro argument occurs when you use a preprocessor directive in the
argument to a function-like macro or a function that might be implemented as a function-like macro.

For instance, a #ifdef statement occurs in the argument to a memcpy function. The memcpy function
might be implemented as a macro.

memcpy(dest, src,
 #ifdef PLATFORM1
 12
 #else
 24
 #endif
);

The checker flags similar usage in printf and assert, which can also be implemented as macros.

Risk

During preprocessing, a function-like macro call is replaced by the macro body and the parameters
are replaced by the arguments to the macro call (argument substitution). Suppose a macro min() is
defined as follows.

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

When you call min(1,2), it is replaced by the body ((X) < (Y) ? (X) : (Y)). X and Y are
replaced by 1 and 2.

According to the C11 Standard (Sec. 6.10.3), if the list of arguments to a function-like macro itself
has preprocessing directives, the argument substitution during preprocessing is undefined.

Fix

To ensure that the argument substitution happens in an unambiguous manner, use the preprocessor
directives outside the function-like macro.

24 CERT C++ Rules

24-448

For instance, to execute memcpy with different arguments based on a #ifdef directive, call memcpy
multiple times within the #ifdef directive branches.

#ifdef PLATFORM1
 memcpy(dest, src, 12);
#else
 memcpy(dest, src, 24);
#endif

Example - Directives in Function-Like Macros

#include <stdio.h>

#define print(A) printf(#A)

void func(void) {
 print(
#ifdef SW
 "Message 1"
#else
 "Message 2"
#endif
);
}

In this example, the preprocessor directives #ifdef and #endif occur in the argument to the
function-like macro print().

Correction — Use Directives Outside Macro

One possible correction is to use the function-like macro multiple times in the branches of the
#ifdef directive.

#include <stdio.h>

#define print(A) printf(#A)

void func(void) {
#ifdef SW
 print("Message 1");
#else
 print("Message 2");
#endif
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
PRE32-C

 CERT C++: PRE32-C

24-449

https://wiki.sei.cmu.edu/confluence/display/c/PRE32-C.+Do+not+use+preprocessor+directives+in+invocations+of+function-like+macros

Introduced in R2019a

24 CERT C++ Rules

24-450

CERT C++: SIG31-C
Do not access shared objects in signal handlers

Description
Rule Definition

Do not access shared objects in signal handlers.

Polyspace Implementation

This checker checks for Shared data access within signal handler.

Examples
Shared data access within signal handler
Issue

Shared data access within signal handler occurs when you access or modify a shared object
inside a signal handler.

Risk

When you define a signal handler function to access or modify a shared object, the handler accesses
or modifies the shared object when it receives a signal. If another function is already accessing the
shared object, that function causes a race condition and can leave the data in an inconsistent state.

Fix

To access or modify shared objects inside a signal handler, check that the objects are lock-free
atomic, or, if they are integers, declare them as volatile sig_atomic_t.

Example - int Variable Access in Signal Handler

#include <signal.h>
#include <stdlib.h>
#include <string.h>

/* declare global variable. */
int e_flag;

void sig_handler(int signum)
{
 /* Signal handler accesses variable that is not
 of type volatile sig_atomic_t. */
 e_flag = signum;
}

int func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

 CERT C++: SIG31-C

24-451

 abort();
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 abort();
 }
 /* More code */
 return 0;
}

In this example, sig_handler accesses e_flag, a variable of type int. A concurrent access by
another function can leave e_flag in an inconsistent state.
Correction — Declare Variable of Type volatile sig_atomic_t

Before you access a shared variable from a signal handler, declare the variable with type volatile
sig_atomic_t instead of int. You can safely access variables of this type asynchronously.

#include <signal.h>
#include <stdlib.h>
#include <string.h>

/* Declare variable of type volatile sig_atomic_t. */
volatile sig_atomic_t e_flag;
void sig_handler(int signum)
{
 /* Use variable of proper type inside signal handler. */
 e_flag = signum;

}

int func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 abort();
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 abort();
 }
 /* More code */
 return 0;
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

24 CERT C++ Rules

24-452

Topics
“Check for Coding Standard Violations”

External Websites
SIG31-C

Introduced in R2019a

 CERT C++: SIG31-C

24-453

https://wiki.sei.cmu.edu/confluence/display/c/SIG31-C.+Do+not+access+shared+objects+in+signal+handlers

CERT C++: SIG34-C
Do not call signal() from within interruptible signal handlers

Description
Rule Definition

Do not call signal() from within interruptible signal handlers.

Polyspace Implementation

This checker checks for Signal call from within signal handler.

Examples
Signal call from within signal handler
Issue

Signal call from within signal handler occurs when you call signal() from a signal handler on
Windows platforms.

The issue is detected only if you specify a Visual Studio compiler. See Compiler (-compiler).

Risk

The function signal() associates a signal with a signal handler function. On platforms such as
Windows, which removes this association after receiving the signal, you might call the function
signal() again within the signal handler to re-establish the association.

However, this attempt to make a signal handler persistent is prone to race conditions. On Windows
platforms, from the time the signal handler begins execution to when the signal function is called
again, it is the default signal handling, SIG_DFL, that is active. If a second signal is received within
this time window, you see the default signal handling and not the custom signal handler, but you
might expect otherwise.

Fix

Do not call signal() from a signal handler on Windows platforms.

Example - signal() Called from Signal Handler

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>

volatile sig_atomic_t e_flag = 0;

void sig_handler(int signum)
{

24 CERT C++ Rules

24-454

 int s0 = signum;
 e_flag = 1;

 /* Call signal() to reestablish sig_handler
 upon receiving SIG_ERR. */

 if (signal(s0, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
}

void func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

 }
 /* more code */
}

In this example, the definition of sig_handler() includes a call to signal() when the handler
catches SIG_ERR. On Windows platforms, signal handlers are nonpersistent. This code can result in a
race condition.

The issue is detected only if you specify a compiler such as visual15.x for the analysis.

Correction — Do Not Call signal() from Signal Handler

Avoid attempting to make a signal handler persistent on Windows. If your code requires the use of a
persistent signal handler on a Windows platform, use a persistent signal handler after performing a
thorough risk analysis.

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>

volatile sig_atomic_t e_flag = 0;

void sig_handler(int signum)
{
 int s0 = signum;
 e_flag = 1;
 /* No call to signal() */
}

int main(void)
{

 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

 CERT C++: SIG34-C

24-455

 }
}

Check Information
Group: 49. Miscellaneous (MSC)

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
SIG34-C

Introduced in R2019a

24 CERT C++ Rules

24-456

https://wiki.sei.cmu.edu/confluence/display/c/SIG34-C.+Do+not+call+signal%28%29+from+within+interruptible+signal+handlers

CERT C++: SIG35-C
Do not return from a computational exception signal handler

Description
Rule Definition

Do not return from a computational exception signal handler.

Polyspace Implementation

This checker checks for Return from computational exception signal handler.

Examples
Return from computational exception signal handler
Issue

Return from computational exception signal handler occurs when a signal handler returns after
catching a computational exception signal SIGFPE, SIGILL, or SIGSEGV.

Risk

A signal handler that returns normally from a computational exception is undefined behavior. Even if
the handler attempts to fix the error that triggered the signal, the program can behave unexpectedly.

Fix

Check the validity of the values of your variables before the computation to avoid using a signal
handler to catch exceptions. If you cannot avoid a handler to catch computation exception signals,
call abort(), quick_exit(), or _Exit() in the handler to stop the program.

Example - Signal Handler Return from Division by Zero

#include <errno.h>
#include <limits.h>
#include <signal.h>
#include <stdlib.h>

static volatile sig_atomic_t denom;
/* Declare signal handler to catch division by zero
computation error. */
void sig_handler(int s)
{
 int s0 = s;
 if (denom == 0)
 {
 denom = 1;
 }
 /* Normal return from computation exception
 signal */
 return;
}

 CERT C++: SIG35-C

24-457

long func(int v)
{
 denom = (sig_atomic_t)v;

 if (signal(SIGFPE, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }

 long result = 100 / (long)denom;
 return result;
}

In this example, sig_handler is declared to handle a division by zero computation error. The
handler changes the value of denom if it is zero and returns, which is undefined behavior.

Correction — Call abort() to Terminate Program

After catching a computational exception, call abort() from sig_handler to exit the program
without further error.

#include <errno.h>
#include <limits.h>
#include <signal.h>
#include <stdlib.h>

static volatile sig_atomic_t denom;
/* Declare signal handler to catch division by zero
computation error. */

void sig_handler(int s)
{
 int s0 = s;
 /* call to abort() to exit the program */
 abort();
}

long func(int v)
{
 denom = (sig_atomic_t)v;

 if (signal(SIGFPE, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }

 long result = 100 / (long)denom;
 return result;
}

Check Information
Group: 49. Miscellaneous (MSC)

24 CERT C++ Rules

24-458

See Also
Check SEI CERT-C++ (-cert-cpp))

Topics
“Check for Coding Standard Violations”

External Websites
SIG35-C

Introduced in R2019a

 CERT C++: SIG35-C

24-459

https://wiki.sei.cmu.edu/confluence/display/c/SIG35-C.+Do+not+return+from+a+computational+exception+signal+handler

AUTOSAR C++14 Rules

25

AUTOSAR C++14 Rule A0-1-1
A project shall not contain instances of non-volatile variables being given values that are not
subsequently used

Description
Rule Definition

A project shall not contain instances of non-volatile variables being given values that are not
subsequently used.

Rationale

If you assign a value to a variable but do not use the variable value subsequently, the assignment
might indicate a programming error. Perhaps you forgot to use the variable later or incorrectly used
other variables at the intended points of use.

Polyspace Implementation

The checker flags value assignments to local and static variables with file scope if the assigned values
are not subsequently used. The checker considers const-qualified global variables without the
extern specifier as static variables with file scope.

The checker flags:

• Initializations if the initialized variable is not used.
• Non-initialization assignments if the assigned values are not used.

The checker does not flag the situation where an initialization value is immediately overwritten and
therefore ends up unused.

The checker does not flag redundant assignments:

• To variables with class type.
• In the last iteration of a loop, if the assignments in the previous iterations are not redundant.

For instance, the assignment prevIter = i in the last iteration of the loop is redundant but the
assignments in the previous iterations are not.

void doSomething(int);

void func() {
 int prevIter=-1, uBound=100;
 for(int i=0; i < uBound; i++) {
 doSomething(prevIter);
 prevIter = i;
 }
}

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

25 AUTOSAR C++14 Rules

25-2

Examples
Initialization Value Not Used

class largeInteger {
 largeInteger(int d1, int d2, int d3):
 lastFiveDigits(d1), nextFiveDigits(d2), firstFiveDigits(d3){}
 largeInteger& operator=(const largeInteger& other) {
 if(&other !=this) {
 firstFiveDigits = other.firstFiveDigits;
 nextFiveDigits = other.nextFiveDigits;
 lastFiveDigits = other.lastFiveDigits;
 }
 return *this;
 }
 void printIntegerValue();
 private:
 int firstFiveDigits;
 int nextFiveDigits;
 int lastFiveDigits;
};

bool compareValues(largeInteger, largeInteger);

void func() {
 largeInteger largeUnit{10000,0,0}; //Compliant
 largeInteger smallUnit{1,0,0}; //Compliant
 largeInteger tinyUnit{0,1,0}; //Noncompliant
 if(compareValues (largeUnit, smallUnit)) {
 //Perform some action
 }
}

In this example, the variable tinyUnit is initialized but never used.

Check Information
Group: Language independent issues
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 AUTOSAR C++14 Rule A0-1-1

25-3

AUTOSAR C++14 Rule A0-1-2
The value returned by a function having a non-void return type that is not an overloaded operator
shall be used

Description
Rule Definition

The value returned by a function having a non-void return type that is not an overloaded operator
shall be used.

Rationale

The unused return value might indicate a coding error or oversight.

Overloaded operators are excluded from this rule because their usage must emulate built-in
operators which might not use their return value.

Polyspace Implementation

Bug Finder and Code Prover check this coding rule differently. The analyses can produce different
results.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Return Value Not Used
#include <iostream>
#include <new>

int assignMemory(int * ptr){
 int res = 1;
 ptr = new (std::nothrow) int;
 if(ptr==NULL) {
 res = 0;
 }
 return res;
}

void main() {
 int val;
 int status;

 assignMemory(&val); //Noncompliant
 status = assignMemory(&val); //Compliant
 (void)assignMemory(&val); //Compliant

}

25 AUTOSAR C++14 Rules

25-4

The first call to the function assignMemory is noncompliant because the return value is not used.
The second and third calls use the return value. The return value from the second call is assigned to a
local variable.

The return value from the third call is cast to void. Casting to void indicates deliberate non-use of
the return value and cannot be a coding oversight.

Check Information
Group: Language Independent Issues
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A0-1-2

25-5

AUTOSAR C++14 Rule A0-1-3
Every function defined in an anonymous namespace, or static function with internal linkage, or
private member function shall be used

Description
Rule Definition

Every function defined in an anonymous namespace, or static function with internal linkage, or
private member function shall be used.

Rationale

Functions defined in an anonymous namespace and static functions with internal linkage are callable
only inside the compilation unit in which they are defined. Similarly, private member functions are
callable only inside the class implementation that they belong to. In both these cases, such functions
are intended to be used exclusively in the current source code and not in external code that is
integrated later on into the project. Not using such functions indicates poor software design or
missing logic in the current code base.

Note An explicit function call in the source code is sufficient to satisfy this rule, even if the call is not
reachable at run time. A separate rule, M0-1-1, checks for all unreachable code occurrences.

Polyspace Implementation

If a function defined in your source code is not called explicitly and belongs to one of these
categories, the checker flags the function definition:

• Functions defined in anonymous namespace
• Static functions with internal linkage
• Private member functions that are defined outside the class definition

The checker does not flag an uncalled private member function that is defined inside the class
definition.

The checker does not flag private member functions that are defined outside the class definition in a
default Polyspace as You Code analysis. See “Checkers Deactivated in Polyspace as You Code Default
Analysis”.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Function in Anonymous Namespace Not Used
#include <cstdint>

25 AUTOSAR C++14 Rules

25-6

namespace
{
 void F1() // Compliant, function in anonymous namespace used
 {
 }

 void F2() // Noncompliant, function in anonymous namespace not used
 {
 }
}

int main()
{
 F1();
 return 0;
}

The static function F2 is defined in an anonymous namespace but is not called from the main
function, thus violating this coding rule.

Static Function Not Used

#include <cstdint>
static void F1() // Compliant, static function called from main
{
}

static void F2() // Noncompliant, static function not called from main
{
}

int main()
{
 F1();
 return 0;
}

The static function F2 has internal linkage but is not called from the main function, thus violating this
coding rule.

Private Member Function Not Used
#include <cstdint>

class C
{
 public:
 C() : x(0) {}
 void M1(std::int32_t);
 void M2(std::int32_t, std::int32_t);
 private:
 std::int32_t x;
 void M1PrivateImpl(std::int32_t j);
};

// Compliant, member function is used
void C::M1(std::int32_t i)
{
 x = i;
}

// Compliant, never used but declared as public
void C::M2(std::int32_t i, std::int32_t j)
{
 x = (i > j) ? i : j;

 AUTOSAR C++14 Rule A0-1-3

25-7

}

void C::M1PrivateImpl(std::int32_t j) // Noncompliant, private member function never used
{
 x = j;
}

int main()
{
 C c;
 c.M1(1);
 return 0;
}

The private member function M1PrivateImpl is not called from any member of the class C, thus
violating this coding rule.

Check Information
Group: Language independent issues
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-8

AUTOSAR C++14 Rule A0-1-4
There shall be no unused named parameters in non-virtual functions

Description
Rule Definition

There shall be no unused named parameters in non-virtual functions.

Rationale

Unused parameters can indicate that the code is possibly incomplete. The parameter is possibly
intended for an operation that you forgot to code or leftover from a design change.

If the parameters are obtained by copy and the copied objects are large, the redundant copies can
slow down performance.

Polyspace Implementation

The checker flags a function that has unused named parameters unless the function body is empty.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Language Independent Issues
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A0-1-4

25-9

AUTOSAR C++14 Rule A0-1-5
There shall be no unused named parameters in the set of parameters for a virtual function and all the
functions that override it

Description
Rule Definition

There shall be no unused named parameters in the set of parameters for a virtual function and all the
functions that override it.

Rationale

Unused parameters can indicate that the code is possibly incomplete. The parameter is possibly
intended for an operation that you forgot to code.

The rule focuses on virtual functions because all functions that override a virtual function must have
the same signature as the virtual function, including number and type of parameters. If a parameter
is indeed not required, the issue can cascade from the original function to all overriding functions.

However, in an overriding function, you might not have need for a certain parameter. You can leave
that parameter unnamed. This rule enforces the convention that unused parameters stay unnamed.

Polyspace Implementation

For each virtual function, the checker looks at all overrides of the function. If an override has a
named parameter that is not used, the checker shows a violation on the original virtual function and
lists the override as a supporting event.

Note that Polyspace checks for unused parameters in virtual functions within single translation units.
For instance, if a base class contains a virtual method with an unused parameter but the derived class
implementation of the method uses that parameter, the rule is not violated. However, if the base class
and derived class are defined in different files, the checker, which operates file by file, flags a
violation of this rule on the base class.

The checker does not flag unused parameters in functions with empty bodies.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Language independent issues
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

25 AUTOSAR C++14 Rules

25-10

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

 AUTOSAR C++14 Rule A0-1-5

25-11

AUTOSAR C++14 Rule A0-1-6
There should be no unused type declarations

Description
Rule Definition

There should be no unused type declarations.

Rationale

If a type is declared but not used, when reviewing the code later, it is unclear if the type is redundant
or left unused by mistake.

Unused types can indicate coding errors. For instance, you declared a enumerated data type for some
specialized data but used an integer type for the data.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Unused enum Declaration

enum switchValue {low, medium, high}; //Noncompliant

void operate(int userInput) {
 switch(userInput) {
 case 0: // Turn on low setting
 break;
 case 1: // Turn on medium setting
 break;
 case 2: // Turn on high setting
 break;
 default: // Return error
 }
}

In this example, the enumerated type switchValue is not used. Perhaps the intention was to use the
type as switch input like this.

enum switchValue {low, medium, high}; //Compliant

void operate(switchValue userInput) {
 switch(userInput) {
 case low: // Turn on low setting
 break;
 case medium: // Turn on medium setting
 break;
 case high: // Turn on high setting
 break;

25 AUTOSAR C++14 Rules

25-12

 default: // Return error
 }
}

Check Information
Group: Language Independent Issues
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A0-1-6

25-13

AUTOSAR C++14 Rule A0-4-2
Type long double shall not be used

Description
Rule Definition

Type long double shall not be used.

Rationale

The size of long double is implementation-dependent and reduces the portability of your code
across compilers. Compilers can implement long double as a synonym for double or an 80-bit
extended precision type or 128-bit quadruple precision type that are more precise than double.

Instead, for multiple precision arithmetic that requires types more precise than double, use libraries
that support multiple precision arithmetic with well-defined data types.

Polyspace Implementation

The rule checker flags all uses of the long double keyword.

If you do not want to fix the issue, add a comment justifying the result. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of long double Keyword

void func() {
 float f{0.1F}; //Compliant
 double D(0.1); //Compliant
 long double LD(0.1L); //Noncompliant
}

The use of long double violates this rule.

Check Information
Group: Expressions
Category: Required, Automated

25 AUTOSAR C++14 Rules

25-14

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A0-4-2

25-15

AUTOSAR C++14 Rule A1-1-1
All code shall conform to ISO/IEC 14882:2014 - Programming Language C++ and shall not use
deprecated features

Description
Rule Definition

All code shall conform to ISO/IEC 14882:2014 - Programming Language C++ and shall not use
deprecated features.

Polyspace Implementation

The checker reports compilation errors as detected by a compiler that strictly adheres to the C++03
Standard (ISO/IEC 14882:2003).

Bug Finder and Code Prover check this coding rule differently. The analyses can produce different
results.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: General
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-16

AUTOSAR C++14 Rule A2-3-1
Only those characters specified in the C++ Language Standard basic source character set shall be
used in the source code

Description
Rule Definition

Only those characters specified in the C++ Language Standard basic source character set shall be
used in the source code.

Rationale

In the C++ standard, the basic source character set consists of 96 characters. They are:

• The space character.
• The control characters such as horizontal tab, vertical tab, form feed, and new line.
• Upper and lower case letters, and numbers.
• Special characters, such as _ { } [] # () < > % : ; . ? * + - / ^ & | ~ ! = , \

" '.

Using characters outside this set can cause confusion and unexpected bugs. For example, the Greek
letter "Τ" is visually similar to the English letter "T", but they are separate characters with different
unicode code-point values. To avoid unexpected behavior, use only the above specified characters in
your source code, including comments and string literals. You can use characters outside this set in
only two cases. You can use:

• Other characters inside the text of a wide string or a UTF-8 encoded string.
• The character @ inside comments, the text of a wide string, or a UTF-8 encoded string.

Polyspace Implementation

Polyspace flags the characters in your source code that are not in the set of 96 characters specified in
C++ standard, with two exceptions that come from the AUTOSAR C++14 Standard. Polyspace does
not flag:

• Other characters inside the text of a wide string or a UTF-8 encoded string.
• The character @ inside comments, the text of a wide string, or a UTF-8 encoded string.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Do Not Use Characters Outside the Specified Set

The following example demonstrates the Polyspace implementation of AUTOSAR rule A2-3-1.

 AUTOSAR C++14 Rule A2-3-1

25-17

#include <cstdint>

// @ brief foo function //Compliant by exception
/* @ brief foo function */ //Compliant by exception

#if 0
@ This one is not in a comment //Noncompliant
#endif
/*Define £ and € as currency */ // Noncompliant
#define CUR1 "£" //Noncompliant
#define CUR2 "€" //Noncompliant
void myfunction(char *str);
int Total = 0; //Complaint
int Τotal = 0; //Noncompliant
void foo()
{
 char *s1 = "Greek Τ - normal string"; //Noncompliant
 wchar_t *s2 { L"Greek Τ @ wide string"}; //Compliant
 char *s3 = u8"Greek Τ @ UTF-8"; // Compliant
 char16_t *s4 = u"Greek Τ UTF-16"; //Noncompliant
 char32_t *s5 = U"Greek Τ UTF-32"; //Noncompliant
 char *s6 = "mail@company.com"; //Noncompliant
 myfunction("Greek Τ");//Noncompliant
 myfunction(s3);//Complaint
}

main(){
 // ..
}

If your code has characters that are not in the specified character set, Polyspace flags them. Note the
global variables Total and Τotal. Even though it looks as if they are the same variable, they are two
different variables because the latter starts with the Greek letter "Τ". Confusion between these two
characters can lead to unexpected behavior. Because the Greek letter "Τ" is outside the standard set
of characters, Polyspace flags every use of the character, even those in comments and string literals.

Polyspace flags every use of characters outside the specified set, with the following exceptions. You
can use:

• Other characters inside a wide string such as s2 or UTF-8 encoded string such as s3.
• The character @ inside a wide string such as s2, a UTF-8 encoded string such as s3, or a

comment.

Check Information
Group: Lexical conventions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

25 AUTOSAR C++14 Rules

25-18

Introduced in R2020a

 AUTOSAR C++14 Rule A2-3-1

25-19

AUTOSAR C++14 Rule A2-5-1
Trigraphs shall not be used

Description
Rule Definition

Trigraphs shall not be used.

Rationale

You denote trigraphs with two question marks followed by a specific third character (for
instance,'??-' represents a '~' (tilde) character and '??)' represents a ']'). These trigraphs can
cause accidental confusion with other uses of two question marks.

For instance, the string

"(Date should be in the form ??-??-??)"

is transformed to

"(Date should be in the form ~~]"

but this transformation might not be intended.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Lexical Conventions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-20

AUTOSAR C++14 Rule A2-5-2
Digraphs shall not be used

Description
Rule Definition

Digraphs shall not be used.

Rationale

Digraphs are a sequence of two characters that are supposed to be treated as a single character. The
checker flags use of these digraphs:

• <%, indicating [
• %>, indicating]
• <:, indicating {
• :>, indicating }
• %:, indicating #
• %:%:

When developing or reviewing code with digraphs, the developer or reviewer can incorrectly consider
the digraph as a sequence of separate characters.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Lexical Conventions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A2-5-2

25-21

AUTOSAR C++14 Rule A2-7-1
The character \ shall not occur as a last character of a C++ comment

Description
Rule Definition

The character \ shall not occur as a last character of a C++ comment.

Rationale

If your code has the character \ at the end of a single-line comment, the next line of code becomes a
continuation of the comment. Ending single line comments by using the character \ can inadvertently
comment-out sections of code.

Polyspace Implementation

Polyspace checks if the character \ is the last character of a C++ comment .

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Using the character \ as Last Character of C++ Comments

#include <cstdint>

void foo()
{
 int32_t idx = 0;
 int32_t limit = 20;
 int32_t count = 20;
 ++idx; // Incrementing index before the loop starts// Requirement X\\
 for(;idx<limit;++idx)
 {
 --count;
 }
}

The for loop definition is commented-out because the single-line comment ends with the character \.
As a result, count is decremented only once, perhaps inadvertently. The checker flags this issue by
highlighting the character \ in the single-line comment.

Check Information
Group: Lexical conventions
Category: Required, Automated

25 AUTOSAR C++14 Rules

25-22

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

 AUTOSAR C++14 Rule A2-7-1

25-23

AUTOSAR C++14 Rule A2-7-2
Sections of code shall not be "commented out"

Description
Rule Definition

Sections of code shall not be "commented out".

Rationale

Commenting out code is not a good practice. The commented out code can remain out of sync with
the surrounding code without causing compilation errors. Later, if you uncomment the code, you can
encounter unexpected issues.

In addition, C-style comments enclosed in /* */ do not support nesting. A comment beginning
with /* ends at the first */ even when the */ is intended as the end of a later nested comment. If a
section of code that is commented out already contains comments, you can encounter compilation
errors (or at least comment out less code than you intend).

Use comments only to explain aspects of the code that are not apparent from the code itself.

Polyspace Implementation

The checker uses internal heuristics to detect commented out code. For instance, characters such as
#, ;, { or } indicate comments that might potentially contain code. These comments are then
evaluated against other metrics to determine the likelihood of code masquerading as comment. For
instance, several successive words without a symbol in between reduces this likelihood.

The checker does not flag the following comments even if they contain code:

• Doxygen comments beginning with /**, /*!, /// or //!.
• Comments that repeat the same symbol several times, for instance, the symbol = here:

// =====================================
// A comment
// =====================================*/

• Comments on the first line of a file.
• Comments that mix the C style (/* */) and C++ style (//).

The checker considers that these comments are meant for documentation purposes or entered
deliberately with some forethought.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

25 AUTOSAR C++14 Rules

25-24

Examples
Code Commented Out With C-Style Comments

#include <iostream>
/* class randInt {
 public:
 int getRandInt();
};
*/

int getRandInt();

/* Function to print random integers*/
void printInteger() {
 /* int val = getRandInt();
 * val++;
 * std::cout << val;*/
 std::cout << getRandInt();
}

This example contains two blocks of commented out code, that constitutes two rule violations.

Code Commented Out With C++-Style Comments

#include <iostream>
int getRandInt();

// Function to print random integers
void printInteger() {
 // int val = getRandInt();
 // val++;
 // std::cout << val;
 std::cout << getRandInt();
}

This example contains a block of commented out code that violates the rule.

Check Information
Group: Lexical Conventions
Category: Required, Non-automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 AUTOSAR C++14 Rule A2-7-2

25-25

AUTOSAR C++14 Rule A2-7-3
All declarations of "user-defined" types, static and non-static data members, functions and methods
shall be preceded by documentation

Description
Rule Definition

All declarations of "user-defined" types, static and non-static data members, functions and methods
shall be preceded by documentation.

Rationale

This rule requires developers to document externally visible declarations so that users of the declared
types and functions can form expectations based on this documentation.

In comments preceding the declarations, developers can document information such as function and
method usage, parameter descriptions, exceptions thrown, and other specifications such as side
effects, memory management and ownership.

Polyspace Implementation

In cases where a declaration comes before a definition, the checker flags the declaration if there are
no preceding comments. Otherwise, the checker flags the definition.

There can be at most one blank line between a declaration or definition and the preceding comment.

In some cases, you might want to disable the rule or justify some violations. For instance:

• Legacy projects might contain many insufficiently documented types or functions. Unless you
want to clean up these projects, you might consider disabling this rule.

• In code documentation tools such as Doxygen, you can add documentation comments after a data
member or member function. In Doxygen, if you begin the comment with <, the tool considers the
comment as documentation for the data member or member function. For instance:

int var; /*!< Data member description*/

However, Polyspace considers such declarations or definitions as rule violations. If you want to
continue using this style of documentation comments, you might consider justifying the violations.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Noncompliant and compliant class definitions

#include <cstdint>

25 AUTOSAR C++14 Rules

25-26

class aClass { //Noncompliant class definition
public:
 aClass(std::int32_t aParameter): aVar(aParameter) {} //Noncompliant
private:
 std::int32_t aVar; //Noncompliant variable definition
};

/// @desc Class responsibilities

class anotherClass { //Compliant class definition
public:
 /// @desc Constructor description
 ///
 /// @param aParameter Parameter description
 anotherClass(std::int32_t aParameter): anotherVar(aParameter) {} //Compliant
private:
 /// @desc Data member description
 std::int32_t anotherVar; //Compliant variable definition
};

In this example, the definition of class aClass has three rule violations. The class definition itself, the
constructor definition, and the definition of data member aVar are all missing preceding comments
explaining the definitions.

The class anotherClass is a compliant version of the same class that satisfies the requirements of
this rule.

Check Information
Group: Lexical conventions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
AUTOSAR C++14 Rule A2-7-3
“Check for Coding Standard Violations”

Introduced in R2021a

 AUTOSAR C++14 Rule A2-7-3

25-27

AUTOSAR C++14 Rule A2-8-1
A header file name should reflect the logical entity for which it provides declarations.

Description
Rule Definition

A header file name should reflect the logical entity for which it provides declarations.

Rationale

A header file name that matches the name of the entity that is declared in that file makes your
#include directives clearer and your code more readable.

Polyspace Implementation

Polyspace checks the header file name against the name of relevant declared types such as class or
struct, or namespace names. If the names do not match, Polyspace flags the first character on the
first line of the header file.

• The name comparison is case insensitive. For instance, myheader matches myHeader.
• The name comparison ignores:

• The underscore character '_'. For instance, myheader matches my_Header.
• Prefix characters 'C', 'M', 'T', or suffix character 'T'. The comparison ignores either the prefix or
suffix characters, but not both. For instance, myheader matches CmyHeader and
myHeader_T, but not CmyHeader_T.

• The hyphen character '-' in file names. For instance, a file named my-header.h matches a
struct named _myHeader.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Header File Name Does Not Match class Name

myheader.h

#include <memory> //Non-compliant
#include <string>

class myClass
{
 virtual ~mysClass()=default;
};

class Player : public myClass
{

25 AUTOSAR C++14 Rules

25-28

 std::string Name;
 int Rank;
};

file.cpp

#include "myheader.h"

int main(){
 return 0;
}

In this example, the name of header file myheader.h is not compliant because it does not match the
name of the base class (myClass) declared in that header file .

Check Information
Group: Lexical conventions
Category: Required, Non-automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2021a

 AUTOSAR C++14 Rule A2-8-1

25-29

AUTOSAR C++14 Rule A2-8-2
An implementation file name should reflect the logical entity for which it provides definitions.

Description
Rule Definition

An implementation file name should reflect the logical entity for which it provides definitions.

Rationale

An implementation file name that matches the name of the entity that is defined in that file makes
your project structure clearer and your code more readable.

Polyspace Implementation

Polyspace checks the implementation file name against the name of relevant defined types such as
class or struct, or namespace names. If the names do not match, Polyspace flags the first
character on the first line of the implementation file.

• The name comparison is case insensitive. For instance, myclass matches myClass.
• The name comparison ignores:

• The underscore character '_'. For instance, myclass matches my_Class.
• Prefix characters 'C', 'M', 'T', or suffix character 'T'. The comparison ignores either the prefix or
suffix characters, but not both. For instance, myclass matches CmyClass and myClass_T,
but not CmyClass_T.

• The hyphen character '-' in file names. For instance, a file named my-class.cpp matches a
class named myClass_.

Polyspace does not check the file where you implement main().

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Implementation File Name Does Not Match class Name

username.h

#include <string>

class User
{
public:
 User();
 User(std::string s);
 std::string getUser();

25 AUTOSAR C++14 Rules

25-30

private:
 std::string user;
};

username.cpp

#include "username.h" // Non-compliant

User::User() : user("") { }
User::User(std::string s): user(s) {}
std::string User::getUser()
{
 return user;
}

In the is example, the name of implementation file username.cpp is not compliant because it does
not match the name of the class (User) defined in that file.

Check Information
Group: Lexical conventions
Category: Advisory, Non-automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2021a

 AUTOSAR C++14 Rule A2-8-2

25-31

AUTOSAR C++14 Rule A2-10-1
An identifier declared in an inner scope shall not hide an identifier declared in an outer scope

Description
Rule Definition

An identifier declared in an inner scope shall not hide an identifier declared in an outer scope.

Rationale

The rule flags situations where the same identifier name is used in two variable declarations, one in
an outer scope and the other in an inner scope.

int var;
...
{
...
 int var;
...
}

All uses of the name in the inner scope refers to the variable declared in the inner scope. However, a
developer or code reviewer can incorrectly assume that the usage refers to the variable declared in
the outer scope. In all cases flagged by this rule, you cannot clarify the usage further using the scope
resolution operator.

Polyspace Implementation

The rule checker flags all cases of variable shadowing except when:

• The same identifier name is used in an outer and inner named namespace.
• The same name is used for a class data member and a variable outside the class.
• The same name is used for a method in a base and derived class.

The checker flags even those cases where the variable declaration in the outer scope occurs after the
variable declaration in the inner scope. In those cases, though the variable hiding does not occur,
reusing the variable name can cause developer confusion.

The rule does not flag these situations because you can clarify whether an usage of the variable
refers to the variable in the inner or outer scope. For instance, in this example:

int var;

namespace n1 {
 int var;
}

within the namespace n1, you can refer to the variable in the inner scope as n1::var and the global
variable as ::var.

The rule checker also does not detect these issues:

25 AUTOSAR C++14 Rules

25-32

• A variable in an unnamed namespace hides another variable in an outer scope.
• A variable local to a lambda expression hides a captured variable.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Local Variable Hiding Global Variable

int varInit = 1;

void doSomething(void);

void step(void) {
 int varInit = 0; //Noncompliant
 if(varInit)
 doSomething();
}

In this example, varInit defined in func hides the global variable varInit. The if condition refers
to the local varInit and the block is unreachable, but you might expect otherwise.

Loop Index Hiding Variable Outside Loop

void runSomeCheck(int);

void checkMatrix(int dim1, int dim2) {
 for(int index = 0; index < dim1; index++) {
 for(int index = 0; index < dim2; index++) { // Noncompliant
 runSomeCheck(index);
 }
 }
}

In this example, the variable index defined in the inner for loop hides the variable with the same
name in the outer loop.

Check Information
Group: Identifiers
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A2-10-1

25-33

AUTOSAR C++14 Rule A2-10-4
The identifier name of a non-member object with static storage duration or static function shall not be
reused within a namespace

Description
Rule Definition

The identifier name of a non-member object with static storage duration or static function shall not be
reused within a namespace.

Rationale

You use namespaces to narrow the scope of the identifiers that you declare within these namespaces.
This prevents these identifiers from being mistaken with identical identifiers in other scopes. If you
reuse an identifier with static storage duration within the same namespace across source files, you
might mistake one identifier for the other.

Polyspace Implementation

• When you reuse identifiers, Polyspace flags the last use of the identifier if they are in the same
translation unit. If the identifiers are in separate files, the identifier in the last file path by
alphabetical order is flagged.

However, if you reuse an identifier but declare only one instance of the identifier with the keyword
static, that identifier is flagged regardless of the order in which the identifiers are declared.

• Polyspace raises no violation if you declare an identifier in a namespace and you reuse that
identifier in the same namespace, but within a nested or inlined namespace. For instance, no
violation is raised on reusedVar in this code snippet.

//file1.cpp
namespace foo {
 static int reusedVar; //resuedVar has static storage duration
}

//file2.cpp
 namespace foo {
 void func();
 namespace nested_foo {
 float reusedVar;
 }
 inline namespace inlined_foo {
 char reusedVar;
 }
}

The checker is not raised on unused code such as

• Noninstantiated templates
• Uncalled static or extern functions

25 AUTOSAR C++14 Rules

25-34

• Uncalled and undefined local functions
• Unused types and variables

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Reuse of identifier within a namespace

file1.cpp

#include <cstdint>

namespace first_namespace
{
 static std::int32_t global_var; //Compliant- Reused in global namespace
 static std::int32_t reusedVar1; //Noncompliant
 void reusedVar2();
 static std::int32_t reusedVar3; //Noncompliant
 void use(){
 ++reusedVar1;
 reusedVar2();
 ++reusedVar3;
 }
}
static std::int32_t file_var = 10; //Compliant - identifier not reused

file2.cpp

#include <cstdint>

static std::int32_t global_var; //Compliant - Reused in global namespace

namespace first_namespace
{
 std::int32_t reusedVar1;
 static std::int32_t reusedVar2; //Noncompliant
 void f()
 {
 float reusedVar3;
 ++reusedVar3;
 }
 void otherUse() {
 ++reusedVar2;
 }
}

namespace second_namespace
{
 std::int32_t reusedVar1; //Compliant - Reused in different namespace
}

In this example, Polyspace flags the reuse of resusedVar1, reusedVar2, and reusedVar3 in the
same namespace in both files. Polyspace does not flag the reuse of reusedVar1 in a different
namespace in file2.cpp. Note that when only one instance of the reused identifier is declared with
the keyword static, Polyspace flags that instance. The identifier global_var is not flagged
because it is declared in different namespaces, the global namespace, and first_namespace.

 AUTOSAR C++14 Rule A2-10-4

25-35

Check Information
Group: Lexical conventions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-36

AUTOSAR C++14 Rule A2-10-5
An identifier name of a function with static storage duration or a non-member object with external or
internal linkage should not be reused

Description
Rule Definition

An identifier name of a function with static storage duration or a non-member object with external or
internal linkage should not be reused.

Rationale

Objects with static storage duration remain available during the entire execution of the program.
These include:

• Non-member objects with external linkage that can be referred to from any of the translation units
of your project.

• Objects declared with the static class specifier. These objects have internal linkage and can be
referred to from any scope within their translation unit.

If you reuse the name of an identifier, you might mistake one identifier for the other.

The rule does not apply to objects with no linkage, for instance function local static objects, since the
identifiers of those objects cannot be referred to from outside of their scope.

Polyspace Implementation

• When you reuse identifiers, Polyspace flags the last use of the identifier if they are in the same
translation unit. If the identifiers are in separate files, the identifier in the last file path by
alphabetical order is flagged.

• If you declare a function in a namespace with the static class specifier and reuse the function
identifier to declare a non-static function in another namespace, Polyspace flags the identifier of
the static function. For instance, in this code snippet, the identifier func is reused in namespace
NS_2 but it is flagged in namespace NS_1.
namespace NS_1 {
 static void func(void); // Polyspace flags this use of "func".
};

namespace NS_2 {
 void func(void); //"func" identifier reused but this is not a static function.
}

• Polyspace flags the identifier of a global variable if you reuse the identifier for a local variable.
• Polyspace does not flag the reuse of an identifier for global functions and their arguments that are

declared without the static class specifier.

The checker is not raised on unused code such as

• Noninstantiated templates
• Uncalled static or extern functions

 AUTOSAR C++14 Rule A2-10-5

25-37

• Uncalled and undefined local functions
• Unused types and variables

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Reuse of identifier with static storage duration

file1.cpp

#include <cstdint>

namespace first_namespace
{
 static std::int32_t global_var = 0;

}
static std::int32_t file_var = 10; //Compliant - identifier not reused

file2.cpp

;

#include <cstdint>

namespace first_namespace
{
 static std::int32_t global_var = 0; // Noncompliant - identifier reused
 static std::int16_t module_var = 20; // Compliant - identifier not reused
}

namespace second_namespace
{

 void globalfunc(int argument) // non-static global function and arguments do not raise violation
 {
 int local_var; // local variable
 static std::int16_t local_static; // Object with no linkage
 }
 std::int16_t globalvar_reusedinlocal;
 std::int16_t globalvar_notreused; // Compliant, identifier not reused
 void foo(){
 ++globalvar_reusedinlocal;
 ++globalvar_notreused;
 }
};

namespace third_namespace
{

 void globalfunc(int argument) // non-static global function and arguments do not raise violation
 {
 static std::int16_t local_static; // Object with no linkage
 int local_var; // local variable
 int globalvar_reusedinlocal; // Non-compliant, identifier reused in local variable
 ++globalvar_reusedinlocal;
 }

};

In this example, global_var is declared with the static class specifier in source file file1.cpp. This
identifier is reused in source file file2.cpp. In the same file, globalvar_reusedinlocal is declared

25 AUTOSAR C++14 Rules

25-38

in second_namespace and has external linkage. This declaration is non-compliant because the
identifier is reused for the local variable in globalfunc.

Check Information
Group: Lexical conventions
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 AUTOSAR C++14 Rule A2-10-5

25-39

AUTOSAR C++14 Rule A2-10-6
A class or enumeration name shall not be hidden by a variable, function or enumerator declaration in
the same scope

Description
Rule Definition

A class or enumeration name shall not be hidden by a variable, function or enumerator declaration in
the same scope.

Rationale

When a variable, data member, function, or enumerator shares its name with a class or enumeration
in the same scope, the latter is hidden. That is, all uses of the name refers to the variable, data
member, function, or enumerator instead of the class or enumeration, regardless of declaration order.
Hidden classes or enumerations can be misleading and can lead to compilation errors. Do not re-use
names to declare classes and enumerations.

Polyspace Implementation

Polyspace flags the declaration of a variable, data member, function, or enumerator that shares the
name of a class or enumeration in the same block.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Do Not Hide Class Declarations

The following example demonstrate the Polyspace implementation of AUTOSAR rule A2-10-6.

#include <cstdint>
namespace NS1
{
 class G {};
 void G() {} //Noncompliant
}
namespace NS2
{
 enum class H { VALUE=0, };
 std::uint8_t H = 17; //Noncompliant
}
namespace NS3
{
 class J {};
 enum H {
 J=0, // Noncompliant
 };

25 AUTOSAR C++14 Rules

25-40

}
main()
{
 //...
}

Polyspace flags the declaration of the:

• Function G() because it hides the class G declared in the same block.
• Variable H because it hides the enumeration H declared in the same block.
• Enumerator J because it hides the class J is declared in the same block.

Check Information
Group: Lexical conventions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

 AUTOSAR C++14 Rule A2-10-6

25-41

AUTOSAR C++14 Rule A2-11-1
Volatile keyword shall not be used

Description
Rule Definition

Volatile keyword shall not be used.

Polyspace Implementation

Reports if volatile keyword is used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Lexical Conventions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-42

AUTOSAR C++14 Rule A2-13-1
Only those escape sequences that are defined in ISO/IEC 14882:2014 shall be used

Description
Rule Definition

Only those escape sequences that are defined in ISO/IEC 14882:2014 shall be used.

Rationale

Escape sequences are certain special characters represented in string and character literals. They
are written with a backslash (\) followed by a character.

The C++ Standard (ISO/IEC 14882:2003, Sec. 2.13.2) defines a list of escape sequences. See Escape
Sequences. Use of escape sequences (backslash followed by character) outside that list leads to
undefined behavior.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Incorrect Escape Sequences

void func () {
 const char a[2] = "\k"; //Noncompliant
 const char b[2] = "\b"; //Compliant
}

In this example, \k is not a recognized escape sequence.

Check Information
Group: Lexical Conventions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A2-13-1

25-43

https://en.cppreference.com/w/cpp/language/escape
https://en.cppreference.com/w/cpp/language/escape

AUTOSAR C++14 Rule A2-13-2
String literals with different encoding prefixes shall not be concatenated

Description
Rule Definition

String literals with different encoding prefixes shall not be concatenated.

Rationale

Narrow string literals are enclosed in double quotes without a prefix. Wide string literals are
enclosed in double quotes with a prefix L outside the quotes. See string literals.

Concatenation of narrow and wide string literals can lead to undefined behavior.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Concatenation of Narrow and Wide String Literals

char array[] = "Hello" "World";
wchar_t w_array[] = L"Hello" L"World";
wchar_t mixed[] = "Hello" L"World"; //Noncompliant

In this example, in the initialization of the array mixed, the narrow string literal "Hello" is
concatenated with the wide string literal L"World".

Check Information
Group: Lexical Conventions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-44

https://en.cppreference.com/w/cpp/language/string_literal

AUTOSAR C++14 Rule A2-13-3
Type wchar_t shall not be used

Description
Rule Definition

Type wchar_t shall not be used.

Rationale

The size of wchar_t is implementation-dependent. If you use wchar_t for Unicode values, your code
is bound to a specific compiler.

To improve the portability of your code, use char16_t and char32_t instead. These are standard
types introduced in C++11 for text strings with UTF-16 and UTF-32 encodings.

Polyspace Implementation

The rule checker flags all uses of the wchar_t keyword.

If you do not want to fix the issue, add a comment justifying the result. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of wchar_t Keyword
char16_t str1[] = u"A UTF-16 string"; //Compliant
char32_t str2[] = U"A UTF-32 string"; //Compliant
wchar_t str3[] = L"A Unicode string"; //Noncompliant

The use of wchar_t violates this rule. Instead the types char16_t and char32_t can be used.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

 AUTOSAR C++14 Rule A2-13-3

25-45

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-46

AUTOSAR C++14 Rule A2-13-4
String literals shall not be assigned to non-constant pointers

Description
Rule Definition

String literals shall not be assigned to non-constant pointers.

Rationale

This rule prevents assignments of string literals to pointers that point to non const objects. Such
assignments allow later modification of the string literal.

An attempt to modify a string literal can result in undefined behavior. For example, some
implementations can store string literals in read-only memory. An attempt to modify the string literal
can result in an exception or crash.

Later C++ standards require a compiler warning for such modifications. The rule is in place for
situations when you suppress compiler warnings (and AUTOSAR C++14 rules associated with those
warnings).

Polyspace Implementation

The rule checker flags assignment of string literals to pointers other than pointers to const objects.

The checker does not flag assignment of string literals to non-const arrays. The checker for
AUTOSAR C++ 14 Rule A18-1-1 forbids direct use of C-style arrays and prevents these
assignments.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Incorrect Assignment of String Literal

char *str1 = "xxxxxx"; // Non-Compliant
const char *str2 = "xxxxxx"; // Compliant

void checkSystem1(char*);
void checkSystem2(const char*);

void main() {
 checkSystem1("xxxxxx"); // Non-Compliant
 checkSystem2("xxxxxx"); // Compliant
}

 AUTOSAR C++14 Rule A2-13-4

25-47

In this example, the rule is not violated when string literals are assigned to const char* pointers,
either directly or through copy of function arguments. The rule is violated only when the const
qualifier is not used.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-48

AUTOSAR C++14 Rule A2-13-5
Hexadecimal constants should be uppercase

Description
Rule Definition

Hexadecimal constants should be uppercase.

Rationale

Hexadecimal notation uses digits 0–9 and letters A to F. Using only uppercase alphabetic letters in a
hexadecimal constant definition helps keep the source code consistent, readable, and easy to
maintain.

A mix of uppercase and lowercase hexadecimal constants might lead to confusion in the development
process, which in turn might lead to bugs. Consistently enforcing the exclusive use of uppercase
hexadecimal constants reduces this potential issue.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Lowercase Alphabetic Letters in Hexadecimal Constant Definitions

This example shows the Polyspace implementation of AUTOSAR rule A2-13-5.

#include <cstdint>

int main(void)
{
 std::int16_t a = 0x0f0f; //Noncompliant
 std::int16_t b = 0x0f0F; //Noncompliant
 std::int16_t c = 0x0F0F; //Compliant
 return 0;
}

In this example, three hexadecimal constants are defined. All three constants have the same value,
but two of these definitions use lowercase letters. Because the definitions of the hexadecimal
constants a and b do not use uppercase letters exclusively, Polyspace flags their definitions as
noncompliant with this rule. Because the definition of the hexadecimal constant c uses uppercase
letters exclusively, Polyspace does not flag its definition as noncompliant with this rule.

Check Information
Group: Lexical Conventions
Category: Advisory, Automated

 AUTOSAR C++14 Rule A2-13-5

25-49

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-50

AUTOSAR C++14 Rule A2-13-6
Universal character names shall be used only inside character or string literals

Description
Rule Definition

Universal character names shall be used only inside character or string literals.

Rationale

Universal character names are a way to represent unicode characters by using code points. For
example, \U0000231A represents the unicode character '⌚'. When you use universal character names
to define an identifier, it is difficult to read the source code. Using universal character names as
identifier is confusing and troublesome. Avoid using universal character names outside a character or
string literal.

Polyspace Implementation

Polyspace flags the use of universal character names outside a character or string literal.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Do Not Use Universal Character Names Outside Character or String Literal

The following example demonstrate the Polyspace implementation of AUTOSAR rule A2-13-6.

#include <cstdint>
#define \U0000231AMACRO(x) (x) // Noncompliant
void €uro(){ // Compliant
 std::int32_t €uro; // Compliant
 std::int32_t \U0000231Ahello; // Noncompliant
 wchar_t wc = '\U0000231A'; // Compliant
 std::int32_t Hello\U0000231AWorld; // Noncompliant
}
typedef struct \U0000231Astruct { // Noncompliant
 std::int32_t regular;
 std::int32_t €uro; // Compliant
 std::int32_t \U0000231Ahello; // Noncompliant
} \U0001f615type; // Noncompliant

main(){
 //...
}

The variable \U0000231Ahello is declared using universal character name. Such a variable name is
difficult to use, and makes the code confusing. Polyspace flags the use of universal character names
outside a character or string literal.

 AUTOSAR C++14 Rule A2-13-6

25-51

Check Information
Group: Lexical conventions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

25 AUTOSAR C++14 Rules

25-52

AUTOSAR C++14 Rule A3-1-1
It shall be possible to include any header file in multiple translation units without violating the One
Definition Rule

Description
Rule Definition

It shall be possible to include any header file in multiple translation units without violating the One
Definition Rule.

Rationale

If a header file with variable or function definitions appears in multiple inclusion paths, the header
file violates the One Definition Rule possibly leading to unpredictable behavior. For instance, a source
file includes the header file include.h and another header file, which also includes include.h.

Polyspace Implementation

The rule checker flags variable and function definitions in header files.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Basic Concepts
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A3-1-1

25-53

AUTOSAR C++14 Rule A3-1-2
Header files, that are defined locally in the project, shall have a file name extension of one
of: .h, .hpp or .hxx

Description
Rule Definition

Header files, that are defined locally in the project, shall have a file name extension of one
of: .h, .hpp or .hxx.

Rationale

Developers and code reviewers expect a header file to have one of the standard file name extensions.

Polyspace Implementation

The rule checker flags files included with the #include directive with names that have an extension
other than .h, .hpp or .hxx. For instance:

#include <header.c>
#include <header2.cpp>

Instead of <...>, if you use "..." around the file, the checker also flags the case where the file does
not have an extension at all.

The checker does not flag the following inclusions:

• Files included with the Include (-include) option.
• Included files that do not exist.

The checker is case-insensitive.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Basic Concepts
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

25 AUTOSAR C++14 Rules

25-54

AUTOSAR C++14 Rule A3-1-3
Implementation files, that are defined locally in the project, should have a file name extension of
".cpp"

Description
Rule Definition

Implementation files, that are defined locally in the project, should have a file name extension of
".cpp".

Polyspace Implementation

Not case sensitive if you set the option -dos.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Basic Concepts
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A3-1-3

25-55

AUTOSAR C++14 Rule A3-1-4
When an array with external linkage is declared, its size shall be stated explicitly

Description
Rule Definition

When an array with external linkage is declared, its size shall be stated explicitly.

Rationale

Though you can declare an incomplete array type and later complete the type, specifying the array
size during the first declaration makes the subsequent array access less error-prone.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Array Size Unspecified During Declaration

int array[10];
extern int array2[]; //Noncompliant
int array3[]= {0,1,2};
extern int array4[10];

In the declaration of array2, the array size is unspecified.

Check Information
Group: Basic Concepts
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-56

AUTOSAR C++14 Rule A3-1-5
A function definition shall only be placed in a class definition if (1) the function is intended to be
inlined (2) it is a member function template (3) it is a member function of a class template

Description
Rule Definition

A function definition shall only be placed in a class definition if (1) the function is intended to be
inlined (2) it is a member function template (3) it is a member function of a class template.

Rationale

Placing a function definition in a class definition is allowed only if:

• The function is intended to be inlined. Placing the definition of a member function in the class
definition instructs the compiler to inline the member function. Inlining small functions avoids the
run-time overhead of function calls and improves the performance of the compiled executable. But
if you place the definition of a large member function inside the class definition unaware of this
implicit inlining, the compiled executable might be too large.

• The function is a member function template or a member of a class template. These coding
practices reduce repetitions of template syntax elements (for example, the parameter list). This
reduction improves the readability and maintainability of the code.

Polyspace Implementation

The checker uses the heuristic that, unless you explicitly use the inline keyword, you intend to
inline only small functions that consist of no more than one statement. The checker interprets
AUTOSAR C++14 Rule A3-1-5 in the following way.

For nontemplate member functions and member functions of nontemplate classes, the checker flags
one-line member functions defined outside a class and larger member functions defined inside a
class.

For template member functions and member functions of template classes, the checker flags any
member function that is defined outside a class.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Defining a Small Member Function Outside Class Definition

#include <cstdint>
#include <iostream>

class A
{

 AUTOSAR C++14 Rule A3-1-5

25-57

 private:
 std::uint32_t val = 5;

 public:
 std::uint32_t Foo() // Compliant with (1)
 {
 return val;
 }

 std::uint32_t Bar();
};

std::uint32_t A::Bar() // Noncompliant with (1)
{
 return (val + 5);
}

std::uint32_t main()
{
 A a;
 std::cout << a.Foo() << std::endl;
 std::cout << a.Bar() << std::endl;
 return 0;
}

The placement of the definition of Bar outside the definition of class A violates the rule, because Bar
consists of a single statement.

Defining a Member Function Template Outside Class Definition

#include <cstdint>
#include <iostream>

class A
{
 public:
 template <typename T> // Compliant with (2)
 void Foo(T t)
 {
 std::cout << "This function is defined inside with param: "
 << t << std::endl;
 }

 template <typename T> // Non-compliant with (2)
 void Bar(T t);
};

template <typename T>
void A::Bar(T t)
{
 std::cout << "This function is defined outside with param: "
 << t << std::endl;
}

std::uint32_t main(void)
{
 A a;

25 AUTOSAR C++14 Rules

25-58

 a.Foo<float>(3.14f);
 a.Bar<std::uint32_t>(5);
 return 0;
}

The placement of the definition of the member function template Bar outside the definition of class A
violates the rule.

Defining a Member Function Outside Class Template Definition
#include <cstdint>
#include <iostream>

template <typename T>
class B
{
 public:
 B(const T x) : t(x) {}

 void display() //Compliant with (3)
 {
 std::cout << t << std::endl;
 }

 void display2(); //Non-compliant with (3)

 private:
 T t;
};

template <typename T>
void B<T>::display2()
{
 std::cout << t << std::endl;
}

int main(void)
{
 B<std::int32_t> b(7);
 b.display();
 b.display2();
 return 0;
}

The placement of the definition of the member function display2 outside the definition of the class
template B violates the rule.

Check Information
Group: Basic concepts
Category: Required, Partially automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

 AUTOSAR C++14 Rule A3-1-5

25-59

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-60

AUTOSAR C++14 Rule A3-1-6
Trivial accessor and mutator functions should be inlined

Description
Rule Definition

Trivial accessor and mutator functions should be inlined.

Rationale

Inlined functions avoid the run-time overhead of function calls but can result in code bloat. If an
accessor (getter) or mutator (setter) method is trivial, code bloat is not an issue. You can inline these
methods to avoid the unnecessary overhead of function calls. You can also avoid repeating several
syntax elements inside and outside the class definition.

Methods defined inside classes are implicitly considered as inlined methods. You can inline methods
defined outside classes explicitly by using the inline keyword.

Polyspace Implementation

To determine if a method is trivial, the checker uses this criteria:

• An accessor method is trivial if it has no parameters and contains one return statement that
returns a non-static data member or a reference to a non-static data member.

The return type of the method must exactly match or be a reference to the type of the data
member.

• A mutator method is trivial if it has a void return type, one parameter, and contains one
assignment statement that assigns the parameter to a non-static data member.

The parameter type must exactly match or be a reference to the type of the data member.

The checker flags trivial accessor and mutator methods defined outside their classes without the
inline keyword.

The checker does not flag template methods or virtual methods.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Trivial Accessor and Mutator Methods Defined Outside Classes

class PhysicalConstants {
 public:
 double getSpeedOfLight() const;
 void setSpeedOfLightInMedium(double newSpeed);

 AUTOSAR C++14 Rule A3-1-6

25-61

 double getRefractiveIndexGlass() { //Compliant
 return refractiveIndexGlass;
 }
 private:
 double speedOfLight;
 double refractiveIndexGlass;
};

double PhysicalConstants::getSpeedOfLight() const{ //Noncompliant
 return speedOfLight;
}

void PhysicalConstants::setSpeedOfLightInMedium(double newSpeed) {//Noncompliant
 speedOfLight = newSpeed;
}

In this example, the accessor methods getSpeedOfLight and getRefractiveIndexGlass are
trivial. The getSpeedOfLight method is defined outside its class and is noncompliant. The
getRefractiveIndexGlass method is defined inside the class definition and complies with the
rule.

The trivial mutator method setSpeedOfLightInMedium is also defined outside the class definition
and violates the rule.

Check Information
Group: Basic concepts
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-62

AUTOSAR C++14 Rule A3-3-1
Objects or functions with external linkage (including members of named namespaces) shall be
declared in a header file

Description
Rule Definition

Objects or functions with external linkage (including members of named namespaces) shall be
declared in a header file.

Rationale

If you declare a function or object in a header file, it is clear that the function or object is meant to be
accessed in multiple translation units. If you intend to access the function or object from a single
translation unit, declare it static or in an unnamed namespace.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Declaration in Header File Missing

This example uses two files:

• decls.h:

extern int x;

• file.cpp:

#include "decls.h"

int x = 0;
int y = 0; //Noncompliant
static int z = 0;

In this example, the variable x is declared in a header file but the variable y is not. The variable z is
also not declared in a header file but it is declared with the static specifier and does not have
external linkage.

Check Information
Group: Basic Concepts
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

 AUTOSAR C++14 Rule A3-3-1

25-63

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-64

AUTOSAR C++14 Rule A3-3-2
Static and thread-local objects shall be constant-initialized

Description
Rule Definition

Static and thread-local objects shall be constant-initialized.

Rationale

Static and thread-local objects are initialized at the start of code execution. The C++ language
standard only partially defines the initialization order of multiple static or thread-local objects and the
order can change from build to build. If you initialize a static or thread-local object from another such
object, the compiler might access the latter object before it is initialized. To avoid access before
initialization, initialize static and thread-local objects by using objects that evaluate to a constant at
compile time. Initialization with constants occurs before initialization with variables and often
happens at compile time.

This rule applies to global variables, static variables, static class member variables, and static
function-scope variables.

Polyspace Implementation

Polyspace flags initializations of static or thread-local objects using initializers and constructors that
do not evaluate to constants at compile time. To constant-initialize static or thread-local objects, use:

• A constexpr constructor with only constant arguments
• A constant expression
• A value

Because string objects use dynamic memory allocation of unknown size, the compiler cannot evaluate
them at compile time. Polyspace flags initialization of string objects irrespective of whether you
specify an initializer.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Initializing Static and Thread-Local Objects

#include <cstdint>
#include <limits>
#include <string>
class A{
 //..
public:
 constexpr A(){

 AUTOSAR C++14 Rule A3-3-2

25-65

 //...
 }
};
class B{
 //..
public:
 B(){
 //...
 }
};
const int global_const_a = 10; // Compliant
const int global_const_b = global_const_a; // Compliant
int global_a = 10; // Compliant
int global_b = global_a; // Noncompliant
static std::string global_name = "Name"; // Noncompliant
static std::string global_id; // Noncompliant
char *ptr = "hello world"; // Compliant
char arr_up[3] = {'U','p','\0'}; // Compliant
char container[10]; // Compliant
extern const int global_extern_c;
const int global_const_c = global_extern_c; // Noncompliant
static A obj1{}; //Compliant
static B obj2{}; //Noncompliant
main()
{

 //
}

Polyspace flags the initialization of:

• global_b by global_a because whether global_b evaluates to a constant at compile time
depends on the order in which these variables are initialized.

• global_name and global_id because the compiler cannot evaluate constructor for string
objects at compile time.

• global_const_c by the extern variable global extern_c because the compiler cannot
evaluate extern variables at compile time.

• obj2, which calls the constructor B::B(), because the constructor is not specified as
constexpr.

Polyspace does not flag the initialization of:

• global_const_b by global_const_a because the compiler can evaluate these objects at
compile time regardless of their initialization order.

• global_const_a and global_a by literals because the compiler can evaluate literals at compile
time.

• Global character pointers and arrays by literal initializers because the compiler can allocate static
memory at compile time.

• obj1, which calls the constructor A::A(), because the constructor is specified as constexpr.

Check Information
Group: Basic concepts
Category: Required, Automated

25 AUTOSAR C++14 Rules

25-66

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

 AUTOSAR C++14 Rule A3-3-2

25-67

AUTOSAR C++14 Rule A3-8-1
An object shall not be accessed outside of its lifetime

Description
Rule Definition

An object shall not be accessed outside of its lifetime.

Rationale

The lifetime of an object begins when it is created by its constructor. The lifetime ends when the
object is deleted. Accessing a variable before its construction or after its destruction can lead to
undefined behavior. Depending on the context, many operations might inadvertently access an object
outside its lifetime. Examples of such operations include:

• Noninitialized pointer: You might inadvertently access a pointer before assigning an address to it.
This operation accesses an object before its lifetime and results in accessing an unpredictable
memory location. The best practice is to initiate a pointer by using nullptr during its
declaration.

• Noninitialized variable: You might inadvertently read a variable before it is initialized. This
operation accesses an object before its lifetime and results in reading a garbage value that is
unpredictable and useless. The best practice is to initiate a variable during its declaration.

• Use of previously deallocated pointer: You might access the dynamically allocated memory of a
pointer after deallocating the memory. Trying to access this block of memory accesses an object
after its lifetime and results in unpredictable behavior or even a segmentation fault. To address
this issue, set the deallocated pointer to nullptr, and then to check if a pointer is nullptr
before accessing it. Alternatively, use a std::unique_ptr instead of a raw pointer. Because you
do not need to deallocate the allocated memory for a std::unique_ptr explicitly, you can avoid
inadvertently accessing the deallocated memory.

• Pointer or reference to stack variable leaving scope: You might assign a nonlocal pointer to a local
object. For instance:

• A nonlocal or global pointer is assigned to a variable that is local to a function.
• A passed-by-reference function parameter, such as a pointer, is assigned to a variable that is

local to a function.
• A pointer data member of a class is assigned to a variable that is local to a function.

Once the local variable goes out of scope, their corresponding memory blocks might hold garbage
or unpredictable values. Accessing pointers to these memory locations accesses an object after its
lifetime and might result in undefined or unpredictable behavior. The best practice is to not assign
nonlocal pointers to local objects.

• Modifying object with temporary lifetime: You might attempt to modify a temporary object
returned by a function call. Modifying temporary objects is an undefined behavior that might lead
to abnormal program termination depending on the hardware and software that you use. The best
practice is to assign the temporary objects in local variables, and then modifying the local
variables.

Avoid operations that might access an object outside of its lifetime.

25 AUTOSAR C++14 Rules

25-68

Polyspace Implementation

Polyspace checks for these scenarios where an object might be accessed outside of its lifetime:

• Noninitialized pointer: Polyspace flags a pointer if it is not assigned an address before it is
accessed.

• Noninitialized variable: Polyspace flags a variable if it is not initialized before its value is read.
• Use of previously deallocated pointer: Polyspace flags an operation where you access a block of

memory after deallocating the block, for instance, by using the free() function or the delete
operator.

• Pointer or reference to stack variable leaving scope: Polyspace flags a local variable when a
pointer or reference to it leaves its scope. For example, a local variable is flagged when:

• A function returns a pointer to the local variable
• A global pointer is pointed to the local variable
• A pass-by-reference function parameter, such as a pointer, is pointed to the local variable
• A pointer data member of a class is pointed to the local variable

• Accessing object with temporary lifetime: Polyspace flags an operation where you access a
temporary object that is returned by a function call.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Accessing Noninitialized Pointer

This example shows how Polyspace flags accessing pointers that are not assigned to an address.

#include <cstdlib>

int* Noncompliant(int* prev)
{
 int j = 42;
 int* pi;
 if (prev == nullptr){
 pi = new int;
 if (pi == nullptr)
 return nullptr;
 }
 *pi = j; //Noncompliant
 return pi;
}
int* Compliant(int* prev)
{
 int j = 42;
 int* pi;
 if (prev == nullptr){
 pi = new int;
 if (pi == nullptr)
 return nullptr;

 AUTOSAR C++14 Rule A3-8-1

25-69

 }
 else
 pi = prev;
 *pi = j;//Compliant
 return pi;
}
int* AltCompliant(int* prev)
{
 int j = 42;
 int* pi=nullptr;
 if (prev == nullptr){
 pi = new int;
 if (pi == nullptr)
 return nullptr;
 }
 else
 if(pi!= nullptr)
 *pi = j;//Compliant
 return pi;
}

Polyspace flags the pointer pi in Noncompliant() because pi is accessed before an address is
assigned to it when prev is not NULL. You can address this issue in various ways. For instance:

• Initiate pi before the statement *pi = j. Assignment to pi in Compliant() is not flagged
because pi is initiated by prev before it is accessed.

• Initiate pi by using nullptr during its declaration. Assignment to pi in AltCompliant() is not
flagged because pi is initiated by nullptr during its declaration.

Avoid Accessing Noninitialized Variable

This example shows how Polyspace flags accessing noninitialized variables.

int Noncompliant(void)
{
 extern int getsensor(void);
 int command;
 int val;
 command = getsensor();
 if (command == 2){
 val = getsensor();
 }
 return val;//Noncompliant

}
int Compliant(void)
{
 extern int getsensor(void);
 int command;
 int val=0;//Initialization
 command = getsensor();
 if (command == 2){
 val = getsensor();
 }
 return val;//Compliant
}

25 AUTOSAR C++14 Rules

25-70

Polyspace flags the statement return val in Noncompliant() because this statement accesses
val before the variable is initialized when command is not equal to 2. You can address this issue in
several ways. For instance, initialize the variable val to zero during its declaration, as shown in
Compliant(). By initializing the variable during declaration, it is initialized in all execution paths,
making the statement return val compliant with this rule.

Avoid Using Previously Deallocated Pointer

This example shows how Polyspace flags accessing pointers that might point to already released
memory blocks.

#include <memory>
int Noncompliant(double base_val, double shift){
 double j;
 double* pi = new double;
 if (pi == nullptr)
 return 0;
 *pi = base_val;
 //...
 delete pi;
 //...
 j = *pi + shift;//Noncompliant
 return j;
}
int Compliant(double base_val, double shift){
 double j;
 std::unique_ptr<double> pi(new double(3.1416));
 if (pi == nullptr)
 return 0;
 *pi = base_val;
 j = *pi + shift;
 return j;
}

In the function Noncompliant(), a pointer pi is declared and initialized by using the operator new.
Later, the dynamically allocated memory is deallocated by using the operator delete. The
deallocated pointer is then inadvertently accessed in the statement j = *pi + shift;. Polyspace
flags this statement. You can address this issue in various ways. For instance, you might want to
deallocate the allocated resource after performing all relevant operations. Alternatively, you can use
smart pointers instead of raw pointers. In Compliant(), the pointer pi is declared as a
std::unique_ptr. The acquired resources for pi are automatically deallocated at the end of
Compliant() by calling its destructor. Because the memory allocated for pi is not accessed after it
is deallocated, Compliant() is compliant with this rule.

Avoid Emitting Pointers or References to Local Variables to Outer Scopes

This example shows how Polyspace flags operations where pointers to local variables might escape to
outer scopes.

int* Noncompliant1(void) {
 int ret = 0; //Noncompliant
 return &ret ;
}
auto Noncompliant2(int var) {
 int rhs = var; //Noncompliant
 auto adder = [&] (int lhs) {

 AUTOSAR C++14 Rule A3-8-1

25-71

 return (rhs + lhs);
 };
 return adder;
}
int Compliant1(void) {
 int ret = 0; //Compliant
 return ret ;
}
auto Compliant2(int var) {
 int rhs = var; //Compliant
 auto adder = [=] (int lhs) {
 return (rhs + lhs);
 };
 return adder;
}

• The function Noncompliant1() returns a pointer to the local variable ret. The local variable
ret is deleted as soon as Noncompliant() finishes execution. The returned pointer points to an
unpredictable value. Such operations are noncompliant with the rule. You can fix this issue by
returning local variables by value, as shown in Compliant().

• The function Noncompliant2() returns a lambda expression, which captures the local variable
rhs by reference. This reference dereferences to an unpredictable value because rhs is deleted
when the function Noncompliant2() finishes execution. You can fix this issue by capturing local
variables by copy in the lambda expression, as shown in Compliant2().

Avoid Accessing Temporary Objects

This example shows how Polyspace flags operations that might access temporary objects that are
created by a function call.

#include<vector>
struct S_Array{
 int t;
 int a[5];
};
struct S_Array Factory(void);
std::vector<int> VectorFactory(int aNumber);
int Noncompliant(void) {

 return ++(Factory().a[0]); //Noncompliant
}
int Compliant(void) {
 auto tmp = Factory();
 return ++(tmp.a[0]); //Compliant
}
int Compliant2(void) {
 return ++(VectorFactory(5)[1]); //Compliant
}

In Noncompliant(), the call to Factory() creates a temporary object. Modifying this object is
noncompliant with this rule. Polyspace flags the statement return ++(Factory().a[0]). You can
address this issue in various ways. For instance, you can assign the temporary object to a local
variable before modifying it, as shown in Compliant(). Alternatively, use smart containers such as
std::vector as shown in Compliant2(). Containers such as std::vector manage their own
lifetime and have move semantics. Polyspace does not flag the statement return ++
(VectorFactory(5)[1]);.

25 AUTOSAR C++14 Rules

25-72

Check Information
Group: Basic concepts
Category: Required, Non-automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 AUTOSAR C++14 Rule A3-8-1

25-73

AUTOSAR C++14 Rule A3-9-1
Fixed width integer types from <cstdint>, indicating the size and signedness, shall be used in place
of the basic numerical types

Description
Rule Definition

Fixed width integer types from <cstdint>, indicating the size and signedness, shall be used in place
of the basic numerical types.

Polyspace Implementation

Only allows use of basic types through direct typedefs.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Basic Concepts
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-74

AUTOSAR C++14 Rule A4-5-1
Expressions with type enum or enum class shall not be used as operands to built-in and overloaded
operators other than the subscript operator [], the assignment operator =, the equality operators ==
and !=, the unary & operator, and the relational operators <, <=, >, >=

Description
Rule Definition

Expressions with type enum or enum class shall not be used as operands to built-in and overloaded
operators other than the subscript operator [], the assignment operator =, the equality operators ==
and !=, the unary & operator, and the relational operators <, <=, >, >=.

Rationale

In C++, enumerations such as enum or enum class have implementations defined behavior. For
instance, their underlying type can be any integral type, including short or char. If you use
enumerations as operands to arithmetic operators such as + or -, they are converted to their
underlying type. Because the underlying type of an enumeration is implementation dependent,
outcome of arithmetic operations using enumerations as operands is unpredictable. To avoid
unpredictable and non-portable code, use enumerations as operands to only these operators:

• Subscript operator []
• Assignment operator =
• Equality operators == and !=
• The Unary & operator
• The relational operators <, <=,>,>=

You can use enumerations as operands to the built in or overloaded instances of only the above
operators. Note that Bitmask type enumerations are an exception to this rule. That is, you can use
Bitmask type enumerations as operands to any operators.

Polyspace Implementation

Enumerations are valid operands to only the operators listed above. Polyspace flags enumerations
when they are used as operands to any other operators. Note that Polyspace makes no exception for
BitmaskType enumerations.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Do Not Use Enumerations as Operands to Arithmetic Operators

#include <cstdint>
enum Color : std::uint8_t { Red, Green, Blue, ColorsCount};
enum class Car : std::uint8_t { Model1, Model2, Model3, ModelsCount};

 AUTOSAR C++14 Rule A4-5-1

25-75

enum BMT {Exec = 0x1,Write = 0x2,Read = 0x4};
Car operator+(Car lhs, Car rhs)
{
 return Car::Model3;
}
Color operator|=(Color lhs, Color rhs)
{
 return rhs;
};
void F1()
{
 Car car = Car::Model1;
 Color color = Red;
 if (color == Green) { // Compliant
 }

 if (color == (Red + Blue)) { // Noncompliant
 }

 if (color < ColorsCount) { //Compliant
 }
 if (car == (Car::Model1 + Car::Model2)) // Noncompliant
 {
 }
 Color value;
 value = (Color)(Red | 3); // Noncompliant
 value |= Blue; // Noncompliant
 value = (Color)0; // Compliant
 if (value & Blue) {}; // Noncompliant
 value = (Color)(Blue * value); // Noncompliant
 value = (Color)(Red << 3); // Noncompliant
 value = (Color)(Red >> 12); // Noncompliant
 BMT bitmask1 = (BMT)(Exec + Write); // Noncompliant
 BMT bitmask2 = (BMT)(Exec | Write); // Noncompliant
}

The line BMT bitmask1 = (BMT)(Exec + Write); adds two enumerators and assigns the result
to the enum object bitmask1. The addition operation implicitly converts the enumerators into their
underlying type. Because the underlying type of enumerators are implementation dependent, the
outcome of this code can be unpredictable. Polyspace flags the enumerators that are operands to the
built in + operator.

Polyspace treats both built in and overloaded operators similarly. For example, Polyspace flags the
operands in the operation Car::Model1 + Car::Model2, even though the + operator is overloaded
for the enum class Car.

Check Information
Group: Standard conversions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

25 AUTOSAR C++14 Rules

25-76

Introduced in R2020a

 AUTOSAR C++14 Rule A4-5-1

25-77

AUTOSAR C++14 Rule A4-7-1
An integer expression shall not lead to data loss

Description
Rule Definition

An integer expression shall not lead to data loss.

Rationale

A data loss might occur if you perform an explicit cast or if your integer expression results in an
implicit conversion, an overflow, an underflow, or a wraparound. For instance:

• An implicit conversion from uint16_t to uint8_t discards the high byte of the larger data type.
• An arithmetic expression with signed integers that results in an overflow is undefined behavior.

To make sure that no unexpected data loss occurs:

• Avoid integral type conversions by performing all operations in a uniform type.
• Use appropriate guards (such as asserts and if statements) to handle other possible causes of data

loss.

Polyspace Implementation

• Polyspace flags these integral expressions that might result in data loss:

• Operation on a signed or an unsigned integer variables that results in an overflow.
• Assignment of a compile-time constant to signed or unsigned integer variables whose data type

cannot accommodate the value of that constant.
• Conversion of a signed (unsigned) integer to a narrower signed (unsigned) integer type.
• Conversion of an unsigned integer to a signed integer.
• Shift operation that results in a value that cannot be represented by the result data type.

• Polyspace does not flag the use of static_cast to cast to a narrower type. The software assumes
that these conversion are intentional even if they might result in data loss.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Integer Expressions that Lead to Data Loss

#include <iostream>
#include <cstdint>
#include <stdexcept>
#include <climits>

25 AUTOSAR C++14 Rules

25-78

uint8_t sum(uint8_t a, uint8_t b) noexcept
{
 return (a + b); //Non-compliant
}

uint8_t sum_check(uint8_t a, uint8_t b)
{
 if (b > UCHAR_MAX - a) {
 throw std::range_error("Operation overflows");
 }
 return (a + b); // Compliant
}

int16_t increment(int16_t var)
{
 return ++var; //Non-compliant
}

void func()
{

 uint8_t small_sum = sum(50, 50);
 uint8_t large_sum = sum(150, 150);
 try {
 uint8_t large_sum_check = sum_check(150, 150);
 } catch (std::range_error&) {
 //Handle error
 }

 int16_t max_var = increment(SHRT_MAX);

}

In this example, Polyspace flags:

• The return statement of sum() because the second call to sum() to initialize large_sum results
in an overflow. The sum of the input parameters exceeds the size of the return type (uint8_t).

• The integer expression of increment() because the call when initializing max_var attempts to
increment SHRT_MAX.

Polyspace does not flag the return statement of sum_check because the function checks the range of
its inputs and throws an error when large_sum_check is initialized.

Check Information
Group: Standard conversions
Category: Required, Automated

Tips
Polyspace Bug Finder makes certain assumptions about the values of inputs. See “Bug Finder
Analysis Assumptions”.

At the cost of a possibly longer runtime, you can perform a more exhaustive analysis where all values
of function inputs are considered when showing defects, including inputs of uncalled functions. See

 AUTOSAR C++14 Rule A4-7-1

25-79

Run stricter checks considering all values of system inputs (-checks-using-
system-input-values).

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14) | Run stricter checks considering all
values of system inputs (-checks-using-system-input-values)

Topics
“Check for Coding Standard Violations”

Introduced in R2021b

25 AUTOSAR C++14 Rules

25-80

AUTOSAR C++14 Rule A4-10-1
Only nullptr literal shall be used as the null-pointer-constraint

Description
Rule Definition

Only nullptr literal shall be used as the null-pointer-constraint.

Rationale

nullptr was introduced in C++11 to support the concept of a pointer that does not point to a valid
object. Before C++11, the macro NULL and the constant 0 were the only ways to define the null
pointer constant. Using nullptr to indicate null-pointers has several advantages over using NULL or
0. For instance:

• nullptr can be used with any type of null-pointer without requiring an implicit cast.
• nullptr literals allow parameter forwarding by using a template function.

NULL is a macro that expands to an integer 0 which is cast into void* type. Using NULL or 0 to
indicate null-pointers is contrary to developer expectation. If code expecting nullptr encounters
NULL or 0 instead, it might lead to confusion or unexpected behavior.

Polyspace Implementation

Polyspace flags the use of NULL or 0 instead of nullptr to indicate a null-pointer. This rule does not
check for conversion between NULL and 0. See AUTOSAR C++14 Rule M4-10-1.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of NULL or 0 as Alternatives to nullptr

#include <cstdint>
#include <cstddef>

void foo(int*);
void foo2(int*);

void bar() {
 foo(NULL); //Noncompliant
 foo2(0); //Noncompliant
 foo(nullptr); //Compliant
}

 AUTOSAR C++14 Rule A4-10-1

25-81

In this example, the rule is violated when the macro NULL or the constant 0 is used as a null-pointer
instead of nullptr.

Check Information
Group: Standard conversions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14) | AUTOSAR C++14 Rule M4-10-1 | AUTOSAR C+
+14 Rule M4-10-2

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

25 AUTOSAR C++14 Rules

25-82

AUTOSAR C++14 Rule A5-0-1
The value of an expression shall be the same under any order of evaluation that the standard permits

Description
Rule Definition

The value of an expression shall be the same under any order of evaluation that the standard permits.

Rationale

If an expression results in different values depending on the order of evaluation, its value becomes
implementation-defined.

Polyspace Implementation

Polyspace raises a violation if an expression satisfies any of these conditions:

• The same variable is modified more than once in the expression or it is both read and written.
• The expression allows more than one order of evaluation.
• The expression contains a single volatile object that occurs multiple times.
• The expression contains more than one volatile object.

Because volatile objects can change their value at anytime, an expression containing multiple
volatile variables or multiple instances of the same volatile variable might have different
results depending on the order of evaluation.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Variable Modified More Than Once in Expression
int a[10], b[10];
#define COPY_ELEMENT(index) (a[(index)]=b[(index)])
void main () {
 int i=0, k=0;

 COPY_ELEMENT (k); // Compliant
 COPY_ELEMENT (i++); // // Non-compliant
}

In this example, the rule is violated by the statement COPY_ELEMENT(i++) because i++ occurs twice
and the order of evaluation of the two expressions is unspecified.

Variable Modified and Used in Multiple Function Arguments

void f (unsigned int param1, unsigned int param2) {}

void main () {
 unsigned int i=0;

 AUTOSAR C++14 Rule A5-0-1

25-83

 f (i++, i); // Noncompliant
}

In this example, the rule is violated because it is unspecified whether the operation i++ occurs before
or after the second argument is passed to f. The call f(i++,i) can translate to either f(0,0) or
f(0,1).

Multiple volatile Objects in an Expression

volatile int a, b;
int mathOp(int x, int y);

int foo(void){
 int temp = mathOp(5,a) + mathOp(6,b);//Noncompliant
 return temp * mathOp(a,a);//Noncompliant
}

In this example, this rule is violated twice.

• The declaration of temp uses two volatile objects in the expression. Because the value of
volatile objects might change at any time, the expression might evaluate to different values
depending on the order of evaluation. Polyspace flags the second volatile object in the
expression.

• The return statement uses the same volatile object twice. Because the expression might have
different results depending on the order of evaluation, Polyspace raises this defect.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-84

AUTOSAR C++14 Rule A5-0-2
The condition of an if-statement and the condition of an iteration statement shall have type bool

Description
Rule Definition

The condition of an if-statement and the condition of an iteration statement shall have type bool.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A5-0-2

25-85

AUTOSAR C++14 Rule A5-0-3
The declaration of objects shall contain no more than two levels of pointer indirection

Description
Rule Definition

The declaration of objects shall contain no more than two levels of pointer indirection.

Rationale

If you use pointers with more than two levels of indirection, a developer reading the code might find
it difficult to understand the behavior of the code.

Polyspace Implementation

Polyspace flags all declarations of objects that contain more than two levels of pointer indirection.

• If you use type aliases, the checker includes pointer indirections from the alias in the evaluation of
the level of indirection. For instance, in this code snippet, the declaration of var is non-compliant.
The type of var is const pointer to a const pointer to a pointer to char, which is three levels of
pointer indirection. The declaration of var2 has two levels of pointer indirection and is compliant.
using ptrToChar = char*;

void func()
{
 ptrToChar* const* const var = nullptr; //Non-compliant, 3 levels of indirection
 char* const* const var2 = nullptr; //Compliant, 2 levels of indirection
 //...
}

• If you pass an array to a function, the conversion of the array to a pointer to the first element of
the array is included in the evaluation of the level of indirection. For instance, in this code snippet,
parameter arrParam is non-compliant. The type of arrParam is a pointer to a pointer to a pointer
to char (three levels of pointer indirection). The declaration of arrVar is compliant because
arrVar has type array of pointer to pointer to char (two levels of pointer indirection).

void func(char** arrParam[]) //Non-compliant
{
 //...
 char** arrVar[5]; //Compliant
}

This checker does not flag the use of objects with more than two levels of indirection. For instance, in
this code snippet, the declaration of var is non-compliant, but the evaluation of the size of var is
compliant.

#include<iostream>

using charToPtr = char*;

void func()
{
 charToPtr* const* const var = nullptr; //Non-compliant

25 AUTOSAR C++14 Rules

25-86

 std::cout << sizeof(var) << std::endl; //Compliant

}

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A5-0-3

25-87

AUTOSAR C++14 Rule A5-0-4
Pointer arithmetic shall not be used with pointers to non-final classes

Description
Rule Definition

Pointer arithmetic shall not be used with pointers to non-final classes.

Polyspace Implementation

Reports pointer arithmetic and array like access on expressions whose pointed type is used as a base
class.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-88

AUTOSAR C++14 Rule A5-1-1
Literal values shall not be used apart from type initialization, otherwise symbolic names shall be used
instead

Description
Rule Definition

Literal values shall not be used apart from type initialization, otherwise symbolic names shall be used
instead.

Rationale

It is often unclear from use of literal constants what the constant represents. Using named constants
improves the readability and maintainability of the code.

Polyspace Implementation

The rule checker flags use of literal values other than those with data type char in expressions, non-
const initializations and case clauses of a switch statement.

Polyspace flags the use of literal values in combination with logging mechanisms.

Polyspace does not flag the use of literal values '0' and '1' in expressions, as they are often part of the
logic of the code. For instance, '0' represents a NULL pointer.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Partially automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A5-1-1

25-89

AUTOSAR C++14 Rule A5-1-2
Variables shall not be implicitly captured in a lambda expression

Description
Rule Definition

Variables shall not be implicitly captured in a lambda expression.

Rationale

In a lambda expression, you have the option to capture variables implicitly. For instance, this lambda
expression

[&](std::int32_t var) {
 sum+ = var;
}

indicates that all local variables in the calling context are captured by reference. However, it is not
immediately clear from this lambda expression:

• If a variable in the body of the expression comes from the calling context.

For instance, in the preceding lambda expression, it is not clear if sum is captured from the calling
context or is a global variable.

• If all variables captured from the calling context are used and whether the variables are modified
or just read (If the variables are read, a by-copy capture is preferred).

If you capture variables explicitly in a lambda expression, you have more control on whether to
capture by reference or copy. In addition, you or a reviewer can read the lambda expression and
determine whether a variable was captured from the calling context.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Lambda Expressions with Implicit and Explicit Capture

#include <iostream>
#include <algorithm>
#include <vector>
#include <cstdint>

void addEvenNumbers(std::vector<std::int32_t> numbers)
{
 std::int64_t sum = 0;
 std::int32_t divisor = 2;
 for_each(numbers.begin(), numbers.end(), [&] (std::int32_t y) //Noncompliant
 {

25 AUTOSAR C++14 Rules

25-90

 if (y % divisor == 0)
 {
 std::cout << y << std::endl;
 sum += y;
 }
 });

 std::cout << sum << std::endl;
}

void addOddNumbers(std::vector<std::int32_t> numbers)
{
 std::int64_t sum = 0;
 std::int32_t divisor = 2;
 for_each(numbers.begin(), numbers.end(), [&sum, divisor] (std::int32_t y) //Compliant
 {
 if (y % divisor != 0)
 {
 std::cout << y << std::endl;
 sum += y;
 }
 });

 std::cout << sum << std::endl;
}

The lambda expression in the addEvenNumbers function captures all local variables in the calling
context implicitly by reference and violates this rule. Some of the issues are:

• Unless you go through the body of the expression, it is not clear which variables are used.
• Though the variable divisor is only read and not modified, it is captured by reference. A by-copy

capture is preferred.

The lambda expression in the addOddNumbers function captures each variable explicitly and does
not violate this rule. Without looking at the body of the lambda expression, you can determine which
variables are intended to be modified in the expression.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

 AUTOSAR C++14 Rule A5-1-2

25-91

AUTOSAR C++14 Rule A5-1-3
Parameter list (possibly empty) shall be included in every lambda expression

Description
Rule Definition

Parameter list (possibly empty) shall be included in every lambda expression.

Rationale

You do not have to include a parameter list in a lambda expression. For instance, this expression is
syntactically valid and indicates a closure that can be called without parameters:

[&counter] {
 ++counter;
}

However, without the (), you or a reviewer might not recognize this as a function object. It is visually
clearer to use the parameter list (...) even when the list is empty. For instance:

[&counter]() {
 ++counter;
}

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Lambda Expressions Without Parameter List

#include <cstdint>

void func() {
 std::int32_t count = 0;

 auto lambda1 = [&count] {++count;}; //Noncompliant
 auto lambda2 = [&count] () { //Compliant
 ++count;
 };
}

The lambda expression assigned to lambda1 does not have a parameter list and violates the rule. The
issue is fixed when the same lambda expression is assigned to lambda2.

Check Information
Group: Expressions

25 AUTOSAR C++14 Rules

25-92

Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

 AUTOSAR C++14 Rule A5-1-3

25-93

AUTOSAR C++14 Rule A5-1-4
A lambda expression object shall not outlive any of its reference-captured objects

Description
Rule Definition

A lambda expression object shall not outlive any of its reference-captured objects.

Rationale

The rule flags cases where a lambda expression captures an object by reference and you can
potentially access the captured object outside its scope. This situation happens if the lambda
expression object outlives the object captured by reference.

For instance, consider this function createFunction:

std::function<std::int32_t()> createFunction() {
 std::int32_t localVar = 0;
 return ([&localVar]() -> std::int32_t {
 localVar = 1;
 return localVar;
 });
}

createFunction returns a lambda expression object that captures the local variable localVar by
reference. The scope of localVar is limited to createFunction but the lambda expression object
returned has a much larger scope.

This situation can result in an attempt to access the local object localVar outside its scope. For
instance, when you call createFunction and assign the returned lambda expression object to
another object aFunction:

auto aFunction = createFunction();

and then invoke the new object aFunction:

std::int32_t someValue = aFunction();

the captured variable localVar is no longer in scope. Therefore, the value returned from
aFunction is undefined.

If a function returns a lambda expression, to avoid accessing a captured object outside its scope,
make sure that the lambda expression captures all objects by copy. For instance, you can rewrite
createFunction as:

std::function<std::int32_t()> createFunction() {
 std::int32_t localVar = 0;
 return ([localVar]() mutable -> std::int32_t {
 localVar = 1;
 return localVar;
 });
}

25 AUTOSAR C++14 Rules

25-94

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Lambda Expressions that Accesses variables Out-of-Scope

auto createAdder(int amountToAdd) {
 int addThis = amountToAdd; //Noncompliant
 auto adder = [&] (int initialAmount) {
 return (initialAmount + addThis);
 };
 return adder;
}

void foo() {
 auto AddByTwo = createAdder(2);
 int res = AddByTwo(10);
}

auto createMultiplier(int amountToMultiply) {
 int multiplyThis = amountToMultiply; //Compliant
 auto adder = [=] (int initialAmount) {
 return (initialAmount + multiplyThis);
 };
 return adder;
}

void bar() {
 auto MultiplyByTwo = createMultiplier(2);
 int res = MultiplyByTwo(10);
}

In this example, the createAdder function defines a lambda expression adder that captures the
local variable addThis by reference. The scope of addThis is limited to the createAdder function.
When the object AddByTwo, which is returned by createAdder, is called, a reference to the variable
addThis is accessed outside its scope. When accessed in this way, the value of addThis is
undefined.

The issue does not occur with the createMultiplier function, which returns a lambda expression
that captures local variables by copy.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

 AUTOSAR C++14 Rule A5-1-4

25-95

Introduced in R2019b

25 AUTOSAR C++14 Rules

25-96

AUTOSAR C++14 Rule A5-1-6
Return type of a non-void return type lambda expression should be explicitly specified

Description
Rule Definition

Return type of a non-void return type lambda expression should be explicitly specified.

Rationale

A compiler can deduce the return type of a lambda expression based on the type of the return
expression. For instance, if a lambda expression does not return anything, the compiler deduces that
the return type is void.

Specifying a return type when you declare a lambda expression is optional. For non-void return type
lambda expressions, if you do not specify a return type explicitly, a developer reading your code
might be confused about which type the lambda expression returns.

An explicit return type also reinforces type checking when the compiler generates an implicit
conversion from the type of the returned expression to the expected return type.

Polyspace Implementation

Polyspace flags lambda expressions with non-void-return types if the return type is not specified
explicitly.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Return Type not Specified for Lambda Expression with Non-Void Return Type
#include<iostream>
#include <cstdint>
#include <cstdio>

void func()
{
 std::uint8_t TARGET = 10;
 auto lambda_incr = [&](std::uint8_t x) -> std::uint8_t {//Compliant
 while (x < TARGET)
 x++;
 return x;

 };
 auto lambda_decr = [&](std::uint8_t y) { //Non-compliant, returned type is not specified
 while (y > TARGET)
 y--;
 return y;

 };
 char exp[] = "hello.";
 auto lambda3 = [exp]() { //Compliant, void return type.
 std::cout << exp << std::endl;
 };

 AUTOSAR C++14 Rule A5-1-6

25-97

 auto x = lambda_incr(5);
 auto y = lambda_decr(11);
 lambda3();

}

In this example, Polyspace flags lambda expression lambda_decr because no return type is
specified. Polyspace does not flag lambda3 even though no return type is specified because the
expression does not return anything (void return type).

Check Information
Group: Expressions
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-98

AUTOSAR C++14 Rule A5-1-7
A lambda shall not be an operand to decltype or typeid

Description
Rule Definition

A lambda shall not be an operand to decltype or typeid.

Rationale

According to the C++ Standard, the type of a lambda expression is a unique, unnamed class type.
Because the type is unique, another variable or expression cannot have the same type. Use of
decltype or typeid on a lambda expression indicates that you expect a second variable or
expression to have the same type as the operand lambda expression.

Both decltype and typeid return the data type of their operands. Typically the operators are used
to:

• Assign a type to another variable. For instance:

decltype(var1) var2;

creates a variable var2 with the same type as var1.
• Compare the types of two variables. For instance:

(typeid(var1) == typeid(var2))

compares the types of var1 and var2.

These uses do not apply to a lambda expression, which has a unique type.

Polyspace Implementation

The rule checker flags uses of decltype and typeid with lambda expressions.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of typeid on Lambda Expressions

#include <cstdint>
#include <typeinfo>

 void func()
 {
 auto lambdaFirst = []() -> std::int8_t { return 1; };

 AUTOSAR C++14 Rule A5-1-7

25-99

 auto lambdaSecond = []() -> std::int8_t { return 1; };

 if (typeid(lambdaFirst) == typeid(lambdaSecond))
 {
 // ...
 }
 }

The use of typeid on lambda expressions can lead to unexpected results. The comparison above is
false even though lambdaFirst and lambdaSecond appear to have the same body.

Correction – Assign Lambda Expression to Function Object Before Using typeid

One possible correction is to assign the lambda expression to a function object and then use the
typeid operator on the function objects for comparison.

#include <cstdint>
#include <functional>
#include <typeinfo>

 void func()
 {
 std::function<std::int8_t()> functionFirst = []() { return 1; };
 std::function<std::int8_t()> functionSecond = []() { return 1; };

 if (typeid(functionFirst) == typeid(functionSecond))
 {
 // ...
 }
 }

Check Information
Group: Lexical Conventions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

25 AUTOSAR C++14 Rules

25-100

AUTOSAR C++14 Rule A5-1-8
Lambda expressions should not be defined inside another lambda expression

Description
Rule Definition

Lambda expressions should not be defined inside another lambda expression.

Rationale

Developers can use lambda expressions to write anonymous function objects that contain a few lines
of code. Nesting lambda expression reduces the readability of the code because the body of a lambda
expression is typically in the line where it is used. For instance, the find_if algorithm takes a unary
predicate as one of its arguments. A developer can use a lambda expression to define a predicate
condition in the declaration of find_if. In this code snippet, the find_if algorithm returns the first
member of a vector of integers that is greater than 2 and that is even.

std::vector<int> v = { 1, 2, 3, 4 };
std::find(v.begin(), v.end(),
 [](int val) { return val>2 && val%2==0;});

Polyspace Implementation

Polyspace flags lambda expressions that are defined inside another lambda expression. Polyspace also
highlights the closest nesting lambda expression.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Nested Lambda Expressions
#include<iostream>
#include<vector>
#include<algorithm>

int main()
{

 using namespace std;

 vector<int> v {1, 2, 3, 4};

 vector<int>::iterator it = v.begin();
 while (it != v.end()) {
 auto evenGreater2 = [](int val) {

 return [](int val2) { //Noncompliant
 return val2 % 2 == 0;
 }(val)&& (val) > 2;

 }(*it);

 AUTOSAR C++14 Rule A5-1-8

25-101

 if (evenGreater2) {
 cout << *it << endl;
 break;
 }
 ++it;
 }

}

In this example, Polyspace flags the lambda expression that checks whether a value is even ([](int
val2) { return val2 % 2 ==0; }) because it is nested inside another lambda expression that
also checks whether a value is greater than 2.

Check Information
Group: Expressions
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-102

AUTOSAR C++14 Rule A5-1-9
Identical unnamed lambda expressions shall be replaced with a named function or a named lambda
expression

Description
Rule Definition

Identical unnamed lambda expressions shall be replaced with a named function or a named lambda
expression.

Rationale

When you reuse an unnamed lambda expression, you insert the body of that lambda expression
wherever you invoke it in your code. This code duplication might result in maintainability issues when
you make changes, as you might misidentify which lambda expressions are identical when applying
those changes. The code duplication also decreases the readability of your code.

Polyspace Implementation

After the first use of an unnamed lambda expression, Polyspace flags each subsequent uses of an
identical lambda expression. For instance, if you reuse the same lambda expression three times,
Polyspace flags the second and third uses of the lambda expression as separate violations. Polyspace
also highlights the first use of the unnamed lambda expression in your source code.

Polyspace does not flag the reuse of global scope lambda expressions.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Reuse of Unnamed Lambda Expression
#include<vector>
#include<algorithm>

void func1(std::vector<int>& v)
{
 if (none_of(v.begin(), v.end(),
 [](int i) {return i % 2 == 1;})) {
 //Handle error
 }

 int odds = std::count_if(v.begin(), v.end(),
 [](int i) {return i % 2 == 1;}); //Noncompliant

 std::vector<int>::iterator first_odd = find_if(v.begin(), v.end(),
 [](int i) {return i % 2 == 1;}); //Noncompliant
}

void func2(std::vector<int>& v)
{
 auto is_odd = [](int i) { return i % 2 == 1;};

 if (none_of(v.begin(), v.end(), is_odd)) {

 AUTOSAR C++14 Rule A5-1-9

25-103

 //Handle error
 }

 int odds = std::count_if(v.begin(), v.end(), is_odd); //Compliant,
 //reusing named lambda expression

 std::vector<int>::iterator first_odd = find_if(v.begin(),
 v.end(), is_odd); //Compliant, reusing named lambda expression
}

In this example, unnamed lambda expression [](int i) {return i % 2 == 1;} is reused twice
inside func1. Polyspace flags the second and third uses of this lambda expression.

The reuse of the lambda expression in func2 is not flagged because the lambda expression is named
(is_odd).

Check Information
Group: Expressions
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-104

AUTOSAR C++14 Rule A5-2-1
dynamic_cast should not be used

Description
Rule Definition

dynamic_cast should not be used.

Rationale

You use dynamic_cast to convert the type of a pointer or reference to a class along the inheritance
hierarchy, for instance to convert a pointer to base class into a pointer to a derived class. The
conversion incurs an overhead due to the type checking that is performed at run-time. This overhead
is unsuitable for the low memory, speed, and predictable performance requirements of real-time
systems.

If you cannot avoid dynamic casting in your application, consider using a custom implementation to
perform the cast. You might also consider using virtual functions if you are casting to the most
derived class, or static polymorphism with overloaded functions and templates. In the latter case, the
types are resolved at compile-time which avoids the overhead.

Polyspace Implementation

Polyspace flags all uses of dynamic_cast in your code.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of dynamic_cast

#include<iostream>

using namespace std;

class Base
{
public:
 virtual void f()
 {
 cout << "Using Base class\n";
 }
};

class Derived1 : public Base
{
public:

 AUTOSAR C++14 Rule A5-2-1

25-105

 virtual void f()
 {
 cout << "Using Derived class\n";
 }
};

class Derived2 : public Derived1
{
public:
 virtual void f()
 {
 cout << "Using Derived2 class\n";
 }
};

int main()
{
 Derived2* ptrd2 = new Derived2;

 Derived1* ptrd1 = dynamic_cast<Derived1*>(ptrd2); // Noncompliant
 ptrd1 -> f();

 Base* ptrb = dynamic_cast<Base*>(ptrd2); // Noncompliant
 ptrb -> f();
}

In this example, Base and Derived1 are indirect and direct base classes of Derived2 respectively.
The use of dynamic_cast to upcast ptrd2 from type Derived2 to Derived1 then to Base is non-
compliant. Note that in this case, the use of dynamic_cast is not necessary since an upcast can be
performed through implicit conversion (Derived1 * ptr = ptrd2;).

Check Information
Group: Expressions
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-106

AUTOSAR C++14 Rule A5-2-2
Traditional C-style casts shall not be used

Description
Rule Definition

Traditional C-style casts shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A5-2-2

25-107

AUTOSAR C++14 Rule A5-2-3
A cast shall not remove any const or volatile qualification from the type of a pointer or reference

Description
Rule Definition

A cast shall not remove any const or volatile qualification from the type of a pointer or reference.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-108

AUTOSAR C++14 Rule A5-2-4
reinterpret_cast shall not be used

Description
Rule Definition

reinterpret_cast shall not be used.

Rationale

reinterpret_cast is typically used to explicitly convert between two unrelated data types. For
instance, in this example, reinterpret_cast converts the type struct S* to int*:

struct S { int x; } s;
int* ptr = reinterpret_cast<int*> (&s);

However, it is difficult to use reinterpret_cast and not violate type safety. If the result of
reinterpret_cast is a pointer, it is safe to dereference the pointer only after you cast the pointer
back to its original type.

Polyspace Implementation

The rule checker flags all uses of the reinterpret_cast keyword.

If the rule checker flags an use of reinterpret_cast that you consider safe, add a comment
justifying the result. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of reinterpret_cast Keyword

class A {
 int x;
 int y;
 public:
 void getxy();
};

class B {

 AUTOSAR C++14 Rule A5-2-4

25-109

 int z;
 public:
 void getz();
};

void func (B* Bptr) {
 A* Aptr = reinterpret_cast<A*>(Bptr); // Noncompliant
}

The use of reinterpret_cast violates this rule. The result of reinterpret_cast is not safe to
dereference since A and B are unrelated classes. Dereferencing Aptr as if it were an A* pointer can
result in illegal memory access.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-110

AUTOSAR C++14 Rule A5-2-6
The operands of a logical && or || shall be parenthesized if the operands contain binary operators

Description
Rule Definition

The operands of a logical && or || shall be parenthesized if the operands contain binary operators.

Rationale

In a logical expression containing binary operators, relying on C++ operator precedence rules results
in code that is confusing and difficult to understand. This code might lead to unexpected behavior and
bugs that are difficult to resolve. Parenthesizing operands that include binary operators enhances the
readability of code, makes code easier to review, and ensures that the operator precedence behavior
is as expected.

Polyspace Implementation

During preprocessing, violations of this rule are detected on the expressions in #if directives.

The checker allows exceptions on associativity (a && b && c), (a || b || c).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Operands Containing Binary Operators That Are Not Parenthesized
#include <cstdint>

void Fn(std::int32_t value) noexcept
{
 if (value > 1 && value < 2) { //Noncompliant
 // do some work
 } else if ((value > 0) && (value < 3)) { //Compliant
 // do some work
 } else if ((value == 0) || value == 3) { //Noncompliant
 // do some work
 } else if ((value < 0) || (value == 4)) { //Compliant
 // do some work
 } else {
 // do some work
 }

 return;
}

There are multiple uses of the logicals && and ||. In the first and third logical expressions, there are
operands containing binary operators that are not parenthesized. Polyspace flags them as

 AUTOSAR C++14 Rule A5-2-6

25-111

noncompliant with this rule. In the second and fourth logical expressions, all operands containing
binary operators are parenthesized. Polyspace does not flag them as noncompliant with this rule.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-112

AUTOSAR C++14 Rule A5-3-1
Evaluation of the operand to the typeid operator shall not contain side effects

Description
Rule Definition

Evaluation of the operand to the typeid operator shall not contain side effects.

Rationale

The typeid operator evaluates its operand only if it is a call to a function that returns a reference to
a polymorphic type (a polymorphic type is a class type that contains virtual functions). In all other
cases, expressions provided to the typeid operator are not evaluated.

For code that is easier to maintain, avoid expressions with side effects altogether when using the
typeid operator. You or another developer will be saved from tracking down the ingredients of the
expression to their definitions and determining if the side effects actually occur.

Polyspace Implementation

The checker flags typeid operators with expressions that have side effects. Function calls are
assumed to have side effects.

The checker message states whether the expression is evaluated or ignored. If the expression is
evaluated and you want to retain the expression in the typeid operation instead of performing the
evaluation in a separate statement, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Expressions with Side Effects as typeid Operand
#include <iostream>
#include <typeinfo>

class Base
{
public:
 virtual ~Base();
};

class Derived: public Base
{

 AUTOSAR C++14 Rule A5-3-1

25-113

public:
 ~Derived();
};

Base& getObj();

void main()
{

 Base& b = getObj();

 std::cout << "Dynamic type:" << typeid(getObj()).name(); //Noncompliant
 std::cout << "Dynamic type:" << typeid(b).name(); //Compliant
}

The rule is violated when the typeid operand involves a function call.

Check Information
Group: Expressions
Category: Required, Non-automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-114

AUTOSAR C++14 Rule A5-3-2
Null pointers shall not be dereferenced

Description
Rule Definition

Null pointers shall not be dereferenced.

Rationale

Dereferencing a null pointer is undefined behavior. In most implementations, the dereference can
cause your program to crash.

Polyspace Implementation

The checker flags pointer dereferences where the pointer might be NULL-valued.

If the issue occurs despite an earlier check for NULL, look for intermediate events between the check
and the subsequent dereference. Often the result details (or source code tooltips in Polyspace as You
Code) show a sequence of events that led to the defect. You can implement the fix on any event in the
sequence. If the result details do not show this event history, you can search for previous references
of variables relevant to the defect using right-click options in the source code and find related events.
See also “Interpret Bug Finder Results in Polyspace Desktop User Interface” or “Interpret Bug Finder
Results in Polyspace Access Web Interface”.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Possible Null Pointer Dereference

#include <iostream>
#include <cstdint>
#include <cstddef>

class A
{
 public:
 A(std::uint32_t a) : a(a) {}
 std::uint32_t GetA() const noexcept
 {
 return a;
 }
 private:
 std::uint32_t a;
};

std::uint32_t Sum(const A* lhs, const A* rhs)

 AUTOSAR C++14 Rule A5-3-2

25-115

{
 return lhs->GetA() + rhs->GetA(); //Noncompliant
}

A* getAPtr(void);

int main(void)
{
 A* leftVal = new A(3);
 A* rightVal = getAPtr();

 std::uint32_t sum;

 if(!rightVal) {
 sum = Sum(leftVal, rightVal);
 }
 else
 sum = 0;

 std::cout << sum << std::endl;
 return 0;
}

In this example, the order of the if and else clause have been switched leading to an accidental null
pointer dereference. The variable rightVal is checked for NULL and the NULL-valued of rightVal
is used for the subsequent dereference in the function Sum.

Check Information
Group: Expressions
Category: Required, Partially automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-116

AUTOSAR C++14 Rule A5-3-3
Pointers to incomplete class types shall not be deleted

Description
Rule Definition

Pointers to incomplete class types shall not be deleted.

Rationale

When you delete a pointer to an incomplete class, it is not possible to call any nontrivial destructor
that the class might have. If the destructor performs cleanup activities such as memory deallocation,
these activities do not happen.

A similar problem happens, for instance, when you downcast to a pointer to an incomplete class
(downcasting is casting from a pointer to a base class to a pointer to a derived class). At the point of
downcasting, the relationship between the base and derived class is not known. In particular, if the
derived class inherits from multiple classes, at the point of downcasting, this information is not
available. The downcasting cannot make the necessary adjustments for multiple inheritance and the
resulting pointer cannot be dereferenced.

Polyspace Implementation

The check raises a defect when you delete or cast to a pointer to an incomplete class. An incomplete
class is one whose definition is not visible at the point where the class is used.

For instance, the definition of class Body is not visible when the delete operator is called on a
pointer to Body:

class Handle {
 class Body *impl;
public:
 ~Handle() { delete impl; }
 // ...
};

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Deletion of Pointer to Incomplete Class

class Handle {
 class Body *impl;
public:
 ~Handle() { delete impl; }
 // ...
};

 AUTOSAR C++14 Rule A5-3-3

25-117

In this example, the definition of class Body is not visible when the pointer to Body is deleted.

Correction — Define Class Before Deletion

One possible correction is to make sure that the class definition is visible when a pointer to the class
is deleted.

class Handle {
 class Body *impl;
public:
 ~Handle();
 // ...
};

// Elsewhere
class Body { /* ... */ };

Handle::~Handle() {
 delete impl;
}

Correction — Use std::shared_ptr

Another possible correction is to use the std::shared_ptr type instead of a regular pointer.

#include <memory>

class Handle {
 std::shared_ptr<class Body> impl;
 public:
 Handle();
 ~Handle() {}
 // ...
};

Downcasting to Pointer to Incomplete Class

File1.h:

class Base {
protected:
 double var;
public:
 Base() : var(1.0) {}
 virtual void do_something();
 virtual ~Base();
};

File2.h:

void funcprint(class Derived *);
class Base *get_derived();

File1.cpp:

#include "File1.h"
#include "File2.h"

void getandprint() {

25 AUTOSAR C++14 Rules

25-118

 Base *v = get_derived();
 funcprint(reinterpret_cast<class Derived *>(v));
}

File2.cpp:

#include "File2.h"
#include "File1.h"
#include <iostream>

class Base2 {
protected:
 short var2;
public:
 Base2() : var2(12) {}
};

class Derived : public Base2, public Base {
 float var_derived;
public:
 Derived() : Base2(), Base(), var_derived(1.2f) {}
 void do_something()
 {
 std::cout << "var_derived: "
 << var_derived << ", var : " << var
 << ", var2: " << var2 << std::endl;
 }
 };

void funcprint(Derived *d) {
 d->do_something();
}

Base *get_derived() {
 return new Derived;
}

In this example, the definition of class Derived is not visible in File1.cpp when a Base* pointer to
downcast to a Derived* pointer.

In File2.cpp, class Derived derives from two classes, Base and Base2. This information about
multiple inheritance is not available at the point of downcasting in File1.cpp. The result of
downcasting is passed to the function funcprint and dereferenced in the body of funcprint.
Because the downcasting was done with incomplete information, the dereference can be invalid.
Correction — Define Class Before Downcasting

One possible correction is to define the class Derived before downcasting a Base* pointer to a
Derived* pointer.

In this corrected example, the downcasting is done in File2.cpp in the body of funcprint at a
point where the definition of class Derived is visible. The downcasting is not done in File1.cpp
where the definition of Derived is not visible. The changes from the previous incorrect example are
highlighted.

File1_corr.h:

class Base {
protected:

 AUTOSAR C++14 Rule A5-3-3

25-119

 double var;
public:
 Base() : var(1.0) {}
 virtual void do_something();
 virtual ~Base();
};

File2_corr.h:

void funcprint(class Base *);
class Base *get_derived();

File1.cpp:

#include "File1_corr.h"
#include "File2_corr.h"

void getandprint() {
 Base *v = get_derived();
 funcprint(v);
}

File2.cpp:

#include "File2_corr.h"
#include "File1_corr.h"
#include <iostream>

class Base2 {
protected:
 short var2;
public:
 Base2() : var2(12) {}
};

class Derived : public Base2, public Base {
 float var_derived;

public:
 Derived() : Base2(), Base(), var_derived(1.2f) {}
 void do_something()
 {
 std::cout << "var_derived: "
 << var_derived << ", var : " << var
 << ", var2: " << var2 << std::endl;
 }
};

void funcprint(Base *d) {
 Derived *temp = dynamic_cast<Derived*>(d);
 if(temp) {
 d->do_something();
 }
 else {
 //Handle error
 }
}

25 AUTOSAR C++14 Rules

25-120

Base *get_derived() {
 return new Derived;
}

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A5-3-3

25-121

AUTOSAR C++14 Rule A5-6-1
The right hand operand of the integer division or remainder operators shall not be equal to zero

Description
Rule Definition

The right hand operand of the integer division or remainder operators shall not be equal to zero.

Rationale

• If the numerator is the minimum possible value and the denominator is -1, your division operation
overflows because the result cannot be represented by the current variable size.

• If the denominator is zero, your division operation fails possibly causing your program to crash.

These risks can be used to execute arbitrary code. This code is usually outside the scope of a
program's implicit security policy.

• If the second remainder operand is zero, your remainder operation fails, causing your program to
crash.

• If the second remainder operand is -1, your remainder operation can overflow if the remainder
operation is implemented based on the division operation that can overflow.

• If one of the operands is negative, the operation result is uncertain. For C89, the modulo operation
is not standardized, so the result from negative operands is implementation-defined.

These risks can be exploited by attackers to gain access to your program or the target in general.

Polyspace Implementation

The checker raises a defect when:

• The denominator of a division or modulo operation can be a zero-valued integer.
• There are division operations where one or both of the integer operands is from an unsecure

source.
• There are modulo operations with one or more tainted operands.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Dividing an Integer by Zero

int fraction(int num)
{
 int denom = 0;
 int result = 0;

25 AUTOSAR C++14 Rules

25-122

 result = num/denom;

 return result;
}

A division by zero error occurs at num/denom because denom is zero.
Correction — Check Before Division

int fraction(int num)
{
 int denom = 0;
 int result = 0;

 if (denom != 0)
 result = num/denom;

 return result;
}

Before dividing, add a test to see if the denominator is zero, checking before division occurs. If denom
is always zero, this correction can produce a dead code defect in your Polyspace results.
Correction — Change Denominator

One possible correction is to change the denominator value so that denom is not zero.

int fraction(int num)
{
 int denom = 2;
 int result = 0;

 result = num/denom;

 return result;
}

Modulo Operation with Zero

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 arr[i] = input % i;
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

In this example, Polyspace flags the modulo operation as a division by zero. Because modulo is
inherently a division operation, the divisor (right hand argument) cannot be zero. The modulo
operation uses the for loop index as the divisor. However, the for loop starts at zero, which cannot
be an iterator.
Correction — Check Divisor Before Operation

One possible correction is checking the divisor before the modulo operation. In this example, see if
the index i is zero before the modulo operation.

 AUTOSAR C++14 Rule A5-6-1

25-123

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 if(i != 0)
 {
 arr[i] = input % i;
 }
 else
 {
 arr[i] = input;
 }
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

Correction — Change Divisor

Another possible correction is changing the divisor to a nonzero integer. In this example, add one to
the index before the % operation to avoid dividing by zero.

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 arr[i] = input % (i+1);
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

Division of Function Arguments
#include <limits.h>
#include <stdio.h>

extern void print_int(int);

int taintedintdivision(void) {
 long num, denum;
 scanf("%lf %lf", &num, &denum);
 int r = num/denum; //Noncompliant
 print_int(r);
 return r;
}

This example function divides two argument variables, then prints and returns the result. The
argument values are unknown and can cause division by zero or integer overflow.
Correction — Check Values

One possible correction is to check the values of the numerator and denominator before performing
the division.

#include <limits.h>
#include <stdio.h>

25 AUTOSAR C++14 Rules

25-124

extern void print_long(long);

int taintedintdivision(void) {
 long num, denum;
 scanf("%lf %lf", &num, &denum);
 long res= 0;
 if (denum!=0 && !(num==INT_MIN && denum==-1)) {
 res = num/denum;
 }
 print_long(res);
 return res;
}

Modulo with User Input

#include <stdio.h>
extern void print_int(int);

int taintedintmod(void) {
 int userden;
 scanf("%d", &userden);
 int rem = 128%userden; //Noncompliant
 print_int(rem);
 return rem;
}

In this example, the function performs a modulo operation by using a user input. The input is not
checked before calculating the remainder for values that can crash the program, such as 0 and -1.

Correction — Check Operand Values

One possible correction is to check the values of the operands before performing the modulo
operation. In this corrected example, the modulo operation continues only if the second operand is
greater than zero.

#include<stdio.h>
extern void print_int(int);

int taintedintmod(void) {
 int userden;
 scanf("%d", &userden);
 int rem = 0;
 if (userden > 0) {
 rem = 128 % userden;
 }
 print_int(rem);
 return rem;
}

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

 AUTOSAR C++14 Rule A5-6-1

25-125

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-126

AUTOSAR C++14 Rule A5-10-1
A pointer to member virtual function shall only be tested for equality with null-pointer-constant

Description
Rule Definition

A pointer to member virtual function shall only be tested for equality with null-pointer-constant.

Rationale

A call to a member virtual function is resolved by the compiler at run-time to the most derived version
of the function. If you use the equality operators (==) or (!=) to compare anything other than the null-
pointer constant nullptr with a pointer to a member virtual function, the result is unspecified.

Polyspace Implementation

Polyspace flags any (==) or (!=) comparison where one operand is a pointer to a member virtual
function and the other operand is not nullptr.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Equality Comparison Between Pointer to Virtual Member Function and Non-nullptr
Operand

class Base
{
public:
 virtual void f();
 void g();
};

template<typename T>
class Derived : public Base
{
public:
 void f();
};

void f()
{

 bool b = (&Derived<int>::f == &Derived<int>::f); // Noncompliant

 void (Derived<float>::* p)() = &Derived<float>::f;
 bool b1 = (&Derived<float>::f == p); // Noncompliant
 bool b2 = (p == p); // Noncompliant

 AUTOSAR C++14 Rule A5-10-1

25-127

 bool b3 = (p == nullptr); // Compliant

 void (Base::* q)() = &Base::g;
 bool b4 = (q == q); // Compliant

 void (Base::* r)() = &Base::f;
 bool b5 = (q == r); // Noncompliant

}

In this example, the result of the comparison in boolean b is non-compliant because the operands
point to a member virtual function. Similarly, pointers p and r are pointers to member declarators
that point to a member virtual function and Polyspace flags their use in equality comparison
operations, except for the comparison of p to nullptr.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-128

AUTOSAR C++14 Rule A5-16-1
The ternary conditional operator shall not be used as a sub-expression

Description
Rule Definition

The ternary conditional operator shall not be used as a sub-expression.

Rationale

A ternary conditional operator used as a subexpression makes the full expression less readable and
difficult to maintain. It is often visually clearer if you assign the result of a ternary operator to a
variable and then use the variable in subsequent operations.

Polyspace Implementation

The checker flags uses of the ternary conditional operator in subexpressions with some exceptions.
Exceptions include uses of the operator when:

• The result is assigned to a variable.
• The result is used as a function argument or returned from a function.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of Ternary Operators as Sub-expressions

#include <cstdint>
const int ULIM = 100000;

std::int32_t foo(int32_t x) {
 int ret;
 ret = (x <= 0? 0: (x >= ULIM? 0 : x)); //Noncompliant
 return ret;
}

std::int32_t bar(int32_t x) {
 int ret, retInterim;
 retInterim = x >= ULIM? 0 : x; //Compliant
 ret = retInterim <= 0? 0 : retInterim; //Compliant
 return ret;
}

In this example, in foo, a ternary conditional operation is chained with a second operation to return
the value 0 if x is in the range [0, ULIM] and return x otherwise. The ternary operation comparing
x with ULIM is a sub-expression in the full chain and violates the rule.

 AUTOSAR C++14 Rule A5-16-1

25-129

In bar, each ternary conditional operation is written in a separate step and does not violate the rule.
Alternatively, the same algorithm can be implemented by combining the conditions with the boolean
AND operator and using a single ternary conditional operation.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

25 AUTOSAR C++14 Rules

25-130

AUTOSAR C++14 Rule A6-2-1
Move and copy assignment operators shall either move or respectively copy base classes and data
members of a class, without any side effects

Description
Rule Definition

Move and copy assignment operators shall either move or respectively copy base classes and data
members of a class, without any side effects.

Rationale

When you use move and copy assignment operators, you expect that the operation moves or copies a
source object to a target object without producing any side effects. If move or copy assignment
operators of a class produce side effects, the invariant of an object can change during move or copy
assignments. Consider this code where multiple objects of class C are copy-assigned to each other.

class C{
 //...
 C& operator=(const C& oth) {
 value = oth.value / 2;
 return *this;
 }
public:
 int value;
};

int main(){
 C a, b, c;
 a.value = 48;
 // …
 b = a; // b.m = 24
 c = b; // c.m = 12
 a = c; // a.m = 6
}

During each copy assignment, the value in the target object becomes half of the value in the source
object. After three successive copy assignment operations, a.value becomes 6, which is unexpected.
Algorithms expect move and copy assignment operators that do not change the object invariant. If
move or copy assignment operators of a class have side effects that change the object invariant, using
algorithm libraries such as the standard template library (STL) can produce unexpected results.

Because you use move and copy assignments many times in a code, any side effect producing code
can make the code slower and resource intensive. In a move assignment operator, code that produce
side effects can also cause the compiler to use copy operation with every assignment, which is
inefficient.

To maintain optimum and reliable performance during move and copy assignment, perform only these
operations in move and copy assignment operators:

• Copy or move data members and base classes.

 AUTOSAR C++14 Rule A6-2-1

25-131

• Return the pointer *this.
• If possible, set the moved-from object to a valid state.

Avoid superfluous code that add unrelated side effects or performance overhead.

Polyspace Implementation

In the body of a copy or move assignment operator, Polyspace does not flag these operations:

• Copy or move assignments.
• Relational or comparison operations.
• Modification of the source object in a move operation.
• Calls to the function std::swap or equivalent user-defined noexcept swap functions. Polyspace
identifies functions that these signatures as swap functions: void T::swap(T&) or void
[N::]swap(T&, T&). The first signature represents a member function of class T that takes one
argument. The second signature represents a nonmember or static function in the namespace N
that takes two arguments. The name swap can be case-insensitive and prefixed or postfixed by
underscores.

• Assignment and modification of static variables.

Polyspace flags any other operations in a copy or move assignment operator as unwanted side effect.
For instance, a call to a user-defined swap function is considered an unwanted side effect if the swap
function is not noexcept. For a similar rule on copy and move constructor, see AUTOSAR C++14
Rule A12-8-1.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Move and Copy Assignment Operators with Side Effects

This code shows how Polyspace flags move and copy assignment operators that have side effects.

#include<cstdint>
#include<iostream>
class B
{
public:
 B() : ptr(0) {}
 B& operator=(B&& oth) //Noncompliant
 {

 if(&oth == this) {
 return *this;
 }
 ptr = std::move(oth.ptr);
 std::cout<<"Moved";
 return *this;
 }

private:

25 AUTOSAR C++14 Rules

25-132

 std::int32_t* ptr;
};
class C
{
public:
 C(int t=0) : x(t) {}
 C& operator=(const C& oth) // Noncompliant
 {
 if(&oth == this) {
 return *this;
 }
 x = oth.x % 2; // This operation produces side-effect
 count++; //Not a side effect
 return *this;
 }

private:
 std::int32_t x;
 static std::int32_t count;

};
class D
{
public:
 D(const D&) = default;
 D(D&&) = default;

 D& operator=(const D& oth) & { // Noncompliant
 D tmp(oth);
 swap(tmp);
 return *this;
 }

 // Member function swap
 void swap(D& rhs) {
 //...
 }

private:
 std::int32_t x;
};

• As a side effect, the move assignment operator of class B prints a string into the output stream.
This side effect adds performance overhead to the move operation. If this statement
std::cout<<"Moved" causes an exception, code execution can unexpectedly stop. Polyspace
flags the move assignment operator and highlights the statement.

• The copy assignment operator of C modifies the data member x of the source object. This side
effect adds performance overhead. Unexpected change to data members during move and copy
operations can make the code incompatible with the standard template library and introduce
errors during development. Polyspace flags the copy assignment operator and highlights the
statement x = oth.x % 2. Incrementing the static variable count is not a side effect.

• The copy assignment operator of the class D calls a user-defined swap function called _swap_.
This swap function is not noexcept. If an exception is raised from _swap_, the exception is an
unexpected side effect of the copy assignment operator. Polyspace flags the copy constructor as
noncompliant with this rule. Use user-defined swap function that are noexcept.

 AUTOSAR C++14 Rule A6-2-1

25-133

Check Information
Group: Statements
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-134

AUTOSAR C++14 Rule A6-2-2
Expression statements shall not be explicit calls to constructors of temporary objects only

Description
Rule Definition

Expression statements shall not be explicit calls to constructors of temporary objects only.

Rationale

Objects that the compiler creates for a short duration, and then deletes, are temporary objects. The
compiler might create temporary objects for specific purposes, such as:

• Initializing references
• Storing values returned by functions
• Type casting
• Exception handling

Temporary objects are destroyed once the expression that requires their construction is completely
evaluated. For instance, in evaluating the expression sum = a*b+c, the compiler creates two
temporary objects to store the results of the multiplication and addition operations. After the
expression is evaluated, both temporary objects are destroyed. Their scope is limited to the
expression statement.

If an expression is an explicit call to a constructor omitting the object name, the compiler creates a
temporary object which is immediately destroyed. Such an explicit call to a constructor might
indicate that:

• You inadvertently omitted the object name.
• You expected the unnamed variable to remain in scope up to the end of the declaration block.

Consider this code snippet where a lock_guard object is created.

void foo(){
std::mutex mymutex;
std::mutex mymutex2;
std::lock_guard<std::mutex> lock{mymutex};
std::lock_guard<std::mutex> {mymutex2};
//...
}

The first declaration creates a lock_guard object named lock. The object lock protects mymutex
from concurrent access by multiple thread until the end of the current block. The second declaration
attempts a similar protection for mymutex2. Because the lock_guard object in this case is not
named, it is destroyed immediately after the declaration statement. Perhaps inadvertently, mymutex2
remains unprotected from concurrency issues.

Avoid expression statements that are only an explicit call to a constructor. To implement the Resource
Acquisition Is Initialization (RAII) pattern, use named objects.

 AUTOSAR C++14 Rule A6-2-2

25-135

Polyspace Implementation

Polyspace flags any expression statement that constructs an unnamed object and does not use it. You
can construct unnamed temporary objects when you use the objects within the declaration expression
statement. For example, a temporary object that is used as a function return or on the right-hand side
of an assignment is compliant with this rule.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Statements That Are Only Explicit Calls To Constructors

This code shows how Polyspace flags statements that are only explicit calls to a constructor.

#include <cstdint>
#include <fstream>
#include <string>
class MyException {
 MyException(const std::string &);
};
void with_exception() {
 MyException("Exception"); //Noncompliant
 throw MyException("Exception"); //Compliant

};

Polyspace flags an expression statement that constructs an unnamed temporary object and does not
use it. If you use the temporary object in the statement, then the statement is compliant with the rule.
For example, the statement MyException("Exception"); is flagged because the unnamed object
created by the explicit call to the constructor MyException() is not used in the statement. The
statement throw MyException("Exception"); is not flagged because the unnamed object is
used as an argument to throw.

Avoid Unnamed lock_guard Objects

Compilers destroy an unnamed lock_guard object immediately after its declaration statement.
Unnamed lock_guard objects cannot protect mutex objects from concurrency issues. Polyspace
flags a statement when it declares an unnamed lock_guard object. Consider this code:

#include <cstdint>
#include <mutex>
class A {
public:
 void SetValue1(std::int32_t value) {
 std::lock_guard<std::mutex> {mutex1}; //Noncompliant
 private_value = value;
 }

 void SetValue2(std::int32_t value) {
 std::lock_guard<std::mutex> lock{mutex2}; //Compliant
 private_value = value;
 }

25 AUTOSAR C++14 Rules

25-136

private:
 mutable std::mutex mutex1;
 mutable std::mutex mutex2;
 std::int32_t private_value;
};

• The statement std::lock_guard<std::mutex> {mutex1}; declares an unnamed
lock_guard object. Polyspace flags the statement.

• The statement std::lock_guard<std::mutex> lock{mutex2}; is not flagged because the
lock_guard object is named.

Check Information
Group: Statements
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

 AUTOSAR C++14 Rule A6-2-2

25-137

AUTOSAR C++14 Rule A6-4-1
A switch statement shall have at least two case-clauses, distinct from the default label

Description
Rule Definition

A switch statement shall have at least two case-clauses, distinct from the default label.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-138

AUTOSAR C++14 Rule A6-5-2
A for loop shall contain a single loop-counter which shall not have floating-point type

Description
Rule Definition

A for loop shall contain a single loop-counter which shall not have floating-point type.

Polyspace Implementation

The checker flags these situations:

• The for loop index has a floating point type.
• More than one loop counter is incremented in the for loop increment statement.

For instance:

for(i=0, j=0; i<10 && j < 10;i++, j++) {}

• The for loop increment statement is missing.

For instance:

for(i=0; i<10;) {}

Even if you increment the loop counter in the loop body, the checker still raises a violation. The
rule is based on MISRA C++ rule 6-5-1. According to the MISRA C++ specifications, a loop
counter is one that is initialized in or prior to the loop expression, acts as an operand to a
relational operator in the loop expression and is modified in the loop expression. If the increment
statement in the loop expression is missing, the checker cannot find the loop counter modification
and considers as if a loop counter is not present.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A6-5-2

25-139

AUTOSAR C++14 Rule A6-5-3
Do statements should not be used

Description
Rule Definition

Do statements should not be used.

Rationale

A do statement can introduce bugs in your code because its termination condition is checked after
executing the code block. Consider this code where an array is accessed by using a pointer in a do-
while loop.

int* array;
//...
do {
cout<<*array;
--array;
} while (array != nullptr);

Because the termination condition is checked after executing the block of code, this code might
dereference an invalid or null pointer, which can unexpectedly terminate code execution during run
time. The code is also hard to read because the condition for executing the block is at the end of the
block where it can be easily missed.

Avoid do statements in your code. You can use do statements to write function-like macros.

Polyspace Implementation

Polyspace flags all do statements, except those located in macros.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid do Statements

This example shows how Polyspace flags do statements outside of a macro. This code uses a pointer
within a do-while loop. The terminating condition is that the pointer is not a null pointer.

#include<cstdint>
struct P
{
 int val;
 struct P* next;
};

25 AUTOSAR C++14 Rules

25-140

void psKO(P*p)
{
 do // Noncompliant
 {
 p = p->next;
 } while(p!=nullptr);
}

This code can dereference a null pointer because the terminating condition is checked after
executing the do block. The code is also difficult to read because the terminating condition is placed
at the end of the block. Polyspace flags the do statement.

do Statements in Macros

This example shows how Polyspace treats do statements in a macro. Consider this code where two
macros, SWAP and SWAP2 are implemented. SWAP uses a do statement while SWAP2 does not.

#include <cstdint>
//Compliant by exception
#define SWAP(a, b) \
 do \
 { \
 decltype(a) tmp = (a); \
 (a) = (b); \
 (b) = tmp; \
 } while (0)

#define SWAP2(a, b) \
 decltype(a) tmp = (a); \
 (a) = (b); \
 (b) = tmp;

int main(void)
{
 uint8_t a = 24;
 uint8_t b = 12;

 if (a > 12)
// SWAP2(a, b); // Compilation Error
 SWAP(a, b);
return 0;
}

The two macros are intended to be invoked like functions. You cannot use SWAP2 as a function-like
macro in the if block because after expansion, only the first expression statement of SWAP2 remains
within the if block. This breakup of the macro changes its meaning, and in this case, causes a
compilation error. A solution to this issue is to enclose the macro in a do-while block and put the
terminating condition as false. Such enclosed macros cannot be broken up and can be invoked as
functions. Polyspace does not flag do statements in macros.

Check Information
Group: Statements
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

 AUTOSAR C++14 Rule A6-5-3

25-141

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-142

AUTOSAR C++14 Rule A6-5-4
For-init-statement and expression should not perform actions other than loop-counter initialization
and modification

Description
Rule Definition

For-init-statement and expression should not perform actions other than loop-counter initialization
and modification.

Polyspace Implementation

• Reports if loop parameter cannot be determined. Assumes JSF C++ Rule 200 is not violated. The
loop variable parameter is assumed to be a variable.

• Assumes 1 loop parameter (see JSF C++ Rule 198), with non class type. JSF C++ Rule 200 must
not be violated for this rule to be reported.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A6-5-4

25-143

AUTOSAR C++14 Rule A6-6-1
The goto statement shall not be used

Description
Rule Definition

The goto statement shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-144

AUTOSAR C++14 Rule A7-1-1
Constexpr or const specifiers shall be used for immutable data declaration

Description
Rule Definition

Constexpr or const specifiers shall be used for immutable data declaration.

Rationale

Declaring a variable const or constexpr reduces the chances that you modify the variable by
accident. In addition, compilers can perform various optimizations on const and constexpr
variables to improve run-time performance.

Polyspace Implementation

The checker flags function parameters or local variables that are not const-qualified but never
modified in the function body. Function parameters of integer, float, enum and boolean types are not
flagged.

If a variable is passed to another function by reference or pointers, the checker assumes that the
variable can be modified. These variables are not flagged.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Unmodified Local Variable

#include <string.h>

char returnNthCharacter (int n) {
 char* pwd = "aXeWdf10fg" ; //Noncompliant
 char nthCharacter;

 for(int i=0; i < strlen(pwd); i++) {
 if(i==n)
 nthCharacter = pwd[i];
 }
 return nthCharacter;
}

In this example, the pointer pwd is not const-qualified. However, beyond initialization with a
constant, it is not reassigned anywhere in the returnNthCharacter function.

Check Information
Group: Declaration

 AUTOSAR C++14 Rule A7-1-1

25-145

Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-146

AUTOSAR C++14 Rule A7-1-2
The constexpr specifier shall be used for values that can be determined at compile time

Description
Rule Definition

The constexpr specifier shall be used for values that can be determined at compile time.

Rationale

If a variable value is computed from an expression that involves compile-time constants only, using
constexpr before the variable definition, like this:

constexpr double eValSquared = 2.718*2.718;

ensures that the expression is evaluated at compile time. The compile-time evaluation saves on run-
time overheads. Sometimes, the performance gains at run time can be significant.

If the expression cannot be evaluated at compile time, the constexpr keyword ensures that you get
a compilation error. You can then fix the underlying issue if possible.

Note that the const keyword does not guarantee compile-time evaluation. The const keyword
simply forbids direct modification of the variable value after initialization. Depending on how the
variable is initialized, the initialization can happen at compile time or run time.

Polyspace Implementation

The checker flags a local variable definition without the constexpr specifier if the variable is
initialized with one of the following and not modified subsequently in the code:

• A compile-time constant, for instance, a literal value.
• An expression involving compile-time constants only.
• Calls to a function with compile-time constants as parameters, provided the function is itself

constexpr or the function contains only a return statement involving its parameters.
• A constructor call with a compile-time constant, provided all member functions of the class

including the constructor are themselves constexpr.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Potential constexpr Variables

double squareIfPositive(double val) {
 return val > 0? (val * val): 0;
}

 AUTOSAR C++14 Rule A7-1-2

25-147

constexpr double square(double val) {
 return val > 0? (val * val): 0;
}

void initialize(void) {
 double eVal = 2.718; //Noncompliant
 double eValSquare = squareIfPositive(2.718); //Noncompliant
 const double eValCubed = 2.718 * 2.718 * 2.718; //Noncompliant

 constexpr double eValSquareAnother = square(2.718); //Compliant
}

In this example, the first three variable definitions in the initialize function are noncompliant
because the variables are initialized with expressions involving literal values and the constexpr
keyword is omitted.

Check Information
Group: Declaration
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-148

AUTOSAR C++14 Rule A7-1-3
CV-qualifiers shall be placed on the right hand side of the type that is a typedef or a using name

Description
Rule Definition

CV-qualifiers shall be placed on the right hand side of the type that is a typedef or a using name.

Rationale

Suppose a typedef or using statement defines a pointer type. For instance:

using IntPtr = std::int32_t*;

A const-qualification of the type written as:

const IntPtr ptr = &someValue;

Results in this expansion:

const (std::int32_t*) ptr = &someValue;

In this expression, ptr is a constant pointer, which cannot be reassigned to another memory location.
However, a developer or reviewer might expect this expansion:

(const std::intr32_t) *ptr = &someValue;

In this expression, ptr is a pointer to a constant, which means that the contents of the location that
ptr points to, or *ptr, cannot be changed.

To avoid this confusion, place a const or volatile qualifier to the right of a data type defined
through typedef or using. For instance:

IntPtr const ptr = &someValue;

The only possible expansion of this expression is:

std::intr32_t const *ptr = &someValue;

which makes ptr a constant pointer.

Polyspace Implementation

The checker flags situations where const or volatile qualifiers are placed on the left side of data
types defined through typedef or using statements.

The checker flags both pointer and nonpointer data types.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

 AUTOSAR C++14 Rule A7-1-3

25-149

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-150

AUTOSAR C++14 Rule A7-1-4
The register keyword shall not be used

Description
Rule Definition

The register keyword shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A7-1-4

25-151

AUTOSAR C++14 Rule A7-1-5
The auto specifier shall not be used apart from following cases: (1) to declare that a variable has the
same type as return type of a function call, (2) to declare that a variable has the same type as
initializer of non-fundamental type, (3) to declare parameters of a generic lambda expression, (4) to
declare a function template using trailing return type syntax

Description
Rule Definition

The auto specifier shall not be used apart from following cases: (1) to declare that a variable has the
same type as return type of a function call, (2) to declare that a variable has the same type as
initializer of non-fundamental type, (3) to declare parameters of a generic lambda expression, (4) to
declare a function template using trailing return type syntax.

Rationale

When you use the auto type specifier with a variable declaration, the type of the variable is deduced
by the compiler. A developer reading the code might be confused if the type deduction is not what he
or she would expect. The information needed to deduce the type might be in a separate part of the
code.

This rule permits the use of the auto specifier in these cases:

• You declare a variable that is initialized with a function call. This avoids a repetition of the type
and ensures that there are no unexpected conversions if you change the return type of the
function. For example, in this code snippet, variable var has the same type as the return type of
myfunc():

#include<cstdint>

int32_t myfunc();

int foo(){
 auto var=myfunc();
 return var;
}

• You declare a variable that you initialize with a non-fundamental type initializer. A type T is non-
fundamental if std::is_fundatmental<T>::value is false. For a list of fundamental types, see
Fundamental types. For example, the type of var in this code snippet is
std::vector<int>::iterator.

std::vector<int> v = { 1, 2, 3};
auto var = v.begin();

By using the auto keyword, you make the code more readable and avoid having to write a difficult
to remember non-fundamental type.

Note that a pointer is a non-fundamental type.
• You declare the parameters of a generic lambda function. The function can then accept more than

one kind of parameter types, similar to a function template. For instance, the custom

25 AUTOSAR C++14 Rules

25-152

https://en.cppreference.com/w/cpp/language/types

implementation of std::sort in this code snippet can be used to sort vectors of ints, or floats, or
other arithmetic types.

//sort in ascending order
std::sort(v.begin(), v.end(),
 [](auto lhs, auto rhs){
 return lhs < rhs});

• You use a trailing return type syntax to declare a function template. In this case, there is no type
deduction. The auto keyword is used as part of an alternative syntax for the declaration of
function templates. This code snippet shows an example of trailing return type syntax.

template<typename T, typename U>
auto subtract(T lhs, U rhs) -> decltype(lhs - rhs);

Polyspace Implementation

• Polyspace flags the use of the auto specifier except when it is used in one of the cases listed in
the previous section.

• Polyspace flags the use auto to declare a variable that is initialized with a
std::initializer_list of a fundamental type.

• Polyspace does not flag the use of decltype(auto).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of the auto Specifier
#include <string>
#include<vector>

auto func(int a) // Non-compliant
{
 return a;
}

void func2()
{
 auto int_type = new int[5]; // Non-compliant

 auto vector_type = std::vector<int> { 1, 2, 3 }; // Compliant

 const char* c = "hello";
 auto str2 = std::string(c); // Compliant

 auto lambda = [](auto x, auto y) { // Compliant
 return x > y;
 };

}

 AUTOSAR C++14 Rule A7-1-5

25-153

In this example, the use of the auto specifier for the return type of func is non-compliant. The
deduced return type of the function might not be obvious. Similarly, the use of auto in the
declaration of int_type is non-compliant because the initializer of this variable is an array of type
int, which is a fundamental type.

Other uses of auto in this example are compliant with the use cases specified by this rule:

• The initializers of vector_type and str2 are non-fundamental types std::vector<int> and
stdd::string respectively (use case (2)).

• The initializer of variable lambda is a non-fundametal type lambda expression (use case (2))
• Variables x and y are parameters of a lambda expression (use case (3)).

Check Information
Group: Declaration
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-154

AUTOSAR C++14 Rule A7-1-6
The typedef specifier shall not be used

Description
Rule Definition

The typedef specifier shall not be used.

Rationale

The using syntax is a better alternative to typedef-s for defining aliases.

Since C++11, the using syntax allows you to define template aliases where the template arguments
are not bound to a data type. For instance, the following statements define an alias vectorType for
vector, where the argument T is not bound to a data type and can be substituted later:

template<class T, class Allocator = allocator<T>> class vector;
template<class T> using vectorType = vector<T, My_allocator<T>>;
vectorType<int> primes = {2,3,5,7,11,13,17,19,23,29};

The typedef keyword does not allow defining such template aliases.

Polyspace Implementation

The rule checker flags all uses of the typedef keyword.

If you do not want to remove certain instances of the typedef keyword, add a comment justifying
those results. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of typedef Keyword

#include <cstdint>
#include <type_traits>

typedef std::int32_t (*fptr1) (std::int32_t); //Noncompliant
using fptr2 = std::int32_t (*) (std::int32_t); //Compliant

template <class T> using fptr3 = std::int32_t (*) (T); //Compliant

 AUTOSAR C++14 Rule A7-1-6

25-155

The alias definitions for fptr1 and fptr2 are exactly equivalent. There is no typedef equivalent for
the alias definition for fptr3.

The use of typedef-s violates this rule. The rule requires that you stick to the using syntax for
consistency even when a typedef equivalent exists.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-156

AUTOSAR C++14 Rule A7-1-7
Each expression statement and identifier declaration shall be placed on a separate line

Description
Rule Definition

Each expression statement and identifier declaration shall be placed on a separate line.

Polyspace Implementation

The checker raises a violation when two consecutive expression statements are on the same line
(unless the statements are part of a macro definition).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declaration
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A7-1-7

25-157

AUTOSAR C++14 Rule A7-1-8
A non-type specifier shall be placed before a type specifier in a declaration

Description
Rule Definition

A non-type specifier shall be placed before a type specifier in a declaration.

Rationale

Non-type specifiers include:

• typedef.
• friend.
• constexpr.
• register.
• static.
• extern.
• thread-local.
• mutable.
• inline.
• virtual.
• explicit.

To make the code more readable, place non-type specifiers before type specifiers in a declaration.

Polyspace Implementation

Polyspace flags declarations that place non-type specifiers after a type specifier. If more than one
non-type specifiers follow a type specifier, Polyspace flags the rightmost non-type specifier.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Place Non-Type Specifiers Before Type Specifiers

The following example demonstrate the Polyspace implementation of AUTOSAR rule A7-1-8.

#include <cstdint>

typedef std::int32_t int1; // Compliant
std::int32_t typedef int2; // Noncompliant

25 AUTOSAR C++14 Rules

25-158

class to_be_friend
{
 explicit to_be_friend(int); // Compliant
 static void* foo(void); // Compliant
 void static* bar(void); // Noncompliant
 virtual inline void i1(void) {}; // Compliant
 inline void virtual i2(void) {}; // Noncompliant
 constexpr static long long l1 = 0; // Compliant
 long long constexpr static l3 = 0; //Noncompliant
};
main()
{
 //...
}

Polyspace flags declarations where you place non-type specifiers after type-specifiers. The declaration
of the static object l3 is flagged because the non-type specifiers static and constexpr are placed
after the type-specifier long long. The violation is highlighted on the rightmost non-type specifier,
which is static.

Check Information
Group: Declaration
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

 AUTOSAR C++14 Rule A7-1-8

25-159

AUTOSAR C++14 Rule A7-1-9
A class, structure, or enumeration shall not be declared in the definition of its type

Description
Rule Definition

A class, structure, or enumeration shall not be declared in the definition of its type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declaration
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-160

AUTOSAR C++14 Rule A7-2-2
Enumeration underlying type shall be explicitly defined

Description
Rule Definition

Enumeration underlying type shall be explicitly defined.

Rationale

In an unscoped enumeration declaration such as:

enum someEnum : type { ... }

if : type is omitted, the underlying type is implementation-defined (with the only requirement that
the type must accommodate all the enumeration values). Not declaring an underlying type explicitly
results in implementation-defined behavior.

In a scoped enumeration declaration such as:

enum class someEnum : type { ... }

if : type is omitted, the underlying type is int. If an enumeration value exceeds the values allowed
for int, you see compilation errors.

For both unscoped and scoped enumerations, declare the underlying type explicitly to avoid
implementation-defined behavior or compilation errors.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Enums with Underlying Type Omitted

#include <cstdint>

enum E1 { //Noncompliant unscoped enum
 E10,
 E11,
 E12
};

enum E2 : std::uint8_t { //Compliant unscoped enum
 E20,
 E21,
 E22
};

enum class E3 { //Noncompliant scoped enum

 AUTOSAR C++14 Rule A7-2-2

25-161

 E30,
 E31,
 E32
};

enum class E4 : std::uint8_t { //Compliant scoped enum
 E40,
 E41,
 E42
};

In this example, the code is noncompliant when the underlying types of the enumerations are
omitted.

Check Information
Group: Declaration
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

25 AUTOSAR C++14 Rules

25-162

AUTOSAR C++14 Rule A7-2-3
Enumerations shall be declared as scoped enum classes

Description
Rule Definition

Enumerations shall be declared as scoped enum classes.

Rationale

Enumeration values in an unscoped enum can conflict with other identifiers in the same scope as the
enum and cause compilation errors. For instance:

enum E: std::int32_t { E0, E1};
std::int32_t E0;

If you scope the enum, such conflicts can be avoided. For instance:

enum class E: std::int32_t { E0, E1};
std::int32_t E0;

Scoping the enum also disallows implicit conversions of the enumeration values to other types.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Unscoped Enums

#include<cstdint>

enum E1: std::int32_t { E10, E11}; //Noncompliant
// std::int32_t E10; causes compilation errors

enum class E2: std::int32_t { E20, E21}; //Compliant
std::int32_t E20;

In this example, the declaration of unscoped enum E1 is noncompliant. Redeclaring an enumeration
value of the unscoped enum causes compilation errors (as shown in the commented line that
redeclares the enumeration value E10).

Check Information
Group: Declaration
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

 AUTOSAR C++14 Rule A7-2-3

25-163

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

25 AUTOSAR C++14 Rules

25-164

AUTOSAR C++14 Rule A7-2-4
In an enumeration, either (1) none, (2) the first or (3) all enumerators shall be initialized

Description
Rule Definition

In an enumeration, either (1) none, (2) the first or (3) all enumerators shall be initialized.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declaration
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A7-2-4

25-165

AUTOSAR C++14 Rule A7-3-1
All overloads of a function shall be visible from where it is called

Description
Rule Definition

All overloads of a function shall be visible from where it is called.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declaration
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-166

AUTOSAR C++14 Rule A7-4-1
The asm declaration shall not be used

Description
Rule Definition

The asm declaration shall not be used.

Rationale

The asm declaration is a method to include assembly instructions directly within C++ source code.
Support and implementation of the asm declaration is inconsistent across environments. The asm
declaration interacts differently with C++ source code in different environments. To avoid restricting
the portability of your code, do not use the asm declaration and do not include assembly instructions
in your C++ source code.

Polyspace Implementation

Polyspace flags the use of the asm declaration anywhere in C++ source code.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Assembly Instructions in C++ Source Code

#include <cstdint>
using namespace std;
const char* p = "hello world";

void Fn1(void)
{
 asm("movq p, %rdi\n" // Noncompliant
 "call puts");
}

#define _debug() asm volatile("debug":::"memory") // Noncompliant

void Fn2(void)
{
 _debug();
}

main()
{
 //
}

 AUTOSAR C++14 Rule A7-4-1

25-167

Polyspace flags the use of asm declaration in Fn(1) because the assembly instructions following the
declaration are environment-specific. For example, if you use a gcc compiler in a x64 Linux
environment, Fn1() produces the string hello world when called. In other environments, the
output of the call to Fn1() is unpredictable. Polyspace also flags the use of the asm declaration in
creating the _debug() macro.

Check Information
Group: Declaration
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

25 AUTOSAR C++14 Rules

25-168

AUTOSAR C++14 Rule A7-5-1
A function shall not return a reference or a pointer to a parameter that is passed by reference to
const

Description
Rule Definition

A function shall not return a reference or a pointer to a parameter that is passed by reference to
const.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declaration
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A7-5-1

25-169

AUTOSAR C++14 Rule A7-5-2
Functions shall not call themselves, either directly or indirectly

Description
Rule Definition

Functions shall not call themselves, either directly or indirectly.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declaration
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-170

AUTOSAR C++14 Rule A7-6-1
Functions declared with the [[noreturn]] attribute shall not return

Description
Rule Definition

Functions declared with the [[noreturn]] attribute shall not return.

Rationale

If you declare a function by using the [[noreturn]] attribute, the compiler expects that the
function does not return the flow of execution. That is, if a [[noreturn]] function f() is called from
main(), then the compiler expects that the flow of execution is not returned to main(). If such a
function eventually returns the flow of execution, it leads to undefined behavior, which can be
exploited to cause data integrity violations.

If a function has no return statement, then the final closing brace of a function implies an implicit
return. Omitting a return statement in the function does not prevent the flow of execution from
returning. A [[noreturn]] function can prohibit returning the flow of execution to the calling
function by:

• Entering an infinite loop
• Raising an exception
• Calling another [[noreturn]] function

Polyspace Implementation

If a function specified as [[noreturn]] returns the control flow to its caller, Polyspace flags the
[[noreturn]] function.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Returning The Flow of Execution From [[noreturn]] Function

Consider this code containing two [[noreturn]] functions.

#include <iostream>

[[noreturn]] void noncompliant(int i)
{
 if (i > 0)
 throw "Received positive input";
 else if (i < 0)
 std::exit(0);
} //Noncompliant

 AUTOSAR C++14 Rule A7-6-1

25-171

[[noreturn]] void compliant(int i)
{
 if (i > 0)
 throw "Received positive input";
 else if (i < 0)
 std::exit(0);
 else if(i==0)
 while(true){
 //...
 }
}//Compliant

• In the noncompliant() function, the flow of execution skips the if-else-if block of code and
returns to the caller implicitly if i == 0. Because the [[noreturn]] function returns the flow of
execution in a code path, this function is noncompliant with this rule.

• In the compliant() function:

• The function raises an exception if i > 0.
• The function calls the [[noreturn]] function std::exit() if i < 0.
• The function enters an infinite loop if i==0.

Because the [[noreturn]] function does not return the flow of execution in any code path, it is
compliant with this rule

Check Information
Group: Declaration
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-172

AUTOSAR C++14 Rule A8-2-1
When declaring function templates, the trailing return type syntax shall be used if the return type
depends on the type of parameters

Description
Rule Definition

When declaring function templates, the trailing return type syntax shall be used if the return type
depends on the type of parameters.

Rationale

When the return type of a template depends on the types of parameters, using the trailing return type
syntax improves readability of the code significantly.

For instance, for out-of-class definitions of methods, using the trailing return type syntax means that
you do not have to use the fully qualified return type of a function along with the typename keyword.
Instead of explicitly specifying the fully qualified return type for aMethod in this example:

template <typename T>
class aClass {
 public:
 using vectorType = std::vector<T>;
 vectorType aMethod(T const&);
};

//Difficult-to-read method definition
//Part in bold indicates fully qualified return type of method
template <typename T>
typename aClass<T>::vectorType aClass<T>::aMethod(T const &) {
};

You can use the trailing return type syntax:

template <typename T>
class aClass {
 public:
 using vectorType = std::vector<T>;
 vectorType aMethod(T const&);
};
template <typename T>
auto aClass<T>::aMethod(T const &) -> vectorType {
};

Polyspace Implementation

The checker flags function template declarations where the explicitly specified return type of a
template function has the same scope as the template function itself.

For instance, in the preceding example, the function aMethod has a return type vectorType, which
has the same scope as aMethod, namely the class aClass<T>. Instead of explicitly specifying the
fully qualified return type, you can use the trailing return type syntax.

 AUTOSAR C++14 Rule A8-2-1

25-173

Because C++14 has enabled return-type deduction, you can use the auto keyword to declare generic
templates while omitting the trailing return type. In such cases, Polyspace does not raise a violation.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Explicitly Specifying Return-Types of Generic Templates

#include <vector>
#include<cstdint>

template<class T, class U>
decltype(std::declval<T>() * std::declval<U>())
bar(T const& lhs, U const& rhs) {// Noncompliant
 return lhs * rhs;
}

template<class T, class U>
auto foo(T a, U b) -> decltype(a*b){ //Compliant
 return a*b;
}
template<class T, class U>
auto foo2(T a, U b) { //Compliant
 return a*b;
}

In this example, three generic function templates are declared:

• The template bar explicitly defines the return-type. Such declarations are difficult to read and
understand. Polyspace flags the declaration.

• The template foo uses the keyword auto, and then specifies a trailing return-type. Such
declarations are easy to read and understand. Polyspace does not flag the declaration.

• The template foo2 uses the keyword auto but omits the trailing return-type. From C++14
onward, the compiler can deduce the return type of such templates. Polyspace does not flag the
declaration.

Check Information
Group: Declarators
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

25 AUTOSAR C++14 Rules

25-174

AUTOSAR C++14 Rule A8-4-1
Functions shall not be defined using the ellipsis notation

Description
Rule Definition

Functions shall not be defined using the ellipsis notation.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarators
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A8-4-1

25-175

AUTOSAR C++14 Rule A8-4-2
All exit paths from a function with non-void return type shall have an explicit return statement with
an expression

Description
Rule Definition

All exit paths from a function with non-void return type shall have an explicit return statement with
an expression.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarators
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-176

AUTOSAR C++14 Rule A8-4-3
Common ways of passing parameters should be used.

Description
Rule Definition

Common ways of passing parameters should be used.

Rationale

If you follow well-established conventions for passing parameters, a developer or reviewer can
determine from your function signature whether a parameter is an input parameter, an output
parameter, or a different type of parameter.

These conventions are commonly used to pass parameters to a function f(X):

• In: If the input parameter data type X is cheap to copy or cannot be copied (for instance, the
std::unique_ptr type), pass the parameter by value as f(X). Otherwise, pass the parameter by
const reference as f(const X &).

• Out: If the output parameter data type X is expensive to move, pass the parameter by reference as
f(X &). Otherwise, do not pass a parameter, but instead return the value as X f().

• In/Out: Pass the parameter by lvalue reference as f(X &).
• Consume: Pass the parameter by rvalue reference as f(X &&).
• Forward: Pass the parameter by template rvalue reference as template<typename T> f(T

&&).

Polyspace Implementation

The checker flags these incorrect ways of passing parameters:

• In parameters:

• You pass by value an input parameter that is expensive to copy:

f(X); //X is expensive to copy
• You pass by reference an input parameter that is cheap to copy:

f(X &); //X is cheap to copy
f(const X &); //X is cheap to copy

The checker considers a data type that has a size less than twice sizeof(void *) as cheap to
copy.

• Out parameters:

• You return by value an output parameter that is expensive to move:

X f(); //X is expensive to move
• You pass by reference an output parameter that is cheap to move:

f (X &); //X is cheap to move

 AUTOSAR C++14 Rule A8-4-3

25-177

The checker considers a fundamental data type that has a size less than eight times sizeof(void
*) as cheap to move.

The checker does not include pass by pointers under the umbrella of pass by reference.

Resolving a violation of this rule can sometimes involve invasive changes. For instance, if the checker
suggests that an output parameter can be returned by value, but the function already returns a value,
you have to rewrite your code significantly. You have to combine the output parameter and already
returned value into a structure or n-tuple and then return this structure or n-tuple. If the output
parameter and already returned value are not semantically related, combining them into a structure
might not be appropriate. In this case, add a comment to the result or code to avoid another review.
See “Address Polyspace Results Through Bug Fixes or Justifications”.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Input Parameters

#include <iostream>
#include <array>
#include <numeric>

typedef struct smallStruct {
 char x;
 char y;
}smallStruct;

void sum(smallStruct& aStruct) { //Noncompliant
 std::cout<<aStruct.x+aStruct.y;
}

typedef struct largeStruct {
 std::array<int,20> arrayOfIntegers;
 int init;
}largeStruct;

void add(largeStruct aStruct) { //Noncompliant
 std::cout<<std::accumulate(aStruct.arrayOfIntegers.begin(),
 aStruct.arrayOfIntegers.end(), aStruct.init);
}

In this example, functions sum and add only read the contents of their parameters. Therefore, these
parameters are input parameters.

• The function sum() with signature:

void sum(smallStruct& aStruct);

takes as argument an object of type smallStruct that is cheap to copy. The argument can be
passed by value instead of reference.

25 AUTOSAR C++14 Rules

25-178

• The function add() with signature:

void add(largeStruct aStruct);

takes as argument an object of type largeStruct that is expensive to copy. The argument can be
passed by reference instead of value.

Output Parameters

#include <array>
#include <algorithm>

void init(int& val) { //Noncompliant
 val = 0;
}

typedef struct largeStruct {
 std::array<int,100> arrayOfIntegers;
 int init;
}largeStruct;

largeStruct reset(void) { //Noncompliant
 largeStruct aStruct;
 std::fill(aStruct.arrayOfIntegers.begin(), aStruct.arrayOfIntegers.end(), 0);
 aStruct.init = 0;
 return aStruct;
}

In this example, functions init and reset only write to the contents of their parameters. Therefore,
these parameters are output parameters.

• The function init() with signature:

void init(int& val);

takes as an argument an object of type int that is cheap to move. The object can be returned by
value instead of being passed by reference.

• The function reset() with signature:

largeStruct reset(void);

takes as an argument an object of type largeStruct that is expensive to move. The object can be
passed by reference instead of being returned by value.

Check Information
Group: Declarators
Category: Advisory, Non-automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

 AUTOSAR C++14 Rule A8-4-3

25-179

Introduced in R2021b

25 AUTOSAR C++14 Rules

25-180

AUTOSAR C++14 Rule A8-4-4
Multiple output values from a function should be returned as a struct or tuple

Description
Rule Definition

Multiple output values from a function should be returned as a struct or tuple.

Rationale

In a C++ function, the return statement can return only the value stored in a single variable. But
the values stored in any number of additional variables in the caller's scope can be modified by the
callee if you pass these values by reference, and then modify them in the body of the callee. For
example, consider the function foo:

int foo(int x, int& y)
{
 int z;
 y = x*x;
 z = x*x*x;
 return z;
}

The function foo effectively returns two integer values: the square of the input parameter x
(returned by reference) and the cube of the input parameter x (returned by copy by using the return
statement). Simultaneously using both strategies to return multiple values results in a complicated
function interface and can make your code less readable and maintainable. Instead, storing all return
values in a single struct or tuple and returning it by using the return statement results in a simpler,
more unified interface.

A return statement that has a struct or a tuple might require expensive copying from one memory
location to another. Most compilers support return value optimization and can eliminate this
expensive copy, resulting in executable code with little to no overhead associated with such returns.

To help you decide whether to use a struct or a tuple to return multiple values, consider:

• If your return type represents an abstraction, it is preferable to use a struct because you can
provide a custom name for each component of the abstract data type.

• Tuples are easier to work with because a returned tuple can be conveniently processed by using
std::tie at the call site. The std::tie method puts the tuple elements directly into existing
local variables in the caller.

Note This rule also applies to std::pair, which is a special kind of tuple that has exactly two
elements.

Polyspace Implementation

The checker flags a function declaration that satisfies one of these two conditions:

 AUTOSAR C++14 Rule A8-4-4

25-181

• The function has a nonvoid return type and at least one nonconstant reference parameter
• The function has more than one nonconstant reference parameters

Usage notes and limitations:

• The checker flags pure virtual functions that violate this rule. These functions are flagged
because, for any implementation of a pure virtual function to be compliant with this rule, the
interface of the pure virtual function itself must obey this rule.

• The checker does not flag operators that violate this rule.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Combine Multiple Return Values into a Tuple
#include <tuple>

int Divide1(int dividend, // Noncompliant, remainder returned as reference parameter
 int divisor, int& remainder)
{
 remainder = dividend % divisor;
 return dividend / divisor;
}

// Compliant, quotient and remainder combined into a tuple
std::tuple<int, int> Divide2(int dividend, int divisor)
{
 return std::make_tuple(dividend / divisor, dividend % divisor);
}

int main()
{
 int quotient, remainder;
 // store in local variables
 std::tie(quotient, remainder) = Divide2(26, 5);
 return 0;
}

The function Divide1 has the quotient as the return value and the remainder as a nonconstant
reference parameter. Having a nonvoid return value and a nonconstant reference parameter violates
this coding rule.

The function Divide2 combines the quotient and the remainder into a tuple and returns the tuple.
This code pattern complies with the rule.

Combine Multiple Return Values into a Structure
struct fraction {
 int quotient;
 int remainder;
} ;

int Divide1(int dividend, // Noncompliant, quotient and remainder returned as reference parameters
 int divisor, int& quotient, int& remainder)
{
 quotient = dividend / divisor;
 remainder = dividend % divisor;
}

// Compliant, quotient and remainder combined into a struct

25 AUTOSAR C++14 Rules

25-182

fraction Divide2(int dividend, int divisor)
{
 fraction answer;
 answer.quotient = dividend / divisor;
 answer.remainder = dividend % divisor;
 return answer;
}

int main()
{
 fraction answer;
 answer = Divide2(26,5);
 return 0;
}

The function Divide1 has both the quotient and the remainder as nonconstant reference
parameters. Having multiple nonconstant reference parameters violates this coding rule

The function Divide2 combines the quotient and the remainder into a struct and returns the struct.
This code pattern complies with the rule.

Check Information
Group: Declarators
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 AUTOSAR C++14 Rule A8-4-4

25-183

AUTOSAR C++14 Rule A8-4-5
"consume" parameters declared as X && shall always be moved from

Description
Rule Definition

"consume" parameters declared as X && shall always be moved from.

Rationale

When declaring a function, you might indicate your intention of moving the content of a function
parameter by declaring it as a nonconst and nontemplate rvalue reference or a "consume" (X&&)
parameter. For instance, the parameter of this function is declared as a "consume" parameter: void
foo(std::vector<std::string>&& V). This declaration implies that the content of the vector V
is intended to be moved instead of copied within the body of the function.

When you declare a function parameter as a "consume" parameter, use move semantics when using
the parameter. Within the body of the function, use the std::move function explicitly if you use an
lvalue reference to invoke the function.

Polyspace Implementation

Polyspace flags the definition of a function if both of these conditions are true:

• At least one function parameter is declared as a nonconst and nontemplate rvalue reference, that
is, a "consume" or X&& parameter.

• The content of the X&& parameter is not completely moved to another object by using the
std::move function within the body of the function.

Polyspace does not raise this defect in move constructors and move assignment operators.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use std::move on Nonconst and Nontemplate rvalue Reference Function Parameters
#include <utility>
class C
{
 C(C&& c): a{std::move(c.a)} // Compliant by exception.
 {
 }

 C& operator=(C&& c) // Compliant by exception.
 {
 a = std::move(c.a);

25 AUTOSAR C++14 Rules

25-184

 return *this;
 }

 void move(C&& c) // Noncompliant
 {
 a = std::move(c.a);//Partial move
 }

 void cond(C&& c, bool b) // Compliant
 {
 if (b) {
 move(std::move(c));
 } else {
 a++;
 }
 }
public:
 int a;
 void set(int&& num) // Compliant
 {
 a = std::move(num);
 }
 void set1(int&&) // Noncompliant
 {
 //Unnamed temporary variable cannot be moved from.
 }
 void set2(int&& i12); // Violation raised on definition.
 void set3(int&& i11a, // Noncompliant
 int&& i11b) // Noncompliant
 {
 if(i11a != i11b)
 {
 }
 }

};
void C::set2(int&& i12) // Noncompliant
{
 a = i12;
}

template<typename T>
void tf1(T&& t1) // Compliant - not a "consume" parameter
{
}

In this example, the data member a of the class C is set to an integer by using move semantics.

• Polyspace does not flag the move constructor and the move assignment operator even though
these functions do not completely move the "consume" or X&& parameter. These functions are
compliant by exception.

• Polyspace flags the function C::move because the body of the function partially moves the
"consume" or X&& parameter.

• Polyspace flags the function C::set1 because this function uses an unnamed "consume"
parameter. Because the parameter is unnamed, you cannot use the function std::move on this
X&& parameter.

 AUTOSAR C++14 Rule A8-4-5

25-185

• Polyspace flags the function C:: set2 because the body of the function copies the "consume"
parameter instead of using the function std::move. Polyspace raises the violation on the
definition of the variable. Similarly, the function C::set2 is also noncompliant with this rule
because its body does not use std::move on X&& variables.

• The function C::cond and C::set are compliant with this rule because the bodies of these
functions use std::move on the "consume" parameters.

• Polyspace does not flag the function template because this rule does not apply to templates.

Check Information
Group: Declarators
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
AUTOSAR C++14 Rule A8-4-5
“Check for Coding Standard Violations”

Introduced in R2021a

25 AUTOSAR C++14 Rules

25-186

AUTOSAR C++14 Rule A8-4-6
"forward" parameters declared as T && shall always be forwarded

Description
Rule Definition

"forward" parameters declared as T && shall always be forwarded.

Rationale

Because rvalue references cannot bind to lvalues, functions that enable the use of move semantics by
using rvalue references in their signature do not accept lvalues. This issue is resolved by using an
rvalue reference to a nonconst template type object, which is called a "forward" parameter. These
parameters can bind to both rvalues and lvalues while preserving their cv qualifications and value
categories. "Forward" parameters are useful when you want to forward a value to a destination object
or function by using the function std::forward.

When you declare a function template by using a "Forward" parameter, do not use the parameter in
any operations. Because "Forward" parameters can bind to both lvalues and rvalues, using them in an
operation might corrupt their cv qualifications and value categories. Forward these parameters
directly to the destination by using std::forward without using them in an operation.

Polyspace Implementation

Polyspace flags a "Forward" parameter in the definition of a function template or a Lambda
expression if any of these conditions are true:

• A "Forward" parameter is not forwarded to a destination by using std::forward.
• An operation other than forwarding is performed on the "Forward" parameter or on a member

object of it.

Polyspace ignores the templates and Lambda expressions that remain unused in your code.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Compliant Use of "Forward" Parameters

#include<string>
#include<vector>
#include <iostream>

struct intWrapper {
 intWrapper(int&& n) { std::cout << "rvalue overload, n=" << n << "\n"; }
 intWrapper(int& n) { std::cout << "lvalue overload, n=" << n << "\n"; }
};

 AUTOSAR C++14 Rule A8-4-6

25-187

struct floatWrapper {
 floatWrapper(double&& n) { std::cout << "rvalue overload, n=" << n << "\n"; }
 floatWrapper(double& n) { std::cout << "lvalue overload, n=" << n << "\n"; }
};

class mixedNumerical {
public:
 template<class T1, class T2, class T3>
 mixedNumerical(T1&& t1, T2&& t2, T3&& t3) : //violation on T3
 a1_{std::forward<T1>(t1)},
 a2_{std::forward<T2>(t2)},
 a3_{std::forward<T3>(t3)}
 {
 }

private:
 intWrapper a1_, a2_;
 floatWrapper a3_;
};

template<class T, class... U>
std::unique_ptr<T> unique_ptr_factory(U&&... u)
{
 return std::unique_ptr<T>(new T(std::forward<U>(u)...));
}

int main()
{
 auto p1 = unique_ptr_factory<intWrapper>(2); // rvalue
 int i = 1;
 auto p2 = unique_ptr_factory<intWrapper>(i); // lvalue

 std::cout << "mixedNumerical\n";
 double lvalue = 2.2;
 auto t = unique_ptr_factory<mixedNumerical>(2, i, 2.2);// rvalue
 auto t2 = unique_ptr_factory<mixedNumerical>(2, i, lvalue);// lvalue
}

This example shows the implementation of a flexible interface to the function unique_ptr_factory
by using a "forward" parameter pack. This function accepts the "forward" parameter pack, and then
forwards the parameters to their respective constructors by using std::forward. The constructors
are overloaded to accept both rvalues and lvalues. As a result, the function unique_ptr_factory
produces unique_ptr to intWrapper type objects and mixedNumerical type objects while
requiring minimal overloading. This use of "forward" is compliant with this rule because the
"forward" parameters are forwarded to their destination by using std::forward. Because no other
operation is performed on them, their cv qualification and value categories are preserved.

Noncompliant Use of "Forward" Parameters

#include<string>
#include<vector>
void task(int i);
template<typename T>
T NoncompliantTemplate(T&& arg) // Noncompliant

25 AUTOSAR C++14 Rules

25-188

{
 return arg; // Noncompliant
}

auto NoncompliantLambda = [](auto&& truc) { // Noncompliant
 return truc; // Noncompliant
};
template<typename T>
T ReturnStaticCast(int&& i) //Compliant: not a template parameter.
{
 return static_cast<T>(i);
}
template<typename T>
void ConstArg(const T&& t) // Compliant: const
{}

template<typename T>
void UnusedArg(T&& t) // Noncompliant
{}

template<typename T>
void UnnamedArg(T&&) // Noncompliant
{}
template<typename T>
void usage(T&& t1, T&& t2)
{
 if (t1==t2) // Noncompliant
 {
 task(std::forward<T>(t1));
 }
 else
 {
 task(std::forward<T>(t1));
 task(std::forward<T>(t2));
 }
}
class intWrapper
{
public:
 int m;
};

template<typename T>
void CheckForward(T&& t)
{
 if (t.m != 0) // Noncompliant
 {
 UnusedArg(std::forward<T>(t));
 }
}
auto CompliantLambda = [](auto&& truc) { // Compliant
 return NoncompliantLambda(std::forward<decltype(truc)>(truc));
};
template<typename T>
T NoninstantiatedTemplate(T&& arg) // Not checked
{
 return arg; // Not checked
}

 AUTOSAR C++14 Rule A8-4-6

25-189

void foo(){
 int i;
 intWrapper C;
 C.m = i;
 NoncompliantTemplate(i);
 CheckForward(std::move(C));
 usage(i,C.m);
 UnnamedArg(i);
 CompliantLambda(i);
}

This example shows use of "forward" parameters that are not compliant with this rule.

• Polyspace flags the nonconst T&& parameter arg of the template NoncompliantTemplate
because this "forward" parameter is not forwarded to a destination by using std::forward. The
parameter is flagged in the declaration and the return statement.

• Polyspace flags the nonconst auto&& parameter truc of the Lambda expression
NoncompliantLambda because this "forward" parameter is not forwarded to a destination by
using std::forward. The parameter is flagged in the declaration and the return statement.

• Polyspace does not flag int&& argument i of the template ReturnStaticCast because this
argument is not a nonconst template type rvalue reference. For the same reason, Polyspace does
not flag the argument of ConstArg.

• Polyspace flags the nonconst template type rvalue reference argument t of the template
UnusedArg because this "forward" parameter is not forwarded to a destination by using
std::forward.

• Polyspace flags the argument of the template UnnamedArg because the "forward" parameter is
unnamed and it cannot be forwarded by using std::forward.

• Polyspace flags the parameters t1 and t2 in the statement if (t1==t2) in the template usage
because these "forward" parameters are used in an operation before they are forwarded by using
std::forward. This checker is also raised on t in the statement if (t.m != 0) in the
template CheckForward because a member of the "forward" parameter t is accessed.

• Polyspace does not check the template NoninstantiatedTemplate because this template is
unused in the code.

Check Information
Group: Declarators
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
AUTOSAR C++14 Rule A8-4-6
“Check for Coding Standard Violations”

Introduced in R2021a

25 AUTOSAR C++14 Rules

25-190

AUTOSAR C++14 Rule A8-4-7
"in" parameters for "cheap to copy" types shall be passed by value

Description
Rule Definition

"in" parameters for "cheap to copy" types shall be passed by value.

Rationale

You use an "in" parameter when you intend to only read that parameter within a function. If the
parameter is cheap to copy, pass the parameter by value to:

• Make it clear that you do not plan on modifying the parameter.
• Avoid the additional indirection that is required to access the parameter from the function when

you pass the parameter by reference.

A parameter is cheap to copy when both these conditions are true:

• The parameter has a size less than or equal to two words. For instance, for a parameter foo,
sizeof(foo) <= 2 * sizeof(int).

• The parameter is trivially copyable type. See is_trivially_copyable.

Polyspace Implementation

• Polyspace flags:

• const parameters that are passed by reference if the parameters are cheap to copy (sizeof
<= 2 * sizeof(int) and trivially copyable).

• const parameters that are passed by value if the parameters are not cheap to copy. For
instance, in this code snippet, both parameters str (expensive to copy) and b (non-trivially
copyable) are noncompliant.

void func1(const std::string str);
struct B {
 B(B const&) {}
};
void func2(const B b);

.
• Polyspace does not flag :

• Non-const parameters that are passed by reference if those parameters are not cheap to copy
and are not modified inside the function. Polyspace considers these parameters as "in"
parameters.

• "in" parameters that are passed by reference if those parameters are move-only types. For
instance, int f(const std::unique_ptr<int>& p);.

• const parameters that are passed by reference in copy constructors. For instance, no defect is
raised on point in this code snippet.

 AUTOSAR C++14 Rule A8-4-7

25-191

https://en.cppreference.com/w/cpp/types/is_trivially_copyable

class coord
{
public:
 coord(int x, int y) {p_x = x; p_y = y;}
 coord(const coord& point) { p_x = obj.p_x; p_y = obj.p_y;}
 //...
private:
 int p_x, p_y;

};
coord point{1, 1};
void func(const coord& point);

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
"in" Parameters Passed by Reference

#include <memory>
#include <string>
#include <cstdint>

int func(const std::unique_ptr<int>& ptr) // Compliant
{
 *ptr = *ptr + 1;
 return *ptr;
}
union Small {
 uint8_t var1 ;
 uint8_t var2;
} ;

struct Large {
 std::uint32_t v1;
 std::uint32_t v2;
 std::uint32_t v3;
 std::uint32_t v4;
};

void func2(Small& arg) // Noncompliant
{
//...
}

void func3(Large val, // Noncompliant
 std::string& str) // Compliant
{
//...
}

In this example, Polyspace flags "in" parameters:

25 AUTOSAR C++14 Rules

25-192

• arg, because it is passed by reference and its type is trivially copyable. This parameter can be
passed by value instead.

• val, because it is passed by value and it is expensive to copy. Passing this parameter by reference
avoids making expensive copies for each call to func3().

These passed by reference "in" parameters are compliant:

• Parameter ptr because it is a move-only type.
• Parameter str because it is expensive to copy. This parameter is non-const but it is not modified

inside func3().

Check Information
Group: Declarators
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A8-4-7

25-193

AUTOSAR C++14 Rule A8-4-8
Output parameters shall not be used

Description
Rule Definition

Output parameters shall not be used.

Rationale

You can store the output value of a function in a variable that you pass to that function as a non-const
reference or pointer parameter, for example:

void func(const T* input_var, T* output_var); //declaration
void func(const T* input_var, T* output_var)
{
 *output_var = *input_var % 2;
}

However, it is unclear from the function declaration whether the output parameter output_var
passes a value to func and then stores the output (in-out parameter), or whether output_var only
stores the output (out parameter). This might cause a developer to misuse the parameter, for instance
by passing a null parameter when the function expects a non-null parameter.

Instead, use a return value to store the function output. The return value makes your intent clear and
prevents possible misuse of the passed parameters, for example:

T* func(const T* input_var)
{
 return *input_var % 2;
}

Polyspace Implementation

Polyspace flags all uses of non-const references or pointers in the parameter list of:

• Functions, except for main().
• Class constructors and operators.

If your code contains a function declaration and its definition, Polyspace flags the violation in the
function definition.

Note Polyspace flags a non-const reference or pointer in parameter lists even if that parameter is not
used as an output parameter.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

25 AUTOSAR C++14 Rules

25-194

Examples
Use of Possible Output Parameters

#include<iostream>

std::int32_t func(const std::vector<int32_t>& inParam,
 std::vector<int32_t>& outParam) // Non-Compliant
{
 //...
 return 1;
}

class C
{
public:

 C(C* ptr) {} // Non-Compliant
 C(C& ref) {} // Non-Compliant
 C(C&& rvalue_ref) {} // Compliant
 C(const C& c) {} // Compliant
 C(const C&& c) {} // Compliant

 C& operator=(C& ref) { return *this; } // Non-Compliant

};

In this example, func has a return value of type std::int32_t but its parameter list is still non-
compliant because it contains non-const lvalue reference outParam. Similarly, non-const parameters
ptr and ref in the class constructors and in operator= are non-compliant.

Note that non-const parameter rvalue_ref is compliant because rvalue reference parameters bind
only to temporary objects and these objects cannot be referenced after the function goes out of
scope.

Check Information
Group: Declarators
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2021a

 AUTOSAR C++14 Rule A8-4-8

25-195

AUTOSAR C++14 Rule A8-4-9
"in-out" parameters declared as T & shall be modified

Description
Rule Definition

"in-out" parameters declared as T & shall be modified.

Rationale

A function parameter meant to be both read and modified within a function is called an "in-out"
parameter.

If you do not both read and modify a parameter, avoid passing by non-const reference so that the
function prototype reflects the true nature of the parameter.

• If you only read a parameter within a function, the parameter is actually an "in" parameter.

Pass the parameter by const reference.
• If you replace the entire contents of a parameter within a function, the parameter is actually an

"out" parameter.

If possible, avoid "out" parameters completely and store any output of the function in the function
return value. See also AUTOSAR C++14 Rule A8-4-8.

Polyspace Implementation

The checker checks each function parameter passed by non-const reference and raises a violation if
the parameter is only read within the function or its value completely replaced within the function.

The checker does not raise a violation if:

• The parameter is an object and you access one or more of its data members, or invoke a non-
const member function.

• You pass a pointer or reference to the parameter on to another function.
• The function is virtual. The reason is that even if the current function might not modify its

parameter, an override of the function might modify its corresponding parameter.
• The function is an unused class method.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
"In-out" Parameter Not Modified in Function Body
#include <cstdint>
#include <vector>

25 AUTOSAR C++14 Rules

25-196

#include <numeric>
#include <string>

int32_t addAllElements (std::vector<int32_t>& aVec) { //Noncompliant
 return std::accumulate(aVec.cbegin(), aVec.cend(), 0);
}

int32_t addEveryElement (const std::vector<int32_t>& anotherVec) { //Compliant
 return std::accumulate(anotherVec.cbegin(), anotherVec.cend(), 0);
}

In this example, the vector aVec is passed as a non-const reference to the function
addAllElements. However, the vector is only read within the function and is only an "in" parameter,
not an "in-out" parameter.

The function addEveryElement is a compliant version of the same function. The "in" parameter
anotherVec is passed as a const reference.

"In-out" Parameter Fully Replaced in Function Body

#include <string>

void replaceString(std::string &Source, const std::string Replacement) { //Noncompliant
 if(Replacement.at(0)=='_')
 Source = Replacement;
 else
 Source = "_null";
}

std::string replacementString(const std::string str) { //Compliant
 if(str.at(0)=='_')
 return str;
 else
 return "_null";
}

In this example, the string Source is passed as a non-const reference to the function
replaceString. However, the string is fully replaced within the function and is only an "out"
parameter, not an "in-out" parameter.

The function replacementString is a compliant version of the same function, which also does not
violate AUTOSAR C++14 Rule A8-4-8. The function has the same output as replaceString but
stores the output in its return value.

Check Information
Group: Declarators
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

 AUTOSAR C++14 Rule A8-4-9

25-197

Introduced in R2021a

25 AUTOSAR C++14 Rules

25-198

AUTOSAR C++14 Rule A8-4-10
A parameter shall be passed by reference if it can't be NULL

Description
Rule Definition

A parameter shall be passed by reference if it can't be NULL

Rationale

A reference cannot be NULL. If a parameter is required (it cannot be NULL), pass that parameter by
reference to make your intent clearer. Passing by reference also yields cleaner code because you do
not need to check whether the parameter is NULL before you use it.

Polyspace Implementation

Polyspace flags passed-by-pointer parameters except if:

• The pointer is a smart pointer such as std::shared_ptr.
• The pointer is not dereferenced in the function.
• The pointer is checked against NULL, even if the check happens after the dereference.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Pass-by-Pointer Parameters

#include <iostream>
#include <vector>

void other_func(std::vector<int32_t>*);

void func(std::vector<int32_t>* v_ptr1, // Non-Compliant
 std::vector<int32_t>* v_ptr2, // Compliant
 std::vector<int32_t>* v_ptr3) // Compliant
{

 auto v = v_ptr1;
 auto ptr_size = 0;
 if (v_ptr2 != NULL) {
 ptr_size = v_ptr2->size();
 }
 v->resize(ptr_size);

 other_func(v_ptr3);
 //....

 AUTOSAR C++14 Rule A8-4-10

25-199

}

In this example pass-by-pointer parameter v_ptr1 is non-compliant because it is dereferenced inside
func without checking if the pointer is NULL. If v_ptr1 cannot be NULL, pass this parameter by
reference. If the v_ptr1 can be NULL, check whether the pointer is NULL before you dereference it
to avoid a segmentation fault.

Parameter v_ptr2 is compliant because it is checked against NULL, which indicates it could be
NULL.

v_ptr3 is compliant because it is not dereferenced inside func.

Check Information
Group: Declarators
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2021a

25 AUTOSAR C++14 Rules

25-200

AUTOSAR C++14 Rule A8-4-14
Interfaces shall be precisely and strongly typed

Description
Rule Definition

Interfaces shall be precisely and strongly typed.

Rationale

Interfaces describe the behavior or capabilities of an object. Precisely and strongly typed interfaces
specify the purpose and properties of their parameters by using parameters that are custom objects
and templates instead of fundamental types. Compare the interfaces in this code snippet:

void draw_circle(float R, float x, float y);
void draw_circle(Length R, Position O);

Both interfaces represent a function that draws a circle. The first interface uses three floating
numbers as input parameters. The second interface uses an object of class Length and another
object of class Position as input parameters.

• The second interface makes it explicit that the first parameter is a length and the second
parameter is a position. This interface is easy to understand and use because it highlights the
required input parameters and their order for a specific circle. By contrast, you cannot discern the
input parameters or their order in the first interface because it is not clear how the three floating
numbers relate to the circle.

• The compiler checks the arguments against the input parameter types at compile time. If you put
the input parameters of the second interface in the wrong order accidentally, the compiler flags
the mismatched parameters at compile time. If all three input parameters of the first interface are
floating-point numbers, the compiler cannot check if the input order is correct.

• The definition of the classes Length and Position can specify the units of these parameters,
such as cm or mm. The class definitions can also specify whether these parameters are immutable.
When you use fundamental types as input parameters, such specification is difficult.

The first interface is ambiguous because it uses fundamental type input parameters, which can lead
to mistakes. Avoid using interfaces that have many fundamental type parameters. Use precisely and
strongly typed interfaces instead. Compilers can often optimize such interfaces better than weakly
typed interfaces.

When several parameters are related, combine them into a user-defined type. When implementing
polymorphic interfaces, use pointers to a common base class instead of pointers to void (void*). For
generic interfaces, use templates as parameters.

Polyspace Implementation

In Polyspace, these types are fundamental types:

• Integer types, such as int, short, and long
• Floating point types, such as float or double

 AUTOSAR C++14 Rule A8-4-14

25-201

• Boolean (bool) types
• Pointers to void (void*)
• Pointers or references to the preceding types
• typedef of the preceding types
• Arrays of the preceding types

In Polyspace, enumerations or enums are not fundamental types. Polyspace flags an interface if its
input parameters include any of the following:

• One or more void related types
• Two or more bool related types
• Three or more identical fundamental types

You can use alternatives such as comments or parameter names to clarify an interface definition. In
such cases, you can justify the Polyspace result by using comments in your result or code. See
“Address Polyspace Results Through Bug Fixes or Justifications”

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Using Interfaces with Many Fundamental Type Parameters

Polyspace flags interfaces when their input parameters include:

• Two or more bool related types
• Three or more identical fundamental types

Consider the interfaces in this code:

#include <cstdint>
#include <chrono>

void Sleep(std::uint32_t duration);//Compliant

void SetProperty(bool Status);//Compliant

void SetAlarm(std::uint32_t year, std::uint32_t month, //Noncompliant
 std::uint32_t day, std::uint32_t hour,
 std::uint32_t minute, std::uint32_t second);

//Compliant
void StartClock(std::chrono::system_clock::time_point const& when);
typedef struct {
 int a, b, c, d;
} Point;
void Triangle(float a, float b, float c);//Noncompliant
void Rectangle(Point a, Point b, Point c, Point d); //Compliant

main()

25 AUTOSAR C++14 Rules

25-202

{
 //...
}

• Polyspace flags the interfaces that use three or more fundamental type variables as input
parameters, such as SetAlarm() and Triangle().

• The interfaces StartClock() and Rectangle() use precise and strongly typed input
parameters. Polyspace does not flag these interfaces.

• Polyspace does not flag an interface that has less than three fundamental type input parameters or
less than two bool type input parameters.

Avoid Using Pointer to Void (void*)

Polyspace flags interfaces when their input parameters include one or more pointers to void (void*).
Consider the interfaces in this code:

#include <cstdint>

class A{
 //...
};
class B:public A{
 //...
};
class C:public A{
 //...
};

void polymorphic_function(void*);//Noncompliant
void polymorphic_function(A*);//Compliant

void printArray(void* Array);//Noncompliant
template <typename T>
void printArray (T* Array);//Compliant

main(){
 //...
}

All pointer types implicitly convert to void*, which is a weak and under-qualified type. Avoid using
void* pointers.

• To implement polymorphic interfaces, use pointers to base classes such as A* instead of void*.
• To implement generic interfaces, use templates such as T* instead of void*.

Check Information
Group: Declarators
Category: Required, Non-automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

 AUTOSAR C++14 Rule A8-4-14

25-203

Topics
“Check for Coding Standard Violations”

25 AUTOSAR C++14 Rules

25-204

AUTOSAR C++14 Rule A8-5-0
All memory shall be initialized before it is read

Description
Rule Definition

All memory shall be initialized before it is read.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarators
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A8-5-0

25-205

AUTOSAR C++14 Rule A8-5-1
In an initialization list, the order of initialization shall be following: (1) virtual base classes in depth
and left to right order of the inheritance graph, (2) direct base classes in left to right order of
inheritance list, (3) non-static data members in the order they were declared in the class definition

Description
Rule Definition

In an initialization list, the order of initialization shall be following: (1) virtual base classes in depth
and left to right order of the inheritance graph, (2) direct base classes in left to right order of
inheritance list, (3) non-static data members in the order they were declared in the class definition.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarators
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-206

AUTOSAR C++14 Rule A8-5-2
Braced-initialization {}, without equals sign, shall be used for variable initialization

Description
Rule Definition

Braced-initialization {}, without equals sign, shall be used for variable initialization.

Rationale

Braced initialization:

classType Object{arg1, arg2, ...};

is less ambiguous than other forms of initialization. Braced initialization has the following
advantages:

• Prevents implicit narrowing conversions such as from double to float.
• Avoids the ambiguous syntax that leads to the problem of most vexing parse.

For instance, from the declaration:

ResourceType aResource();

It is not immediately clear if aResource is a function returning a variable of type ResourceType
or an object of type ResourceType.

For more information, see Ambiguous declaration syntax.

The rule also forbids the use of = sign for initialization because the = sign can give the impression
that an assignment or copy constructor is invoked even in situations when it is not.

Polyspace Implementation

In general, the checker flags initializations of an object obj1 of data type Type using these formats:

• Type obj1 = obj2;

• Type obj1(obj2);

The checker allows an exception for these cases:

• Initialization of variables with type auto using a simple assignment to a constant, a variable, a
lambda expression, a standard initializer list or a function call.

• Initialization of reference types using a simple assignment
• Declarations with global scope using the format Type a() where Type is a class type with default

constructor. The analysis interprets a as a function returning the type Type.
• Loop variable initialization in OpenMP parallel for loops, that is, in for loop statements that

immediately follow #pragma omp parallel for

The checker is enabled only if you specify a C++ version of C++11 or later. See C++ standard
version (-cpp-version).

 AUTOSAR C++14 Rule A8-5-2

25-207

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Braced and Nonbraced Initialization

class ResourceType {
 int memberOne;
 int memberTwo;
 public:
 ResourceType() {memberOne = 0; memberTwo = 0;}
 ResourceType(int m, int n) {memberOne = m; memberTwo = n;}
 ResourceType(ResourceType &anotherResource) {
 memberOne = anotherResource.memberTwo;
 memberTwo = anotherResource.memberOne;
 }
};

void func() {
 ResourceType aResourceOne(); //Noncompliant
 ResourceType aResourceTwo(1, 2); //Noncompliant
 ResourceType aResourceThree = {1,2}; //Noncompliant

 ResourceType aResourceFour{1,2}; //Compliant

}

In this example, the function func declares four objects of type ResourceType. Only the declaration
of aResourceFour does not violate this rule.

The declarations of aResourceOne, aResourceTwo and aResourceThree violate the rule. In
particular:

• The declaration of aResourceOne suffers from the problem of most vexing parse. It is not clear
whether aResourceOne is an object of type ResourceType or a function returning an object of
type ResourceType.

• The declaration of aResourceThree seems to suggest that the copy constructor
ResourceType(ResourceType &) is invoked for initialization. The copy constructor initializes
the data member memberOne to 2 and memberTwo to 1. However, the constructor
ResourceType(int, int) is invoked. This constructor initializes the data member memberOne
to 1 and memberTwo to 2.

Check Information
Group: Declarators
Category: Required, Automated

See Also
Ambiguous declaration syntax | Variable shadowing | Non-initialized variable |
Write without a further read | Improper array initialization | Check AUTOSAR C++
14 (-autosar-cpp14)

25 AUTOSAR C++14 Rules

25-208

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A8-5-2

25-209

AUTOSAR C++14 Rule A8-5-3
A variable of type auto shall not be initialized using {} or ={} braced-initialization

Description
Rule Definition

A variable of type auto shall not be initialized using {} or ={} braced-initialization.

Rationale

Type deduction for auto has a counter-intuitive result when the initialization uses braces. The
deduced type is std::initializer_list<> instead of the type that you might guess from the
initializer.

For instance, the definition:

auto x{1};

results in the type of x being std::initializer_list<int> instead of int. Some compilers
deduce an int type from this definition, but the behavior is not uniform across compilers.

Polyspace Implementation

The checker flags variable definitions that use the type auto if the variable is initialized using the {}
or ={} braced initialization.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of auto in Braced Initialization

#include<initializer_list>

void func() {
 auto aVar{1}; //Noncompliant
 auto anotherVar(1); //Compliant
 int aThirdVar{1}; //Compliant

 auto aVarList{1,2,3}; //Noncompliant
 std::initializer_list<int> anotherVarList{1,2,3}; //Compliant
}

In this example, the rule is violated when the auto type is used with braced initialization. Instead of
auto, an explicit type specification is preferred. Alternatively, the initialization can use parenthesis
(), which ensures the expected type deduction.

25 AUTOSAR C++14 Rules

25-210

Check Information
Group: Declarators
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

 AUTOSAR C++14 Rule A8-5-3

25-211

AUTOSAR C++14 Rule A8-5-4
If a class has a user-declared constructor that takes a parameter of type std::initializer_list, then it
shall be the only constructor apart from special member function constructors

Description
Rule Definition

If a class has a user-declared constructor that takes a parameter of type std::initializer_list, then it
shall be the only constructor apart from special member function constructors.

Rationale

If a class contains a constructor that takes a parameter of type std::initializer_list and
another constructor with parameters, braced initializations such as:

classType obj {0,1}

Can lead to confusion about which of the two constructors is invoked. Compilers prefer the
constructor with the std::initializer_list parameter, but developers might expect otherwise.

Polyspace Implementation

The checker flags class definitions that contain a constructor whose first parameter is of type
std::initializer_list and also contains another constructor (excluding the special member
function constructors). The rule violation is followed by events that point to the location of the other
constructors that might lead to confusion with the std::initializer_list constructor.

A class definition with an std::initializer_list-parameter constructor that does not violate this
rule has only the default, copy and move constructors (and copy and move assignment operators). If
you cannot avoid a second constructor with parameters, you can justify this rule violation. In that
case, for initializing with a list, use a syntax such as:

classType obj ({0,1})

so that it is clear that the std::initializer_list-parameter constructor is invoked. For
initializing with the other constructors, use a syntax such as:

classType obj (0,1)

Both invocations are exceptions to Rule A8-5-2, which generally flags initializations with (), but
allows such initializations for classes with a mix of std::initializer_list-parameter constructor
and other constructors.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

25 AUTOSAR C++14 Rules

25-212

Examples
Noncompliant and Compliant Definitions of Classes with std::initializer_list-
Parameter Constructors

#include <cstdint>
#include <initializer_list>
#include <vector>

//Noncompliant class definition
class entrySizes {//Noncompliant
 public:
 entrySizes()=default;
 entrySizes(std::size_t aCurrentSize, std::size_t aLastSize):
 currentSize{aCurrentSize}, lastSize{aLastSize} {}
 entrySizes(std::initializer_list<std::size_t> sampleEntry):
 currentSize{sampleEntry.size()}, lastSize{sampleEntry.size()} {}
 private:
 std::size_t currentSize;
 std::size_t lastSize;
};

//Compliant class definition
class recordSizes {//Compliant
 public:
 recordSizes()=default;
 recordSizes(std::initializer_list<std::size_t> sampleRecord):
 currentSize{sampleRecord.size()}, lastSize{sampleRecord.size()} {}
 private:
 std::size_t currentSize;
 std::size_t lastSize;
};

//Calls to constructors from noncompliant class
void createEntry() {
 entrySizes defaultEntrySize{};
 entrySizes stdEntrySize{0,1};
 //Calls entrySizes(std::initializer_list<std::size_t>),
 //but developer might expect otherwise
 entrySizes expectedEntrySize({0,1});
 //Calls entrySizes(std::initializer_list<std::size_t>),
 //but developer might expect otherwise
 entrySizes typicalEntrySize(1,1);
 //Calls entrySizes(std::size_t, std::size_t)
}

//Calls to constructors from compliant class
void createRecord() {
 recordSizes defaultRecordSize{};
 recordSizes stdRecordSize{0,1};
 //Calls recordSizes(std::initializer_list<std::size_t>)
}

In this example, the class entrySizes contains two user-defined constructors, one with an
std::initialize_list parameter and a second one with two size_t parameters. The presence
of two constructors can lead to developer confusion as shown in the createEntry function. In case

 AUTOSAR C++14 Rule A8-5-4

25-213

you want to retain the current class definition and justify the rule violation, the createEntry
function also shows a cleaner way to invoke the std::initialize_list-parameter constructor.

The class recordSizes does not violate the rule since it does not contain another constructor other
than the default constructor and the constructor with the std::initialize_list parameter.

Check Information
Group: Declarators
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
AUTOSAR C++14 Rule A8-5-4
“Check for Coding Standard Violations”

Introduced in R2021a

25 AUTOSAR C++14 Rules

25-214

AUTOSAR C++14 Rule A9-3-1
Member functions shall not return non-constant "raw" pointers or references to private or protected
data owned by the class

Description
Rule Definition

Member functions shall not return non-constant "raw" pointers or references to private or protected
data owned by the class.

Rationale

Returning a nonconstant pointer or reference to private or protected class-owned data enables clients
to externally access and modify the state of the object without an interface. Such access without an
explicit interface might bypass the private/protected data access hierarchy of the class, which might
result in unexpected behavior and lead to bugs.

This rule applies to data that is owned by the class. Nonconstant handles to objects that are shared
between different classes might be returned. Classes that mimic smart pointers and containers do not
violate this rule.

Polyspace Implementation

The checker flags a rule violation only if a member function returns a non-const pointer or reference
to a nonstatic data member. The rule does not apply to static data members.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Returning Non-Constant Raw Pointers to Private Data

#include <cstdint>
#include <memory>
#include <utility>

class A
{
 public:
 explicit A(std::int32_t number) : x(number) {}
 std::int32_t&
 GetX() noexcept // Noncompliant
 {
 return x;
 }

 private:
 std::int32_t x;

 AUTOSAR C++14 Rule A9-3-1

25-215

};

void Fn1() noexcept
{
 A a{10};
 std::int32_t& number = a.GetX();
 number = 15; // External modification of private class data
}

In this example, the class A member function GetX() returns a non-constant raw pointer to x,
which is private data owned by class A. Polyspace flags this implementation as noncompliant.
Fn1() demonstrates the issues of a.GetX() returning a non-constant raw pointer to private class
data, which is then stored and modified by number. The class has no control over changes to its own
private data member, which might lead to unexpected behavior.

Compliant: Return Shared Smart Pointer Variables

#include <cstdint>
#include <memory>
#include <utility>
class B
{
 public:
 explicit B(std::shared_ptr<std::int32_t> ptr) : sharedptr(std::move(ptr)) {}
 std::shared_ptr<std::int32_t> GetSharedPtr() const noexcept // Compliant
 {
 return sharedptr;
 }

 private:
 std::shared_ptr<std::int32_t> sharedptr;
};

void Fn2() noexcept
{
 std::shared_ptr<std::int32_t> ptr = std::make_shared<std::int32_t>(10);
 B b1{ptr};
 B b2{ptr};
 *ptr = 50; // External modification of ptr which shared between b1 and b2
 // instances
 auto shared = b1.GetSharedPtr();

 *shared = 100; // External modification of ptr which shared between b1 and
 // b2 instances
}

In this example, the class B function GetSharedPtr() returns a smart pointer variable that is
shared between the instances b1 and b2. Polyspace does not flag this implementation as
noncompliant.

Compliant: Return Constant References

#include <cstdint>
#include <memory>
#include <utility>
class C
{
 public:
 explicit C(std::int32_t number)
 : ownedptr{std::make_unique<std::int32_t>(number)}
 {
 }
 const std::int32_t& GetData() const noexcept // Compliant
 {

25 AUTOSAR C++14 Rules

25-216

 return *ownedptr;
 }

 private:
 std::unique_ptr<std::int32_t> ownedptr;
};
void Fn3() noexcept
{
 C c{10};
 const std::int32_t& data = c.GetData();
 // data = 20; // Cannot modify data, it is a const reference
}

In this example, GetData() returns a constant reference. You cannot modify private class-data by
using this member function. Polyspace does not flag this implementation as noncompliant.

Check Information
Group: Classes
Category: Required, Partially automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A9-3-1

25-217

AUTOSAR C++14 Rule A9-5-1
Unions shall not be used

Description
Rule Definition

Unions shall not be used.

Rationale

Using unions to store a value might result in misinterpretation of the value and lead to undefined
behavior. For instance:

union Data{
 int i;
 double d;
};
void bar_int(int);
void bar_double(double);
void foo(void){
 Data var;
 var.d = 3.1416;
 bar_int(var.d);//Undefined Behavior
}

In the call to bar_int, the double data in the union is misinterpreted as an int, which is undefined
behavior. Compilers might react to this misinterpretation differently depending on their
implementation. To avoid undefined behaviors, do not use a union.

In some cases, use of unions might be necessary to increase efficiency. In such cases, use unions after
documenting the relevant implementation-defined compiler behaviors. In the preceding case, before
using a union, consult the manual of the compiler that you use and document how the compiler
reacts to interpreting a double as an int.

As an exception, use of tagged union is allowed until std::variant becomes available in the C++
standard library (C++17).

Polyspace Implementation

Polyspace flags the declaration of a union. You might consider the use of union necessary or
acceptable in your code. In such cases, justify the violation by annotating the result or by using code
comments. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

25 AUTOSAR C++14 Rules

25-218

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Using union

#include <iostream>

union Pi{ //Noncompliant
 int i;
 double d;
};

void foo(void){

 std::cout << std::endl;

 Pi pi;
 pi.d = 3.1416;// pi holds a double
 std::cout << "pi.d: " << pi.d << std::endl;
 std::cout << "pi.i: " << pi.i << std::endl; // Undefined Behavior

 std::cout << std::endl;

 pi.i = 4; // pi holds an int
 std::cout << "pi.i: " << pi.i << std::endl;
 std::cout << "pi.d: " << pi.d << std::endl; // Undefined Behavior

 std::cout << std::endl;

}

In this example, the union Pi contains a double and an int. In the code, a double is
misinterpreted as an int and vice versa by using the union. These misinterpretations are undefined
behaviors and might lead to bugs and implementation dependent code behavior. Polyspace flags the
union declaration.

Check Information
Group: Classes
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A9-5-1

25-219

AUTOSAR C++14 Rule A9-6-1
Data types used for interfacing with hardware or conforming to communication protocols shall be
trivial, standard-layout and only contain members of types with defined sizes

Description
Rule Definition

Data types used for interfacing with hardware or conforming to communication protocols shall be
trivial, standard-layout and only contain members of types with defined sizes.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Classes
Category: Required, Partially automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-220

AUTOSAR C++14 Rule A10-1-1
Class shall not be derived from more than one base class which is not an interface class

Description
Rule Definition

Class shall not be derived from more than one base class which is not an interface class.

Rationale

If a class inherits from multiple non-interface classes, the class essentially has access to multiple
implementations. Maintaining the code can be difficult.

When a class inherits from multiple non-interface classes, there is a likelihood that the same member
function exists in those base classes and must be overridden in the derived class. The likelihood
increases when those base classes themselves inherit from a common base class (diamond structure).

Suppose, an interface class Interface has two concrete implementations, Impl1 and Impl2, and a
class Final derives from both implementations. The class hierarchy has this diamond structure.

The following issues can occur:

• Overrides required in final derived class for disambiguation:

Both implementations Impl1 and Impl2 have a copy of all methods of the class Interface. To
disambiguate which copy can be called through a Final object, you typically create yet another
override of all methods in the Final class where you call both copies explicitly using the scope
resolution operator :: (or one copy, if you choose). See example below.

 AUTOSAR C++14 Rule A10-1-1

25-221

Each time you add a new pure virtual function to the class Interface, you have to not only
create implementations in the immediate derived classes but also keep track of the entire class
hierarchy and create overrides of those implementations in the class Final.

If the original class Interface is not an interface class, the problem is even more acute. Unless
the inheritances are virtual, two copies of the methods of Interface are implicitly made in
Impl1 and Impl2 (the diamond problem).

• Final derived class responsible for initializing all classes in hierarchy:

To avoid double initializations in multiple inheritance, the C++ standard requires that you call the
constructors of all previous classes in the most derived class.

In the preceding example, the Final class constructor not only has to call the constructors of
Impl1 and Impl2 but also the constructor of their parent class Interface. You have to trace
beyond the immediate parents to determine which constructors to call in the final derived class.

These problems disappear if multiple inheritances are restricted to situations where a class can
derive from multiple classes but only one of them can be a non-interface class. An interface class is a
class that has only pure virtual functions and data members that are compile-time constants (static,
contexpr-s). The class has no state and its sole purpose is to be implemented by derived classes.

Multiple inheritance was designed for situations where a class extends one concrete implementation
but also implements other ideas represented by interface classes. Other uses of multiple inheritance
can lead to maintenance hazards.

Polyspace Implementation

The checker flags multiple inheritances where more than one base class is a non-interface class.

An interface class is one that has only pure virtual functions and data members that are compile-time
constants (static, contexpr-s). Any constructor or destructor is set to =default or =delete.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Multiple Inheritance from Non-interface Classes

class Interface {
 public:
 virtual void setVal()=0;
};

class Impl1: public Interface{
 int val1;
public:
 void setVal() {
 val1 = 0;
 }
};

class Impl2: public Interface{

25 AUTOSAR C++14 Rules

25-222

 int val2;
public:
 void setVal() {
 val2 = 0;
 }
};

class Final: public Impl1, public Impl2 { //Noncompliant
public:
 void setVal() {
 Impl1::setVal();
 Impl2::setVal();
 }

};

void main() {
 Final finalObj;
 finalObj.setVal();
}

In this example, the class final derives from classes Impl1 and Impl2. Both classes Impl1 and
Impl2 have data members that are not compile-time constants and member functions that are not
pure virtual functions. Therefore, the classes are non-interface classes. Inheriting from two non-
interface classes causes a coding rule violation.

Check Information
Group: Derived classes
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

 AUTOSAR C++14 Rule A10-1-1

25-223

AUTOSAR C++14 Rule A10-2-1
Non-virtual public or protected member functions shall not be redefined in derived classes

Description
Rule Definition

Non-virtual public or protected member functions shall not be redefined in derived classes.

Rationale

When a nonvirtual public or protected member function is redefined in a derived class, the new
definition in the derived class hides the definition in the base class instead of overriding it. When
functions are hidden in the derived class, you cannot implement a common interface to handle
different classes of the same hierarchy, resulting in unnecessary complexity and error. Such behavior
might be unexpected and lead to bugs that are difficult to resolve.

Redefinitions of functions from private inheritance or functions that are private in the base class are
not affected by this rule.

Polyspace Implementation

Polyspace flags redefinitions of non-virtual member functions in a derived class. Polyspace does not
raise this defect on destructors.

To justify a redefinition that you deem as acceptable, use annotations. See “Annotate Code and Hide
Known or Acceptable Results”

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Redefining Public or Protected Member Functions in Derived Classes

class A
{
 public:
 virtual ~A() = default;
 void F() noexcept {}
 virtual void G() noexcept {}
 private:
 void H() noexcept
};

class B : public A
{
 public:
 void F() noexcept {} //Noncompliant

25 AUTOSAR C++14 Rules

25-224

 void G() noexcept override {} //Compliant
};

In this example, the A::F()function is a non-virtual public member function that is hidden by the B
class. Hiding A::F() prevents the use of polymorphic interfaces, so Polyspace flags the redefinition
in B::F() as noncompliant. The A::G() function is virtual and is overridden (rather than hidden) in
B::G(), so Polyspace does not flag this implementation as noncompliant.

Check Information
Group: Derived Classes
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A10-2-1

25-225

AUTOSAR C++14 Rule A10-3-1
Virtual function declaration shall contain exactly one of the three specifiers: (1) virtual, (2) override,
(3) final

Description
Rule Definition

Virtual function declaration shall contain exactly one of the three specifiers: (1) virtual, (2) override,
(3) final.

Rationale

Virtual functions implement polymorphic behavior in a class hierarchy. Once you declare a function as
virtual in a base class, all instances of the function with an identical parameter list in the derived
classes override the base function implicitly. If you rely on this implicit action by the compiler for
implementing polymorphic functions, it can lead to errors. For instance:

• A function can become inadvertently virtual because its signature matches a virtual function in
the base class.

• A function can become inadvertently non-virtual because there are differences in the parameter
list.

Implicitly declaring virtual functions can also make the code hard to read.

To avoid inadvertent errors and to enhance readability, use the specifiers virtual, override, or
final to explicitly define virtual or overriding functions. Because using more than one of these
specifiers in a declaration is either redundant or a source of error, use exactly one of these specifiers:

• Only virtual to declare a new virtual function.
• Only override to declare a non-final overriding function of a virtual function.
• Only final to declare a final overriding function of a virtual function.

Polyspace Implementation

Polyspace flags declaration of virtual functions if:

• The declaration uses none of the specifiers.
• The declaration uses more than one of the specifiers.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use Exactly One Specifier to Declare Virtual Functions
#include<cstdint>
class Base

25 AUTOSAR C++14 Rules

25-226

{
public:
 virtual void F() noexcept = 0; // Compliant
 virtual void G() noexcept final = 0; // Noncompliant
 virtual void H() noexcept final {} // Noncompliant
 virtual void J() noexcept {} // Compliant
 virtual void K() noexcept {} // Compliant
 virtual ~Base() {} // Compliant
 virtual void M() noexcept {} // Compliant
 virtual void Z() noexcept {} // Compliant
 virtual void X() throw() {} // Compliant
 virtual void Y() noexcept {} // Compliant
};

class Derived : public Base
{
public:
 ~Derived() {} // Noncompliant
 virtual void F() noexcept override {} // Noncompliant
 void K() noexcept override final {} // Noncompliant
 virtual void M() noexcept {} // Compliant
 void Z() noexcept override {} // Compliant
 void J() noexcept {} // Noncompliant
 void J(int) noexcept {} // Compliant
 virtual void X() throw() final {} // Noncompliant
 virtual void Y() noexcept override final {} // Noncompliant
};
class DD: public Derived{
// void J(int) noexcept override{} //Compilation error
};
main(){
 //...
}

• The destructor of the derived class ~Derived() is a virtual function. Its declaration violates this
rule because the declaration contains none of the three specifiers for virtual functions.

• The declaration of the pure virtual function Base::G() also violates this rule because the
declaration contains both virtual and final as specifiers. A pure virtual function that is also
specified as final is redundant.

• The declaration of the virtual function Derived::J() violates this rule because Derived::J()
implicitly overrides the virtual function Base::J() without using the specifier override.

• The declarations of the virtual functions Derived::X() and Derived::Y() violate this rule
because their declarations use more than one specifier.

The declaration of the function DD::J(int) produces a compilation error because DD::J(int) is
trying to override Derived::J(int). Because Derived::J(int) has a different signature than
Base::J(), perhaps by error, Derived::J(int) is no longer a virtual function. Attempting to
override Derived::J(int) by DD::J(int) results in a compilation error. Using exactly one
specifier in the declaration of virtual functions can help detect errors.

Check Information
Group: Derived classes
Category: Required, Automated

 AUTOSAR C++14 Rule A10-3-1

25-227

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

25 AUTOSAR C++14 Rules

25-228

AUTOSAR C++14 Rule A10-3-2
Each overriding virtual function shall be declared with the override or final specifier

Description
Rule Definition

Each overriding virtual function shall be declared with the override or final specifier.

Rationale

Virtual functions implement polymorphic behavior in a class hierarchy. Once you declare a function as
virtual in a base class, all instances of the function with an identical parameter list in the derived
classes override the base function implicitly. If you rely on this implicit action by the compiler for
implementing polymorphic functions, it can lead to errors. For instance:

• A function can become inadvertently virtual because its signature matches a virtual function in
the base class.

• A function can become inadvertently non-virtual because there are differences in the parameter
list.

Implicitly declaring overriding virtual functions can also make the code hard to read.

To avoid inadvertent errors and to enhance readability, use the specifiers override and final
explicitly in every declaration of overriding functions.

Polyspace Implementation

Polyspace flags the declarations of virtual functions if all of these statements are true:

• The function is in a derived class.
• The signature of the function matches the signature of a virtual function in the base class.
• The declaration of the function lacks the specifier override or final.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Declare Overriding Virtual Functions by Using override or final Specifier

#include <cstdint>
class Base
{
public:
 virtual ~Base() {}
 virtual void F() noexcept = 0;
 virtual void G() noexcept {}
 virtual void Z() noexcept {}

 AUTOSAR C++14 Rule A10-3-2

25-229

 virtual Base& operator+=(Base const& oth) = 0;
};
class Derived1 : public Base
{
public:
 ~Derived1() override {} //Compliant
 void F() noexcept{} //Noncompliant
 virtual void G() noexcept {} //Noncompliant
 void Z() noexcept override {} // Compliant
 Derived1& operator+=(Base const& oth) override // Compliant
 {
 return *this;
 }
};
class Derived2 : public Base
{
public:
 ~Derived2() {} // Noncompliant
 void F() noexcept override {} // Compliant
 void G() noexcept override {} // Compliant
 void Z() noexcept override {} // Compliant
 Derived2& operator+=(Base const& oth) // Noncompliant
 {
 return *this;
 }
};
class Derived3 : public Base
{
 void F() noexcept override; // Compliant
};

main(){

}

• The declaration of the function Derived::F() is flagged because its signature matches the
signature of Base::F() and its declaration does not contain override or final.

• The declaration of the function Derived::G() is flagged because its signature matches the
signature of Base::G() and its declaration does not contain override or final, even though
the declaration uses the specifier virtual.

• The declaration of the function Derived3::F() in class Derived3 is not flagged because the
declaration uses the specifier override.

Check Information
Group: Derived classes
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

25 AUTOSAR C++14 Rules

25-230

Introduced in R2020a

 AUTOSAR C++14 Rule A10-3-2

25-231

AUTOSAR C++14 Rule A10-3-3
Virtual functions shall not be introduced in a final class

Description
Rule Definition

Virtual functions shall not be introduced in a final class.

Rationale

Declaring a function as virtual indicates that you intend to override the function in a derived class
with a different implementation. The same function can then interact differently with different classes
of a hierarchy. When you explicitly specify a class as final, you cannot derive a class from it.
Because you cannot derive classes from a final class, do not introduce virtual functions in a final
class. Specify all virtual functions in a final class by using the specifier final.

Polyspace Implementation

Polyspace flags the declaration of virtual functions in a final class. Polyspace does not flag virtual
functions in a final class that uses the specifiers override final or virtual final.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Specify Virtual Function in final Classes by Using final
#include <cstdint>
class Base
{
public:
 virtual ~Base() = default;
 virtual void F() noexcept = 0;
 virtual void G() noexcept {/*...*/}
 virtual void Y() noexcept {/*...*/}
};
class Derived final : public Base
{
public:

 void G() noexcept override{/*...*/} //Noncompliant
 virtual void Z() noexcept{/*...*/} //Noncompliant
 virtual void H() noexcept = 0; //Noncompliant
 void F() noexcept final{/*...*/} //Compliant
 void Y() noexcept override final{/*...*/} //Compliant
};

The functions Derived::G(), Derived::Z(), and Derived::H() are virtual functions that are
not specified as final. Their declarations indicate that some functions in a derived class might

25 AUTOSAR C++14 Rules

25-232

override these functions. The class Derived is specified as final. That is, there are no derived
classes from this class. The declarations of Derived::G(), Derived::Z(), and Derived::H() are
inconsistent with the declaration of their class Derived. Polyspace flags the declarations of the
functions. The functions Derived::F() and Derived::Y() are declared as final. These
declaration comply with this rule.

Check Information
Group: Derived classes
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

 AUTOSAR C++14 Rule A10-3-3

25-233

AUTOSAR C++14 Rule A10-3-5
A user-defined assignment operator shall not be virtual

Description
Rule Definition

A user-defined assignment operator shall not be virtual.

Rationale

Defining an assignment operator as virtual in a base class indicates that you want to override it in
the derived classes. Overriding the assignment operator in derived classes can lead to undefined
behavior and run-time errors. Consider this code snippet where a virtual assignment operator is
overridden in two derived classes.

class Base {public:
 virtual Base& operator=(Base const& oth) = 0;
 //...
};
class Derived public: Base{ public:
 Derived& operator=(Base const& oth) override{/*...*/}
 //...
};
class Derived2 public: Base{public:
 Derived2& operator=(Base const& oth) override{/*...*/}
 //...
};
main(){
 Derived d1;
 Derived2 d2;
 d1 = d2;
}

Because Derived::operator= and Derived2::operator= overrides Base::operator=, their
parameter lists must be identical.

• Derived::operator= takes reference to a Base object as input and returns a reference to
Derived.

• Derived2::operator= takes reference to a Base object as input and returns a reference to
Derived2.

The Derived::operator= accepts references to both Base and Derived class objects because
references to derived classes are type-compatible with their base classes. Similarly, the
Derived2::operator= also accepts references to both Base and Derived2 class objects.
Assigning a Derived object to a Derived2 object in d1=d2 produces no compilation error. The
objects d1 and d2 are unrelated. Assigning, copying, or moving operations between such unrelated
objects are undefined and can lead to run-time errors.

To avoid undefined behavior and run-time errors, keep user-defined assignment operators as non-
virtual. This rule applies to these operators:

25 AUTOSAR C++14 Rules

25-234

• Assignment
• Copy and move assignment
• All compound assignment

Polyspace Implementation

Polyspace flags the declaration of any virtual assignment operators in a base class.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Defining Assignment Operators as virtual

This example shows how Polyspace flags virtual assignment operators.

#include <cstdint>
class Base
{
 public:
 virtual Base& operator=(Base const& oth) = 0; // Noncompliant
 virtual Base& operator+=(Base const& rhs) = 0; // Noncompliant
};
class Derived : public Base
{
 public:
 Derived& operator=(Base const& oth) override
 {
 return *this;
 }
 Derived& operator+=(Base const& oth) override
 {
 return *this;
 }
 Derived& operator-=(Derived const& oth) // Compliant
 {
 return *this;
 }
};
class Derived2 : public Base
{
 public:

 Derived2& operator=(Base const& oth) override
 {
 return *this;
 }
 Derived2& operator+=(Base const& oth) override
 {
 return *this;
 }
 Derived2& operator-=(Derived2 const& oth) // Compliant
 {

 AUTOSAR C++14 Rule A10-3-5

25-235

 return *this;
 }
};
/*
*/
void Fn() noexcept
{
 Derived b;
 Derived2 c;
 b = c;
 b += c;
 c = b;
 c += b;
 // b -= c; // Compilation error
 // c -= b; // Compilation error

}

The classes Derived and Derived2 are derived from Base. In the Base class, the assignment
operators Base::operator= and Base::operator+= are declared as virtual. None of the following
cause compilation errors:

• You can assign the Derived object b to Derived2 object c and vice versa.
• You can add the Derived object b to Derived2 object c. You can assign the result to either b or

c.

Because b and c are unrelated objects, all of the preceding behaviors are undefined and can cause
run-time errors. Declaring the Base::operator= and Base::operator+= as virtual eventually
lead to the undefined behaviors. Polyspace flags these virtual assignment operators.

The declaration of Base::operator-= is non-virtual. Operations such as b-=c and c-=b cause
compilation errors.

Check Information
Group: Derived classes
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

25 AUTOSAR C++14 Rules

25-236

AUTOSAR C++14 Rule A10-4-1
Hierarchies should be based on interface classes

Description
Rule Definition

Hierarchies should be based on interface classes.

Rationale

An interface class has these properties:

• If the class has member functions, they are public and pure virtual.
• If the class has data members, they are public and static constexpr.

Using an interface class as a base class in a hierarchy:

• Separates the interface and implementation. The code of the base class is more stable and easier
to maintain.

• Avoids unnecessary computations of nonstatic data members in the derived classes and other
compilation dependencies.

• Makes your software easier to extend and enables the use of alternative implementations through
the same interface.

Polyspace Implementation

Polyspace flags the base of a class hierarchy if that base class is not an interface.

When class definitions are nested in other classes, the checker follows these conventions:

• Non-interface base classes are flagged even if the hierarchy is nested inside another class. For
example, in this code snippet, class NestedBase is flagged :

class ClassWithNestedHierarchy
{
 class NestedBase //Non-compliant, not an interface
 {
 public:
 int i;
 };

 class NestedDerived : public NestedBase
 {
 public:
 int j;
 };
};

• Base classes with nested non-interface classes are not flagged. For example, in this code snippet,
NestedClass is not an interface class but the outer class InterfaceWithInnerClass is not
flagged when used as a base class:

 AUTOSAR C++14 Rule A10-4-1

25-237

class InterfaceWithInnerClass
{
public:
 class NestedClass //not an interface class
 {
 private:
 int i;
 };

 static constexpr NestedClass i{};
};

class DerivedBaseWithInnerClass : public InterfaceWithInnerClass
{
private:
 int i;
};

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Interfaces as Base Classes in Hierarchies

class Interface
{
public:
 virtual ~Interface() = 0;
 virtual void SomeFunc() = 0;
};

class NotAnInterface //Non-compliant
{
public:
 void Implementation() {}

};

class IsDerived1 : public Interface
{

public:
 ~IsDerived1() {}

 void SomeFunc() final {}

};

class IsDerived2 : public NotAnInterface
{
public:
 IsDerived2() = default;

25 AUTOSAR C++14 Rules

25-238

};

template <typename T>
class TmplInterface
{
public:
 virtual T func() noexcept = 0;

};
template<typename T>
class TmplNotInterface //Non-compliant
{
public:
 T func2();
};

template <typename T>
class TmplDerived: public TmplInterface<T>, TmplNotInterface<T>
{
public:
 T func() noexcept override { return t;}

 T t;
};

class TmplDerived<int> var;

In this example, the checker flags:

• The non-interface class NotAnInterface, which acts as a base for the class IsDerived2. The
class NotAnInterface is not an interface class because it contains a nonvirtual member
function.

• The template non-interface class TmplNotInterface, which acts as a base for the class
TmplDerived. Note that TmplDerived also derives from the interface class TmplInterface,
which is compliant with the rule.

Check Information
Group: Derived Classes
Category: Advisory, Non-automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2021b

 AUTOSAR C++14 Rule A10-4-1

25-239

AUTOSAR C++14 Rule A11-0-1
A non-POD type should be defined as class

Description
Rule Definition

A non-POD type should be defined as class.

Rationale

A POD (Plain Old Data) type can be exchanged with C code in its binary form, and can be safely
copied by using the std::memcpy function. Scalar types, C-style structures and unions, and arrays of
these types are all examples of POD types. However, the C++ language also allows you to create
structures and unions that are non-POD types. Such structures and unions can provide custom-
defined constructors, have nonstatic data members with private or protected access control, have an
interface, and implement an invariant.

A software developer typically expects object-oriented concepts such as encapsulation to be
implemented by using classes. In addition, a class specifier forces the type to provide private access
control for all its members by default and is naturally suited for implementing encapsulated types. So,
to create easily readable and maintainable code, define a non-POD type as a class instead of a
structure or a union.

Polyspace Implementation

The checker flags a structure or a union in your code is not a POD type. This includes structures and
unions that are instantiated by using templates.

For a simplified explanation of a POD type in C++ language, see the previous section. For a full
specification of a POD type, see the C++ reference manual.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Define a Non-POD Type as a Class
#include <cstdint>
#include <limits>

class A // Compliant, non-POD type defined as class
{
 std::int32_t x; // Data member is private by default

 public:
 static constexpr std::int32_t maxValue = std::numeric_limits<std::int32_t>::max();
 A() : x(maxValue) {}
 explicit A(std::int32_t number) : x(number) {}

25 AUTOSAR C++14 Rules

25-240

 std::int32_t GetX() const noexcept
 {
 return x;
 }

 void SetX(std::int32_t number) noexcept
 {
 x = number;
 }
};

struct B // Noncompliant, non-POD type defined as struct
{
 private:
 std::int32_t x; // Must provide private access specifier for x member

 public:
 static constexpr std::int32_t maxValue = std::numeric_limits<std::int32_t>::max();
 B() : x(maxValue) {}
 explicit B(std::int32_t number) : x(number) {}

 std::int32_t GetX() const noexcept
 {
 return x;
 }

 void SetX(std::int32_t number) noexcept
 {
 x = number;
 }
};

Both class A and struct B implement the same non-POD type. This type has:

• A nonstatic data member x that has private access control.
• Two user-defined constructors. The default constructor initializes x to the maximum value that an

int32 type can store. The constructor that has one parameter disallows implicit conversion.
• An interface provided by the GetX and the SetX methods to access and modify the state of an

object.

It is preferable that you implement this type, that encapsulates its contents, as a class.

The definition of class A complies with this coding rule. The definition of struct B violates this
coding rule.

Check Information
Group: Member access control
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

 AUTOSAR C++14 Rule A11-0-1

25-241

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-242

AUTOSAR C++14 Rule A11-0-2
A type defined as struct shall: (1) provide only public data members, (2) not provide any special
member functions or methods, (3) not be a base of another struct or class, (4) not inherit from
another struct or class

Description
Rule Definition

A type defined as struct shall: (1) provide only public data members, (2) not provide any special
member functions or methods, (3) not be a base of another struct or class, (4) not inherit from
another struct or class.

Rationale

The items prohibited by this rule are not supported for struct types in C code. In C++, a struct
type can have private data members, member functions, be inherited and inherit from other struct-
s or class-es. However, a developer typically associates these features with a class type. Adhering
to this rule makes sure that you use only classes to implement object oriented concepts such as data
encapsulation and inheritance.

Adhering to this rule also makes sure that your struct types conform to the rules of Plain Old Data
(POD) types and can be exchanged with C code.

Polyspace Implementation

The checker flags struct types with one or more of these features:

• Contains private or protected data members.

struct members are public by default.
• Contains member functions.
• Acts as base class for another struct or class, or inherits from another struct or class.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Struct Types with Class-Like Features

#include <cstdint>
#include <iostream>

struct loginCredentials1 { //Noncompliant: Private members
 int32_t username;
private:
 int32_t pwd;
};

 AUTOSAR C++14 Rule A11-0-2

25-243

struct loginCredentials2 { //Noncompliant: Member functions
 int32_t username;
 int32_t pwd;
 void readFromFile(std::string fileName) {
 //Read members data from file
 }
};

struct loginCredentials3 { //Noncompliant: Acts as base for another struct
 int32_t username;
 int32_t pwd;
};

struct adminLoginCredentials: loginCredentials3 { //Noncompliant: Inherits from another struct
 std::string permissions;
};

In this example, all struct types are noncompliant.

• loginCredentials1 contains a private data member pwd.
• loginCredentials2 contains a member function readFromFile().
• loginCredentials3 acts as a base for the struct adminLoginCredentials.
• adminLoginCredentials inherits from the struct loginCredentials3.

Check Information
Group: Member access control
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

25 AUTOSAR C++14 Rules

25-244

AUTOSAR C++14 Rule A11-3-1
Friend declarations shall not be used

Description
Rule Definition

Friend declarations shall not be used.

Rationale

You declare a function as friend of a class to access private members of the class outside the class
scope.

class A
{
 int data;
 public:
 // operator+ can access private members of class A such as data
 friend A const operator+(A const& lhs, A const& rhs);
};

Friend functions and friend classes reduce data encapsulation. Private members of a class are no
longer accessible only through the class methods.

Code with friend functions can be difficult to maintain. For instance, if class myClass has a friend
class anotherClass, when you change a data member of myClass, you have to find all instances of
its usage in member functions of anotherClass.

Polyspace Implementation

The rule checker flags all uses of the friend keyword.

The checker follows specifications of AUTOSAR C++ 14 release 18-03 (March 2018). However,
release 18-10 and later releases of AUTOSAR C++14 allows an exception for comparison operators
such as operator==. If the rule checker flags the use of comparison operators, add a comment
justifying the result. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

 AUTOSAR C++14 Rule A11-3-1

25-245

Examples
Use of friend Keyword
class myClass
{
 int data;
public:
 myClass& operator+=(myClass const& oth);
 friend myClass const operator+(myClass const& lhs, // Noncompliant: Use of friend keyword
 myClass const& rhs);

};

operator+ is a friend function of class myClass and can access its private member, data. The
presence of this friend function violates the rule.

Check Information
Group: Member Access Control
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-246

AUTOSAR C++14 Rule A12-0-1
If a class declares a copy or move operation, or a destructor, either via "=default", "=delete", or via a
user-provided declaration, then all others of these five special member functions shall be declared as
well

Description
Rule Definition

If a class declares a copy or move operation, or a destructor, either via "=default", "=delete", or via a
user-provided declaration, then all others of these five special member functions shall be declared as
well.

Rationale

These special member functions are called for copy or move operations:

• Copy constructor
• Copy assignment operator
• Move constructor
• Move assignment operator
• Destructor

If you do not explicitly declare any of these functions, the compiler defines them implicitly. This
implicit definition implements shallow copying of objects and can cause errors. If you need to
explicitly declare any of the special member functions, you must declare all of them. For instance,
suppose you want to copy an object that contains a raw pointer to a dynamically allocated memory.
The implicit copy constructor shallow-copies the object, after which the original pointer and the
copied pointer point to the same memory. If one of the objects is destroyed, the allocated memory is
deallocated, leaving a dangling pointer in the other object. Accessing the dangling pointer can cause
segmentation errors. Because all the special member functions are closely related, the implicit
implementation of the other functions can lead to similar errors. To manage the life cycle of the
dynamically allocated resource, explicitly declare all five of the special member functions (Rule of
Five). Alternatively, you can use objects where memory management is correctly implemented in the
implicit definition of the special member functions and explicitly declare none of them (Rule of Zero).

When you explicitly declare some but not all of the special member functions, the compiler can
prevent the use of the undeclared special member functions. For example, if you explicitly declare
only the copy constructor or destructor functions of a class, the compiler no longer defines the move
constructor and move assignment operator implicitly. The class becomes a copy-only class, perhaps
inadvertently. Conversely, if you explicitly declare only the move constructor and move assignment
operator, the compiler disables the copy constructor and copy assignment operator by defining them
as deleted. The class becomes a move-only class, which might not have been your intention. To avoid
such unwanted effects, either follow the Rule of Five or follow the Rule of Zero.

The constructor of a class is not part of this rule.

 AUTOSAR C++14 Rule A12-0-1

25-247

Polyspace Implementation

Polyspace flags classes that explicitly declare some but not all of the five special member functions.
Note that the move constructor and move assignment operators were introduced in C++11.
Polyspace does not make any exception for older codes.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Follow Either The Rule of Five or The Rule of Zero

This example demonstrates the Polyspace implementation of AUTOSAR rule A12-0-1.

// Class rendered copy-only, perhaps inadvertently
class A // Noncompliant.
{
 public:
 ~A()
 {
 // ...
 }

 private:
 // Member data ...
};

//Class rendered move-only, perhaps inadvertently
class B // Noncompliant
{
 public:
 B(B&&) = default;
 B& operator=(B&&) = default;
 private:
 // Member data ...

};
template<typename T>
class BaseT // Compliant - rule of five.
{
 public:
 BaseT(BaseT const&) = delete;
 BaseT(BaseT&&) = delete;
 virtual ~BaseT() = default;
 BaseT& operator=(BaseT const&) = delete;
 BaseT& operator=(BaseT&&) = delete;
 protected:
 BaseT() = default;
};

template<typename T>
class SimpleT // Compliant - rule of zero.
{

25 AUTOSAR C++14 Rules

25-248

 public:
 SimpleT(T t): t_(t)
 {

 }

 private:
 T t_;
};

main()
{
 //..
}

The class A declares only its destructor, which makes this class copy-only because the compiler no
longer defines the move constructor and move assignment operator. The class B declares the move
constructor and the move assignment operator, which makes this class move-only because the
compiler disables the copy constructors and copy assignment operators. It is not clear whether these
effects are deliberate. Polyspace flags these declarations and indicates which special member
functions are missing. The class BaseT is compliant with this rule because all five of the special
member functions are declared. Similarly, SimpleT is compliant because it declares none of the
special member functions and relies on their implicit definition.

Check Information
Group: Special member functions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

 AUTOSAR C++14 Rule A12-0-1

25-249

AUTOSAR C++14 Rule A12-0-2
Bitwise operations and operations that assume data representation in memory shall not be performed
on objects

Description
Rule Definition

Bitwise operations and operations that assume data representation in memory shall not be performed
on objects.

Rationale

In C++, object representation in memory might include:

• Data members declared with different access privileges
• Bit-field data members
• Padding bytes between data members
• Padding bytes at the end of data members
• Pointers to the vtable to support virtual functions

The arrangement of these different parts of an object in memory is environment dependent. In
addition, static data members or function members of an object are stored in a separate physical
location in memory. When you perform bitwise operation on an object by assuming certain
arrangement of data in memory, you might inadvertently assume incorrectly, and access bits are not
part of the value representation of the object. Accessing these bits can lead to undefined behavior.

Consider this class that contains a virtual function:

class notPOD{
public:
 virtual void foo();
 int value;
protected:
 double dvalue;

};
//...
int main(){
 notPOD Obj;
 std::memset(&Obj, 57, 2); // attempts to set Obj::value to 57
}

When Obj is stored in a memory block, the block contains a pointer to the virtual table in addition to
the variables Obj::value and Obj::dvalue. The size of this pointer or its location in memory can
depend on the environment. In main(), std::memset() attempts to set the value of Obj::value
by assuming that:

• Obj::value is the first block in the memory representation of Obj.
• Obj::value is represented by 2 bytes in the memory.

25 AUTOSAR C++14 Rules

25-250

Because these assumptions are generally not correct, using std::memset() can lead to undefined
behavior. For instance, if you inadvertently modify the pointer to virtual table, calling foo() can
invoke an unexpected function.

The representation of class and structures in memory is environment-dependent and can contain
additional bytes alongside the value representation. Relying on the data representation of an object
to perform bitwise operations can result in modifying bits that are not part of the value
representation, leading to undefined behavior. Avoid operations that assume a certain representation
of an object in memory to access its bits. To perform operations on a class, use dedicated member
functions, overloaded operators, or mutators.

Polyspace Implementation

The C functions that access accesses memory bits includes std::memset(), std::memcpy(),
std::memmove(), std::strcpy(), std::memcmp(), std::strcmp(). Polyspace flags a
statement when:

• You use the C functions to initialize or copy initialize nontrivial objects
• You use the C functions to compare nonstandard layout objects
• You use the C functions on any objects that contain padding data

The statements containing the noncompliant operations are flagged and relevant class declarations
are highlighted. For definitions of trivial and standard layout classes, see the C++ Standard, [class],
paragraphs 6 and 7 respectively.

As an exception, Polyspace does not flag operations that use the C functions to access the memory
bits of trivial and standard layout objects with no padding data. Although using bitwise operation on
trivial and standard layout classes with no padding data complies with this rule, it is not a good
practice. Instead, use dedicated member function, overloaded operators, or mutators.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Bitwise Operations on Objects

Consider this code that contains these classes:

• TrivialClass is a trivial class with padding data and an overloaded operator|=.
• NonTrivialClass is a nontrivial class with a virtual function and an overloaded operator==.

These classes are represented in different ways in the memory. This example shows how Polyspace
flags bitwise operations that are performed on such objects.

#include <cstdint>
#include <cstring>
class TrivialClass
{
public:
 TrivialClass() = default;
 TrivialClass(uint8_t c, uint32_t i, int8_t d) :

 AUTOSAR C++14 Rule A12-0-2

25-251

https://www.iso.org/standard/68564.html

 c(c), i(i), d(d) {}
 TrivialClass& operator |=(const TrivialClass& other)
 {
 uint32_t buf[4] {this->c|other.c,this->i|other.i,this->d|other.d};
 memcpy(this, buf, sizeof(uint32_t) * 3); //Noncompliant
 return *this;
 }

private:
 uint8_t c;
 uint32_t i;
 int8_t d;
};

class NonTrivialClass
{
public:
 NonTrivialClass() = default;
 NonTrivialClass(uint32_t a, uint32_t b, uint32_t c) :
 a(a), b(b), c(c){}
 bool operator==(const NonTrivialClass& rhs) const noexcept
 {
 return a==rhs.a && b==rhs.b && c==rhs.c;
 }
 virtual ~NonTrivialClass() {}
private:
 uint32_t a;
 uint32_t b;
 uint32_t c;
};

int main(void)
{
 TrivialClass A, A1{3,5,7};
 NonTrivialClass B, B1{10,11,12};
 std::memset(&A, 3, 1); //Noncompliant
 A |= A1;
 if (!std::memcmp(&A, &A1, sizeof(TrivialClass))) {} //Noncompliant
 std::memcpy(&B, &B1, sizeof(NonTrivialClass)); //Noncompliant
 if (B == B1){} //Compliant
 return 0;
}

• Polyspace flags the statement std::memset(&A, 3, 1); because in this statement,
std::memset() modifies the individual bits in the memory representation of the trivial object A
including padding data. Accessing padding data bits of an object is a violation of this rule even if
the object is a trivial class object. For the same reason, Polyspace flags the statement in the
definition of TrivialClass::operator|= containing memcopy().

• Polyspace flags the statement std::memcpy(&B, &B1, sizeof(NonTrivialClass));
because std::memcpy() accesses the individual bits in the memory representation of the
nontrivial object B including the pointer to vtable. This pointer is not part of the value
representation and accessing this pointer is a violation of this rule.

• Polyspace does not flag the statement if(B==B1) because NonTrivialClass has an overloaded
operator== that can compare B and B1 without accessing their individual bits.

25 AUTOSAR C++14 Rules

25-252

Check Information
Group: Special member functions
Category: Required, Partially automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 AUTOSAR C++14 Rule A12-0-2

25-253

AUTOSAR C++14 Rule A12-1-1
Constructors shall explicitly initialize all virtual base classes, all direct non-virtual base classes and
all non-static data members

Description
Rule Definition

Constructors shall explicitly initialize all virtual base classes, all direct non-virtual base classes and
all non-static data members.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Special Member Functions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-254

AUTOSAR C++14 Rule A12-1-2
Both NSDMI and a non-static member initializer in a constructor shall not be used in the same type

Description
Rule Definition

Both NSDMI and a non-static member initializer in a constructor shall not be used in the same type.

Rationale

You can initialize a non-static data member of a class in one of these ways:

• In the declaration of the member in the class body by using the non-static data member initializer
(NSDMI)

• By using a non-static member initializer in a constructor

In a class, initializing a subset of the non-static data members by using the NSDMI and initializing the
remaining non-static data members by using a constructor reduces code readability. This code
pattern might cause confusion for the reader about which initial values for each data member are
actually used. Using either the NSDMI or a constructor to initialize all non-static data members of the
class avoids this potential confusion.

The move and copy constructors are exempt from this rule because these constructors have the
special behavior of initializing the data members by using their existing values from other objects.
These constructors are unlikely to cause the confusion for the reader.

Polyspace Implementation

If you use the NSDMI to initialize a subset of the non-static data members of a class and a
constructor to initialize the remaining non-static data members, the checker flags the constructor and
the associated NSDMI initializations.

The checker does not flag the move and copy constructors that violate this rule.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Using Both NSDMI and Constructor Initializer

#include <cstdint>
#include <utility>

class A
{
 public:
 A() : i1{0}, i2{0} // Compliant, i1 and i2 are initialized by the constructor only

 AUTOSAR C++14 Rule A12-1-2

25-255

 {
 }

 private:
 std::int32_t i1;
 std::int32_t i2;
};

class B
{
 private:
 std::int32_t i1{0};
 std::int32_t i2{0}; // Compliant, i1 and i2 are initialized by NSDMI only
};

class C
{
 public:
 C() : i2{0} // Noncompliant, i1 is initialized by NSDMI, i2 is initialized by constructor
 {
 }

 private:
 std::int32_t i1{0};
 std::int32_t i2;
};

class D
{
 D(D const& oth) : i1{oth.i1}, i2{oth.i2} // Compliant by exception, copy constructor
 {
 }

 D(D&& oth): i1{std::move(oth.i1)}, i2{std::move(oth.i2)}
 // Compliant by exception, move constructor
 {
 }

 private:
 std::int32_t i1{0};
 std::int32_t i2{0};
};

In this code, only the constructor in class C does not comply with this coding rule because:

• The data member i1 is initialized by using the NSDMI.
• The data member i2 is initialized in the constructor.

Check Information
Group: Special member functions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

25 AUTOSAR C++14 Rules

25-256

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 AUTOSAR C++14 Rule A12-1-2

25-257

AUTOSAR C++14 Rule A12-1-3
If all user-defined constructors of a class initialize data members with constant values that are the
same across all constructors, then data members shall be initialized using NSDMI instead

Description
Rule Definition

If all user-defined constructors of a class initialize data members with constant values that are the
same across all constructors, then data members shall be initialized using NSDMI instead.

Rationale

Because implicit constructors do not initialize nonstatic data members, you might want to use user-
defined constructors to initialize nonstatic data members. Avoid using user-defined default
constructors instead of implicit constructors because the user-defined default constructors make the
code more error-prone and harder to maintain.

When all user-defined constructors initialize nonstatic data members to the same value, using a user-
defined constructor for initialization purposes is unnecessary. The best practice is to initialize the
nonstatic data members directly in the class definition. Such in-class nonstatic data member
initialization (NSDMI) enables you to use the error-free and efficient implicit constructor to obtain an
instance of the class that has the data members initialized to a default values.

Polyspace Implementation

Polyspace flags a nonstatic data member declaration if either of these conditions is true:

• The nonstatic data member is not initialized in-class and all user-defined constructors initialize the
data member to the same value.

• The nonstatic data member is initialized in-class and at the same time, it is also initialized in user-
defined constructors.

This checker does not apply to:

• Copy and move constructors
• Union definitions
• Arrays that are initialized in constructors
• Objects that are initialized field by field in constructors

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Initialize Nonstatic Data Members With Default Values

#include <cstdint>

25 AUTOSAR C++14 Rules

25-258

#include <string>
class MessageBox1
{
public:
 MessageBox1() : LowerLeft(0), UpperRight(0.0F), msg()
 {
 }
 // ...

private:

 int LowerLeft; // Noncompliant
 float UpperRight; // Noncompliant
 std::string msg; // Noncompliant
};

class MessageBox2
{
public:
 // ...

private:
 int LowerLeft = 0; // Compliant
 float UpperRight = 0.0F; // Compliant
 std::string msg = ""; // Compliant
};
class MessageBox3
{
public:
 MessageBox3() : LowerLeft(0), UpperRight(0.0F), msg()
 {
 }

private:
 int LowerLeft = 0; // Noncompliant
 float UpperRight = 0.0F; // Noncompliant
 std::string msg = ""; // Noncompliant
};
class MessageBox4
{
public:
 MessageBox4() : LowerLeft(0), UpperRight(0.0F), msg()
 {
 }
 // ...
 MessageBox4(int int_i): LowerLeft(int_i),UpperRight(0.1F), msg("str"){}
private:

 int LowerLeft; // Compliant
 float UpperRight; // Compliant - Initialized differently in two c'tor
 std::string msg = "";//Noncompliant - Initialized differently in two c'tor
};

In this example, Polyspace flags nonstatic data member initializations that violate this rule. For
instance:

 AUTOSAR C++14 Rule A12-1-3

25-259

• In class MessageBox1, the declarations of the data members are noncompliant because they are
initialized by a user-defined constructor instead of by in-class initialization. The best practice is to
declare such data members directly in-class and to use the default implicit constructors.

• In class MessageBox2, the declarations of the data members are compliant because they are
initialized directly in-class and the class defines no user-defined constructor.

• In class MessageBox3, the declarations of the data members are noncompliant because they are
initialized in-class ans at the same time, the constructor of the class initialize the data members.
The practice is to declare the data members in class and omit a user defined constructor.

• In class MessageBox4:

• The declaration of AA::LowerLeft and AA::UpperLeft are compliant because two different
constructors initialize them to different values and they are not initialized in-class.

• The declaration of AA::msg is noncompliant because two different constructors initialize it to
different value and it is also initialized in-class.

Check Information
Group: Special member functions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
AUTOSAR C++14 Rule A12-1-3
“Check for Coding Standard Violations”

Introduced in R2021b

25 AUTOSAR C++14 Rules

25-260

AUTOSAR C++14 Rule A12-1-4
All constructors that are callable with a single argument of fundamental type shall be declared
explicit

Description
Rule Definition

All constructors that are callable with a single argument of fundamental type shall be declared
explicit.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Special Member Functions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A12-1-4

25-261

AUTOSAR C++14 Rule A12-1-5
Common class initialization for non-constant members shall be done by a delegating constructor

Description
Rule Definition

Common class initialization for non-constant members shall be done by a delegating constructor.

Rationale

C++ classes often have several constructors with different syntaxes. These initializers might have
some initializations in common. For instance, in this code, both constructors of the class Circle
initialize the nonconstant members x, y and r.

class Circle{
 int x;
 int y;
 int r;
 public:
 Circle(int x_in, int y_in, int r_in): x{x_in}, y{y_in},r{r_in}{
 //...
 }
 Circle(int x_in, int y_in): x{x_in}, y{y_in}, r{0}{
 //...
 }
 //...
};

It is expected that all constructors of a class have equivalent behavior. When these common tasks are
performed repeatedly in multiple constructors, any inadvertent differences might lead to confusion
and unexpected results. Performing the common tasks repeatedly can also be tedious.

To avoid unexpected results, delegate the initialization of nonconstant members to existing
constructors whenever possible. Avoid repeating initializations in multiple constructors.

Polyspace Implementation

Polyspace flags a class, union, or structure if any of their nonconstant members are initialized in
multiple constructors. Polyspace does not flag:

• Copy or move constructors that do not use delegate constructors.
• Arrays that are initialized in multiple constructors.
• Objects that are initialized field by field in multiple constructors.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

25 AUTOSAR C++14 Rules

25-262

Examples
Avoid Repeating Initialization in Multiple Constructors

#include <cstdint>
#include <string>
#include<initializer_list>

class Circle // Noncompliant
{
public:
 Circle(std::int32_t xx, std::int32_t yy, std::int32_t rr):x{xx}, y{yy}, r{rr}
 {}

 Circle(std::int32_t xx, std::int32_t yy):Circle(xx,yy,0) //Delegated constructor
 {}

 Circle(std::int32_t xx):x(xx),y(1),r(1) // Could be delegated
 {}

 Circle():x(0),y(0),r(0)//Could be delegated
 {}

protected:
 std::int32_t x;
 std::int32_t y;
 std::int32_t r;
};
class Flag // Compliant
{
public:
 Flag(bool a):a(a)
 {}

 Flag():a(0)
 {}

protected:
 const bool a;
};

class Tuple // Noncompliant
{
public:
 Tuple(std::initializer_list<float> ilist) {
 auto* p = ilist.begin();
 x = *p++;
 y = *p++;
 z = *p++;
 }
 Tuple(float _x, float _y, float _z) : x(_x), y(_y), z(_z) {}

 float x = 0, y = 0, z = 0;
};

This example shows compliant and noncompliant classes.

 AUTOSAR C++14 Rule A12-1-5

25-263

• The class Circle has four constructors. It delegates the common initializations in the second
constructor, but repeats the initializations in the third and fourth constructors. This repetition
might lead to unexpected results. Polyspace flags the class.

• The class Flag repeats the initialization of its member a in two constructors. Because a is a
const, Polyspace does not flag the class.

• The class Tuple initializes its nonconst members repeatedly in two constructors. Polyspace flags
the class.

Check Information
Group: Special member functions
Category: Required, Partially automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
AUTOSAR C++14 Rule A12-1-5
“Check for Coding Standard Violations”

Introduced in R2021a

25 AUTOSAR C++14 Rules

25-264

AUTOSAR C++14 Rule A12-1-6
Derived classes that do not need further explicit initialization and require all the constructors from
the base class shall use inheriting constructors

Description
Rule Definition

Derived classes that do not need further explicit initialization and require all the constructors from
the base class shall use inheriting constructors.

Rationale

If a derived class uses all the base class constructors and does not explicitly initialize any additional
data member that is not in the base class, reimplementing these constructors in the derived class
adds unnecessary lines of code. The reimplementation might not exactly match the constructors in
the base class due to human error and might introduce bugs in your code. Moreover, every time you
change the base class constructors, you must also update the derived class constructors. This
increases the overhead of code maintenance.

In such situations, using inheriting constructors in the derived class solves these issues.

Polyspace Implementation

Polyspace flags a class for violation of this rule if the class satisfies all of these conditions:

• The class derives from a single base class.
• The class uses all the base class constructors and reimplements them in the class definition.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Derived Class Reimplements the Constructors
#include <cstdint>

class A
{
 public:
 A(std::int32_t x, std::int32_t y) : x(x + 8), y(y) {}
 explicit A(std::int32_t x) : A(x, 0) {}

 private:
 std::int32_t x;
 std::int32_t y;
};

class B : public A // Non-compliant

 AUTOSAR C++14 Rule A12-1-6

25-265

{
 public:
 B(std::int32_t x, std::int32_t y) : A(x, y) {}
 explicit B(std::int32_t x) : A(x) {}
};

class C : public A // Compliant
{
 public:
 using A::A;
};

The reimplementation of B(std::int32_t x, std::int32_t y) and explicit
B(std::int32_t x) violates the rule because they are identical to the base class constructors
A(std::int32_t x, std::int32_t y) and explicit A(std::int32_t x).

Check Information
Group: Special member functions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-266

AUTOSAR C++14 Rule A12-4-1
Destructor of a base class shall be public virtual, public override or protected non-virtual

Description
Rule Definition

Destructor of a base class shall be public virtual, public override or protected non-virtual.

Rationale

If a base class destructor is not public virtual or public override, the class cannot behave
polymorphically for deletion of derived class objects.

If a pointer to a base class refers to a derived class object and you use the pointer to delete the
object:

class Base {
 public:
 ~Base() {}
};

class Derived: public Base {
 public:
 ~Derived() {}
};
...
void func(Base* ptr) {
 //ptr might point to a Base or Derived object
 delete ptr;
}

only the base class destructor is called. Additional resources allocated in the derived class are not
released and can cause a resource leak. See example below.

If you want to prevent calling the derived class destructor through a base class pointer, make your
intent explicit by making the destructor protected. Otherwise, it might appear that the possibility of
polymorphic deletion of derived class objects was not considered.

Polyspace Implementation

The checker flags base classes with destructors that are not public virtual, public override or
protected non-virtual.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

 AUTOSAR C++14 Rule A12-4-1

25-267

Examples
Base Class Destructor Not Virtual

#include <new>

class Base {
 public:
 Base() {}
 ~Base() {} //Noncompliant
};

class Derived: public Base {
 int *arr;
 public:
 Derived() {
 arr = new int(5);
 }
 ~Derived() {
 delete arr;
 }
};

void main() {
 Base* basePtr = new Derived();
 delete basePtr;
}

In this example, the class Base has a non-virtual destructor. As a result, when the pointer basePtr is
deleted, only the destructor of class Base is invoked. However, basePtr points to an object of class
Derived. The deletion is not complete because the destructor of class Derived is not invoked. In
particular, the data member arr in the derived object is not deleted.

Check Information
Group: Special member functions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

25 AUTOSAR C++14 Rules

25-268

AUTOSAR C++14 Rule A12-4-2
If a public destructor of a class is non-virtual, then the class should be declared final

Description
Rule Definition

If a public destructor of a class is non-virtual, then the class should be declared final.

Rationale

In C++, when any object of a derived class is destroyed, first the destructor of its class is invoked,
and then the destructors of the base classes are invoked. Class hierarchies can also be polymorphic.
You can declare a base class pointer and assign a derived class object to it. To safely destroy objects
belonging to a class hierarchy, declare the public class destructors as virtual. Consider this code
where two base class pointers that point to derived objects are destroyed.

class Base{
public:
 virtual ~Base();
 //..
};

class Derived : public Base{
public:
 ~Derived();
 //..
};
class Base2{
public:
 ~Base2();
 //..
};

class Derived2 : public Base2{
public:
 ~Derived2();
 //...
};
int main(){

 Base* ptr = new Derived;
 Base2* ptr2 = new Derived2;
 delete ptr;
 delete ptr2;
}

• The object ptr is a pointer of class Base that points to an object of class Derived. When ptr is
deleted, the destructor of the derived class is called first, and then the destructor of the base class
is called. Even though ptr is a base class object, the correct destructors are called to release all
acquired resources because the public destructors in this class hierarchy are declared as
virtual.

 AUTOSAR C++14 Rule A12-4-2

25-269

• When the pointer ptr2 is deleted, the destructor of only the base class is called because the
public destructors in this class hierarchy are nonvirtual. This kind of incomplete destruction is
undefined behavior, which can lead to memory leaks and unexpected termination of code
execution.

To prevent undefined behavior, do not use classes with public nonvirtual destructors as base
classes. Declare such classes as final to specify that these classes are not base classes and new
classes cannot be derived from them.

Polyspace Implementation

Polyspace flags a class declaration if both these statements are true:

• The public destructor of the class is not declared as virtual.
• The class is not declared final.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Declare a Class as final if Its Public Destructor Is Nonvirtual

This example shows how Polyspace flags base classes that have public nonvirtual destructors.

#include<cstdint>
class Base{ //Noncompliant
public:
 ~Base();
 //..
};

class Derived : public Base{ //Noncompliant
public:
 ~Derived();
 //..
};
class Base2 final{ //Compliant
public:
 ~Base2();
 //..
};

//class Derived2 : public Base2{ //Compilation error
//public:
// ~Derived2();
// //...
//};
int main(){

 Base* ptr = new Derived;
 // Base2* ptr2 = new Derived2; //Compilation Error
 delete ptr;

25 AUTOSAR C++14 Rules

25-270

 // delete ptr2;
}

The classes Base and Derived have public nonvirtual destructors. In main(), when ptr is
destroyed, only ~Base() is called, resulting in partial destruction of the pointed-to object. This
behavior is undefined behavior that can lead to memory leak and unexpected program termination.
Polyspace flags the declaration of both Base and Derived.

The class Base2 has a public nonvirtual destructor. Base2 is compliant with this rule because it is
declared as final. Deriving any class from Base2 results in compilation failure. Consequently, you
cannot declare a pointer of class Base2 that points to an object of a derived class. Declaring classes
with public nonvirtual destructors as final prevents undefined behaviors and can protect the code
from memory leaks and unexpected program termination.

Declare Nonvirtual Destructors as protected

This example shows that Polyspace allows nonvirtual destructors when they are declared protected.

#include<cstdint>
class Base{ //Compliant
protected:
 ~Base();
 //..
};

class Derived : public Base{ //Compliant
protected:
 ~Derived();
 //..
};

int main(){

 Base* ptr = new Derived;
 delete ptr;//Compilation error
}

Nonvirtual destructors declared as protected are compliant with this rule. Because the destructor
for Base is protected, the statement delete ptr; causes a compilation failure. Declaring nonvirtual
destructors as protected can prevent memory leaks and unexpected program termination. When
nonfinal classes have nonvirtual destructors declared as protected, the classes comply with this
rule and Polyspace does not flag them.

Check Information
Group: Special member functions
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

 AUTOSAR C++14 Rule A12-4-2

25-271

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-272

AUTOSAR C++14 Rule A12-6-1
All class data members that are initialized by the constructor shall be initialized using member
initializers

Description
Rule Definition

All class data members that are initialized by the constructor shall be initialized using member
initializers.

Rationale

It is inefficient to initialize data members of a class by assigning a copy of passed values to them in
the body of a constructor. For instance, this code is inefficient:

class foo{

private:
 int i;
public:
 foo(int input){
 i = input;
 //...
 }
};

It is more efficient to initialize data members of classes by using member initializers. For instance:

• Initialize data members by using a initializer list.
• Initialize data members by using default member initializers.

To increase the efficiency of your code and to protect your code from using an uninitialized data
member, use the preceding methods to initialize data members of a class.

Polyspace Implementation

Polyspace flags the constructor definition of a class if the constructor initializes the nonstatic data
members of the class in its body by copying the passed values to the data members. Polyspace does
not flag constructors with uninitialized static data members.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Efficient Initialization of Class Data Members

This example shows efficient initialization methods of class data members that are compliant with
this rule.

 AUTOSAR C++14 Rule A12-6-1

25-273

#include <cstdint>
#include <string>
using namespace std;
class A
{
public:
 A(int32_t n, string s) : number{n}, str{s}
 { //Compliant
 n += 1; // This does not violate the rule
 str.erase(str.begin(),
 str.begin() + 1); // This does not violate the rule
 // Implementation
 }

private:
 int32_t number;
 string str;
};

class C
{
public:
 C(int32_t n, string s)
 { //Compliant
 n += 1; // This does not violate the rule
 str.erase(str.begin(),
 str.begin() + 1); // This does not violate the rule
 }
 // Implementation

private:

 int32_t number = 0;
 string str = "string";
 static double pi;
};

• The constructor of class A initializes the data members by using an initializer list. This constructor
is compliant with this rule.

• The constructor of class C initializes the data members by using default initialization. These data
members cannot be used before they are initialized. This constructor is compliant with this rule.
Polyspace does not flag constructors that do not initialize static data members.

Inefficient Initialization of Class Data Members

This example shows inefficient initialization of class data members that is not compliant with this
rule.

#include <cstdint>
#include <string>
using namespace std;
class B
{
public:
 B(int32_t n, string s)
 { //Noncompliant
 number = n;

25 AUTOSAR C++14 Rules

25-274

 str = s;
 }
 // Implementation

private:
 int32_t number;
 string str;
};
class E{
public:
 E():E(1,"string")
 {

 }
 E(int32_t a, string str) : number(a)
 {//Noncompliant

 }
private:
 int32_t number;
 string str;
};

• The constructor of class B initializes the data members by copying the passed parameters. This
initialization is inefficient. The data members of class B might be used before they are initialized.
Polyspace flags this inefficient and risky constructor.

• The default constructor of class E attempts to initialize the nonstatic data members by delegating
the initialization to another constructor. The second constructor does not initialize the nonstatic
data members by using member initializers. Polyspace flags the second constructor.

Check Information
Group: Special Member Functions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A12-6-1

25-275

AUTOSAR C++14 Rule A12-7-1
If the behavior of a user-defined special member function is identical to implicitly defined special
member function, then it shall be defined "=default" or be left undefined

Description
Rule Definition

If the behavior of a user-defined special member function is identical to implicitly defined special
member function, then it shall be defined "=default" or be left undefined.

Rationale

Compilers implicitly define special member functions if these functions are declared as =default or
left undefined. These implicitly defined functions are consistent, error-free, and do not require
maintenance. If the implicitly defined special member functions are sufficient, then replacing them
with user-defined functions makes the code error-prone and harder to maintain. Unless a class
manages resources like a raw pointer or a POSIX file descriptor, the implicit definition of the special
member functions might be sufficient. Avoid defining the special member functions when the implicit
definitions are sufficient.

Default construction of const objects might cause a compilation failure if the nonstatic data
members are not initialized during definition. The best practice is to initialize nonstatic data members
in the class definition. Alternatively, initialize the const instance by using an empty initializer list.
These practices enable the default constructor to correctly construct const instances of a class.

Polyspace Implementation

Polyspace raises the checker if the user-defined special member functions of your class are the same
as the implicitly defined special member functions.

The implicitly defined default constructor of a class has an empty body, an empty parameter list, and
an empty initializer list. The implicitly defined destructors have an empty body. Other implicitly
defined special member functions copy or move the base classes and nonstatic data members by
using an initializer list. These implicit special functions do not perform deep copy and do not move
the data associated with a pointer. These functions copy or move data members directly and use the
associated constructor when copying or moving a class-type object. The order of initialization in these
special member functions is the same as the order of declaration in the input object. For details about
how implicitly defined special member function behave, see:

• Default constructor
• Destructor
• Copy constructor
• Copy Assignment operator
• Move constructor
• Move assignment operator

25 AUTOSAR C++14 Rules

25-276

https://en.cppreference.com/w/cpp/language/default_constructor
https://en.cppreference.com/w/cpp/language/destructor
https://en.cppreference.com/w/cpp/language/copy_constructor
https://en.cppreference.com/w/cpp/language/copy_assignment
https://en.cppreference.com/w/cpp/language/move_constructor
https://en.cppreference.com/w/cpp/language/move_assignment

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Define Special Member Functions Only When Managing Resources

#include <cstdint>
#include <utility>
class A
{
public:
 A() : x(0), y(0) {} // Compliant
 A(std::int32_t first, std::int32_t second) // Compliant
 : x(first), y(second) {}
 A(const A& oth) : x(oth.x),y(oth.y){} // Noncompliant
 A(A&& oth): x(std::move(oth.x)),y(std::move(oth.y)){} // Noncompliant
 ~A(){} // Noncompliant

private:
 std::int32_t x;
 std::int32_t y;
};
class B
{
public:
 B() {} // Noncompliant
 B(std::int32_t first, std::int32_t second)// Compliant
 : x(first), y(second)
 {}
 B(const B&) = default; // Compliant
 B(B&&) = default; // Compliant
 ~B() = default; // Compliant

private:
 std::int32_t x;
 std::int32_t y;
};
class D
{
public:
 D() : ptr(nullptr) {} // Compliant - Managing a raw pointer
 D(B* p) : ptr(p) {} // Compliant - Managing a raw pointer
 D(const D&) = default; // Requires user defined copy constructor
 D(D&&) = default; // Requires user defined move constructor
 ~D() = default; // Requires user defined destructor

private:
 B* ptr;
};
class E // Compliant
{
};

 AUTOSAR C++14 Rule A12-7-1

25-277

In this example, the classes A, B, and D are defined.

• The declaration of the default constructor of A is compliant with this rule. The rule does not apply
to nondefault constructors. Because the user-defined copy and move constructors of A do not
manage any resources and they can be defined as =default or left undefined, Polyspace flags
them.

• The default constructor of B is user-defined even though it does not manage any resources.
Because this user-defined constructor can be defined as =default or left undefined, Polyspace
flags it. The other constructors of B are compliant because they are defined as =default.

• The class D contains a raw pointer to the class B. To manage the raw pointer ptr, the constructor
of class D explicitly initializes it to nullptr. Because the user-defined constructor is different,
Polyspace does not flag it. Because the other special member functions are declared as =default,
these functions do not violate this rule. When managing resources such as a raw pointer, the
implicitly defined special member functions are typically incorrect. For instance, the implicit copy
constructor of D performs a shallow copy of ptr, without duplicating the underlying resources.
When managing raw pointers, the best practice is to define all the special member functions
appropriately to avoid unexpected behavior.

Initialize Nonstatic Data Members to Default Construct const Instances

class B_NC{
 public:
 //B_NC()=default;// Compile fail
 B_NC(){} //Noncompliant
 int x;
};
class B_C{
 public:
 B_C() = default;//Compliant
 int x = 0;
};
const B_NC a;
const B_C b;

In this example, classes B_NC and B_C are defined and const instances of these classes are
constructed. According to the C++ standard, a const object can be constructed by the implicit
default constructor only if all the members of the object is const-default-constructible. The variable
B_NC::x cannot be const-default-constructed. If you declare the constructor as =default,
constructing a const instance of B_NC results in a compilation failure. To resolve the compilation
failure, you might want to provide a user-defined constructor that is identical to the implicit
constructor, such as the constructor B_NC::B_NC() in the preceding code. Though this code
compiles, B_NC::B_NC() is noncompliant with this rule.

To resolve the compilation failure without violating this rule, initialize the nonstatic data members of
the class in its definition, as shown in the definition of B_C. Because B_C::x can be const-default-
constructed, a const instance of B_C can be constructed by the implicit default constructor. After
initializing the nonstatic data members, set the constructor to =default.

Check Information
Group: Special member functions
Category: Required, Automated

25 AUTOSAR C++14 Rules

25-278

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
AUTOSAR C++14 Rule A12-7-1
“Check for Coding Standard Violations”

Introduced in R2021b

 AUTOSAR C++14 Rule A12-7-1

25-279

AUTOSAR C++14 Rule A12-8-1
Move and copy constructors shall move and respectively copy base classes and data members of a
class, without any side effects

Description
Rule Definition

Move and copy constructors shall move and respectively copy base classes and data members of a
class, without any side effects.

Rationale

The expected behavior of move and copy constructors is:

• They move or copy the base classes and data members.
• The move constructor sets the source object into a valid state.

Authoring move or copy constructors that have additional side effects might cause these issues:

• Performance: Move and copy constructors are frequently called by standard template library
(STL) algorithms and containers. Performance overhead in these constructors caused by side
effects can accumulate and affect the performance of your code.

• Unexpected behavior: Because compilers might omit calls to copy constructors to optimize the
code, the number of times a copy constructor might be invoked is indeterminate. As a result, the
side effects of a copy constructor might produce unexpected behavior.

Polyspace Implementation

In the body of a copy or move constructor, Polyspace does not flag these operations:

• Copy or move assignments.
• Relational or comparison operations.
• Modification of the source object in a move operation.
• Calls to the function std::swap or equivalent user-defined noexceot swap functions. Polyspace
identifies functions that these signatures as swap functions: void T::swap(T&) or void
[N::]swap(T&, T&). The first signature represents a member function of class T that takes one
argument. The second signature represents a nonmember or static function in the namespace N
that takes two arguments. The name swap can be case-insensitive and prefixed or postfixed by
underscores.

• Assignment and modification of static variables.

Polyspace flags any other operations in a copy or move constructor as unwanted side effect. For
instance, a call to a user-defined swap function is considered an unwanted side effect if the swap
function is not noexcept. For a similar rule on copy and move assignment operator, see AUTOSAR C+
+14 Rule A6-2-1.

25 AUTOSAR C++14 Rules

25-280

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Side Effects in Copy and Move Constructors

This code shows how Polyspace flags move and copy constructors that have side effects.

#include<cstdint>
#include <utility>
#include<iostream>
class B
{
public:
 // Implementation
 B(B&& oth) : ptr(std::move(oth.ptr)) // Noncompliant
 {
 oth.ptr = nullptr; // Does not have a side effect
 std::cout<<"Moved"; //Has a side effect
 }
 ~B()
 {
 delete ptr;
 }

private:
 std::int32_t* ptr;
};
class C
{
public:
 C(int t=0) : x(t) {}
 C(const C& oth): x(oth.x) // Noncompliant
 {
 //...
 x = oth.x % 2; // Has a side effect
 count++; //Not a side effect
 }

private:
 std::int32_t x;
 static std::int32_t count;
};
class D
{
public:

 D(const D& oth): x(oth.x) // Noncompliant
 {
 D tmp(oth);
 swap(tmp);
 }
 void _swap_(D& rhs){ //Might raise exceptions
 //...

 AUTOSAR C++14 Rule A12-8-1

25-281

 }
private:
 std::int32_t x;
 static std::int32_t count;
};

• As a side effect, the move constructor of class B prints a string into the output stream. This side
effect adds performance overhead to the move operation. Polyspace flags the move assignment
operator and highlights the statement. Setting the moved-from object oth.ptr to nullptr is not
a side effect.

• The copy constructor of the class C modifies the data member x of the source object. This side
effect adds performance overhead. Unexpected change to data members during move and copy
operations can make the code incompatible with the standard template library and introduce
errors during development. Polyspace flags the copy assignment operator and highlights the
statement x = oth.x % 2. Incrementing the static variable count is not a side effect.

• The copy constructor of the class D calls a user-defined swap function called _swap_. This swap
function is not noexcept. If an exception is raised from _swap_, the exception is an unexpected
side effect of the copy constructor. Polyspace flags the copy constructor as noncompliant with this
rule. Use user-defined swap functions that are noexcept.

Check Information
Group: Special member functions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
AUTOSAR C++14 Rule A12-8-1
“Check for Coding Standard Violations”

Introduced in R2021a

25 AUTOSAR C++14 Rules

25-282

AUTOSAR C++14 Rule A12-8-2
User-defined copy and move assignment operators should use user-defined no-throw swap function

Description
Rule Definition

User-defined copy and move assignment operators should use user-defined no-throw swap function.

Rationale

A naive copy or move assignment operator that is implemented without using a swap function might
follow the pattern in this code:

class A{
 //...
 A & operator=(const A & rhs)
 {
 if (this != &rhs) // check for self assignment
 {
 // release resource in lhs

 // Allocate resource for modified lhs

 // Copy or move the resources from rhs to lhs

 }

 return *this;
 }
private:
 //resources
 int* mArray;
};

Such naive implementation of the copy or move assignment operator cannot provide strong exception
safety because if any of the operations raises an exception, the left operand cannot be reverted back
to its original state. The preceding pattern is also inefficient because it requires a check for self-
assignment. Code duplication between such a copy or move assignment operator and a copy or move
constructor makes the code difficult to maintain.

To resolve these issues, utilize user-defined swap functions that do not raise exceptions. Consider this
pattern:

class A{
 //...
 A & operator=(A rhs)
 {
 Swap(*this,rhs);
 }
 friend void Swap(A& lhs, A& rhs) noexcept{
 //...
 }

 AUTOSAR C++14 Rule A12-8-2

25-283

private:
 //resources
 int* mArray;

};

This implementation of the copy or move assignment operator does not attempt allocation or
deallocation of memory. Instead, It swaps the resources between the left and right operands by
calling a user-defined noexcept function Swap. This Swap function might be implemented by
utilizing the std::swap function. The benefits of this pattern are:

• Strong exception safety: This implementation of the copy or move assignment operator takes a
temporary copy of the right operand by using the copy or move constructor and swaps the
temporary copy with the left operand. Because the move and swap functions must be noexcept,
only the copy operation might raise an exception. If this operator raises an exception, only the
temporary copy of the right operand might be invalidated. The state of the right or the left
operand remains untouched.

• Code reuse: In this implementation, the copy or move assignment operator reuses the copy or
move constructor. The class-specific swap function can also be reused for implementing other
algorithms.

• Efficiency: By eliminating the check against self-assignment, the operator is more efficient.

To implement a copy or move assignment operator, use user-defined noexcet swap functions.

Polyspace Implementation

Polyspace flags a copy or move assignment operator if it does not contain at least one call to a user-
defined swap function. Polyspace identifies functions that have these signatures as swap functions:
void T::swap(T&) or void [N::]swap(T&, T&). The first signature represents a member
function of class T that takes one argument. The second signature represents a nonmember or static
function in the namespace N that takes two arguments. The name swap can be case-insensitive and
prefixed or postfixed by underscores.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Naive Implementation of Copy and Move Assignment Operators
#include <utility>
#include <string>
class B
{
 public:
 B& operator=(const B& oth) & { // Noncompliant
 if (this != &oth)
 {
 ptr1 = new std::int32_t(*oth.ptr1);
 ptr2 = new std::int32_t(
 *oth.ptr2); // Exception thrown here results in
 // a memory leak of ptr1
 }

25 AUTOSAR C++14 Rules

25-284

 return *this;
 }
 B& operator=(B&& oth) & noexcept { // Noncompliant
 if (this != &oth)
 {
 ptr1 = std::move(oth.ptr1);
 ptr2 = std::move(oth.ptr2);
 oth.ptr1 = nullptr;
 oth.ptr2 = nullptr;
 }

 return *this;
 }
private:
 std::int32_t* ptr1;
 std::int32_t* ptr2;
};

In this example, the copy and move assignment operator for class B uses a naive implementation
instead of a copy-and-swap implementation. The copy and move operator of B is inefficient and does
not provide strong exception safety. Polyspace flags these operators as noncompliant.

Avoid Using Generic std::swap
#include <utility>
#include <string>
class C
{
 public:
 C(const C&) = default;
 C(C&&) = default;

 C& operator=(const C& oth) & { //Noncompliant
 C tmp(oth);
 std::swap(ptr1, tmp.ptr1);
 return *this;
 }
 C& operator=(C&& oth) & { // Noncompliant
 C tmp(std::move(oth));
 std::swap(ptr1, tmp.ptr1);
 return *this;
 }

 private:
 std::int32_t* ptr1;
};

In this example, the copy and move assignment operator for class C uses a copy-and-swap
implementation, but uses the standard std::swap function instead of a class-specific, user-defined
swap function. Because class C requires user-defined copy and move operator, it also require a user-
defined swap function. Polyspace flags the operators as noncompliant.

Avoid swap Functions That Might Raise Exceptions
#include <utility>
#include <string>

 AUTOSAR C++14 Rule A12-8-2

25-285

class D
{
 public:
 D(const D&) = default;
 D(D&&) = default;
 D& operator=(const D& oth) & { // Noncompliant
 D tmp(oth);
 swap(*this,tmp);
 return *this;
 }
 D& operator=(D&& oth) & { // Noncompliant
 D tmp(std::move(oth));
 swap(*this,tmp);
 return *this;
 }
 //...
 friend void _swap_(D& lhs, D& rhs){ // swap function not noexcept
 //...
 }
};

In this example, the copy and move assignment operator for class D uses a swap function that is not
noexcept. These operators do not provide strong exception safety. Polyspace flags them as
noncompliant.

Avoid swap Functions With Unexpected Signature

#include <utility>
#include <string>

class E
{
 public:
 E(const E&) = default;
 E(E&&) = default;

 E& operator=(const E& oth) & { // Noncompliant
 E tmp(oth);
 swap(*this,tmp);
 return *this;
 }
 E& operator=(E&& oth) & { // Noncompliant
 E tmp(std::move(oth));
 swap(*this,tmp);
 return *this;
 }

 // Member function swap
 void swap(E& lhs, E& rhs) noexcept {
 std::swap(lhs.ptr1, rhs.ptr1);
 std::swap(lhs.ptr2, rhs.ptr2);
 }

 private:
 std::int32_t* ptr1;
 std::int32_t* ptr2;
};

25 AUTOSAR C++14 Rules

25-286

In this example, the copy and move assignment operator for class E uses a swap function that takes
two arguments. Because the swap function is defined as a nonstatic member function of E, Polyspace
expects the E::swap function to have only one argument. Polyspace flags the copy and move
operators of E because the swap function has an unexpected signature.

Check Information
Group: Special member functions
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
AUTOSAR C++14 Rule A12-8-2
“Check for Coding Standard Violations”

Introduced in R2021a

 AUTOSAR C++14 Rule A12-8-2

25-287

AUTOSAR C++14 Rule A12-8-3
Moved-from object shall not be read-accessed

Description
Rule Definition

Moved-from object shall not be read-accessed.

Rationale

Because the content of a source object is generally unspecified after a move operation, it is unsafe to
perform operations that access the contents of the source object after a move operation. Accessing
the contents of the source object after a move operation might result in a data integrity violation, an
unexpected value, or an illegal dereferencing of a pointer.

Operations that make no assumptions about the state of an object do not violate this rule.

The C++ standard specifies that these move operations leave the source object in a well-specified
state after the move:

• Move construction, move assignment, converting6 move construction, and converting move
assignment of std::unique_ptr type

• Move construction, move assignment, converting move construction, converting move assignment
of std::shared_ptr type

• Move construction and move assignment from a std::unique_ptr of std::shared_ptr type
• Move construction, move assignment, converting move construction, and converting move

assignment of std::weak_ptr type
• std::move() of std::basic_ios type
• Move constructor and move assignment of std::basic_filebuf type
• Move constructor and move assignment of std::thread type
• Move constructor and move assignment of std: unique_lock type
• Move constructor and move assignment of std::shared_lock type
• Move constructor and move assignment of std::promise type
• Move constructor and move assignment of std::future type
• Move construction, move assignment, converting move construction, and converting move

assignment of std::shared_future type
• Move constructor and move assignment of std::packaged_task type

Because these move operations leave the source object in a well-specified state, accessing the source
object after calling these functions is compliant with this rule.

6. A converting constructor is a constructor that is not declared with the specifier explicit. See Converting
constructor.

25 AUTOSAR C++14 Rules

25-288

https://en.cppreference.com/w/cpp/language/converting_constructor
https://en.cppreference.com/w/cpp/language/converting_constructor

Polyspace Implementation

Polyspace raises a flag if the source object is read after its contents are moved to a destination object
by calling the std::move function explicitly. Polyspace does not flag accessing a source object if:

• The source object of an explicit move operation is of these types:

• std::unique_ptr
• std::shared_ptr
• std::weak_ptr
• std::basic_ios
• std::basic_filebuf
• std::thread
• std::unique_lock
• std::shared_lock
• std::promise
• std::future
• std::shared_future
• std::packaged_task

• The move operation is performed implicitly. For instance, the function std::remove might access
the source object after an implicit move operation. Polyspace does not flag it. A best practice is to
avoid such operations and use safer alternatives that prevent accidental access, such as
std::erase.

• The source object is of a built-in base type, such as: int, enum, float, double, pointer,
std::intptr_t, std::nullptr_t.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Reading Source Object After Calling std::move

This example shows how Polyspace flags reading the source object after an explicit move operation.

#include<string>
#include<iostream>
void F1()
{
 std::string s1{"string"};
 std::string s2{std::move(s1)};
 // ...
 std::cout
 << // Noncompliant
 s1
 << "\n";
}

 AUTOSAR C++14 Rule A12-8-3

25-289

void F2()
{
 std::unique_ptr<std::int32_t> ptr1 = std::make_unique<std::int32_t>(0);
 std::unique_ptr<std::int32_t> ptr2{std::move(ptr1)};
 std::cout << ptr1.get() << std::endl; // Compliant by exception
}
void g(std::string v)
{
 std::cout << v << std::endl;
}

void F3()
{
 std::string s;
 for (unsigned i = 0; i < 10; ++i) {
 s.append(1, static_cast<char>('0' + i)); //Noncompliant
 g(std::move(s));
 }
}
void F4()
{
 for (unsigned i = 0; i < 10; ++i) {
 std::string s(1, static_cast<char>('0' + i)); // Compliant
 g(std::move(s));
 }
}

• In the function F1, string s1 is explicitly moved to s2 by calling std::move. After the move
operation, the function attempts to read s1. Polyspace flags this attempt of reading a source
object after an explicit move.

• In the function F2, the unique pointer ptr1 is explicitly moved to ptr2. Because the
std::unique_ptr remains in a specified state after the move, reading a source unique pointer
after an explicit move is compliant with this rule.

• In the function F3, the string s is explicitly moved, and then it is read by the
std::string::append function. Polyspace flags this attempt of reading a source object after an
explicit move.

• In the function F4, the string s is explicitly moved. In each iteration of the loop, s is initiated to
specific content before the move operation is triggered. As a result, the state of s is specified
before the object is accessed. This method of accessing the source object after a move operation is
compliant with this rule.

Check Information
Group: Special member functions
Category: Required, Partially automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14) | CERT C++: EXP63-CPP

Topics
“Check for Coding Standard Violations”

Introduced in R2021a

25 AUTOSAR C++14 Rules

25-290

AUTOSAR C++14 Rule A12-8-4
Move constructor shall not initialize its class members and base classes using copy semantics

Description
Rule Definition

Move constructor shall not initialize its class members and base classes using copy semantics.

Rationale

In C++, move operations transfer the ownership of resources rather than duplicating the resources
themselves from a source object to a target object. Because move constructors do not duplicate
resources, these constructors are faster than copy constructors. Consider this code where the object
CopyTarget is copy-constructed and the object MoveTarget is move-constructed from the object
Source.

class BigData{
 //...
 BigData(BigData&&){ //Move Constructor
 //...
 } copy constructed
 BigData(const BigData&){ //Copy Constructor
 //...
 }
private:
 std::map<int, std::string> BigBook;
};

int main(){
 BigData Source;
 BigData CopyTarget = Source;
 BigData Movetarget = std::move(Source);
 //...
}

When copy-constructing CopyTarget, the compiler duplicates the resource Source::BigBook from
Source to CopyTarget. After the copy-construction, both of these objects have a copy of the
resource BigBook. When move-constructing Movetarget, the compiler transfers the ownership of
the resource Source::BigBook to MoveTarget. Because move-construction does not duplicate the
resource physically, it is faster than copy-construction.

Move-construction is an optimization strategy. You expect that move-construction is cheaper and
faster than copy-construction. Copy-initializing data members and base classes can make a move
constructor slow and inefficient, which reduces program performance. Developers expect that move-
construction uses move semantics only. Unexpectedly using copy semantics in move constructors
might introduce resource leaks and inconsistency in future development. When authoring move
constructors, initialize data members and base classes by using move semantics. You can copy-
initialize scalar data members without violating this rule.

You might use std::move() to implement move semantics in your code. When you use
std::move() to move objects, declare the objects or data members without the qualifier const. For
more information, see AUTOSAR C++14 Rule A18-9-3.

 AUTOSAR C++14 Rule A12-8-4

25-291

Polyspace Implementation

When a move constructor does not use move semantics to initialize nonscalar data members and base
classes, Polyspace flags its declaration. For instance, if a move constructor initializes the base class
by using the default constructor instead of the move constructor, Polyspace flags the declaration of
the move constructor.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Move-Initialize Nonscalar Data Members and Base Classes in Move Constructors

This example shows how Polyspace flags move constructors that uses copy-initialization and default
construction.

#include<cstdint>
#include<string>
#include<map>
#include <vector>
class BigData{
public:
 BigData()=default;
 //...
 BigData(BigData&& oth): //Compliant
 BigBook(std::move(oth.BigBook)),
 Length(oth.Length)
 {
 //...
 }

private:
 std::map<int, std::string> BigBook;
 int Length;
};

class slowBigData{
 //...
 slowBigData(slowBigData&& oth): //Noncompliant
 BigBook(oth.BigBook),
 Length(oth.Length)
 {
 //...
 }

private:
 std::map<int, std::string> BigBook;
 int Length;
};

class BigData2: public BigData{
 //...
 BigData2(BigData2&& oth):BigData() //Noncompliant

25 AUTOSAR C++14 Rules

25-292

 {
 BigVector = std::move(oth.BigVector);
 //...
 }

private:
 std::map<int, std::string> BigBook;
 std::vector<int> BigVector;
 int Length;
};

class BigData3: public BigData{
 //...
 BigData3(BigData3&& oth):BigData(std::move(oth)) //Compliant

 {
 str = std::move(oth.str);
 //...
 }

private:
 std::map<int, std::string> BigBook;
 int Length;
 std::string str;
};

• The move constructor of the class BigData initializes the data member BigBook by using move
semantics. The move constructor initializes the scalar member Length by using copy semantics.
This move constructor is compliant because copying scalar data members does not violate this
rule.

• The move constructor of the class slowBigdata initializes the data members by using copy
semantics. This move constructor violates the rule and Polyspace flags the declaration of the move
constructor.

• The move constructor of the class BigData2 invokes the default constructor of the base class,
which might make the code slow and inefficient. Polyspace flags the declaration of this move
constructor. The move constructor of the class BigData3 invokes the move constructor of the
base class. This move constructor is compliant with this rule.

Check Information
Group: Special member functions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 AUTOSAR C++14 Rule A12-8-4

25-293

AUTOSAR C++14 Rule A12-8-5
A copy assignment and a move assignment operators shall handle self-assignment

Description
Rule Definition

A copy assignment and a move assignment operators shall handle self-assignment.

Polyspace Implementation

Reports when copy assignment body does not begin with “if (this != arg)”

A violation is not raised if an empty else statement follows the if, or the body contains only a return
statement.

A violation is raised when the if statement is followed by a statement other than the return
statement.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Special Member Functions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-294

AUTOSAR C++14 Rule A12-8-6
Copy and move constructors and copy assignment and move assignment operators shall be declared
protected or defined "=delete" in base class

Description
Rule Definition

Copy and move constructors and copy assignment and move assignment operators shall be declared
protected or defined "=delete" in base class.

Rationale

Pointers to derived classes are type-compatible with pointers to base classes. A pointer can be an
object of the base class while pointing to an object of the derived class. When such an object is
copied, the base copy constructor is invoked and the copied object has only the base part of the
original object. To avoid inadvertent slicing during copy and move, suppress these operations in the
base class by:

• Declaring copy and move constructors and copy assignment and move assignment operators as
protected.

• Defining copy and move constructors and copy assignment and move assignment operators as
"=delete".

Polyspace Implementation

Polyspace flags these special member functions of a base class when they are not declared
protected or defined as =delete:

• Copy constructor
• Move constructor
• Copy assignment operator
• Move assignment operator

Polyspace indicates which special member function violates this rule.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Suppress Copy and Move Operations in Base Classes

#include <cstdint>
#include <memory>
#include <utility>
#include <vector>
class A

 AUTOSAR C++14 Rule A12-8-6

25-295

{
 public:
 int base_var;
 A() = default;
 A(A const&) = default; //Noncompliant
 A(A&&) = default; //Noncompliant
 virtual ~A() = 0;
 A& operator=(A const&) = default; //Noncompliant
 A& operator=(A&&) = default; //Noncompliant
};
class B : public A
{
 int derived_var;
};
class C //
{
 public:
 int base_var;
 C() = default;
 virtual ~C() = 0;

 protected:
 C(C const&) = default; //Compliant
 C(C&&) = default; //Compliant
 C& operator=(C const&) = default; //Compliant
 C& operator=(C&&) = default; //Compliant
};
class D : public C
{
 int derived_var;
};
class E
{
 public:
 int base_var;
 E() = default;
 virtual ~E() = default;
 E(E const&) = delete; //Compliant
 E(E&&) = delete; //Compliant
 E& operator=(E const&) = delete; //Compliant
 E& operator=(E&&) = delete; //Compliant
};

class F : public E
{
 int derived_var;
};
void Fn1() noexcept
{
 B obj1;
 B obj2;
 A* ptr1 = &obj1;
 A* ptr2 = &obj2;
 *ptr1 = *ptr2; // Partial assignment only
 *ptr1 = std::move(*ptr2); // Partial move only
 D obj3;
 D obj4;
 C* ptr3 = &obj3;

25 AUTOSAR C++14 Rules

25-296

 C* ptr4 = &obj4;
 // *ptr3 = *ptr4; // Compilation error
 // *ptr3 = std::move(*ptr4); // Compilation error
 F obj5;
 F obj6;
 E* ptr5 = &obj5;
 E* ptr6 = &obj6;
 // *ptr5 = *ptr6; // Compilation error
 // *ptr5 = std::move(*ptr6); // Compilation error
}

The Class A is a base class with default copy and move constructors and default copy and move
assignment operators. The class B is derived from A and has a variable derived_var that is absent
in A. In Fn1(), two pointers ptr1 and ptr2 are created. They are objects of the base class A, but
point to obj1 and obj2 respectively, which are objects of the derived class B. The assignment A
*ptr = &obj1; is an example of polymorphic behavior where you can declare a pointer of the base
class and assign objects of any derived class to it.

Because ptr1 and ptr2 are objects of the base class A, the copy operation in *ptr1 = *ptr2
invokes the default copy assignment operator of class A. The default semantics copies only the
base part of obj2 into obj1. That is, obj2.derived_var is not copied into obj1.derived_var.
Similarly, the ownership of obj2.derived_var is not moved to obj1 by the move operation in
*ptr1 = std::move(*ptr2). To avoid inadvertent slicing, suppress the copy and move operations
in the base class of a class hierarchy. Polyspace flags the copy and move functions in base class A
because these functions are neither declared as protected nor defined as =delete.

In class C, the copy and move functions are suppressed by declaring the copy and move constructors
and copy assignment and move assignment operators protected. In class E, the copy and move
operations are suppressed by declaring these special member functions as =delete. If you invoke
the copy or move operations of these base classes, the compiler generated an error. The definitions of
the base classes C and E are compliant with this rule.

Check Information
Group: Special member functions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

 AUTOSAR C++14 Rule A12-8-6

25-297

AUTOSAR C++14 Rule A12-8-7
Assignment operators should be declared with the ref-qualifier &

Description
Rule Definition

Assignment operators should be declared with the ref-qualifier &.

Rationale

You can use ref-qualifiers to specify whether a function or operator applies to lvalues or rvalues.
Functions or operators that apply to lvalues have the ref-qualifier &. Functions and operators that
apply on rvalues have the ref-qualifier && at the end of their declaration.

Built-in assignment operators in C++ accept only lvalues as input parameters. If user-defined
assignment operators take both rvalue and lvalue as input parameters, it can cause confusion and
errors. Consider this code where the user-defined assignment operator for the class obj accepts both
rvalues and lvalues as input parameters.

class obj{
 obj& operator=(Obj const&){
 //...
 return *this;
 }
 //...
};

int main(){
 int i,j,k;
 obj a,b,c;

 if((i+j)=k) // compilation error
 //...
 if((a+b)=c) // silent error
 //...
}

• In the first if statement, the equal-to operator (==) is written as an assignment operator (=)
because of a typographical error. Because the built-in assignment operator for int does not
accept rvalues as input, the statement (i+j) = k causes a compilation error.

• The condition for the second if statement contains a similar error. Because the user-defined
assignment operator for class obj accepts both lvalues and rvalues as input, the statement (a+b)
= c compiles without error. The if block executes unexpectedly, resulting in a silent bug.

To avoid errors and confusion, specify that assignment operators take only lvalues as input
parameters by adding the ref-qualifier & to their declaration.

Polyspace Implementation

Polyspace flags user-defined assignment, compound assignment, increment, and decrement operators
when:

25 AUTOSAR C++14 Rules

25-298

• They do not have the ref-qualifier & in their declaration.
• They are member functions of a class.
• They are not declared as = delete.

Because ref-qualifiers are applicable only to nonstatic member functions, this rule does not apply to
nonmember assignment operators.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Declare Assignment Operators by Using Ref-Qualifier &

This example shows how Polyspace flags assignment operators and increment or decrement
operators when their declarations do not specify the ref-qualifier &.

#include<cstdint>
class Obj
{
public:
 Obj() = default;
 Obj& operator=(Obj const&) & = default; //Compliant
 Obj& operator=(Obj&&) & = default; //Compliant
 Obj& operator++() & noexcept; //Compliant
 Obj& operator--() noexcept; //Noncompliant
 Obj& operator<<=(Obj const&) noexcept; //Noncompliant
 Obj& operator>>=(Obj const&) & noexcept;//Compliant
 Obj& operator+=(Obj const&)&; //Compliant
 Obj& operator-=(Obj const&); //Noncompliant
 Obj& operator*=(Obj const&)= delete; //Compliant
 Obj& operator+(Obj const&)&; //Compliant
};

Obj& operator|=(Obj& f,const std::int32_t i) // Rule does not apply
{
 return f;
}

Obj& Obj::operator+=(Obj const&) & // Polyspace flags the declaration
{
 return *this;
}
Obj F1() noexcept
{
 return Obj{};
}
int main()
{
 Obj c;
 //F1() += c; // Compilation Error
 //F1() = c; // Compilation Error
 F1() -= c; // Silent Bug
}

 AUTOSAR C++14 Rule A12-8-7

25-299

In main(), the assignment operators +=, -=, and = are used with an rvlaue input. Because the
declarations of the operators += and = specify the ref-qualifier &, using these operators with an rvalue
input results in a compilation failure. The operator -= is declared without the reference qualifier &.
Using this operator with an rvalue input creates a silent bug.

• Polyspace flags nondeleted member assignment operators, increment operators, and decrement
operators that do not specify the ref-qualifier & in their declarations.

• When a member assignment operator is declared without the reference qualifier & in a class and
defined elsewhere, Polyspace flags the declaration.

• Polyspace does not flag nonmember operators without the ref-qualifier & because this rule applies
only to nonstatic member functions.

• Polyspace does not flag deleted operators because using the ref-qualifier & on a deleted operator
has no impact on the code.

Check Information
Group: Special member functions
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-300

AUTOSAR C++14 Rule A13-1-2
User defined suffixes of the user defined literal operators shall start with underscore followed by one
or more letters

Description
Rule Definition

User defined suffixes of the user defined literal operators shall start with underscore followed by one
or more letters.

Rationale

Since C++11, you can add suffixes to literals that convert numeric values under the hood. For
instance, in code where you perform all calculations in a common unit, you can leave unit conversions
to dedicated operators and simply use literal suffixes for the units when defining constant values.

In this example, the literal suffixes _m and _km resolve to calls to operator"" _m() and
operator"" _km() respectively. The operators ensure that all values are converted to the same
unit.

constexpr long double operator"" _m(long double metres) {
 return metres;
}

constexpr long double operator"" _km(long double kilometres) {
 return 1000*kilometres;
}
...
long double minSteps = 100.0_m;
long double interCityDist = 100.0_km;

User defined literal suffixes must begin with an underscore (_). Literal suffixes not beginning with
underscore are reserved for the Standard Library.

Polyspace Implementation

The rule checker flags definitions of the form:

operator "" suffix

where suffix does not begin with an underscore or following the underscore, contains characters
other than letters (numbers, special characters, and so on).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Overloading

 AUTOSAR C++14 Rule A13-1-2

25-301

Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

25 AUTOSAR C++14 Rules

25-302

AUTOSAR C++14 Rule A13-2-1
An assignment operator shall return a reference to "this"

Description
Rule Definition

An assignment operator shall return a reference to "this".

Polyspace Implementation

The following operators should return *this on method, and *first_arg on plain function:

• operator=
• operator+=
• operator-=
• operator*=
• operator >>=
• operator <<=
• operator /=
• operator %=
• operator |=
• operator &=
• operator ^=
• Prefix operator++
• Prefix operator--

Does not report when no return exists.

No special message if type does not match.

Messages in report file:

• An assignment operator shall return a reference to *this.
• An assignment operator shall return a reference to its first arg.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Overloading
Category: Required, Automated

 AUTOSAR C++14 Rule A13-2-1

25-303

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-304

AUTOSAR C++14 Rule A13-2-2
A binary arithmetic operator and a bitwise operator shall return a "prvalue"

Description
Rule Definition

A binary arithmetic operator and a bitwise operator shall return a "prvalue".

Rationale

Binary arithmetic operators such as operator+() and bitwise operators such as operator|() must
return an object of type T by value without qualifiers (and not references, T&, or pointers ,T*). This
requirement makes the return types consistent with the implementation of the same operators in the
C++ Standard Library. A developer familiar with the standard operators can easily work with the
overloaded forms of the operators.

A prvalue or pure rvalue is an object that does not have a name, cannot be pointed to or referenced,
but can still be moved from. For instance, the result of a call to a function that returns by value is a
prvalue.

Polyspace Implementation

The checker flags implementations of binary and bitwise operators that return:

• A type with a qualifier such as const or volatile.
• A pointer or reference to another type.

Operators flagged by the checker include:

• Binary operators such as operator+(), operator*(), operator/(), and so on.
• Bitwise operators such as operator&(), operator|(), operator<<(), and so on.

Note that the checker does not show violations on operator<<() and operator>>() that return
std::basic_istream, std::basic_ostream, or std::basic_iostream types.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Noncompliant and Compliant Binary Operators

#include <cstdint>

class A
{
};
class B

 AUTOSAR C++14 Rule A13-2-2

25-305

{
};

A* operator+(A const&, A const&) noexcept //Noncompliant
{
 return new A{};
}
B operator+(B const&, B const&) noexcept //Compliant
{
 return B{};
}

const A operator*(A const&, A const&) noexcept //Noncompliant
{
 return A{};
}
B operator*(B const&, B const&) noexcept //Compliant
{
 return B{};
}

std::int32_t* operator/(A const&, A const&) noexcept //Noncompliant
{
 return 0;
}
std::int32_t operator/(B const&, B const&) noexcept //Compliant
{
 return 0;
}

In this example, the operator overloads that take operands of type A return objects that are not
prvalues. Hence, these operators violate the rule. For instance:

• operator+ and operator/ return pointers to objects.
• operator* returns a const-qualified object.

The equivalent operator overloads for type B return objects by value without qualifiers and comply
with the rule.

Check Information
Group: Overloading
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2021a

25 AUTOSAR C++14 Rules

25-306

AUTOSAR C++14 Rule A13-2-3
A relational operator shall return a boolean value

Description
Rule Definition

A relational operator shall return a boolean value.

Rationale

The return value from relational operators of the C++ Standard Library can be directly checked to
see if a relation is true or false. Overloads of the relational operator must be consistent with this
usage. Otherwise, users of the overloaded relational operator might see unexpected results. See
example below.

Polyspace Implementation

The checker flags overloads of relational operators that do not return a value of type bool.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Relational Operator Not Returning Boolean Value

class aClass {
 int val;
public:
 aClass(int initVal) {
 val = initVal;
 }
 bool operator<=(aClass const& comparingObj) noexcept{ //Compliant
 return(this->val <= comparingObj.val);
 }
 int operator>=(aClass const& comparingObj) noexcept { //Noncompliant
 return(this->val <= comparingObj.val? -1:1);
 }
};

void func() {
 aClass anObj(0), anotherObj(1);
 if(anObj <= anotherObj) {
 /* Do something */
 }
 if(anObj >= anotherObj) {
 /* Do something else */
 }
}

 AUTOSAR C++14 Rule A13-2-3

25-307

In this example, the overload of operator<= returns a boolean value but the overload of
operator>= does not return a boolean value. However, in function func, the operators <= and >=
are used as if a boolean value is returned from the overloaded operators. Because the overload of
operator>= does not return the value zero, the second if statement is always true, a result that you
might not expect.

Check Information
Group: Overloading
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

25 AUTOSAR C++14 Rules

25-308

AUTOSAR C++14 Rule A13-3-1
A function that contains "forwarding reference" as its argument shall not be overloaded

Description
Rule Definition

A function that contains "forwarding reference" as its argument shall not be overloaded.

Rationale

Suppose that you define a template function func with a forwarding reference parameter T&& like
this:

template <typename T> void func(T&& param) {}

Suppose that you overload this template function with another function:

void func(int param) {}

When the function func is called, it is difficult to tell whether the call resolves to the template
function or the overload, without working through the intricacies of the overload resolution
mechanism. A developer or reviewer can easily mistake which function is called after the overload
resolution. For instance, the function call:

short var;
//...
func(var);

resolves to the template function because it is an exact match after template instantiation, but a
developer or reviewer might think that the overload is called because the type short promotes to
int.

To avoid this issue, do not overload on template functions that take forwarding references. For
template constructors, you can constrain the constructors to not match the overloads (using
std::enable_if). When constrained this way, there is no scope for confusion between the template
constructor and its overloads.

Polyspace Implementation

The checker flags definitions of template functions that contain forwarding references (template
parameters with type T&&) if those functions are also overloaded. Events below the checker result
show the locations of the overloads. If an overload is an implicitly defined member function such as a
constructor, the corresponding event points to the containing class.

The checker shows you all template functions with forwarding references that are overloaded. If you
determine that an overload cannot cause confusion, add a comment to your result or code to avoid
another review. See “Address Polyspace Results Through Bug Fixes or Justifications” or “Address
Results in Polyspace Access Through Bug Fixes or Justifications”.

 AUTOSAR C++14 Rule A13-3-1

25-309

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Template Function with Forwarding Reference Overloaded

#include <cstdint>

template <typename T>
void func(T&& t) noexcept(false) //Noncompliant
{
}

void func(
 std::int32_t&& t) noexcept
{
}

In this example, the function func(std::int32_t &&) overloads the template function with the
same name, and violates the rule.

Template Constructor Overloaded by Implicit Constructor

#include <type_traits>

class A
{
public:
 template<typename T>
 A(T &&value) {} //Noncompliant
};

class B
{
public:
 template<typename T,
 std::enable_if_t<! std::is_same<std::remove_cv_t<
 std:: remove_reference_t<T>>, B>::value> * = nullptr>
 B(T &&value) {} //Compliant
};

A getObjA();
B getObjB();

void func() {
 A objA = getObjA();
 B objB = getObjB();
}

In this example, class A has a template constructor that is overloaded by the implicit move
constructor of class A. The overloading violates the rule.

25 AUTOSAR C++14 Rules

25-310

Class B circumvents this problem by constraining the template constructor to not match the implicit
constructor. In this example, the implicit constructor move constructor is called when the function
getObjB returns an object of type B.

Check Information
Group: Overloading
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2021a

 AUTOSAR C++14 Rule A13-3-1

25-311

AUTOSAR C++14 Rule A13-5-1
If "operator[]" is to be overloaded with a non-const version, const version shall also be implemented

Description
Rule Definition

If "operator[]" is to be overloaded with a non-const version, const version shall also be implemented.

Rationale

Typically, you overload the subscript operator operator[] to provide read and write access to
individual elements of an array or similar structure contained in a class. If you implement a non-
const overload of operator[], you must also implement a const version of this overload.
Otherwise, you cannot use operator[] to read elements of a const object.

This rule allows the implementation of a const overload of operator[] for read-only access without
the corresponding non-const overload.

Polyspace Implementation

Polyspace flags the definition of the non-const member function if no corresponding const version
of the member function is implemented.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
const Version of non-const Member Function not Implemented

#include <memory>
#include <iostream>

class MyList
{
private:
 static constexpr std::int32_t maxSize = 10;
 std::int32_t container[maxSize];

public:
 std::int32_t& operator[](std::int32_t index) //compliant, non-const version
 {
 return container[index];
 }
 const std::int32_t& operator[](std::int32_t index) const //compliant, const version
 {
 return container[index];
 }
};

25 AUTOSAR C++14 Rules

25-312

class MyList_nc
{
private:
 static constexpr std::int32_t maxSize = 10;
 std::int32_t container[maxSize];

public:
 std::int32_t& operator[](std::int32_t index) //non-compliant, non-const version only
 {
 return container[index];
 }

};

void func() noexcept
{
 MyList list;
 list[2] = 3; // Uses non-const version of operator[]
 std::cout << list[2] << std::endl;

 const MyList clist = {};
 std::cout << clist[2] << std::endl; // Uses const version of operator[]

}

In this example, the overloads of operator[] in class MyList are compliant because both the
const and non-const versions of the overload are implemented. In class MyList_nc, the member
function is not compliant because only the non-const version was implemented.

Check Information
Group: Overloading
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

 AUTOSAR C++14 Rule A13-5-1

25-313

AUTOSAR C++14 Rule A13-5-2
All user-defined conversion operators shall be defined explicit

Description
Rule Definition

All user-defined conversion operators shall be defined explicit.

Rationale

If you do not define a user-defined conversion operator with the explicit specifier, compilers can
perform implicit and often unintended type conversions from the class type with possibly unexpected
results.

The implicit conversion can occur, for instance, when a function accepts a parameter of a type
different from the class type that you pass as argument. For instance, the call to func here causes an
implicit conversion from type myClass to int:

class myClass {} {
 ...
 operator int() {...}
};
myClass myClassObject;

void func(int) {...}
func(myClassObject);

Polyspace Implementation

The checker flags declarations or in-class definitions of user-defined conversion operators that do not
use the explicit specifier.

For instance, operator int() {} can convert variable of the current class type to an int variable
both implicitly and explicitly but explicit operator int() {} can only perform explicit
conversions.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Missing explicit Keyword on Conversion Operator

#include <cstdint>

class MyClass {
public:
 explicit MyClass(int32_t arg): val(arg) {};
 operator int32_t() const { return val; } //Noncompliant

25 AUTOSAR C++14 Rules

25-314

 explicit operator bool() const { //Compliant
 if (val>0) {
 return true;
 }
 return false;
 }
private:
 int32_t val;
};

void useIntVal(int32_t);
void useBoolVal(bool);

void func() {
 MyClass MyClassObject{0};
 useIntVal(MyClassObject);
 useBoolVal(static_cast<bool>(MyClassObject));
}

In this example, the conversion operator operator int32_t() is not defined with the explicit
specifier and violates the rule. The conversion operator operator bool() is defined explicit and
does not violate the rule.

When converting to a bool variable, for instance, in the call to useBoolVal, the explicit keyword
in the conversion operator ensures that you have to perform an explicit conversion from the type
MyClass to bool. There is no such requirement when converting to an int32_t variable. In the call
to useIntVal, an implicit conversion is performed.

Check Information
Group: Overloading
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

 AUTOSAR C++14 Rule A13-5-2

25-315

AUTOSAR C++14 Rule A13-5-3
User-defined conversion operators should not be used

Description
Rule Definition

User-defined conversion operators should not be used.

Rationale

User-defined conversion operators might be called when you neither want nor expect them to be
called, which can result in unexpected type conversation errors. For instance, in this code snippet,
the user-defined conversion operator converts type customType to double to allow mixed mode
expressions:
class customType
{
 public:
 customType(int base, int exponent);
 //....
 operator double() const; // Conversion operator, convert customType to double
};

customType var1(2,5);
double var2 = 0.5 * var1; //Conversion operator called, converts var1 to double

While this conversion might be expected, if you attempt to print var1 by using cout << var1;
without defining operator << for customType objects, the compiler uses the conversion operator
to implicitly convert and print var1 as a double.

To avoid these unexpected conversions, replace the conversion operator with an equivalent function.
The function must then be called explicitly. If you cannot avoid using conversion operators in your
application, see rule AUTOSAR C++14 Rule A13-5-2.

Polyspace Implementation

Polyspace flags all calls to conversion operators.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of a User-Defined Conversion Operator
class customType
{
public:
 customType(int base, int exponent): b(base), exp(exponent) { /* ...*/}
 //....
 operator double() const;
 double as_double() const {/* ...*/}

private:
 int b; //base
 int exp; //exponent

25 AUTOSAR C++14 Rules

25-316

};

int func(void)
{

 customType var1(2, 5);
 double var2 = 0.5 * var1; //Non-compliant
 double var3 = 0.5 * var1.as_double(); // Compliant

 return 0;
}

In this example, the conversion of var1 to a double in the declaration of var2 uses conversion
operator customType::operator double. This conversion is non-compliant because it uses a user-
defined conversion operator.

The type conversion in the declaration of var3 is compliant because it uses a function to handle the
conversion, and this function must be called explicitly. This ensures that the conversion is expected.

Check Information
Group: Overloading
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14) | AUTOSAR C++14 Rule A13-5-2

Topics
“Check for Coding Standard Violations”

Introduced in R2021a

 AUTOSAR C++14 Rule A13-5-3

25-317

AUTOSAR C++14 Rule A13-5-5
Comparison operators shall be non-member functions with identical parameter types and noexcept

Description
Rule Definition

Comparison operators shall be non-member functions with identical parameter types and noexcept.

Rationale

Comparison operators must not compare objects that are of different types. If you pass objects of
different types as arguments to a comparison operator, the operator must be able to convert one
argument to the data type of the other.

Member functions have the inherent limitation that the implicit object parameter (the one referred to
by the this pointer) cannot be converted to another data type. To support data type conversions
when required, define comparison operators as non-member functions.

Comparison expressions are fundamental operations and must be noexcept. The comparison
operators covered by this rule are:

• ==
• !=
• <
• <=
• >
• >=

Note Declare comparison operators as friend to enable them to access internal data similar to a
member function. This practice is allowed by the exception in rule A11-3-1.

Polyspace Implementation

The checker flags comparison operators that are defined as member functions. The checker also flags
non-member comparison operators that:

• Compare nonidentical parameter types, such as a class type and int.
• Are not declared with the noexcept specifier.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

25 AUTOSAR C++14 Rules

25-318

Examples
Noncompliant Member Function Declaration

The declaration of nonComp::operator::== is noncompliant because the comparison operator is
declared as a member function.
#include <cstdint>

class nonComp
{
 public:
 explicit nonComp(std::uint32_t d): m_d(d)
 {}
 bool operator ==(const nonComp& rhs) noexcept //Non-compliant; member function
 {
 return m_d == rhs.m_d;
 }

 private:
 std::uint32_t m_d;
};

class Compliant
{
 public:
 explicit Compliant(std::uint32_t d): m_d(d)
 {}
 friend bool operator ==(Compliant const& lhs, Compliant const& rhs) noexcept
 {
 return lhs.m_d == rhs.m_d;
 }
 private:
 std::uint32_t m_d;
};
// Compliant; non-member, identical parameter types, noexcept

The class Compliant declares operator::== as a friend, so this comparison operator is
compliant.

Noncompliant Declaration with Different Types

The first declaration of operator::== compares two different data types, because of which this
comparison operator is noncompliant.

#include <cstdint>

class nonComp
{
 using Self = nonComp;
};

class MemberFunc
{
 using Self = MemberFunc;
};

bool operator ==(const nonComp& lhs, //noncompliant; comparison operator for different data types.
 const MemberFunc& rhs) noexcept
{
 return true;
}

bool operator ==(const nonComp& lhs, const nonComp& rhs) noexcept
{
 return true;
} //compliant; because it compares the same data types.

The second declaration of operator::== compares the same data types, so this comparison
operator is compliant.

 AUTOSAR C++14 Rule A13-5-5

25-319

Noncompliant Declaration That Is Not Noexcept

nonComp::operator::== is not declared as a noexcept, so this comparison operator is
noncompliant.
#include<cstdint>
class nonComp
{
 public:
 explicit nonComp(std::uint32_t d): m_d(d)
 {}
 friend bool operator ==(nonComp const& lhs, //Noncompliant; member function isn't noexcept
 nonComp const& rhs)
 {
 return lhs.m_d == rhs.m_d;
 }

 private:
 std::uint32_t m_d;
};

class Compliant
{
 public:
 explicit Compliant(std::uint32_t d): m_d(d)
 {}
 friend bool operator ==(Compliant const& lhs, Compliant const& rhs) noexcept
 {
 return lhs.m_d == rhs.m_d;
 }

 private:
 std::uint32_t m_d;
};
// Compliant; non-member, identical parameter types, noexcept

Compliant::operator::== is declared as a noexcept, so this comparison operator is compliant.

Check Information
Group: Overloading
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-320

AUTOSAR C++14 Rule A13-6-1
Digit sequences separators ' shall only be used as follows: (1) for decimal, every 3 digits, (2) for
hexadecimal, every 2 digits, (3) for binary, every 4 digits

Description
Rule Definition

Digit sequences separators ' shall only be used as follows: (1) for decimal, every 3 digits, (2) for
hexadecimal, every 2 digits, (3) for binary, every 4 digits.

Rationale

Since C++14, you can introduce a separator ' to separate digits in a digit sequence for better
readability. For consistency across your code, follow this convention when entering the digit sequence
separator:

• In decimal values, starting from the right, place the separator after every three digits, for
instance, 3'000'000.

• In hexadecimal values, starting from the right, place the separator after every two digits, for
instance, 0xF'FF'0F.

• In binary values, starting from the right, place the separator after every four digits, for instance,
0b1001'0011'0100.

If you are consistent across your code, a developer or code reviewer can follow your code more easily
and possibly estimate the order of magnitude of a value from the digit sequence separators.

Polyspace Implementation

This checker follows the specifications of the AUTOSAR C++14 rule.

For integers, the checker starts checking from the right. For instance, the checker raises a violation
on the value 45'30'00, because starting from the right, the digit sequence separator appears after
two digits instead of the expected three.

For floating-point numbers, the checker begins the check from the decimal point and proceeds
outwards. The checker checks:

• The part before the decimal starting from the right.
• The part after the decimal starting from the left.

For floating-point numbers with a mantissa and exponent, the same rule as integers applies to the
exponent. For instance, in the decimal notation, the checker checks exponents starting from the right
and raises a violation if the digit sequence separators are placed, for instance, after every two digits
instead of three.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

 AUTOSAR C++14 Rule A13-6-1

25-321

Examples
Placement of Digit Sequence Separators in Integers

#include <cstdint>

std::uint32_t largeNum = 3'0000'0000; //Noncompliant
std::uint32_t smallerNum = 3'000'000; //Compliant
std::uint32_t evenSmallerNum = 3'00'00; //Noncompliant

std::uint32_t largeHexNum = 0xFF'FF'FF'FF; //Compliant
std::uint32_t smallerHexNum = 0xFFF'FFF; //Noncompliant

In this example, the placement of digit sequence separators is compliant if the separators follow the
expected convention:

• In decimal numbers, starting from the right, the separator is placed after every three digits.
• In hexadecimal numbers, starting from the right, the separator is placed after every two digits.

Placement of Digit Sequence Separators in Floating-Point Numbers

#include <cstdint>

float PI = 3.1'415'926'53; //Noncompliant
float pi = 3.141'592'653; //Compliant;

float one_LB_to_KG = 0.45'359'237; //Noncompliant
float one_lb_to_kg = 0.453'592'37; //Compliant

In this example, the same floating-point number is assigned to two different variables but the
placement of the digit sequence separators is different. The placement is compliant if the separators
follow the expected convention:

• For digits after the decimal, starting from the left, the separator is placed after every three digits.
• For digits before the decimal, starting from the right, the separator is placed after every three

digits.

For floating-point numbers, the need for a digit sequence separator before a decimal is typically a
rare occurrence. For instance, if you store a floating point-number in normalized form, the
mantissa has only one digit before the decimal.

Check Information
Group: Overloading
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2021a

25 AUTOSAR C++14 Rules

25-322

AUTOSAR C++14 Rule A14-1-1
A template should check if a specific template argument is suitable for this template

Description
Rule Definition

A template should check if a specific template argument is suitable for this template.

Rationale

A template defines the operations of a class or function for generic template types. If these operations
require that the template types have specific characteristics, for instance the data type must be copy
constructible, check the template arguments to ensure that they are suitable and have the required
characteristics. Typically, you use static_assert assertions to perform this check at compile time,
for instance, static_assert(std::is_copy_constructible<T>).

Polyspace Implementation

Polyspace flags template classes and functions unless one of the following is true:

• The template contains at least one static_assert assertion, even if that assertion does not test
the characteristics of the template parameters.

• The template is explicitly fully specialized even when it does not contain any static_assert
assertions.

Polyspace does not flag template declarations.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Template Does Not Check Template Arguments
#include <cstdint>
#include <type_traits>

template<typename T>
class myTemplate // Compliant. Use of static_assert
{

 static_assert(std::is_copy_constructible<T>(),
 "Template type not copy constructible.");
 //...

};
template<typename T>
class specializedClass //Non-compliant
{
};

template<>
class specializedClass<std::int32_t> // Compliant. Explicit full specialization
{
};

 AUTOSAR C++14 Rule A14-1-1

25-323

class myClass //Not a template
{
public:
 myClass() = default;
 myClass(myClass const&) = delete;

};

class myOtherClass //Not a template
{

};

template<typename T>
void func_decl(T const& obj) noexcept(false); // Compliant. Template declaration

template <typename T>
void func_def(T const& obj) noexcept(false) //Non-compliant
{

}

void F()
{

 //myTemplate<myClass> a; // myClass is not copy constructible. Compile-time error.
 myTemplate<myOtherClass> b; //myOtherClass is copy constructible.
}

In this example, templates specializedClass and func_def are non-compliant because these
templates do not check their template types.

Polyspace does not flag myTemplate because it uses static_assert to check whether the template
type is copy-constructible. If the instantiation of myTemplate<myClass> in function F() is
uncommented, the assertion results in a compile-time error.

Similarly, Polyspace does not flag:

• Explicitly fully specialized template specializedClass<std::int32_t>.
• Function template declaration func_decl.

Check Information
Group: Templates
Category: Advisory, Non-automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2021b

25 AUTOSAR C++14 Rules

25-324

AUTOSAR C++14 Rule A14-5-2
Class members that are not dependent on template class parameters should be defined in a separate
base class

Description
Rule Definition

Class members that are not dependent on template class parameters should be defined in a separate
base class.

Rationale

To access a member of a template class, you have to instantiate the template. If the member is not
dependent on the template parameter, this instantiation step is not necessary. For instance, the
members anotherMember and someotherMember of this template class aClass do not depend on
the parameter T:

template <typename T>
class aClass {
 T aMember
 int anotherMember;
 int someotherMember
}

However, to access these members, you have to instantiate the template class aClass. To avoid the
unnecessary template instantiation, do not include these members in the template declaration.

Including this member in the template declaration also causes unnecessary code bloat. Compilers
generate a separate copy of a template class for each instantiation of a template. If a class member is
not dependent on the template parameter, an identical copy of this member is created for each
template instantiation.

Polyspace Implementation

The checker flags data members of template classes that are not dependent on template parameters.
The checker does not flag member functions.

If multiple data members of a template are flagged by this checker, create a base class for the
template that aggregates these data members.

In some cases, you might not want to strictly adhere to this rule. For instance, if only a single member
of the template class is not dependent on the template parameter, you might not want to create a
separate base class for this member. If you do not want to fix the issue, add comments to your result
or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

 AUTOSAR C++14 Rule A14-5-2

25-325

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Template Classes That Have Unnecessary Members

#include <cstdint>

template <typename T>
class aDataArray {
 T data[100];
 int32_t metadata[2]; //Noncompliant
 int32_t info; //Noncompliant
};

class metadataArray {
 int32_t metadata[2];
 int32_t info;
};

template <typename T>
class anotherDataArray: public metadataArray { //Compliant
 T data[100];
};

In this example, the template class aDataArray includes data members metadata and info that
are not dependent on the type parameter of the template, T. The template class anotherDataArray
avoids the unnecessary instantiation. This class is derived from a base class metadataArray, which
aggregates data members that are not dependent on a type.

Check Information
Group: Templates
Category: Advisory, Partially automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

25 AUTOSAR C++14 Rules

25-326

AUTOSAR C++14 Rule A14-5-3
A non-member generic operator shall only be declared in a namespace that does not contain class
(struct) type, enum type or union type declarations

Description
Rule Definition

A non-member generic operator shall only be declared in a namespace that does not contain class
(struct) type, enum type or union type declarations.

Rationale

This rule forbids placing generic operators in the same namespace as class (struct) type, enum type,
or union type declarations. If the class, enum or union types are used as template parameters, the
presence of generic operators in the same namespace can cause unexpected call resolutions.

Consider the namespace NS that combines a class B and a generic form of operator==:

namespace NS {
 class B {};
 template <typename T> bool operator==(T, std::int32_t);
}

If you use class B as a template parameter for another generic class, such as this template class A:

template <typename T> class A {
 public:
 bool operator==(std::int64_t);
}

template class A<NS::B>;

the entire namespace NS is used for overload resolution when operators of class A are called. For
instance, if you call operator== with an int32_t argument, the generic operator== in the
namespace NS with an int32_t parameter is used instead of the operator== in the original
template class A with an int64_t parameter. You or another developer or code reviewer might
expect the operator call to resolve to the operator== in the original template class A.

Polyspace Implementation

For each generic operator, the rule checker determines if the containing namespace also contains
declarations of class types, enum types, or union types. If such a declaration is found, the checker
flags a rule violation on the operator itself.

The checker also flags generic operators defined in the global namespace if the global namespace
also has class, enum or union declarations.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

 AUTOSAR C++14 Rule A14-5-3

25-327

Examples
Generic Operator in Same Namespace as Class Type

#include <cstdint>

template <typename T> class Pair {
 std::int32_t item1;
 std::int32_t item2;
 public:
 bool operator==(std::int64_t ItemToCompare);
 bool areItemsEqual(std::int32_t itemValue) {
 return (*this == itemValue);
 }
};

namespace Operations {
 class Data {};
 template <typename T> bool operator==(T, std::int32_t); //Noncompliant
}

namespace Checks {
 bool checkConsistency();
 template <typename T> bool operator==(T, std::int32_t); //Compliant
}

template class Pair<Operations::Data>;

In this example, the namespace Operations violates the rule because it contains the class type Data
alongside the generic operator==. The namespace Checks does not violate the rule because the
only other declaration in the namespace, besides the generic operator==, is a function declaration.

In the method areItemsEqual in template class Pair<Operations::Data>, the == operation
invokes the generic operator== method in the Operations namespace. The invocation resolves to
this operator== method based on the argument data type (std_int32_t). This method is a better
match compared to the operator== method in the original template class Pair.

Check Information
Group: Templates
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

25 AUTOSAR C++14 Rules

25-328

AUTOSAR C++14 Rule A14-7-1
A type used as a template argument shall provide all members that are used by the template

Description
Rule Definition

A type used as a template argument shall provide all members that are used by the template.

Rationale

A template can define operations on a generic type through one or more member variables or
member functions. If the type that you use to instantiate the template does not provide all of the
members that the template uses, your program might be ill-formed and might contain syntax or
semantic errors.

For example, in the following code, template TmplClass declares a member function
someProperty() but type myType does not. The instantiation of TmplClass by using myType is
noncompliant and, as a result of the missing someProperty() function, inst.func(); causes a
compilation error.
template <typename T>
class TmplClass
{
public:
 void func()
 {
 T t;
 t.someProperty();
 }
};
struct myType {
};

void Instance() noexcept
{
 TmplClass<myType> inst; //Non-compliant
// inst.func(); //compilation error, struct myType has no member function someProperty()
}

Polyspace Implementation

• Polyspace flags class, struct, or union template instantiations when the template parameter
does not contain all of the members that the template uses.

If you review results in the Polyspace desktop or web interfaces, in the template definition, the
software highlights the members that are missing from the template parameter.

• Polyspace does not flag:

• Function template instantiations.
• Template instantiations that use an incomplete type as the template parameter.
• Template instantiations that use a template parameter, where the missing member is a member

type (nested type) or a member template.

 AUTOSAR C++14 Rule A14-7-1

25-329

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Template Argument Does Not Provide All Members Used by Template

class IncompleteType;
class MyClass
{

 struct MyStruct {
 int Field1;
 int Field2;
 };

 struct MyStructArray {
 int Field3[12];
 };

public:
 MyStruct property1;
 int property2[10];
 MyStruct property3[10];
 MyStructArray property4;

};

template <typename T>
class TemplClass
{
public:
 void fooA()
 {
 T t;

 t.property1 = {1, 2};
 t.property2[5] = 5;
 t.property3[2].Field1 = 6;
 t.property4.Field3[4] = 10;

 }
};

class MyType
{
public:
 int rank;
};

class MyOtherType
{
public:
 int property;

25 AUTOSAR C++14 Rules

25-330

};

template <typename T1, typename T2>
class TemplClass2Param
{
 void func()
 {
 T1 t1;
 T2 t2;
 t1.rank = 5;
 t2.rank2 = 6;
 }
};

void instantiate(void)
{
 TemplClass<MyClass> var; // Compliant
 TemplClass<IncompleteType> varFromIncomplete; // Compliant
 TemplClass2Param<MyType, MyOtherType> otherVar; //Non-compliant

}

In this example, the first instantiation of template TmplCass by using template parameter MyClass
is compliant because MyClass provides all the members that the template uses.

Polyspace does not flag the second instantiation of TmplCass that uses incomplete type
IncompleteType.

The instantiation of TmplClass2Param is noncompliant because one of the template parameters
(MyOtherType) does not provide a member variable rank2 that the template uses.

Member Type or Member Template Missing from Template Parameter Used for Instantiation
class MyClass
{
 public:
 int var;
 void foo(int);
 typedef int nestedtype; // member type
 template<typename T>
 void tmpl_func() { } //member template
};

template <typename T>
class TmplClass {
 public:
 void func() {
 T t;
 int j = t.var;
 t.foo(j);
 typename T::otherNestedType newvar; //member type not in MyClass
 newvar = 5;

 t.template other_tmpl_func<int>(); //member template not in MyClass
 }
};

void bar (void) {
 TmplClass<MyClass> instance; // Compliant
}

In this example, template parameter MyClass does not have a member type otherNestedType or a
member template other_tmpl_function, but the instantiation TmplClass<MyClass> instance
is not flagged.

 AUTOSAR C++14 Rule A14-7-1

25-331

Check Information
Group: Templates
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2021b

25 AUTOSAR C++14 Rules

25-332

AUTOSAR C++14 Rule A14-7-2
Template specialization shall be declared in the same file (1) as the primary template (2) as a user-
defined type, for which the specialization is declared

Description
Rule Definition

Template specialization shall be declared in the same file (1) as the primary template (2) as a user-
defined type, for which the specialization is declared.

Rationale

Observing this rule avoids situations where the behavior is undefined. For instance, if a compiler sees
a partial specialization of a template after it has instantiated the template, the behavior is undefined.
If you specialize a template in the same file as the template, this situation is less likely to occur.

You can also easily extend compile-time interfaces through specialization since the template and its
specialization are in the same file and part of the same translation unit. The same reasoning applies
to the requirement that a template specialization must be in the same file as the type for which the
template is specialized.

Polyspace Implementation

The checker checks each template specialization and raises a violation if:

• The specialization is not in the same file as the template that is specialized.
• The specialization is not in the same file as the user-defined type for which the template is

specialized.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Templates
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

 AUTOSAR C++14 Rule A14-7-2

25-333

AUTOSAR C++14 Rule A14-8-2
Explicit specializations of function templates shall not be used

Description
Rule Definition

Explicit specializations of function templates shall not be used.

Rationale

Explicit specialization of function templates can cause unexpected issues with overload resolution in
C++. Overload resolution:

• First searches for a non-template, plain-old-function that has a matching parameter list.
• If such a function is not available, overload resolution selects the closest matching function

template.
• After a function template is selected, the compiler searches for a suitable specialization of the

template.

Specializing a template does not change the order of the overload resolution process, which can
result in confusing and unexpected behavior. Consider code snippet:

//(a) base template
template<class T> void f(T);

//(b) specialization of (a)
template<> void f<>(int*);
//...

//(c) overloads (a)
template<class T> void f(T*);

//...
main(){
 int *p;
 f(p);
}

When f() is called with an int* in main(), you might expect the specialization for int*, marked
(b), to be called. The compiler resolves the call to f() as follows:

1 The compiler searches for a plain-old-function with input type int*.
2 Because there is no such function, the compiler searches for a function template that has the

closest matching parameter list.
3 The template (c), which takes a generic pointer as input, is the closest match for f(int*).
4 The template (c) is not specialized. The overload resolution process stops and calls the template

in (c).

Even though a specialized template for int* type input is defined in (b), the overload resolves to the
template in (c) instead, which can be unexpected.

25 AUTOSAR C++14 Rules

25-334

When you specialize an overloaded function template, the overload resolution process can get more
confusing. Which among the overloaded templates gets specialized depends on the order of
declaration. Consider the code snippet:

//(a)
template <typename T> void F1(T t){}
//(b)
template <typename T> void F1(T* p){}
//(x): Specialization of template
template <> void F1<>(uint16_t* p){}

You cannot determine whether (x) specializes (a) or (b) from the declaration alone. it depends on the
declaration order. For instance, in the preceding case (x) specializes (b). But in this case, (x)
specializes (a):

//(a)
template <typename T> void F1(T t){}
//(x): Specialization of template
template <> void F1<>(uint16_t* p){}
//(b)
template <typename T> void F1(T* p){}

To avoid confusing code and unexpected behavior, avoid specializing function templates. If you must
specialize a function template, then write a single function template that delegates to a class
template. For example, in this code, a function template f() delegates to the class
f_implementation.

template<class T> class f_implementation;

template<class T> void f(T t) {
 FImpl<T>::f(t); //Don't specialize function template
}

template<class T> class f_implementation {
 static void f(T t); // Specializing class templates is permissible.
}

Delegating to a class template also enables partial specialization.

Polyspace Implementation

If you explicitly specialize a function template, Polyspace flags the function template.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Specializing Function Templates

This example shows how Polyspace flags specialized function templates.

#include <cstdint>
#include <memory>
#include <iostream>

 AUTOSAR C++14 Rule A14-8-2

25-335

//(a)
template <typename T> void F1(T t){
 std::cout << "(a)" << std::endl;
}
//(x) specializes (a)
template <> void F1<>(uint16_t* p){// Noncompliant
 std::cout << "(x)" << std::endl;
}
//(b) overloads (a)
template <typename T> void F1(T* p){// Compliant
 std::cout << "(b)" << std::endl;
}
//(y) specializes (b)
template <> void F1<>(uint8_t* p){// Noncompliant
 std::cout << "(c)" << std::endl;
}
//(d) plain old function overloads (a) and (b)
void F1(uint8_t* p){ // Compliant
 std::cout << "(d)" << std::endl;
}

int main(void)
{
 auto sp8 = std::make_unique<uint8_t>(3);
 auto sp16 = std::make_unique<uint16_t>(3);
 F1(sp8.get()); //calls (d), might expect (y)
 F1(sp16.get()); //calls (b), might expect (x)
 return 0;
}

When the function F1() is called in main, overload resolution determines which instance of F1() is
called.

• When F1() is invoked with pointers to uint8_t, the compiler calls the plain-old-function (d)
because it takes precedence. You might incorrectly expect the specialization (y) to be called.

• When F1() is invoked with pointers to uint16_t, the compiler calls the overloaded template (b)
because it is the closest matching template. You might incorrectly expect the specialization (x) to
be called.

Specializing function templates can cause confusion and unexpected results. Polyspace flags the
specialized function templates (x) and (y).

Check Information
Group: Templates
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

25 AUTOSAR C++14 Rules

25-336

AUTOSAR C++14 Rule A15-1-1
Only instances of types derived from std::exception should be thrown

Description
Rule Definition

Only instances of types derived from std::exception should be thrown.

Rationale

Raising generic objects as exceptions can make your code difficult to read and reuse. Consider this
code where exceptions are raised in two different try-catch blocks.

try{
 //..
 throw 1; // 1 means logic error;
}
catch(...){
 //...
}
//...
try{
 //...
 throw std::logic_error{"Logic Error"};
}
catch(std::exception& e){
 //..
}

In the first code block, the cause or the meaning of this exception is not clear. An ambiguous
exception such as this one can make the code difficult to read and reuse. These type of generic
exceptions might also clash with exceptions raised elsewhere in the code, making the exceptions
more difficult to handle. This rule states that such generic objects are not acceptable as exception
objects.

In the second code block, the meaning and cause of the exception is clearly communicated by raising
a specific and unique type of object as an exception. Such throw statements also match standard
conventions. Clearly communicating the developer intent, adhering to the standard conventions, and
raising unique type of exceptions make the code easy to read, understand, and reuse.

The class std::exception provides a consistent interface to raise unique exceptions corresponding
to specific errors. It is standard convention to use this interface for raising exceptions. To make your
code readable and reusable, raise objects of specific types that are derived from std::exception as
the exception. Generic objects of type std::exception cannot be unique. Such exceptions violate
this rule.

Polyspace Implementation

• Polyspace flags a throw statement if the type of the raised object is not a class that is publicly
derived from std::exception.

 AUTOSAR C++14 Rule A15-1-1

25-337

• If the raised object is part of a multiple inheritance hierarchy, then Polyspace flags the object if
none of the base classes derive publicly from std::exception or if the base classes do not
include std::exception.

• If you use a throw; statement without an argument in a catch block, Polyspace does not flag the
throw; statement.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Raise Exception by Using Classes That Are Publicly Derived from std::exception

This example shows how Polyspace flags throw statements that raise objects of a noncompliant class
hierarchy.

#include <stdexcept>
#include <memory>

class ConventionalException : public std::logic_error{
public:
 using std::logic_error::logic_error;
};
class CustomException {};
class CustomException_derived : public CustomException {};
class PrivateDerived : private std::exception {};
class ProtectedDerived : protected std::exception {};
class MultipleInheritenceCompliant :
 public ConventionalException, public CustomException {
public:
 MultipleInheritenceCompliant()
 : ConventionalException("Logic Error and Data Error") {
 }
};
class MultipleInheritenceNoncompliant :
 public ProtectedDerived, public CustomException {};

void Foo() {
 throw std::exception(); // Noncompliant
 throw CustomException(); // Noncompliant
 throw CustomException_derived(); // Noncompliant
 throw PrivateDerived(); // Noncompliant
 throw ProtectedDerived(); // Noncompliant
 throw MultipleInheritenceCompliant(); // Compliant
 throw MultipleInheritenceNoncompliant(); // Noncompliant
 throw ConventionalException{"Logic Error"};//Compliant
 throw std::make_shared<std::exception> // Noncompliant
 (std::logic_error("Logic Error"));
}

• Polyspace flags the statement throw std::exception() because it raises a generic
std::exception object, which might not be unique in your code.

25 AUTOSAR C++14 Rules

25-338

• Polyspace flags the statement throw CustomException() because the class
CustomException does not derive from std::exception. Polyspace flags the statement throw
CustomException_derived() for the same reason.

• Polyspace flags the statement throw PrivateDerived() because the class PrivateDerived
derives from std::exception privately. You cannot catch this exception by using a
catch(std::exception& e) block because of the private inheritance between
std::exception and PrivateDerived. Polyspace flags the statement throw
ProtectedDerived() for the same reason.

• Polyspace flags the statement throw MultipleInheritenceNoncompliant() because the
class MultipleInheritenceNoncompliant does not publicly derive from std::exception.

• Polyspace flags the statement throw
std::make_shared<std::exception>(std::logic_error("Logic Error")) because this
statement raises a std::shared_ptr object as an exception which does not derive from
std::exception.

• Polyspace does not flag the statements throw MultipleInheritenceCompliant() and throw
ConventionalException{"Logic Error"} because these statements raise objects of classes
that are publicly derived from std::exception.

Avoid throw Statements in Catch Blocks That Accept std::exception Objects

This example shows how Polyspace flags throw statements in a catch block.

#include <memory>
#include <stdexcept>
class MyException : public std::logic_error
{
public:
 using std::logic_error::logic_error;
 // Implementation
};
void catch_and_rethrow() {
 try {
 /* ... */
 }catch (std::exception e) {
 throw; // Compliant
 throw e; // Noncompliant
 }catch (std::exception& e) {
 throw e; // Noncompliant
 throw; // Compliant
 }catch (MyException& Error) {
 throw Error; // Compliant
 }
}

• Empty throw; statements in catch blocks might raise different types of exceptions depending on
the run-time context. Because Polyspace analyzes the throw; statements without any run-time
context-specific information, it cannot determine what kind of object an empty throw; statement
might raise. Polyspace does not flag throw; statements in catch blocks.

• Polyspace flags the statements throw e because they raise the std::exception object e as an
exception. Avoid such throw statements in catch blocks that accept references to or instances of
the std::exception class.

• Polyspace does not flag the statement throw Error because it raises an object of class
MyException that derives from std::exception.

 AUTOSAR C++14 Rule A15-1-1

25-339

Check Information
Group: Exception handling
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-340

AUTOSAR C++14 Rule A15-1-2
An exception object shall not be a pointer

Description
Rule Definition

An exception object shall not be a pointer.

Polyspace Implementation

The checker raises a violation if a throw statement throws an exception of pointer type.

The checker does not raise a violation if a NULL pointer is thrown as exception. Throwing a NULL
pointer is forbidden by AUTOSAR C++14 Rule M15-1-2.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Exception Handling
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A15-1-2

25-341

AUTOSAR C++14 Rule A15-1-3
All thrown exceptions should be unique

Description
Rule Definition

All thrown exceptions should be unique.

Rationale

If the same object is raised as exceptions in multiple places, handling these exceptions and debugging
the code can be difficult. Raising unique exception objects simplifies the debugging process. Consider
this code where multiple exceptions are raised.

void f1(){
 //...
 throw std::logic_error("Error");
}
void f2(){
 //...
 throw std::logic_error("Error");
}
void f3(){
 //...
 throw std::logic_error("f3: Unexpected Condition");
}
int main(){
 try{
 f1();
 f2();
 f3();
 catch(std::logic_error& e){
 std::cout << e.what() << '\n';
 }
 }
}

The functions f1() and f2() raise the same exception, while f3() raises a unique exception. During
debugging, you cannot determine if an exception arises from f1() or f2(). You know when an
exception arises from f3(). To make the debugging process simpler, raise unique exceptions. An
exception is unique if either of these conditions is true:

• The exception type does not occur elsewhere in your project.
• The error message or the error code does not occur elsewhere in your project.

Polyspace Implementation

Polyspace highlights throw statements that raise the same class, enum value, integer, or constant
literal as exceptions, and flags the final throw statement that raise the same object. You might want
to raise the same exception in multiple places by using a preconstructed exception object. Polyspace
does not flag throw statements that raise such preconstructed exception objects. If you raise the

25 AUTOSAR C++14 Rules

25-342

same literal object in multiple places, Polyspace does not flag it if the literal is not a constant or if the
literal is hidden behind a variable.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Raise Unique Exceptions

This example shows how Polyspace flags nonunique exceptions.

#include <iostream>
#include <sstream>
#include <stdexcept>
#include <string>

int readLog();
enum ENUM {
 ENUM_VALUE_13 = 13,
 ENUM_VALUE_14 = 14,
};
const char* value_gen(int i) {
 if (i % 2 == 0) return "value_gen-0";
 else return "value_gen-1";
}
class CustomException : public std::invalid_argument {
public:
 CustomException() : std::invalid_argument(value_gen(readLog())) {}
};
int foo0(){
 //...
 throw std::logic_error("Invalid Logic"); // Compliant
 //...
 throw std::runtime_error("Runtime Error"); // Compliant
}
int foo1(){
 //...
 throw std::logic_error(value_gen(0));
 //...
 throw std::logic_error(value_gen(2));
}
int foo2(){
//..
 throw CustomException();
//..
 throw CustomException(); // Noncompliant
}

 int foo3(){
 const int localConstInt42 = 42;
 //..
 throw 42;
 //...
 throw localConstInt42; //Noncompliant

 AUTOSAR C++14 Rule A15-1-3

25-343

}
int foo4(){
 //..
 throw "RUNTIME_ERROR";
 //...
 throw "RUNTIME_ERROR"; // Noncompliant
}
int foo5(){
 //...
 throw ENUM_VALUE_14;
 //...
 throw ENUM_VALUE_14; // Noncompliant
}

• The function foo0() raises two different types of objects as exceptions. Polyspace does not flag
the throw statements in foo0().

• The function foo1() raises two exceptions that evaluate to be the same object during run-time.
Because Polyspace analyzes the exception objects without runtime information, the exceptions
appear unique and Polyspace does not flag the throw statements.

• The function foo2() raises two exceptions that evaluate to be different objects at run-time.
Because Polyspace analyzes the exception objects without run-time information, the exceptions
appear nonunique. Polyspace highlights the throw statements in foo2() and flags the final the
throw statement.

• The function foo3() raises three exceptions by using objects that are the same at compile time.
Polyspace highlights the throw statements in foo3() and flags the final the throw statement. For
the same reason, the final throw statements in foo4() and foo5() are flagged.

Check Information
Group: Exception handling
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-344

AUTOSAR C++14 Rule A15-1-4
If a function exits with an exception, then before a throw, the function shall place all objects/
resources that the function constructed in valid states or it shall delete them.

Description
Rule Definition

If a function exits with an exception, then before a throw, the function shall place all objects/
resources that the function constructed in valid states or it shall delete them.

Rationale

When a function exits with an exception, any resource or memory that the function allocated might
not be properly deallocated. Consider this code:

FILE* FilePtr;
//...
void foo(){
 FilePtr = fopen("some_file.txt", "r");
//...
 if(/*error condition*/)
 throw ERROR_CODE;

 delete FilePtr;
}

The allocated file pointer is intended to be deallocated before the function finishes execution. But
when an exception takes place, the function exits without deleting the pointer, which results in a
memory leak. To avoid memory leaks, a function must set all resources that it allocates to a valid
state before it goes out of scope. For instance, in the preceding code example, the function must
delete the pointer FilePtr before the throw statement.

Instead of manually tracking the allocation and deallocation of resources, the best practice is to
follow the "Resource Acquisition Is Initialization" (RAII) or the "Constructor Acquires, Destructor
Releases" (CADre) design pattern. In this pattern, resource allocation is performed in constructors
and resource deallocation is performed in destructors. The lifecycle of resources are controlled by
scope-bound objects in this pattern. When functions reach the end of their scope, the acquired
resources are properly released. Consider this code:

void releaseFile(std::FILE* fp) { std::fclose(fp); }
std::unique_ptr<std::FILE, decltype(&releaseFile)> FilePtr;
//...
void foo(){
 FilePtr(std::fopen("some_file.txt"),&releaseFile);
//...
 if(/*error condition*/)
 throw ERROR_CODE;
}

Here, the unique pointer FilePTR invokes the function releaseFile to delete the allocated
resource once the function foo reaches the end of its scope, whether normally or because of an
unhandled exception.

 AUTOSAR C++14 Rule A15-1-4

25-345

C++ smart pointers such as std::unique_ptr and std::shared_ptr follow the RAII pattern.
They simplify managing the lifecycle of resources during exception handling. Avoid using raw
pointers whenever possible.

Polyspace Implementation

Polyspace flags an uncaught throw statement in a if the statement might result in resource leak. For
instance,

• A throw statement outside a try block is flagged if the allocated resources are not deallocated
before the statement.

• A throw statement in a catch block is flagged if the resources are not deallocated before raising
the exception.

Polyspace does not flag a throw statement if it is within a try block that has an appropriate handler
or if the exception is raised before allocating resources.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Deallocate Resources Before throw Statements

#include <cstdint>
#include <memory>
#include <stdexcept>
extern int sensorFlag() noexcept;
namespace Noncompliant{
 void func(){
 int* intPtr = new int;
 int data = sensorFlag();
 if(data==-1)//Error
 throw std::runtime_error("Unexpected value");//Noncompliant
 //...
 delete intPtr;
 }
}
namespace Compliant{
 void func(){
 int* intPtr = new int;
 int data = sensorFlag();
 if(data==-1){//Error
 delete intPtr;
 throw std::runtime_error("Unexpected value");//Compliant
 }
 //...
 delete intPtr;
 }
}
namespace BestPractice{
 void func(){
 std::unique_ptr<int> intPtr = std::make_unique<int>();
 int data = sensorFlag();

25 AUTOSAR C++14 Rules

25-346

 if(data==-1){//Error
 throw std::runtime_error("Unexpected value");//Compliant
 }
 //...

 }
}

In this example, the function Noncompliant::func() manages the raw pointer inPtr. The
function allocates memory for it, and then releases the memory after some operations. The function
exits with an exception when data is -1. In this case, the function exits before releasing the allocated
memory, resulting in a memory leak. To prevent memory leak, the allocated memory must be released
before raising the exception, as shown in Compliant::func.

The best practice is to follow the RAII design pattern and use unique_ptr instead of a raw pointer.
BestPractice::func shows an implementation of func that follows the RAII pattern. In this case,
the memory lifecycle is managed by the object itself. That is, once func is out of scope, the smart
pointer intPtr deletes itself and releases the memory. Because the memory management is
performed correctly by the smart pointer, BestPractice::func is simpler and safer.

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

 AUTOSAR C++14 Rule A15-1-4

25-347

AUTOSAR C++14 Rule A15-2-1
Constructors that are not noexcept shall not be invoked before program startup

Description
Rule Definition

Constructors that are not noexcept shall not be invoked before program startup.

Rationale

In C++, the compiler responds to an exception by following these steps:

• The compiler tries to match the exception with a handler in the current scope or a higher scope.
• If the exception matches with a handler, then the handler accepts the exception and begins stack

unwinding. During stack unwinding, The program execution moves from the scope that produces
the exception to the outer scopes in reverse order. The program execution then invokes the
destructors for each variable on the stack that are not destroyed yet. After stack unwinding,
program execution resumes from the line immediately after the triggered handler.

• If the exception does not match a handler, then the compiler terminates the execution in an
implementation-defined manner. That is, the exact process of program termination depends on the
particular set of software and hardware that you use. For instance, the compiler might invoke
std::terminate(), which in turn might invoke std::abort() to abnormally abort the
execution. Based on the implementation, the stack might not be unwound before the program is
aborted. If the stack is not unwound before program termination, then the destructors of the
variables in the stack are not invoked, leading to resource leak and security vulnerabilities.

Before program startup, the constructors of static or global objects are invoked to construct and
initialize these objects. If such a constructor raises an exception, the compiler might abnormally
terminate the code execution without unwinding the stack. Consider this code where the constructor
of the static object obj might cause an exception.

class A{
 A(){

 //...
 }
};

static A obj;

main(){
 //...
}

The static object obj is constructed by calling A() before main() starts. Because A() is called
before program startup, no exception handler can be matched with exceptions raised by A(). Based
on the implementation, such an exception can result in program termination without stack
unwinding, leading to memory leak and security vulnerabilities.

Because exceptions raised by constructors of static or global objects cannot be matched to an
exception handler, declare these constructors as noexcept.

25 AUTOSAR C++14 Rules

25-348

Polyspace Implementation

Polyspace flags statements where non-noexcept constructors of a static or global object are directly
invoked. It also highlights the noncompliant constructors.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Declare Constructors of Static or Global Objects as noexcept

This example shows how Polyspace flags constructors of static or global objects.

#include <cstdint>
#include <stdexcept>
#include <string>
class A
{
public:
 A() noexcept : x(0){}
 A(std::int32_t n) : x(n) {
 throw std::runtime_error("Unexpected error");
 }
 A(std::int32_t i, std::int32_t j) noexcept : x(i + j)
 {
 try {
 throw std::runtime_error("Error");
 }
 catch (std::exception& e) {
 }
 }
private:
 std::int32_t x;
};

static A a1; // Compliant
static A a2(5); // Noncompliant
static A a6(5); // Ignored because unused
static A a3(5, 10); // Compliant
A a4(5); //Noncompliant
A a5(5, 10); //Compliant
int foo_A(A a) { };

int bar_A(int value) {
 A a{value}; //Compliant
 return foo_A(a);
}
int value2b = bar_A(20); // Compliant
std::string s{"Hello World"};//Noncompliant
int value2a = foo_A(20); //Noncompliant
int convert(){

 AUTOSAR C++14 Rule A15-2-1

25-349

 return foo_A(a2);
}

• Polyspace flags the statement std::string s{"Hello World"}; because this statement
invokes the non-noexcept constructor of the string s before program startup.

• Polyspace flags the statement A a4(5); because this statement invokes the non-noexcept
constructor A(std::int32_t n) before program startup.

• Polyspace flags the statement static A a2(5); because this statement invokes the non-
noexcept constructor A(std::int32_t n) before program startup.

• Polyspace flags the statement int value2a = foo_A(20); because the implicit conversion
from int to A requires invoking the non-noexcept constructor A(std::int32_t n) before
startup.

• Polyspace does not flag the statement static A a6(5);. Because a6 is not used in this code,
the compiler does not construct the object. As a result, the non-noexcept constructor
A(std::int32_t n) is not invoked before program startup.

• Polyspace does not flag the statement A a{value}; in the body of the function bar_A() because
the object a is local, and it is not created during program startup.

Check Information
Group: Exception Handling
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

25 AUTOSAR C++14 Rules

25-350

AUTOSAR C++14 Rule A15-2-2
If a constructor is not noexcept and the constructor cannot finish object initialization, then it shall
deallocate the object's resources and it shall throw an exception

Description
Rule Definition

If a constructor is not noexcept and the constructor cannot finish object initialization, then it shall
deallocate the object's resources and it shall throw an exception.

Rationale

When a constructor abruptly terminates due to unhandled exception or failed dynamic resource
allocation, it might leave some objects in a partially constructed object, which is undefined behavior.
Before raising exceptions in class constructors, deallocate the already allocated resources. When
allocating resources, specify the new operation as std::nothrow. Alternatively, perform the
resource allocation in a try or function-try block to handle exceptions that might arise from a
failed allocation.

Polyspace Implementation

Polyspace flags a throw or new statement outside a try block in a non-noexcept class constructor if
the statement might result in resource leak. For instance:

• A throw statement outside a try block is flagged if the allocated resources are not deallocated
before the statement.

• A new statement is flagged if it is not specified as std::nothrow or wrapped in a try or
function-try block.

Polyspace ignores classes that remain unused in your code.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Deallocate Resource Before Raising Exception

#include<cstdlib>
 class complex_ptr{

 complex_ptr(){
 real = (double*)malloc(sizeof(double));
 imag = (double*)malloc(sizeof(double));
 if(real==nullptr || imag==nullptr){
 throw; //Noncompliant
 }
 }

 AUTOSAR C++14 Rule A15-2-2

25-351

 ~complex_ptr(){
 free(real);
 free(imag);
 }
 private:
 double* real;
 double* imag;

};
class complex_ptr2{

 complex_ptr2() {
 real = (double*)malloc(sizeof(double));
 imag = (double*)malloc(sizeof(double));
 if(real==nullptr || imag==nullptr){
 deallocate();
 throw; //Compliant
 }
 }
 void deallocate(){
 free(real);
 free(imag);
 }
 ~complex_ptr2(){
 deallocate();
 }
 private:
 double* real;
 double* imag;

};
void foo(void){
 complex_ptr Z;
 complex_ptr2 X;
 //...
}

In this example, the class complex_ptr is responsible for allocating and deallocating two raw
pointers to double. The constructor complex_ptr::complex_ptr() terminates with an exception
when a memory allocation operation fails. The class goes out of scope before deallocating the already
allocated resources, resulting in a partially constructed object. Polyspace flags the throw statement
in the constructor.

Similar to complex_ptr, the constructor of class complex_ptr2 raises an exception when a
memory allocation operation fails. Before raising the exception, the constructor deallocates the
allocated memory by calling deallocate(). This constructor is compliant with this rule.

Handle Exceptions Arising from new Operations in Constructors

#include<cstdlib>
#include <stdexcept>
#include <new>
 class complex_ptr{

 complex_ptr(): real(new double), imag(new double){ //Noncompliant

 }

25 AUTOSAR C++14 Rules

25-352

 ~complex_ptr(){
 delete real;
 delete imag;
 }
 private:
 double* real;
 double* imag;

};

class complex_ptr2{

 complex_ptr2() try: real(new double), imag(new double){ //Compliant

 }catch(std::bad_alloc){
 //...
 }
 ~complex_ptr2(){
 delete real;
 delete imag;
 }
 private:
 double* real;
 double* imag;

};

void foo(void){
 complex_ptr Z;
 complex_ptr2 X;
 //...
}

In this example, the constructor of complex_ptr performs new operations that might raise
exceptions. Because the constructor has no mechanism for handling these exceptions, they might
cause the constructor to abruptly terminate. Such termination might leave the object in a partially
defined state because the allocated resources are not deallocated. Polyspace flags the constructor.
The constructor of complex_ptr2 performs the new operations in a function-try block and
handles potential exceptions in a catch block. This constructor is compliant with the rule because it
handles the exceptions that might arise from the new operations.

Check Information
Group: Exception handling
Category: Required, Partially automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
AUTOSAR C++14 Rule A15-2-2
“Check for Coding Standard Violations”

Introduced in R2021a

 AUTOSAR C++14 Rule A15-2-2

25-353

AUTOSAR C++14 Rule A15-3-3
Main function and a task main function shall catch at least: base class exceptions from all third-party
libraries used, std::exception and all otherwise unhandled exceptions

Description
Rule Definition

Main function and a task main function shall catch at least: base class exceptions from all third-party
libraries used, std::exception and all otherwise unhandled exceptions.

Rationale

During the execution of main() or a task main function, different exceptions can arise. For instance:

• Explicitly raised exceptions of class std::exception
• Exceptions arising from the third-party libraries that you use
• Unexpected exceptions

If any of these exceptions cannot be matched to a handler, the compiler implicitly invokes the
function std::terminate() to abnormally terminate program execution. Depending on the
hardware and software that you use, this termination process might invoke std::abort() to abort
program execution without deleting the variables in the stack. Such an abnormal termination results
in memory leaks and security vulnerabilities.

Unhandled exceptions might cause an abnormal termination of the program execution, leading to
memory leaks and security vulnerabilities. To avoid these issues, execute the operations of main() or
task main functions in a try-catch block. In the catch blocks:

• Handle exceptions of type std::exception explicitly in appropriate catch blocks.
• Handle the base class of exceptions arising from third-party libraries.
• Handle unexpected exceptions in a catch(...) block.

Polyspace Implementation

• Polyspace flags a main() function or a task main function if :

• Unhandled exceptions are raised in the function. For example, exceptions that are raised
outside the try-catch block or in a catch block might remain unhandled.

• The function does not have a try-catch block.
• The function does not have catch blocks to explicitly handle std::exception type exceptions.
• The function does not have a catch-all or catch(...) blocks to handle unexpected exceptions.

• Polyspace does not check if exceptions from third-party libraries are handled.
• Polyspace flags a main() function or a task main function even if the unhandled exception might

not be raised.

Polyspace detects the main() function. To specify a function as a task main function, use these
compilation options:

25 AUTOSAR C++14 Rules

25-354

• -entry-points <name>
• -cyclic-tasks <name>
• -interrupts <name>

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Unhandled Exceptions in main() and Task Main Functions

This example shows how Polyspace flags main() and task main functions that do not handle all
exceptions. To specify the functions Noncompliant, Noncompliant2, and Compliant2 as task main
functions, use the compile option -entry-points Noncompliant,Noncompliant2,Compliant.

#include <stdexcept>
void f_throw() { // Compliant
 throw 1;
}
void Noncompliant() // Noncompliant
{
 try {

 } catch (std::exception& e) {
 f_throw(); // throw
 } catch (...) {
 throw;
 }
}
int Noncompliant2() // Noncompliant
{
 f_throw(); // throw
 try {

 } catch (std::exception& e) {
 } catch (...) {
 }
 return 0;
}
int Compliant() // Compliant
{

 try {
 // program code
 } catch (std::runtime_error& e) {
 // Handle runtime errors
 } catch (std::logic_error& e) {
 // Handle logic errors
 } catch (std::exception& e) {
 // Handle all expected exceptions
 }catch (...) {
 // Handle all unexpected exceptions
 }

 AUTOSAR C++14 Rule A15-3-3

25-355

 return 0;
}
int main() // Noncompliant
{

 try {
 // program code
 } catch (std::runtime_error& e) {
 // Handle runtime errors
 } catch (std::logic_error& e) {
 // Handle logic errors
 } catch (std::exception& e) {
 // Handle all expected exceptions
 }
 return 0;
}

• The function f_throw() exits with an unhandled exception. Because this function is not a main or
task main function, Polyspace does not flag it.

• The function Noncompliant() and Noncompliant2() are specified as task main functions. In
these functions, f_throw raises an exception that is not handled. Because these task main
functions do not handle all the exceptions that might arise, Polyspace flags them. Enclose
operations that might raise an exception in a try-catch block to handle exceptions that might
arise.

• The function main() does not have a catch(...) block to handle any unexpected exceptions.
Because the main() function does not handle all the exceptions that might arise, Polyspace flags
it.

• The function Compliant is specified as a task main function. This function has a catch for all the
exceptions that might arise. Polyspace does not flag it.

Check Information
Group: Exception handling
Category: Required, Partially automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-356

AUTOSAR C++14 Rule A15-3-4
Catch-all (ellipsis and std::exception) handlers shall be used only in (a) main, (b) task main functions,
(c) in functions that are supposed to isolate independent components and (d) when calling third-party
code that uses exceptions not according to AUTOSAR C++14 guidelines

Description
Rule Definition

Catch-all (ellipsis and std::exception) handlers shall be used only in (a) main, (b) task main functions,
(c) in functions that are supposed to isolate independent components and (d) when calling third-party
code that uses exceptions not according to AUTOSAR C++14 guidelines.

Rationale

Catch-all handlers such as catch(std::exception) or catch(...) blocks match many different
types of exceptions. If you handle an exception by using such a catch-all handler, you do not have
detailed and specific information about the raised exception. Such catch-all handlers cannot take
meaningful actions to handle the raised exceptions. These catch-all handlers are useful in processing
unexpected exceptions by raising the exceptions again or by properly exiting from the application.

Because catch-all handlers are useful for specific purposes, it is inefficient to use them in every
function. Use catch-all handlers in:

• Main functions
• Task main functions
• Functions that call a third-party function that might be noncompliant with AUTOSAR C++14

guidelines
• Functions that are designed to isolate independent components of your code

Polyspace Implementation

Polyspace flags catch(std::exception) and catch(...) blocks in a function if none of these are
true:

• The function is the main() function.
• The function is a task main function.
• The function calls an external or third-party function that might exit with an exception.

Polyspace detects the main() function. To specify a function as a task main function, use these
compilation options:

• -entry-points <name>
• -cyclic-tasks <name>
• -interrupts <name>

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

 AUTOSAR C++14 Rule A15-3-4

25-357

Examples
Catch-All Handlers in Task Main Functions

This example shows how Polyspace flags catch-all handlers in a task main function EntryPoint and
a nonentry-point function NonEntryPoint(). To specify the function EntryPoint as a task main
function, use the compile option -entry-points EntryPoint.

#include <stdexcept>
#define MYEXCEPTION std::exception &
class ExceptionBased: std::exception {
};
typedef std::exception MyException;
typedef std::exception & MyExceptionRef;

void NonEntryPoint()
{
 try {
 int i = 2;

 // ...
 } catch (int i) { // Compliant
 } catch (int &i) { // Compliant
 } catch (std::runtime_error e) { // Compliant
 } catch (std::runtime_error& e) { // Compliant
 } catch (std::exception *e) { // Compliant
 } catch (std::exception e) { // Noncompliant
 } catch (const std::exception& e) { // Noncompliant
 } catch(MyException e){ // Noncompliant
 } catch(ExceptionBased e){ // Compliant
 } catch (...) { // Noncompliant
 }
}
void EntryPoint() noexcept
{
 try {
 int i = 2;

 // ...
 } catch (MyException &e) { // Compliant
 } catch (MyException e) { // Compliant
 } catch (MyExceptionRef e) { // Compliant
 } catch (ExceptionBased e) { // Compliant
 } catch (const std::exception& e) { // Compliant
 } catch (MYEXCEPTION e) { // Compliant
 }
}

The function NonEntryPoint() is not a main() or task main function. In this function, Polyspace
flags these catch-all blocks:

• The catch (std::exception e) block matches the different types of exceptions that derive
from the class std::exception. This catch-all handler is useful in a main or task main function.
Because NonEntryPoint() is neither a main() nor a task main function, Polyspace flags the
statement catch (std::exception e). For the same reason, Polyspace flags the statement
catch (std::exception& e).

25 AUTOSAR C++14 Rules

25-358

• MyException is a typedef of std::exception. The catch(MyException e) block matches
the different types of exceptions that derive from the class std::except. Because
NonEntryPoint() is neither a main nor a task main function, Polyspace flags the statement
catch(MyException e).

• Because NonEntryPoint() is neither a main nor a task main function, Polyspace flags the
statement catch(...)

The function EntryPoint() is specified as a task main function. Polyspace does not flag the catch-all
blocks in this function.

Use Catch-All Handlers to Handle Exceptions Raised By Third-party Code

#include <stdexcept>
void Fextern_throw(void);
void Fextern_nothrow(void) noexcept(true);
void Foo0()
{
 try {
 Fextern_nothrow();
 } catch (...) { // Noncompliant
 }
}
void Foo1()
{
 try {
 try {
 Fextern_throw();
 } catch (...) { // Compliant
 }
 } catch (std::exception& e) { // Compliant
 }
}
void Foo2()
{
 try {
 try {
 Fextern_nothrow();
 } catch (...) { // Noncompliant
 Fextern_throw();
 }
 } catch (std::exception& e) { // Compliant
 }
}

• The function Foo0() calls the third-party function Fextern_nothrow(), which is specified as
noexcept(true). Because the third-party code is specified as noexcept, Polyspace flags the
catch(...) block in Foo0().

• The function Foo1() calls the third-party function Fextern_throw() that might raise an
exception. Because the third-party code might raise an exception, Polyspace does not flag the
catch-all handler blocks in Foo1().

• The function Foo2() contains a nested try-catch block. In the inner block, the external function
Fextern_nothrow() is called, which is specified as noexcept(true). Polyspace flags the
catch(...) block in the inner try-catch block. The catch-all block in the outer try-catch is
compliant because this block handles the exceptions that might be raised by the external function
Fextern_throw().

 AUTOSAR C++14 Rule A15-3-4

25-359

Check Information
Group: Exception handling
Category: Required, Non-automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-360

AUTOSAR C++14 Rule A15-3-5
A class type exception shall be caught by reference or const reference

Description
Rule Definition

A class type exception shall be caught by reference or const reference.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Exception Handling
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A15-3-5

25-361

AUTOSAR C++14 Rule A15-4-1
Dynamic exception-specification shall not be used

Description
Rule Definition

Dynamic exception-specification shall not be used.

Rationale

Dynamic exception specification is the method of specifying how a function behaves in case of an
exception by using a throw(<list of exceptions>) statement in the function declaration. Using
dynamic exception specification has these issues:

• Performance cost: Because dynamic exception specifications are checked at runtime, it adds to
overhead and might reduce code performance.

• Not suitable for generic programming: Because the precise type of exceptions raised by function
or class templates are generally not known beforehand, it can be difficult to use throw statements
in generic code.

For these reasons, avoid the throw(<list of exceptions>) statement to specify exceptions. Use
the noexcept keyword instead. Because the noexcept statements are checked at compile time, it is
suitable for generic programming and generally provides better performance than throw statements.
The C++11 standard specifies that dynamic exception specification will be removed from C++ in the
future.

Polyspace Implementation

When a throw(<list of exceptions>) statement is used in a function declaration, Polyspace
flags the throw statement. Polyspace does not flag throw statements that are used for raising an
exception.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Using throw() for Dynamic Exception Specification

#include <string>
// throw for raising exception is compliant
void F9 () throw(std::runtime_error) { //Non-compliant
 throw (std::runtime_error("foo")); //Compliant
}
// Both declaration and definition is flagged
void F11 () throw(std::runtime_error); //Noncompliant
void F11 () throw(std::runtime_error) {} //Noncompliant
// Instantiated and Noninstantiated templates are flagged

25 AUTOSAR C++14 Rules

25-362

template <class T>
void F10 () throw(std::runtime_error) { //Noncompliant
 throw (std::runtime_error("foo")); //Compliant
}

template <class T>
void F12 () throw(std::runtime_error); //Noncompliant
template <class T>
void foo() noexcept(noexcept(T())) {}//Compliant

void bar () {
 foo<int>(); // noexcept(noexcept(int())) => noexcept(true)
 F10<std::string> (); //Compliant

}

Polyspace flags statements such as throw(std::runtime_error) that are used in the function
declarations and definitions as dynamic exception specification. Avoid dynamic exception
specification. Use the keyword noexcept instead. The template foo uses the noexcept keyword as
the exception specification, which is compliant with this rule.

Check Information
Group: Exception handling
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2021a

 AUTOSAR C++14 Rule A15-4-1

25-363

AUTOSAR C++14 Rule A15-4-2
If a function is declared to be noexcept, noexcept(true) or noexcept(<true condition>), then it shall
not exit with an exception

Description
Rule Definition

If a function is declared to be noexcept, noexcept(true) or noexcept(<true condition>), then it shall
not exit with an exception.

Rationale

You can specify that a callable entity does not raise an exception by specifying it as noexcept, or
noexcept(true), or noexcept(<true condition>). The compiler expects that a noexcept
function does not exit with an exception. Based on this assumption, the compiler omits the exception
handing process for noexcept functions. When a noexcept function exits with an exception, the
exception becomes unhandled.

If a noexcept function exits with an exception, the compiler invokes std::terminate() implicitly.
The function std::terminate() terminates the program execution in an implementation-defined
manner. That is, the exact process of program termination depends on the particular set of software
and hardware that you use. For instance, std:terminate() might invoke std::abort() to
abnormally abort the execution without unwinding the stack, leading to resource leak and security
vulnerabilities.

Specify functions as noexcept or noexcept(true) only when you know the functions raise no
exceptions. If you cannot determine the exception specification of a function, specify it by using
noexcept(false).

Polyspace Implementation

If you specify a callable entity by using noexcept, noexcept(true), or noexcept(<true
condition>), Polyspace checks the callable entity for unhandled exceptions and flags the callable
entity if it might exit with an exception.

When a callable entity invokes other callable entities, Polyspace makes certain assumptions to
calculate whether there might be unhandled exceptions.

• Functions: When a noexcept function calls another function, Polyspace checks whether the called
function might raise an exception only if it is specified as noexcept(<false>). If the called
function is specified as noexcept, Polyspace assumes that it does not raise an exception. Some
standard library functions, such as the constructor of std::string, use pointers to functions to
perform memory allocation, which might raise exceptions. Because these functions are not
specified as noexcept(<false>), Polyspace does not flag a function that calls these standard
library functions.

• External function: When a noexcept function calls an external function, Polyspace flags the
function declaration if the external function is specified as noexcept(<false>).

• Virtual function: When a function calls a virtual function, Polyspace flags the function declaration
if the virtual function is specified as noexcept(<false>) in a derived class. For instance, if a

25 AUTOSAR C++14 Rules

25-364

noexcept function calls a virtual function that is declared as noexcept(<true>) in the base
class, and noexcept(<false>) in a subsequent derived class, Polyspace flags the declaration of
the noexcept function.

• Pointers to function: When a noexcept function invokes a pointer to a function, Polyspace
assumes that the pointer to function does not raise exceptions.

When analyzing whether a function raises unhandled exceptions, Polyspace ignores:

• Exceptions raised in destructors
• Exceptions raised in atexit() operations

Polyspace also ignores the dynamic context when checking for exceptions. For instance, a function
might raise unhandled exceptions that arise only in certain dynamic contexts. Polyspace flags such a
function even if the exception might not be raised.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Handle Possible Exceptions Within noexcept Functions

This example shows how Polyspace flags noexcept functions that might raise unhandled exceptions.
Consider this code containing several noexcept functions. These functions invoke other callable
entities like functions, external functions, and virtual functions.

#include <stdexcept>
#include <typeinfo>
void LibraryFunc();
void LibraryFunc_noexcept_false() noexcept(false);
void LibraryFunc_noexcept_true() noexcept(true);

void SpecFalseCT() noexcept // Noncompliant
{
 try {
 LibraryFunc_noexcept_false();
 } catch (int &e) {
 LibraryFunc_noexcept_false();
 } catch (std::exception &e) {
 } catch (...) {
 }
}

class A {
public:
 virtual void f() {}
};

class B : A {
public:
 virtual void f() noexcept {}

 AUTOSAR C++14 Rule A15-4-2

25-365

};

class C : B {
public:
 virtual void f() noexcept {}
};

class D : A {
public:
 virtual void f() noexcept(false) { throw(2);}
};

void A1(A &a) noexcept { // Noncompliant
 a.f();
}

void D2(D &d) noexcept { //Compliant
 try {
 d.f();
 } catch (int i) {
 } catch (...) {
 }
}

void B2(B *b) noexcept { // Compliant
 b->f();
}
template <class T>
T f_tp(T a) noexcept(sizeof(T)<=4) // Noncompliant
{
 if (sizeof(T) >4) {
 throw std::runtime_error("invalid case");
 }
 return a;
}
void instantiate(void)
{
 f_tp<char>(1);
}
void f() noexcept { //Noncompliant
 throw std::runtime_error("dead code");
}

void g() noexcept { // Compliant
 f();
}

• Polyspace flags the declaration of the function template f_tp because:

• The condition sizeof(T)<=4 evaluates to true for char so the template becomes a
noexcept(true) function.

• Polyspace analyzes the noexcept(true) instance of the template statically. Polyspace
deduces that the template might raise an exception because of the throw statement, even
though the condition sizeof(T)>4 is false. That is, Polyspace flags the template even
though the throw statement is never reached.

Polyspace ignores function templates that are not instantiated.

25 AUTOSAR C++14 Rules

25-366

• Polyspace flags the noexcept function SpecFaleCT() because this function calls the
noexcept(false) external function LibraryFunc_noexcept_false() without encapsulating
it in a try-catch block. Any exceptions raised by this call to the external function might raise an
unhandled exception.

• Polyspace flags the declaration of the noexcept function A1() because this function might call
the noexcept(false) function D.f() when the input parameter a is of class D. Depending on
the class of the input parameter, the noexcept polymorphic function A1() might raise an
unhandled exception.

• Polyspace flags the function f() because it is a noexcept function that uses throw to raise an
unhandled exception. Polyspace does not flag the noexcept function g() even though it calls f()
because f() is specified as noexcept.

• Polyspace does not flag the noexcept function D2() even though it calls the noexcept(false)
function D.f() because D2() handles the exceptions that might arise by using a catch(...)
block.

Check Information
Group: Exception Handling
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

 AUTOSAR C++14 Rule A15-4-2

25-367

AUTOSAR C++14 Rule A15-4-3
The noexcept specification of a function shall either be identical across all translation units, or
identical or more restrictive between a virtual member function and an overrider

Description
Rule Definition

The noexcept specification of a function shall either be identical across all translation units, or
identical or more restrictive between a virtual member function and an overrider.

Rationale

Translation units are the different source files that the compiler compiles. When a function has a
different exception specification in different source files, it might result in undefined behavior.
Similarly, a different exception specification of a polymorphic function in different levels of a class
hierarchy might result in compilation failure in some cases. Depending on the software and hardware
that you use, different exception specifications of a function in different places might cause a
compilation failure or result in undefined behavior leading to security vulnerabilities.

To avoid undefined behavior and security vulnerabilities:

• Keep the same exception specification in all declarations of a function.
• If a virtual function is declared by using noexcept or noexcept(true) as the exception
specification, declare the overrider functions in the derived classes by using the same
specification.

• If a virtual function is declared by using noexcept(false) as the exception specification,
declare the overrider functions in the derived classes by using either noexcept(false) or
noexcept(true) as the exception specification.

Polyspace Implementation

Polyspace flags the exception specification of a function if the function is declared with different
exception specifications in different places in a file. Polyspace flags an overrider function in a derived
class if it is specified as noexcept(fale) while the virtual function in the base class is specified as
noexcept.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Maintain Identical Exception Specification in Function Declarations

This example shows how Polyspace flags declarations of one function that has different exception
specifications. In one file file1.cpp, the member functions of the classes A and B are declared.

//file1.cpp

25 AUTOSAR C++14 Rules

25-368

class A
{
public:
 void F() noexcept;
 void G() noexcept(false);

};
class B
{
public:
 void W() noexcept;
 void R() noexcept(false);

};

In another file file2.cpp, the member functions of these classes are defined.

// file2.cpp
#include"file1.cpp"

void A::F() noexcept(false) //Noncompliant
{
 // Implementation
}
void A::G() noexcept //Noncompliant
{
 // Implementation
}

void B::W() noexcept //Compliant
{
 // Implementation
}
void B::R() noexcept(false) //Compliant
{
 // Implementation
}

To see the violations of this rule, run Polyspace and specify both file1.cpp and file2.cpp as
source files by using the option -sources. Keep file1.cpp and file2.cpp in the same folder. For
more details about specifying multiple source files, see -sources.

The compilation might fail, but Polyspace flags the functions with nonidentical exception
specification.

• The function A::F() is declared infile1.cpp by using the exception specification noexcept,
but it is declared by using the exception specification noexcept(false) in file2.cpp.
Polyspace flags the nonidentical exception specification in the latter declaration. For the same
reason, the exception specification of A::G() in file2.cpp is also flagged.

• The functions B::W() and B::R() are declared and defined by using the same exception
specification in the two source files. These functions are compliant with this rule.

 AUTOSAR C++14 Rule A15-4-3

25-369

Keep Exception Specification Identical or More Restrictive When Declaring Overrider
Functions

This example shows how Polyspace flags the declaration of overrider functions that have less
restrictive exception specifications.

class A
{
public:
 virtual void V1() noexcept = 0;
 virtual void V2() noexcept(false) = 0;
 virtual void V3() noexcept = 0;
};
class B : public A
{
public:
 void V1() noexcept(false) override //Noncompliant
 {
 // Implementation
 }
 void V2() noexcept override //Compliant
 {
 // Implementation
 }
 void V3() noexcept override //Compliant
 {
 // Implementation
 }
};

The pure virtual functions A::V1(), A::V2(), and A::V3() are implemented by the overriding
functions B::V1(), B::V2(), and B::V3() respectively.

• Polyspace flags the function B::V1() because this overriding function is specified by using the
less restrictive exception specification noexcept(false) compared to the base class virtual
function A::V1(), which is specified by using noexcept.

• Polyspace does not flag B::V2() because this overriding function is specified by using the more
restrictive specification noexcept compared to the base class virtual function A::V2(), which is
specified by using noexcept(false).

• Polyspace does not flag B::V3() because this overriding function is specified by using the same
exception specification as the base class virtual function A::V3().

Check Information
Group: Exception handling
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

25 AUTOSAR C++14 Rules

25-370

Introduced in R2020b

 AUTOSAR C++14 Rule A15-4-3

25-371

AUTOSAR C++14 Rule A15-4-4
A declaration of non-throwing function shall contain noexcept specification

Description
Rule Definition

A declaration of non-throwing function shall contain noexcept specification.

Rationale

Specifying functions that do not raise exceptions by using the specifier noexcept or
noexcept(true) enables the compiler to perform certain optimizations for these functions, such as
omitting the exception handling process. Specifying the exception specification of functions clearly
communicates that you expect the functions to not raise exceptions.

Specify functions that do not raise exceptions by using the specifier noexcept. If the exception
specification of a function depends on a template argument, use noexcept(<condition>). If the
exception specification of a function is unknown, assume it raises exceptions.

Polyspace Implementation

Polyspace flags the definition of a callable entity, such as function, class or function template, or class
constructors if the following is true:

• The callable entity is defined. Polyspace does not flag functions that are declared but not defined.
Polyspace checks function or class templates that have at least one instantiation.

• The callable entity raises no exceptions. In case of templates of classes and functions, at least one
instantiation raises no exception. When checking callable entities for exceptions, Polyspace
assumes external functions with no definitions behave as noexcept(true). For more information
about how Polyspace checks if a callable entity raises an exception, see the Polyspace
Implementation section of AUTOSAR C++14 Rule A15-4-2.

• The callable entity has no exception specification.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Specify Nonthrowing Functions as noexcept

#include <iostream>
#include <stdexcept>
void F1();
void F2() noexcept;
void F3() noexcept(true);
void F4() noexcept(false);

void F5(){ //Noncompliant

25 AUTOSAR C++14 Rules

25-372

 F2();
 F3();

}

void F6() noexcept // Compliant
{
 try {
 F4();
 }catch (std::exception& e) {
 // Handle exceptions
 }
}

class NotThrowing {
public:
 NotThrowing() { // Noncompliant
 F2();
 }
};

class Throwing{
public:
 Throwing() { // Compliant
 F4();
 }
};
template <class T, bool B> void CompliantClasshandler() noexcept(B) { //Compliant
 //...
}

template <class T> void NoncompliantClasshandler() { // Noncompliant
 //...
}

int Factory() noexcept{
 Throwing a;
 NotThrowing b;
 NoncompliantClasshandler<Throwing>();
 NoncompliantClasshandler<NotThrowing>();
 CompliantClasshandler<Throwing, true>();
 CompliantClasshandler<NotThrowing, false>();
 return 1;
}

• The function F5 does not raise exceptions but it is not marked as noexcept in the code. Polyspace
flags the definitions of the function. The function F6 does not raise exceptions and it is specified as
noexcept in the code. Polyspace does not flag F6.

• Polyspace checks constructors of classes when the classes are used in the code. In this example,
the classes Throwing and NotThrowing are instantiated and Polyspace checks their
constructors.

The constructor of the class NotThrowing does not raise exceptions but it is not specified as
noexcept in the code. Polyspace flags the function. The constructor of the class Throwing raises
exception and it is not specified as noexcept in the code. Polyspace does not flag this constructor.

 AUTOSAR C++14 Rule A15-4-4

25-373

• Polyspace checks function templates when the template is instantiated. In this example, Polyspace
checks the templates CompliantClasshandler and NoncompliantClasshandler because
they are instantiated in Factory.

Because the instantiation of NoncompliantClasshandler in Factory with the class
NotThrowing does not raise exception, and the template is not specified as noexcept in the
code, Polyspace flags the definition of NoncompliantClasshandler. Polyspace does not flag the
template CompliantClasshandler because it is specified by a conditionalized noexcept
operator in the code.

Check Information
Group: Exception handling
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
AUTOSAR C++14 Rule A15-4-4
“Check for Coding Standard Violations”

Introduced in R2021a

25 AUTOSAR C++14 Rules

25-374

AUTOSAR C++14 Rule A15-4-5
Checked exceptions that could be thrown from a function shall be specified together with the function
declaration and they shall be identical in all function declarations and for all its overriders

Description
Rule Definition

Checked exceptions that could be thrown from a function shall be specified together with the function
declaration and they shall be identical in all function declarations and for all its overriders.

Rationale

In C++, there are no checked exceptions because the compiler does not enforce functions to specify
or handle the exceptions that the functions might raise. Dynamic-exception specification of the form
throw(<>) is obsolete and error-prone. The exception specification prescribed in the C++ standard
specifies only whether a function raises an exception or not by using the specifier noexcept.
Because there is no official way to declare which exceptions might arise from a function, the
AUTOSAR standard requires that each function declaration be accompanied by comments that
document the exception handing of the function. This method of documenting the exceptions is
similar to the JAVA exception handling mechanism.

Use comments to specify a list of exceptions that a static analysis tool must check. Before function
declarations, use comments to document which of the checked exceptions are expected in the
function.

Polyspace Implementation

Polyspace raises this checker when any of these conditions are true:

• A function raises a checked exception but does not document it before its declaration.
• A function does not raise all the checked exceptions that are documented in comments before its

declaration.
• A function documents an unchecked exception.
• A function documents an exception but does not define it.

This checker ignore the class member functions that are not called in your code.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Document Checked Exceptions by Using Comments

#include <cstdint>
#include <stdexcept>

 AUTOSAR C++14 Rule A15-4-5

25-375

class ObjectType1{};
class ObjectType2{};
/// @checkedException
class TypeError : public std::exception
{
 // Implementation
};
/// @checkedException
class DimMismatch : public std::exception
{
 // Implementation
};
/// @checkedException
class SizeError : public std::exception
{
 // Implementation
};
/// @throw TypeError Unexpetced Object Type as Input
/// @throw DimMismatch Container Dimension Mismatched
/// @throw SizeError Object Size Too large
void Transform1(ObjectType1& substrate,
 ObjectType2& coating) noexcept(false) //Compliant
{
 // ...
 throw TypeError();
 // ...
 throw DimMismatch();
 // ...
 throw SizeError();
 // ...
}
/// @throw TypeError Unexpetced Object Type as Input
void Transform2(ObjectType1& substrate,
 ObjectType2& coating) noexcept(false) //Noncompliant
//The function raises SizeError
//but does not document it before its declaration.
{
 // ...
 throw TypeError();
 // ...
 throw SizeError();
 // ...
}
class ValidationError : std::exception

{
 // Implementation
};
/// @throw TypeError Unexpetced Object Type as Input
/// @throw DimMismatch Container Dimension Mismatched
/// @throw SizeError Object Size Too large
/// @throw ValidationError Checksum is Negative

void Transform3(ObjectType1& substrate,
 ObjectType2& coating) noexcept(false) //Noncompliant
// The function does not raise all the @throw exceptions
// The function documents an unchecked exception ValidationError.
{

25 AUTOSAR C++14 Rules

25-376

 // ...
 throw TypeError();
 // ...
 throw SizeError();
 // ...
}
/// @throw TypeError Unexpetced Object Type as Input
/// @throw LengthMismatch Array Length Mismatched
void Transform4(void){//Noncompliant
// The function does not define the documented exception LengthMismatch
 // ...
 throw TypeError();
 // ...

}

In this example, the functions list their checked exceptions at the beginning of the file by using the
tag @checkedException in comments. These functions then specify which of these checked
exceptions are raised in their bodies by using the comment tag @throw before their declarations.

• The function Transform1 is compliant with this rule because it specifies three checked exception
before its declaration and then raises the same checked exceptions in its body.

• The function Transform2 is not compliant with this rule because it raises the checked
exceptionSizeError but does not document the exception in the comments before the function
declaration.

• The function Transform2 violates the rule in two different ways:

• The function documents the checked exception DimMismatch in the comments before the
function declaration but does not raise it in the function body.

• The function documents the exception ValidationError before its declaration, but the
exception is not listed as a checked exception.

• The function Transform4 is noncompliant with this rule because it documents an exception
LengthMismatch but The code does not have the definition of this type.

Check Information
Group: Exception handling
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
AUTOSAR C++14 Rule A15-4-5
“Check for Coding Standard Violations”

Introduced in R2021a

 AUTOSAR C++14 Rule A15-4-5

25-377

AUTOSAR C++14 Rule A15-5-1
All user-provided class destructors, deallocation functions, move constructors, move assignment
operators and swap functions shall not exit with an exception. A noexcept exception specification
shall be added to these functions as appropriate

Description
Rule Definition

All user-provided class destructors, deallocation functions, move constructors, move assignment
operators and swap functions shall not exit with an exception. A noexcept exception specification
shall be added to these functions as appropriate.

Rationale

This rule states that certain functions must not exit with an exception.

• Destructors and deallocation functions: When an exception is raised, the compiler invokes the
destructors and deallocation functions to safely delete the objects in the stack. If a destructor or a
deallocation function exits with an exception at that time, the compiler terminates the program
execution abnormally. Depending on the software or hardware that you use, abnormal program
termination can result in resource leaks and security vulnerabilities. To prevent these issues,
avoid destructors and deallocator functions that might exit with an exception. Default destructors
and deallocators are noexcept functions. When you provide a custom destructor or deallocation
function, specify them as noexcept and handle all exceptions within the function so that they do
not exit with exceptions. For a polymorphic class hierarchy, this rule applies to the destructors of
the base and all derived classes.

• Move constructors and move assignment operators: If a move constructor or a move assignment
operator exits with an exception, it cannot be guaranteed that the program will revert to the state
it was before the move operation. Avoid a move constructor or a move assignment operator that
might exit with an exception. Specify these functions as noexcept because standard library
functions might avoid move operations unless they are declared as noexcept. You can also
declare these special member functions as =default. For more information on when you can
declare the special member functions as =default, see AUTOSAR C++14 Rule A12-0-1.

• Swap functions: Developers expect that a swap function does not exit with an exception. If a swap
function exits with an exception, standard library algorithms and copy operations might not work
in your code as expected. Specify swap functions as noexcept. Avoid operations that might exit
with an exception in swap functions.

When you use templates as generic move constructors, generic move assignment operators, and
generic swap functions, these templates can have dynamic exception specifications without violating
this rule.

Polyspace Implementation

Polyspace flags a user-defined destructor, deallocation function, move constructor, move assignment
operator, and swap function if it might raise an exception. If a function is named swap or Swap and
takes a reference as input, Polyspace considers it a swap function.

Polyspace ignores functions that are declared but not defined.

25 AUTOSAR C++14 Rules

25-378

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Exceptions in Destructors and Deallocation Functions

This example shows how Polyspace flags destructors and deallocation functions that might raise an
exception. Consider this code with two classes.

#include <stdexcept>
class Compliant
{
public:
 //...
 ~Compliant() //Compliant
 {
 try {
 // ...
 throw std::runtime_error("Error");
 }
 catch (std::exception& e) {
 //...
 }
 }
};

class Noncompliant
{
public:
 //...
 ~Noncompliant()
 {
 throw std::runtime_error("Error"); //Noncompliant
 }
 static void operator delete(void* ptr, std::size_t sz)
 {
 // ...
 throw std::runtime_error("Error"); // Noncompliant
 }
};

• The destructor of Compliant raises an exception by using a throw statement. Because this
exception is handled within the destructor function by using a try-catch block, ~Compliant()
is compliant with this rule.

• The destructor of Noncompliant also raises an exception by using a throw statement. Because
this exception is not handled within the function, the destructor ~Noncompliant() exits with an
exception. Polyspace flags this throw statement in the destructor.

• The deallocation function Noncompliant::delete() does not comply with this rule because it
does not handle the exception raised within the function. Polyspace flags the throw statement in
the function.

 AUTOSAR C++14 Rule A15-5-1

25-379

Avoid Exceptions in Move Operations

Polyspace flags move operators or move constructors if:

• They might exit with an exception
• They are not specified as noexcept

Consider this code where move operations are implemented for two classes.

#include <stdexcept>
class Compliant
{
 //...
public:
 Compliant(Compliant&& rhs) noexcept //Compliant
 {
 try {
 // ...
 throw std::runtime_error("Error");
 }
 catch (std::exception& e) {
 //...
 }
 }

 Compliant& operator=(Compliant&& rhs) noexcept //Compliant
 {
 try {
 // ...
 throw std::runtime_error("Error");
 }
 catch (std::exception& e) {
 //...
 }
 return *this;
 }
};

class Noncompliant
{
public:
 //...
 Noncompliant(Noncompliant&& rhs) //Noncompliant
 {
 // ...
 throw std::runtime_error("Error"); //Noncompliant
 }
 Noncompliant& operator=(Noncompliant&& rhs) //Noncompliant
 {
 // ...
 throw std::runtime_error("Error"); //Noncompliant
 return *this;
 }

};

25 AUTOSAR C++14 Rules

25-380

• The move assignment operator and move constructor of the class Compliant are specified as
noexcept and these functions handle exceptions that arise within them. The move constructor
and move assignment operator of Compliant are compliant with this rule.

• The move assignment operator and the move constructor of the class Noncompliant are not
specified as noexcept. Polyspace flags the declaration of these functions.

• The move assignment operator and the move constructor of the class Noncompliant contain
throw statement that raise exceptions without handling them within these functions. Polyspace
flags these throw statements.

Avoid Exceptions in Swap Functions

Consider this code containing two swap functions.

#include <stdexcept>
namespace Compliant{
 class C1{};
 void Swap(C1& lhs, C1& rhs) noexcept //Compliant
 {
 // Implementation
 }
}
namespace Noncompliant{
 class C2{};
 void Swap(C2& lhs, C2& rhs) noexcept(false) //Noncompliant
 {
 throw std::runtime_error("Error"); //Noncompliant
 }
}

• The function Compliant::Swap() is specified as noexcept and does not raise an exception.
This swap function is compliant with this rule.

• The function Noncompliant::Swap() is specified as noexcept(false) and it exits with an
exception. Polyspace flags the exception specification of the function and the throw statement.

Check Information
Group: Exception handling
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 AUTOSAR C++14 Rule A15-5-1

25-381

AUTOSAR C++14 Rule A15-5-2
Program shall not be abruptly terminated. In particular, an implicit or explicit invocation of
std::abort(), std::quick_exit(), std::_Exit(), std::terminate() shall not be done

Description
Rule Definition

Program shall not be abruptly terminated. In particular, an implicit or explicit invocation of
std::abort(), std::quick_exit(), std::_Exit(), std::terminate() shall not be done.

Rationale

Functions such as std::abort(), std::quick_exit(), and std::_Exit() terminate the
program immediately without invoking any exit handlers or calling any destructors for the
constructed objects. The std::terminate() function implicitly calls std::abort() to terminate
the program abruptly. Exceptions that are unhandled or cannot be handled might also cause abrupt
termination of the program.

Depending on your environment, the compiler might not release the allocated resources and unwind
the stack when the program is terminated abruptly, leading to issues such as memory leaks. Such
abnormal program terminations might make the code vulnerable to denial-of-service attacks. Avoid
terminating the program abruptly.

Polyspace Implementation

Polyspace flags the operations that might result in abrupt termination of the program. For instance:

• The destructor of a class exits with an unhandled exception. See AUTOSAR C++14 Rule
A15-5-3.

• The constructor of a global or a static object is invoked directly but it is not explicitly specified as
noexcept. See AUTOSAR C++14 Rule A15-2-1.

• A noexcept function raises an unhandled exception. See AUTOSAR C++14 Rule A15-4-2.
• The argument of a throw statement raises an exception. See AUTOSAR C++14 Rule M15-1-1.
• Unsafe termination functions such as std::_Exit, std::abort, and std::quick_exit are

explicitly invoked.
• The function std::terminate is explicitly invoked.
• A handler for abnormal termination is explicitly registered by using the functions

std::set_terminate or std::get_terminate.
• A handler for normal termination that is registered to std::atexit raises an unhandled

exception.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

25 AUTOSAR C++14 Rules

25-382

Examples
Handle Possible Exceptions Within noexcept Functions

This example shows how Polyspace flags noexcept functions that might raise unhandled exceptions.
Consider this code containing several noexcept functions. These functions invoke other callable
entities such as functions, external functions, and virtual functions.

#include <stdexcept>
#include <typeinfo>
void LibraryFunc();
void LibraryFunc_noexcept_false() noexcept(false);
void LibraryFunc_noexcept_true() noexcept(true);

void SpecFalseCT() noexcept // Noncompliant
{
 try {
 LibraryFunc_noexcept_false();
 } catch (int &e) {
 LibraryFunc_noexcept_false();
 } catch (std::exception &e) {
 } catch (...) {
 }
}

class A {
public:
 virtual void f() {}
};

class B : A {
public:
 virtual void f() noexcept {}
};

class C : B {
public:
 virtual void f() noexcept {}
};

class D : A {
public:
 virtual void f() noexcept(false) { throw(2);}
};

void A1(A &a) noexcept { // Noncompliant
 a.f();
}

void D2(D &d) noexcept { //Compliant
 try {
 d.f();
 } catch (int i) {
 } catch (...) {
 }

 AUTOSAR C++14 Rule A15-5-2

25-383

}

void B2(B *b) noexcept { // Compliant
 b->f();
}
template <class T>
T f_tp(T a) noexcept(sizeof(T)<=4) // Noncompliant
{
 if (sizeof(T) >4) {
 throw std::runtime_error("invalid case");
 }
 return a;
}
void instantiate(void)
{
 f_tp<char>(1);
}
void f() noexcept { //Noncompliant
 throw std::runtime_error("dead code");
}

void g() noexcept { // Compliant
 f();
}

• Polyspace flags the declaration of the function template f_tp because:

• The condition sizeof(T)<=4 evaluates to true for char so the template becomes a
noexcept(true) function.

• Polyspace analyzes the noexcept(true) instance of the template statically. Polyspace
deduces that the template might raise an exception because of the throw statement, even
though the condition sizeof(T)>4 is false. That is, Polyspace flags the template even
though the throw statement is never reached.

Polyspace ignores function templates that are not instantiated.
• Polyspace flags the noexcept function SpecFaleCT() because this function calls the

noexcept(false) external function LibraryFunc_noexcept_false() without encapsulating
it in a try-catch block. Any exceptions raised by this call to the external function might raise an
unhandled exception.

• Polyspace flags the declaration of the noexcept function A1() because this function might call
the noexcept(false) function D.f() when the input parameter a is of class D. Depending on
the class of the input parameter, the noexcept polymorphic function A1() might raise an
unhandled exception.

• Polyspace flags the function f() because it is a noexcept function that uses throw to raise an
unhandled exception. Polyspace does not flag the noexcept function g() even though it calls f()
because f() is specified as noexcept.

• Polyspace does not flag the noexcept function D2() even though it calls the noexcept(false)
function D.f() because D2() handles the exceptions that might arise by using a catch(...)
block.

Avoid Expressions That Can Raise Exceptions in throw Statements

This example shows how Polyspace flags the expressions in throw statements that can raise
unexpected exceptions.

25 AUTOSAR C++14 Rules

25-384

int f_throw() noexcept(false);

class WithDynamicAlloc {
public:
 WithDynamicAlloc(int n) {
 m_data = new int[n];
 }
 ~WithDynamicAlloc() {
 delete[] m_data;
 }
private:
 int* m_data;
};

class MightThrow {
public:
 MightThrow(bool b) {
 if (b) {
 throw 42;
 }
 }
};

class Base {
 virtual void bar() =0;
};
class Derived: public Base {
 void bar();
};
class UsingDerived {
public:
 UsingDerived(const Base& b) {
 m_d =
 dynamic_cast<const Derived&>(b);
 }
private:
 Derived m_d;
};
class CopyThrows {
public:
 CopyThrows() noexcept(true);
 CopyThrows(const CopyThrows& other) noexcept(false);
};
int foo(){
 try{
 //...
 throw WithDynamicAlloc(10); //Noncompliant
 //...
 throw MightThrow(false);//Noncompliant
 throw MightThrow(true);//Noncompliant
 //...
 Derived d;
 throw UsingDerived(d);// Noncompliant
 //...
 throw f_throw(); //Noncompliant
 CopyThrows except;
 throw except;//Noncompliant
 }

 AUTOSAR C++14 Rule A15-5-2

25-385

 catch(WithDynamicAlloc& e){
 //...
 }
 catch(MightThrow& e){
 //...
 }
 catch(UsingDerived& e){
 //...
 }
}

• When constructing a WithDyamicAlloc object by calling the constructor
WithDynamicAlloc(10), exceptions can be raised during dynamic memory allocation. Because
the expression WithDynamicAlloc(10) can raise an exception, Polyspace flags the throw
statement throw WithDynamicAlloc(10);

• When constructing a UsingDerived object by calling the constructor UsingDervide(),
exceptions can be raised during the dynamic casting operation. Because the expression
UsingDerived(d) can raise exceptions, Polyspace flags the statement throw
UsingDerived(d).

• In the function MightThrow(), exceptions can be raised depending on the input to the function.
Because Polyspace analyzes functions statically, it assumes that the function MightThrow() can
raise exceptions. Polyspace flags the statements throw MightThrow(false) and throw
MightThrow(true).

• In the statement throw except, the object except is copied by implicitly calling the copy
constructor of the class CopyThrows. Because the copy constructor is specified as
noexcept(false), Polyspace assumes that the copy operation might raise exceptions. Polyspace
flags the statement throw except.

• Because the function f_throw() is specified as noexcept(false), Polyspace assumes that it
can raise exceptions. Polyspace flags the statement throw f_throw().

Avoid Unsafe Termination Functions

#include<cstdlib>
class obj
{
public:
 obj() noexcept(false){}
 obj(const obj& a){/*...*/}
 ~obj(){/*...*/}
};
static obj staticObject;
void foo(){
 obj localObject;
 //...
 std::_Exit(-1);//Noncompliant
}
void bar(){
 obj localObject;
 //...
 std::abort;//Noncompliant
}
void foobar(){
 obj localObject;
 //...

25 AUTOSAR C++14 Rules

25-386

 std::quick_exit(-1);//Noncompliant
}

In this example, unsafe termination functions are invoked to terminate the program. These functions
do not perform the essential cleanup operations such as calling destructors. For instance, the
destructors of the staticObject or the three instances of localObject are not invoked. Any
resource allocated by these objects is leaked. Polyspace flags the use of such unsafe termination
programs.

Avoid Explicitly Calling std::terminate

#include<cstdlib>
#include<exception>
class obj
{
public:
 obj() noexcept(false){}
 obj(const obj& a){/*...*/}
 ~obj(){/*...*/}
};
static obj staticObject;

void foobar(){
 obj localObject;
 //...
 std::terminate();//Noncompliant
}

Invoking std::terminate explicitly might result in abrupt termination of the program without
calling the destructors of the local and static objects. Polyspace flags the explicit calls to
std::terminate.

Avoid Unhandled Exceptions in Termination Handlers

#include <stdexcept>
void atexit_handler(){//Noncompliant
 throw std::runtime_error("Error in atexit function");
}
void main(){
 try{
 //...
 std::atexit(atexit_handler);
 }catch(...){

 }
}

The termination handler atexit_handler raises an uncaught exception. The function
atexit_handler executes after the main finishes execution. Unhandled exceptions in this function
cannot be handled elsewhere, leading to an implicit call to std::terminate(). Polyspace flags the
function.

Avoid Unhandled Exceptions in Constructors and Destructors

#include <stdexcept>
#include <new>
class obj

 AUTOSAR C++14 Rule A15-5-2

25-387

{
public:
 obj() noexcept(false){}
 obj(const obj& a){
 //...
 throw -1;
 }
 ~obj()
 {
 try{
 // ...
 throw std::runtime_error("Error2"); // Noncompliant
 }catch(std::bad_alloc& e){

 }
 }
};
obj globalObject; //Noncompliant

In this example, the constructor of the object globalObject is specified as noexcept. The
destructor of the object explicitly raises an unhandled exception. These unhandled exception might
arise before the execution starts or after the main function completes execution, which might result
in an abrupt and unsafe termination by invoking std::abort(). Polyspace flags these operations.

Check Information
Group: Exception handling
Category: Required, Partially automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
AUTOSAR C++14 Rule A15-5-3
AUTOSAR C++14 Rule A15-2-1
AUTOSAR C++14 Rule A15-4-2
AUTOSAR C++14 Rule M15-1-1
“Check for Coding Standard Violations”

Introduced in R2021b

25 AUTOSAR C++14 Rules

25-388

AUTOSAR C++14 Rule A15-5-3
The std::terminate() function shall not be called implicitly

Description
Rule Definition

The std::terminate() function shall not be called implicitly.

Polyspace Implementation

The checker flags situations that might result in calling the function std::terminate() implicitly.
These situations might include:

• An exception remains unhandled. For instance:

• While handling an exception, it escapes through another function that raises an unhandled
exception. For instance, a catch statement or exception handler invokes another function that
raises an unhandled exception.

• An empty throw statement raises an unhandled exception again.
• A class destructor raises an exception.
• A termination handler that is passed to std::atexit raises an unhandled exception.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Unhandled Exceptions

#include <stdexcept>
#include <new>
class obj
{
public:
 obj() noexcept(false){}
 obj(const obj& a){
 //...
 throw -1;
 }
 ~obj()
 {
 try{
 // ...
 throw std::runtime_error("Error2"); // Noncompliant
 }catch(std::bad_alloc& e){

 }
 }

 AUTOSAR C++14 Rule A15-5-3

25-389

};
obj globalObject;
void atexit_handler(){//Noncompliant
 throw std::runtime_error("Error in atexit function");
}
void main(){//Noncompliant
 try{
 //...
 obj localObject = globalObject;
 std::atexit(atexit_handler);
 }catch(std::exception& e){

 }
}

In this example, Polyspace flags unhandled exceptions because they result in implicit calls to
std::terminate().

• The destructor ~obj() does not catch the exception raised by the throw statement. The
unhandled exception in the destructor results in abrupt termination of the program through an
implicit call to std::terminate. Polyspace flags the throw statement in the destructor of obj.

• The main() function does not handle all exceptions raised in the code. Because an unhandled
exception might result in an implicit call to std::terminate(), Polyspace flags the main()
function.

• The termination handler atexit_handler raises an uncaught exception. The function
atexit_handler executes after the main finishes execution. Unhandled exceptions in this
function cannot be handled elsewhere, leading to an implicit call to std::terminate().
Polyspace flags the function.

Check Information
Group: Exception Handling
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-390

AUTOSAR C++14 Rule A16-0-1
The preprocessor shall only be used for unconditional and conditional file inclusion and include
guards, and using specific directives

Description
Rule Definition

The preprocessor shall only be used for unconditional and conditional file inclusion and include
guards, and using specific directives.

Rationale

Other than unconditional and conditional file inclusion and include guards, avoid the use of
preprocessor directives. Use a safer alternative instead. For instance:

• Instead of:

#define MIN(a,b) ((a < b)? (a) : (b))

You can use inline functions and function templates.
• Instead of:

#define MAX_ARRAY_SIZE 1024U

You can use a constant object.

In these situations, preprocessor directives do not provide the benefits that the alternatives provide,
such as linkage, type checking, overloading, and so on.

Polyspace Implementation

The rule checker does not allow the use of preprocessor directives. The only exceptions are:

• #ifdef, #ifndef, #if, #if defined, #elif, #else and #endif, only if used for conditional
file inclusion and include guards.

• #define only if used for defining macros to be used in include guards. For instance, in this
example, the macro __FILE_H__ prevents the contents of the header file from being included
more than once:

/* aHeader.h */

#ifndef __FILE_H__
#define __FILE_H__
 /* Contents of header file */
#endif

When #ifdef, #define and #endif are used as include guards in a header file, the entire
content of the header file must be in the include guard.

• #include

The checker does not allow the #define directives in other contexts. If you use #define-s for
purposes other than for include guards, do one of the following:

 AUTOSAR C++14 Rule A16-0-1

25-391

• To define macros when compiling your code, instead of #define-s, use compilation flags (such as
the GCC option -D). When running a Polyspace analysis, use the equivalent Polyspace option
Preprocessor definitions (-D).

• To retain the use of #define in your code, justify the violation using comments in your results or
code. See “Address Polyspace Results Through Bug Fixes or Justifications”.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Compliant and Noncompliant Use of Preprocessor Directives

#include <cstdint> //Compliant: unconditional file inclusion

#ifdef WIN32 //Compliant: include guard
 #include <windows.h> //Compliant: conditional file inclusion
#endif

#ifdef WIN32 //Noncompliant
 std::int32_t func(std::int16_t x, std::int16_t y) noexcept;
#endif

In this example, the rule is not violated when preprocessor directives are used for unconditional and
conditional inclusion and include guards. Otherwise, the rule is violated.

Check Information
Group: Preprocessing directives
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

25 AUTOSAR C++14 Rules

25-392

AUTOSAR C++14 Rule A16-2-1
The ', ", /*, //, \ characters shall not occur in a header file name or in #include directive

Description
Rule Definition

The ', ", /*, //, \ characters shall not occur in a header file name or in #include directive.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Preprocessing Directives
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A16-2-1

25-393

AUTOSAR C++14 Rule A16-6-1
#error directive shall not be used

Description
Rule Definition

#error directive shall not be used.

Rationale

You typically use the #error directive by combining it with a #if or similar directive to make the
compilation fail and issue a message when a condition is not met. However, you cannot apply #error
to templates. Preprocessor directives do not obey linkage, type checker, overloading and other C++
features, and #error will not be evaluated as a per-instance template deduction.

Instead, use static_assert for compile-time error checking. Static assertions provide all the
benefits of C++ features and make the code clearer.

Polyspace Implementation

Polyspace flags all uses of the #error directive.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Preprocessing directives
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

25 AUTOSAR C++14 Rules

25-394

AUTOSAR C++14 Rule A16-7-1
The #pragma directive shall not be used

Description
Rule Definition

The #pragma directive shall not be used.

Rationale

The use of the #pragma directive in your code results in implementation-defined behavior. The
directive might also not be supported by certain compilers.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of #pragma once Directive

//header.h
#pragma once //Noncompliant

#ifndef HEADER_H_ //Compliant
#define HEADER_H_
// ...
// body of header file
//..
#endif

The #pragma once directive prevents the inclusion of header.h more than once. However, if you
copy header.h into multiple project modules, the directive may or may not treat the copies as the
same file depending on the implementation. To avoid double definitions, use the #ifndef include
guard instead.

Check Information
Group: 16 Preprocessing Directives
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

 AUTOSAR C++14 Rule A16-7-1

25-395

AUTOSAR C++14 Rule A17-0-1
Reserved identifiers, macros and functions in the C++ standard library shall not be defined,
redefined or undefined

Description
Rule Definition

Reserved identifiers, macros and functions in the C++ standard library shall not be defined,
redefined or undefined.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Library Introduction
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-396

AUTOSAR C++14 Rule A17-6-1
Non-standard entities shall not be added to standard namespaces

Description
Rule Definition

Non-standard entities shall not be added to standard namespaces.

Rationale

Adding declarations or definitions to namespace std or its subspaces:or to posix or its subspaces,
leads to undefined behavior. For instance, any addition within braces here leads to undefined
behavior:

namespace std {
 ...
}

Likewise, explicitly specializing a member function or member class of a standard library leads to
undefined behavior.

Polyspace Implementation

The checker flags additions to the namespaces std, posix, or their subspaces, or specializations of
class or function templates from these namespaces.

The rule specification allows exceptions to the specialization aspect of the rule for standard library
templates that require a user-defined type. If you have a process that all rule violations must be
justified and an issue flagged by the checker belongs to this category of exceptions, justify the issue
using comments in your result or code. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Library introduction
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

 AUTOSAR C++14 Rule A17-6-1

25-397

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

25 AUTOSAR C++14 Rules

25-398

AUTOSAR C++14 Rule A18-0-1
The C library facilities shall only be accessed through C++ library headers

Description
Rule Definition

The C library facilities shall only be accessed through C++ library headers.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Language Support Library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A18-0-1

25-399

AUTOSAR C++14 Rule A18-0-2
The error state of a conversion from string to a numeric value shall be checked

Description
Rule Definition

The error state of a conversion from string to a numeric value shall be checked.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Language Support Library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-400

AUTOSAR C++14 Rule A18-0-3
The library <clocale> (locale.h) and the setlocale function shall not be used

Description
Rule Definition

The library <clocale> (locale.h) and the setlocale function shall not be used.

Polyspace Implementation

setlocale and localeconv should not be used as a macro or a global with external "C" linkage.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Language Support Library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A18-0-3

25-401

AUTOSAR C++14 Rule A18-1-1
C-style arrays shall not be used

Description
Rule Definition

C-style arrays shall not be used.

Rationale

A C-style array is an array that is not wrapped in a class such as std::array when the array is
declared. You can lose information about the size of a C-style array. For instance, an array that you
pass to a function decays to a pointer to the first element of the array. This can lead to unsafe and
difficult to maintain code.

The AUTOSAR standard allows declarations of static constexpr data members of a C-style array
type. For example, this declaration is compliant.

class A
{
 public:
 static constexpr std::uint8_t array[] {0, 1, 2}; // Compliant by exception
};

Polyspace Implementation

The rule checker does not flag C-style array arguments in function declarations because the rule
violation still exists if you fix the function declaration and not the definition. A function might be
declared in your code and defined in a library that you cannot access. The checker flags C-style array
arguments in function definitions. For instance, in this code snippet, the checker flags the argument
of foo but not the argument of bar.

extern void bar(char arg[]); //Declaration, checker raises no rule violation
int foo(char arg[]) // Definition, checker raises a rule violation
{
 return sizeof(arg); //Returns size of pointer, not size of array
}
void baz()
{
 char value[10]; //C-style array, checker raises a rule violation
 assert(sizeof(value) == foo(value));
}

The checker raises a flag on arg in the definition of foo even when there is no explicit C-style array
definition for the argument. For example, declaring char* value; instead of char value[10]; in
baz() would still result in a rule violation on the argument of foo.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

25 AUTOSAR C++14 Rules

25-402

Examples
Declaration of C-Style Array
#include <array>

void func()
{

 const std::uint8_t size = 10;
 std::int32_t a1[size]; //non-compliant
 std::array<std::int32_t, size> a2; //compliant

}

In this example, the rule is violated when you declare C-style array a1. To declare fixed-size stack-
allocated arrays, use std:array instead.

Check Information
Group: 18 Language Support Library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

 AUTOSAR C++14 Rule A18-1-1

25-403

AUTOSAR C++14 Rule A18-1-2
The std::vector<bool> specialization shall not be used

Description
Rule Definition

The std::vector<bool> specialization shall not be used.

Rationale

The specialization of std::vector for the type bool can be made space-efficient in an
implementation defined manner. For instance, std::vector<bool> does not necessarily store its
elements as a contiguous array. As a result, the specialization does not work as expected with all
standard library template (STL) algorithms, such as the index operator[]() which does not return
a contiguous sequence of elements. You cannot safely modify distinct elements of STL container
std::vector<bool>.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Non-Compliant and Compliant Use of std::vector With bool Type
#include <cstdint>
#include <vector>

class BoolWrapper
{
public:
 BoolWrapper() = default;
 constexpr BoolWrapper(bool b) : b_(b) {}
 constexpr operator bool() const
 {
 return b_;
 }
private:
 bool b_{};
};

void Fn() noexcept
{
 std::vector<bool> v2; //non-compliant
 std::vector<BoolWrapper> v3{true, false, true, false}; //compliant
}

In this example, vector v2 is non-compliant because it is declared with std::vector<bool>. A
possible fix is to use std::vector with a value type BoolWrapper that wraps bool.

Check Information
Group: 18 Language Support Library
Category: Required, Automated

25 AUTOSAR C++14 Rules

25-404

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

 AUTOSAR C++14 Rule A18-1-2

25-405

AUTOSAR C++14 Rule A18-1-3
The std::auto_ptr shall not be used

Description
Rule Definition

The std::auto_ptr shall not be used.

Rationale

The std::auto_ptr is a type of class template that predates the introduction of move semantics in
the C++11 language standard. When you copy a source std::auto_ptr object into a target object,
the source object is modified. The compiler transfers the ownership of the resources in the source
object to the target object and sets the source object to a null-pointer. Because of this unusual copy
syntax, using the source object after the copy operation might lead to unexpected behavior. Consider
this code snippet where the use of std::auto_ptr results in a segmentation fault.

void func(auto_ptr<int> p) {
 cout<<*p;
 //...
}

int main()
{
 std::auto_ptr<int> s = new int(1);
 //..
 func(s); // This call makes s a null-pointer
 //...
 func(s); // exception, because s is null
 return 1;
}

The first call to func() copies the source std::auto_ptr object s to the argument p, transfers
ownership of the pointer to p, and sets s to a null pointer. When func() is called again, the compiler
tries to access the null-pointer s, causing a segmentation fault.

The std::auto_ptr type objects are also incompatible with any generic code that expects a copy
operation to not invalidate the source object, such as the standard template library (STL). Avoid using
std::auto_ptr. It is deprecated in C++11 and removed from C++17. The C++11 language
standard introduces std::unique_ptr as a safer replacement for std::auto_ptr. Use
std::unique_ptr instead of std::auto_ptr.

Polyspace Implementation

Polyspace flags all instances of std::auto_ptr in your code, other than those in C style arrays.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

25 AUTOSAR C++14 Rules

25-406

Examples
Avoid Using std::auto_ptr

This code shows how Polyspace flags std::auto_ptr in your code.

#include <cstdint>
#include <memory>
#include <vector>
#define AUTOPTROF(_TYPE) std::auto_ptr<_TYPE>
AUTOPTROF(int) v_int; // Noncompliant
typedef struct {
 std::auto_ptr<bool> vb; // Noncompliant
} T;
T vec;
typedef std::auto_ptr<int> my_int_auto_ptr; // Noncompliant
void Fn() noexcept
{

 std::auto_ptr<std::int32_t> ptr1(new std::int32_t(10)); // Noncompliant
 std::unique_ptr<std::int32_t> ptr2 =
 std::make_unique<std::int32_t>(10); // Compliant
 std::vector<std::auto_ptr<std::int32_t>> v; // Noncompliant
}

int main(){
 //..
}

Polyspace flags the std::auto_ptr objects. Use std::unique_ptr instead of std::auto_ptr.

Check Information
Group: Language support library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

 AUTOSAR C++14 Rule A18-1-3

25-407

AUTOSAR C++14 Rule A18-1-6
All std::hash specializations for user-defined types shall have a noexcept function call operator

Description
Rule Definition

All std::hash specializations for user-defined types shall have a noexcept function call operator.

Rationale

std::hash specializations provided by the standard library have a guarantee of no exceptions. If you
manually create a std::hash specialization, emulate this guarantee for your specialization. Define
all specializations of std::hash for your custom data types as noexcept.

Otherwise, standard library containers that use your specialization of std::hash indirectly might
throw uncaught exceptions. The exceptions are not caught because the standard library containers
do not provide a way to use try-catch blocks for exceptions from std::hash.

Polyspace Implementation

The checker flags specializations of the std::hash template with user defined types that do not have
a noexcept specifier.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Language support library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

25 AUTOSAR C++14 Rules

25-408

AUTOSAR C++14 Rule A18-5-1
Functions malloc, calloc, realloc and free shall not be used

Description
Rule Definition

Functions malloc, calloc, realloc and free shall not be used.

Rationale

C-style memory allocation and deallocation using malloc, calloc, realloc, or free is not type
safe and does not invoke class's constructors/destructor to create/delete objects.

For instance, malloc allocates memory to an object and returns a pointer to the allocated memory of
type void*. A program can then implicitly cast the returned pointer to a different type that might not
match the intended type of the object.

The use of these allocation and deallocation functions can result in undefined behavior if:

• You use free to deallocate memory allocated with operator new.
• You use operator delete to deallocate memory allocated with malloc, calloc, or realloc.

The rule is not violated when you perform dynamic memory allocation or deallocation using
overloaded new and delete operators, or custom implementations of malloc and free.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Non-Compliant Use of malloc
#include <cstdint>
#include <cstdlib>

void func()
{

 std::int32_t* p1 = static_cast<std::int32_t*>(malloc(sizeof(std::int32_t))); // Non-compliant
 *p1 = 0;

 free(p1); // Non-compliant

 std::int32_t* p2 = new std::int32_t(0); // Compliant

 delete p2; // Compliant
}

In this example, the allocation of memory for pointer p1 using malloc and the memory deallocation
using free are non-compliant. These operations are not type safe. Instead, use operators new and
delete to allocate and deallocate memory.

 AUTOSAR C++14 Rule A18-5-1

25-409

Check Information
Group: 18 Language Support Library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

25 AUTOSAR C++14 Rules

25-410

AUTOSAR C++14 Rule A18-5-2
Non-placement new or delete expressions shall not be used

Description
Rule Definition

Non-placement new or delete expressions shall not be used.

Rationale

Explicit use of nonplacement new or delete operators might result in memory leaks caused by
unexpected exceptions or returns. Consider this code where memory is allocated for a pointer by
explicitly calling new and deallocated by explicitly calling delete.

std::int32_t ThrowError(){
 std::int32_t errorCode;
 std::int31_t* ptr = new std::int32_t{0};
 //...
 if(errorCode!=0){
 throw std::runtime_error{"Error"};
 }
 //...
 if (errorCode != -1) {
 return 1;
 }
 delete ptr;
 return errorCode;
}

This code can lead to unexpected memory leak in certain conditions.

• If the first if() statement is true, then the function produces an exception and exits without
deleting the pointer.

• If the second if() statement is true, then the function returns 1 and exits without deleting the
pointer.

To avoid an unpredictable memory leak, do not use nonplacement new and delete operators.
Instead, encapsulate dynamically allocated resources in objects. Acquire the resources in object
constructors and release the resources in object destructors. This design pattern is called "Resource
Acquisition Is Initialization" or RAII. Following the RAII pattern prevents a memory leak even when
there are unexpected exceptions and returns.

Alternatively, use manager objects that manage the lifetime of dynamically allocated resources.
Examples of manager objects in the standard library include:

• std::unique_ptr along with std::make_unique
• std::shared_ptr along with std::make_shared
• std::string
• std::vector

 AUTOSAR C++14 Rule A18-5-2

25-411

This rule does not apply to a new operator or a delete operator in user-defined RAII classes and
managers.

Polyspace Implementation

AUTOSAR C++14 permits explicit resource allocation by calling the new operator in two cases, when
the allocated resource is immediately passed to:

• A manager object
• A RAII class that does not have a safe alternative to the new operator.

Polyspace flags all explicit uses of the new operator and the delete operator. If you have a process
where a new operator can be permissible and there is no safer alternative, justify the issue by using
comments in your result or code. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Explicitly Calling new Operator and delete Operator

This code shows how Polyspace flags new or delete operators.

#include <cstdint>
#include <memory>
#include <vector>
#include <cstddef>

using namespace std;

int32_t Fn1()
{
 int32_t errorCode{0};
 int32_t* ptr =
 new int32_t{0}; //Noncompliant
 // ...
 if (errorCode != 0) {
 throw runtime_error{"Error"}; // Possible Memory Leak
 }
 // ...
 if (errorCode != 0) {
 return 1; //Possible Memory Leak
 }
 // ...
 delete ptr; //Noncompliant

25 AUTOSAR C++14 Rules

25-412

 return errorCode; // Possible Memory Leak
}

int32_t Fn2()
{
 int32_t errorCode{0};
 // Alternative to 'new'
 unique_ptr<int32_t> ptr1 = make_unique< int32_t>(0);
 unique_ptr<int32_t> ptr2(new int32_t{0}); // Noncompliant
 shared_ptr<int32_t> ptr3 =
 make_shared<int32_t>(0); //Compliant
 vector<int32_t> array; // Compliant

 if (errorCode != 0) {
 throw runtime_error{"Error"}; // No memory leaks
 }
 // ...
 if (errorCode != 0) {
 return 1; // No memory leaks
 }
 // ...
 return errorCode; // No memory leaks
}

class X
{
public:
 static void* operator new(size_t s)
 {
 return ::operator new(s); // Noncompliant
 }

 static void* operator new[](size_t s)
 {
 return ::operator new(s); // Noncompliant
 }

 static void operator delete(void* ptr, size_t s)
 {
 ::operator delete(ptr); // Noncompliant
 }

 static void operator delete[](void* ptr, size_t s)
 {
 ::operator delete(ptr); // Noncompliant
 }
};

main(){
 X* x1 = new X; // Noncompliant
 X* x2 = new X[2]; // Noncompliant
}

In Fn1(), the operators new and delete are explicitly called for resource management.
Consequently, an unexpected exception or return can lead to a memory leak. Polyspace flags the new

 AUTOSAR C++14 Rule A18-5-2

25-413

and delete operators. In Fn2(), manager objects are used for memory management. Even in cases
of unexpected exceptions and returns, there are no memory leaks in Fn2().

The class X contains custom overloads for new and delete operators. Polyspace flags all instances of
new and delete operators in the definitions of the custom overloads. In main(), Polyspace also flags
the overloaded new and delete operators.

Check Information
Group: Language support library
Category: Required, Partially automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

25 AUTOSAR C++14 Rules

25-414

AUTOSAR C++14 Rule A18-5-3
The form of delete operator shall match the form of new operator used to allocate the memory

Description
Rule Definition

The form of delete operator shall match the form of new operator used to allocate the memory..

Rationale

• The delete operator releases a block of memory allocated on the heap. If you try to access a
location on the heap that you did not allocate previously, a segmentation fault can occur.

• If you use the single-object notation for delete on a pointer that is previously allocated with the
array notation for new, the behavior is undefined.

The issue can also highlight other coding errors. For instance, you perhaps wanted to use the delete
operator or a previous new operator on a different pointer.

Polyspace Implementation

The checker flags a defect when:

• You release a block of memory with the delete operator but the memory was previously not
allocated with the new operator.

• You release a block of memory with the delete operator using the single-object notation but the
memory was previously allocated as an array with the new operator.

This defect applies only to C++ source files.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Deleting Static Memory

void assign_ones(void)
{
 int ptr[10];

 for(int i=0;i<10;i++)
 *(ptr+i)=1;

 delete[] ptr;
}

The pointer ptr is released using the delete operator. However, ptr points to a memory location
that was not dynamically allocated.

 AUTOSAR C++14 Rule A18-5-3

25-415

Correction: Remove Pointer Deallocation

If the number of elements of the array ptr is known at compile time, one possible correction is to
remove the deallocation of the pointer ptr.

void assign_ones(void)
{
 int ptr[10];

 for(int i=0;i<10;i++)
 *(ptr+i)=1;
}

Correction — Add Pointer Allocation

If the number of array elements is not known at compile time, one possible correction is to
dynamically allocate memory to the array ptr using the new operator.

void assign_ones(int num)
{
 int *ptr = new int[num];

 for(int i=0; i < num; i++)
 *(ptr+i) = 1;

 delete[] ptr;
 }

Mismatched new and delete

int main (void)
{
 int *p_scale = new int[5];

 //more code using scal

 delete p_scale;
}

In this example, p_scale is initialized to an array of size 5 using new int[5]. However, p_scale is
deleted with delete instead of delete[]. The new-delete pair does not match. Do not use delete
without the brackets when deleting arrays.

Correction — Match delete to new

One possible correction is to add brackets so the delete matches the new [] declaration.

int main (void)
{
 int *p_scale = new int[5];

 //more code using p_scale

 delete[] p_scale;
}

25 AUTOSAR C++14 Rules

25-416

Correction — Match new to delete

Another possible correction is to change the declaration of p_scale. If you meant to initialize
p_scale as 5 itself instead of an array of size 5, you must use different syntax. For this correction,
change the square brackets in the initialization to parentheses. Leave the delete statement as it is.

int main (void)
{
 int *p_scale = new int(5);

 //more code using p_scale

 delete p_scale;
}

Check Information
Group: Language Support Library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A18-5-3

25-417

AUTOSAR C++14 Rule A18-5-4
If a project has sized or unsized version of operator 'delete' globally defined, then both sized and
unsized versions shall be defined

Description
Rule Definition

If a project has sized or unsized version of operator 'delete' globally defined, then both sized and
unsized versions shall be defined.

Rationale

The C++14 Standard defines a sized version of operator delete. For instance, for an unsized
operator delete with this signature:

void operator delete (void* ptr);

The sized version has an additional size argument:

void operator delete (void* ptr, std::size_t size);

See the C++ reference page for operator delete.

The Standard states that if both versions of operator delete exist, the sized version must be
called because it provides a more efficient way to deallocate memory. However, in some cases, for
instance to delete incomplete types, the unsized version is used.

If you overload the unsized version of operator delete, you must also overload the sized version.
You typically overload operator delete to perform some bookkeeping in addition to deallocating
memory on the free store. If you overload the unsized version but not the sized one or the other way
around, any bookkeeping you perform in one version will be omitted from the other version. This
omission can lead to unexpected results.

Polyspace Implementation

The checker flags situations where an unsized version of operator delete exists but the
corresponding sized version is not defined, or vice versa.

The checker is enabled only if you specify a C++ version of C++14 or later. See C++ standard
version (-cpp-version).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Missing Sized Overload of operator delete[]
#include <new>
#include <cstdlib>

25 AUTOSAR C++14 Rules

25-418

https://en.cppreference.com/w/cpp/memory/new/operator_delete

int global_store;

void update_bookkeeping(void *allocated_ptr, bool alloc) {
 if(alloc)
 global_store++;
 else
 global_store--;
}

void operator delete(void *ptr);
void operator delete(void* ptr) {
 update_bookkeeping(ptr, false);
 free(ptr);
}

void operator delete(void *ptr, std::size_t size);
void operator delete(void* ptr, std::size_t size) {
 //Compliant, both sized and unsized version defined
 update_bookkeeping(ptr, false);
 free(ptr);
}

void operator delete[](void *ptr);
void operator delete[](void* ptr) { //Noncompliant, only unsized version defined
 update_bookkeeping(ptr, false);
 free(ptr);
}

In this example, both the unsized and sized version of operator delete are overloaded and
complies with the rule. However, only the unsized version of operator delete[] is overloaded,
which violates the rule..

Check Information
Group: Language Support Library
Category: Required, Automated

See Also
Invalid free of pointer | Invalid deletion of pointer | Memory leak | Mismatched
alloc/dealloc functions on Windows | Missing overload of allocation or
deallocation function | Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule A18-5-4

25-419

AUTOSAR C++14 Rule A18-5-5
Memory management functions shall ensure the following: (a) deterministic behavior resulting with
the existence of worst-case execution time, (b) avoiding memory fragmentation, (c) avoid running out
of memory, (d) avoiding mismatched allocations or deallocations, (e) no dependence on non-
deterministic calls to kernel

Description
Rule Definition

Memory management functions shall ensure the following: (a) deterministic behavior resulting with
the existence of worst-case execution time, (b) avoiding memory fragmentation, (c) avoid running out
of memory, (d) avoiding mismatched allocations or deallocations, (e) no dependence on non-
deterministic calls to kernel.

Rationale

When you implement custom memory management functions, make sure that your implementation
addresses these common memory management errors that can affect the stability and correctness of
your application:

• Non-deterministic worst-case execution time (WCET) of allocation and deallocation operations.

To provide a deterministic WCET, make sure that the function can be executed without context
switching or system calls. A predictable WCET is essential in determining an appropriate
scheduling scheme that meets the timing constraints in safety-critical embedded systems.

• Mismatched allocation and deallocation functions.

Deallocating memory with a function that does not match the allocation function can cause
memory corruption or undefined behavior.

• Invalid memory access.

If you try to access memory that is logically or physically invalid, the operation results in
undefined behavior or a segmentation fault.

• Out-of-memory errors.

To avoid running out of memory, your executable should allocate all the memory needed by the
program at startup.

• Memory fragmentation.

Fragmentation occurs when memory is allocated over non-contiguous blocks. If the unallocated
blocks are not large enough to accommodate future allocation requests, the remaining free
memory might not be usable and your system might crash.

In addition to custom implementations for operators new and delete, you should provide custom
implementations for low-level allocation and deallocation functions (malloc/free). Even if you do
not use these low-level functions in your source code, they can occur in linked libraries in your
project.

A custom implementation of std::new_handler must perform one of these operations:

25 AUTOSAR C++14 Rules

25-420

• Make more memory available for allocations and return.
• Terminate the program without returning to the callee.
• Throw an exception of type std::bad_alloc or derived from std::bad_alloc.

Polyspace Implementation

Polyspace checks for these memory management issues that might result in non-deterministic
behavior:

• Use of C library function (malloc/calloc/realloc/free) to allocate or deallocate memory in
local variable initializations.

Polyspace does not flag the use of these functions when allocating or deallocating global variables.
• Use of non-placement new and delete operators.
• Use of function dlsym(). This function might call low-level allocation or deallocation functions

such as malloc or calloc.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Non-Deterministic Memory Management Functions
#define _GNU_SOURCE
#include <malloc.h>
#include <dlfcn.h>
#include <iostream>

class Point
{
public:
 Point(int x1 = 0, int y1 = 0): x(x1), y(y1)
 {
 }
 ~Point();
private:
 int x, y;
};

void func1()
{
 unsigned char buffer[sizeof(int) * 2];
 Point* p1 = new Point(0, 0); // Non-compliant
 Point* p2 = new (buffer) Point(1, 1); // Compliant

 int* p3 = (int*)malloc(sizeof(int)); // Non-compliant

 //Use pointers

 delete p1; // Non-compliant
 p2->~Point();

 AUTOSAR C++14 Rule A18-5-5

25-421

 free(p3); // Non-compliant
}

void* customAlloc(size_t size)
{
 void* (*myAlloc)(size_t) =
 (void* (*)(size_t))dlsym(RTLD_NEXT, "malloc"); // Non-compliant

 return myAlloc(size);

}

In this example, Polyspace flags these dynamic memory management operations:

• The allocation and deallocation of pointer p1 with non-placement operators new and delete.
• The allocation and deallocation of local pointer p3 with low-level functions malloc and free.

Polyspace does not flag the use of these functions when allocating or deallocating global variables.
• The use of function dlsym() because the function calls malloc.

Polyspace does not flag the initialization of pointer p2 because it uses a placement operator new
which creates the pointer in a pre-allocated buffer.

Check Information
Group: Language support library
Category: Required, Partially automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14) | Invalid deletion of pointer | Mismatched
alloc/dealloc functions on Windows | Invalid free of pointer

Topics
AUTOSAR C++14 Rule A18-5-5
“Check for Coding Standard Violations”

Introduced in R2021b

25 AUTOSAR C++14 Rules

25-422

AUTOSAR C++14 Rule A18-5-8
Objects that do not outlive a function shall have automatic storage duration

Description
Rule Definition

Objects that do not outlive a function shall have automatic storage duration.

Rationale

A dynamically allocated object results in additional allocation and deallocation costs and makes your
program vulnerable to memory leaks if, for instance, the program returns due to an exception throw
before the deallocation operation.

Instead, use an object with automatic storage duration, which has a lifetime that is bound to the
enclosing scope of that object. The object is automatically destroyed when that scope exits.

The rule allows an exception for local objects that are dynamically allocated to optimize stack
memory usage because the objects use a large amount of memory and might otherwise cause a stack
overflow.

Polyspace Implementation

Polyspace flags objects that are created in a function scope and that do not have automatic storage
duration when any of the following is true:

• The object is a smart pointer (std::shared_ptr or std::unique_ptr) that is never copied,
moved, reassigned, reset, or passed to a callee.

The object is not flagged if it is a non-array and, at compilation time, its size is greater than 4 KB
or its size is unknown.

• The object is dynamically allocated by using operators new or new[] and then deallocated
through all possible paths within the function.

The object is not flagged if it is a non-array and, at compilation time, its size is greater than 4 KB
or its size is unknown.

• The object is a wrapper class that contains at least one data member with a fixed size larger than
16 KB.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Unnecessary Use of a Smart Pointer
#include <iostream>
#include <cstdint>

 AUTOSAR C++14 Rule A18-5-8

25-423

#include <array>
#include <utility>

constexpr std::size_t size4KB = 4 * 1024;

class MyLargeBoard
{
 public:
 constexpr static size_t size16KB = 16 * 1024;
 MyLargeBoard() {}
 MyLargeBoard(int s);
 private:
 std::array<uint8_t, size16KB> cells;

};

void Reset_ptr(std::shared_ptr<std::pair<int32_t, int32_t>>& ptr)
{
 ptr.reset();
}

void Func(int32_t x_coord, int32_t y_coord,
 std::pair<int32_t, int32_t>** param_ptr)
{
 std::shared_ptr<std::pair<int32_t, int32_t>>reused_ptr(*param_ptr);

 auto toResetPtr = //Compliant, smart pointer is reset
 std::make_shared<std::pair<int32_t, int32_t>>(x_coord, y_coord);
 auto unused_ptr = //Non-compliant
 std::shared_ptr<std::pair<int32_t, int32_t>>(reused_ptr);

 if (toResetPtr->first || toResetPtr->second) {
 Reset_ptr(toResetPtr);
 }

}

void SmartPtrLargeMem()
{
 //Large non-array object
 std::shared_ptr<MyLargeBoard>
 big_non_array(new MyLargeBoard); // Compliant
 //Large array of char
 std::unique_ptr<char []>
 big_array {new char[size4KB]{'1', '2', '3', '4'}}; //Non-compliant

}

In this example, Polyspace flags these smart pointers as noncompliant:

• Shared smart pointer unused_ptr because it is declared locally in Func and it is never copied,
moved, reassigned, reset, or passed to a callee.

• big_array which manages the dynamically allocate array of char in SmartPtrLargeMem. In this
context, the use of a standard C++ container such as std::array instead of std::unique_ptr
is less memory intensive.

Polyspace does not flag:

• reused_ptr because it is used to initialize unused_ptr and toResetPtr because it is reset.
• big_non_array because it is a non-array object with one data member of size smaller than 16

KB. The rule allows an exception for such objects because dynamic allocation can help optimize
stack memory usage, for instance on an embedded device with limited memory storage.

Unnecessary Dynamic Memory Allocation
#include <iostream>
#include <cstdint>
#include <array>
#include <utility>

constexpr std::size_t size4KB = 4 * 1024;

class MyLargeBoard

25 AUTOSAR C++14 Rules

25-424

{
public:
 constexpr static size_t size16KB = 16 * 1024;
 MyLargeBoard() {}
 MyLargeBoard(int s);
private:
 std::array<uint8_t, size16KB> cells;

};

class Mytype
{
public:
 Mytype(int s = 0) : a{s} {}
private:
 int a;
};

void ReadInput(Mytype* input);
bool IsInValidRange(Mytype* input);

void* func(Mytype** output)
{
 auto input1 = new Mytype(); //Non-compliant
 ReadInput(input1);

 auto input2 = new Mytype(); //Compliant
 if (IsInValidRange(input2)) {
 delete input2;
 } else {
 *output = input2;
 }

 Mytype input3; //Compliant
 ReadInput(&input3);

 delete input1;

 return nullptr;

}

void DynamicAllocLargeMem()
{
 //Large non-array object
 MyLargeBoard* big_non_array {new MyLargeBoard}; //Compliant
 //Large array of char
 char* big_array { new char[size4KB]{'1', '2', '3', '4'}}; //Non-compliant
 //

 delete big_non_array;
 delete[] big_array;

}

In this example, noncompliant local variable input1 is dynamically allocated with operator new and
then deallocated through all possible paths inside func. The unnecessary allocation and deallocation
operations can be avoided by declaring a variable with automatic storage duration, such as input3,
which is automatically deleted when func returns .

Polyspace also flags dynamically allocated array big_array. In this context, the use of a standard C
++ container such as std::array is less memory intensive.

Dynamically allocated variable input2 is compliant because it is not deallocated though all possible
paths inside func. The variable is escaped through output in the else branch.

Similarly, Polyspace does not flag big_non_array because it is a non-array object with one data
member of size smaller than 16 KB. The rule allows an exception for such objects because dynamic
allocation can help optimize stack memory usage, for instance on an embedded device with limited
memory storage.

 AUTOSAR C++14 Rule A18-5-8

25-425

Use of Wrapper Class With Large Size Data Members
#include <iostream>
#include <cstdint>
#include <array>
#include <vector>

class MyTable
{

public:
 constexpr static size_t size64KB = 65535;
 using arrayType = std::array<uint8_t, size64KB>;
 MyTable() : tableSize{0} {}
 MyTable(const std::string& dbPath, uint32_t inputSize) : tableSize{inputSize}
 {

 // ...
 }
 uint8_t AverageCellVal() const noexcept;
private:
 arrayType table;
 uint32_t tableSize;
};

void AvgCellVal(const std::string& dbPath, uint32_t inputSize)
{
 std::vector<uint8_t> table1(inputSize); // Compliant
 MyTable table2(dbPath, inputSize); // Non-compliant
 uint8_t averageCellV = table2.AverageCellVal();
 std::cout << "Average cell value in " << dbPath << ": " << averageCellV << '\n';
}

class DerivedMyTable : public MyTable
{
public:
 constexpr static size_t pathMaxSize = 2 * 1024; // 2 Kb
 DerivedMyTable() : MyTable() {}
 DerivedMyTable(const std::string& dbPath, uint32_t inputSize) : MyTable(dbPath, inputSize)
 {
 std::strncpy(__dbPath, dbPath.data(), pathMaxSize - 1);
 __dbPath[pathMaxSize - 1] = '\0';
 }
private:
 char __dbPath[pathMaxSize]; // OK
};

void func(const std::string& dbPath, uint32_t inputSize)
{
 DerivedMyTable table2_derived(dbPath, inputSize); // Non-compliant

}

In this example, base class MyTable contains a data member table of type arrayType which
corresponds to an array of size 64 KB. Polyspace flags the declaration of variable table2 because it
consumes a large amount of memory through MyTable and it is only used within AvgCellVal().

Instead, you can use a less memory intensive C++ container such as std::vector to declare an
automatic storage duration object such as table1.

Polyspace also flags table2_derived. Even if DerivedMyTable does not contain a data member
with a large size in memory, it is derived from a base class that wraps an object that consumes a large
size of memory.

Check Information
Group: Language support library
Category: Required, Partially automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

25 AUTOSAR C++14 Rules

25-426

Topics
AUTOSAR C++14 Rule A18-5-8
“Check for Coding Standard Violations”

Introduced in R2021b

 AUTOSAR C++14 Rule A18-5-8

25-427

AUTOSAR C++14 Rule A18-5-9
Custom implementations of dynamic memory allocation and deallocation functions shall meet the
semantic requirements specified in the corresponding "Required behaviour" clause from the C++
Standard

Description
Rule Definition

Custom implementations of dynamic memory allocation and deallocation functions shall meet the
semantic requirements specified in the corresponding "Required behaviour" clause from the C++
Standard.

Rationale

The C++ Standard ([new.delete]) specifies certain required behaviors for the dynamic allocation and
deallocation functions. If you implement a global replacement allocation or deallocation function that
does not meet these semantic requirements, other functions that rely on the required behaviors
might behave in an undefined manner.

For instance, void* operator new (std::size_t count) is expected to throw a bad_alloc
exception if it fails to allocate the requested amount of memory. If you implement a replacement
allocation function that returns nullptr instead of throwing, a function that expect the memory
allocation to throw on failure might try to dereference a null pointer instead.

Polyspace Implementation

Polyspace flags these replacement implementations of dynamic allocation and deallocation functions.

• Replacement operator new that returns nullptr when the expected behavior is to throw a
bad_alloc exception on failure.

• Replacement operator new or operator delete that throw directly or indirectly on failure
when the expected behavior is to not throw. Polyspace also highlights the location of the throw in
your code.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
operator new Returns nullptr on Failure
#include<new>

extern void* custom_alloc(std::size_t);

void* operator new (std::size_t count) //Non-compliant
{
 return custom_alloc(count);
}

void func()

25 AUTOSAR C++14 Rules

25-428

{
 int* ptr1;
 try {
 ptr1 = new int;
 } catch (const std::bad_alloc&) {
 //handle exception
 }

 //Use ptr1

}

In this example, the custom allocation function custom_alloc, which is defined elsewhere, might
return nullptr on failure. Function func, which expects a bad_alloc exception if the memory
allocation fails, might dereference a null pointer because operator new does not throw.

Check Information
Group: Language support library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 AUTOSAR C++14 Rule A18-5-9

25-429

AUTOSAR C++14 Rule A18-5-10
Placement new shall be used only with properly aligned pointers to sufficient storage capacity

Description
Rule Definition

Placement new shall be used only with properly aligned pointers to sufficient storage capacity.

Rationale

The new operator allocates the required amount of memory for storing an object on the heap and
constructs a new object in the allocated memory in a single operation. If you want to separate the
allocation and the construction and place an object in preallocated memory on either the stack or the
heap, you use placement new. Placement new has advantages over new in certain situations, for
example, when you need to place the object at a known memory location.

The new operator automatically allocates the correct amount of aligned memory that the object
requires. But when using placement new, you must manually make sure that the pointer you pass has
sufficient allocated storage capacity and is properly aligned. Violating these constraints results in the
construction of an object at a misaligned location or memory initialization outside of allocated
bounds, which might lead to unexpected or implementation-dependent behavior.

Polyspace Implementation

Suppose that a pointer ptr is preallocated m bytes of memory on the stack and has alignment n. For
instance, if ptr is an array:

uint8_t ptr[5];

the allocated storage is sizeof(uint8_t) * 5 and the alignment is alignof(uint8_t). If you
allocate more than m bytes to this pointer in a placement new expression or if the alignment required
for the allocation is greater than n, the checker raises a violation. When determining the pointer
alignment, the checker takes into account explicit alignments such as with std::align.

The checker does not consider pointers that are preallocated memory on the heap since the available
storage depends on the memory availability, which is known only at run time.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Placement new Used with Insufficient Storage Capacity and Misaligned Pointers
#include <new>
#include<memory>
#include <cstdint>

void Foo()

25 AUTOSAR C++14 Rules

25-430

{
 uint8_t c;
 uint64_t* ptr =
 new // Non-compliant (insufficient storage, misaligned)
 (&c) uint64_t;
}

void Bar()
{
 uint8_t buf[sizeof(uint64_t)];
 uint64_t* ptr =
 new // Non-compliant (sufficient storage, misaligned)
 (buf) uint64_t;
}

void Baz()
{
 void* buf;
 std::size_t sp = 64;
 std::align(alignof(uint64_t), sizeof(uint64_t), buf, sp);
 uint64_t* ptr =
 new // Compliant (sufficient storage, aligned)
 (buf) uint64_t;
}

In the function Foo, the &c points to an uint8_t value and has one byte memory in stack with one-
byte alignment. The pointer is passed to placement new, which constructs an instance of uint64_t
that requires 8 bytes of memory and a 4-byte alignment. This usage violates the rule.

In the function Bar, the pointer buf is properly allocated and has sufficient storage capacity. But,
because it points to the uint8_t data type, it has one-byte alignment. This usage still violates the
rule.

The function Baz calls the std::align function to create a pointer with correct storage capacity (8
byte) and alignment (4-byte) for uint64_t. This usage complies with the rule.

Check Information
Group: Language support library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 AUTOSAR C++14 Rule A18-5-10

25-431

AUTOSAR C++14 Rule A18-5-11
"operator new" and "operator delete" shall be defined together

Description
Rule Definition

"operator new" and "operator delete" shall be defined together.

Rationale

You typically overload operator new to perform some bookkeeping in addition to allocating memory
on the free store. Unless you overload the corresponding operator delete, it is likely that you
omitted some corresponding bookkeeping when deallocating the memory.

The defect can also indicate a coding error. For instance, you overloaded the placement form of
operator new[]:

void *operator new[](std::size_t count, void *ptr);

but the non-placement form of operator delete[]:

void operator delete[](void *ptr);

instead of the placement form:

void operator delete[](void *ptr, void *p);

When overloading operator new, make sure that you overload the corresponding operator
delete in the same scope, and vice versa. To find the operator delete corresponding to an
operator new, see the reference pages for operator new and operator delete.

Polyspace Implementation

The rule checker raises a violation when you overload operator new but do not overload the
corresponding operator delete, or vice versa.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Mismatch Between Overloaded operator new and operator delete

#include <new>
#include <cstdlib>

int global_store;

void update_bookkeeping(void *allocated_ptr, bool alloc) {
 if(alloc)

25 AUTOSAR C++14 Rules

25-432

https://en.cppreference.com/w/cpp/memory/new/operator_new
https://en.cppreference.com/w/cpp/memory/new/operator_delete

 global_store++;
 else
 global_store--;
}

void *operator new(std::size_t size, const std::nothrow_t& tag);
void *operator new(std::size_t size, const std::nothrow_t& tag) //Noncompliant
{
 void *ptr = (void*)malloc(size);
 if (ptr != nullptr)
 update_bookkeeping(ptr, true);
 return ptr;
}

void operator delete[](void *ptr, const std::nothrow_t& tag);
void operator delete[](void* ptr, const std::nothrow_t& tag) //Noncompliant
{
 update_bookkeeping(ptr, false);
 free(ptr);
}

In this example, the overloads of operators operator new and operator delete[] are
noncompliant because there are no overloads of the corresponding operator delete and
operator new[] operators.

The overload of operator new calls a function update_bookkeeping to change the value of a
global variable global_store. If the default operator delete is called, this global variable is
unaffected, which might defy developer's expectations.

Check Information
Group: Language support library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 AUTOSAR C++14 Rule A18-5-11

25-433

AUTOSAR C++14 Rule A18-9-1
The std::bind shall not be used

Description
Rule Definition

The std::bind shall not be used.

Rationale

std::bind takes a callable object, such as a function object, and produces a forwarding call wrapper
for this object. Calling the wrapper invokes the object with some of the object arguments bound to
arguments you specify in the wrapper. For instance, in this code snippet, foo is called through bar
with the first (second) argument of bar bound to the second (first) argument of foo.

int foo(int, int);
auto bar = std::bind(foo, _2, _1);
bar(10, 20); //call to foo(20, 10)

The use of std::bind results in a less readable function call. A developer that is unfamiliar with foo
would need to see the declaration of foo to understand how to pass arguments to bar, and might
confuse one function parameter with another. In addition, a compiler is less likely to inline a function
that you create using std::bind.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Non-Compliant Use of std::bind
#include <cstdint>polys
#include <functional>
class A
{
//...
};
void func(A const& a, double y) noexcept
{
//...
}
void func1() noexcept
{
 double arg2 = 0.0;
 auto bind_fn = std::bind(&func, std::placeholders::_1, arg2); // Non-compliant
 // ...
 A const a{};
 bind_fn(a);
}
void func2() noexcept
{
 auto lambda_fn = [](A const & a) -> void { // Compliant
 double arg2 = 0.0;
 func(a, arg2);
 }; // Compliant
 // ...
 A const a{};

25 AUTOSAR C++14 Rules

25-434

 lambda_fn(a);
}

In this example, func is called through bind_fn with the only argument of bind_fn bound to the
first argument of func. It might be unclear to a developer that arg2 in the definition of bind_fn is
the second argument of func. For a more readable code, use lambda expressions instead. The call to
func with two arguments is clearer in the definition of lambda_fn.

Check Information
Group: 18 Language Support Library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019b

 AUTOSAR C++14 Rule A18-9-1

25-435

AUTOSAR C++14 Rule A18-9-2
Forwarding values to other functions shall be done via: (1) std::move if the value is an rvalue
reference, (2) std::forward if the value is forwarding reference

Description
Rule Definition

Forwarding values to other functions shall be done via: (1) std::move if the value is an rvalue
reference, (2) std::forward if the value is forwarding reference.

Rationale

You can pass an object efficiently to a function by casting the object to an rvalue and taking
advantage of move semantics.

• If you are forwarding an rvalue reference to a function, use std::move to cast the object to an
rvalue.

• If you are forwarding a forwarding reference (or universal reference) to a function, use
std::forward to cast the object to an rvalue if and only if the object is bound to an rvalue. A
forwarding reference might be bound to an rvalue or an lvalue. For the purposes of this rule,
objects with type auto && are considered as forwarding references.

Using std::move with forwarding references might result in an unexpected modification of an
lvalue. Using std::forward with rvalue references is possible but it is error-prone and might
increase the complexity of your code.

Polyspace Implementation

• Polyspace flags the use of std::move to forward a forwarding reference to a function, including
objects of type auto &&.

• Polyspace flags the use of std::forward to forward an rvalue reference to a function.
• Polyspace does not flag the use of std::move or std::forward if no forwarding to a function

takes place. For instance, in this code snippet, no defect is raised on the use of std::move with
forwarding reference b2 and the use of std::forward with revalue reference b1.

template <typename T1, typename T2>
void func(T1& b1, T2&& b2)
{
 const T1& b10 = std::forward(b1);
 const T2& b20 = std::forward(b2);
 const T1& b11 = std::move(b1);
 const T2& b21 = std::move(b2);
}

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

25 AUTOSAR C++14 Rules

25-436

Examples
Values Forwarded Incorrectly

#include <cstdint>
#include <string>
#include <utility>

class A
{
public:
 explicit A(std::string&& s)
 : str(std::move(s)) // Compliant
 {
 }

private:
 std::string str;
};

template <typename ...T>
void f1(T...t);

template <typename T1, typename T2>
void func(T1&& t1, T2& t2)
{
 f1(std::move(t1)); // Non-compliant
 f1(std::forward<T1>(t1)); // Compliant

 f1(std::forward<T2>(t2)); // Non-compliant
 f1(std::move(t2)); // Compliant
}

void func_auto(A& var)
{
 auto&& var1 = var;
 f1(std::move(var1)); // Non-compliant
 f1(std::forward<decltype(var1)>(var1)); //Compliant
}

void main()
{
 int32_t i;
 func(0, i);
}

In this example, template function func forwards parameters t1 and t2 to function f1. Polyspace
flags the use of std::forward with t2 because this parameter is an rvalue reference (type T&).

Polyspace also flags the use of std::move with t1 because this parameter is a forwarding reference
(type T&&). If t1 is initialized with an lvalue, the move might result in an unexpected modification of
the parameter. Similarly, Polyspace flags the use of std::move in func_auto because objects of
type auto&& are considered as forwarding references.

 AUTOSAR C++14 Rule A18-9-2

25-437

Check Information
Group: Language support library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-438

AUTOSAR C++14 Rule A18-9-3
The std::move shall not be used on objects declared const or const&

Description
Rule Definition

The std::move shall not be used on objects declared const or const&.

Rationale

When you use std::move() on an object, it is cast into an rvalue. The compiler then manages the
resources in the object by calling the constructor or operator with the closest matching parameter
list. If you call std::move() on a const or const& type object, the call returns a const or const&
type rvalue. Because move constructors and operators do not take a const type argument, the
compiler calls the copy constructor or operator instead of the move constructor or operator. Consider
this code snippet where a const object is copied when you might expect a move after a call to
std::move().

class string{
 //...
public:
 string(const string& rhs);// copy contructor
 string(string&& rhs); //move constructor
};

void print(string text) {
 cout<<text;
 //...
}

int main(){
 int const message = "Error";
 //..
 print(std::move(message))// the copy constructor is called
}

The return type of std::move(message) is the rvalue const string&&. Between the move and
copy constructors of class string, only the copy constructor accepts const type argument. The
compiler calls the copy constructor and copies the resources of message into text.

Because std::move() does not move a const or const& type object, avoid using std::move() on
const or const& objects. If you intend to move resources from an object, do not declare it as const
or const&.

Polyspace Implementation

Polyspace flags use of std::move() on:

• Objects that are declared const or const&.
• Objects that are cast to const or const&.

 AUTOSAR C++14 Rule A18-9-3

25-439

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Using std::move() on const and const& Objects

#include <cstdint>
#include <utility>
class A
{
 // Implementation
};
void F1(const int32_t &is_const, int32_t &is_non_const)
{
 const A a1{};
 int32_t target = 0;
 A a2 = a1; // Compliant
 A a3 = std::move(a1); // Noncompliant

 target =
 std::move((const int32_t &)is_non_const);// Noncompliant
 target =
 std::move(static_cast<const int32_t &>(is_non_const));// Noncompliant
 target =
 std::move(const_cast<int32_t &>(is_const));// Compliant
}
int main(){
 //...
}

• Polyspace flags the use of std::move() with const object a1. The compiler calls the copy
constructor to copy a1 to a3. You might expect the compiler to call the move constructor.

• Polyspace also flags the use of std::move() with the object is_non_const when it is cast to
const. After the casting, the compiler calls the copy constructor to copy is_non_const to
target. You might expect the compiler to call the move constructor.

• Polyspace does not flag the use of std::move()with the non-const object that results from
casting the const object is_const into a non-const type by using const_cast. After casting,
is_const is no longer a const object. The compiler calls the move constructor.

Check Information
Group: Language support library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

25 AUTOSAR C++14 Rules

25-440

Introduced in R2020a

 AUTOSAR C++14 Rule A18-9-3

25-441

AUTOSAR C++14 Rule A18-9-4
An argument to std::forward shall not be subsequently used

Description
Rule Definition

An argument to std::forward shall not be subsequently used.

Rationale

You typically use std::forward in a function template to pass a forwarding reference parameter to
another function. The resources of the parameter might be transferred to another object through a
move operation, depending on the value category of the parameter.

For an rvalue parameter, the parameter is in an indeterminate state if it is moved from after the call
to std::forward and it should not be reused.

For an lvalue parameter, If you reuse the parameter after the call to std::forward, modifications to
the parameter might affect the argument of the caller function to which you pass the parameter.

Polyspace Implementation

Polyspace flags the call to std::forward if the forwarded object is reused after the call. Polyspace
also highlights the lines where the forwarded object is reused in your code.

Polyspace does not flag the call to std::forward if its argument is reused in a branch that cannot
be reached after the call to std::forward. For instance, in this code snippet, the branch where the
reuse of variable t occurs cannot be reached after the code enters the branch where std::forward
is used.

template<typename T>
void func(T&& t)
{
 T&& p = t;

 switch(t) {
 case 0:
 p = std::forward<T>(t);
 break;
 case 1:
 t--; //t reused
 break;
 }
}

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

25 AUTOSAR C++14 Rules

25-442

Examples
Reuse of Parameter After Call to std::forward
#include <cstdint>
#include <iostream>
#include <utility>

namespace myTemplates
{

template <typename ...T>
void f1(T...t);

template<typename T>
void f2(T&& t2, bool b)
{
 if (b) {
 f1(std::forward<T>(t2)); // Compliant
 } else {
 t2++; // else branch not entered
 }

}

template<typename T>
void f3(T&& t3)
{
 T&& p = std::forward<T>(t3); // Non-compliant

 switch (t3) { // t3 reused
 case 0:
 t3++; // t3 reused
 break;
 case 1:
 t3--; // t3 reused
 break;
 default:
 break;
 }
}

template<typename T>
void f4(T&& t4)
{
 --t4;

 f1(std::forward<T>(t4)); // Non-compliant

 t4++; // t4 reused

 f1(std::forward<T>(t4)); // Non-compliant and t4 reused

 t4--; // t4 reused
}

 AUTOSAR C++14 Rule A18-9-4

25-443

template<typename T>
void f5(T&& t5)
{
 f1(t5, // t5 reused
 std::forward<T>(t5)); // Non-compliant
}

}

void main(void)
{
 int i;

 myTemplates::f2(i, true);
 myTemplates::f3(i);
 myTemplates::f4(i);
 myTemplates::f5(i);

}

In this example, Polyspace flags all the calls to std::forward where the forwarded parameter is
reused after the call. In template function f4, the second call to std::forward counts as a reuse of
the parameter t4. There are no violations of this rule in f2 because t2 is reused in the else branch
which is never entered.

Check Information
Group: Language support library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-444

AUTOSAR C++14 Rule A20-8-1
An already-owned pointer value shall not be stored in an unrelated smart pointer

Description
Rule Definition

An already-owned pointer value shall not be stored in an unrelated smart pointer.

Rationale

You use smart pointers to ensure that the memory a pointer points to is automatically deallocated
when the pointer is destroyed, for example if the pointer goes out of scope. When unrelated smart
pointers manage the same pointer value, one of the smart pointers might attempt to deallocate
memory that was already deallocated by the other smart pointer. This results in a double free
vulnerability, which corrupts your program's memory management data structure.

A smart pointer owns the pointer value that is used to initialize the smart pointer. If a pointer value is
already owned by a smart pointer such as std::shared_ptr, and then you use that smart pointer to
initialize another smart pointer, for example with a copy operation, the two smart pointers are
related. The underlying pointer value is managed by both smart pointers and the memory pointed to
is not deallocated until all the smart pointers are destroyed.

Polyspace Implementation

Polyspace flags the use of an already-owned pointer as the argument of:

• A smart pointer constructor. For instance, in this code snippet, raw_ptr is already owned by
s_ptr1 and is used to initialize s_ptr2:
char *raw_ptr = new char;
std::shared_ptr<char> s_ptr1(raw_ptr);
std::shared_ptr<char> s_ptr2(raw_ptr); //raw_ptr is already owned by s_ptr1

• A smart pointer reset operation. For instance, in this code snippet, the reset of s_ptr2 replaces
raw_ptr2 with already-owned raw_ptr1:
char *raw_ptr1 = new char;
char *raw_ptr2 = new char;

std::shared_ptr<char> s_ptr1(raw_ptr1);
std::shared_ptr<char> s_ptr2(raw_ptr2);

s_ptr2.reset(raw_ptr1); // s_ptr2 releases raw_ptr2 and owns already owned raw_ptr1

Polyspace checks only smart pointer types std::shared_ptr and std::unique_ptr and considers
that user-defined allocators and deleters have standard allocation and deallocation behavior.

A pointer is already owned by a smart pointer if the pointer type is not std::nullptr_t and either:

• The pointer was used to initialize the smart pointer.
• The pointer was used as an argument to the smart pointer reset() member function.
• The pointer is the return value of the smart pointer get() member function.
• The pointer is the return value of the smart pointer operator-> member function.

 AUTOSAR C++14 Rule A20-8-1

25-445

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of an Already-Owned Pointer

#include <memory>
#include <string>

struct Profile
{
 virtual ~Profile()=default;
};

struct Player : public Profile
{
 std::string name;
 std::int8_t rank;

 Player();
 Player(const std::string& name_, const std::int8_t& rank_) :
 name{ name_ }, rank{ rank_ } {}
};

void func(){

 Player * player = new Player("Richard Roll",1);
 std::shared_ptr<Player> player1(player);
 std::shared_ptr<Player> top_rank(player); //Non-compliant

}

void func2(){

 std::shared_ptr<Player> player1_shared =
 std::make_shared<Player>("Richard Roll",1);
 std::shared_ptr<Player> top_rank_shared(player1_shared); //Compliant

}

In this example, the use of pointer value player to construct smart pointer top_rank in function
func is non-compliant. player is already owned by smart pointer player1. When player1 is
destroyed, it might attempt to delete pointer value player which was already deleted by top_rank.

If you intend to have multiple smart pointer manage the same pointer value, use std::make_shared
to declare player1_shared, and then use copy construction to create related smart pointer
top_rank_shared, as in func2. The underlying pointer value is not deleted until all smart pointers
are destroyed.

If you do not intend to share the pointer value between smart pointers, use std::make_unique to
construct a smart pointer of type std::unique_ptr. A std::unique_ptr can only be moved,
which relinquishes ownership of the underlying managed pointer value.

25 AUTOSAR C++14 Rules

25-446

Check Information
Group: General utilities library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14) | CERT C++: MEM56-CPP

Topics
“Check for Coding Standard Violations”

Introduced in R2021a

 AUTOSAR C++14 Rule A20-8-1

25-447

AUTOSAR C++14 Rule A20-8-2
A std::unique_ptr shall be used to represent exclusive ownership

Description
Rule Definition

A std::unique_ptr shall be used to represent exclusive ownership.

Rationale

Raw pointers to heap memory suffer from two related problems:

• When a raw pointer goes out of scope, the pointed memory might not be deallocated and result in
a memory leak. You have to remember to explicitly deallocate the memory (delete the pointer)
before the pointer goes out of scope.

• If you pass a raw pointer to a function, it is unclear if the function takes exclusive ownership of the
pointed resource and can deallocate the memory or must leave the deallocation to the caller. If the
function deallocates the memory, there is a risk that another pointer pointing to the same memory
location is now left dangling.

A std::unique_ptr object is a smart pointer that solves both problems and does not require
significant additional overheads over raw pointers:

• You do not have to explicitly deallocate the pointed memory. The memory is deallocated before the
pointer goes out of scope.

• The pointer has exclusive ownership of the pointed object. When you pass the pointer to a function
by a move operation, the function assumes ownership of the memory through the pointer and
implicitly deallocates the memory on completion (unless you pass the ownership to another
function).

Polyspace Implementation

The checker flags functions other than main that have raw pointers as parameters or return values.

The checker raises a violation of both this rule and AUTOSAR C++14 Rule A20-8-3.

• If you want the function to take exclusive ownership of the pointed object, convert the raw pointer
to std::unique_ptr type.

• If you want the function to take shared ownership of the pointed object, convert the raw pointer to
std::shared_ptr type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

25 AUTOSAR C++14 Rules

25-448

Examples
Raw Pointers as Function Parameters
#include <memory>
#include <cstdint>
#include <thread>
constexpr std::uint32_t SIZE=100;

class Resource {
 public:
 bool lookup(std::int32_t);
 private:
 std::int32_t arr[SIZE];
};

bool doesValueExist(Resource *aResource, std::int32_t val) { //Noncompliant
 return aResource->lookup(val);
}

bool doAllSmallerValuesExist(std::unique_ptr<Resource> aResource, std::int32_t val) {
//Compliant
 bool valueExists = true;
 for(std::int32_t i = 0; i <= val; i++) {
 valueExists = aResource->lookup(i);
 if(!valueExists)
 break;
 }
 return valueExists;
}

std::int32_t getAVal();

void main(void) {
 Resource *aResourcePtr = new Resource;
 auto anotherResourcePtr = std::make_unique<Resource>();
 bool valueFound, allSmallerValuesFound;

 //Initialize resources

 valueFound = doesValueExist(aResourcePtr, getAVal());
 allSmallerValuesFound = doAllSmallerValuesExist(std::move(anotherResourcePtr), getAVal());
}

In this example, the function doesValueExist takes a raw pointer to a Resource object as
parameter and violates the rule.

The function doAllSmallerValuesExist performs similar operations on a Resource object but
takes an std::unique_ptr pointer to the object as parameter.

Check Information
Group: General utilities library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

 AUTOSAR C++14 Rule A20-8-2

25-449

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-450

AUTOSAR C++14 Rule A20-8-3
A std::shared_ptr shall be used to represent shared ownership

Description
Rule Definition

A std::shared_ptr shall be used to represent shared ownership.

Rationale

Raw pointers to heap memory suffer from two related problems:

• When a raw pointer goes out of scope, the pointed memory might not be deallocated and result in
a memory leak. You have to remember to explicitly deallocate the memory (delete the pointer)
before the pointer goes out of scope.

• If you pass a raw pointer to a function, it is unclear if the function takes exclusive ownership of the
pointed resource and can deallocate the memory or must leave the deallocation to the caller. If the
function deallocates the memory, there is a risk that another pointer pointing to the same memory
location is now left dangling.

A std::shared_ptr object is a smart pointer that solves both problems.

• You do not have to explicitly deallocate the pointed memory. The memory is deallocated before the
last pointer pointing to the memory location goes out of scope.

• The pointer has shared ownership of the pointed object. When you pass the pointer to a function,
the function assumes ownership of the memory through the pointer and implicitly deallocates the
memory on completion as long as no other pointer is pointing to the object.

Although a std::shared_ptr object has some overhead over a raw pointer, the use of this object
avoids possible memory leaks later.

Polyspace Implementation

The checker flags functions other than main that have raw pointers as parameters or return values.

The checker raises a violation of both this rule and AUTOSAR C++14 Rule A20-8-2.

• If you want the function to take exclusive ownership of the pointed object, convert the raw pointer
to std::unique_ptr type.

• If you want the function to take shared ownership of the pointed object, convert the raw pointer to
std::shared_ptr type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

 AUTOSAR C++14 Rule A20-8-3

25-451

Examples
Raw Pointers as Function Parameters
#include <memory>
#include <cstdint>
#include <thread>
constexpr std::uint32_t SIZE=100;

class Resource {
 public:
 bool lookup(std::int32_t);
 private:
 std::int32_t arr[SIZE];
};

bool doesValueExist(Resource *aResource, std::int32_t val) { //Noncompliant
 return aResource->lookup(val);
}

bool doAllSmallerValuesExist(std::shared_ptr<Resource> aResource, std::int32_t val) {
//Compliant
 bool valueExists = true;
 for(std::int32_t i = 0; i <= val; i++) {
 valueExists = aResource->lookup(i);
 if(!valueExists)
 break;
 }
 return valueExists;
}

std::int32_t getAVal();

void main(void) {
 Resource *aResourcePtr = new Resource;
 auto anotherResourcePtr = std::make_shared<Resource>();
 bool valueFound, allSmallerValuesFound;

 //Initialize resources

 valueFound = doesValueExist(aResourcePtr, getAVal());
 allSmallerValuesFound = doAllSmallerValuesExist(anotherResourcePtr, getAVal());
}

In this example, the function doesValueExist takes a raw pointer to a Resource object as
parameter and violates the rule.

The function doAllSmallerValuesExist performs similar operations on a Resource object but
takes an std::shared_ptr pointer to the object as parameter.

Check Information
Group: General utilities library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

25 AUTOSAR C++14 Rules

25-452

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 AUTOSAR C++14 Rule A20-8-3

25-453

AUTOSAR C++14 Rule A20-8-5
std::make_unique shall be used to construct objects owned by std::unique_ptr

Description
Rule Definition

std::make_unique shall be used to construct objects owned by std::unique_ptr.

Rationale

Instead of allocating memory by using the new operator and converting the resulting raw pointer to
an std::unique_ptr object, for instance:

class numberClass {
 public:
 numberClass(int n): number(n){}
 private:
 int number;
}
int aNumber=1;
std::unique_ptr<numberClass> numberPtr (new numberClass(aNumber));

Create a std::unique_ptr object directly using the std::make_unique function. For instance:

auto numberPtr = std::make_unique<numberClass>(aNumber);

Using std::make_unique is preferred because:

• The creation of the std::unique_ptr object using std::make_unique is exception-safe.
Otherwise, an exception can occur between the dynamic memory allocation with the new operator
and the subsequent conversion, leading to a memory leak. An exception causes a memory leak
only in certain contexts, for instance, when the std::unique_ptr object is created in an
argument of a multi-parameter function and another function argument evaluation throws an
exception.

• You can use a more concise syntax. You do not have to repeat the data type of the object that is
dynamically allocated.

Polyspace Implementation

The checker flags the creation of an std::unique_ptr object (or boost::unique_ptr object)
from the raw pointer returned by the new operator.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: General utilities library
Category: Required, Automated

25 AUTOSAR C++14 Rules

25-454

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 AUTOSAR C++14 Rule A20-8-5

25-455

AUTOSAR C++14 Rule A20-8-6
std::make_shared shall be used to construct objects owned by std::shared_ptr

Description
Rule Definition

std::make_shared shall be used to construct objects owned by std::shared_ptr.

Rationale

Instead of allocating memory by using the new operator and converting the resulting raw pointer to
an std::shared_ptr object, for instance:

class numberClass {
 public:
 numberClass(int n): number(n){}
 private:
 int number;
}
int aNumber=1;
std::shared_ptr<numberClass> numberPtr (new numberClass(aNumber));

Create a std::shared_ptr object directly using the use std::make_shared function. For
instance:

auto numberPtr = std::make_shared<numberClass>(aNumber);

Using std::make_shared is preferred because:

• The creation of the std::shared_ptr object is performed in a single dynamic memory allocation
and improves run-time performance. Otherwise, creating a raw pointer by using the new operator
requires one dynamic memory allocation and converting the raw pointer to an std::shared_ptr
object requires a second allocation. The second allocation creates a control block that keeps track
of the reference count of the shared resource and makes the std::shared_ptr object aware of
all pointers to the shared resource.

• The creation of the std::shared_ptr object using std::make_shared is exception-safe.
Otherwise, an exception can occur between the dynamic memory allocation with the new operator
and the subsequent conversion, leading to a memory leak. An exception causes a memory leak
only in certain contexts, for instance, when the std::shared_ptr object is created in an
argument of a multi-parameter function and another function argument evaluation throws an
exception.

• You can use a more concise syntax. You do not have to repeat the data type of the object that is
dynamically allocated.

Polyspace Implementation

The checker flags the creation of an std::shared_ptr object (or boost::shared_ptr object)
from the raw pointer returned by the new operator.

25 AUTOSAR C++14 Rules

25-456

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: General utilities library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 AUTOSAR C++14 Rule A20-8-6

25-457

AUTOSAR C++14 Rule A21-8-1
Arguments to character-handling functions shall be representable as an unsigned char

Description
Rule Definition

Arguments to character-handling functions shall be representable as an unsigned char.

Rationale

You cannot use plain char variables as arguments to character-handling functions declared in
<cctype>, for instance, isalpha() or isdigit(). On certain platforms, plain char variables can
have negative values that cannot be represented as unsigned char or EOF, resulting in undefined
behavior.

Polyspace Implementation

The check raises a flag when you use a signed or plain char variable with a negative value as
argument to a character-handling function.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Strings library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-458

AUTOSAR C++14 Rule A23-0-1
An iterator shall not be implicitly converted to const_iterator

Description
Rule Definition

An iterator shall not be implicitly converted to const_iterator.

Rationale

The C++11 standard introduces member functions such as cbegin and cend that returns const
iterators to containers. To create const iterators, use these member functions instead of functions
such as begin and end that return non-const iterators and then require implicit conversions.

For instance, consider the std::list container:

std::list<int> aList = {0, 0, 1, 2};

You can use the begin and end member functions of the container to create const iterators, for
instance in a for loop:

for(std::vector<int>::const_iterator iter{aList.begin()}, end{aList.end()};
 iter != end;
 ++iter) {...}

However, the functions begin and end return non-const iterators and for assignment to the const
iterators iter and end respectively, an implicit conversion must happen. Instead, take advantage of
the new C++11 functions cbegin and cend that directly returns const iterators:

for(std::vector<int>::const_iterator iter{aList.cbegin()}, end{aList.cend()};
 iter != end;
 ++iter) {...}

If you use these functions, you can also replace the explicit type specification of the iterators with
auto:

for(auto iter{aList.cbegin()}, end{aList.cend()};
 iter != end;
 ++iter) {...}

Polyspace Implementation

The checker flags conversions from type iterator to const_iterator or reverse_iterator to
const_reverse_iterator.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

 AUTOSAR C++14 Rule A23-0-1

25-459

Examples
Implicit Conversions to Const Iterators

#include <cstdint>
#include <vector>

void func(std::vector<int32_t> & values, int32_t aValue) {
 std::vector<int32_t>::const_iterator iter1 =
 std::find(values.begin(), values.end(), aValue); //Noncompliant
 std::vector<int32_t>::const_iterator iter2 =
 std::find(values.cbegin(), values.cend(), aValue); //Compliant
}

In this example, the first std::find function call uses as arguments the return values of the begin
and end methods of an std::vector container values. These methods return iterators of type
std::vector<intr32_t>::iterator. Since the std::find template has the same return type as
the types of the first two arguments, it also returns an iterator of type
std::vector<intr32_t>::iterator. The return value is assigned to a variable of type
std::vector<intr32_t>::const_iterator, resulting in an implicit conversion.

The second call uses the cbegin and cend methods which return iterators of type
std::vector<intr32_t>::const_iterator and avoid the implicit conversion.

Check Information
Group: Language support library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020a

25 AUTOSAR C++14 Rules

25-460

AUTOSAR C++14 Rule A26-5-1
Pseudorandom numbers shall not be generated using std::rand()

Description
Rule Definition

Pseudorandom numbers shall not be generated using std::rand().

Rationale

This cryptographically weak routines is predictable and must not be used for security purposes. When
a predictable random value controls the execution flow, your program is vulnerable to malicious
attacks.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Random Loop Numbers

#include <stdio.h>
#include <stdlib.h>

volatile int rd = 1;
int main(int argc, char *argv[])
{
 int j, r, nloops;
 struct random_data buf;
 int i = 0;

 nloops = rand();

 for (j = 0; j < nloops; j++) {
 if (random_r(&buf, &i))
 exit(1);
 printf("random_r: %ld\n", (long)i);
 }
 return 0;
}

This example uses rand and random_r to generate random numbers. If you use these functions for
security purposes, these PRNGs can be the source of malicious attacks.
Correction — Use Stronger PRNG

One possible correction is to replace the vulnerable PRNG with a stronger random number generator.

#include <stdio.h>

 AUTOSAR C++14 Rule A26-5-1

25-461

#include <stdlib.h>
#include <openssl/rand.h>

volatile int rd = 1;
int main(int argc, char* argv[])
{
 int j, r, nloops;
 unsigned char buf;
 unsigned int seed;
 int i = 0;

 if (argc != 3)
 {
 fprintf(stderr, "Usage: %s <seed> <nloops>\n", argv[0]);
 exit(EXIT_FAILURE);
 }

 seed = atoi(argv[1]);
 nloops = atoi(argv[2]);

 for (j = 0; j < nloops; j++) {
 if (RAND_bytes(&buf, i) != 1)
 exit(1);
 printf("RAND_bytes: %u\n", (unsigned)buf);
 }
 return 0;
}

Check Information
Group: Algorithms library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-462

AUTOSAR C++14 Rule A26-5-2
Random number engines shall not be default-initialized

Description
Rule Definition

Random number engines shall not be default-initialized.

Rationale

Pseudorandom number generators depend on an initial seed value to generate a sequence of random
numbers. Default initialization of random number engines is done by using a default seed, which is a
constant value. If you call a random number generator that has default initialization multiple times,
you get the same sequence of random numbers every time. To avoid unexpected program behavior,
such as generating the same sequence of random numbers in different program executions, use
unique, nondefault seed values each time that you initialize a random number generator.

An exception to this rule is allowed when you might want a deterministic sequence for consistent
testing purposes.

Polyspace Implementation

The checker reports violations on the lines in which:

• A C++ standard random number generator is default-initialized.
• The seeding function of a random number generator is called by using an implicit call to default

arguments or an explicit default_seed argument..

Note The checker does not report random number engine initializations that have constant input
arguments.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Noncompliant Random Number Generator Initialization

The declaration of std::default_random_engine eng1 is noncompliant because it is constructed
by using the default argument, the default_seed constant.

#include <iostream>
#include <random>

int main()
{

 AUTOSAR C++14 Rule A26-5-2

25-463

 std::default_random_engine eng1{}; //Noncompliant
 std::uniform_int_distribution<int> ud2{0, 100};
 std::random_device rd;
 std::default_random_engine eng2{rd()}; //Compliant
 std::default_random_engine eng3{rd()}; //Compliant
 eng3.seed(); //Noncompliant

return 0;
}

The second declaration std::default_random_engine eng2 is compliant because it takes a user-
defined random_device object as its initialization argument.

The declaration of std::default_random_engine eng3 is also compliant. eng3.seed() is
noncompliant because the seeding function std::default_random_engine seed uses the
default_seed constant as an argument, which overwrites the seed of eng3 that is correctly
initialized.

Check Information
Group: Algorithms library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-464

AUTOSAR C++14 Rule A27-0-1
Inputs from independent components shall be validated.

Description
Rule Definition

Inputs from independent components shall be validated.

Rationale

When inputs from independent components are directly used in the source code, attackers might get
complete or partial control of an application buffer. This control enables an attacker to terminate the
program, view the content of the stack, access the content of the memory, modify the memory in
random places, and execute unwanted code disguised as the program source code.

To prevent such vulnerabilities, validate the input from independent components. This rule applies to
inputs received from external sources, such as:

• Inputs received from networks
• Inputs received from other processes and software through interprocess communication (IPC)
• Inputs received from components API

Polyspace Implementation

Polyspace raises a flag when inputs from independent components are used without validation. The
flagged uses include:

• Routines such as sethostid (Linux) or SetComputerName (Windows) use externally controlled
arguments to change the host ID. See Host change using externally controlled
elements.

• Functions such as putenv and setenv obtain new environment variable values or from unsecure
sources. See Use of externally controlled environment variable.

• Functions such as printf use a format specifier that is constructed from unsecure sources. See
Tainted string format.

• Arrays or pointers use an index that is obtained from unsecure sources. See Array access with
tainted index.

• The program obtains the path to a command from an external unsecure source. See Command
executed from externally controlled path.

• The program execute a command that is fully or partially constructed from externally controlled
input. See Execution of externally controlled command.

• The program loads libraries from fixed or externally controlled unsecure paths that can be
partially or fully controlled by attackers. See Library loaded from externally
controlled path.

• A loop uses values obtained from unsecure sources as its boundary. See Loop bounded with
tainted value.

• Memory allocation functions, such as calloc or malloc, use a size argument from an unsecure
source. See Size argument to memory function is from an unsecure source.

 AUTOSAR C++14 Rule A27-0-1

25-465

• A pointer dereference uses an offset variable from an unknown or unsecure source. See Pointer
dereference with tainted offset.

• One or both integer operands in a division operation comes from unsecure sources. See Tainted
division operand.

• One or both integer operands in a remainder operation (%) comes from unsecure sources. See
Tainted modulo operand.

• String manipulation functions that implicitly dereference the string buffer such as strcpy or
sprintf use strings from unsecure sources. See Tainted NULL or non-null-terminated
string.

• Values from unsecure sources are implicitly or explicitly converted from signed to unsigned
values. See Tainted sign change conversion.

• The program dereferences a pointer from an unsecure source that might be NULL or point to
unknown memory. See Use of tainted pointer.

Polyspace considers these inputs as input from an independent component or tainted:

• Volatile objects
• Object that interact with the user
• Objects that interact with the hardware
• Objects that use random numbers or the current date and time

To consider all input from outside the current analysis perimeter as unsecure, use -consider-
analysis-perimeter-as-trust-boundary. See “Sources of Tainting in a Polyspace Analysis”.

When an input from an independent component is used without validation multiple times in a code,
Polyspace flags the first use.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Change Host ID from Function Argument

#include <unistd.h>
#include <stdlib.h>

void bug_taintedhostid(void) {
 long userhid = strtol(getenv("HID"),NULL,10);
 sethostid(userhid);//Noncompliant
}

This example sets a new host ID using the argument passed to the function. Before using the host ID,
check the value passed in.

Correction — Predefined Host ID

One possible correction is to change the host ID to a predefined ID. This example uses the host
argument as a switch variable to choose between the different, predefined host IDs.

25 AUTOSAR C++14 Rules

25-466

#include <unistd.h>
#include <stdlib.h>

extern long called_taintedhostid_sanitize(long);
enum { HI0 = 1, HI1, HI2, HI3 };

void taintedhostid(void) {
 long host = strtol(getenv("HID"),NULL,10);
 long hid = 0;
 switch(host) {
 case HI0:
 hid = 0x7f0100;
 break;
 case HI1:
 hid = 0x7f0101;
 break;
 case HI2:
 hid = 0x7f0102;
 break;
 case HI3:
 hid = 0x7f0103;
 break;
 default:
 /* do nothing */
 break;
 }
 if (hid > 0) {
 sethostid(hid);
 }
}

Set Path in Environment

#define _XOPEN_SOURCE
#define _GNU_SOURCE
#include "stdlib.h"

void taintedenvvariable(void)
{
 char* path = getenv("APP_PATH");
 putenv(path); //Noncompliant
}

In this example, putenv changes an environment variable. The path path has not been checked to
make sure that it is the intended path.

Correction — Sanitize Path

One possible correction is to sanitize the path, checking that it matches what you expect.

#define _POSIX_C_SOURCE
#include <stdlib.h>
#include <string.h>

/* Function to sanitize a path */
const char * sanitize_path(const char* str) {
 /* secure white list of paths */
 static const char *const authorized_paths[] = {

 AUTOSAR C++14 Rule A27-0-1

25-467

 "/bin",
 "/usr/bin"
 };
 if (str != NULL) {
 for (int i = 0; i < sizeof(authorized_paths) / sizeof(authorized_paths[0]); i++)
 if (strcmp(authorized_paths[i], str) == 0) {
 return authorized_paths[i];
 }
 }
 return NULL;
}

void taintedenvvariable(void)
{
 const char* path = getenv("APP_PATH");
 path = sanitize_path(path);
 if (path != NULL) {
 if (setenv("PATH", path, /* overwrite = */1) != 0) {
 /* fatal error */
 exit(1);
 }
 }
}

Get Elements from User Input

#include <stdio.h>
#include <unistd.h>
#define MAX 40
void taintedstringformat(void) {
 char userstr[MAX];
 read(0,userstr,MAX);
 printf(userstr);//Noncompliant
}

This example prints the input argument userstr. The string is unknown. If it contains elements such
as %, printf can interpret userstr as a string format instead of a string, causing your program to
crash.

Correction — Print as String

One possible correction is to print userstr explicitly as a string so that there is no ambiguity.

#include "stdio.h"
#include <unistd.h>
#define MAX 40

void taintedstringformat(void) {
 char userstr[MAX];
 read(0,userstr,MAX);
 printf("%.20s", userstr);
}

Use Index to Return Buffer Value

#include <stdlib.h>
#include <stdio.h>
#define SIZE100 100

25 AUTOSAR C++14 Rules

25-468

extern int tab[SIZE100];
static int tainted_int_source(void) {
 return strtol(getenv("INDEX"),NULL,10);
}
int taintedarrayindex(void) {
 int num = tainted_int_source();
 return tab[num];//Noncompliant
}

In this example, the index num accesses the array tab. The index num is obtained from an unsecure
source and the function taintedarrayindex does not check to see if num is inside the range of tab.
Correction — Check Range Before Use

One possible correction is to check that num is in range before using it.

#include <stdlib.h>
#include <stdio.h>
#define SIZE100 100
extern int tab[SIZE100];
static int tainted_int_source(void) {
 return strtol(getenv("INDEX"),NULL,10);
}
int taintedarrayindex(void) {
 int num = tainted_int_source();
 if (num >= 0 && num < SIZE100) {
 return tab[num];
 } else {
 return -1;
 }
}

Executing Path from Environment Variable
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void bug_taintedpathcmd() {
 char cmd[SIZE128] = "";
 char* userpath = getenv("MYAPP_PATH");

 strncpy(cmd, userpath, SIZE100);//Noncompliant
 strcat(cmd, "/ls *");
 /* Launching command */
 system(cmd);//Noncompliant
}

This example obtains a path from an environment variable MYAPP_PATH. The path string is tainted.
Polyspace flags its use in the strncopy function. system runs a command from the tainted path
without checking the value of the path. If the path is not the intended path, your program executes in
the wrong location.

 AUTOSAR C++14 Rule A27-0-1

25-469

Correction — Use Trusted Path

One possible correction is to use a list of allowed paths to match against the environment variable
path.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

/* Function to sanitize a string */
/* Any defect is localized here */
int sanitize_str(char* s, size_t n) {
 int res = 0;
 /* String is ok if */
 if (s && n>0 && n<SIZE128) {
 /* - string is not null */
 /* - string has a positive and limited size */
 s[n-1] = '\0'; /* Add a security \0 char at end of string *///Noncompliant
 /* Tainted pointer detected above, used as "firewall" */
 res = 1;
 }
 return res;
}

/* Authorized path ids */
enum { PATH0=1, PATH1, PATH2 };

void taintedpathcmd() {
 char cmd[SIZE128] = "";

 char* userpathid = getenv("MYAPP_PATH_ID");
 if (sanitize_str(userpathid, SIZE100)) {
 int pathid = atoi(userpathid);

 char path[SIZE128] = "";
 switch(pathid) {
 case PATH0:
 strcpy(path, "/usr/local/my_app0");
 break;
 case PATH1:
 strcpy(path, "/usr/local/my_app1");
 break;
 case PATH2:
 strcpy(path, "/usr/local/my_app2");
 break;
 default:
 /* do nothing */
 break;
 }
 if (strlen(path)>0) {
 strncpy(cmd, path, SIZE100);

25 AUTOSAR C++14 Rules

25-470

 strcat(cmd, "/ls *");
 system(cmd);
 }
 }
}

Call External Command

#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "unistd.h"
#include "dlfcn.h"
#include "limits.h"
#define MAX 128

void taintedexternalcmd(void)
{
 char* usercmd;
 fgets(usercmd,MAX,stdin);
 char cmd[MAX] = "/usr/bin/cat ";
 strcat(cmd, usercmd);
 system(cmd);//Noncompliant
}

This example function calls a command from a user input without checking the command variable.

Correction — Use a Predefined Command

One possible correction is to use a switch statement to run a predefined command, using the user
input as the switch variable.

#define _XOPEN_SOURCE
#define _GNU_SOURCE

#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "unistd.h"
#include "dlfcn.h"
#include "limits.h"

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
enum { CMD0 = 1, CMD1, CMD2 };

void taintedexternalcmd(void)
{
 int usercmd = strtol(getenv("cmd"),NULL,10);
 char cmd[SIZE128] = "/usr/bin/cat ";

 switch(usercmd) {
 case CMD0:
 strcat(cmd, "*.c");

 AUTOSAR C++14 Rule A27-0-1

25-471

 break;
 case CMD1:
 strcat(cmd, "*.h");
 break;
 case CMD2:
 strcat(cmd, "*.cpp");
 break;
 default:
 strcat(cmd, "*.c");
 }
 system(cmd);
}

Call Custom Library
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <dlfcn.h>
#include <limits.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void* taintedpathlib() {
 void* libhandle = NULL;
 char lib[SIZE128] = "";
 char* userpath = getenv("LD_LIBRARY_PATH");
 strncpy(lib, userpath, SIZE128);//Noncompliant- userpath is tainted
 strcat(lib, "/libX.so");
 libhandle = dlopen(lib, 0x00001);//Noncompliant
 return libhandle;
}

This example loads the library libX.so from an environment variable LD_LIBRARY_PATH. An
attacker can change the library path in this environment variable. The actual library you load could
be a different library from the one that you intend.
Correction — Change and Check Path

One possible correction is to change how you get the library path and check the path of the library
before opening the library. This example receives the path as an input argument but then performs
the following checks on the path:

• The function sanitize_str protects against possible buffer overflows.
• The function identified_safe_libX_folder checks if the path belongs to a list of whitelisted

paths.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <dlfcn.h>

25 AUTOSAR C++14 Rules

25-472

#include <limits.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

/* Use white list */
static const char *libX_safe_folder[] = {
 "/usr/",
 "/usr/lib",
 "/lib"
};

/* Return the index if the input is in the white list */
int identified_safe_libX_folder(const char* path)
{
 for (int i = 0; i < sizeof(libX_safe_folder) / sizeof(libX_safe_folder[0]); i ++)
 {
 if (strcmp(path, libX_safe_folder[i]) == 0)
 return i;
 }
 return -1;
}

/* Function to sanitize a string */
char *sanitize_str(char* s, size_t n) {
 /* strlen is used here as a kind of firewall for tainted string errors */
 if (strlen(s) > 0 && strlen(s) < n)
 return s;
 else
 return NULL;
}

void* taintedpathlib(char* userpath) {
 void* libhandle = NULL;
 const char *const checked_userpath = sanitize_str(userpath, SIZE128);
 if (checked_userpath != NULL) {
 int index = identified_safe_libX_folder(checked_userpath);
 if (index > 0) {
 char lib[SIZE128] = "";
 strncpy(lib, libX_safe_folder[index], SIZE128);
 strcat(lib, "/libX.so");
 libhandle = dlopen(lib, RTLD_LAZY);
 }
 }
 return libhandle;
}

Loop Boundary From User Input

#include<stdio.h>
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128

 AUTOSAR C++14 Rule A27-0-1

25-473

};

int taintedloopboundary(void) {
 int count;
 scanf("%d", &count);
 int res = 0;
 for (int i=0 ; i < count; ++i) {//Noncompliant
 res += i;
 }
 return res;
}

In this example, the function uses a user input to loop count times. count could be any number
because the value is not checked before starting the for loop.

Correction: Clamp Tainted Loop Control

One possible correction is to clamp the tainted loop control. To validate the tainted loop variable
count, this example limits count to a minimum value and a maximum value by using inline functions
min and max. Regardless of the user input, the value of count remains within a known range.

#include<stdio.h>
#include<algorithm>
#define MIN 50
#define MAX 128
static inline int max(int a, int b) { return a > b ? a : b;}
static inline int min(int a, int b) { return a < b ? a : b; }

int taintedloopboundary(void) {
 int count;
 scanf("%d", &count);
 int res = 0;
 count = max(MIN, min(count, MAX));
 for (int i=0 ; i<count ; ++i) {
 res += i;
 }
 return res;
}

Correction — Check Tainted Loop Control

Another possible correction is to check the low bound and the high bound of the tainted loop
boundary variable before starting the for loop. This example checks the low and high bounds of
count and executes the loop only when count is between 0 and 127.

#include<stdio.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedloopboundary(void) {
 int count;
 scanf("%d", &count);
 int res = 0;

25 AUTOSAR C++14 Rules

25-474

 if (count>=0 && count<SIZE128) {
 for (int i=0 ; i<count ; ++i) {
 res += i;
 }
 }
 return res;
}

Allocate Memory Using Input From User

#include<stdio.h>
#include <stdlib.h>

int* bug_taintedmemoryallocsize(void) {
 size_t size;
 scanf("%zu", &size);
 int* p = (int*)malloc(size);//Noncompliant
 return p;
}

In this example, malloc allocates size bytes of memory for the pointer p. The variable size comes
from the user of the program. Its value is not checked, and it could be larger than the amount of
available memory. If size is larger than the number of available bytes, your program could crash.

Correction — Check Size of Memory to be Allocated

One possible correction is to check the size of the memory that you want to allocate before
performing the malloc operation. This example checks to see if size is positive and less than the
maximum size.

#include<stdio.h>
#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int* corrected_taintedmemoryallocsize(void) {
 size_t size;
 scanf("%zu", &size);
 int* p = NULL;
 if (size>0 && size<SIZE128) { /* Fix: Check entry range before use */
 p = (int*)malloc((unsigned int)size);
 }
 return p;
}

Dereference Pointer Array

#include <stdio.h>
#include <stdlib.h>
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128

 AUTOSAR C++14 Rule A27-0-1

25-475

};
extern void read_pint(int*);

int taintedptroffset(void) {
 int offset;
 scanf("%d",&offset);
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if(pint) {
 /* Filling array */
 read_pint(pint);
 c = pint[offset];//Noncompliant
 free(pint);
 }
 return c;
}

In this example, the function initializes an integer pointer pint. The pointer is dereferenced using
the input index offset. The value of offset could be outside the pointer range, causing an out-of-
range error.

Correction — Check Index Before Dereference

One possible correction is to validate the value of offset. Continue with the pointer dereferencing
only if offset is inside the valid range.

#include <stdlib.h>
#include <stdio.h>
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(void) {
 int offset;
 scanf("%d",&offset);
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if (pint) {
 /* Filling array */
 read_pint(pint);
 if (offset>0 && offset<SIZE10) {
 c = pint[offset];
 }
 free(pint);
 }
 return c;
}

Division of Function Arguments

#include <limits.h>
#include <stdio.h>

extern void print_int(int);

25 AUTOSAR C++14 Rules

25-476

int taintedintdivision(void) {
 long num, denum;
 scanf("%lf %lf", &num, &denum);
 int r = num/denum; //Noncompliant
 print_int(r);
 return r;
}

This example function divides two argument variables, then prints and returns the result. The
argument values are unknown and can cause division by zero or integer overflow.

Correction — Check Values

One possible correction is to check the values of the numerator and denominator before performing
the division.

#include <limits.h>
#include <stdio.h>

extern void print_long(long);

int taintedintdivision(void) {
 long num, denum;
 scanf("%lf %lf", &num, &denum);
 long res= 0;
 if (denum!=0 && !(num==INT_MIN && denum==-1)) {
 res = num/denum;
 }
 print_long(res);
 return res;
}

Modulo with User Input

#include <stdio.h>
extern void print_int(int);

int taintedintmod(void) {
 int userden;
 scanf("%d", &userden);
 int rem = 128%userden; //Noncompliant
 print_int(rem);
 return rem;
}

In this example, the function performs a modulo operation by using a user input. The input is not
checked before calculating the remainder for values that can crash the program, such as 0 and -1.

Correction — Check Operand Values

One possible correction is to check the values of the operands before performing the modulo
operation. In this corrected example, the modulo operation continues only if the second operand is
greater than zero.

#include<stdio.h>
extern void print_int(int);

 AUTOSAR C++14 Rule A27-0-1

25-477

int taintedintmod(void) {
 int userden;
 scanf("%d", &userden);
 int rem = 0;
 if (userden > 0) {
 rem = 128 % userden;
 }
 print_int(rem);
 return rem;
}

Getting String from Input

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define SIZE128 128
#define MAX 40
extern void print_str(const char*);
void warningMsg(void)
{
 char userstr[MAX];
 read(0,userstr,MAX);
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));//Noncompliant
 print_str(str);
}

In this example, the string str is concatenated with the argument userstr. The value of userstr is
unknown. If the size of userstr is greater than the space available, the concatenation overflows.

Correction — Validate the Data

One possible correction is to check the size of userstr and make sure that the string is null-
terminated before using it in strncat. This example uses a helper function, sansitize_str, to
validate the string. The defects are concentrated in this function.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define SIZE128 128
#define MAX 40
extern void print_str(const char*);
int sanitize_str(char* s) {
 int res = 0;
 if (s && (strlen(s) > 0)) { // Noncompliant-TAINTED_STRING only flagged here
 // - string is not null
 // - string has a positive and limited size
 // - TAINTED_STRING on strlen used as a firewall
 res = 1;
 }
 return res;
}
void warningMsg(void)

25 AUTOSAR C++14 Rules

25-478

{
 char userstr[MAX];
 read(0,userstr,MAX);
 char str[SIZE128] = "Warning: ";
 if (sanitize_str(userstr))
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

Correction — Validate the Data

Another possible correction is to call function errorMsg and warningMsg with specific strings.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

int manageSensorValue(int sensorValue) {
 int ret = sensorValue;
 if (sensorValue < 0) {
 errorMsg("sensor value should be positive");
 exit(1);
 } else if (sensorValue > 50) {
 warningMsg("sensor value greater than 50 (applying threshold)...");
 sensorValue = 50;
 }

 return sensorValue;
}

Set Memory Value with Size Argument

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128

 AUTOSAR C++14 Rule A27-0-1

25-479

};

void bug_taintedsignchange(void) {
 int size;
 scanf("%d",&size);
 char str[SIZE128] = "";
 if (size<SIZE128) {
 memset(str, 'c', size); //Noncompliant
 }
}

In this example, a char buffer is created and filled using memset. The size argument to memset is an
input argument to the function.

The call to memset implicitly converts size to unsigned integer. If size is a large negative number,
the absolute value could be too large to represent as an integer, causing a buffer overflow.

Correction — Check Value of size

One possible correction is to check if size is inside the valid range. This correction checks if size is
greater than zero and less than the buffer size before calling memset.

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void corrected_taintedsignchange(void) {
 int size;
 scanf("%d",&size);
 char str[SIZE128] = "";
 if (size>0 && size<SIZE128) {
 memset(str, 'c', size);
 }
}

Function That Dereferences an External Pointer

#include<stdlib.h>
void taintedptr(void) {
 char *p = getenv("ARG");
 char x = *(p+10);//Noncompliant
}

In this example, the pointer *p points to an string of unknown size. During the dereferencing
operation, the pointer might be null or point to unknown memory, which can result in segmentation
fault.

Correction — Check Pointer

One possible correction is to sanitize the pointer before using it. This example checks whether the
pointer is nullptr before it is dereferenced.

25 AUTOSAR C++14 Rules

25-480

#include<stdlib.h>
#include <string.h>
void taintedptr(void) {
 char *p = getenv("ARG");
 if(p!=nullptr && strlen(p)>10)
 {
 char x = *(p+10);
 }
}

Check Information
Group: Input/output library
Category: Required, Non-automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2021b

 AUTOSAR C++14 Rule A27-0-1

25-481

AUTOSAR C++14 Rule A27-0-2
A C-style string shall guarantee sufficient space for data and the null terminator

Description
Rule Definition

A C-style string shall guarantee sufficient space for data and the null terminator.

Rationale

C-style strings not only require space for the character data written but require one explicit character
at the end for the additional null terminator. Failure to accommodate for the space required causes
buffer overflow, leading to memory corruption, security vulnerabilities, and other issues.

Polyspace Implementation

The checker looks for these issues:

• Use of a dangerous standard function.

This issue occurs when you use C functions such as gets and strcpy, which write data to a
buffer but do not inherently provide controls on the length of data written.

For a more complete list of functions and their safer alternatives, see Use of dangerous
standard function.

• Buffer overflow from incorrect string format specifier.

This issue occurs when the format specifier argument for C functions such as sscanf leads to an
overflow or underflow in the memory buffer argument.

• Destination buffer overflow in string manipulation.

This issue occurs when certain C string manipulation functions write to their destination buffer
argument at an offset greater than the buffer size.

For instance, when calling the function sprintf(char* buffer, const char* format), you
use a constant string format of greater size than buffer.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of a dangerous standard function

#include <cstdio>
#include <cstring>

#define BUFF_SIZE 128

25 AUTOSAR C++14 Rules

25-482

int noncompliant_func(char *str) {
 char dst[BUFF_SIZE];
 int r = 0;

 if (sprintf(dst, "%s", str) == 1) { //Noncompliant
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

int compliant_func(char *str) {
 char dst[BUFF_SIZE];
 int r = 0;

 if (snprintf(dst, sizeof(dst), "%s", str) == 1) { //Compliant
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

In this example, the rule is violated when you use the sprintf function, which does not allow control
on the length of data written. To avoid the possible buffer overflow, use the safer alternative function
snprintf.

Buffer overflow from incorrect string format specifier
#include <cstdio>

void noncompliant_func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%33c", buf); //Noncompliant
}

void compliant_func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%32c", buf); //Compliant
}

In this example, the buffer buf can contain 32 char elements. Therefore, the format specifier %33c
causes a buffer overflow and violates the rule. To avoid the rule violation, read a smaller number of
elements into the buffer.

Destination buffer overflow in string manipulation
#include <cstdio>

void noncompliant_func(void) {
 char buf[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 sprintf(buf, fmt_string); //Noncompliant
}

 AUTOSAR C++14 Rule A27-0-2

25-483

void compliant_func(void) {
 char buf[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 snprintf(buf, 20, fmt_string); //Compliant
}

In this example, the buffer buf can contain 20 char elements. Therefore, the greater size of
fmt_string causes a buffer overflow and violates the rule. To avoid the rule violation, use
snprintf to enforce length control and read fewer than 20 elements into the buffer.

Check Information
Group: Input/output library
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-484

AUTOSAR C++14 Rule A27-0-3
Alternate input and output operations on a file stream shall not be used without an intervening flush
or positioning call

Description
Rule Definition

Alternate input and output operations on a file stream shall not be used without an intervening flush
or positioning call.

Rationale

Alternating input and output operations on a stream without an intervening flush or positioning call is
undefined behavior.

Polyspace Implementation

The checker checks for situations when:

• You do not perform a flush or function positioning call between an output operation and a
following input operation on a file stream in update mode.

To resolve the rule violation, call fflush() or a file positioning function such as fseek() or
fsetpos() between output and input operations on an update stream.

• You do not perform a function positioning call between an input operation and a following output
operation on a file stream in update mode.

To resolve the rule violation, call a file positioning function between input and output operations
on an update stream.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Read After Write Without Intervening Flush
#include <stdio.h>
#define SIZE20 20

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void funcNonCompliant()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

 AUTOSAR C++14 Rule A27-0-3

25-485

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Read operation after write without
 intervening flush. */
 if (fread(data, 1, SIZE20, file) < SIZE20) //Noncompliant
 {
 (void)fclose(file);
 /* Handle error. */;
 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;
 }
}

void funcCompliant()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Buffer flush after write and before read */
 if (fflush(file) != 0)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 if (fread(data, 1, SIZE20, file) < SIZE20) //Compliant
 {
 (void)fclose(file);
 /* Handle error. */;
 }

25 AUTOSAR C++14 Rules

25-486

 if (fclose(file) == EOF)
 {
 /* Handle error. */;
 }
}

In this example, in the function funcNonCompliant, the file demo.txt is opened for reading and
appending. After the call to fwrite(), a call to fread() without an intervening flush operation is
undefined behavior and violates the rule.

The function funcCompliant shows an alternative solution where a flush call is performed after
writing data to the file and before calling fread().

Check Information
Group: Input/output library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 AUTOSAR C++14 Rule A27-0-3

25-487

AUTOSAR C++14 Rule A27-0-4
C-style strings shall not be used

Description
Rule Definition

C-style strings shall not be used.

Rationale

The underlying character array that stores a C-style string has many disadvantages such as:

• You must explicitly handle memory allocation and deallocation if you perform operations on the
string that require non-trivial memory manipulations.

• It is not always clear whether a char* points to a single character or to a C-style string.
• You might accidentally convert an array to a raw pointer when you pass it by value or by pointer to

a function, which results in a loss of information about the array size (array decay). For example,
in this code snippet, func prints the size of the pointer to the first character of cString (8) ,
while the actual size of cString is 6.
void func(char *c){ //function takes array by value
 cout << sizeof(c);
}

void main(){
 char cString[]{ "pizza" }; //Size is 6 (5 characters + null terminator)
 func(cString); // Size is 8 (size of char*)
}

Instead, use the std::string class to store a sequence of characters. The class handles allocations
and deallocations, and instantiates an object that you can safely pass to functions. The class also has
built-in functionalities to manipulate the string such as iterators.

Polyspace Implementation

Polyspace flags the use of:

• Pointers to char (char*) and arrays of char (char someArray[]).
• Pointers to and arrays of char with a type qualifier such as volatile or const. For example

char const*.
• Pointers to and arrays of type wchar_t, char16_t, and char32_t.

If you have a function declaration and its definition in your source code, Polyspace places the
violation on the function definition. For example:

const char* greeter(void);
//....
const char* greeter(void){ //Non-compliant
 return "Hello";
}

Polyspace does not flag the use of:

25 AUTOSAR C++14 Rules

25-488

• Pointers to or arrays of signed or unsigned char. For example, signed_c and unsigned_arr
are not flagged in this code snippet:

signed char* signed_c;
unsigned char unsigned_arr[2048];

• Literal strings. For example, the return value of greeter() is not flagged in this code snippet,
but the use of const char* in the first line is flagged:

const char* greeter(void){ //Non-compliant
 return "Hello"; // Compliant
}

• The parameters of main().

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of C-Style Strings
#include<iostream>
#include <string>
#include<cstring>

char* sub_c_str(//Non-compliant
 const char* str1, const int delim) //Non-compliant
{
 size_t index {strlen(str1)};
 if (strchr(str1, delim)) {
 index = (size_t)(strchr(str1, delim) - str1);
 }
 char* p = (char*) malloc(index + 1); //Non-compliant
 //memory leak if p is not freed by caller
 strncpy(p, str1, index);
 return p;

}

std::string sub_str(std::string const str2, const char delim)
{
 return str2.substr(0, str2.find(delim));
}

int main()
{
 const char str1[] { "rootFolder/subFolder"}; // Non-compliant
 std::cout << sub_c_str(str1, '/') << std::endl;

 std::string const str2 { "rootFolder/subFolder" };
 std::cout << sub_str(str2, '/') << std::endl;
 return 0;
}

In this example, function sub_c_str returns a substring of C-style string parameter str1 up to but
not including the first instance of delim. The return type and first parameter of sub_c_str are both

 AUTOSAR C++14 Rule A27-0-4

25-489

non-compliant pointers to char. Pointer p, which stores the substring, is also non-compliant. Note that
if you do not free the memory allocated to p before the end of the program, this results in a memory
leak.

Function sub_str takes advantage of the std::string class to perform the same operation as
sub_c_str. The class handles memory allocation and deallocation. The class also has built-in
functionalities (find and subst) to perform the string manipulation.

Check Information
Group: Input/output library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2021a

25 AUTOSAR C++14 Rules

25-490

AUTOSAR C++14 Rule M0-1-1
A project shall not contain unreachable code

Description
Rule Definition

A project shall not contain unreachable code.

Rationale

This rule flags situations where a group of statements is unreachable because of syntactic reasons.
For instance, code following a return statement are always unreachable.

Unreachable code involve unnecessary maintenance and can often indicate programming errors.

Polyspace Implementation

Bug Finder and Code Prover check this coding rule differently. The analyses can produce different
results.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Unreachable statements

int func(int arg) {
 int temp = 0;
 switch(arg) {
 temp = arg; // Noncompliant
 case 1:
 {
 break;
 }
 default:
 {
 break;
 }
 }
 return arg;
 arg++; // Noncompliant
}

These statements are unreachable:

• Statements inside a switch statement that do not belong to a case or default block.
• Statements after a return statement.

 AUTOSAR C++14 Rule M0-1-1

25-491

Check Information
Group: Language Independent Issues
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-492

AUTOSAR C++14 Rule M0-1-2
A project shall not contain infeasible paths

Description
Rule Definition

A project shall not contain infeasible paths.

Rationale

This rule flags situations where a group of statements is redundant because of nonsyntactic reasons.
For instance, an if condition is always true or false. Code that is unreachable from syntactic reasons
are flagged by rule 0-1-1.

Unreachable or redundant code involve unnecessary maintenance and can often indicate
programming errors.

Polyspace Implementation

Bug Finder and Code Prover check this rule differently. The analysis can produce different results.

• Bug Finder uses the Dead code and Useless if checkers to detect violations of this rule.
• Code Prover does not use run-time checks to detect violations of this rule. Instead, Code Prover

detects the violations at compile time.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Boolean Operations with Invariant Results

void func (unsigned int arg) {
 if (arg >= 0U) //Noncompliant
 arg = 1U;
 if (arg < 0U) //Noncompliant
 arg = 1U;
}

An unsigned int variable is nonnegative. Both if conditions involving the variable are always true
or always false and are therefore redundant.

Check Information
Group: Language Independent Issues
Category: Required, Automated

 AUTOSAR C++14 Rule M0-1-2

25-493

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-494

AUTOSAR C++14 Rule M0-1-3
A project shall not contain unused variables

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

Rule Definition

A project shall not contain unused variables.

Rationale

Presence of unused variables indicates that the wrong variable name might be used in the source
code. Removing these variables reduces the possibility of the wrong variable being used in further
development. Keep padding bits in bitfields unnamed to reduce unused variables in your project.

Polyspace Implementation

The checker flags local or global variables that are declared or defined but not read or written in any
source files of the project. This specification also applies to members of structures and classes.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of Named Bit Field for Padding

#include <iostream>
struct S {
 unsigned char b1 : 3;
 unsigned char pad: 1; //Noncompliant
 unsigned char b2 : 4;
};
void init(struct S S_obj)
{
 S_obj.b1 = 0;
 S_obj.b2 = 0;
}

In this example, the bit field pad is used for padding the structure. Therefore, the field is never read
or written and causes a violation of this rule. To avoid the violation, use an unnamed field for padding.

#include <iostream>
struct S {
 unsigned char b1 : 3;
 unsigned char : 1; //Compliant

 AUTOSAR C++14 Rule M0-1-3

25-495

 unsigned char b2 : 4;
};
void init(struct S S_obj)
{
 S_obj.b1 = 0;
 S_obj.b2 = 0;
}

Check Information
Group: Language Independent Issues
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-496

AUTOSAR C++14 Rule M0-1-4
A project shall not contain non-volatile POD variables having only one use

Description
Rule Definition

A project shall not contain non-volatile POD variables having only one use.

Rationale

If you use a non-volatile variable with a Plain Old Data type (int, double, etc.) only once, you can
replace the variable with a constant literal. Your use of a variable indicates that you intended more
than one use for that variable and might have a programming error in the code. You might have
omitted the other uses of the non-volatile variable or incorrectly used other variables at intended
points of use.

Polyspace Implementation

The checker flags local and static variables that have a function scope (locally static) and file scope,
which are used only once. The checker considers const-qualified global variables without the
extern specifier as static variables with file scope.

The checker counts these use cases as one use of the non-volatile variable:

• An explicit initialization using a constant literal or the return value of a function
• An assignment
• A reference to the variable such as a read operation
• An assignment of the variable address to a pointer

If the variable address is assigned to a pointer, the checker assumes that the pointer might be
dereferenced later and does not flag the variable.

Some objects are designed to be used only once by their semantics. Polyspace does not flag a single
use of these objects:

• lock_guard
• scoped_lock
• shared_lock
• unique_lock
• thread
• future
• shared_future

If you use nonstandard objects that provide similar functionality as the objects in the preceding list,
Polyspace might flag single uses of the nonstandard objects. Justify their single uses by using
comments.

 AUTOSAR C++14 Rule M0-1-4

25-497

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Non-volatile Variable Used Only Once

#include <mutex>
int readStatus1();
int readStatus2();
extern std::mutex m;
void foo()
{
 // Initiating lock 'lk'
 std::lock_guard<std::mutex> lk{m};
 int checkEngineStatus1 = readStatus1();
 int checkEngineStatus2 = readStatus2();//Noncompliant

 if(checkEngineStatus1) {
 //Perform some actions if both statuses are valid
 }
 // Release lock when 'lk' is deleted at exit point of scope
}

In this example, the variable checkEngineStatus2 is used only once. The single use of this variable
might indicate a programming error. For instance, you might have intended to check both
checkEngineStatus1 and checkEngineStatus2 in the if condition, but omitted the second
check. The lock_guard object lk is also used only once. Because the semantics of a lock_guard
object justifies its single use, Polyspace does not flag it.

Check Information
Group: Language independent issues
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-498

AUTOSAR C++14 Rule M0-1-9
There shall be no dead code

Description
Rule Definition

There shall be no dead code.

Rationale

If an operation is reachable but removing the operation does not affect program behavior, the
operation constitutes dead code. For instance, suppose that a variable is never read following a write
operation. The write operation is redundant.

The presence of dead code can indicate an error in the program logic. Because a compiler can
remove dead code, its presence can cause confusion for code reviewers.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Redundant Operations

#define ULIM 10000

int func(int arg) {
 int res;
 res = arg*arg + arg;
 if (res > ULIM)
 res = 0; //Noncompliant
 return arg;
}

In this example, the operations involving res are redundant because the function func returns its
argument arg. All operations involving res can be removed without changing the effect of the
function.

The checker flags the last write operation on res because the variable is never read after that point.
The dead code can indicate an unintended coding error. For instance, you intended to return the
value of res instead of arg.

Check Information
Group: Language Independent Issues
Category: Required, Automated

 AUTOSAR C++14 Rule M0-1-9

25-499

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-500

AUTOSAR C++14 Rule M0-1-10
Every defined function should be called at least once

Description
Rule Definition

Every defined function should be called at least once.

Rationale

If a function with a definition is not called, it might indicate a serious coding error. For instance, the
function call is unreachable or a different function is called unintentionally.

Polyspace Implementation

The checker detects situations where a static function is defined but not called at all in its translation
unit.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Uncalled Static Function

static void func1() {
}

static void func2() { //Noncompliant
}

void func3();

int main() {
 func1();
 return 0;
}

The static function func2 is defined but not called.

The function func3 is not called either, however, it is only declared and not defined. The absence of a
call to func3 does not violate the rule.

Check Information
Group: Language Independent Issues
Category: Advisory, Automated

 AUTOSAR C++14 Rule M0-1-10

25-501

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-502

AUTOSAR C++14 Rule M0-2-1
An object shall not be assigned to an overlapping object

Description
Rule Definition

An object shall not be assigned to an overlapping object.

Rationale

When you assign an object to another object with overlapping memory, the behavior is undefined.

The exceptions are:

• You assign an object to another object with exactly overlapping memory and compatible type.
• You copy one object to another with memmove.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Assignment of Union Members

void func (void) {
 union {
 short i;
 int j;
 } a = {0}, b = {1};

 a.j = a.i; //Noncompliant
 a = b; //Compliant
}

In this example, the rule is violated when a.i is assigned to a.j because the two variables have
overlapping regions of memory.

Check Information
Group: Language Independent Issues
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

 AUTOSAR C++14 Rule M0-2-1

25-503

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-504

AUTOSAR C++14 Rule M0-3-2
If a function generates error information, then that error information shall be tested

Description
Rule Definition

If a function generates error information, then that error information shall be tested.

Rationale

If you do not check the return value of functions that indicate error information through their return
values, your program can behave unexpectedly. Errors from these functions can propagate
throughout the program causing incorrect output, security vulnerabilities, and possibly system
failures.

For the errno-setting functions, to see if the function call completed without errors, check errno for
error values. The return values of these errno-setting functions do not indicate errors. The return
value can be one of the following:

• void
• Even if an error occurs, the return value can be the same as the value from a successful call. Such

return values are called in-band error indicators. For instance, strtol converts a string to a long
integer and returns the integer. If the result of conversion overflows, the function returns
LONG_MAX and sets errno to ERANGE. However, the function can also return LONG_MAX from a
successful conversion. Only by checking errno can you distinguish between an error and a
successful conversion.

For the errno-setting functions, you can determine if an error occurred only by checking errno.

Polyspace Implementation

The checker raises a violation when:

• You call sensitive functions that return information about possible errors and then you ignore the
return value or use the output of the function without testing the return value.

The checker covers function from the standard library and other well-known libraries such as the
POSIX library or the WinAPI library. Polyspace considers a function as sensitive if the function call
is prone to failure because of reasons such as:

• Exhausted system resources (for example, when allocating resources).
• Changed privileges or permissions.
• Tainted sources when reading, writing, or converting data from external sources.
• Unsupported features despite an existing API.

Polyspace considers a function a critical sensitive when they perform critical tasks such as:

• Set privileges (for example, setuid)
• Create a jail (for example, chroot)

 AUTOSAR C++14 Rule M0-3-2

25-505

• Create a process (for example, fork)
• Create a thread (for example, pthread_create)
• Lock or unlock mutex (for example, pthread_mutex_lock)
• Lock or unlock memory segments (for example, mlock)

For functions that are not critical, the checker is not flagged if you explicitly ignore the return
value by casting it to void. Explicitly ignoring the return value of critical sensitive functions is
flagged by Polyspace.

• You call a function that sets errno to indicate error conditions, but do not check errno after the
call. For these functions, checking errno is the only reliable way to determine if an error
occurred.

Functions that set errno on errors include:

• fgetwc, strtol, and wcstol.

For a comprehensive list of functions, see documentation about errno.
• POSIX errno-setting functions such as encrypt and setkey.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Sensitive Function Return Ignored

#include <pthread.h>
#include <string.h>
#include <stddef.h>
#include <stdio.h>
#include <cstdlib>
#define fatal_error() abort()

void initialize_1() {
 pthread_attr_t attr;
 pthread_attr_init(&attr); //Noncompliant
}

void initialize_2() {
 pthread_attr_t attr;
 (void)pthread_attr_init(&attr); //Compliant
}

void initialize_3() {
 pthread_attr_t attr;
 int result;
 result = pthread_attr_init(&attr); //Compliant
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

25 AUTOSAR C++14 Rules

25-506

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152351

int read_file_1(int argc, char *argv[])
{
 FILE *in;
 if (argc != 2) {
 /* Handle error */
 }

 in = fmemopen (argv[1], strlen (argv[1]), "r");
 return 0; //Noncompliant

}
int read_file_2(int argc, char *argv[])
{
 FILE *in;
 if (argc != 2) {
 /* Handle error */
 }

 in = fmemopen (argv[1], strlen (argv[1]), "r"); //Compliant
 if (in==NULL){
 // Handle error
 }
 return 0;
}

This example shows a call to the sensitive functions pthread_attr_init and fmemopen. Polyspace
raises a flag if:

• You implicitly ignore the return of the sensitive function. Explicitly ignoring the output of sensitive
functions is not flagged.

• You obtain the return value of a sensitive function but do not test the value before exiting the
relevant scope. The violation is raised on the exit statement.

To be compliant, you can explicitly cast their return value to void or test the return values to check
for errors.

Critical Function Return Ignored

#include <pthread.h>
#include <cstdlib>
#define fatal_error() abort()
extern void *start_routine(void *);

void returnnotchecked_1() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;

 (void)pthread_attr_init(&attr);
 (void)pthread_create(&thread_id, &attr, &start_routine, ((void *)0)); //Noncompliant
 pthread_join(thread_id, &res); //Noncompliant
}

void returnnotchecked_2() {
 pthread_t thread_id;
 pthread_attr_t attr;

 AUTOSAR C++14 Rule M0-3-2

25-507

 void *res;
 int result;

 (void)pthread_attr_init(&attr);
 result = pthread_create(&thread_id, &attr, &start_routine, NULL); //Compliant
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }

 result = pthread_join(thread_id, &res); //Compliant
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

In this example, two critical functions are called: pthread_create and pthread_join. The return
value of the pthread_create is ignored by casting to void, but because pthread_create is a
critical function (not just a sensitive function), the rule checker still raises a violation. The other
critical function, pthread_join, returns a value that is ignored implicitly.

To be compliant, check the return value of these critical functions to verify the function performed as
expected.

errno Not Checked After Call to strtol

#include<cstdlib>
#include<cerrno>
#include<climits>
#include<iostream>

int main(int argc, char *argv[]) {
 char *str, *endptr;
 int base;

 str = argv[1];
 base = 10;

 long val = strtol(str, &endptr, base); //Noncompliant
 std::cout<<"Return value of strtol() = %ld\n" << val;

 errno = 0;
 long val2 = strtol(str, &endptr, base); //Compliant
 if((val2 == LONG_MIN || val2 == LONG_MAX) && errno == ERANGE) {
 std::cout<<"strtol error";
 exit(EXIT_FAILURE);
 }
 std::cout<<"Return value of strtol() = %ld\n" << val2;
}

In the noncompliant example, the return value of strtol is used without checking errno.

To be compliant, before calling strtol, set errno to zero . After a call to strtol, check the return
value for LONG_MIN or LONG_MAX and errno for ERANGE.

25 AUTOSAR C++14 Rules

25-508

Check Information
Group: Language independent issues
Category: Required, Non-automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 AUTOSAR C++14 Rule M0-3-2

25-509

AUTOSAR C++14 Rule M2-7-1
The character sequence /* shall not be used within a C-style comment

Description
Rule Definition

The character sequence /* shall not be used within a C-style comment.

Rationale

If your code contains a /* in a /* */ comment, it typically means that you have inadvertently
commented out code. See the example that follows.

Polyspace Implementation

You cannot justify a violation of this rule using source code annotations.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of /* in /* */ Comment

void setup(void);
void foo() {
 /* Initializer functions
 setup();
 /* Step functions */ //Noncompliant
}

In this example, the call to setup() is commented out because the ending */ is omitted, perhaps
inadvertently. The checker flags this issue by highlighting the /* in the /* */ comment.

Check Information
Group: Lexical Conventions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-510

AUTOSAR C++14 Rule M2-10-1
Different identifiers shall be typographically unambiguous

Description
Rule Definition

Different identifiers shall be typographically unambiguous.

Rationale

When you use identifiers that are typographically close, you can confuse between them.

The identifiers should not differ by:

• The interchange of a lowercase letter with its uppercase equivalent.
• The presence or absence of the underscore character.
• The interchange of the letter O and the digit 0.
• The interchange of the letter I and the digit 1.
• The interchange of the letter I and the letter l.
• The interchange of the letter S and the digit 5.
• The interchange of the letter Z and the digit 2.
• The interchange of the letter n and the letter h.
• The interchange of the letter B and the digit 8.
• The interchange of the letters rn and the letter m.

Polyspace Implementation

The rule checker does not consider the fully qualified names of variables when checking this rule.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce different
results.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Typographically Ambiguous Identifiers

void func(void) {
 int id1_numval;
 int id1_num_val; //Non-compliant

 int id2_numval;
 int id2_numVal; //Non-compliant

 AUTOSAR C++14 Rule M2-10-1

25-511

 int id3_lvalue;
 int id3_Ivalue; //Non-compliant

 int id4_xyZ;
 int id4_xy2; //Non-compliant

 int id5_zerO;
 int id5_zer0; //Non-compliant

 int id6_rn;
 int id6_m; //Non-compliant
}

In this example, the rule is violated when identifiers that can be confused for each other are used.

Check Information
Group: Lexical Conventions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-512

AUTOSAR C++14 Rule M2-13-2
Octal constants (other than zero) and octal escape sequences (other than "\0") shall not be used

Description
Rule Definition

Octal constants (other than zero) and octal escape sequences (other than "\0") shall not be used.

Rationale

Octal constants are denoted by a leading zero. A developer or code reviewer can mistake an octal
constant as a decimal constant with a redundant leading zero.

Octal escape sequences beginning with \ can also cause confusion. Inadvertently introducing an 8 or
9 in the digit sequence after \ breaks the escape sequence and introduces a new digit. A developer or
code reviewer can ignore this issue and continue to treat the escape sequence as one digit.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of Octal Constants and Octal Escape Sequences

void func(void) {
 int busData[6];

 busData[0] = 100;
 busData[1] = 108;
 busData[2] = 052; //Noncompliant
 busData[3] = 071; //Noncompliant
 busData[4] = '\109'; //Noncompliant
 busData[5] = '\100'; //Noncompliant

}

The checker flags all octal constants (other than zero) and all octal escape sequences (other than \0).

In this example:

• The octal escape sequence contains the digit 9, which is not an octal digit. This escape sequence
has implementation-defined behavior.

• The octal escape sequence \100 represents the number 64, but the rule checker forbids this use.

Check Information
Group: Lexical Conventions
Category: Required, Automated

 AUTOSAR C++14 Rule M2-13-2

25-513

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-514

AUTOSAR C++14 Rule M2-13-3
A "U" suffix shall be applied to all octal or hexadecimal integer literals of unsigned type

Description
Rule Definition

A "U" suffix shall be applied to all octal or hexadecimal integer literals of unsigned type.

Rationale

The signedness of a constant is determined from:

• Value of the constant.
• Base of the constant: octal, decimal or hexadecimal.
• Size of the various types.
• Any suffixes used.

Unless you use a suffix u or U, another developer looking at your code cannot determine easily
whether a constant is signed or unsigned.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Lexical Conventions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M2-13-3

25-515

AUTOSAR C++14 Rule M2-13-4
Literal suffixes shall be upper case

Description
Rule Definition

Literal suffixes shall be upper case.

Rationale

Literal constants can end with the letter l (el). Enforcing literal suffixes to be upper case removes
potential confusion between the letter l and the digit 1.

For consistency, use upper case constants for other suffixes such as U (unsigned) and F (float).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of Literal Constants with Lower Case Suffix

const int a = 0l; //Noncompliant
const int b = 0L; //Compliant

In this example, both a and b are assigned the same literal constant. However, from a quick glance,
one can mistakenly assume that a is assigned the value 01 (octal one).

Check Information
Group: Lexical Conventions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-516

AUTOSAR C++14 Rule M3-1-2
Functions shall not be declared at block scope

Description
Rule Definition

Functions shall not be declared at block scope.

Rationale

It is a good practice to place all declarations at the namespace level.

Additionally, if you declare a function at block scope, it is often not clear if the statement is a function
declaration or an object declaration with a call to the constructor.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Function Declarations at Block Scope

class A {
};

void b1() {
 void func(); //Noncompliant
 A a(); //Noncompliant
}

In this example, the declarations of func and a are in the block scope of b1.

The second function declaration can cause confusion because it is not clear if a is a function that
returns an object of type A or a is itself an object of type A.

Check Information
Group: Basic Concepts
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M3-1-2

25-517

AUTOSAR C++14 Rule M3-2-1
All declarations of an object or function shall have compatible types

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

Rule Definition

All declarations of an object or function shall have compatible types.

Rationale

If the declarations of an object or function in two different translation units have incompatible types,
the behavior is undefined.

Polyspace Implementation

Polyspace considers two types to be compatible if they have the same size and signedness in the
environment that you use. The checker is not raised on unused code such as

• Noninstantiated templates
• Uncalled static or extern functions
• Uncalled and undefined local functions
• Unused types and variables

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Compatible and Incompatible Definitions in Two Files

file1.cpp

typedef char char_t;
typedef signed short int16_t;
typedef signed long int64_t;

namespace bar {
 int64_t a;
 int16_t c;

};

file2.cpp

25 AUTOSAR C++14 Rules

25-518

typedef char char_t;
typedef signed int int32_t;

namespace bar {
 extern char_t c;// Noncompliant
 extern int32_t a;
 void foo(void){
 ++a;
 ++c;
 }
};

In this example, the variable bar::c is defined as a char in file2.cpp and as a signed short in
file1.cpp. In the target processor i386, the size of these types are not equal. Polyspace flags the
definition of bar::c.

The variable bar::a is defined as a long in file1.cpp and as an int in file2.cpp. In the target
processor i386, both int and long has a size of 32 bits. Because the definitions of bar::a is
compatible in both files, Polyspace does not raise a flag.

Check Information
Group: Basic Concepts
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M3-2-1

25-519

AUTOSAR C++14 Rule M3-2-2
The One Definition Rule shall not be violated

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

Rule Definition

The One Definition Rule shall not be violated.

Rationale

Violations of the One Definition Rule leads to undefined behavior.

Polyspace Implementation

The checker flags situations where the same function or object has multiple definitions and the
definitions differ by some token. The checker is not raised on unused code such as

• Noninstantiated templates
• Uncalled static or extern functions
• Uncalled and undefined local functions
• Unused types and variables

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Different Tokens in Same Type Definition

This example uses two files:

• file1.cpp:

typedef struct S //Noncompliant
{
 int x;
 int y;
}S;
void foo(S& s){
//...
}

• file2.cpp:

typedef struct S

25 AUTOSAR C++14 Rules

25-520

{
 int y;
 int x;
}S ;
void bar(S& s){
//...
}

In this example, both file1.cpp and file2.cpp define the structure S. However, the definitions
switch the order of the structure fields.

Check Information
Group: Basic Concepts
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M3-2-2

25-521

AUTOSAR C++14 Rule M3-2-3
A type, object or function that is used in multiple translation units shall be declared in one and only
one file

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

Rule Definition

A type, object or function that is used in multiple translation units shall be declared in one and only
one file.

Rationale

If you declare an identifier in a header file, you can include the header file in any translation unit
where the identifier is defined or used. In this way, you ensure consistency between:

• The declaration and the definition.
• The declarations in different translation units.

The rule enforces the practice of declaring external objects or functions in header files.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Basic Concepts
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-522

AUTOSAR C++14 Rule M3-2-4
An identifier with external linkage shall have exactly one definition

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

Rule Definition

An identifier with external linkage shall have exactly one definition.

Rationale

If an identifier has multiple definitions or no definitions, it can lead to undefined behavior.

Polyspace Implementation

The checker is not raised on unused code such as

• Noninstantiated templates
• Uncalled static functions or extern functions
• Uncalled and undefined local functions
• Unused types and variables

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Multiple Definitions of Identifier

This example uses two files:

• file1.cpp:

typedef signed int int32_t;

namespace NS {
 extern int32_t a;

 void foo(){
 a = 0;

 }
};

• file2.cpp:

 AUTOSAR C++14 Rule M3-2-4

25-523

typedef signed int int32_t;
typedef signed long long int64_t;

namespace NS {
 extern int64_t a; //Noncompliant
 void bar(){
 ++a;

 }
};

The same identifier a is defined in both files.

Check Information
Group: Basic Concepts
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-524

AUTOSAR C++14 Rule M3-3-2
If a function has internal linkage then all re-declarations shall include the static storage class
specifier

Description
Rule Definition

If a function has internal linkage then all re-declarations shall include the static storage class
specifier.

Rationale

If a function declaration has the static storage class specifier, it has internal linkage. Subsequent
redeclarations of the function have internal linkage even without the static specifier.

However, if you do not specify the static keyword explicitly, it is not immediately clear from a
declaration whether the function has internal linkage.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Missing static Specifier from Redeclaration

static void func1 ();
static void func2 ();

void func1() {} //Noncompliant
static void func2() {}

In this example, the function func1 is declared static but defined without the static specifier.

Check Information
Group: Basic Concepts
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M3-3-2

25-525

AUTOSAR C++14 Rule M3-4-1
An identifier declared to be an object or type shall be defined in a block that minimizes its visibility

Description
Rule Definition

An identifier declared to be an object or type shall be defined in a block that minimizes its visibility.

Rationale

Defining variables with the minimum possible block scope reduces the possibility that they might
later be accessed unintentionally.

For instance, if an object is meant to be accessed in one function only, declare the object local to the
function.

Polyspace Implementation

The rule checker determines if an object is used in one block only. If the object is used in one block
but defined outside the block, the checker raises a violation.

When you declare a variable outside a range-based for loop and use it only inside the loop block,
Polyspace flags the variable. If you cannot declare the variable inside the loop block, justify this result
using comments in your result or code. See “Address Polyspace Results Through Bug Fixes or
Justifications”.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of Global Variable in Single Function

static int countReset; //Noncompliant

volatile int check;

void increaseCount() {
 int count = countReset;
 while(check%2) {
 count++;
 }
}

In this example, the variable countReset is declared global used in one function only. A compliant
solution declares the variable local to the function to reduce its visibility.

25 AUTOSAR C++14 Rules

25-526

Check Information
Group: Basic Concepts
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M3-4-1

25-527

AUTOSAR C++14 Rule M3-9-1
The types used for an object, a function return type, or a function parameter shall be token-for-token
identical in all declarations and re-declarations

Description
Rule Definition

The types used for an object, a function return type, or a function parameter shall be token-for-token
identical in all declarations and re-declarations.

Rationale

If a redeclaration is not token-for-token identical to the previous declaration, it is not clear from
visual inspection which object or function is being redeclared.

Polyspace Implementation

The rule checker compares the current declaration with the last seen declaration.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Identical Declarations That Do Not Match Token for Token

typedef int* intptr;

int* map;
extern intptr map; //Noncompliant

intptr table;
extern intptr table; //Compliant

In this example, the variable map is declared twice. The second declaration uses a typedef which
resolves to the type of the first declaration. Because of the typedef, the second declaration is not
token-for-token identical to the first.

Check Information
Group: Basic Concepts
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

25 AUTOSAR C++14 Rules

25-528

Introduced in R2019a

 AUTOSAR C++14 Rule M3-9-1

25-529

AUTOSAR C++14 Rule M3-9-3
The underlying bit representations of floating-point values shall not be used

Description
Rule Definition

The underlying bit representations of floating-point values shall not be used.

Rationale

The underlying bit representations of floating point values vary across compilers. If you directly use
the underlying representation of floating point values, your program is not portable across
implementations.

Polyspace Implementation

The rule checker flags conversions from pointers to floating point types into pointers to integer types,
and vice versa.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Using Underlying Representation of Floating-Point Values

float fabs2(float f) {
 unsigned int* ptr = reinterpret_cast <unsigned int*> (&f); //Noncompliant
 *(ptr + 3) &= 0x7f;
 return f;
}

In this example, the reinterpret_cast attempts to cast a floating-point value to an integer and
access the underlying bit representation of the floating point value.

Check Information
Group: Basic Concepts
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-530

AUTOSAR C++14 Rule M4-5-1
Expressions with type bool shall not be used as operands to built-in operators other than the
assignment operator =, the logical operators &&, ||, !, the equality operators == and ! =, the unary &
operator, and the conditional operator

Description
Rule Definition

Expressions with type bool shall not be used as operands to built-in operators other than the
assignment operator =, the logical operators &&, ||, !, the equality operators == and ! =, the unary &
operator, and the conditional operator.

Rationale

Operators other than the ones mentioned in the rule do not produce meaningful results with bool
operands. Use of bool operands with these operators can indicate programming errors. For instance,
you intended to use the logical operator || but used the bitwise operator | instead.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Compliant and Noncompliant Uses of bool Operands
void boolOperations() {
 bool lhs = true;
 bool rhs = false;

 int res;

 if(lhs & rhs) {} //Noncompliant
 if(lhs < rhs) {} //Noncompliant
 if(~rhs) {} //Noncompliant
 if(lhs ^ rhs) {} //Noncompliant
 if(lhs == rhs) {} //Compliant
 if(!rhs) {} //Compliant
 res = lhs? -1:1; //Compliant
}

In this example, bool operands do not violate the rule when used with the ==, ! and the ? operators.

Check Information
Group: Standard Conversions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

 AUTOSAR C++14 Rule M4-5-1

25-531

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-532

AUTOSAR C++14 Rule M4-5-3
Expressions with type (plain) char and wchar_t shall not be used as operands to built-in operators
other than the assignment operator =, the equality operators == and ! =, and the unary & operator

Description
Rule Definition

Expressions with type (plain) char and wchar_t shall not be used as operands to built-in operators
other than the assignment operator =, the equality operators == and ! =, and the unary & operator.

Rationale

The C++03 Standard only requires that the characters '0' to '9' have consecutive values. Other
characters do not have well-defined values. If you use these characters in operations other than the
ones mentioned in the rule, you implicitly use their underlying values and might see unexpected
results.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Compliant and Noncompliant Uses of Character Operands

void charManipulations (char ch) {

 char initChar = 'a'; //Compliant
 char finalChar = 'z'; //Compliant

 if(ch == initChar) {} //Compliant
 if((ch >= initChar) && (ch <= finalChar)) {} //Noncompliant
 else if((ch >= '0') && (ch <= '9')) {} //Compliant by exception
}

In this example, character operands do not violate the rule when used with the = and == operators.
Character operands can also be used with relational operators as long as the comparison is
performed with the digits '0' to '9'.

Check Information
Group: Standard Conversions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

 AUTOSAR C++14 Rule M4-5-3

25-533

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-534

AUTOSAR C++14 Rule M4-10-1
NULL shall not be used as an integer value

Description
Rule Definition

NULL shall not be used as an integer value.

Rationale

In C++, you can use the literals 0 and NULL as both an integer and a null pointer constant. However,
use of 0 as a null pointer constant or NULL as an integer can cause developer confusion.

This rule restricts the use of NULL to null pointer constants. AUTOSAR C++14 Rule M4-10-2
restricts the use of the literal 0 to integers.

Polyspace Implementation

The checker flags assignment of NULL to an integer variable or binary operations involving NULL
and an integer. Assignments can be direct or indirect such as passing NULL as integer argument to a
function.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Compliant and Noncompliant Uses of NULL
#include <cstddef>

void checkInteger(int);
void checkPointer(int *);

void main() {
 checkInteger(NULL); //Noncompliant
 checkPointer(NULL); //Compliant
}

In this example, the use of NULL as argument to the checkInteger function is noncompliant
because the function expects an int argument.

Check Information
Group: Standard Conversions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

 AUTOSAR C++14 Rule M4-10-1

25-535

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-536

AUTOSAR C++14 Rule M4-10-2
Literal zero (0) shall not be used as the null-pointer-constant

Description
Rule Definition

Literal zero (0) shall not be used as the null-pointer-constant.

Rationale

In C++, you can use the literals 0 and NULL as both an integer and a null pointer constant. However,
use of 0 as a null pointer constant or NULL as an integer can cause developer confusion.

This rule restricts the use of the literal 0 to integers. AUTOSAR C++14 Rule M4-10-1 restricts the
use of NULL to null pointer constants.

Polyspace Implementation

The checker flags assignment of 0 to a pointer variable or binary operations involving 0 and a pointer.
Assignments can be direct or indirect such as passing 0 as pointer argument to a function.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Compliant and Noncompliant Uses of Literal 0

#include <cstddef>

void checkInteger(int);
void checkPointer(int *);

void main() {
 checkInteger(0); //Compliant
 checkPointer(0); //Noncompliant
}

In this example, the use of 0 as argument to the checkPointer function is noncompliant because the
function expects an int * argument.

Check Information
Group: Standard Conversions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

 AUTOSAR C++14 Rule M4-10-2

25-537

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-538

AUTOSAR C++14 Rule M5-0-2
Limited dependence should be placed on C++ operator precedence rules in expressions

Description
Rule Definition

Limited dependence should be placed on C++ operator precedence rules in expressions.

Rationale

Use parentheses to clearly indicate the order of evaluation.

Depending on operator precedence can cause the following issues:

• If you or another code reviewer reviews the code, the intended order of evaluation is not
immediately clear.

• It is possible that the result of the evaluation does not meet your expectations. For instance:

• In the operation *p++, it is possible that you expect the dereferenced value to be incremented.
However, the pointer p is incremented before the dereference.

• In the operation (x == y | z), it is possible that you expect x to be compared with y | z.
However, the == operation happens before the | operation.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Evaluation Order Dependent on Operator Precedence Rules

#include <cstdio>

void showbits(unsigned int x) {
 for(int i = (sizeof(int) * 8) - 1; i >= 0; i--) {
 (x & 1u << i) ? putchar('1') : putchar('0'); // Noncompliant
 }
 printf("\n");
}

In this example, the checker flags the operation x & 1u << i because the statement relies on
operator precedence rules for the << operation to happen before the & operation. If this is the
intended order, the operation can be rewritten as x & (1u << i).

Check Information
Group: Expressions
Category: Advisory, Partially automated

 AUTOSAR C++14 Rule M5-0-2

25-539

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-540

AUTOSAR C++14 Rule M5-0-3
A cvalue expression shall not be implicitly converted to a different underlying type

Description
Rule Definition

A cvalue expression shall not be implicitly converted to a different underlying type.

Rationale

This rule ensures that the result of the expression does not overflow when converted to a different
type.

Polyspace Implementation

Expressions flagged by this checker follow the detailed specifications for cvalue expressions from the
MISRA C++ documentation.

The underlying data type of a cvalue expression is the widest of operand data types in the expression.
For instance, if you add two variables, one of type int8_t (typedef for char) and another of type
int32_t (typedef for int), the addition has underlying type int32_t. If you assign the sum to a
variable of type int8_t, the rule is violated.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Implicit Conversion of Cvalue Expression

#include<cstdint>

void func ()
 {
 int32_t s32;
 int8_t s8;
 s32 = s8 + s8; //Noncompliant
 s32 = s32 + s8; //Compliant
 }

In this example, the rule is violated when two variables of type int8_t are added and the result is
assigned to a variable of type int32_t. The underlying type of the addition does not take into
account the integer promotion involved and is simply the widest of operand data types, in this case,
int8_t.

The rule is not violated if one of the operands has type int32_t and the result is assigned to a
variable of type int32_t. In this case, the underlying data type of the addition is the same as the
type of the variable to which the result is assigned.

 AUTOSAR C++14 Rule M5-0-3

25-541

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-542

AUTOSAR C++14 Rule M5-0-4
An implicit integral conversion shall not change the signedness of the underlying type

Description
Rule Definition

An implicit integral conversion shall not change the signedness of the underlying type.

Rationale

Some conversions from signed to unsigned data types can lead to implementation-defined behavior.
You can see unexpected results from the conversion.

Polyspace Implementation

The checker flags implicit conversions from a signed to an unsigned integer data type or vice versa.

The checker assumes that ptrdiff_t is a signed integer.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Implicit Conversions that Change Signedness

typedef char int8_t;
typedef unsigned char uint8_t;

void func()
 {
 int8_t s8;
 uint8_t u8;

 s8 = u8; //Noncompliant
 u8 = s8 + u8; //Noncompliant
 u8 = static_cast< uint8_t > (s8) + u8; //Compliant
}

In this example, the rule is violated when a variable with a variable with signed data type is implicitly
converted to a variable with unsigned data type or vice versa. If the conversion is explicit, as in the
preceding example, the rule violation does not occur.

Check Information
Group: Expressions
Category: Required, Automated

 AUTOSAR C++14 Rule M5-0-4

25-543

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-544

AUTOSAR C++14 Rule M5-0-5
There shall be no implicit floating-integral conversions

Description
Rule Definition

There shall be no implicit floating-integral conversions.

Rationale

If you convert from a floating point to an integer type, you lose information. Unless you explicitly cast
from floating point to an integer type, it is not clear whether the loss of information is intended.
Additionally, if the floating-point value cannot be represented in the integer type, the behavior is
undefined.

Conversion from an integer to floating-point type can result in an inexact representation of the value.
The error from conversion can accumulate over later operations and lead to unexpected results.

Polyspace Implementation

The checker flags implicit conversions between floating-point types (float and double) and integer
types (short, int, etc.).

This rule takes precedence over M5-0-4 and M5-0-6 if they apply at the same time.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Conversion Between Floating Point and Integer Types

typedef signed int int32_t;
typedef float float32_t;

void func ()
 {
 float32_t f32;
 int32_t s32;
 s32 = f32; //Noncompliant
 f32 = s32; //Noncompliant
 f32 = static_cast< float32_t > (s32); //Compliant
 }

In this example, the rule is violated when a floating-point type is implicitly converted to an integer
type. The violation does not occur if the conversion is explicit.

 AUTOSAR C++14 Rule M5-0-5

25-545

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-546

AUTOSAR C++14 Rule M5-0-6
An implicit integral or floating-point conversion shall not reduce the size of the underlying type

Description
Rule Definition

An implicit integral or floating-point conversion shall not reduce the size of the underlying type.

Rationale

A conversion that reduces the size of the underlying type can result in loss of information.

Polyspace Implementation

If the conversion is to a narrower integer with a different sign, then rule M5-0-4 takes precedence
over rule M5-0-6. Only rule M5-0-4 is shown.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-0-6

25-547

AUTOSAR C++14 Rule M5-0-7
There shall be no explicit floating-integral conversions of a cvalue expression

Description
Rule Definition

There shall be no explicit floating-integral conversions of a cvalue expression.

Rationale

If you evaluate an expression and later cast the result to a different type, the cast has no effect on the
underlying type of the evaluation. For instance, in this example, the result of an integer division is
then cast to a floating-point type.

short num;
short den;
float res;
res= static_cast<float> (num/den);

However, a developer or code reviewer can expect that the evaluation uses the data type to which the
result is cast later. For instance, one can expect a floating-point division because of the later cast.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Conversion of Division Result from Integer to Floating Point

void func() {
 short num;
 short den;
 short res_short;
 float res_float;

 res_float = static_cast<float> (num/den); //Noncompliant

 res_short = num/den;
 res_float = static_cast<float> (res_short); //Compliant

}

In this example, the first cast on the division result violates the rule but the second cast does not.

• The first cast can lead to the incorrect expectation that the expression is evaluated with an
underlying type float.

• The second cast makes it clear that the expression is evaluated with the underlying type short.
The result is then cast to the type float.

25 AUTOSAR C++14 Rules

25-548

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-0-7

25-549

AUTOSAR C++14 Rule M5-0-8
An explicit integral or floating-point conversion shall not increase the size of the underlying type of a
cvalue expression

Description
Rule Definition

An explicit integral or floating-point conversion shall not increase the size of the underlying type of a
cvalue expression.

Rationale

If you evaluate an expression and later cast the result to a different type, the cast has no effect on the
underlying type of the evaluation. For instance, in this example, the sum of two short operands is
cast to the wider type int.

short op1;
short op2;
int res;
res= static_cast<int> (op1 + op2);

However, a developer or code reviewer can expect that the evaluation uses the data type to which the
result is cast later. For instance, one can expect a sum with the underlying type int because of the
later cast.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Conversion of Sum to Wider Integer Type

void func() {
 short op1;
 short op2;
 int res;

 res = static_cast<int> (op1 + op2); //Noncompliant
 res = static_cast<int> (op1) + op2; //Compliant

}

In this example, the first cast on the sum violates the rule but the second cast does not.

• The first cast can lead to the incorrect expectation that the sum is evaluated with an underlying
type int.

• The second cast first converts one of the operands to int so that the sum is actually evaluated
with the underlying type int.

25 AUTOSAR C++14 Rules

25-550

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-0-8

25-551

AUTOSAR C++14 Rule M5-0-9
An explicit integral conversion shall not change the signedness of the underlying type of a cvalue
expression

Description
Rule Definition

An explicit integral conversion shall not change the signedness of the underlying type of a cvalue
expression.

Rationale

Expressions flagged by this checker follow the detailed specifications for cvalue expressions from the
MISRA C++ documentation.

If you evaluate an expression and later cast the result to a different type, the cast has no effect on the
underlying type of the evaluation (the widest of operand data types in the expression).. For instance,
in this example, the sum of two unsigned int operands is cast to the type int.

unsigned int op1;
unsigned int op2;
int res;
res= static_cast<int> (op1 + op2);

However, a developer or code reviewer can expect that the evaluation uses the data type to which the
result is cast later. For instance, one can expect a sum with the underlying type int because of the
later cast.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Conversion of Sum to Wider Integer Type
typedef int int32_t;
typedef unsigned int uint32_t;

void func() {
 uint32_t op1;
 uint32_t op2;
 int32_t res;

 res = static_cast<int32_t> (op1 + op2); //Noncompliant
 res = static_cast<int32_t> (op1) +
 static_cast<int32_t> (op2); //Compliant

}

In this example, the first cast on the sum violates the rule but the second cast does not.

25 AUTOSAR C++14 Rules

25-552

• The first cast can lead to the incorrect expectation that the sum is evaluated with an underlying
type int32_t.

• The second cast first converts each of the operands to int32_t so that the sum is actually
evaluated with the underlying type int32_t.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-0-9

25-553

AUTOSAR C++14 Rule M5-0-10
If the bitwise operators ~and << are applied to an operand with an underlying type of unsigned char
or unsigned short, the result shall be immediately cast to the underlying type of the operand

Description
Rule Definition

If the bitwise operators ~and << are applied to an operand with an underlying type of unsigned char
or unsigned short, the result shall be immediately cast to the underlying type of the operand.

Rationale

When the bitwise operators ~ and << are applied to small integer types, such as unsigned short and
unsigned char, the operations are preceded by integral promotion. That is, the small integer types are
first promoted to a larger integer type, and then the operation takes place. The result of these bitwise
operation might contain unexpected higher order bits. For instance:

uint8_t var = 0x5aU;
uint8_t result = (~var)>>4;

The binary representation of var is 0101 1010 and that of ~var is 1010 0101. You might expect
that result is 0000 1010. Because var is promoted to a larger integer before ~var is calculated,
result becomes 1111 1010. The higher order bits might be unexpected. The results of such
operations might depend on the size of int in your implementation.

To avoid confusion and unexpected errors, cast the result of the bitwise ~ and >> operators back to
the underlying type of the operands before using the results. For instance:

uint8_t var = 0x5aU;
uint8_t result = (static_cat<unit8_t>(~var))>>4;

The binary representation of result in this case is 0000 1010, which is the expected value.

As an exception, casting is not required if you apply these bitwise operators on short integer types,
and then immediately assign the result to an object of the same underlying type. For instance, the
value of result in this case is 0000 1010 without requiring a cast.

uint8_t var = 0x5aU;
unit8_t result = ~var; // No higher order bits
 // due to implicit conversion
uint8_t result = results>>4;

Polyspace Implementation

Polyspace flags the use of the bitwise ~ and >> operators if all of these conditions are true:

• The operators are used on an unsigned short or unsigned char operand.
• The result of the operation is not immediately assigned to an object that has the same underlying

type as the operand.
• The result is used without being cast to the underlying type of the operand.

25 AUTOSAR C++14 Rules

25-554

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Cast Results of ~ and << Operators to the Operand Type When the Operand Is Small Integer
Type

#include<cstdint>
void foo(){
 uint8_t var = 0x5aU;
 uint8_t result;
 result = (~var) >> 4; // Non-compliant
 result = static_cast<uint8_t>((~var)) >> 4; // Compliant
 uint8_t cbe = ~var;//Compliant by Exception
}

In this example, Polyspace flags the use of ~ on the small integer var. The ~ operator is flagged
because:

• It operates on an unsigned short integer var.
• The result of the operator is used in an expression without casting ~var to uint8_t.

When the result of ~ operator is cast to unit8_t, the use is compliant with this rule. When the result
of ~ is immediately assigned to a unit8_t variable, the use is compliant to this rule by exception.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-0-10

25-555

AUTOSAR C++14 Rule M5-0-11
The plain char type shall only be used for the storage and use of character values

Description
Rule Definition

The plain char type shall only be used for the storage and use of character values.

Polyspace Implementation

The checker raises a violation when a value of signed or unsigned integer type is implicitly converted
to the plain char type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-556

AUTOSAR C++14 Rule M5-0-12
Signed char and unsigned char type shall only be used for the storage and use of numeric values

Description
Rule Definition

Signed char and unsigned char type shall only be used for the storage and use of numeric values.

Rationale

In C/C++, there are three types of char:

• Plain char
• signed char
• unsigned char

The signedness of plain char is implementation-defined. Plain char cannot be interchangeably used
with the other types. For instance, you might assume char is unsigned and use unsigned char to
store character. Your implementation might interpret characters as signed. In such a situation, your
code might behave in unexpected manner, leading to bugs that are difficult to diagnose.

MISRA C++:2008 limits the use of these three types of char for different applications. The signed
and unsigned char type is appropriate for numeric values and storage. The plain char is
appropriate for character data. Avoid using signed or unsigned char when you intend to use the
plain char.

This rule also applies to the different typedef of these char types, such as uint8_t and int8_t.
See MISRA C++:2008 Rule 3-9-2.

Polyspace Implementation

Polyspace raises a violation of this rule when a plain char is implicitly converted to either signed
char or unsigned char.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use Plain char to Store Characters

typedef signed char int8_t;
typedef unsigned char uint8_t;

namespace foo
{
 int8_t ch_1 = 'a'; // Noncompliant
 uint8_t ch_2 = '\r'; // Noncompliant

 AUTOSAR C++14 Rule M5-0-12

25-557

 char ch_3 = 'A'; // Compliant
 int8_t num_1 = 10; // Compliant
 uint8_t num_2 = 12U; // Compliant
 signed char num_3 = 11; // Compliant

};

In this example, Polyspace flags the use of signed char and unsigned char to store character
data. The character literals are of plain char types, and Polyspace flags the implicit conversion of
these plain char types to explicitly signed or unsigned char types.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14) | MISRA C++:2008 Rule 3-9-2

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-558

AUTOSAR C++14 Rule M5-0-14
The first operand of a conditional-operator shall have type bool

Description
Rule Definition

The first operand of a conditional-operator shall have type bool.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-0-14

25-559

AUTOSAR C++14 Rule M5-0-15
Array indexing shall be the only form of pointer arithmetic

Description
Rule Definition

Array indexing shall be the only form of pointer arithmetic.

Rationale

You can traverse an array or container in two ways:

• Increment or decrement an array index or an iterator, and then use the array index or iterator to
access an element.

• Increment or decrement a pointer to the array and then dereference the pointer.

The first method is clearer and less error-prone.

All other forms of explicit pointer arithmetic introduce the risk of accessing unintended memory
locations.

Polyspace Implementation

The checker flags:

• Arithmetic operations on all pointers, for instance p+I, I+p and p-I, where p is a pointer and I
an integer.

An exception is allowed for iterators that point to elements in containers, for instance, it below:

std::vector<int> intList{ 1,2,3,4 };
for(auto it = intList.begin() ; it != intList.end() ; ++it)

• Array indexing on nonarray pointers.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

25 AUTOSAR C++14 Rules

25-560

Introduced in R2019a

 AUTOSAR C++14 Rule M5-0-15

25-561

AUTOSAR C++14 Rule M5-0-16
A pointer operand and any pointer resulting from pointer arithmetic using that operand shall both
address elements of the same array

Description
Rule Definition

A pointer operand and any pointer resulting from pointer arithmetic using that operand shall both
address elements of the same array.

Rationale

It is undefined behavior when the result of a pointer arithmetic operation that uses a pointer to an
array element does not point to either:

• An element of the array.
• One past the last element of the array. For instance:

int arr[3];
int* res;
res = arr+3; // res points to one beyond arr

The rule applies to these operations. ptr is a pointer to an array element and int_exp is an integer
expression.

• ptr + int_exp
• int_exp + ptr
• ptr - int_exp
• ptr + +
• ++ptr
• --ptr
• ptr--
• ptr [int_exp]

Polyspace Implementation

• Single objects that are not part of an array are considered arrays of one element. For instance, in
this code example, arr_one is equivalent to an array of one element. Polyspace does not flag the
increment of pointer ptr_to_one because it points to one past the last element of arr_one.

void f_incr(int* x){
 int* ptr_to_one = x;
 ++ptr_to_one; // Compliant
}

void func(){
 int arr_one=1; // Equivalent to array of one element
 f_incr(&arr_one);
}

25 AUTOSAR C++14 Rules

25-562

• Polyspace does not flag the use of pointer parameters in pointer arithmetic operations when those
pointers point to arrays. For instance, in this code snippet, the use of &a1[2] in f1 is compliant
when you pass an array to f1.

void f1(int* const a1){
 int* b= &a1[2]; // Compliant
}
void f2(){
 int arr[3] {};
 f1(arr);
}

• In structures with multiple elements, Polyspace does not flag the result of a pointer arithmetic
operation on an element that results in a pointer that points to a different element if the pointer
points within the allocated memory of the structure or to one past the last element of the
structure.

For instance, in this code snippet, the assignment to ptr_to_struct is compliant because it
remains inside myStruct, even if it points outside myStruct.elem1. Using an index larger than
the element dimension to access the content of that element is not compliant, even if the resulting
address is within the allocated memory of the structure.

void func(){
 struct {
 char elem1[10];
 char elem2[10];
 } myStruct;

 char* ptr_to_struct = &myStruct.elem1[11]; //Compliant
 // Address of myStruct.elem1[11] is inside myStruct
 char val_to_struct = myStruct.elem1[11]; // Non-compliant
}

• In multidimensional arrays, Polyspace flags any use of indices that are larger than a subarray
dimension to access an element of that subarray. Polyspace does not flag the assignment of the
address of that same subarray element if the address is inside the allocated memory of the top-
level array.

For example, in this code snippet, the assignment to pointer ptr_to_arr is compliant because
the pointer points to an address that is within the allocated memory of multi_arr. The
assignment to variable arr_val is not compliant because the index used to access the subarray
element (3) is larger than the dimension of the subarray (2).

void func(){
 int multi_arr[5][2];

 // Assigned memory is inside top level array
 int* ptr_to_arr = &multi_arr[2][3]; //Compliant

 // Use of index 3 with subarray of size 2
 int arr_val = multi_arr[2][3]; // Non-compliant
}

• Polyspace flags the dereference of a pointer when that pointer points to one past the last element
of an array. For instance, in this code snippet, the assignment of ptr is compliant, but the
dereference of ptr is not. tab+3 is one past the last element of tab.

void derefPtr(){
 int tab[3] {};

 AUTOSAR C++14 Rule M5-0-16

25-563

 int* ptr = tab+3; //Compliant
 int res = *(tab+3); // Non-compliant
}

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Pointer Arithmetic by Using Pointers to Array Elements
void f_incr(int* x)
{
 int* ptr_to_one = x;
 ++ptr_to_one; // Compliant
}

void f1(int* const a1)
{
 int* b = &a1[2]; // Compliant
}

int main()
{

 int arr_one = 1; // Equivalent to array of one element
 f_incr(&arr_one);

 int arr[3] {};
 f1(arr);

 struct {
 char elem1[10];
 char elem2[10];
 } myStruct;

 char* ptr_to_struct = &myStruct.elem1[11]; // Compliant
 ptr_to_struct = &myStruct.elem2[11]; //Non-compliant

 int tab[3] {1, 2, 3};
 int* ptr = &tab[2];
 int res = tab[2];
 ++ptr; // Compliant
 res = *ptr; //Non-compliant

 return 0;
}

In this example:

• The increment of ptr_to_one inside f_incr() is compliant because the operation results in a
pointer that points to one past the last element of array x. The integer that is passed to f_incr()
is equivalent to an array of one element.

• The operation on pointer parameter a1 inside f1() is compliant because the pointer points to
array arr.

25 AUTOSAR C++14 Rules

25-564

• The first assignment of ptr_to_struct is compliant because elem1[11] is still inside
myStruct. The second assignment of ptr_to_struct is not compliant because the result of the
operation does not point to either inside myStruct or to one past the last element of myStruct.

• The increment of ptr is compliant because the result of the operation points to one past the last
element of tab. The dereference of ptr on the next line is not compliant.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2021a

 AUTOSAR C++14 Rule M5-0-16

25-565

AUTOSAR C++14 Rule M5-0-17
Subtraction between pointers shall only be applied to pointers that address elements of the same
array

Description
Rule Definition

Subtraction between pointers shall only be applied to pointers that address elements of the same
array.

Polyspace Implementation

Use Bug Finder for this checker. The rule checker performs the same checks as Subtraction or
comparison between pointers to different arrays. Code Prover can fail to detect some
violations.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-566

AUTOSAR C++14 Rule M5-0-18
>, >=, <, <= shall not be applied to objects of pointer type, except where they point to the same
array

Description
Rule Definition

>, >=, <, <= shall not be applied to objects of pointer type, except where they point to the same
array.

Polyspace Implementation

Use Bug Finder for this checker. The rule checker performs the same checks as Subtraction or
comparison between pointers to different arrays. Code Prover can fail to detect some
violations.

The checker ignores casts when showing the violation on relational operator use with pointers types.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-0-18

25-567

AUTOSAR C++14 Rule M5-0-20
Non-constant operands to a binary bitwise operator shall have the same underlying type

Description
Rule Definition

Non-constant operands to a binary bitwise operator shall have the same underlying type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-568

AUTOSAR C++14 Rule M5-0-21
Bitwise operators shall only be applied to operands of unsigned underlying type

Description
Rule Definition

Bitwise operators shall only be applied to operands of unsigned underlying type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-0-21

25-569

AUTOSAR C++14 Rule M5-2-2
A pointer to a virtual base class shall only be cast to a pointer to a derived class by means of
dynamic_cast

Description
Rule Definition

A pointer to a virtual base class shall only be cast to a pointer to a derived class by means of
dynamic_cast.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-570

AUTOSAR C++14 Rule M5-2-3
Casts from a base class to a derived class should not be performed on polymorphic types

Description
Rule Definition

Casts from a base class to a derived class should not be performed on polymorphic types.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-2-3

25-571

AUTOSAR C++14 Rule M5-2-6
A cast shall not convert a pointer to a function to any other pointer type, including a pointer to
function type

Description
Rule Definition

A cast shall not convert a pointer to a function to any other pointer type, including a pointer to
function type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-572

AUTOSAR C++14 Rule M5-2-8
An object with integer type or pointer to void type shall not be converted to an object with pointer
type

Description
Rule Definition

An object with integer type or pointer to void type shall not be converted to an object with pointer
type.

Polyspace Implementation

The checker allows an exception on zero constants.

Objects with pointer type include objects with pointer-to-function type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-2-8

25-573

AUTOSAR C++14 Rule M5-2-9
A cast shall not convert a pointer type to an integral type

Description
Rule Definition

A cast shall not convert a pointer type to an integral type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-574

AUTOSAR C++14 Rule M5-2-10
The increment (++) and decrement (--) operators shall not be mixed with other operators in an
expression

Description
Rule Definition

The increment (++) and decrement (--) operators shall not be mixed with other operators in an
expression.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-2-10

25-575

AUTOSAR C++14 Rule M5-2-11
The comma operator, && operator and the || operator shall not be overloaded

Description
Rule Definition

The comma operator, && operator and the || operator shall not be overloaded.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-576

AUTOSAR C++14 Rule M5-2-12
An identifier with array type passed as a function argument shall not decay to a pointer

Description
Rule Definition

An identifier with array type passed as a function argument shall not decay to a pointer.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-2-12

25-577

AUTOSAR C++14 Rule M5-3-1
Each operand of the ! operator, the logical && or the logical || operators shall have type bool

Description
Rule Definition

Each operand of the ! operator, the logical && or the logical || operators shall have type bool.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-578

AUTOSAR C++14 Rule M5-3-2
The unary minus operator shall not be applied to an expression whose underlying type is unsigned

Description
Rule Definition

The unary minus operator shall not be applied to an expression whose underlying type is unsigned.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-3-2

25-579

AUTOSAR C++14 Rule M5-3-3
The unary & operator shall not be overloaded

Description
Rule Definition

The unary & operator shall not be overloaded.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-580

AUTOSAR C++14 Rule M5-3-4
Evaluation of the operand to the sizeof operator shall not contain side effects

Description
Rule Definition

Evaluation of the operand to the sizeof operator shall not contain side effects.

Polyspace Implementation

The checker does not show a warning on volatile accesses and function calls

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-3-4

25-581

AUTOSAR C++14 Rule M5-8-1
The right hand operand of a shift operator shall lie between zero and one less than the width in bits
of the underlying type of the left hand operand

Description
Rule Definition

The right hand operand of a shift operator shall lie between zero and one less than the width in bits
of the underlying type of the left hand operand.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Partially automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-582

AUTOSAR C++14 Rule M5-14-1
The right hand operand of a logical &&, || operators shall not contain side effects

Description
Rule Definition

The right hand operand of a logical &&, || operators shall not contain side effects.

Rationale

When evaluated, an expression that has side effects modifies at least one of the variables in the
expression. For instance, n++ is an expression with side effect.

The right operand of a:

• Logical && operator is evaluated only if the left-hand operand evaluates to true.
• Logical || operator is evaluated only if the left-hand operand evaluates to false.

In other cases, the right operands are not evaluated. Side effects of the expression do not take place.
If your program relies on such side effects, you might see unexpected results.

Polyspace Implementation

The checker flags logical && or || operators whose right operands are expressions that have side
effects. Polyspace assumes:

• Expressions that modifies at least one of its variables have side effects.
• Explicit constructors or conversion functions that are declared but not defined have no side
effects. Defined conversion functions have side effects.

• Volatile accesses and function calls have no side effects.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Side Effects in Right Operand of Logical Operation

class real32_T {
public:
 real32_T() = default;

 /* Casting operations */
 explicit real32_T(float a) {
 // ...
 }
 /* Relational operators */
 bool operator==(real32_T a) const;

 AUTOSAR C++14 Rule M5-14-1

25-583

 bool operator>(real32_T a) const;
};

void bar() {
 real32_T d;

 if ((d == static_cast<real32_T>(0.0F))
 || (static_cast<real32_T>(0.0F) > d)) {//Noncompliant
 /**/
 }
}

void foo(int i, int j){
 if(i==0 && ++j==i){ //Noncompliant
 --i;
 }
}

In the function foo, the right operand of the && operator contains an increment operation, which has
a side effect. Polyspace flags the operator. In the function bar, the right operand of the || operator
contains a conversion function that is implemented in the class. Polyspace considers such constructor
to have side effects. Because the right operator has side effects, the operator is flagged.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-584

AUTOSAR C++14 Rule M5-18-1
The comma operator shall not be used

Description
Rule Definition

The comma operator shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M5-18-1

25-585

AUTOSAR C++14 Rule M5-19-1
Evaluation of constant unsigned integer expressions shall not lead to wrap-around

Description
Rule Definition

Evaluation of constant unsigned integer expressions shall not lead to wrap-around.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Expressions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-586

AUTOSAR C++14 Rule M6-2-1
Assignment operators shall not be used in sub-expressions

Description
Rule Definition

Assignment operators shall not be used in sub-expressions.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M6-2-1

25-587

AUTOSAR C++14 Rule M6-2-2
Floating-point expressions shall not be directly or indirectly tested for equality or inequality

Description
Rule Definition

Floating-point expressions shall not be directly or indirectly tested for equality or inequality.

Polyspace Implementation

The checker detects the use of == or != with floating-point variables or expressions. The checker
does not detect indirectly testing of equality, for instance, using the <= operator.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required, Partially automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-588

AUTOSAR C++14 Rule M6-2-3
Before preprocessing, a null statement shall only occur on a line by itself; it may be followed by a
comment, provided that the first character following the null statement is a white-space character

Description
Rule Definition

Before preprocessing, a null statement shall only occur on a line by itself; it may be followed by a
comment, provided that the first character following the null statement is a white-space character.

Polyspace Implementation

The checker considers a null statement as a line where the first character excluding comments is a
semicolon. The checker flags situations where:

• Comments appear before the semicolon.

For instance:

/* wait for pin */ ;
• Comments appear immediately after the semicolon without a white space in between.

For instance:

;// wait for pin

The checker also shows a violation when a second statement appears on the same line following the
null statement.

For instance:

; count++;

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M6-2-3

25-589

AUTOSAR C++14 Rule M6-3-1
The statement forming the body of a switch, while, do ... while or for statement shall be a compound
statement

Description
Rule Definition

The statement forming the body of a switch, while, do ... while or for statement shall be a compound
statement.

Rationale

A compound statement is included in braces.

If a block of code associated with an iteration or selection statement is not contained in braces, you
can make mistakes about the association. For example:

• You can wrongly associate a line of code with an iteration or selection statement because of its
indentation.

• You can accidentally place a semicolon following the iteration or selection statement. Because of
the semicolon, the line following the statement is no longer associated with the statement even
though you intended otherwise.

This checker enforces the practice of adding braces following a selection or iteration statement even
for a single line in the body. Later, when more lines are added, the developer adding them does not
need to note the absence of braces and include them.

Polyspace Implementation

The checker flags for loops where the first token following a for statement is not a left brace, for
instance:

for (i=init_val; i > 0; i--)
 if (arr[i] < 0)
 arr[i] = 0;

Similar checks are performed for switch, for and do..while statements.

The second line of the message on the Result Details pane indicates which statement is violating the
rule. For instance, in the preceding example, the second line of the message states that the for loop
is violating the rule.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements

25 AUTOSAR C++14 Rules

25-590

Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M6-3-1

25-591

AUTOSAR C++14 Rule M6-4-1
An if (condition) construct shall be followed by a compound statement. The else keyword shall be
followed by either a compound statement, or another if statement

Description
Rule Definition

An if (condition) construct shall be followed by a compound statement. The else keyword shall be
followed by either a compound statement, or another if statement.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-592

AUTOSAR C++14 Rule M6-4-2
All if ... else if constructs shall be terminated with an else clause

Description
Rule Definition

All if ... else if constructs shall be terminated with an else clause.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M6-4-2

25-593

AUTOSAR C++14 Rule M6-4-3
A switch statement shall be a well-formed switch statement

Description
Rule Definition

A switch statement shall be a well-formed switch statement.

Polyspace Implementation

The checker flags these situations:

• A statement occurs between the switch statement and the first case statement.

For instance:

switch(ch) {
 int temp;
 case 1:
 break;
 default:
 break;
}

• A label or a jump statement such as goto or return occurs in the switch block.
• A variable is declared in a case statement (outside any block).

For instance:

switch(ch) {
 case 1:
 int temp;
 break;
 default:
 break;
}

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

25 AUTOSAR C++14 Rules

25-594

Introduced in R2019a

 AUTOSAR C++14 Rule M6-4-3

25-595

AUTOSAR C++14 Rule M6-4-4
A switch-label shall only be used when the most closely-enclosing compound statement is the body of
a switch statement

Description
Rule Definition

A switch-label shall only be used when the most closely-enclosing compound statement is the body of
a switch statement.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-596

AUTOSAR C++14 Rule M6-4-5
An unconditional throw or break statement shall terminate every non-empty switch-clause

Description
Rule Definition

An unconditional throw or break statement shall terminate every non-empty switch-clause.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M6-4-5

25-597

AUTOSAR C++14 Rule M6-4-6
The final clause of a switch statement shall be the default-clause

Description
Rule Definition

The final clause of a switch statement shall be the default-clause.

Polyspace Implementation

The checker detects switch statements that do not have a final default clause.

The checker does not raise a violation if the switch variable is an enum with finite number of values
and you have a case clause for each value. For instance:

enum Colours { RED, BLUE, GREEN } colour;

switch (colour) {
 case RED:
 break;
 case BLUE:
 break;
 case GREEN:
 break;
}

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-598

AUTOSAR C++14 Rule M6-4-7
The condition of a switch statement shall not have bool type

Description
Rule Definition

The condition of a switch statement shall not have bool type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M6-4-7

25-599

AUTOSAR C++14 Rule M6-5-2
If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall only be used
as an operand to <=, <, > or >=

Description
Rule Definition

If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall only be used
as an operand to <=, <, > or >=.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-600

AUTOSAR C++14 Rule M6-5-3
The loop-counter shall not be modified within condition or statement

Description
Rule Definition

The loop-counter shall not be modified within condition or statement.

Rationale

The for loop has a specific syntax for modifying the loop counter. A code reviewer expects
modification using that syntax. Modifying the loop counter elsewhere can make the code harder to
review.

Polyspace Implementation

The checker flags modification of a for loop counter in the loop body or the loop condition (the
condition that is checked to see if the loop must be terminated).

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M6-5-3

25-601

AUTOSAR C++14 Rule M6-5-4
The loop-counter shall be modified by one of: --, ++, -=n, or +=n; where n remains constant for the
duration of the loop

Description
Rule Definition

The loop-counter shall be modified by one of: --, ++, -=n, or +=n; where n remains constant for the
duration of the loop.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-602

AUTOSAR C++14 Rule M6-5-5
A loop-control-variable other than the loop-counter shall not be modified within condition or
expression

Description
Rule Definition

A loop-control-variable other than the loop-counter shall not be modified within condition or
expression.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M6-5-5

25-603

AUTOSAR C++14 Rule M6-5-6
A loop-control-variable other than the loop-counter which is modified in statement shall have type
bool

Description
Rule Definition

A loop-control-variable other than the loop-counter which is modified in statement shall have type
bool.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-604

AUTOSAR C++14 Rule M6-6-1
Any label referenced by a goto statement shall be declared in the same block, or in a block enclosing
the goto statement

Description
Rule Definition

Any label referenced by a goto statement shall be declared in the same block, or in a block enclosing
the goto statement.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M6-6-1

25-605

AUTOSAR C++14 Rule M6-6-2
The goto statement shall jump to a label declared later in the same function body

Description
Rule Definition

The goto statement shall jump to a label declared later in the same function body.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-606

AUTOSAR C++14 Rule M6-6-3
The continue statement shall only be used within a well-formed for loop

Description
Rule Definition

The continue statement shall only be used within a well-formed for loop.

Polyspace Implementation

The checker flags the use of continue statements in:

• for loops that are not well-formed, that is, loops that violate rules 6-5-x.
• while loops.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Statements
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M6-6-3

25-607

AUTOSAR C++14 Rule M7-1-2
A pointer or reference parameter in a function shall be declared as pointer to const or reference to
const if the corresponding object is not modified

Description
Rule Definition

A pointer or reference parameter in a function shall be declared as pointer to const or reference to
const if the corresponding object is not modified.

Polyspace Implementation

The checker flags pointers where the underlying object is not const-qualified but never modified in
the function body.

If a variable is passed to another function by reference or pointers, the checker assumes that the
variable can be modified. Pointers that point to these variables are not flagged.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declaration
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-608

AUTOSAR C++14 Rule M7-3-1
The global namespace shall only contain main, namespace declarations and extern "C" declarations

Description
Rule Definition

The global namespace shall only contain main, namespace declarations and extern "C" declarations.

Rationale

The rule makes sure that all names found at global scope are part of a namespace. Adhering to this
rule avoids name clashes and ensures that developers do not reuse a variable name, resulting in
compilation/linking errors, or shadow a variable name, resulting in possibly unexpected issues later.

Polyspace Implementation

Other than the main function, the checker flags all names used at global scope that are not part of a
namespace.

The checker does not flag names at global scope if they are declared in extern "C" blocks (C code
included within C++ code). However, if you use the option Ignore link errors (-no-extern-
c), these names are also flagged.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declaration
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M7-3-1

25-609

AUTOSAR C++14 Rule M7-3-2
The identifier main shall not be used for a function other than the global function main

Description
Rule Definition

The identifier main shall not be used for a function other than the global function main.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declaration
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-610

AUTOSAR C++14 Rule M7-3-3
There shall be no unnamed namespaces in header files

Description
Rule Definition

There shall be no unnamed namespaces in header files.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declaration
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M7-3-3

25-611

AUTOSAR C++14 Rule M7-3-4
Using-directives shall not be used

Description
Rule Definition

using-directives shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declaration
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-612

AUTOSAR C++14 Rule M7-3-6
Using-directives and using-declarations (excluding class scope or function scope using-declarations)
shall not be used in header files

Description
Rule Definition

using-directives and using-declarations (excluding class scope or function scope using-declarations)
shall not be used in header files.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declaration
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M7-3-6

25-613

AUTOSAR C++14 Rule M7-4-2
Assembler instructions shall only be introduced using the asm declaration

Description
Rule Definition

Assembler instructions shall only be introduced using the asm declaration.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declaration
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-614

AUTOSAR C++14 Rule M7-4-3
Assembly language shall be encapsulated and isolated

Description
Rule Definition

Assembly language shall be encapsulated and isolated.

Polyspace Implementation

The checker flags asm statements unless they are encapsulated in a function call.

For instance, the noncompliant asm statement below is in regular C code while the compliant asm
statement is encapsulated in a call to the function Delay.

void Delay (void)
 {
 asm("NOP");//Compliant
 }
void fn (void)
 {
 DoSomething();
 Delay();// Assembler is encapsulated
 DoSomething();
 asm("NOP"); //Noncompliant
 DoSomething();
 }

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declaration
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M7-4-3

25-615

AUTOSAR C++14 Rule M7-5-1
A function shall not return a reference or a pointer to an automatic variable (including parameters),
defined within the function

Description
Rule Definition

A function shall not return a reference or a pointer to an automatic variable (including parameters),
defined within the function.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declaration
Category: Required, Non-automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-616

AUTOSAR C++14 Rule M7-5-2
The address of an object with automatic storage shall not be assigned to another object that may
persist after the first object has ceased to exist

Description
Rule Definition

The address of an object with automatic storage shall not be assigned to another object that may
persist after the first object has ceased to exist.

Rationale

If an object continues to point to another object after the latter object ceases to exist, dereferencing
the first object leads to undefined behavior.

Polyspace Implementation

The checker flags situations where the address of a local variable is assigned to a pointer defined at
global scope.

The checker does not raise violations of this rule if:

• A function returns the address of a local variable. AUTOSAR C++14 Rule M7-5-1 covers this
situation.

• The address of a variable defined at block scope is assigned to a pointer that is defined with
greater scope, but not global scope.

For instance:

 void foobar (void)
 {
 char * ptr;
 {
 char var;
 ptr = &var;
 }
 }

Only if the pointer is defined at global scope is a rule violation raised. For instance, the rule
checker flags the assignment here:

char * ptr;
void foobar (void)
 {
 char var;
 ptr = &var;
 }

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

 AUTOSAR C++14 Rule M7-5-2

25-617

Examples
Address of Local Variable Assigned to Global Pointer

char * ptr;

void foo (void) {
 char varInFoo;
 ptr = &varInFoo; //Noncompliant
}

void bar (void) {
 char varInBar = *ptr;
}

void main() {
 foo();
 bar();
}

The assignment ptr = &varInFoo is noncompliant because the global pointer ptr might be
dereferenced outside the function foo, where the variable varInFoo is no longer in scope. For
instance, in this example, ptr is dereferenced in the function bar, which is called after foo
completes execution.

Check Information
Group: Declaration
Category: Required, Non-automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

25 AUTOSAR C++14 Rules

25-618

AUTOSAR C++14 Rule M8-0-1
An init-declarator-list or a member-declarator-list shall consist of a single init-declarator or member-
declarator respectively

Description
Rule Definition

An init-declarator-list or a member-declarator-list shall consist of a single init-declarator or member-
declarator respectively.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarators
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M8-0-1

25-619

AUTOSAR C++14 Rule M8-3-1
Parameters in an overriding virtual function shall either use the same default arguments as the
function they override, or else shall not specify any default arguments

Description
Rule Definition

Parameters in an overriding virtual function shall either use the same default arguments as the
function they override, or else shall not specify any default arguments.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarators
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-620

AUTOSAR C++14 Rule M8-4-2
The identifiers used for the parameters in a re-declaration of a function shall be identical to those in
the declaration

Description
Rule Definition

The identifiers used for the parameters in a re-declaration of a function shall be identical to those in
the declaration.

Polyspace Implementation

The checker detects mismatch in parameter names between:

• A function declaration and the corresponding definition.
• Two declarations of a function, provided they occur in the same file.

If the declarations occur in different files, the checker does not raise a violation for mismatch in
parameter names. Redeclarations in different files are forbidden by AUTOSAR C++14 Rule
M3-2-3.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarators
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M8-4-2

25-621

AUTOSAR C++14 Rule M8-4-4
A function identifier shall either be used to call the function or it shall be preceded by &

Description
Rule Definition

A function identifier shall either be used to call the function or it shall be preceded by &.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Declarators
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-622

AUTOSAR C++14 Rule M8-5-2
Braces shall be used to indicate and match the structure in the non-zero initialization of arrays and
structures

Description
Rule Definition

Braces shall be used to indicate and match the structure in the non-zero initialization of arrays and
structures.

Rationale

The use of nested braces in initializer lists to match the structures of nested objects in arrays, unions,
and structs encourages you to consider the order of initialization of complex data types and makes
your code more readable. For example, the use of nested braces in the initialization of ex1 makes it
easier to see how the nested arrays arr1 and arr2 in struct ex1 are initialized.

struct Example
{
 int num;
 int arr1[2];
 int arr2[3];
};

//....
struct Example ex1 {1, {2, 3}, {4, 5, 6}}; //Compliant

The rule does not require the use of nested braces if you zero initialize an array, a union, or a struct
with nested structures are the top-level, for instance:

struct Example ex1 {}; //Compliant

Polyspace Implementation

If you non-zero initialize an array, union, or struct that contains nested structures and you do not use
nested braces to reflect the nested structure, Polyspace flags the first element of the first nested
structure in the initializer list. For instance, in this code snippet, Polyspace flags the number 2
because it corresponds to the first element of nested structure arr1 inside struct ex1.

struct Example
{
 int num;
 int arr1[2];
 int arr2[3];
};

//....
struct Example ex1 {1, 2, 3, 4, 5, 6}; // Non-compliant

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

 AUTOSAR C++14 Rule M8-5-2

25-623

Examples
Missing Nested Braces in Initializer of Two-Dimensional Arrays

char arr1[2][3] {'a', 'b', 'c', 'd', 'e', 'f'}; //Non-compliant
char arr2[2][3] {{'a', 'b', 'c'}, {'d', 'e', 'f'}}; //Compliant
char arr_top_level[2][3] { }; //Compliant
char arr_sub_level[2][3] { {}, {'d', 'e', 'f'}}; //Non-compliant

In this example, two-dimensional array arr1 is non-compliant because the initializer list does not
reflect the nested structure of this array (two arrays of three elements each). The initialization of
arr2 uses nested braces to reflect the nested structure of the array and is compliant. Similarly, the
initialization of arr_top_level is compliant because it zero initializes the array at the top level.
Note that the initialization of arr_sub_level is non-compliant because zero-initializes only the first
sub-array while explicitly initializing all the elements of the other sub-array.

Check Information
Group: Declarators
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-624

AUTOSAR C++14 Rule M9-3-1
Const member functions shall not return non-const pointers or references to class-data

Description
Rule Definition

const member functions shall not return non-const pointers or references to class-data.

Polyspace Implementation

The checker flags a rule violation only if a const member function returns a non-const pointer or
reference to a nonstatic data member. The rule does not apply to static data members.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Classes
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M9-3-1

25-625

AUTOSAR C++14 Rule M9-3-3
If a member function can be made static then it shall be made static, otherwise if it can be made
const then it shall be made const

Description
Rule Definition

If a member function can be made static then it shall be made static, otherwise if it can be made
const then it shall be made const.

Rationale

const member functions cannot modify the data members of the class. static member function
cannot modify the nonstatic data members of the class. If a member function does not need to modify
the nonstatic data members of the class, limit their access to data by declaring the member functions
as const or static. Such declaration clearly expresses and enforces the design intent. That is, if
you inadvertently attempt to modify a data member through a const member function, the compiler
catches the error. Without the const declaration, this kind of inadvertent error might lead to bugs
that are difficult to find or debug.

Polyspace Implementation

The checker performs these checks in this order:

1 The checker first checks if a class member function accesses a data member of the class.
Functions that do not access data members can be declared static.

2 The checker then checks functions that access data members to determine if the function
modifies any of the data members. Functions that do not modify data members can be declared
const.

A violation on a const member function means that the function does not access a data member of
the class and can be declared static.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Explicitly Restrict Access for Member Functions that Do Not Modify Data Members

#include<cstdint>
void Connector(void);
class A
{
public:
 int16_t foo () // Noncompliant
 {
 return m_i;

25 AUTOSAR C++14 Rules

25-626

 }
 int16_t foo2 () // Noncompliant
 {
 Connector();// Might have side-effect
 return m_i;
 }
 int16_t foo3 () // Noncompliant
 {
 return m_s;
 }
 int16_t inc_m () // Compliant
 {
 return ++m_i;
 }
 int16_t& getref()//Noncompliant
 {
 return m_i_ref;
 }
private:
 int16_t m_i;
 static int16_t m_s;
 int16_t& m_i_ref;
};

In this example, Polyspace flags the functions foo, foo2, foo3, and getref as noncompliant.

• The functions foo and foo3 do not modify any nonstatic data members. Because their data access
is not explicitly restricted by declaring them as const, Polyspace flags these functions. To fix
these defects, declare foo and foo3 as const.

• The function foo2 does not explicitly modify any of the data members. Because it is not declared
as const, Polyspace flags the function. foo2 calls the global function Connector, which might
have side effects. Do not declare foo2 as a const function. In C++11 or later, const member
functions are expected to be thread-safe, but foo2 might not be thread-safe because of the side
effects of Connector. To avoid data races, keep foo2 as a nonconst function. Justify the defect by
using review information or code comments.

• The function getref does not modify any data members. Because it is not declared as const,
Polyspace flags it. Declaring getref as const resolves this defect, but that is not enough to
restrict write access of getref because it returns a nonconst reference to m_i_ref. To restrict
getref from modifying m_i_ref, the return type of getref must also be const.

Check Information
Group: Classes
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M9-3-3

25-627

AUTOSAR C++14 Rule M9-6-4
Named bit-fields with signed integer type shall have a length of more than one bit

Description
Rule Definition

Named bit-fields with signed integer type shall have a length of more than one bit.

Rationale

Variables that have signed integer bit-field types of length one bit might have values that do not meet
developer expectations. For instance, signed integer types of a fixed width such as std16_t have a
two's complement representation. In this representation, a single-bit variable has just the sign bit and
the variable value might be 0 or -1.

Polyspace Implementation

The checker flags declarations of named variables having signed integer bit-field types of length
equal to one.

Bit-field types of length zero are not flagged.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Compliant and Noncompliant Bit-Field Types

#include <cstdint>

typedef struct
{
 std::uint16_t IOFlag :1; //Compliant - unsigned type
 std::int16_t InterruptFlag :1; //Noncompliant
 std::int16_t Register1Flag :2; //Compliant - Length more than one bit
 std::int16_t : 1; //Compliant - Unnamed
 std::int16_t : 0; //Compliant - Unnamed
 std::uint16_t SetupFlag :1; //Compliant - unsigned type
} InterruptConfigbits_t;

In this example, only the second bit-field declaration is noncompliant. A named variable is declared
with a signed type of length one bit.

Check Information
Group: Classes
Category: Required, Automated

25 AUTOSAR C++14 Rules

25-628

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 AUTOSAR C++14 Rule M9-6-4

25-629

AUTOSAR C++14 Rule M10-1-1
Classes should not be derived from virtual bases

Description
Rule Definition

Classes should not be derived from virtual bases.

Rationale

The use of virtual bases can lead to many confusing behaviors.

For instance, in an inheritance hierarchy involving a virtual base, the most derived class calls the
constructor of the virtual base. Intermediate calls to the virtual base constructor are ignored.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of Virtual Bases

class Base {};
class Intermediate: public virtual Base {}; //Noncompliant
class Final: public Intermediate {};

In this example, the rule checker raises a violation when the Intermediate class is derived from the
class Base with the virtual keyword.

The following behavior can be a potential source of confusion. When you create an object of type
Final, the constructor of Final directly calls the constructor of Base. Any call to the Base
constructor from the Intermediate constructor are ignored. You might see unexpected results if
you do not take into account this behavior.

Check Information
Group: Derived Classes
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-630

AUTOSAR C++14 Rule M10-1-2
A base class shall only be declared virtual if it is used in a diamond hierarchy

Description
Rule Definition

A base class shall only be declared virtual if it is used in a diamond hierarchy.

Rationale

This rule is less restrictive than AUTOSAR C++14 Rule M10-1-1. Rule M10-1-1 forbids the use of a
virtual base anywhere in your code because a virtual base can lead to potentially confusing behavior.

Rule M10-1-2 allows the use of virtual bases in the one situation where they are useful, that is, as a
common base class in diamond hierarchies.

For instance, the following diamond hierarchy violates rule M10-1-1 but not rule M10-1-2.

class Base {};
class Intermediate1: public virtual Base {};
class Intermediate2: public virtual Base {};
class Final: public Intermediate1, public Intermediate2 {};

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Derived Classes
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M10-1-2

25-631

AUTOSAR C++14 Rule M10-1-3
An accessible base class shall not be both virtual and non-virtual in the same hierarchy

Description
Rule Definition

An accessible base class shall not be both virtual and non-virtual in the same hierarchy.

Rationale

The checker flags situations where the same class is inherited as a virtual base class and a non-virtual
base class in the same derived class. These situations defeat the purpose of virtual inheritance and
causes multiple copies of the base class sub-object in the derived class object.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Base Class Both Virtual and Non-Virtual in Same Hierarchy

class Base {};
class Intermediate1: virtual public Base {};
class Intermediate2: virtual public Base {};
class Intermediate3: public Base {};
class Final: public Intermediate1, Intermediate2, Intermediate3 {}; //Noncompliant

In this example, the class Base is inherited in Final both as a virtual and non-virtual base class. The
Final object contains at least two copies of a Base sub-object.

Check Information
Group: Derived Classes
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-632

AUTOSAR C++14 Rule M10-2-1
All accessible entity names within a multiple inheritance hierarchy should be unique

Description
Rule Definition

All accessible entity names within a multiple inheritance hierarchy should be unique.

Rationale

Data members and nonvirtual functions within the same inheritance hierarchy that have the same
name might cause developer confusion. The entity the developer intended for use might not be the
entity the compiler chooses. Avoid using nonunique names for accessible entities within a multiple
inheritance hierarchy.

Polyspace Implementation

This checker flags entities from separate classes that belong to the same derived class if they have an
ambiguous name. The name of an entity is ambiguous if:

• Two variables share the same name, even if they are of different types.
• Two functions share the same name, same parameters, and the same return type.

If the data member accessed in the derived class is ambiguous, Polyspace reports this issue as a
compilation issue, not a coding rule violation. The checker does not check for conflicts between
entities of different kinds such as member functions against data members.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Noncompliant Data Members in a Multiple Inheritance Hierarchy

#include <iostream>
#include <cstdlib>
#include <cstdint>

using namespace std;

class A
{
public:
 int32_t num; //Noncompliant
 int32_t total; //Compliant
 int32_t sum(int32_t toSum) //Noncompliant
 {
 total = toSum + num;
 };

 AUTOSAR C++14 Rule M10-2-1

25-633

};

class B
{
public:
 int32_t num; //Noncompliant
 int32_t total(); //Compliant
 int32_t sum(int32_t toSum) //Noncompliant
 {
 num = toSum + num;
 };
};

class C : public A, public B
{
public:
 void foo()
 {
 num = total;
 sum(num);
 }
};

• Because class A and class B define their own local variable int32_t num, and because
class C is a multiple inheritance hierarchy containing class A and class B, Polyspace flags
both int32_t num variables as noncompliant.

• Because int32_t sum() in class A and int32_t sum() in class B share the same name,
return type, arguments, and are members of the same multiple inheritance hierarchy, both
functions are flagged by Polyspace as noncompliant.

• Because int32_t total and int_32t total() are different types of class members, Polyspace
does not flag them even though they are part of the same multiple inheritance hierarchy.

The ambiguous data members might be reported as compilation issues.

Check Information
Group: Derived Classes
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-634

AUTOSAR C++14 Rule M10-3-3
A virtual function shall only be overridden by a pure virtual function if it is itself declared as pure
virtual

Description
Rule Definition

A virtual function shall only be overridden by a pure virtual function if it is itself declared as pure
virtual.

Rationale

In C++, an abstract class is the base of a polymorphic class hierarchy and the derived classes
implement variation of the abstract class. When a virtual function is overriden in a derived class by a
pure virtual function, the derived class becomes an abstract class. That a derived class is defined as
an abstract class or an implemented function is overriden by a pure virtual function is unexpected
behavior, which might confuse a developer.

Polyspace Implementation

Polyspace flags a pure virtual function if it overrides a function that is not pure virtual.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Do Not Redeclare Functions as Pure Virtual

class Conic{
 //...
 public:
 double centerAbscissa;
 double centerOrdinate;
 //..
 virtual double getArea()=0;
};
class Circle: public Conic{
 //...
 public:
 //...
 double getArea() override{
 //calculate area of circle
 }
};
class Ellipse: public Circle{
 //...
 public:
 //...

 AUTOSAR C++14 Rule M10-3-3

25-635

 virtual double getArea()=0; //Noncompliant
};

In this example, the base class Conic is an abstract class because the function getArea() is a pure
virtual function. The derived class Circle implements the function getArea. The expectation from
such a polymorphic hierarchy is that the virtual function getArea calculates the area correctly based
on the derived class. When the derived class Ellipse redeclares getArea as a pure virtual function,
the derived class Ellipse becomes abstract and the function Ellipse.getArea() cannot be
invoked. Developers might expect Ellipse.getArea() to return the area of the ellipse. Because
this redeclaration as a pure virtual function does not meet developer expectation, Polyspace flags the
declaration.

Check Information
Group: Derived Classes
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-636

AUTOSAR C++14 Rule M11-0-1
Member data in non-POD class types shall be private

Description
Rule Definition

Member data in non-POD class types shall be private.

Rationale

If classes have data members that are publicly accessible, other classes and functions might interact
with the class data members directly. Any change in the class might require updating the clients that
use the class. If a class is not a plain-old-data (POD) type, restricting access to its data members
enables encapsulation of the class. In such an encapsulated class, the implementation details of the
class are opaque to the clients that use it. The class retains control over its implementation and can
be maintained independently without impacting the clients that use the class.

Polyspace Implementation

Polyspace flags nonprivate data members in classes that are not POD types. Polyspace space uses the
same definition of POD classes as the standard.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Declare Data Members in Non-POD Classes as private

class nonPOD{
 nonPOD(){
 //...
 }
 ~nonPOD(){
 //...
 }
 public:
 int getX();
 int setX(int&);
 int getY();
 int setY(int&);
 int getZ();
 int setZ(int&);
 int x; //Noncompliant
 protected:
 int y; //Noncompliant
 private:
 int z;
};

 AUTOSAR C++14 Rule M11-0-1

25-637

In this example, the data members y and z are not private. Polyspace flags them.

Check Information
Group: Member Access Control
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-638

AUTOSAR C++14 Rule M12-1-1
An object's dynamic type shall not be used from the body of its constructor or destructor

Description
Rule Definition

An object's dynamic type shall not be used from the body of its constructor or destructor.

Rationale

The dynamic type of an object is the type of its most derived class. For instance:

struct B {
 virtual ~B() {}
};
struct D: B {};
D d;
B* ptr = &d;

The dynamic type of the object pointed to by *ptr is D because that is the most derived class in the
polymorphic hierarchy.

When you invoke the dynamic type of a polymorphic object in its constructor or destructor, you might
get the type of the constructed or destroyed object instead of the type of the most derived object. This
is because when you invoke the dynamic type during construction or destructor, the derived classes
might not be constructed yet. Using dynamic types in constructors and destructors might result in
unexpected behavior. Calling pure virtual functions from constructors and destructors results in
undefined behavior. Avoid using the dynamic type of an object in its constructors or destructors.

Polyspace Implementation

Polyspace flags these items when they are used in a constructor or a destructor of a polymorphic
class:

• The operator typeid
• Virtual or pure virtual functions
• The function dynamic_cast or implicit C-style casts

Polyspace assumes that a class is polymorphic if it has any virtual member.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Using Dynamic Type in Constructors and Destructors
#include <cassert>
#include <typeinfo>

 AUTOSAR C++14 Rule M12-1-1

25-639

class PS
{
public:
 PS ()
 {
 typeid (PS); // Compliant
 }
};

class PS_1
{
public:
 virtual ~PS_1 ();
 virtual void bar ();
 PS_1 ()
 {
 typeid (PS_1); // Noncompliant
 PS_1::bar (); // Compliant
 bar (); // Noncompliant
 dynamic_cast< PS_1* > (this); // Noncompliant
 }
};

In this example, class PS has no virtual member. Polyspace does not consider PS a polymorphic class.
Because PS is not polymorphic, its dynamic type does not change at run time. Polyspace does not flag
using the typeid operator in the constructor PS::PS().

PS_1 is considered polymorphic because it has a virtual member function. Because it is
polymorphic, its dynamic type changes during run time. Polyspace flags the invocation of its dynamic
type in the constructor PS_1::PS_1().

Check Information
Group: Special Member Functions
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-640

AUTOSAR C++14 Rule A14-5-1
A template constructor shall not participate in overload resolution for a single argument of the
enclosing class type

Description
Rule Definition

A template constructor shall not participate in overload resolution for a single argument of the
enclosing class type.

Rationale

A template constructor can lead to confusion about which copy or move constructor is being invoked
in a copy or move. For instance:

• An implicit constructor might be invoked when you expect the template constructor to be used. An
implicit copy or move constructor exists in the class because a template constructor does not
prevent its definition.

• The template constructor might be invoked when you expect an explicit constructor to be used. A
template constructor might a better match than the explicit constructor when an overload is
resolved.

Polyspace Implementation

The checker raises a violation when:

• A class contains a template copy or move constructor but at least one copy or move uses the
implicit constructor in the class.

The violation is shown on the template constructor. Events associated with the result show the
copy or move where an implicit constructor is invoked.

• A class contains a template copy or move constructor and an explicit constructor but at least one
copy or move uses the template constructor.

The violation is shown on the template constructor. Events associated with the result show the
copy or move where the template constructor is invoked and the explicit constructor definition.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Implicit Constructor Used Instead of Template Constructor

class record
{
 public:
 template<typename T>

 AUTOSAR C++14 Rule A14-5-1

25-641

 record(const T &); /*Non-compliant*/
};

void lookup(record aRecord)
{
 record copyOfARecord {aRecord};
}

In this example, when creating the object copyOfARecord from the object aRecord, a copy
constructor must be invoked. The template constructor specialization, that is,
record<record>(const record &), and the implicit constructor, that is, record(const record
&) are equally good candidates for a copy constructor. When a function and a specialization are
equally good matches in the overload resolution process, the function is preferred. In this case, the
implicit constructor is called instead of the template constructor, but a developer or reviewer might
expect otherwise.

Template Constructor Used Instead of Explicit Constructor

class record
{
 public:
 record(const record &);

 template<typename T>
 record(T &); /*Non-compliant*/
};

void lookup(record aRecord)
{
 record copyOfARecord {aRecord};
}

In this example, when creating the object copyOfARecord from the object aRecord, a copy
constructor must be invoked. The template constructor specialization, that is,
record<record>(record &) is a better match compared to the explicit constructor, that is,
record(const record &). The template constructor is called instead of the explicit constructor,
but a developer or reviewer might expect otherwise.

Check Information
Group: Templates
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
AUTOSAR C++14 Rule A14-5-1
“Check for Coding Standard Violations”

Introduced in R2021a

25 AUTOSAR C++14 Rules

25-642

AUTOSAR C++14 Rule M14-5-3
A copy assignment operator shall be declared when there is a template assignment operator with a
parameter that is a generic parameter

Description
Rule Definition

A copy assignment operator shall be declared when there is a template assignment operator with a
parameter that is a generic parameter.

Rationale

When declaring a user-defined assignment operator, the corresponding implicit operator is
suppressed. When declaring a template assignment operator that has a generic parameter, this
behavior is not preserved. In that case, to suppress the implicit shallow-copying operator, explicitly
instantiate a version of the copy assignment operator for the class.

If you do not declare the copy assignment operator for the class, the compiler-generated copy
assignment operator might be used instead on implementation. Not declaring a copy assignment
operator explicitly might result in an unexpected outcome, such as creating a shallow copy when a
deep copy was intended.

Polyspace Implementation

Polyspace flags this checker if a structure, class, or union contains a template assignment operator
that has a generic parameter but no copy assignment operator is present within the structure, class,
or union.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Noncompliant Template Assignment Operator That Has Generic Parameter

#include<cstdint>
namespace example
{
 class A // Noncompliant
 {
 public:

 template <typename T>
 T & operator= (T const & rhs)
 {
 if (this != &rhs) {
 delete i;
 i = new int32_t;
 *i = *rhs.i;

 AUTOSAR C++14 Rule M14-5-3

25-643

 }
 return *this;
 }
 private:
 int32_t * i; // Member requires deep copy
 };

 void f (A const & a1, A & a2)
 {
 a2 = a1;
 }
};

Because no copy assignment operator is declared within the class, Polyspace flags class A. The
implicitly defined copy assignment operator is not suppressed by the template assignment operator
and results in a shallow copy of a1 to a2 when you might want a deep copy.

Template Assignment Operator That Has a Generic Parameter and Copy Assignment
Operator Declared

#include<cstdint>
namespace example
{
 class A
 {
 public:
 A & operator= (A const & rhs) {}; //Compliant

 template <typename T>
 T & operator= (T const & rhs) //Compliant
 {
 if (this != &rhs) {
 delete i;
 i = new int32_t;
 *i = *rhs.i;
 }
 return *this;
 }
 private:
 int32_t * i;
 };

 void f (A const & a1, A & a2)
 {
 a2 = a1;
 }
};

Because this class contains a copy assignment operation declaration, Polyspace does not flag class
A.

Check Information
Group: Templates
Category: Required, Automated

25 AUTOSAR C++14 Rules

25-644

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M14-5-3

25-645

AUTOSAR C++14 Rule M14-6-1
In a class template with a dependent base, any name that may be found in that dependent base shall
be referred to using a qualified-id or this->

Description
Rule Definition

In a class template with a dependent base, any name that may be found in that dependent base shall
be referred to using a qualified-id or this->.

Rationale

When a class template derives from another class template, there might be confusion arising from the
use of names that exist in both the base template and the current scope or namespace. When the
same name exists in the base class template and a namespcae that contains the classes, the scope
resolution of these names is dependent on the compiler, which might be contrary to developer's
expectation. To avoid confusion, use fully qualified id or this-> to explicitly disambiguate the
intended object when such a name conflict exists.

Polyspace Implementation

Polyspace flags names for which all of these conditions are true:

• The name exists in the base class.
• The name exists in a namespace that contains the base class.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use Fully Qualified Names in Class Templates That Have Dependent Base Classes
typedef signed int int32_t;
namespace NS0{
 typedef int32_t TYPE;

 void bar();
 namespace NS1{
 namespace NS{

 template <typename T>
 class Base;
 template <typename T>
 class Derived : public Base<T>
 {
 void foo ()
 {
 TYPE t = 0; // Noncompliant

25 AUTOSAR C++14 Rules

25-646

 bar (); // Noncompliant
 }
 void foo2 ()
 {
 NS0::TYPE t1 = 0; // Compliant
 NS0::bar (); // Compliant
 typename Base<T>::TYPE t2 = 0; // Compliant
 this->bar (); // Compliant
 }
 };
 template <typename T>
 class Base
 {
 public:
 typedef T TYPE;
 void bar ();
 };
 template class Derived<int32_t>;
 }
 }
}

In this example, the names Type and bar are defined both in the namespace NS0 and within the class
template Base. The class template Derived derives from Base. In Derived::foo1(), these names
are used without using the fully qualified names or this->. It is not clear whether the TYPE in
Base::foo1 resolves to NS0::TYPE or Base::TYPE. You might get different results depending on
the implementation of the compiler. Polyspace flags these ambiguous statements.

In Derived::foo2(), TYPE and bar are invoked by using their fully qualified name or this->. By
using qualified names or this->, the ambiguity in scope resolution is bypassed. Polyspace does not
flag these uses.

Check Information
Group: Templates
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M14-6-1

25-647

AUTOSAR C++14 Rule M15-0-3
Control shall not be transferred into a try or catch block using a goto or a switch statement

Description
Rule Definition

Control shall not be transferred into a try or catch block using a goto or a switch statement.

Rationale

Transferring control into a try or catch block by using a goto or a switch statement results in ill-
formed code that is difficult to understand. The intended behavior of such code is difficult to identify
and the code might result in unexpected behavior. Abruptly entering into an exception handling block
might cause compilation failure in some compilers while other compilers might not diagnose the
issue. To improve code understanding and reduce unexpected behavior, avoid transferring control
into a try or a catch block.

Polyspace Implementation

Polyspace flags the goto and switch statements that jump into a try or a catch block.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Jumping into try or catch Blocks

#include<cstdint>
void foo (int32_t input)
{
 if (input==1)
 {
 goto Label_1; // Noncompliant
 }
 if (input==2)
 {
 goto Label_2; // Noncompliant
 }
 switch (input) //Noncompliant
 {
 case 1:
 try
 {
 Label_1:
 case 2:
 break;
 }
 catch (...)

25 AUTOSAR C++14 Rules

25-648

 {
 Label_2:
 case 3:
 break;
 }
 break;
 default:
 {
 //...
 break;
 }
 }
}

In this example, goto and switch statements are used to jump into a try-catch block. Jumping
into a try-catch block makes the code difficult to understand. Abrupt transfer of control into a try
block or a catch block might result in compilation failure. Polyspace flags the goto and switch
statements. Such transfer of control into try-catch blocks might cause compilation failures.

Check Information
Group: Exception Handling
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M15-0-3

25-649

AUTOSAR C++14 Rule M15-1-1
The assignment-expression of a throw statement shall not itself cause an exception to be thrown

Description
Rule Definition

The assignment-expression of a throw statement shall not itself cause an exception to be thrown.

Rationale

In C++, you can use a throw statement to raise exceptions explicitly. The compiler executes such a
throw statement in two steps:

• First, it creates the argument for the throw statement. The compiler might call a constructor or
evaluate an assignment expression to create the argument object.

• Then, it raises the created object as an exception. The compiler tries to match the exception object
to a compatible handler.

If an unexpected exception is raised when the compiler is creating the expected exception in a throw
statement, the unexpected exception is raised instead of the expected one. Consider this code where
a throw statement raises an explicit exception of class myException.

class myException{
 myException(){
 msg = new char[10];
 //...
 }
 //...
};

foo(){
 try{
 //..
 throw myException();
 }
 catch(myException& e){
 //...
 }
}

During construction of the temporary myException object, the new operator can raise a bad_alloc
exception. In such a case, the throw statement raises a bad_alloc exception instead of
myException. Because myException was the expected exception, the catch block is incompatible
with bad_alloc. The bad_alloc exception becomes an unhandled exception. It might cause the
program to abort abnormally without unwinding the stack, leading to resource leak and security
vulnerabilities.

Unexpected exceptions arising from the argument of a throw statement can cause resource leaks
and security vulnerabilities. To prevent such unwanted outcome, avoid using expressions that might
raise exceptions as argument in a throw statement.

25 AUTOSAR C++14 Rules

25-650

Polyspace Implementation

Polyspace flags the expressions in throw statements that can raise an exception. Expressions that
can raise exceptions can include:

• Functions that are specified as noexcept(false)
• Functions that contain one or more explicit throw statements
• Constructors that perform memory allocation operations
• Expressions that involve dynamic casting

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Expressions That Can Raise Exceptions in throw Statements

This example shows how Polyspace flags the expressions in throw statements that can raise
unexpected exceptions.

int f_throw() noexcept(false);

class WithDynamicAlloc {
public:
 WithDynamicAlloc(int n) {
 m_data = new int[n];
 }
 ~WithDynamicAlloc() {
 delete[] m_data;
 }
private:
 int* m_data;
};

class MightThrow {
public:
 MightThrow(bool b) {
 if (b) {
 throw 42;
 }
 }
};

class Base {
 virtual void bar() =0;
};
class Derived: public Base {
 void bar();
};
class UsingDerived {
public:
 UsingDerived(const Base& b) {
 m_d =

 AUTOSAR C++14 Rule M15-1-1

25-651

 dynamic_cast<const Derived&>(b);
 }
private:
 Derived m_d;
};
class CopyThrows {
public:
 CopyThrows() noexcept(true);
 CopyThrows(const CopyThrows& other) noexcept(false);
};
int foo(){
 try{
 //...
 throw WithDynamicAlloc(10); //Noncompliant
 //...
 throw MightThrow(false);//Noncompliant
 throw MightThrow(true);//Noncompliant
 //...
 Derived d;
 throw UsingDerived(d);// Noncompliant
 //...
 throw f_throw(); //Noncompliant
 CopyThrows except;
 throw except;//Noncompliant
 }
 catch(WithDynamicAlloc& e){
 //...
 }
 catch(MightThrow& e){
 //...
 }
 catch(UsingDerived& e){
 //...
 }
}

• When constructing a WithDyamicAlloc object by calling the constructor
WithDynamicAlloc(10), exceptions can be raised during dynamic memory allocation. Because
the expression WithDynamicAlloc(10) can raise an exception, Polyspace flags the throw
statement throw WithDynamicAlloc(10);

• When constructing a UsingDerived object by calling the constructor UsingDervide(),
exceptions can be raised during the dynamic casting operation. Because the expression
UsingDerived(d) can raise exceptions, Polyspace flags the statement throw
UsingDerived(d).

• In the function MightThrow(), exceptions can be raised depending on the input to the function.
Because Polyspace analyzes functions statically, it assumes that the function MightThrow() can
raise exceptions. Polyspace flags the statements throw MightThrow(false) and throw
MightThrow(true).

• In the statement throw except, the object except is copied by implicitly calling the copy
constructor of the class CopyThrows. Because the copy constructor is specified as
noexcept(false), Polyspace assumes that the copy operation might raise exceptions. Polyspace
flags the statement throw except.

• Because the function f_throw() is specified as noexcept(false), Polyspace assumes that it
can raise exceptions. Polyspace flags the statement throw f_throw().

25 AUTOSAR C++14 Rules

25-652

Check Information
Group: Exception handling
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 AUTOSAR C++14 Rule M15-1-1

25-653

AUTOSAR C++14 Rule M15-1-2
NULL shall not be thrown explicitly

Description
Rule Definition

NULL shall not be thrown explicitly.

Rationale

The macro NULL is commonly used to refer to null pointers. Compliers interpret NULL as an integer
with value zero, instead of a pointer. When you use NULL explicitly in a throw statement, you might
expect the statement to raise a pointer type exception. The throw(NULL) is equivalent to throw(0)
and raises an integer exception. This behavior might be contrary to developer expectation and might
result in bugs that are difficult to find. Avoid using NULL explicitly in a throw statement.

Polyspace Implementation

Polyspace flags a throw statement that raises a NULL explicitly. Polyspace does not flag the statement
when NULL is raised after casting to a specific type or assigning it to a pointer type.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Do Not Throw NULL Explicitly

typedef char char_t;
typedef signed int int32_t;

#include <cstddef>

void foo()
{
 try {
 char_t * p1 = NULL;
 throw (NULL); // Noncompliant
 throw(p1); //Compliant
 throw (static_cast < const char_t * > (NULL)); // Compliant
 } catch (int32_t i) { // NULL exception handled here
 // /*...*/
 } catch (const char_t *) { // Other two exceptions are handled here
 // /*...*/
 }
}

In this example, three exceptions are raised directly by using throw statements.

25 AUTOSAR C++14 Rules

25-654

• Polyspace flags the statement throw(NULL) because it explicitly raises NULL as exception. You
might expect that this statement raises a pointer type exception that is handled in the second
catch block. This statement actually raises an int exception that is handled in the first catch
block.

• The other throw statements show the compliant method of using NULL in a throw statement. For
instance, the second throw statement raises a char* that is assigned the value NULL. The third
throw statement raises a char* by casting NULL to a char*. Because these statements do not
raise NULL explicitly, Polyspace does not flag them.

Check Information
Group: Exception Handling
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M15-1-2

25-655

AUTOSAR C++14 Rule M15-1-3
An empty throw (throw;) shall only be used in the compound statement of a catch handler

Description
Rule Definition

An empty throw (throw;) shall only be used in the compound statement of a catch handler.

Rationale

When you use an empty throw statement (throw;), the compiler checks if an exception object is
present in the current scope. If the current scope contains an exception object, the compiler raises a
temporary object containing the current exception. If the current scope does not contain an exception
objects, the compiler invokes std::terminate() implicitly. The function std::terminate()
terminates the program execution in an implementation-defined manner. That is, the exact process of
program termination depends on the software and hardware that you are using. For instance,
std:terminate() might invoke std::abort() to abnormally abort the execution without
unwinding the stack, leading to resource leak and security vulnerabilities.

The best practice is to use an empty throw statement only in the catch block of a try-catch
construct, which enables you to spread the handling of an exception across multiple catch blocks.
Avoid using empty throw statements in scopes that might not contain an exception.

Polyspace Implementation

Polyspace flags an empty throw statement if it is not within a catch block.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Using Empty throw Statements Outside catch Blocks

#include <iostream>
#include <typeinfo>
#include <exception>

void handleException()//function to handle all exception
{
 try {
 throw; // Noncompliant
 }
 catch (std::bad_cast& e) {
 //...Handle bad_cast...
 }
 catch (std::bad_alloc& e) {
 //...Handle bad_alloc...
 }

25 AUTOSAR C++14 Rules

25-656

 catch(...){
 //...Handle other exceptions
 }
}

void f()
{
 try {
 //...something that might throw...
 }
 catch (...) {
 handleException();
 }
}

In this example, the function handleException() raises the current exception by using an empty
throw statement, and then directs it to the appropriate catch block. This method of delegating the
exception handling works as intended only when the function handleException() is called from
within a catch block. The empty throw statement might cause abrupt termination of the program if
the function is called in any other scope that does not contain an exception. Polyspace flags the empty
throw statement.

Use Empty throw Statement to Handle Exceptions in Multiple Blocks

#include <iostream>
#include <typeinfo>
#include <exception>
void foo()//function to handle all exception
{
 try {
 //...
 }
 catch (std::bad_cast& e) {
 //...Handle bad_cast...
 }
 catch (std::bad_alloc& e) {
 //...Handle bad_alloc...
 }
 catch(std::exception& e){
 //...Handle std::exceptions
 // if exception cannot be handled
 // throw it again
 throw;//Compliant
 }
}

int main(){
 try{
 foo();
 }
 catch(...){

 }
}

This example shows a compliant use of an empty throw statement. The function foo contains a try-
catch construct that handles specific exceptions. If the raised exception cannot be handled, foo

 AUTOSAR C++14 Rule M15-1-3

25-657

raises the exception again as an unhandled exception by using an empty throw statement. In main,
the function foo is invoked and any unhandled exception arising from foo is handled in a generic
catch(...) block. By using the empty throw statement, the handling of the exception is spread
across the catch blocks of foo and main. In this case, the empty throw statement is executed only
when there is an exception in the same scope because it is within a catch block. Polyspace does not
flag it.

Check Information
Group: Exception Handling
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-658

AUTOSAR C++14 Rule M15-3-1
Exceptions shall be raised only after start-up and before termination

Description
Rule Definition

Exceptions shall be raised only after start-up and before termination.

Rationale

In C++, the process of exception handling runs during execution of main(), where exceptions
arising in different scopes are handled by exception handlers in the same or adjacent scopes. Before
starting the execution of main(), the compiler is in startup phase, and after finishing the execution
of main(), the compiler is in termination phase. During these two phases, the compiler performs a
set of predefined operations but does not execute any code.

If an exception is raised during either the startup phase or the termination phase, you cannot write
an exception handler that the compiler can execute in those phases. For instance, you might
implement main() as a function-try-catch block to handle exceptions. The catch blocks in
main() can handle only the exceptions raised in main(). None of the catch blocks can handle
exceptions raised during startup or termination phase. When such exceptions are raised, the compiler
might abnormally terminate the code execution without unwinding the stack. Consider this code
where the construction and destruction of the static object obj might cause an exception.

class A{
 A(){throw(0);}
 ~A(){throw(0)}
};

static A obj;

main(){
 //...
}

The static object obj is constructed by calling A() before main() starts, and it is destroyed by
calling ~A() after main() ends. When A() or ~A() raises an exception, an exception handler cannot
be matched with them. Based on the implementation, such an exception can result in program
termination without stack unwinding, leading to memory leak and security vulnerabilities.

Avoid operations that might raise an exception in the parts of your code that might be executed
before startup or after termination of the program. For instance, avoid operations that might raise
exceptions in the constructor and destructor of static or global objects.

Polyspace Implementation

Polyspace flags a global or a a static variable declaration that uses a callable entity that might raise
an exception. For instance:

• Function: When you call an initializer function or constructor directly to initialize a global or static
variable, Polyspace checks whether the function raises an exception and flags the variable

 AUTOSAR C++14 Rule M15-3-1

25-659

declaration if the function might raise an exception. Polyspace deduces whether a function might
raise an exception regardless of its exception specification. For instance, if a noexcept
constructor raises an exception, Polyspace flags it. If the initializer or constructor calls another
function, Polyspace assumes the called function might raise an exception only if it is specified as
noexcept(<false>). Some standard library functions, such as the constructor of std::string,
use pointers to functions to perform memory allocation, which might raise exceptions. Polyspace
does not flag the variable declaration when these functions are used.

• External function: When you call external functions to initialize a global or static variable,
Polyspace flags the declaration if the external function is specified as noexcept(<false>).

• Virtual function: When you call a virtual function to initialize a global or static variable, Polyspace
flags it if the virtual function is specified as noexcept(<false>) in any derived class. For
instance, if you use a virtual initializer function that is declared as noexcept(<true>) in the
base class, and noexcept(<false>) in a subsequent derived class, Polyspace flags it.

• Pointers to function: When you use a pointer to a function to initialize a global or static variable,
Polyspace assumes that pointer to a function do not raise exceptions.

Polyspace ignores:

• Exceptions raised in destructors
• Exceptions raised in atexit() operations

Polyspace also ignores the dynamic context when checking for exceptions. For instance, you might
initialize a global or static variable by using a function that raises exceptions only in a certain
dynamic context. Polyspace flags such a declaration even if the exception might never be raised. You
can justify such a violation by using comments in Polyspace.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Exceptions Before main() Starts

This example shows how Polyspace flags construction or initialization of a global or static variable
that might raise an exception. Consider this code where static and global objects are initialized by
using various callable entities.

#include <stdexcept>
#include <string>
class C
{
public:
 C (){throw (0);}
 ~C (){throw (0);}
};
int LibraryFunc();
int LibraryFunc_noexcept_false() noexcept(false);
int LibraryFunc_noexcept_true() noexcept(true);
int g() noexcept {
 throw std::runtime_error("dead code");
 return 0;

25 AUTOSAR C++14 Rules

25-660

}
int f() noexcept {
 return g();
}
int init(int a) {
 if (a>10) {
 throw std::runtime_error("invalid case");
 }
 return a;
}
void* alloc(size_t s) noexcept {
 return new int[s];
}
int a = LibraryFunc() +
LibraryFunc_noexcept_true(); // Compliant
int global_int =
LibraryFunc_noexcept_false() + // Noncompliant
LibraryFunc_noexcept_true();
static C static_c; //Noncompliant
static C static_d; //Compliant
C &get_static_c(){
 return static_c;
}
C global_c; //Noncompliant
int a3 = f(); //Compliant
int b3 = g(); //Noncompliant
int a4 = init(5); //Noncompliant
int b5 = init(20); //Noncompliant
int* arr = (int*)alloc(5); //Noncompliant

int main(){
 //...
}

• The global pointer arr is initialized by using the function alloc(). Because alloc() uses new to
allocate memory, it can raise an exception when initializing arr during the startup of the program.
Polyspace flags the declaration of arr and highlights the use of new in the function alloc().

• The integer variable b3 is initialized by calling the function g(), which is specified as noexcept.
Polyspace deduces that the correct exception specification of g() is noexcept(false) because
it contains a throw() statement. Initializing the global variable b3 by using g() might raise an
exception when initializing arr during the startup of the program. Polyspace flags the declaration
of b3 and highlights the throw statement in g(). The declaration of a3 by calling f() is not
flagged. Because f() is a noexcept function that does not throw, and calls another noexcept
function, Polyspace deduces that f() does not raise an exception.

• The global variables a4 and b5 are initialized by calling the function init(). The function
init() might raise an exception in certain cases, depending on the context. Because Polyspace
deduces the exception specification of a function statically, it assumes that init() might raise an
exception regardless of context. Consequently, Polyspace flags the declarations of both a4 and b5,
even though init() raises an exception only when initializing b5.

• The global variable global_int is initialized by calling two external functions. The external
function LibraryFunc_noexcept_false() is specified as noexcept(false) and Polyspace
assumes that this external function might raise an exception. Polyspace flags the declaration of
global_int. Polyspace does not flag the declaration of a because it is initialized by calling
external functions that are not specified as noexcept(false).

 AUTOSAR C++14 Rule M15-3-1

25-661

• The static variable static_c and the nonstatic global variable global_cis declared and
initialized by using the constructor of the class C, which might raise an exception. Polyspace flags
the declarations of these variables and highlights the throw() statement in the constructor of
class C. Polyspace does not flag the declaration of the unused static variable static_d, even
though its constructor might raise an exception. Because it is unused, static_d is not initialized
and its constructor is not called. Its declaration does not raise any exception.

Check Information
Group: Exception Handling
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

25 AUTOSAR C++14 Rules

25-662

AUTOSAR C++14 Rule M15-3-3
Handlers of a function-try-block implementation of a class constructor or destructor shall not
reference non-static members from this class or its bases

Description
Rule Definition

Handlers of a function-try-block implementation of a class constructor or destructor shall not
reference non-static members from this class or its bases.

Rationale

The handler catch blocks of a function try block handle exception that are raised from the body of
the function and the initializer list. When used in class constructors and destructors, these catch
blocks might handle exceptions that arise during the creation or destruction of the class nonstatic
members. That is, the catch blocks might be executed before or after the lifetime of the nonstatic
members of a class. If the nonstatic members of a class are accessed in such catch blocks, the
compiler might attempt to access objects that are not created yet or already deleted, which is
undefined behavior. For instance:

class C{

 private:
 int* inptr_x;
 public:
 C() try: inptr_x(new int){}
 catch(...){
 intptr_x = nullptr;
 //...
 }
};

Here, the constructor of C is implemented by using a function try block to handle any exception
arising from the memory allocation operation in the initializer list. In the catch block of this
function-try block, the class member C.intptr_x is accessed. The catch block executes when the
memory allocation for intptr_x failed. That is, the catch block attempts to access the member
before its lifetime, which is undefined behavior.

To avoid undefined behavior, avoid using the nonstatic data members or base classes of an object in
the catch block of the function-try-block implementation of its constructors and destructor.

Polyspace Implementation

If a statement in the catch block of a constructor or destructor function-try block accesses any of
these, Polyspace flags the statement:

• The nonstatic members of the object
• The base classes of the object
• The nonstatic members of the base classes

 AUTOSAR C++14 Rule M15-3-3

25-663

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Accessing Nonstatic Members of Classes in function-try catch Blocks
#include<cstdint>
class B
{
public:
 B () try: x(0){/*...*/}
 catch (...)
 {
 if (0 == x){/*...*/} //Noncompliant
 //...
 }
 ~B () try{/*...*/}
 catch (...)
 {
 if (0 == x){/*...*/} //Noncompliant
 //...
 else if (sb == 1){/*...*/} //Compliant
 //....
 }
public:
 static int32_t sb;
protected:
 int32_t x;
};

class D : public B
{
public:
 D () try: B(),y{0}{/*...*/}
 catch (...)
 {
 if (0 == x){/*...*/} //Noncompliant
 //...
 else if (y == 1){/*...*/} //Noncompliant
 //...
 }
 ~D ()try {/*...*/}
 catch (...)
 {
 if (0 == x) {/*...*/} //Noncompliant
 //...
 }
protected:
 int32_t y;
};

In this example, the constructors and destructors of B and D are implemented by using function-try
blocks. The catch blocks of these function-try blocks access the nonstatic members of the class and
its base class. Polyspace flags accessing these nonstatic members in the catch blocks. Because the

25 AUTOSAR C++14 Rules

25-664

lifetime of static members is greater than the lifetime of the object itself, Polyspace does not flag
accessing static objects in these catch blocks.

Check Information
Group: Exception Handling
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M15-3-3

25-665

AUTOSAR C++14 Rule M15-3-4
Each exception explicitly thrown in the code shall have a handler of a compatible type in all call paths
that could lead to that point

Description
Rule Definition

Each exception explicitly thrown in the code shall have a handler of a compatible type in all call paths
that could lead to that point.

Rationale

In C++, when an operation raises an exception, the compiler tries to match the exception with a
compatible exception handler in the current and adjacent scopes. If no compatible exception handler
for a raised exception exists, the compiler invokes the function std::terminate() implicitly. The
function std::terminate() terminates the program execution in an implementation-defined
manner. That is, the exact process of program termination depends on the particular set of software
and hardware that you use. For instance, std::terminate() might invoke std::abort() to
abnormally abort the execution without unwinding the stack. If the stack is not unwound before
program termination, then the destructors of the variables in the stack are not invoked, leading to
resource leak and security vulnerabilities.

Consider this code where multiple exceptions are raised in the try block of code.

class General{/*... */};
class Specific : public General{/*...*/};
class Different{}
void foo() noexcept
{
 try{
 //...
 throw(General e);
 //..
 throw(Specific e);
 // ...
 throw(Different e);
 }
 catch (General& b){

 }
}

The catch block of code accepts references to the base class General. This catch block is compatible
with exceptions of the base class General and the derived class Specific. The exception of class
Different does not have a compatible handler. This unhandled exception violates this rule and
might result in resource leaks and security vulnerabilities.

Because unhandled exceptions can lead to resource leak and security vulnerabilities, match the
explicitly raised exceptions in your code with a compatible handler.

25 AUTOSAR C++14 Rules

25-666

Polyspace Implementation

• Polyspace flags a throw statement in a function if a compatible catch statement is absent in the
call path of the function. If the function is not specified as noexcept, Polyspace ignores it if its
call path lacks an entry point like main().

• Polyspace flags a throw statement that uses a catch(…) statement to handle the raised
exceptions.

• Polyspace does not flag rethrow statements, that is, throw statements within catch blocks.
• You might have compatible catch blocks for the throw statements in your function in a nested try-

catch block Polyspace ignores nested try-catch blocks. Justify throw statements that have
compatible catch blocks in a nested structure by using comments. Alternatively, use a single level
of try-catch in your functions.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Match throw Statements with Compatible Catch Blocks

This example shows how Polyspace flags operations that raise exceptions without any compatible
handler. Consider this code.

#include <stdexcept>

class MyException : public std::runtime_error {
public:
 MyException() : std::runtime_error("MyException") {}
};

void ThrowingFunc() {
 throw MyException(); //Noncompliant
}

void CompliantCaller() {
 try {
 ThrowingFunc();
 } catch (std::exception& e) {
 /* ... */
 }
}

void NoncompliantCaller() {
 ThrowingFunc();
}

int main(void) {
 CompliantCaller();
 NoncompliantCaller();
}

void GenericHandler() {
 try {

 AUTOSAR C++14 Rule M15-3-4

25-667

 throw MyException(); //Noncompliant
 } catch (...) {
 /* ... */
 }
}

void TrueNoexcept() noexcept {
 try {
 throw MyException();//Compliant
 } catch (std::exception& e) {
 /* ... */
 }
}

void NotNoexcept() noexcept {
 try {
 throw MyException(); //Noncompliant
 } catch (std::logic_error& e) {
 /* ... */
 }
}

• The function ThrowingFunc() raises an exception. This function has multiple call paths:

• main()->CompliantCaller()->ThrowingFunc(): In this call path, the function
CompliantCaller() has a catch block that is compatible with the exception raised by
ThrowingFunc(). This call path is compliant with the rule.

• main()->NoncompliantCaller()->ThrowingFunc(): In this call path, there are no
compatible handlers for the exception raised by ThrowingFunc(). Polyspace flags the throw
statement in ThrowingFunc() and highlights the call path in the code.

The function main() is the entry point for both of these call paths. If main() is commented out,
Polyspace ignores both of these call paths. If you want to analyze a call path that lacks an entry
point, specify the top most calling function as noexcept.

• The function GenericHandler() raises an exception by using a throw statement and handles
the raised exception by using a generic catch-all block. Because Polyspace considers such catch-
all handler to be incompatible with exceptions that are raised by explicit throw statements,
Polyspace flags the throw statement in GenericHandler().

• The noexcept function TrueNoexcept() contains an explicit throwstatement and a catch block
of compatible type. Because this throw statement is matched with a compatible catch block, it is
compliant with the rule.

• The noexcept function NotNoexcept() contains an explicit throw statement, but the catch
block is not compatible with the raised exception. Because this throw statement is not matched
with a compatible catch block, Polyspace flags the throw statement in NotNoexcept().

Check Information
Group: Exception handling
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

25 AUTOSAR C++14 Rules

25-668

Topics
“Check for Coding Standard Violations”

Introduced in R2020b

 AUTOSAR C++14 Rule M15-3-4

25-669

AUTOSAR C++14 Rule M15-3-6
Where multiple handlers are provided in a single try-catch statement or function-try-block for a
derived class and some or all of its bases, the handlers shall be ordered most-derived to base class

Description
Rule Definition

Where multiple handlers are provided in a single try-catch statement or function-try-block for a
derived class and some or all of its bases, the handlers shall be ordered most-derived to base class.

Rationale

In a try-catch or function-try block, exception objects of a derived class match to handler
catch blocks that accept the base class. If you place handlers of the base exception class before
handlers of the derived exception class, the base class handler handles both base and derived class
exceptions. The derived class handler becomes unreachable code, which is unexpected behavior.
When using a class hierarchy to raise exceptions, make sure that the handler of a derived class
precedes the handler of a base class.

Polyspace Implementation

Polyspace flags a handler block if it follows a handler of a base class.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Order Handler Blocks from most Derived to Base Class

#include<exception>
// classes used for exception handling
class MathError { };
class NotANumber: public MathError { };
class DivideByZero: public NotANumber{};

void bar(void){
 try
 {
 // ...
 }
 catch (MathError &e)
 {
 // ...
 }
 catch (NotANumber &nan) // Noncompliant
 {
 // Unreachable Code

25 AUTOSAR C++14 Rules

25-670

 }
 catch (DivideByZero &dbz)//Noncompliant
 {
 //Unreachable Code
 }
}

In this example, three classes in a hierarchy might arise in the try block. The handler catch blocks
handle the exceptions.

• The block catch (NotANumber &nan) follows the handler of its base class catch
(MathError &e). Because the exception of class NotANumber also matches to the handler
catch (MathError &e), the handler block catch (NotANumber &nan) becomes
unreachable code. The order of this block is noncompliant with this rule. Polyspace flags the
handler block.

• The block catch (DivideByZero &dbz) becomes unreachable code because exceptions of
the class DivideByZero match to the preceding handlers of its base classes. Polyspace flags the
handler block catch (DivideByZero &dbz).

Check Information
Group: Exception Handling
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M15-3-6

25-671

AUTOSAR C++14 Rule M15-3-7
Where multiple handlers are provided in a single try-catch statement or function-try-block, any
ellipsis (catch-all) handler shall occur last

Description
Rule Definition

Where multiple handlers are provided in a single try-catch statement or function-try-block, any
ellipsis (catch-all) handler shall occur last.

Rationale

In a try-catch statement or function-try block, the compiler matches the raised exception with a
catch() handler. The catch(…) handler matches any exception. Handlers after the catch-all
handler within the same try-catch statement or function try-block are ignored by the compiler during
the exception handling process and are unreachable code.

Having a handler after the catch-all handler might result in developer confusion as to why certain
intended handlers are not being executed. Likewise, the catch-all handler might not handle the
exception in the way the developer intends, resulting in confusion.

Polyspace Implementation

Polyspace raises this defect whenever a handler appears after the catch-all handler within the try-
catch statement or function try-block.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Handlers After the Catch-All Handler Are Noncompliant

#include <iostream>
#include <exception>

using namespace std;

int main()
{

 try
 {
 //some code
 } catch(exception& e1) { //Compliant

 //...

 } catch(...) { //Compliant

25 AUTOSAR C++14 Rules

25-672

 //...

 } catch(exception& e2) { //Noncompliant

 //...

 }
 }

 return 0;
}

Because the catch (exception& e2) handler comes after the catch(…) handler, Polyspace flags
the handler before the catch-all handler as noncompliant. This issue might cause a compilation error.

Check Information
Group: Exception Handling
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M15-3-7

25-673

AUTOSAR C++14 Rule M16-0-1
#include directives in a file shall only be preceded by other preprocessor directives or comments

Description
Rule Definition

#include directives in a file shall only be preceded by other preprocessor directives or comments.

Rationale

Grouping all #include preprocessor directives at the beginning of the file makes the code more
readable. #include directives might include header files where macros are defined. If you use such a
macro before including its definition, you might encounter unexpected code behavior.

Polyspace Implementation

Polyspace raises this defect when an #include directive comes after any code that is not a comment
or preprocessor directive.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
#include Directive Preceded by Noncompliant Code

//this comment is compliant //Compliant
/*
 This comment is compliant
*/

#ifndef TESTING_H //Compliant
#define TESTING_H //Compliant

#include <iostream> //Compliant
using namespace std; //Compliant
#include <exception> //Noncompliant

#endif

Because an include directive follows a code statement that is neither a preprocessor directive nor a
comment, Polyspace flags the include directive.

Check Information
Group: Preprocessing Directives
Category: Required, Automated

25 AUTOSAR C++14 Rules

25-674

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M16-0-1

25-675

AUTOSAR C++14 Rule M16-0-2
Macros shall only be #define'd or #undef'd in the global namespace

Description
Rule Definition

Macros shall only be #define'd or #undef'd in the global namespace.

Rationale

If you define or undefine macros in a local namespace, you might expect the macro to be valid only in
the local namespace. But macros do not follow the scoping mechanism. Instead, the compiler
replaces all occurrences of a macro by its defined value beginning at the #define statement until the
end of file or until the macro is redefined. This behavior of macros might be contrary to developer
expectation and might cause logic errors that result in bugs.

Polyspace Implementation

Polyspace flags a #define or #undef statement that is placed within a block instead of in the global
namespace.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Macros in Local Namespaces
#include<cstdlib>
#define HCUT 1
namespace unnormalized{
 #define HCUT 6582 //Noncompliant
 void foo(){
 //...
 }
};
void bar(){
 int intEnergy = HCUT*10;
 //HCUT is 6582, you might expect HCUT=1;
}

namespace uniteV{
 const double hcut = 6582; //eV
 void foo(){

 }
};

In this example, different values of HCUT are defined, perhaps to accommodate code written by using
different systems of unit. You might expect the definition of HCUT in the namespace unnormalized

25 AUTOSAR C++14 Rules

25-676

to remain limited to the namespace. But the value of HCUT remains 6582 until the end of file. For
instance, in the function bar, you might expect that HCUT is one, but the value of HCUT remains 6582,
which might cause logic error, unexpected results, and bugs. Polyspace flags the #define statement
within the local namespace.

To implement constants that might have different values in different scopes, use const variables, as
shown in the namespace uniteV. Avoid using macros to represent constants that might require
different values in different scopes.

Check Information
Group: Preprocessing Directives
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M16-0-2

25-677

AUTOSAR C++14 Rule M16-0-5
Arguments to a function-like macro shall not contain tokens that look like pre-processing directives

Description
Rule Definition

Arguments to a function-like macro shall not contain tokens that look like pre-processing directives.

Rationale

When a compiler encounters function-like macros, it replaces the argument of the macro into the
replacement code. If the argument contains a token that looks like preprocessing directives, the
replacement process during macro expansion is undefined. Depending on the environment, such a
function-like macro might behave in unexpected ways, leading to errors and bugs.

Polyspace Implementation

Polyspace flags calls to function-like macros if their argument starts with the character #.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Arguments That Start with # in Function-Like Macros

#include<cstdlib>
#include<iostream>
#define PRINT(ARG) std::cout<<#ARG
//....
#define Error1
//...

void foo(void){
 PRINT(
 #ifdef Error1 //Noncompliant
 "Error 1"
 #else
 "Error 2"
 #endif //Noncompliant
);

}

In this example, the function-like macro PRINT is invoked with an argument that chooses between
two strings by using an #ifdef block. Depending on the environment, the output of this code might
be #ifdef Error1 //Noncompliant "Error 1" #else "Error 2" #endif //
Noncompliant or Error 1. Polyspace flags the arguments that start with the character #.

25 AUTOSAR C++14 Rules

25-678

Check Information
Group: Preprocessing Directives
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M16-0-5

25-679

AUTOSAR C++14 Rule M16-0-6
In the definition of a function-like macro, each instance of a parameter shall be enclosed in
parentheses, unless it is used as the operand of # or ##

Description
Rule Definition

In the definition of a function-like macro, each instance of a parameter shall be enclosed in
parentheses, unless it is used as the operand of # or ##.

Rationale

When you invoke function-like macros, the compiler expands the macro by replacing its parameters
with the tokens. Then the compiler substitutes the expanded macro into the code. This expansion and
substitution process does not take precedence of operation into account. The function-like macros
might produce unexpected results if their parameters are not enclosed in parenthesis. For instance,
consider this function-like macro:

#define dustance_from_ten(x) x>10? x-10:10-x

The macro is intended to measure the distance of a number from ten. When you invoke the macro
with the argument (a-b), the macro expands to:

a-b>10: a-b-10:10-a-b

The expression 10-a-b is equivalent to 10-(a+b) instead of the intended distance 10-(a-b). This
unexpected behavior might result in errors and bugs. To avoid such unexpected behaviors, enclose
parameters of a function-like macro in parentheses.

The exception to this rule is when a parameter is used as an operand of # or ##.

Polyspace Implementation

Polyspace flags function-like macro definitions if the parameters are not enclosed in parenthesis.
Polyspace does not flag unparenthesized parameters if they are preceded by the operators ., ->, or
the characters #, ##.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Enclose Parameters of Function-Like Macros in Parentheses

#include<iostream>
#include<cmath>
#define abs(x) (x>0) ? x:-x //Noncompliant

double foo(double num1, double num2){

25 AUTOSAR C++14 Rules

25-680

 return log(abs(num1-num2));
}

int main(){
 std::cout<<foo(10,10.5);
}

In this example, when you invoke foo(10,10.5), you might expect the output to be log(0.5) or
-0.69. Because the parameters of abs are not enclosed in parentheses, the output becomes
log(-20.5) or NaN, which is unexpected and might lead to bugs. Polyspace flags the function-like
macro definition.

Check Information
Group: Preprocessing Directives
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M16-0-6

25-681

AUTOSAR C++14 Rule M16-0-7
Undefined macro identifiers shall not be used in #if or #elif pre-processor directives, except as
operands to the defined operator

Description
Rule Definition

Undefined macro identifiers shall not be used in #if or #elif pre-processor directives, except as
operands to the defined operator.

Rationale

If you attempt to use a macro identifier in a preprocessing directive, and you have not defined that
identifier, then the preprocessor assumes that it has a value of zero. This value might not meet
developer expectations.

Polyspace Implementation

Polyspace flags an #if or #elif statement if it uses an undefined macro identifier.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Macro Identifiers

#if M == 0 //Noncompliant
#endif

#if defined (M) //Complaint
#if M == 0 //Executes only when M is defined
#endif
#endif

#if defined (M) && (M == 0) //Compliant
//...
#endif

This example shows various uses of M in preprocessing directives:

• The first #if clause uses the undefined identifier M. Because M is undefined when this
preprocessor directive is evaluated, the compiler assumes that M is zero, which results in
unexpected results. Such a use of undefined identifiers is not compliant with this rule. Polyspace
flags the #if statement.

• The second and third #if statements use the undefined identifier M as the operand to the
defined operator. These use of undefined identifiers are compliant with this rule.

25 AUTOSAR C++14 Rules

25-682

Check Information
Group: Preprocessing Directives
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M16-0-7

25-683

AUTOSAR C++14 Rule M16-0-8
If the # token appears as the first token on a line, then it shall be immediately followed by a
preprocessing token

Description
Rule Definition

If the # token appears as the first token on a line, then it shall be immediately followed by a
preprocessing token.

Rationale

The # character precedes a preprocessor directive when it is the first character on a line. If the #
character is not immediately followed by a preprocessor directive, the preprocessor directive might
be malformed.

Preprocessor directives might be used to exclude portions of code from compilation. The compiler
excludes code until it encounters an #else, #elif, or #endif preprocessor directive. If one of those
preprocessor directives is malformed, the compiler continues excluding code beyond the intended
end point, resulting in bugs and unexpected behavior which can be difficult to diagnose.

Avoid malformed preprocessor directives by placing the preprocessor token directly after a # token.
Specifically, do not place any characters other than white space between the # token and
preprocessor token in #else and #endif directives.

Polyspace Implementation

Polyspace raises this defect when the # character is followed by any character that is not part of a
properly formed preprocessor token. A preprocessor token that is preceded or followed by any
character other than white space causes Polyspace to raise this defect. Polyspace raises this defect
when a preprocessor token is badly formed due to misspelling or improper capitalization.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Poorly Formed Preprocessor Tokens Following # Character

#define TESTING_H //Compliant

namespace Example
{
#ifndef TESTING_H //Compliant
 // code here
#elseX; //Noncompliant
 // code here
#else; //Compliant

25 AUTOSAR C++14 Rules

25-684

 // code here
#endnif //Noncompliant
 // code here
 }

};

Because elseX is not a preprocessor directive and follows directly after the # character, Polyspace
flags it as noncompliant.

#endnif is not a properly formed preprocessor directive. Polyspace flags it as noncompliant.

#define TESTING_H, #ifndef TESTING_H, and #else are properly formed preprocessor
conditionals and are compliant with this rule.

Check Information
Group: Preprocessing Directives
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M16-0-8

25-685

AUTOSAR C++14 Rule M16-1-1
The defined pre-processor operator shall only be used in one of the two standard forms

Description
Rule Definition

The defined pre-processor operator shall only be used in one of the two standard forms.

Rationale

The defined preprocessor operator checks whether an identifier is defined as a macro. In C, the only
two permissible forms for this operator are:

• defined (identifier)
• defined identifier

Using any other form results in invalid code that compiler might not report. For instance, if you use
expressions as arguments for the defined operator, the code is invalid. If the compiler does not
report the invalid usage of defined, diagnosing the invalid code is difficult.

If your #if or similar preprocessor directives expand to create a defined statement, the code
behavior is undefined. For instance:

#define DEFINED defined
#if DEFINED(X)

The #if preprocessor directive expands to form a defined operation. Depending on your
environment, the code might behave in unexpected ways, leading to bugs that are difficult to
diagnose.

To avoid invalid code, bugs, and undefined behavior, use only the permitted forms when using the
defined operator.

Polyspace Implementation

Polyspace flags incorrect usages of the defined operator, such as:

• The operator defined is used without an identifier.
• The operator defined appears after macro expansion.
• The operator defined is used with a complex expression.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

25 AUTOSAR C++14 Rules

25-686

Examples
Use defined Operators With Identifiers

#if defined (X<Y)//Noncompliant
//...
#endif
#if defined (X) && defined (Y) &&(X<Y)//Compliant
//...
#endif

In this example, a block of code is conditionally executed only if the identifiers X and Y are defined
and if X is smaller than Y. Constructing this condition by using an expression as the argument for the
defined operator is not permissible and results in invalid code. Polyspace flags the impermissible
defined statement. The permissible way to define such a condition is to use individual identifiers
with defined.

Check Information
Group: Preprocessing Directives
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M16-1-1

25-687

AUTOSAR C++14 Rule M16-1-2
All #else, #elif and #endif pre-processor directives shall reside in the same file as the #if or #ifdef
directive to which they are related

Description
Rule Definition

All #else, #elif and #endif pre-processor directives shall reside in the same file as the #if or #ifdef
directive to which they are related.

Rationale

You use preprocessor directives, such as #if...#elif...#else...#endif, to conditionally
include or exclude blocks of code. If the different branches of such a directive reside in different
source files, the code can be confusing. If all the branches are not included in a project, the code
might behave in unexpected ways. To avoid confusion and unexpected behavior, keep the branches of
a conditional preprocessor directive within the same source file.

Polyspace Implementation

Polyspace raises a violation of this rule if either of these conditions are true:

• A corresponding #if directive cannot be found within a source file for every #else, #elif, or
#endif directive.

• A corresponding #endif directive cannot be found within a source file for every #if directive.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Incomplete Conditional Preprocessor Directives

>//file1.h
#if !defined (FILE)
//.....
#elif //Noncompliant
//...///
//file2.h
#else //Noncompliant
//...
#endif //Noncompliant
///

In this example, a conditional directive is split across two source files.

• In file1.h, the #if directive has no corresponding #endif directive. Polyspace flags the block.

25 AUTOSAR C++14 Rules

25-688

• In file2.h, the #else and #endif directives have no corresponding #if directive. Polyspace
flags both directives.

Check Information
Group: Preprocessing Directives
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M16-1-2

25-689

AUTOSAR C++14 Rule M16-2-3
Include guards shall be provided

Description
Rule Definition

Include guards shall be provided.

Rationale

When a translation unit contains a complex hierarchy of nested header files, it is possible for a
particular header file to be included more than once, leading to confusion. If this multiple inclusion
produces multiple or conflicting definitions, then your program can have undefined or erroneous
behavior.

For instance, suppose that a header file contains:

#ifdef _WIN64
 int env_var;
#elseif
 long int env_var;
#endif

If the header file is contained in two inclusion paths, one that defines the macro _WIN64 and another
that undefines it, you can have conflicting definitions of env_var.

To avoid multiple inclusion of the same file, add include guards to the beginning of header files. Use
either of these formats:

• <start-of-file>
// Comments allowed here
#if !defined (identifier)
#define identifier
// Contents of file
#endif
<end-of-file>

• <start-of-file>
// Comments allowed here
#ifndef identifier
#define identifier
// Contents of file
#endif
<end-of-file>

Polyspace Implementation

The checker raises a violation if a header file does not contain an include guard.

For instance, this code uses an include guard for the #define and #include statements. This code
does not violate the rule:

// Contents of a header file
#ifndef FILE_H

25 AUTOSAR C++14 Rules

25-690

#define FILE_H
#include "libFile.h"
#endif

If you use include guards that do not adhere to the suggested format, Polyspace flags them. For
instance:

• You might mistakenly use different identifiers in the #ifndef and #define statements:

#ifndef MACRO
#define MICRO
//...
#endif

• You might inadvertently use #ifdef instead of #ifndef or omit the #define statement.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Missing or Incorrectly Formatted Include Guard

file1.h file2.h mainfile.cpp
#ifndef MACRO
#define MICRO
//...
#endif

#ifdef DO_INCLUDE
#define DO_INCLUDE
void foo();
#endif

#include"file1.h"
#include"file2.h"
int main(){
 return 0;
}

In this example, two header files are included in the file mainfile.cpp.

• The include guard in file1.h queries the definition of MACRO but conditionally defines a different
identifier MICRO, perhaps inadvertently. This include guard is incorrectly formatted. Polyspace
flags the file.

• The include guard in file2.h uses #ifdef instead of #ifndef. This include guard is incorrect
and Polyspace flags the file.

Check Information
Group: Preprocessing Directives
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M16-2-3

25-691

AUTOSAR C++14 Rule M16-3-1
There shall be at most one occurrence of the # or ## operators in a single macro definition

Description
Rule Definition

There shall be at most one occurrence of the # or ## operators in a single macro definition.

Rationale

The evaluation of the # and ## preprocessor operators does not have a specified execution order.
When more than one occurrence of the # or ## operators exists in a single macro definition, it is
unclear which preprocessor operator is executed first by the compiler. The uncertainty of execution
order might result in developer confusion or unexpected macro calculations. Use only one of the # or
preprocessor operators for each macro definition.

Polyspace Implementation

Polyspace raises this defect whenever more than one instance of the # or ## operators is used in a
single macro definition.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Multiple # and ## Operators Used in a Single Macro Definition

#define STRING(X) { #X } //compliant
#define CONCAT(X, Y) {X ## Y} //compliant
#define STRING_CONCAT(x, y) {#x ## y} //noncompliant
#define MULTI_CONCAT(x, y, xy, z) {x ## y ## z} //noncompliant

Because the macro STRING_CONCAT uses both the # and ## operators, Polyspace flags the macro as
noncompliant.

Polyspace flags the macro MULTI_CONCAT as noncompliant because it uses multiple ## operators.

Check Information
Group: Preprocessing Directives
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

25 AUTOSAR C++14 Rules

25-692

Introduced in R2019a

 AUTOSAR C++14 Rule M16-3-1

25-693

AUTOSAR C++14 Rule M16-3-2
The # and ## operators should not be used

Description
Rule Definition

The # and ## operators should not be used.

Rationale

The evaluation of the # and ## preprocessor operators does not have a specified execution order.
Different compilers might evaluate these operators in different order of execution. The uncertainty of
execution order might result in developer confusion or unexpected macro calculations. When
possible, avoid using the # and ## preprocessor operators.

Polyspace Implementation

Polyspace raises this advisory when the # or ## operators are used in a macro definition.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Avoid Using # and ## Operators in Macro Definition

#define STRING(X) { #X } //noncompliant
#define CONCAT(X, Y) {X ## Y} //noncompliant

Because the macro STRING(X) uses the # operator, Polyspace flags the macro as noncompliant.

Polyspace flags the macro CONCAT(X, Y) as noncompliant because it uses the ## operator.

Check Information
Group: Preprocessing Directives
Category: Advisory, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-694

AUTOSAR C++14 Rule M17-0-2
The names of standard library macros and objects shall not be reused

Description
Rule Definition

The names of standard library macros and objects shall not be reused.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Library Introduction
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M17-0-2

25-695

AUTOSAR C++14 Rule M17-0-3
The names of standard library functions shall not be overridden

Description
Rule Definition

The names of standard library functions shall not be overridden.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Library Introduction
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-696

AUTOSAR C++14 Rule M17-0-5
The setjmp macro and the longjmp function shall not be used

Description
Rule Definition

The setjmp macro and the longjmp function shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Library Introduction
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M17-0-5

25-697

AUTOSAR C++14 Rule M18-0-3
The library functions abort, exit, getenv and system from library <cstdlib> shall not be used

Description
Rule Definition

The library functions abort, exit, getenv and system from library <cstdlib> shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Language Support Library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-698

AUTOSAR C++14 Rule M18-0-4
The time handling functions of library <ctime> shall not be used

Description
Rule Definition

The time handling functions of library <ctime> shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Language Support Library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M18-0-4

25-699

AUTOSAR C++14 Rule M18-0-5
The unbounded functions of library <cstring> shall not be used

Description
Rule Definition

The unbounded functions of library <cstring> shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Language Support Library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-700

AUTOSAR C++14 Rule M18-2-1
The macro offsetof shall not be used

Description
Rule Definition

The macro offsetof shall not be used.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Language Support Library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 AUTOSAR C++14 Rule M18-2-1

25-701

AUTOSAR C++14 Rule M18-7-1
The signal handling facilities of <csignal> shall not be used

Description
Rule Definition

The signal handling facilities of <csignal> shall not be used.

Rationale

Signal handling functions such as signal contains undefined and implementation-specific behavior.

You have to be very careful when using signal to avoid these behaviors.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Check Information
Group: Language Support Library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-702

AUTOSAR C++14 Rule M19-3-1
The error indicator errno shall not be used

Description
Rule Definition

The error indicator errno shall not be used.

Rationale

Observing this rule encourages the good practice of not relying on errno to check error conditions.

Checking errno is not sufficient to guarantee absence of errors. Functions such as fopen might not
set errno on error conditions. Often, you have to check the return value of such functions for error
conditions.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of errno

#include <cstdlib>
#include <cerrno>

void func (const char* str) {
 errno = 0; // Noncompliant
 int i = atoi(str);
 if(errno != 0) { // Noncompliant
 //Handle Error
 }
}

The use of errno violates this rule. The function atoi is not required to set errno if the input string
cannot be converted to an integer. Checking errno later does not safeguard against possible failures
in conversion.

Check Information
Group: Diagnostics Library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

Topics
“Check for Coding Standard Violations”

 AUTOSAR C++14 Rule M19-3-1

25-703

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-704

AUTOSAR C++14 Rule M27-0-1
The stream input/output library <cstdio> shall not be used

Description
Rule Definition

The stream input/output library <cstdio> shall not be used.

Rationale

Functions in cstdio such as gets, fgetpos, fopen, ftell, etc. have unspecified, undefined and
implementation-defined behavior.

For instance:

• The gets function:

char * gets (char * buf);

does not check if the number of characters provided at the standard input exceeds the buffer buf.
The function can have unexpected behavior when the input exceeds the buffer.

• The fopen function has implementation-specific behavior related to whether it sets errno on
errors or whether it accepts additional characters following the standard mode specifiers.

Troubleshooting

If you expect a rule violation but do not see it, refer to “Diagnose Why Coding Standard Violations Do
Not Appear as Expected”.

Examples
Use of gets

#include <cstdio>

void func()
{
 char array[10];
 fgets(array, sizeof array, stdin); //Noncompliant
}

The use of fgets violates this rule.

Check Information
Group: Input Output Library
Category: Required, Automated

See Also
Check AUTOSAR C++ 14 (-autosar-cpp14)

 AUTOSAR C++14 Rule M27-0-1

25-705

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

25 AUTOSAR C++14 Rules

25-706

ISO/IEC TS 17961

26

Acknowledgment
Extracts from the standard "ISO/IEC TS 17961 Technical Specification - 2013-11-15" are reproduced
with the agreement of AFNOR. Only the original and complete text of the standard, as published by
AFNOR Editions - accessible via the website www.boutique.afnor.org - has normative value.

26 ISO/IEC TS 17961

26-2

ISO/IEC TS 17961 [accfree]
Accessing freed memory

Description
Rule Definition

Accessing freed memory.

Polyspace Implementation

This checker checks for these issues:

• Use of previously freed pointer.
• Invalid use of standard library string routine.

Examples
Use of previously freed pointer
Issue

Use of previously freed pointer occurs when you access a block of memory after freeing the block
using the free function.

Risk

When a pointer is allocated dynamic memory with malloc, calloc or realloc, it points to a
memory location on the heap. When you use the free function on this pointer, the associated block of
memory is freed for reallocation. Trying to access this block of memory can result in unpredictable
behavior or even a segmentation fault.

Fix

The fix depends on the root cause of the defect. See if you intended to free the memory later or
allocate another memory block to the pointer before access.

As a good practice, after you free a memory block, assign the corresponding pointer to NULL. Before
dereferencing pointers, check them for NULL values and handle the error. In this way, you are
protected against accessing a freed block.

Example - Use of Previously Freed Pointer Error

#include <stdlib.h>
#include <stdio.h>
 int increment_content_of_address(int base_val, int shift)
 {
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;
 free(pi);

 ISO/IEC TS 17961 [accfree]

26-3

 j = *pi + shift;
 /* Defect: Reading a freed pointer */

 return j;
 }

The free statement releases the block of memory that pi refers to. Therefore, dereferencingpi after
the free statement is not valid.
Correction — Free Pointer After Use

One possible correction is to free the pointer pi only after the last instance where it is accessed.

#include <stdlib.h>

int increment_content_of_address(int base_val, int shift)
{
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;

 j = *pi + shift;
 *pi = 0;

 /* Fix: The pointer is freed after its last use */
 free(pi);
 return j;
}

Invalid use of standard library string routine
Issue

Invalid use of standard library string routine occurs when a string library function is called with
invalid arguments.
Risk

The risk depends on the type of invalid arguments. For instance, using the strcpy function with a
source argument larger than the destination argument can result in buffer overflows.
Fix

The fix depends on the standard library function involved in the defect. In some cases, you can
constrain the function arguments before the function call. For instance, if the strcpy function:

char * strcpy(char * destination, const char* source);

tries to copy too many bytes into the destination argument compared to the available buffer, constrain
the source argument before the call to strcpy. In some cases, you can use an alternative function to
avoid the error. For instance, instead of strcpy, you can use strncpy to control the number of bytes
copied. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

26 ISO/IEC TS 17961

26-4

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Invalid Use of Standard Library String Routine Error

 #include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);
 /* Error: Size of text is less than gbuffer */

 return(res);
 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot copy text
into gbuffer.

Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger size than
the source string text.

#include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 /*Fix: gbuffer has equal or larger size than text */
 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);
 }

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [accfree]

26-5

ISO/IEC TS 17961 [accsig]
Accessing shared objects in signal handlers

Description
Rule Definition

Accessing shared objects in signal handlers.

Polyspace Implementation

This checker checks for Shared data access within signal handler.

Examples
Shared data access within signal handler
Issue

Shared data access within signal handler occurs when you access or modify a shared object
inside a signal handler.

Risk

When you define a signal handler function to access or modify a shared object, the handler accesses
or modifies the shared object when it receives a signal. If another function is already accessing the
shared object, that function causes a race condition and can leave the data in an inconsistent state.

Fix

To access or modify shared objects inside a signal handler, check that the objects are lock-free
atomic, or, if they are integers, declare them as volatile sig_atomic_t.

Example - int Variable Access in Signal Handler

#include <signal.h>
#include <stdlib.h>
#include <string.h>

/* declare global variable. */
int e_flag;

void sig_handler(int signum)
{
 /* Signal handler accesses variable that is not
 of type volatile sig_atomic_t. */
 e_flag = signum;
}

int func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

26 ISO/IEC TS 17961

26-6

 abort();
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 abort();
 }
 /* More code */
 return 0;
}

In this example, sig_handler accesses e_flag, a variable of type int. A concurrent access by
another function can leave e_flag in an inconsistent state.
Correction — Declare Variable of Type volatile sig_atomic_t

Before you access a shared variable from a signal handler, declare the variable with type volatile
sig_atomic_t instead of int. You can safely access variables of this type asynchronously.

#include <signal.h>
#include <stdlib.h>
#include <string.h>

/* Declare variable of type volatile sig_atomic_t. */
volatile sig_atomic_t e_flag;
void sig_handler(int signum)
{
 /* Use variable of proper type inside signal handler. */
 e_flag = signum;

}

int func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 abort();
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 abort();
 }
 /* More code */
 return 0;
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

 ISO/IEC TS 17961 [accsig]

26-7

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

26 ISO/IEC TS 17961

26-8

ISO/IEC TS 17961 [addrescape]
Escaping of the address of an automatic object

Description
Rule Definition

Escaping of the address of an automatic object.

Polyspace Implementation

This checker checks for these issues:

• Pointer or reference to stack variable leaving scope.
• Use of automatic variable as putenv-family function argument.

Examples
Pointer or reference to stack variable leaving scope
Issue

Pointer or reference to stack variable leaving scope occurs when a pointer or reference to a
local variable leaves the scope of the variable. For instance:

• A function returns a pointer to a local variable.
• A function performs the assignment globPtr = &locVar. globPtr is a global pointer variable

and locVar is a local variable.
• A function performs the assignment *paramPtr = &locVar. paramPtr is a function parameter

that is, for instance, an int** pointer and locVar is a local int variable.
• A C++ method performs the assignment memPtr = &locVar. memPtr is a pointer data member

of the class the method belongs to. locVar is a variable local to the method.

The defect also applies to memory allocated using the alloca function. The defect does not apply to
static, local variables.

Risk

Local variables are allocated an address on the stack. Once the scope of a local variable ends, this
address is available for reuse. Using this address to access the local variable value outside the
variable scope can cause unexpected behavior.

If a pointer to a local variable leaves the scope of the variable, Polyspace Bug Finder highlights the
defect. The defect appears even if you do not use the address stored in the pointer. For maintainable
code, it is a good practice to not allow the pointer to leave the variable scope. Even if you do not use
the address in the pointer now, someone else using your function can use the address, causing
undefined behavior.

Fix

Do not allow a pointer or reference to a local variable to leave the variable scope.

 ISO/IEC TS 17961 [addrescape]

26-9

Example - Pointer to Local Variable Returned from Function

void func2(int *ptr) {
 *ptr = 0;
}

int* func1(void) {
 int ret = 0;
 return &ret ;
}
void main(void) {
 int* ptr = func1() ;
 func2(ptr) ;
}

In this example, func1 returns a pointer to local variable ret.

In main, ptr points to the address of the local variable. When ptr is accessed in func2, the access is
illegal because the scope of ret is limited to func1,

Use of automatic variable as putenv-family function argument
Issue

Use of automatic variable as putenv-family function argument occurs when the argument of a
putenv-family function is a local variable with automatic duration.

Risk

The function putenv(char *string) inserts a pointer to its supplied argument into the
environment array, instead of making a copy of the argument. If the argument is an automatic
variable, its memory can be overwritten after the function containing the putenv() call returns. A
subsequent call to getenv() from another function returns the address of an out-of-scope variable
that cannot be dereferenced legally. This out-of-scope variable can cause environment variables to
take on unexpected values, cause the program to stop responding, or allow arbitrary code execution
vulnerabilities.

Fix

Use setenv()/unsetenv() to set and unset environment variables. Alternatively, use putenv-family
function arguments with dynamically allocated memory, or, if your application has no reentrancy
requirements, arguments with static duration. For example, a single thread execution with no
recursion or interrupts does not require reentrancy. It cannot be called (reentered) during its
execution.

Example - Automatic Variable as Argument of putenv()

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE1024 1024

void func(int var)
{
 char env[SIZE1024];
 int retval = sprintf(env, "TEST=%s", var ? "1" : "0");
 if (retval <= 0) {

26 ISO/IEC TS 17961

26-10

 /* Handle error */
 }
 /* Environment variable TEST is set using putenv().
 The argument passed to putenv is an automatic variable. */
 retval = putenv(env);
 if (retval != 0) {
 /* Handle error */
 }
}

In this example, sprintf() stores the character string TEST=var in env. The value of the
environment variable TEST is then set to var by using putenv(). Because env is an automatic
variable, the value of TEST can change once func() returns.

Correction — Use static Variable for Argument of putenv()

Declare env as a static-duration variable. The memory location of env is not overwritten for the
duration of the program, even after func() returns.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE1024 1024
void func(int var)
{
 /* static duration variable */
 static char env[SIZE1024];
 int retval = sprintf(env,"TEST=%s", var ? "1" : "0");
 if (retval <= 0) {
 /* Handle error */
 }

 /* Environment variable TEST is set using putenv() */
 retval=putenv(env);
 if (retval != 0) {
 /* Handle error */
 }
}

Correction — Use setenv() to Set Environment Variable Value

To set the value of TEST to var, use setenv().

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE1024 1024

void func(int var)
{
 /* Environment variable TEST is set using setenv() */
 int retval = setenv("TEST", var ? "1" : "0", 1);

 if (retval != 0) {
 /* Handle error */

 ISO/IEC TS 17961 [addrescape]

26-11

 }
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

26 ISO/IEC TS 17961

26-12

ISO/IEC TS 17961 [alignconv]
Converting pointer values to more strictly aligned pointer types

Description
Rule Definition

Converting pointer values to more strictly aligned pointer types.

Polyspace Implementation

This checker checks for Wrong allocated object size for cast.

Examples
Wrong allocated object size for cast
Issue

Wrong allocated object size for cast occurs during pointer conversion when the pointer’s address
is misaligned. If a pointer is converted to a different pointer type, the size of the allocated memory
must be a multiple of the size of the destination pointer.

Risk

Dereferencing a misaligned pointer has undefined behavior and can cause your program to crash.

Fix

Suppose you convert a pointer ptr1 to ptr2. If ptr1 points to a buffer of N bytes and ptr2 is a type
* pointer where sizeof(type) is n bytes, make sure that N is an integer multiple of n.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Dynamic Allocation of Pointers

#include <stdlib.h>

void dyn_non_align(void){
 void *ptr = malloc(13);
 long *dest;

 dest = (long*)ptr; //defect
}

 ISO/IEC TS 17961 [alignconv]

26-13

In this example, the software raises a defect on the conversion of ptr to a long*. The dynamically
allocated memory of ptr, 13 bytes, is not a multiple of the size of dest, 4 bytes. This misalignment
causes the Wrong allocated object size for cast defect.
Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In this
example, resolve the defect by changing the allocated memory to 12 instead of 13.

#include <stdlib.h>

void dyn_non_align(void){
 void *ptr = malloc(12);
 long *dest;

 dest = (long*)ptr;
}

Example - Static Allocation of Pointers

void static_non_align(void){
 char arr[13], *ptr;
 int *dest;

 ptr = &arr[0];
 dest = (int*)ptr; //defect
}

In this example, the software raises a defect on the conversion of ptr to an int* in line 6. ptr has a
memory size of 13 bytes because the array arr has a size of 13 bytes. The size of dest is 4 bytes,
which is not a multiple of 13. This misalignment causes the Wrong allocated object size for cast
defect.
Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In this
example, resolve the defect by changing the size of the array arr to a multiple of 4.

void static_non_align(void){
 char arr[12], *ptr;
 int *dest;

 ptr = &arr[0];
 dest = (int*)ptr;
}

Example - Allocation with a Function

#include <stdlib.h>

void *my_alloc(int size) {
 void *ptr_func = malloc(size);
 if(ptr_func == NULL) exit(-1);
 return ptr_func;
}

void fun_non_align(void){
 int *dest1;
 char *dest2;

26 ISO/IEC TS 17961

26-14

 dest1 = (int*)my_alloc(13); //defect
 dest2 = (char*)my_alloc(13); //not a defect
}

In this example, the software raises a defect on the conversion of the pointer returned by
my_alloc(13) to an int* in line 11. my_alloc(13) returns a pointer with a dynamically allocated
size of 13 bytes. The size of dest1 is 4 bytes, which is not a divisor of 13. This misalignment causes
the Wrong allocated object size for cast defect. In line 12, the same function call, my_alloc(13),
does not call a defect for the conversion to dest2 because the size of char*, 1 byte, a divisor of 13.

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In this
example, resolve the defect by changing the argument for my_alloc to a multiple of 4.

#include <stdlib.h>

void *my_alloc(int size) {
 void *ptr_func = malloc(size);
 if(ptr_func == NULL) exit(-1);
 return ptr_func;
}

void fun_non_align(void){
 int *dest1;
 char *dest2;

 dest1 = (int*)my_alloc(12);
 dest2 = (char*)my_alloc(13);
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [alignconv]

26-15

ISO/IEC TS 17961 [argcomp]
Calling functions with incorrect arguments

Description
Rule Definition

Calling functions with incorrect arguments.

Polyspace Implementation

This checker checks for these issues:

• Conflicting declarations or conflicting declaration and definition.
• Unreliable cast of function pointer.

Examples
Conflicting declarations or conflicting declaration and definition
Issue

The issue occurs when all declarations of an object or function do not use the same names and type
qualifiers.

The rule checker detects situations where parameter names or data types are different between
multiple declarations or the declaration and the definition. The checker considers declarations in all
translation units and flags issues that are not likely to be detected by a compiler.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The analyses can
produce different results.

The checker does not flag this issue in a default Polyspace as You Code analysis. See “Checkers
Deactivated in Polyspace as You Code Default Analysis”.

Risk

Consistently using parameter names and types across declarations of the same object or function
encourages stronger typing. It is easier to check that the same function interface is used across all
declarations.

Example - Mismatch in Parameter Names

extern int div (int num, int den);

int div(int den, int num) { /* Non compliant */
 return(num/den);
}

In this example, the rule is violated because the parameter names in the declaration and definition
are switched.

26 ISO/IEC TS 17961

26-16

Example - Mismatch in Parameter Data Types

typedef unsigned short width;
typedef unsigned short height;
typedef unsigned int area;

extern area calculate(width w, height h);

area calculate(width w, width h) { /* Noncompliant */
 return w*h;
}

In this example, the rule is violated because the second argument of the calculate function has
data type:

• height in the declaration.
• width in the definition.

The rule is violated even though the underlying type of height and width are identical.

Unreliable cast of function pointer
Issue

Unreliable cast of function pointer occurs when a function pointer is cast to another function
pointer that has different argument or return type.

This defect applies only if the code language for the project is C.

Risk

If you cast a function pointer to another function pointer with different argument or return type and
then use the latter function pointer to call a function, the behavior is undefined.

Fix

Avoid a cast between two function pointers with mismatch in argument or return types.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Unreliable cast of function pointer error

#include <stdio.h>
#include <math.h>
#include <stdio.h>
#define PI 3.142

double Calculate_Sum(int (*fptr)(double))
{

 ISO/IEC TS 17961 [argcomp]

26-17

 double sum = 0.0;
 double y;

 for (int i = 0; i <= 100; i++)
 {
 y = (*fptr)(i*PI/100);
 sum += y;
 }
 return sum / 100;
}

int main(void)
{
 double (*fp)(double);
 double sum;

 fp = sin;
 sum = Calculate_Sum(fp);
 /* Defect: fp implicitly cast to int(*) (double) */

 printf("sum(sin): %f\n", sum);
 return 0;
}

The function pointer fp is declared as double (*)(double). However in passing it to function
Calculate_Sum, fp is implicitly cast to int (*)(double).

Correction — Avoid Function Pointer Cast

One possible correction is to check that the function pointer in the definition of Calculate_Sum has
the same argument and return type as fp. This step makes sure that fp is not implicitly cast to a
different argument or return type.

#include <stdio.h>
#include <math.h>
#include <stdio.h>
define PI 3.142

/*Fix: fptr has same argument and return type everywhere*/
double Calculate_Sum(double (*fptr)(double))
{
 double sum = 0.0;
 double y;

 for (int i = 0; i <= 100; i++)
 {
 y = (*fptr)(i*PI/100);
 sum += y;
 }
 return sum / 100;
}

int main(void)
{
 double (*fp)(double);
 double sum;

26 ISO/IEC TS 17961

26-18

 fp = sin;
 sum = Calculate_Sum(fp);
 printf("sum(sin): %f\n", sum);

 return 0;
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [argcomp]

26-19

ISO/IEC TS 17961 [asyncsig]
Calling functions in the C Standard Library other than abort, _Exit, and signal from within a signal
handler

Description
Rule Definition

Calling functions in the C Standard Library other than abort, _Exit, and signal from within a signal
handler.

Polyspace Implementation

This checker checks for these issues:

• Function called from signal handler not asynchronous-safe (strict).
• Function called from signal handler not asynchronous-safe.

Examples
Function called from signal handler not asynchronous-safe (strict)
Issue

Function called from signal handler not asynchronous-safe (strict) occurs when a signal
handler calls a function that is not asynchronous-safe according to the C standard. An asynchronous-
safe function can be interrupted at any point in its execution, then called again without causing an
inconsistent state. It can also correctly handle global data that might be in an inconsistent state.

When you select the checker Function called from signal handler not asynchronous-safe, the
checker detects calls to functions that are not asynchronous-safe according to the POSIX standard.
Function called from signal handler not asynchronous-safe (strict) does not raise a defect for
these cases. Function called from signal handler not asynchronous-safe (strict) raises a defect
for functions that are asynchronous-safe according to the POSIX standard but not according to the C
standard.

If a signal handler calls another function that calls an asynchronous-unsafe function, the defect
appears on the function call in the signal handler. The defect traceback shows the full path from the
signal handler to the asynchronous-unsafe function.

Risk

When a signal handler is invoked, the execution of the program is interrupted. After the handler is
finished, program execution resumes at the point of interruption. If a function is executing at the time
of the interruption, calling it from within the signal handler is undefined behavior, unless it is
asynchronous-safe.

Fix

The C standard defines the following functions as asynchronous-safe. You can call these functions
from a signal handler:

26 ISO/IEC TS 17961

26-20

• abort()
• _Exit()
• quick_exit()
• signal()

Example - Call to raise() Inside Signal Handler

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

void SIG_ERR_handler(int signum)
{
 int s0 = signum;
 /* SIGTERM specific handling */
}

void sig_handler(int signum)
{
 int s0 = signum;
 /* Call raise() */
 if (raise(SIGTERM) != 0) {
 /* Handle error */
 }
}

int finc(void)
{
 if (signal(SIGTERM, SIG_ERR_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 }
 /* More code */
 return 0;
}

In this example, sig_handler calls raise() when catching a signal. If the handler catches another
signal while raise() is executing, the behavior of the program is undefined.

 ISO/IEC TS 17961 [asyncsig]

26-21

Correction — Remove Call to raise() in Signal Handler

According to the C standard, the only functions that you can safely call from a signal handler are
abort(), _Exit(), quick_exit(), and signal().

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

void SIG_ERR_handler(int signum)
{
 int s0 = signum;
 /* SIGTERM specific handling */
}
void sig_handler(int signum)
{
 int s0 = signum;

}

int func(void)
{
 if (signal(SIGTERM, SIG_ERR_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 }
 /* More code */
 return 0;
}

Function called from signal handler not asynchronous-safe

Issue

Function called from signal handler not asynchronous-safe occurs when a signal handler calls a
function that is not asynchronous-safe according to the POSIX standard. An asynchronous-safe
function can be interrupted at any point in its execution, then called again without causing an
inconsistent state. It can also correctly handle global data that might be in an inconsistent state.

If a signal handler calls another function that calls an asynchronous-unsafe function, the defect
appears on the function call in the signal handler. The defect traceback shows the full path from the
signal handler to the asynchronous-unsafe function.

26 ISO/IEC TS 17961

26-22

Risk

When a signal handler is invoked, the execution of the program is interrupted. After the handler is
finished, program execution resumes at the point of interruption. If a function is executing at the time
of the interruption, calling it from within the signal handler is undefined behavior, unless it is
asynchronous-safe.

Fix

The POSIX standard defines these functions as asynchronous-safe. You can call these functions from a
signal handler.

_exit() getpgrp() setsockopt()
_Exit() getpid() setuid()
abort() getppid() shutdown()
accept() getsockname() sigaction()
access() getsockopt() sigaddset()
aio_error() getuid() sigdelset()
aio_return() kill() sigemptyset()
aio_suspend() link() sigfillset()
alarm() linkat() sigismember()
bind() listen() signal()
cfgetispeed() lseek() sigpause()
cfgetospeed() lstat() sigpending()
cfsetispeed() mkdir() sigprocmask()
cfsetospeed() mkdirat() sigqueue()
chdir() mkfifo() sigset()
chmod() mkfifoat() sigsuspend()
chown() mknod() sleep()
clock_gettime() mknodat() sockatmark()
close() open() socket()
connect() openat() socketpair()
creat() pathconf() stat()
dup() pause() symlink()
dup2() pipe() symlinkat()
execl() poll() sysconf()
execle() posix_trace_event() tcdrain()
execv() pselect() tcflow()
execve() pthread_kill() tcflush()
faccessat() pthread_self() tcgetattr()
fchdir() pthread_sigmask() tcgetpgrp()
fchmod() quick_exit() tcsendbreak()

 ISO/IEC TS 17961 [asyncsig]

26-23

fchmodat() raise() tcsetattr()
fchown() read() tcsetpgrp()
fchownat() readlink() time()
fcntl() readlinkat() timer_getoverrun()
fdatasync() recv() timer_gettime()
fexecve() recvfrom() timer_settime()
fork() recvmsg() times()
fpathconf() rename() umask()
fstat() renameat() uname()
fstatat() rmdir() unlink()
fsync() select() unlinkat()
ftruncate() sem_post() utime()
futimens() send() utimensat()
getegid() sendmsg() utimes()
geteuid() sendto() wait()
getgid() setgid() waitpid()
getgroups() setpgid() write()
getpeername() setsid()

Functions not in the previous table are not asynchronous-safe, and should not be called from a signal
hander.
Example - Call to printf() Inside Signal Handler

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

#define SIZE20 20

extern volatile sig_atomic_t e_flag;

void display_info(const char *info)
{
 if (info)
 {
 (void)fputs(info, stderr);
 }
}

void sig_handler(int signum)
{
 /* Call function printf() that is not
 asynchronous-safe */
 printf("signal %d received.", signum);

26 ISO/IEC TS 17961

26-24

 e_flag = 1;
}

int main(void)
{
 e_flag = 0;
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 char *info = (char *)calloc(SIZE20, sizeof(char));
 if (info == NULL)
 {
 /* Handle Error */
 }
 while (!e_flag)
 {
 /* Main loop program code */
 display_info(info);
 /* More program code */
 }
 free(info);
 info = NULL;
 return 0;
}

In this example, sig_handler calls printf() when catching a signal. If the handler catches
another signal while printf() is executing, the behavior of the program is undefined.

Correction — Set Flag Only in Signal Handler

Use your signal handler to set only the value of a flag. e_flag is of type volatile sig_atomic_t.
sig_handler can safely access it asynchronously.

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

#define SIZE20 20

extern volatile sig_atomic_t e_flag;

void display_info(const char *info)
{
 if (info)
 {
 (void)fputs(info, stderr);
 }
}

void sig_handler1(int signum)
{

 ISO/IEC TS 17961 [asyncsig]

26-25

 int s0 = signum;
 e_flag = 1;
}

int func(void)
{
 e_flag = 0;
 if (signal(SIGINT, sig_handler1) == SIG_ERR)
 {
 /* Handle error */
 }
 char *info = (char *)calloc(SIZE20, 1);
 if (info == NULL)
 {
 /* Handle error */
 }
 while (!e_flag)
 {
 /* Main loop program code */
 display_info(info);
 /* More program code */
 }
 free(info);
 info = NULL;
 return 0;
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

26 ISO/IEC TS 17961

26-26

ISO/IEC TS 17961 [boolasgn]
No assignment in conditional expressions

Description
Rule Definition

No assignment in conditional expressions.

Polyspace Implementation

This checker checks for Invalid use of = (assignment) operator.

Examples
Invalid use of = (assignment) operator
Issue

Invalid use of = operator occurs when an assignment is made inside the predicate of a conditional,
such as if or while.

In C and C++, a single equal sign is an assignment not a comparison. Using a single equal sign in a
conditional statement can indicate a typo or a mistake.

Risk

• Conditional statement tests the wrong values— The single equal sign operation assigns the value
of the right operand to the left operand. Then, because this assignment is inside the predicate of a
conditional, the program checks whether the new value of the left operand is nonzero or not
NULL.

• Maintenance and readability issues — Even if the assignment is intended, someone reading or
updating the code can misinterpret the assignment as an equality comparison instead of an
assignment.

Fix

• If the assignment is a bug, to check for equality, add a second equal sign (==).
• If the assignment inside the conditional statement was intentional, to improve readability,

separate the assignment and the test. Move the assignment outside the control statement. In the
control statement, simply test the result of the assignment.

If you do not want to fix the issue, add comments to your result or code to avoid another review.
See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results
in a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

 ISO/IEC TS 17961 [boolasgn]

26-27

Example - Single Equal Sign Inside an if Condition

#include <stdio.h>

void bad_equals_ex(int alpha, int beta)
{
 if(alpha = beta)
 {
 printf("Equal\n");
 }
}

The equal sign is flagged as a defect because the assignment operator is used within the predicate of
the if-statement. The predicate assigns the value beta to alpha, then implicitly tests whether alpha
is true or false.
Correction — Change Expression to Comparison

One possible correction is adding an additional equal sign. This correction changes the assignment to
a comparison. The if condition compares whether alpha and beta are equal.

#include <stdio.h>

void equality_test(int alpha, int beta)
{
 if(alpha == beta)
 {
 printf("Equal\n");
 }
}

Correction — Assignment and Comparison Inside the if Condition

If an assignment must be made inside the predicate, a possible correction is adding an explicit
comparison. This correction assigns the value of beta to alpha, then explicitly checks whether
alpha is nonzero. The code is clearer.

#include <stdio.h>

int assignment_not_zero(int alpha, int beta)
{
 if((alpha = beta) != 0)
 {
 return alpha;
 }
 else
 {
 return 0;
 }
}

Correction — Move Assignment Outside the if Statement

If the assignment can be made outside the control statement, one possible correction is to separate
the assignment and comparison. This correction assigns the value of beta to alpha before the if.
Inside the if-condition, only alpha is given to test if alpha is nonzero or not NULL.

#include <stdio.h>

26 ISO/IEC TS 17961

26-28

void assign_and_print(int alpha, int beta)
{
 alpha = beta;
 if(alpha)
 {
 printf("%d", alpha);
 }
}

Check Information
Decidability: Decidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [boolasgn]

26-29

ISO/IEC TS 17961 [chreof]
Using character values that are indistinguishable from EOF

Description
Rule Definition

Using character values that are indistinguishable from EOF.

Polyspace Implementation

This checker checks for Character value absorbed into EOF.

Examples
Character value absorbed into EOF
Issue

Character value absorbed into EOF occurs when you perform a data type conversion that makes a
valid character value indistinguishable from EOF (End-of-File). Bug Finder flags the defect in one of
the following situations:

• End-of-File: You perform a data type conversion such as from int to char that converts a non-
EOF character value into EOF.

char ch = (char)getchar();

You then compare the result with EOF.

if((int)ch == EOF){//...}

The conversion can be explicit or implicit.
• Wide End-of-File: You perform a data type conversion that can convert a non-WEOF wide

character value into WEOF, and then compare the result with WEOF.

Risk

The data type char cannot hold the value EOF that indicates the end of a file. Functions such as
getchar have return type int to accommodate EOF. If you convert from int to char, the values
UCHAR_MAX (a valid character value) and EOF get converted to the same value -1 and become
indistinguishable from each other. When you compare the result of this conversion with EOF, the
comparison can lead to false detection of EOF. This rationale also applies to wide character values
and WEOF.

Fix

Perform the comparison with EOF or WEOF before conversion.

Example - Return Value of getchar Converted to char

#include <stdio.h>
#include <stdlib.h>

26 ISO/IEC TS 17961

26-30

#define fatal_error() abort()

char func(void)
{
 char ch;
 ch = getchar();
 if (EOF == (int)ch) {
 fatal_error();
 }
 return ch;
}

In this example, the return value of getchar is implicitly converted to char. If getchar returns
UCHAR_MAX, it is converted to -1, which is indistinguishable from EOF. When you compare with EOF
later, it can lead to a false positive.

Correction — Perform Comparison with EOF Before Conversion

One possible correction is to first perform the comparison with EOF, and then convert from int to
char.

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

char func(void)
{
 int i;
 i = getchar();
 if (EOF == i) {
 fatal_error();
 }
 else {
 return (char)i;
 }
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [chreof]

26-31

ISO/IEC TS 17961 [chrsgnext]
Passing arguments to character handling functions that are not representable as unsigned char

Description
Rule Definition

Passing arguments to character handling functions that are not representable as unsigned char.

Polyspace Implementation

This checker checks for Invalid use of standard library integer routine.

Examples
Invalid use of standard library integer routine
Issue

Invalid use of standard library integer routine occurs when you use invalid arguments with an
integer function from the standard library. This defect picks up:

• Character Conversion

toupper, tolower
• Character Checks

isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint, ispunct,
isspace, isupper, isxdigit

• Integer Division

div, ldiv
• Absolute Values

abs, labs

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

26 ISO/IEC TS 17961

26-32

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Absolute Value of Large Negative

#include <limits.h>
#include <stdlib.h>

int absoluteValue(void) {

 int neg = INT_MIN;
 return abs(neg);
}

The input value to abs is INT_MIN. The absolute value of INT_MIN is INT_MAX+1. This number
cannot be represented by the type int.

Correction — Change Input Argument

One possible correction is to change the input value to fit returned data type. In this example, change
the input value to INT_MIN+1.

#include <limits.h>
#include <stdlib.h>

int absoluteValue(void) {

 int neg = INT_MIN+1;
 return abs(neg);
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [chrsgnext]

26-33

ISO/IEC TS 17961 [dblfree]
Freeing memory multiple times

Description
Rule Definition

Freeing memory multiple times.

Polyspace Implementation

This checker checks for Deallocation of previously deallocated pointer.

Examples
Deallocation of previously deallocated pointer
Issue

Deallocation of previously deallocated pointer occurs when a block of memory is freed more than
once using the free function without an intermediate allocation.

Risk

When a pointer is allocated dynamic memory with malloc, calloc or realloc, it points to a
memory location on the heap. When you use the free function on this pointer, the associated block of
memory is freed for reallocation. Trying to free this block of memory can result in a segmentation
fault.

Fix

The fix depends on the root cause of the defect. See if you intended to allocate a memory block to the
pointer between the first deallocation and the second. Otherwise, remove the second free statement.

As a good practice, after you free a memory block, assign the corresponding pointer to NULL. Before
freeing pointers, check them for NULL values and handle the error. In this way, you are protected
against freeing an already freed block.

Example - Deallocation of Previously Deallocated Pointer Error

#include <stdlib.h>

void allocate_and_free(void)
{

 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return;

 *pi = 2;
 free(pi);
 free (pi);
 /* Defect: pi has already been freed */
}

26 ISO/IEC TS 17961

26-34

The first free statement releases the block of memory that pi refers to. The second free statement
on pi releases a block of memory that has been freed already.

Correction — Remove Duplicate Deallocation

One possible correction is to remove the second free statement.

#include <stdlib.h>

void allocate_and_free(void)
{

 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return;

 *pi = 2;
 free(pi);
 /* Fix: remove second deallocation */
 }

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [dblfree]

26-35

ISO/IEC TS 17961 [diverr]
Integer division errors

Description
Rule Definition

Integer division errors.

Polyspace Implementation

This checker checks for Integer division by zero.

Examples
Integer division by zero
Issue

Integer division by zero occurs when the denominator of a division or modulo operation can be a
zero-valued integer.

Risk

A division by zero can result in a program crash.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. Use this event list to determine how the denominator variable acquires a zero
value. You can implement the fix on any event in the sequence. If the result details do not show the
event history, you can trace back using right-click options in the source code and see previous related
events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

It is a good practice to check for zero values of a denominator before division and handle the error.
Instead of performing the division directly:

res = num/den;

use a library function that handles zero values of the denominator before performing the division:

res = div(num, den);

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

26 ISO/IEC TS 17961

26-36

Example - Dividing an Integer by Zero

int fraction(int num)
{
 int denom = 0;
 int result = 0;

 result = num/denom;

 return result;
}

A division by zero error occurs at num/denom because denom is zero.

Correction — Check Before Division

int fraction(int num)
{
 int denom = 0;
 int result = 0;

 if (denom != 0)
 result = num/denom;

 return result;
}

Before dividing, add a test to see if the denominator is zero, checking before division occurs. If denom
is always zero, this correction can produce a dead code defect in your Polyspace results.

Correction — Change Denominator

One possible correction is to change the denominator value so that denom is not zero.

int fraction(int num)
{
 int denom = 2;
 int result = 0;

 result = num/denom;

 return result;
}

Example - Modulo Operation with Zero

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 arr[i] = input % i;
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

In this example, Polyspace flags the modulo operation as a division by zero. Because modulo is
inherently a division operation, the divisor (right hand argument) cannot be zero. The modulo

 ISO/IEC TS 17961 [diverr]

26-37

operation uses the for loop index as the divisor. However, the for loop starts at zero, which cannot
be an iterator.

Correction — Check Divisor Before Operation

One possible correction is checking the divisor before the modulo operation. In this example, see if
the index i is zero before the modulo operation.

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 if(i != 0)
 {
 arr[i] = input % i;
 }
 else
 {
 arr[i] = input;
 }
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

Correction — Change Divisor

Another possible correction is changing the divisor to a nonzero integer. In this example, add one to
the index before the % operation to avoid dividing by zero.

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 arr[i] = input % (i+1);
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

26 ISO/IEC TS 17961

26-38

ISO/IEC TS 17961 [fileclose]
Failing to close files or free dynamic memory when they are no longer needed

Description
Rule Definition

Failing to close files or free dynamic memory when they are no longer needed.

Polyspace Implementation

This checker checks for these issues:

• Memory leak.
• Resource leak.
• Thread-specific memory leak.

Examples
Memory leak
Issue

Memory leak occurs when you do not free a block of memory allocated through malloc, calloc,
realloc, or new. If the memory is allocated in a function, the defect does not occur if:

• Within the function, you free the memory using free or delete.
• The function returns the pointer assigned by malloc, calloc, realloc, or new.
• The function stores the pointer in a global variable or in a parameter.

Risk

Dynamic memory allocation functions such as malloc allocate memory on the heap. If you do not
release the memory after use, you reduce the amount of memory available for another allocation. On
embedded systems with limited memory, you might end up exhausting available heap memory even
during program execution.

Fix

Determine the scope where the dynamically allocated memory is accessed. Free the memory block at
the end of this scope.

To free a block of memory, use the free function on the pointer that was used during memory
allocation. For instance:

ptr = (int*)malloc(sizeof(int));
//...
free(ptr);

It is a good practice to allocate and free memory in the same module at the same level of abstraction.
For instance, in this example, func allocates and frees memory at the same level but func2 does not.

 ISO/IEC TS 17961 [fileclose]

26-39

void func() {
 ptr = (int*)malloc(sizeof(int));
 {
 ...
 }
 free(ptr);
}

void func2() {
 {
 ptr = (int*)malloc(sizeof(int));
 ...
 }
 free(ptr);
}

See CERT-C Rule MEM00-C.
Example - Dynamic Memory Not Released Before End of Function

#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return;
 }

 *pi = 42;
 /* Defect: pi is not freed */
}

In this example, pi is dynamically allocated by malloc. The function assign_memory does not free
the memory, nor does it return pi.
Correction — Free Memory

One possible correction is to free the memory referenced by pi using the free function. The free
function must be called before the function assign_memory terminates

#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return;
 }
 *pi = 42;

 /* Fix: Free the pointer pi*/

26 ISO/IEC TS 17961

26-40

https://wiki.sei.cmu.edu/confluence/x/FtYxBQ

 free(pi);
}

Correction — Return Pointer from Dynamic Allocation

Another possible correction is to return the pointer pi. Returning pi allows the function calling
assign_memory to free the memory block using pi.

#include<stdlib.h>
#include<stdio.h>

int* assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return(pi);
 }
 *pi = 42;

 /* Fix: Return the pointer pi*/
 return(pi);
}

Resource leak
Issue

Resource leak occurs when you open a file stream by using a FILE pointer but do not close it
before:

• The end of the pointer’s scope.
• Assigning the pointer to another stream.

Risk

If you do not release file handles explicitly as soon as possible, a failure can occur due to exhaustion
of resources.

Fix

Close a FILE pointer before the end of its scope, or before you assign the pointer to another stream.

Example - FILE Pointer Not Released Before End of Scope

#include <stdio.h>

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");
 fclose (fp1);
}

 ISO/IEC TS 17961 [fileclose]

26-41

In this example, the file pointer fp1 is pointing to a file data1.txt. Before fp1 is explicitly
dissociated from the file stream of data1.txt, it is used to access another file data2.txt.
Correction — Release FILE Pointer

One possible correction is to explicitly dissociate fp1 from the file stream of data1.txt.

#include <stdio.h>

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");
 fclose(fp1);

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");
 fclose (fp1);
}

Thread-specific memory leak
Issue

Thread-specific memory leak occurs when you do not free thread-specific dynamically allocated
memory before the end of a thread.

To create thread-specific storage, you generally do these steps:

1 You create a key for thread-specific storage.
2 You create the threads.
3 In each thread, you allocate storage dynamically and then associate the key with this storage.

After the association, you can read the stored data later using the key.
4 Before the end of the thread, you free the thread-specific memory using the key.

The checker flags execution paths in the thread where the last step is missing.

The checker works on these families of functions:

• tss_get and tss_set (C11)
• pthread_getspecific and pthread_setspecific (POSIX)

Risk

The data stored in the memory is available to other processes even after the threads end (memory
leak). Besides security vulnerabilities, memory leaks can shrink the amount of available memory and
reduce performance.
Fix

Free dynamically allocated memory before the end of a thread.

You can explicitly free dynamically allocated memory with functions such as free.

Alternatively, when you create a key, you can associate a destructor function with the key. The
destructor function is called with the key value as argument at the end of a thread. In the body of the

26 ISO/IEC TS 17961

26-42

destructor function, you can free any memory associated with the key. If you use this method, Bug
Finder still flags a defect. Ignore this defect with appropriate comments. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Memory Not Freed at End of Thread

#include <threads.h>
#include <stdlib.h>

/* Global key to the thread-specific storage */
tss_t key;
enum { MAX_THREADS = 3 };

int add_data(void) {
 int *data = (int *)malloc(2 * sizeof(int));
 if (data == NULL) {
 return -1; /* Report error */
 }
 data[0] = 0;
 data[1] = 1;

 if (thrd_success != tss_set(key, (void *)data)) {
 /* Handle error */
 }
 return 0;
}

void print_data(void) {
 /* Get this thread's global data from key */
 int *data = tss_get(key);

 if (data != NULL) {
 /* Print data */
 }
}

int func(void *dummy) {
 if (add_data() != 0) {
 return -1; /* Report error */
 }
 print_data();
 return 0;
}

int main(void) {
 thrd_t thread_id[MAX_THREADS];

 /* Create the key before creating the threads */
 if (thrd_success != tss_create(&key, NULL)) {
 /* Handle error */
 }

 ISO/IEC TS 17961 [fileclose]

26-43

 /* Create threads that would store specific storage */
 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_create(&thread_id[i], func, NULL)) {
 /* Handle error */
 }
 }

 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_join(thread_id[i], NULL)) {
 /* Handle error */
 }
 }

 tss_delete(key);
 return 0;
}

In this example, the start function of each thread func calls two functions:

• add_data: This function allocates storage dynamically and associates the storage with a key
using the tss_set function.

• print_data: This function reads the stored data using the tss_get function.

At the points where func returns, the dynamically allocated storage has not been freed.

Correction — Free Dynamically Allocated Memory Explicitly

One possible correction is to free dynamically allocated memory explicitly before leaving the start
function of a thread. See the highlighted change in the corrected version.

In this corrected version, a defect still appears on the return statement in the error handling section
of func. The defect cannot occur in practice because the error handling section is entered only if
dynamic memory allocation fails. Ignore this remaining defect with appropriate comments. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

#include <threads.h>
#include <stdlib.h>

/* Global key to the thread-specific storage */
tss_t key;
enum { MAX_THREADS = 3 };

int add_data(void) {
 int *data = (int *)malloc(2 * sizeof(int));
 if (data == NULL) {
 return -1; /* Report error */
 }
 data[0] = 0;
 data[1] = 1;

26 ISO/IEC TS 17961

26-44

 if (thrd_success != tss_set(key, (void *)data)) {
 /* Handle error */
 }
 return 0;
}

void print_data(void) {
 /* Get this thread's global data from key */
 int *data = tss_get(key);

 if (data != NULL) {
 /* Print data */
 }
}

int func(void *dummy) {
 if (add_data() != 0) {
 return -1; /* Report error */
 }
 print_data();
 free(tss_get(key));
 return 0;
}

int main(void) {
 thrd_t thread_id[MAX_THREADS];

 /* Create the key before creating the threads */
 if (thrd_success != tss_create(&key, NULL)) {
 /* Handle error */
 }

 /* Create threads that would store specific storage */
 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_create(&thread_id[i], func, NULL)) {
 /* Handle error */
 }
 }

 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_join(thread_id[i], NULL)) {
 /* Handle error */
 }
 }

 tss_delete(key);
 return 0;
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

 ISO/IEC TS 17961 [fileclose]

26-45

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

26 ISO/IEC TS 17961

26-46

ISO/IEC TS 17961 [filecpy]
Copying a FILE object

Description
Rule Definition

Copying a FILE object.

Polyspace Implementation

This checker checks for Dereferencing a FILE* pointer.

Examples
Dereferencing a FILE* pointer
Issue

The issue occurs when a pointer to a FILE object is dereferenced.

Risk

The Standard states that the address of a FILE object used to control a stream can be significant.
Copying that object might not give the same behavior. This rule ensures that you cannot perform such
a copy.

Directly manipulating a FILE object might be incompatible with its use as a stream designator.

Example - FILE* Pointer Dereferenced

#include <stdio.h>

void func(void) {
 FILE *pf1;
 FILE *pf2;
 FILE f3;

 pf2 = pf1; /* Compliant */
 f3 = *pf2; /* Non-compliant */
 pf2->_flags=0; /* Non-compliant */
 }

In this example, the rule is violated when the FILE* pointer pf2 is dereferenced.

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

 ISO/IEC TS 17961 [filecpy]

26-47

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

26 ISO/IEC TS 17961

26-48

ISO/IEC TS 17961 [funcdecl]
Declaring the same function or object in incompatible ways

Description
This checker is deactivated in a default Polyspace as You Code analysis. See “Checkers Deactivated in
Polyspace as You Code Default Analysis”.

Rule Definition

Declaring the same function or object in incompatible ways.

Polyspace Implementation

This checker checks for these issues:

• Indistinguishable external identifier names.
• Declaration mismatch.

Examples
Indistinguishable external identifier names
Issue

The issue occurs when external identifiers are not distinct.

Risk

External identifiers are ones declared with global scope or storage class extern.

Polyspace considers two names as distinct if there is a difference between their first 31 characters. If
the difference between two names occurs only beyond the first 31 characters, they can be easily
mistaken for each other. The readability of the code is reduced. For C90, the difference must occur
between the first 6 characters. To use the C90 rules checking, use the value c90 for the option C
standard version (-c-version).

Example - C90: First Six Characters of Identifiers Not Unique

int engine_temperature_raw;
int engine_temperature_scaled; /* Non-compliant */
int engin2_temperature; /* Compliant */

In this example, the identifier engine_temperature_scaled has the same first six characters as a
previous identifier, engine_temperature_raw.

Example - C99: First 31 Characters of Identifiers Not Unique

int engine_exhaust_gas_temperature_raw;
int engine_exhaust_gas_temperature_scaled; /* Non-compliant */

int eng_exhaust_gas_temp_raw;
int eng_exhaust_gas_temp_scaled; /* Compliant */

 ISO/IEC TS 17961 [funcdecl]

26-49

In this example, the identifier engine_exhaust_gas_temperature_scaled has the same first 31
characters as a previous identifier, engine_exhaust_gas_temperature_raw.

Example - C90: First Six Characters Identifiers in Different Translation Units Differ in Case Alone

/* file1.c */
int abc = 0;

/* file2.c */
int ABC = 0; /* Non-compliant */

In this example, the implementation supports 6 significant case-insensitive characters in external
identifiers. The identifiers in the two translation are different but are not distinct in their significant
characters.

Declaration mismatch
Issue

Declaration mismatch occurs when a function or variable declaration does not match other
instances of the function or variable.

Risk

When a mismatch occurs between two variable declarations in different compilation units, a typical
linker follows an algorithm to pick one declaration for the variable. If you expect a variable
declaration that is different from the one chosen by the linker, you can see unexpected results when
the variable is used.

A similar issue can occur with mismatch in function declarations.

Fix

The fix depends on the type of declaration mismatch. If both declarations indeed refer to the same
object, use the same declaration. If the declarations refer to different objects, change the names of
the one of the variables. If you change a variable name, remember to make the change in all places
that use the variable.

Sometimes, declaration mismatches can occur because the declarations are affected by previous
preprocessing directives. For instance, a declaration occurs in a macro, and the macro is defined on
one inclusion path but undefined in another. These declaration mismatches can be tricky to debug.
Identify the divergence between the two inclusion paths and fix the conflicting macro definitions.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Inconsistent Declarations in Two Files

file1.c

26 ISO/IEC TS 17961

26-50

int foo(void) {
 return 1;
}

file2.c

double foo(void);

int bar(void) {
 return (int)foo();
}

In this example, file1.c declares foo() as returning an integer. In file2.c, foo() is declared as
returning a double. This difference raises a defect on the second instance of foo in file2.

Correction — Align the Function Return Values

One possible correction is to change the function declarations so that they match. In this example, by
changing the declaration of foo in file2.c to match file1.c, the defect is fixed.

file1.c

int foo(void) {
 return 1;
}

file2.c

int foo(void);

int bar(void) {
 return foo();
}

Example - Inconsistent Structure Alignment

test1.c

#include "square.h"
#include "circle.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

test2.c

#include "circle.h"
#include "square.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

circle.h

#pragma pack(1)

extern struct aCircle{
 int radius;
} circle;

square.h

extern struct aSquare {
 unsigned int side:1;
} square;

In this example, a declaration mismatch defect is raised on square in square.h because Polyspace
infers that square in square.h does not have the same alignment as square in test2.c. This error

 ISO/IEC TS 17961 [funcdecl]

26-51

occurs because the #pragma pack(1) statement in circle.h declares specific alignment. In test2.c,
circle.h is included before square.h. Therefore, the #pragma pack(1) statement from circle.h is not
reset to the default alignment after the aCircle structure. Because of this omission, test2.c infers
that the aSquare square structure also has an alignment of 1 byte.

Correction — Close Packing Statements

One possible correction is to reset the structure alignment after the aCircle struct declaration. For
the GNU or Microsoft Visual compilers, fix the defect by adding a #pragma pack() statement at the
end of circle.h.

test1.c

#include "square.h"
#include "circle.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

test2.c

#include "circle.h"
#include "square.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

circle.h

#pragma pack(1)

extern struct aCircle{
 int radius;
} circle;

#pragma pack()

square.h

#extern struct aSquare {
 unsigned int side:1;
} square;

Other compilers require different #pragma pack syntax. For your syntax, see the documentation for
your compiler.

Correction — Use the Ignore pragma pack directives Option

One possible correction is to add the Ignore pragma pack directives option to your Bug Finder
analysis. If you want the structure alignment to change for each structure, and you do not want to see
this Declaration mismatch defect, use this correction.

1 On the Configuration pane, select the Advanced Settings pane.
2 In the Other box, enter -ignore-pragma-pack.
3 Rerun your analysis.

The Declaration mismatch defect is resolved.

Check Information
Decidability: Decidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

26 ISO/IEC TS 17961

26-52

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [funcdecl]

26-53

ISO/IEC TS 17961 [insufmem]
Allocating insufficient memory

Description
Rule Definition

Allocating insufficient memory.

Polyspace Implementation

This checker checks for these issues:

• Wrong allocated object size for cast.
• Pointer access out of bounds.
• Wrong type used in sizeof.
• Possible misuse of sizeof.

Examples
Wrong allocated object size for cast
Issue

Wrong allocated object size for cast occurs during pointer conversion when the pointer’s address
is misaligned. If a pointer is converted to a different pointer type, the size of the allocated memory
must be a multiple of the size of the destination pointer.

Risk

Dereferencing a misaligned pointer has undefined behavior and can cause your program to crash.

Fix

Suppose you convert a pointer ptr1 to ptr2. If ptr1 points to a buffer of N bytes and ptr2 is a type
* pointer where sizeof(type) is n bytes, make sure that N is an integer multiple of n.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Dynamic Allocation of Pointers

#include <stdlib.h>

26 ISO/IEC TS 17961

26-54

void dyn_non_align(void){
 void *ptr = malloc(13);
 long *dest;

 dest = (long*)ptr; //defect
}

In this example, the software raises a defect on the conversion of ptr to a long*. The dynamically
allocated memory of ptr, 13 bytes, is not a multiple of the size of dest, 4 bytes. This misalignment
causes the Wrong allocated object size for cast defect.
Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In this
example, resolve the defect by changing the allocated memory to 12 instead of 13.

#include <stdlib.h>

void dyn_non_align(void){
 void *ptr = malloc(12);
 long *dest;

 dest = (long*)ptr;
}

Example - Static Allocation of Pointers

void static_non_align(void){
 char arr[13], *ptr;
 int *dest;

 ptr = &arr[0];
 dest = (int*)ptr; //defect
}

In this example, the software raises a defect on the conversion of ptr to an int* in line 6. ptr has a
memory size of 13 bytes because the array arr has a size of 13 bytes. The size of dest is 4 bytes,
which is not a multiple of 13. This misalignment causes the Wrong allocated object size for cast
defect.
Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In this
example, resolve the defect by changing the size of the array arr to a multiple of 4.

void static_non_align(void){
 char arr[12], *ptr;
 int *dest;

 ptr = &arr[0];
 dest = (int*)ptr;
}

Example - Allocation with a Function

#include <stdlib.h>

void *my_alloc(int size) {
 void *ptr_func = malloc(size);

 ISO/IEC TS 17961 [insufmem]

26-55

 if(ptr_func == NULL) exit(-1);
 return ptr_func;
}

void fun_non_align(void){
 int *dest1;
 char *dest2;

 dest1 = (int*)my_alloc(13); //defect
 dest2 = (char*)my_alloc(13); //not a defect
}

In this example, the software raises a defect on the conversion of the pointer returned by
my_alloc(13) to an int* in line 11. my_alloc(13) returns a pointer with a dynamically allocated
size of 13 bytes. The size of dest1 is 4 bytes, which is not a divisor of 13. This misalignment causes
the Wrong allocated object size for cast defect. In line 12, the same function call, my_alloc(13),
does not call a defect for the conversion to dest2 because the size of char*, 1 byte, a divisor of 13.

Correction — Change the Size of the Pointer

One possible correction is to use a pointer size that is a multiple of the destination size. In this
example, resolve the defect by changing the argument for my_alloc to a multiple of 4.

#include <stdlib.h>

void *my_alloc(int size) {
 void *ptr_func = malloc(size);
 if(ptr_func == NULL) exit(-1);
 return ptr_func;
}

void fun_non_align(void){
 int *dest1;
 char *dest2;

 dest1 = (int*)my_alloc(12);
 dest2 = (char*)my_alloc(13);
}

Pointer access out of bounds
Issue

Pointer access out of bounds occurs when a pointer is dereferenced outside its bounds.

When a pointer is assigned an address, a block of memory is associated with the pointer. You cannot
access memory beyond that block using the pointer.

Risk

Dereferencing a pointer outside its bounds is undefined behavior. You can read an unpredictable
value or try to access a location that is not allowed and encounter a segmentation fault.

Fix

The fix depends on the root cause of the defect. For instance, you dereferenced a pointer inside a loop
and one of these situations happened:

26 ISO/IEC TS 17961

26-56

• The upper bound of the loop is too large.
• You used pointer arithmetic to advance the pointer with an incorrect value for the pointer

increment.

To fix the issue, you have to modify the loop bound or the pointer increment value.

Often the result details show a sequence of events that led to the defect. You can implement the fix on
any event in the sequence. If the result details do not show the event history, you can trace back
using right-click options in the source code and see previous related events. See also “Interpret Bug
Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Pointer access out of bounds error

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 ptr++;
 *ptr=i;
 /* Defect: ptr out of bounds for i=9 */
 }

 return(arr);
}

ptr is assigned the address arr that points to a memory block of size 10*sizeof(int). In the for-
loop, ptr is incremented 10 times. In the last iteration of the loop, ptr points outside the memory
block assigned to it. Therefore, it cannot be dereferenced.

Correction — Check Pointer Stays Within Bounds

One possible correction is to reverse the order of increment and dereference of ptr.

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 /* Fix: Dereference pointer before increment */
 *ptr=i;
 ptr++;

 ISO/IEC TS 17961 [insufmem]

26-57

 }

 return(arr);
}

After the last increment, even though ptr points outside the memory block assigned to it, it is not
dereferenced more.

Wrong type used in sizeof
Issue

Wrong type used in sizeof occurs when both of the following conditions hold:

• You assign the address of a block of memory to a pointer, or transfer data between two blocks of
memory. The assignment or copy uses the sizeof operator.

For instance, you initialize a pointer using malloc(sizeof(type)) or copy data between two
addresses using memcpy(destination_ptr, source_ptr, sizeof(type)).

• You use an incorrect type as argument of the sizeof operator. You use the pointer type instead of
the type that the pointer points to.

For instance, to initialize a type* pointer, you use malloc(sizeof(type*)) instead of
malloc(sizeof(type)).

Risk

Irrespective of what type stands for, the expression sizeof(type*) always returns a fixed size. The
size returned is the pointer size on your platform in bytes. The appearance of sizeof(type*) often
indicates an unintended usage. The error can cause allocation of a memory block that is much
smaller than what you need and lead to weaknesses such as buffer overflows.

For instance, assume that structType is a structure with ten int variables. If you initialize a
structType* pointer using malloc(sizeof(structType*)) on a 32-bit platform, the pointer is
assigned a memory block of four bytes. However, to be allocated completely for one structType
variable, the structType* pointer must point to a memory block of sizeof(structType) = 10 *
sizeof(int) bytes. The required size is much greater than the actual allocated size of four bytes.
Fix

To initialize a type* pointer, replace sizeof(type*) in your pointer initialization expression with
sizeof(type).
Example - Allocate a Char Array With sizeof

#include <stdlib.h>

void test_case_1(void) {
 char* str;

 str = (char*)malloc(sizeof(char*) * 5);
 free(str);

}

In this example, memory is allocated for the character pointer str using a malloc of five char
pointers. However, str is a pointer to a character, not a pointer to a character pointer. Therefore the
sizeof argument, char*, is incorrect.

26 ISO/IEC TS 17961

26-58

Correction — Match Pointer Type to sizeof Argument

One possible correction is to match the argument to the pointer type. In this example, str is a
character pointer, therefore the argument must also be a character.

#include <stdlib.h>

void test_case_1(void) {
 char* str;

 str = (char*)malloc(sizeof(char) * 5);
 free(str);

}

Possible misuse of sizeof

Issue

Possible misuse of sizeof occurs when Polyspace Bug Finder detects possibly unintended results
from the use of sizeof operator. For instance:

• You use the sizeof operator on an array parameter name, expecting the array size. However, the
array parameter name by itself is a pointer. The sizeof operator returns the size of that pointer.

• You use the sizeof operator on an array element, expecting the array size. However, the operator
returns the size of the array element.

• The size argument of certain functions such as strncmp or wcsncpy is incorrect because you
used the sizeof operator earlier with possibly incorrect expectations. For instance:

• In a function call strncmp(string1, string2, num), num is obtained from an incorrect
use of the sizeof operator on a pointer.

• In a function call wcsncpy(destination, source, num), num is the not the number of
wide characters but a size in bytes obtained by using the sizeof operator. For instance, you
use wcsncpy(destination, source, sizeof(destination) - 1) instead of
wcsncpy(destination, source, (sizeof(desintation)/sizeof(wchar_t)) - 1).

Risk

Incorrect use of the sizeof operator can cause the following issues:

• If you expect the sizeof operator to return array size and use the return value to constrain a
loop, the number of loop runs are smaller than what you expect.

• If you use the return value of sizeof operator to allocate a buffer, the buffer size is smaller than
what you require. Insufficient buffer can lead to resultant weaknesses such as buffer overflows.

• If you use the return value of sizeof operator incorrectly in a function call, the function does not
behave as you expect.

Fix

Possible fixes are:

• Do not use the sizeof operator on an array parameter name or array element to determine array
size.

 ISO/IEC TS 17961 [insufmem]

26-59

The best practice is to pass the array size as a separate function parameter and use that
parameter in the function body.

• Use the sizeof operator carefully to determine the number argument of functions such as
strncmp or wcsncpy. For instance, for wide string functions such as wcsncpy, use the number of
wide characters as argument instead of the number of bytes.

Example - sizeof Used Incorrectly to Determine Array Size

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < sizeof(a)/sizeof(int); i++) {
 a[i] = i + 1;
 }
}

In this example, sizeof(a) returns the size of the pointer a and not the array size.

Correction — Determine Array Size in Another Way

One possible correction is to use another means to determine the array size.

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < MAX_SIZE; i++) {
 a[i] = i + 1;
 }
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

26 ISO/IEC TS 17961

26-60

ISO/IEC TS 17961 [intoflow]
Overflowing signed integers

Description
Rule Definition

Overflowing signed integers.

Polyspace Implementation

This checker checks for these issues:

• Integer overflow.
• Integer constant overflow.

Examples
Integer overflow
Issue

Integer overflow occurs when an operation on integer variables can result in values that cannot be
represented by the result data type. The data type of a variable determines the number of bytes
allocated for the variable storage and constrains the range of allowed values.

The exact storage allocation for different integer types depends on your processor. See Target
processor type (-target).

Risk

Integer overflows on signed integers result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details (or source code tooltips in
Polyspace as You Code) show a sequence of events that led to the defect. You can implement the fix
on any event in the sequence. If the result details do not show this event history, you can search for
previous references of variables relevant to the defect using right-click options in the source code
and find related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”
or “Interpret Bug Finder Results in Polyspace Access Web Interface”.

You can fix the defect by:

• Using a bigger data type for the result of the operation so that all values can be accommodated.
• Checking for values that lead to the overflow and performing appropriate error handling.

To avoid overflows in general, try one of these techniques:

• Keep integer variable values restricted to within half the range of signed integers.

 ISO/IEC TS 17961 [intoflow]

26-61

• In operations that might overflow, check for conditions that can lead to the overflow and
implement wrap around or saturation behavior depending on how the result of the operation is
used. The result then becomes predictable and can be safely used in subsequent computations.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Addition of Maximum Integer

#include <limits.h>

int plusplus(void) {

 int var = INT_MAX;
 var++;
 return var;
}

In the third statement of this function, the variable var is increased by one. But the value of var is
the maximum integer value, so an int cannot represent one plus the maximum integer value.

Correction — Different Storage Type

One possible correction is to change data types. Store the result of the operation in a larger data type
(Note that on a 32-bit machine, int and long has the same size). In this example, on a 32-bit
machine, by returning a long long instead of an int, the overflow error is fixed.

#include <limits.h>

long long plusplus(void) {

 long long lvar = INT_MAX;
 lvar++;
 return lvar;
}

Integer constant overflow
Issue

Integer constant overflow occurs when you assign a compile-time constant to a signed integer
variable whose data type cannot accommodate the value. An n-bit signed integer holds values in the
range [-2n-1, 2n-1-1].

For instance, c is an 8-bit signed char variable that cannot hold the value 255.

signed char c = 255;

To determine the sizes of fundamental types, Bug Finder uses your specification for Target
processor type (-target).

26 ISO/IEC TS 17961

26-62

Risk

The default behavior for constant overflows can vary between compilers and platforms. Retaining
constant overflows can reduce the portability of your code.

Even if your compilers wraps around overflowing constants with a warning, the wrap-around
behavior can be unintended and cause unexpected results.

Fix

Check if the constant value is what you intended. If the value is correct, use a different, possibly
wider, data type for the variable.

Example - Overflowing Constant from Macro Expansion

#define MAX_UNSIGNED_CHAR 255
#define MAX_SIGNED_CHAR 127

void main() {
 char c1 = MAX_UNSIGNED_CHAR;
 char c2 = MAX_SIGNED_CHAR+1;
}

In this example, the defect appears on the macros because at least one use of the macro causes an
overflow. To reproduce these defects, use analysis option Target processor type (-target)
where char is signed by default.

Correction — Use Different Data Type

One possible correction is to use a different data type for the variables that overflow.

#define MAX_UNSIGNED_CHAR 255
#define MAX_SIGNED_CHAR 127

void main() {
 unsigned char c1 = MAX_UNSIGNED_CHAR;
 unsigned char c2 = MAX_SIGNED_CHAR+1;
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [intoflow]

26-63

ISO/IEC TS 17961 [intptrconv]
Converting a pointer to integer or integer to pointer

Description
Rule Definition

Converting a pointer to integer or integer to pointer.

Polyspace Implementation

This checker checks for Conversion between pointers and integers.

Examples
Conversion between pointers and integers
Issue

The issue occurs when a conversion is performed between a pointer to object and an integer type.

Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Risk

Conversion between integers and pointers can cause errors or undefined behavior.

• If an integer is cast to a pointer, the resulting pointer can be incorrectly aligned. The incorrect
alignment causes undefined behavior.

• If a pointer is cast to an integer, the resulting value can be outside the allowed range for the
integer type.

Example - Casts between pointer and integer

#include <stdbool.h>

typedef unsigned char uint8_t;
typedef char char_t;
typedef unsigned short uint16_t;
typedef signed int int32_t;

typedef _Bool bool_t;
uint8_t *PORTA = (uint8_t *) 0x0002; /* Non-compliant */

void foo(void) {

 char_t c = 1;
 char_t *pc = &c; /* Compliant */

 uint16_t ui16 = 7U;
 uint16_t *pui16 = &ui16; /* Compliant */
 pui16 = (uint16_t *) ui16; /* Non-compliant */

26 ISO/IEC TS 17961

26-64

 uint16_t *p;
 int32_t addr = (int32_t) p; /* Non-compliant */
 bool_t b = (bool_t) p; /* Non-compliant */
 enum etag { A, B } e = (enum etag) p; /* Non-compliant */
}

In this example, the rule is violated when:

• The integer 0x0002 is cast to a pointer.

If the integer defines an absolute address, it is more common to assign the address to a pointer in
a header file. To avoid the assignment being flagged, you can then exclude headers files from
coding rules checking. For more information, see Do not generate results for (-do-not-
generate-results-for).

• The pointer p is cast to integer types such as int32_t, bool_t or enum etag.

The rule is not violated when the address &ui16 is assigned to a pointer.

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [intptrconv]

26-65

ISO/IEC TS 17961 [inverrno]
Incorrectly setting and using errno

Description
Rule Definition

Incorrectly setting and using errno.

Polyspace Implementation

This checker checks for these issues:

• Misuse of errno.
• Errno not checked.
• Errno not reset.

Examples
Misuse of errno
Issue

Misuse of errno occurs when you check errno for error conditions in situations where checking
errno does not guarantee the absence of errors. In some cases, checking errno can lead to false
positives.

For instance, you check errno following calls to the functions:

• fopen: If you follow the ISO Standard, the function might not set errno on errors.
• atof: If you follow the ISO Standard, the function does not set errno.
• signal: The errno value indicates an error only if the function returns the SIG_ERR error

indicator.

Risk

The ISO C Standard does not enforce that these functions set errno on errors. Whether the functions
set errno or not is implementation-dependent.

To detect errors, if you check errno alone, the validity of this check also becomes implementation-
dependent.

In some cases, the errno value indicates an error only if the function returns a specific error
indicator. If you check errno before checking the function return value, you can see false positives.

Fix

For information on how to detect errors, see the documentation for that specific function.

Typically, the functions return an out-of-band error indicator to indicate errors. For instance:

26 ISO/IEC TS 17961

26-66

• fopen returns a null pointer if an error occurs.
• signal returns the SIG_ERR error indicator and sets errno to a positive value. Check errno

only after you have checked the function return value.

Example - Incorrectly Checking for errno After fopen Call

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

#define fatal_error() abort()

const char *temp_filename = "/tmp/demo.txt";

FILE *func()
{
 FILE *fileptr;
 errno = 0;
 fileptr = fopen(temp_filename, "w+b");
 if (errno != 0) {
 if (fileptr != NULL) {
 (void)fclose(fileptr);
 }
 /* Handle error */
 fatal_error();
 }
 return fileptr;
}

In this example, errno is the first variable that is checked after a call to fopen. You might expect
that fopen changes errno to a nonzero value if an error occurs. If you run this code with an
implementation of fopen that does not set errno on errors, you might miss an error condition. In
this situation, fopen can return a null pointer that escapes detection.

Correction — Check Return Value of fopen After Call

One possible correction is to only check the return value of fopen for a null pointer.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

#define fatal_error() abort()

const char *temp_filename = "/tmp/demo.txt";

FILE *func()
{
 FILE *fileptr;
 fileptr = fopen(temp_filename, "w+b");
 if (fileptr == NULL) {
 fatal_error();
 }
 return fileptr;
}

 ISO/IEC TS 17961 [inverrno]

26-67

Errno not checked
Issue

Errno not checked occurs when you call a function that sets errno to indicate error conditions, but
do not check errno after the call. For these functions, checking errno is the only reliable way to
determine if an error occurred.

Functions that set errno on errors include:

• fgetwc, strtol, and wcstol.

For a comprehensive list of functions, see documentation about errno.
• POSIX errno-setting functions such as encrypt and setkey.

Risk

To see if the function call completed without errors, check errno for error values.

The return values of these errno-setting functions do not indicate errors. The return value can be
one of the following:

• void
• Even if an error occurs, the return value can be the same as the value from a successful call. Such

return values are called in-band error indicators.

You can determine if an error occurred only by checking errno.

For instance, strtol converts a string to a long integer and returns the integer. If the result of
conversion overflows, the function returns LONG_MAX and sets errno to ERANGE. However, the
function can also return LONG_MAX from a successful conversion. Only by checking errno can you
distinguish between an error and a successful conversion.

Fix

Before calling the function, set errno to zero.

After the function call, to see if an error occurred, compare errno to zero. Alternatively, compare
errno to known error indicator values. For instance, strtol sets errno to ERANGE to indicate
errors.

The error message in the Polyspace result shows the error indicator value that you can compare to.

Example - errno Not Checked After Call to strtol

#include<stdio.h>
#include<stdlib.h>
#include<errno.h>

int main(int argc, char *argv[]) {
 char *str, *endptr;
 int base;

 str = argv[1];
 base = 10;

 long val = strtol(str, &endptr, base);

26 ISO/IEC TS 17961

26-68

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152351

 printf("Return value of strtol() = %ld\n", val);
}

You are using the return value of strtol without checking errno.

Correction — Check errno After Call

Before calling strtol, set errno to zero . After a call to strtol, check the return value for
LONG_MIN or LONG_MAX and errno for ERANGE.

#include<stdlib.h>
#include<stdio.h>
#include<errno.h>
#include<limits.h>

int main(int argc, char *argv[]) {
 char *str, *endptr;
 int base;

 str = argv[1];
 base = 10;

 errno = 0;
 long val = strtol(str, &endptr, base);
 if((val == LONG_MIN || val == LONG_MAX) && errno == ERANGE) {
 printf("strtol error");
 exit(EXIT_FAILURE);
 }
 printf("Return value of strtol() = %ld\n", val);
}

Errno not reset
Issue

Errno not reset occurs when you do not reset errno before calling a function that sets errno to
indicate error conditions. However, you check errno for those error conditions after the function
call.

Risk

The errno is not clean and can contain values from a previous call. Checking errno for errors can
give the false impression that an error occurred.

errno is set to zero at program startup but subsequently, errno is not reset by a C standard library
function. You must explicitly set errno to zero when required.

Fix

Before calling a function that sets errno to indicate error conditions, reset errno to zero explicitly.

Example - errno Not Reset Before Call to strtod

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <float.h>

#define fatal_error() abort()

 ISO/IEC TS 17961 [inverrno]

26-69

double func(const char *s1, const char *s2)
{
 double f1;
 f1 = strtod (s1, NULL);
 if (0 == errno) {
 double f2 = strtod (s2, NULL);
 if (0 == errno) {
 long double result = (long double)f1 + f2;
 if ((result <= (long double)DBL_MAX) && (result >= (long double)-DBL_MAX))
 {
 return (double)result;
 }
 }
 }
 fatal_error();
 return 0.0;
}

In this example, errno is not reset to 0 before the first call to strtod. Checking errno for 0 later
can lead to a false positive.
Correction — Reset errno Before Call

One possible correction is to reset errno to 0 before calling strtod.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <float.h>

#define fatal_error() abort()

double func(const char *s1, const char *s2)
{
 double f1;
 errno = 0;
 f1 = strtod (s1, NULL);
 if (0 == errno) {
 double f2 = strtod (s2, NULL);
 if (0 == errno) {
 long double result = (long double)f1 + f2;
 if ((result <= (long double)DBL_MAX) && (result >= (long double)-DBL_MAX))
 {
 return (double)result;
 }
 }
 }
 fatal_error();
 return 0.0;
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

26 ISO/IEC TS 17961

26-70

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [inverrno]

26-71

ISO/IEC TS 17961 [invfmtstr]
Using invalid format strings

Description
Rule Definition

Using invalid format strings.

Polyspace Implementation

This checker checks for Format string specifiers and arguments mismatch.

Examples
Format string specifiers and arguments mismatch
Issue

Format string specifiers and arguments mismatch occurs when the format specifiers in the
formatted output functions such as printf do not match their corresponding arguments. For
example, an argument of type unsigned long must have a format specification of %lu.
Risk

Mismatch between format specifiers and the corresponding arguments result in undefined behavior.
Fix

Make sure that the format specifiers match the corresponding arguments. For instance, in this
example, the %d specifier does not match the string argument message and the %s specifier does not
match the integer argument err_number.

 const char *message = "License not available";
 int err_number = ;-4
 printf("Error: %d (error type %s)\n", message, err_number);

Switching the two format specifiers fixes the issue. See the specifications for the printf function for
more information about format specifiers.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Printing a Float

#include <stdio.h>

void string_format(void) {

26 ISO/IEC TS 17961

26-72

https://en.cppreference.com/w/cpp/io/c/fprintf

 unsigned long fst = 1;

 printf("%d\n", fst);
}

In the printf statement, the format specifier, %d, does not match the data type of fst.

Correction — Use an Unsigned Long Format Specifier

One possible correction is to use the %lu format specifier. This specifier matches the unsigned
integer type and long size of fst.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%lu\n", fst);
}

Correction — Use an Integer Argument

One possible correction is to change the argument to match the format specifier. Convert fst to an
integer to match the format specifier and print the value 1.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", (int)fst);
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [invfmtstr]

26-73

ISO/IEC TS 17961 [invptr]
Forming or using out-of-bounds pointers or array subscripts

Description
Rule Definition

Forming or using out-of-bounds pointers or array subscripts.

Polyspace Implementation

This checker checks for these issues:

• Array access out of bounds.
• Pointer access out of bounds.

Examples
Array access out of bounds
Issue

Array access out of bounds occurs when an array index falls outside the range
[0...array_size-1] during array access.

Risk

Accessing an array outside its bounds is undefined behavior. You can read an unpredictable value or
try to access a location that is not allowed and encounter a segmentation fault.

Fix

The fix depends on the root cause of the defect. For instance, you accessed an array inside a loop and
one of these situations happened:

• The upper bound of the loop is too large.
• You used an array index that is the same as the loop index instead of being one less than the loop

index.

To fix the issue, you have to modify the loop bound or the array index.

Another reason why an array index can exceed array bounds is a prior conversion from signed to
unsigned integers. The conversion can result in a wrap around of the index value, eventually causing
the array index to exceed the array bounds.

Often the result details show a sequence of events that led to the defect. You can implement the fix on
any event in the sequence. If the result details do not show the event history, you can trace back
using right-click options in the source code and see previous related events. See also “Interpret Bug
Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

26 ISO/IEC TS 17961

26-74

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Array Access Out of Bounds Error

#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 printf("The 10-th Fibonacci number is %i .\n", fib[i]);
 /* Defect: Value of i is greater than allowed value of 9 */
}

The array fib is assigned a size of 10. An array index for fib has allowed values of [0,1,2,...,9].
The variable i has a value 10 when it comes out of the for-loop. Therefore, the printf statement
attempts to access fib[10] through i.

Correction — Keep Array Index Within Array Bounds

One possible correction is to print fib[i-1] instead of fib[i] after the for-loop.

#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 /* Fix: Print fib[9] instead of fib[10] */
 printf("The 10-th Fibonacci number is %i .\n", fib[i-1]);
}

The printf statement accesses fib[9] instead of fib[10].

 ISO/IEC TS 17961 [invptr]

26-75

Pointer access out of bounds
Issue

Pointer access out of bounds occurs when a pointer is dereferenced outside its bounds.

When a pointer is assigned an address, a block of memory is associated with the pointer. You cannot
access memory beyond that block using the pointer.

Risk

Dereferencing a pointer outside its bounds is undefined behavior. You can read an unpredictable
value or try to access a location that is not allowed and encounter a segmentation fault.

Fix

The fix depends on the root cause of the defect. For instance, you dereferenced a pointer inside a loop
and one of these situations happened:

• The upper bound of the loop is too large.
• You used pointer arithmetic to advance the pointer with an incorrect value for the pointer

increment.

To fix the issue, you have to modify the loop bound or the pointer increment value.

Often the result details show a sequence of events that led to the defect. You can implement the fix on
any event in the sequence. If the result details do not show the event history, you can trace back
using right-click options in the source code and see previous related events. See also “Interpret Bug
Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Pointer access out of bounds error

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 ptr++;
 *ptr=i;
 /* Defect: ptr out of bounds for i=9 */
 }

 return(arr);
}

26 ISO/IEC TS 17961

26-76

ptr is assigned the address arr that points to a memory block of size 10*sizeof(int). In the for-
loop, ptr is incremented 10 times. In the last iteration of the loop, ptr points outside the memory
block assigned to it. Therefore, it cannot be dereferenced.

Correction — Check Pointer Stays Within Bounds

One possible correction is to reverse the order of increment and dereference of ptr.

int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 /* Fix: Dereference pointer before increment */
 *ptr=i;
 ptr++;
 }

 return(arr);
}

After the last increment, even though ptr points outside the memory block assigned to it, it is not
dereferenced more.

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [invptr]

26-77

ISO/IEC TS 17961 [ioileave]
Interleaving stream inputs and outputs without a flush or positioning call

Description
Rule Definition

Interleaving stream inputs and outputs without a flush or positioning call.

Polyspace Implementation

This checker checks for Alternating input and output from a stream without flush or
positioning call.

Examples
Alternating input and output from a stream without flush or positioning call
Issue

Alternating input and output from a stream without flush or positioning call occurs when:

• You do not perform a flush or function positioning call between an output operation and a
following input operation on a file stream in update mode.

• You do not perform a function positioning call between an input operation and a following output
operation on a file stream in update mode.

Risk

Alternating input and output operations on a stream without an intervening flush or positioning call is
undefined behavior.

Fix

Call fflush() or a file positioning function such as fseek() or fsetpos() between output and
input operations on an update stream.

Call a file positioning function between input and output operations on an update stream.

Example - Read After Write Without Intervening Flush

#include <stdio.h>
#define SIZE20 20

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void func()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

26 ISO/IEC TS 17961

26-78

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Read operation after write without
 intervening flush. */
 if (fread(data, 1, SIZE20, file) < SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;
 }
}

In this example, the file demo.txt is opened for reading and appending. After the call to fwrite(),
a call to fread() without an intervening flush operation is undefined behavior.

Correction — Call fflush() Before the Read Operation

After writing data to the file, before calling fread(), perform a flush call.

#include <stdio.h>
#define SIZE20 20

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void func()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)

 ISO/IEC TS 17961 [ioileave]

26-79

 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Buffer flush after write and before read */
 if (fflush(file) != 0)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 if (fread(data, 1, SIZE20, file) < SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;
 }
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

26 ISO/IEC TS 17961

26-80

ISO/IEC TS 17961 [liberr]
Failing to detect and handle standard library errors

Description
Rule Definition

Failing to detect and handle standard library errors.

Polyspace Implementation

This checker checks for these issues:

• Returned value of a sensitive function not checked.
• Unprotected dynamic memory allocation.

Examples
Returned value of a sensitive function not checked

Issue

Returned value of a sensitive function not checked occurs when you call sensitive standard
functions, but you:

• Ignore the return value.
• Use an output or a return value without testing the validity of the return value.

For this defect, two type of functions are considered: sensitive and critical sensitive.

A sensitive function is a standard function that can encounter:

• Exhausted system resources (for example, when allocating resources)
• Changed privileges or permissions
• Tainted sources when reading, writing, or converting data from external sources
• Unsupported features despite an existing API

A critical sensitive function is a sensitive function that performs one of these critical or vulnerable
tasks:

• Set privileges (for example, setuid)
• Create a jail (for example, chroot)
• Create a process (for example, fork)
• Create a thread (for example, thrd_create)
• Lock or unlock memory segments (for example, mlock)

 ISO/IEC TS 17961 [liberr]

26-81

Risk

If you do not check the return value of functions that perform sensitive or critical sensitive tasks,
your program can behave unexpectedly. Errors from these functions can propagate throughout the
program causing incorrect output, security vulnerabilities, and possibly system failures.
Fix

Before continuing with the program, test the return value of critical sensitive functions.

For sensitive functions, you can explicitly ignore a return value by casting the function to void.
Polyspace does not raise this defect for sensitive functions cast to void. This resolution is not
accepted for critical sensitive functions because they perform more vulnerable tasks.
Example - Sensitive Function Return Ignored

#include<stdio.h>
#include <wchar.h>
#include <locale.h>
void initialize(size_t n, size_t* size, wchar_t *wcs, const char *utf8) {

 scanf("%d",&n); //Noncompliant
 setlocale (LC_CTYPE, "en_US.UTF-8"); //Noncompliant
 *size = mbstowcs (wcs, utf8, n);
}

This example shows a call to the sensitive function scanf(). The return value of scanf() is ignored,
causing a defect. Similarly, the pointer returned by setlocale is not checked. When setlocal
returns a NULL pointer, the call to mbstowcs might fail or produce unexpected results. Polyspace
flags these calls to sensitive functions when their returns are not checked.
Correction — Cast Function to (void)

One possible correction is to cast the functions to void. This fix informs Polyspace and any reviewers
that you are explicitly ignoring the return value of these sensitive functions.

#include<stdio.h>
#include <wchar.h>
#include <locale.h>
void initialize(size_t n, size_t* size, wchar_t *wcs, const char *utf8) {

 (void)scanf("%d",&n); //Compliant
 (void)setlocale (LC_CTYPE, "en_US.UTF-8"); //Compliant
 *size = mbstowcs (wcs, utf8, n);
}

Correction — Test Return Value

One possible correction is to test the return value of scanf and setlocale to check for errors.

#include<stdio.h>
#include <wchar.h>
#include <locale.h>
void initialize(size_t n, size_t* size, wchar_t *wcs, const char *utf8) {

 int flag = scanf("%d",&n);
 if(flag>0){ //Compliant
 // action
 }

26 ISO/IEC TS 17961

26-82

 char* status = setlocale (LC_CTYPE, "en_US.UTF-8");
 if(status!=NULL){//Compliant
 *size = mbstowcs (wcs, utf8, n);
 }

}

Example - Critical Function Return Ignored

#include <threads.h>
int thrd_func(void);
void initialize() {
 thrd_t thr;
 int n = 1;

 (void) thrd_create(&thr,thrd_func,&n);
}

In this example, a critical function thrd_create is called and its return value is ignored by casting
to void, but because thrd_create is a critical function, Polyspace does not ignore this Return value
of a sensitive function not checked defect.

Correction — Test the Return Value of Critical Functions

The correction for this defect is to check the return value of these critical functions to verify the
function performed as expected.

 #include <threads.h>
int thrd_func(void);
void initialize() {
 thrd_t thr;
 int n = 1;
 if(thrd_success!= thrd_create(&thr,thrd_func,&n)){
 // handle error

 }
}

Unprotected dynamic memory allocation
Issue

Unprotected dynamic memory allocation occurs when you do not check after dynamic memory
allocation whether the memory allocation succeeded.

Risk

When memory is dynamically allocated using malloc, calloc, or realloc, it returns a value NULL if
the requested memory is not available. If the code following the allocation accesses the memory block
without checking for this NULL value, this access is not protected from failures.

Fix

Check the return value of malloc, calloc, or realloc for NULL before accessing the allocated
memory location.

#define SIZE 10
//...
int *ptr = malloc(SIZE * sizeof(int));

 ISO/IEC TS 17961 [liberr]

26-83

if(ptr) /* Check for NULL */
{
 /* Memory access through ptr */
}

Example - Unprotected dynamic memory allocation error

#include <stdlib.h>

void Assign_Value(void)
{
 int* p = (int*)calloc(5, sizeof(int));

 *p = 2;
 /* Defect: p is not checked for NULL value */

 free(p);
}

If the memory allocation fails, the function calloc returns NULL to p. Before accessing the memory
through p, the code does not check whether p is NULL

Correction — Check for NULL Value

One possible correction is to check whether p has value NULL before dereference.

#include <stdlib.h>

void Assign_Value(void)
 {
 int* p = (int*)calloc(5, sizeof(int));

 /* Fix: Check if p is NULL */
 if(p!=NULL) *p = 2;

 free(p);
 }

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

26 ISO/IEC TS 17961

26-84

ISO/IEC TS 17961 [libmod]
Modifying the string returned by getenv, localeconv, setlocale, and strerror

Description
Rule Definition

Modifying the string returned by getenv, localeconv, setlocale, and strerror.

Polyspace Implementation

This checker checks for Modification of internal buffer returned from nonreentrant standard
function.

Examples
Modification of internal buffer returned from nonreentrant standard function
Issue

Modification of internal buffer returned from nonreentrant standard function occurs when
the following happens:

• A nonreentrant standard function returns a pointer.
• You attempt to write to the memory location that the pointer points to.

Nonreentrant standard functions that return a non const-qualified pointer to an internal buffer
include getenv, getlogin, crypt, setlocale, localeconv, strerror and others.
Risk

Modifying the internal buffer that a nonreentrant standard function returns can cause the following
issues:

• It is possible that the modification does not succeed or alters other internal data.

For instance, getenv returns a pointer to an environment variable value. If you modify this value,
you alter the environment of the process and corrupt other internal data.

• Even if the modification succeeds, it is possible that a subsequent call to the same standard
function does not return your modified value.

For instance, you modify the environment variable value that getenv returns. If another process,
thread, or signal handler calls setenv, the modified value is overwritten. Therefore, a subsequent
call to getenv does not return your modified value.

Fix

Avoid modifying the internal buffer using the pointer returned from the function.
Example - Modification of getenv Return Value

#include <stdlib.h>
#include <string.h>

 ISO/IEC TS 17961 [libmod]

26-85

void printstr(const char*);

void func() {
 char* env = getenv("LANGUAGE");
 if (env != NULL) {
 strncpy(env, "C", 1);
 printstr(env);
 }
}

In this example, the first argument of strncpy is the return value from a nonreentrant standard
function getenv. The behavior can be undefined because strncpy modifies this argument.

Correction - Copy Return Value of getenv and Modify Copy

One possible solution is to copy the return value of getenv and pass the copy to the strncpy
function.

#include <stdlib.h>
#include <string.h>
enum {
 SIZE20 = 20
};

void printstr(const char*);

void func() {
 char* env = getenv("LANGUAGE");
 if (env != NULL) {
 char env_cp[SIZE20];
 strncpy(env_cp, env, SIZE20);
 strncpy(env_cp, "C", 1);
 printstr(env_cp);
 }
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

26 ISO/IEC TS 17961

26-86

ISO/IEC TS 17961 [libptr]
Forming invalid pointers by library function

Description
Rule Definition

Forming invalid pointers by library function.

Polyspace Implementation

This checker checks for these issues:

• Use of path manipulation function without maximum sized buffer checking.
• Invalid use of standard library memory routine.
• Invalid use of standard library string routine.
• Destination buffer overflow in string manipulation.

Examples
Use of path manipulation function without maximum sized buffer checking
Issue

Use of path manipulation function without maximum-sized buffer checking occurs when the
destination argument of a path manipulation function such as realpath or getwd has a buffer size
less than PATH_MAX bytes.

Risk

A buffer smaller than PATH_MAX bytes can overflow but you cannot test the function return value to
determine if an overflow occurred. If an overflow occurs, following the function call, the content of
the buffer is undefined.

For instance, char *getwd(char *buf) copies an absolute path name of the current folder to its
argument. If the length of the absolute path name is greater than PATH_MAX bytes, getwd returns
NULL and the content of *buf is undefined. You can test the return value of getwd for NULL to see if
the function call succeeded.

However, if the allowed buffer for buf is less than PATH_MAX bytes, a failure can occur for a smaller
absolute path name. In this case, getwd does not return NULL even though a failure occurred.
Therefore, the allowed buffer for buf must be PATH_MAX bytes long.

Fix

Possible fixes are:

• Use a buffer size of PATH_MAX bytes. If you obtain the buffer from an unknown source, before
using the buffer as argument of getwd or realpath function, make sure that the size is less than
PATH_MAX bytes.

 ISO/IEC TS 17961 [libptr]

26-87

• Use a path manipulation function that allows you to specify a buffer size.

For instance, if you are using getwd to get the absolute path name of the current folder, use char
*getcwd(char *buf, size_t size); instead. The additional argument size allows you to
specify a size greater than or equal to PATH_MAX.

• Allow the function to allocate additional memory dynamically, if possible.

For instance, char *realpath(const char *path, char *resolved_path); dynamically
allocates memory if resolved_path is NULL. However, you have to deallocate this memory later
using the free function.

Example - Possible Buffer Overflow in Use of getwd Function

#include <unistd.h>
#include <linux/limits.h>
#include <stdio.h>

void func(void) {
 char buf[PATH_MAX];
 if (getwd(buf+1)!= NULL) {
 printf("cwd is %s\n", buf);
 }
}

In this example, although the array buf has PATH_MAX bytes, the argument of getwd is buf + 1,
whose allowed buffer is less than PATH_MAX bytes.

Correction — Use Array of Size PATH_MAX Bytes

One possible correction is to use an array argument with size equal to PATH_MAX bytes.

#include <unistd.h>
#include <linux/limits.h>
#include <stdio.h>

void func(void) {
 char buf[PATH_MAX];
 if (getwd(buf)!= NULL) {
 printf("cwd is %s\n", buf);
 }
}

Invalid use of standard library memory routine
Issue

Invalid use of standard library memory routine occurs when a memory library function is called
with invalid arguments. For instance, the memcpy function copies to an array that cannot
accommodate the number of bytes copied.

Risk

Use of a memory library function with invalid arguments can result in issues such as buffer overflow.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do

26 ISO/IEC TS 17961

26-88

not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Invalid Use of Standard Library Memory Routine Error

#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void)
 {
 char str1[10],str2[5];

 printf("Enter string:\n");
 scanf("%s",str1);

 memcpy(str2,str1,6);
 /* Defect: Arguments of memcpy invalid: str2 has size < 6 */

 return str2;
 }

The size of string str2 is 5, but six characters of string str1 are copied into str2 using the memcpy
function.

Correction — Call Function with Valid Arguments

One possible correction is to adjust the size of str2 so that it accommodates the characters copied
with the memcpy function.

#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void)
 {
 /* Fix: Declare str2 with size 6 */
 char str1[10],str2[6];

 printf("Enter string:\n");
 scanf("%s",str1);

 memcpy(str2,str1,6);
 return str2;
 }

 ISO/IEC TS 17961 [libptr]

26-89

Invalid use of standard library string routine
Issue

Invalid use of standard library string routine occurs when a string library function is called with
invalid arguments.

Risk

The risk depends on the type of invalid arguments. For instance, using the strcpy function with a
source argument larger than the destination argument can result in buffer overflows.

Fix

The fix depends on the standard library function involved in the defect. In some cases, you can
constrain the function arguments before the function call. For instance, if the strcpy function:

char * strcpy(char * destination, const char* source);

tries to copy too many bytes into the destination argument compared to the available buffer, constrain
the source argument before the call to strcpy. In some cases, you can use an alternative function to
avoid the error. For instance, instead of strcpy, you can use strncpy to control the number of bytes
copied. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Invalid Use of Standard Library String Routine Error

 #include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);
 /* Error: Size of text is less than gbuffer */

 return(res);
 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot copy text
into gbuffer.

Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger size than
the source string text.

26 ISO/IEC TS 17961

26-90

#include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 /*Fix: gbuffer has equal or larger size than text */
 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);
 }

Destination buffer overflow in string manipulation
Issue

Destination buffer overflow in string manipulation occurs when certain string manipulation
functions write to their destination buffer argument at an offset greater than the buffer size.

For instance, when calling the function sprintf(char* buffer, const char* format), you
use a constant string format of greater size than buffer.

Risk

Buffer overflow can cause unexpected behavior such as memory corruption or stopping your system.
Buffer overflow also introduces the risk of code injection.

Fix

One possible solution is to use alternative functions to constrain the number of characters written.
For instance:

• If you use sprintf to write formatted data to a string, use snprintf, _snprintf or sprintf_s
instead to enforce length control. Alternatively, use asprintf to automatically allocate the
memory required for the destination buffer.

• If you use vsprintf to write formatted data from a variable argument list to a string, use
vsnprintf or vsprintf_s instead to enforce length control.

• If you use wcscpy to copy a wide string, use wcsncpy, wcslcpy, or wcscpy_s instead to enforce
length control.

Another possible solution is to increase the buffer size.

Example - Buffer Overflow in sprintf Use

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 sprintf(buffer, fmt_string);
}

In this example, buffer can contain 20 char elements but fmt_string has a greater size.

 ISO/IEC TS 17961 [libptr]

26-91

Correction — Use snprintf Instead of sprintf

One possible correction is to use the snprintf function to enforce length control.

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 snprintf(buffer, 20, fmt_string);
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

26 ISO/IEC TS 17961

26-92

ISO/IEC TS 17961 [libuse]
Using an object overwritten by getenv, localeconv, setlocale, and strerror

Description
Rule Definition

Using an object overwritten by getenv, localeconv, setlocale, and strerror.

Polyspace Implementation

This checker checks for Misuse of return value from nonreentrant standard function.

Examples
Misuse of return value from nonreentrant standard function
Issue

Misuse of return value from nonreentrant standard function occurs when these events happen
in this sequence:

1 You point to the buffer returned from a nonreentrant standard function such as getenv or
setlocale.

user = getenv("USER");
2 You call that nonreentrant standard function again.

user2 = getenv("USER2");
3 You use or dereference the pointer from the first step expecting the buffer to remain unmodified

since that step. In the meantime, the call in the second step has modified the buffer.

For instance:

var=*user;

In some cases, the defect might appear even if you do not call the getenv function a second time but
simply return the pointer. For instance:

char* func() {
 user=getenv("USER");
 .
 .
 return user;
}

For information on which functions are covered by this defect, see documentation on nonreentrant
standard functions.
Risk

The C Standard allows nonreentrant functions such as getenv to return a pointer to a static buffer.
Because the buffer is static, a second call to getenv modifies the buffer. If you continue to use the

 ISO/IEC TS 17961 [libuse]

26-93

https://www.securecoding.cert.org/confluence/display/c/ENV34-C.+Do+not+store+pointers+returned+by+certain+functions
https://www.securecoding.cert.org/confluence/display/c/ENV34-C.+Do+not+store+pointers+returned+by+certain+functions

pointer returned from the first call past the second call, you can see unexpected results. The buffer
that it points to no longer has values from the first call.

The defect appears even if you do not call getenv a second time but simply return the pointer. The
reason is that someone calling your function might use the returned pointer after a second call to
getenv. By returning the pointer from your call to getenv, you make your function unsafe to use.

The same rationale is true for other nonreentrant functions covered by this defect.

Fix

After the first call to getenv, make a copy of the buffer that the returned pointer points to. After the
second call to getenv, use this copy. Even if the second call modifies the buffer, your copy is
untouched.

Example - Return from getenv Used After Second Call to getenv

#include <stdlib.h>
#include <string.h>

int func()
{
 int result = 0;

 char *home = getenv("HOME"); /* First call */
 if (home != NULL) {
 char *user = NULL;
 char *user_name_from_home = strrchr(home, '/');

 if (user_name_from_home != NULL) {
 user = getenv("USER"); /* Second call */
 if ((user != NULL) &&
 (strcmp(user, user_name_from_home) == 0))
 {
 result = 1;
 }
 }
 }
 return result;
}

In this example, the pointer user_name_from_home is derived from the pointer home. home points
to the buffer returned from the first call to getenv. Therefore, user_name_from_home points to a
location in the same buffer.

After the second call to getenv, the buffer is modified. If you continue to use
user_name_from_home, you can get unexpected results.

Correction — Make Copy of Buffer Before Second Call

If you want to access the buffer from the first call to getenv past the second call, make a copy of the
buffer after the first call. One possible correction is to use the strdup function to make the copy.

#include <stdlib.h>
#include <string.h>

int func()
{

26 ISO/IEC TS 17961

26-94

 int result = 0;

 char *home = getenv("HOME");
 if (home != NULL) {
 char *user = NULL;
 char *user_name_from_home = strrchr(home, '/');
 if (user_name_from_home != NULL) {
 /* Make copy before second call */
 char *saved_user_name_from_home = strdup(user_name_from_home);
 if (saved_user_name_from_home != NULL) {
 user = getenv("USER");
 if ((user != NULL) &&
 (strcmp(user, saved_user_name_from_home) == 0))
 {
 result = 1;
 }
 free(saved_user_name_from_home);
 }
 }
 }
 return result;
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [libuse]

26-95

ISO/IEC TS 17961 [nonnullcs]
Passing a non-null-terminated character sequence to a library function

Description
Rule Definition

Passing a non-null-terminated character sequence to a library function.

Polyspace Implementation

This checker checks for Invalid use of standard library string routine.

Examples
Invalid use of standard library string routine
Issue

Invalid use of standard library string routine occurs when a string library function is called with
invalid arguments.
Risk

The risk depends on the type of invalid arguments. For instance, using the strcpy function with a
source argument larger than the destination argument can result in buffer overflows.
Fix

The fix depends on the standard library function involved in the defect. In some cases, you can
constrain the function arguments before the function call. For instance, if the strcpy function:

char * strcpy(char * destination, const char* source);

tries to copy too many bytes into the destination argument compared to the available buffer, constrain
the source argument before the call to strcpy. In some cases, you can use an alternative function to
avoid the error. For instance, instead of strcpy, you can use strncpy to control the number of bytes
copied. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Invalid Use of Standard Library String Routine Error

 #include <string.h>
 #include <stdio.h>

26 ISO/IEC TS 17961

26-96

 char* Copy_String(void)
 {
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);
 /* Error: Size of text is less than gbuffer */

 return(res);
 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot copy text
into gbuffer.

Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger size than
the source string text.

#include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 /*Fix: gbuffer has equal or larger size than text */
 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);
 }

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [nonnullcs]

26-97

ISO/IEC TS 17961 [nullref]
Dereferencing an out-of-domain pointer

Description
Rule Definition

Dereferencing an out-of-domain pointer.

Polyspace Implementation

This checker checks for these issues:

• Unsafe pointer arithmetic.
• Invalid use of standard library memory routine.
• Null pointer.
• Arithmetic operation with NULL pointer.
• Invalid use of standard library string routine.

Examples
Unsafe pointer arithmetic

Issue

The issue occurs when a pointer resulting from arithmetic on a pointer operand does not address an
element of the same array as that pointer operand.

Polyspace flags this rule during the analysis as:

• Bug Finder — Array access out-of-bounds and Pointer access out-of-bounds
• Code Prover — Illegally dereferenced pointer and Out of bounds array index

Bug Finder and Code Prover check this rule differently and can show different results for this rule. In
Code Prover, you can also see a difference in results based on your choice for the option
Verification level (-to). See “Check for Coding Standard Violations”.

Risk

Using an invalid array subscript can lead to erroneous behavior of the program. Run-time derived
array subscripts are especially troublesome because they cannot be easily checked by manual review
or static analysis.

The C Standard defines the creation of a pointer to one beyond the end of the array. The rule permits
the C Standard. Dereferencing a pointer to one beyond the end of an array causes undefined behavior
and is noncompliant.

26 ISO/IEC TS 17961

26-98

Invalid use of standard library memory routine
Issue

Invalid use of standard library memory routine occurs when a memory library function is called
with invalid arguments. For instance, the memcpy function copies to an array that cannot
accommodate the number of bytes copied.
Risk

Use of a memory library function with invalid arguments can result in issues such as buffer overflow.
Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Invalid Use of Standard Library Memory Routine Error

#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void)
 {
 char str1[10],str2[5];

 printf("Enter string:\n");
 scanf("%s",str1);

 memcpy(str2,str1,6);
 /* Defect: Arguments of memcpy invalid: str2 has size < 6 */

 return str2;
 }

The size of string str2 is 5, but six characters of string str1 are copied into str2 using the memcpy
function.
Correction — Call Function with Valid Arguments

One possible correction is to adjust the size of str2 so that it accommodates the characters copied
with the memcpy function.

#include <string.h>
#include <stdio.h>

 ISO/IEC TS 17961 [nullref]

26-99

char* Copy_First_Six_Letters(void)
 {
 /* Fix: Declare str2 with size 6 */
 char str1[10],str2[6];

 printf("Enter string:\n");
 scanf("%s",str1);

 memcpy(str2,str1,6);
 return str2;
 }

Null pointer
Issue

Null pointer occurs when you use a pointer with a value of NULL as if it points to a valid memory
location.

Risk

Dereferencing a null pointer is undefined behavior. In most implementations, the dereference can
cause your program to crash.

Fix

Check a pointer for NULL before dereference.

If the issue occurs despite an earlier check for NULL, look for intermediate events between the check
and the subsequent dereference. Often the result details show a sequence of events that led to the
defect. You can implement the fix on any event in the sequence. If the result details do not show the
event history, you can trace back using right-click options in the source code and see previous related
events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

Example - Null pointer error

#include <stdlib.h>

int FindMax(int *arr, int Size)
{
 int* p=NULL;

 *p=arr[0];
 /* Defect: Null pointer dereference */

 for(int i=0;i<Size;i++)
 {
 if(arr[i] > (*p))
 *p=arr[i];
 }

 return *p;
}

The pointer p is initialized with value of NULL. However, when the value arr[0] is written to *p, p is
assumed to point to a valid memory location.

26 ISO/IEC TS 17961

26-100

Correction — Assign Address to Null Pointer Before Dereference

One possible correction is to initialize p with a valid memory address before dereference.

#include <stdlib.h>

int FindMax(int *arr, int Size)
{
 /* Fix: Assign address to null pointer */
 int* p=&arr[0];

 for(int i=0;i<Size;i++)
 {
 if(arr[i] > (*p))
 *p=arr[i];
 }

 return *p;
}

Arithmetic operation with NULL pointer
Issue

Arithmetic operation with NULL pointer occurs when an arithmetic operation involves a pointer
whose value is NULL.
Risk

Performing pointer arithmetic on a null pointer and dereferencing the resulting pointer is undefined
behavior. In most implementations, the dereference can cause your program to crash.
Fix

Check a pointer for NULL before arithmetic operations on the pointer.

If the issue occurs despite an earlier check for NULL, look for intermediate events between the check
and the subsequent dereference. Often the result details show a sequence of events that led to the
defect. You can implement the fix on any event in the sequence. If the result details do not show the
event history, you can trace back using right-click options in the source code and see previous related
events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.
Example - Arithmetic Operation with NULL Pointer Error

#include<stdlib.h>

int Check_Next_Value(int *loc, int val)
 {
 int *ptr = loc, found = 0;

 if (ptr==NULL)
 {
 ptr++;
 /* Defect: NULL pointer shifted */

 if (*ptr==val) found=1;
 }

 ISO/IEC TS 17961 [nullref]

26-101

 return(found);
 }

When ptr is a NULL pointer, the code enters the if statement body. Therefore, a NULL pointer is
shifted in the statement ptr++.

Correction — Avoid NULL Pointer Arithmetic

One possible correction is to perform the arithmetic operation when ptr is not NULL.

#include<stdlib.h>

int Check_Next_Value(int *loc, int val)
 {
 int *ptr = loc, found = 0;

 /* Fix: Perform operation when ptr is not NULL */
 if (ptr!=NULL)
 {
 ptr++;

 if (*ptr==val) found=1;
 }

 return(found);
 }

Invalid use of standard library string routine
Issue

Invalid use of standard library string routine occurs when a string library function is called with
invalid arguments.

Risk

The risk depends on the type of invalid arguments. For instance, using the strcpy function with a
source argument larger than the destination argument can result in buffer overflows.

Fix

The fix depends on the standard library function involved in the defect. In some cases, you can
constrain the function arguments before the function call. For instance, if the strcpy function:

char * strcpy(char * destination, const char* source);

tries to copy too many bytes into the destination argument compared to the available buffer, constrain
the source argument before the call to strcpy. In some cases, you can use an alternative function to
avoid the error. For instance, instead of strcpy, you can use strncpy to control the number of bytes
copied.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

26 ISO/IEC TS 17961

26-102

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Invalid Use of Standard Library String Routine Error

 #include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);
 /* Error: Size of text is less than gbuffer */

 return(res);
 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot copy text
into gbuffer.

Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger size than
the source string text.

#include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 /*Fix: gbuffer has equal or larger size than text */
 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);
 }

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [nullref]

26-103

ISO/IEC TS 17961 [padcomp]
Comparison of padding data

Description
Rule Definition

Comparison of padding data.

Polyspace Implementation

This checker checks for Memory comparison of padding data.

Examples
Memory comparison of padding data
Issue

Memory comparison of padding data occurs when you use the memcmp function to compare two
structures as a whole. In the process, you compare meaningless data stored in the structure padding.

For instance:

typedef struct structType {
 char member1;
 int member2;
 //...
}myStruct;

myStruct var1;
myStruct var2;
//...
if(memcmp(&var1,&var2,sizeof(var1)))//Noncompliant
{
//...
}

Risk

If members of a structure have different data types, your compiler introduces additional padding for
data alignment in memory. For an example of padding, see Higher Estimate of Size of Local
Variables.

The content of these extra padding bytes is meaningless. The C Standard allows the content of these
bytes to be indeterminate, giving different compilers latitude to implement their own padding. If you
perform a byte-by-byte comparison of structures with memcmp, you compare even the meaningless
data stored in the padding. You might reach the false conclusion that two data structures are not
equal, even if their corresponding members have the same value.
Fix

Instead of comparing two structures in one attempt, compare the structures member by member.

26 ISO/IEC TS 17961

26-104

For efficient code, write a function that does the comparison member by member. Use this function
for comparing two structures.

You can use memcmp for byte-by-byte comparison of structures only if you know that the structures do
not contain padding. Typically, to prevent padding, you use specific attributes or pragmas such as
#pragma pack. However, these attributes or pragmas are not supported by all compilers and make
your code implementation-dependent. If your structures contain bit-fields, using these attributes or
pragmas cannot prevent padding.

Example - Structures Compared with memcmp

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define fatal_error() abort()

typedef struct s_padding
{
 char c;
 int i;
 unsigned int bf1:1;
 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

/* Function that guarantees safe access to the input memory */
extern int trusted_memory_zone(void *ptr, size_t sz);

int func(const S_Padding *left, const S_Padding *right)
{

 if (!trusted_memory_zone((void *)left, sizeof(S_Padding)) ||
 !trusted_memory_zone((void *)right, sizeof(S_Padding))) {
 fatal_error();
 }

 if (0 == memcmp(left, right, sizeof(S_Padding)))
 {
 return 1;
 }
 else
 return 0;
}

In this example, memcmp compares byte-by-byte the two structures that left and right point to.
Even if the values stored in the structure members are the same, the comparison can show an
inequality if the meaningless values in the padding bytes are not the same.

Correction — Compare Structures Member by Member

One possible correction is to compare individual structure members.

Note You can compare entire arrays by using memcmp. All members of an array have the same data
type. Padding bytes are not required to store arrays.

 ISO/IEC TS 17961 [padcomp]

26-105

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define fatal_error() abort()

typedef struct s_padding
{
 char c;
 int i;
 unsigned int bf1:1;
 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

/* Function that guarantees safe access to the input memory */
extern int trusted_memory_zone(void *ptr, size_t sz);

int func(const S_Padding *left, const S_Padding *right)
{
 if (!trusted_memory_zone((void *)left, sizeof(S_Padding)) ||
 !trusted_memory_zone((void *)right, sizeof(S_Padding))) {
 fatal_error();
 }

 return ((left->c == right->c) &&
 (left->i == right->i) &&
 (left->bf1 == right->bf1) &&
 (left->bf2 == right->bf2) &&
 (memcmp(left->buffer, right->buffer, 20) == 0));
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

26 ISO/IEC TS 17961

26-106

ISO/IEC TS 17961 [ptrcomp]
Accessing an object through a pointer to an incompatible type

Description
Rule Definition

Accessing an object through a pointer to an incompatible type.

Polyspace Implementation

This checker checks for Conversion between pointers to different objects.

Examples
Conversion between pointers to different objects
Issue

The issue occurs when a cast is performed between a pointer to object type and a pointer to a
different object type.

Risk

If a pointer to an object is cast into a pointer to a different object, the resulting pointer can be
incorrectly aligned. The incorrect alignment causes undefined behavior.

Even if the conversion produces a pointer that is correctly aligned, the behavior can be undefined if
the pointer is used to access an object.

Exception: You can convert a pointer to object type into a pointer to one of the following types:

• char
• signed char
• unsigned char

Example - Noncompliant: Cast to Pointer Pointing to Object of Wider Type

signed char *p1;
unsigned int *p2;

void foo(void){
 p2 = (unsigned int *) p1; /* Non-compliant */
}

In this example, p1 can point to a signed char object. However, p1 is cast to a pointer that points
to an object of wider type, unsigned int.

Example - Noncompliant: Cast to Pointer Pointing to Object of Narrower Type

extern unsigned int read_value (void);
extern void display (unsigned int n);

 ISO/IEC TS 17961 [ptrcomp]

26-107

void foo (void){
 unsigned int u = read_value ();
 unsigned short *hi_p = (unsigned short *) &u; /* Non-compliant */
 *hi_p = 0;
 display (u);
}

In this example, u is an unsigned int variable. &u is cast to a pointer that points to an object of
narrower type, unsigned short.

On a big-endian machine, the statement *hi_p = 0 attempts to clear the high bits of the memory
location that &u points to. But, from the result of display(u), you might find that the high bits have
not been cleared.

Example - Compliant: Cast Adding a Type Qualifier

const short *p;
const volatile short *q;
void foo (void){
 q = (const volatile short *) p; /* Compliant */
}

In this example, both p and q can point to short objects. The cast between them adds a volatile
qualifier only and is therefore compliant.

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

26 ISO/IEC TS 17961

26-108

ISO/IEC TS 17961 [ptrobj]
Subtracting or comparing two pointers that do not refer to the same array

Description
Rule Definition

Subtracting or comparing two pointers that do not refer to the same array.

Polyspace Implementation

This checker checks for Subtraction or comparison between pointers to different arrays.

Examples
Subtraction or comparison between pointers to different arrays
Issue

Subtraction or comparison between pointers to different arrays occurs when you subtract or
compare pointers that are null or that point to elements in different arrays. The relational operators
for the comparison are >, <, >=, and <=.
Risk

When you subtract two pointers to elements in the same array, the result is the difference between
the subscripts of the two array elements. Similarly, when you compare two pointers to array
elements, the result is the positions of the pointers relative to each other. If the pointers are null or
point to different arrays, a subtraction or comparison operation is undefined. If you use the
subtraction result as a buffer index, it can cause a buffer overflow.
Fix

Before you subtract or use relational operators to compare pointers to array elements, check that
they are non-null and that they point to the same array.
Example - Subtraction Between Pointers to Elements in Different Arrays

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE20 20

size_t func(void)
{
 int nums[SIZE20];
 int end;
 int *next_num_ptr = nums;
 size_t free_elements;
 /* Increment next_num_ptr as array fills */

 /* Subtraction operation is undefined unless array nums
 is adjacent to variable end in memory. */

 ISO/IEC TS 17961 [ptrobj]

26-109

 free_elements = &end - next_num_ptr;
 return free_elements;
}

In this example, the array nums is incrementally filled. Pointer subtraction is then used to determine
how many free elements remain. Unless end points to a memory location one past the last element of
nums, the subtraction operation is undefined.

Correction — Subtract Pointers to the Same Array

Subtract the pointer to the last element that was filled from the pointer to the last element in the
array.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE20 20

size_t func(void)
{
 int nums[SIZE20];
 int *next_num_ptr = nums;
 size_t free_elements;
 /* Increment next_num_ptr as array fills */

 /* Subtraction operation involves pointers to the same array. */
 free_elements = &(nums[SIZE20 - 1]) - next_num_ptr;

 return free_elements + 1;
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

26 ISO/IEC TS 17961

26-110

ISO/IEC TS 17961 [resident]
Using identifiers that are reserved for the implementation

Description
Rule Definition

Using identifiers that are reserved for the implementation.

Polyspace Implementation

This checker checks for Declaration of reserved identifiers or macro names.

Examples
Declaration of reserved identifiers or macro names
Issue

The issue occurs when a reserved identifier or macro name is declared.

If you define a macro name that corresponds to a standard library macro, object, or function, rule
21.1 is violated.

The rule considers tentative definitions as definitions.

Risk

The Standard allows implementations to treat reserved identifiers specially. If you reuse reserved
identifiers, you can cause undefined behavior.

Check Information
Decidability: Decidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [resident]

26-111

ISO/IEC TS 17961 [restrict]
Passing pointers into the same object as arguments to different restrict-qualified parameters

Description
Rule Definition

Passing pointers into the same object as arguments to different restrict-qualified parameters.

Polyspace Implementation

This checker checks for Copy of overlapping memory.

Examples
Copy of overlapping memory
Issue

Copy of overlapping memory occurs when there is a memory overlap between the source and
destination argument of a copy function such as memcpy or strcpy. For instance, the source and
destination arguments of strcpy are pointers to different elements in the same string.
Risk

If there is memory overlap between the source and destination arguments of copy functions,
according to C standards, the behavior is undefined.
Fix

Determine if the memory overlap is what you want. If so, find an alternative function. For instance:

• If you are using memcpy to copy values from one memory location to another, use memmove
instead of memcpy.

• If you are using strcpy to copy one string to another, use memmove instead of strcpy, as follows:

s = strlen(source);
memmove(destination, source, s + 1);

strlen determines the string length without the null terminator. Therefore, you must move s+1
bytes instead of s bytes.

Example - Overlapping Copy

#include <string.h>

char str[] = {"ABCDEFGH"};

void my_copy() {
 strcpy(&str[0],(const char*)&str[2]);
}

In this example, because the source and destination argument are pointers to the same string str,
there is memory overlap between their allowed buffers.

26 ISO/IEC TS 17961

26-112

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [restrict]

26-113

ISO/IEC TS 17961 [sigcall]
Calling signal from interruptible signal handlers

Description
Rule Definition

Calling signal from interruptible signal handlers.

Polyspace Implementation

This checker checks for Signal call from within signal handler.

Examples
Signal call from within signal handler
Issue

Signal call from within signal handler occurs when you call signal() from a nonpersistent
signal handler on a Windows platform.
Risk

A nonpersistent signal handler is reset after catching a signal. The handler does not catch subsequent
signals unless the handler is reestablished by calling signal(). A nonpersistent signal handler on a
Windows platform is reset to SIG_DFL. If another signal interrupts the execution of the handler, that
signal can cause a race condition between SIG_DFL and the existing signal handler. A call to
signal() can also result in an infinite loop inside the handler.
Fix

Do not call signal() from a signal handler on Windows platforms.
Example - signal() Called from Signal Handler

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>

volatile sig_atomic_t e_flag = 0;

void sig_handler(int signum)
{
 int s0 = signum;
 e_flag = 1;

 /* Call signal() to reestablish sig_handler
 upon receiving SIG_ERR. */

 if (signal(s0, sig_handler) == SIG_ERR)

26 ISO/IEC TS 17961

26-114

 {
 /* Handle error */
 }
}

void func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

 }
 /* more code */
}

In this example, the definition of sig_handler() includes a call to signal() when the handler
catches SIG_ERR. On Windows platforms, signal handlers are nonpersistent. This code can result in a
race condition.

Correction — Do Not Call signal() from Signal Handler

If your code requires the use of a persistent signal handler on a Windows platform, use a persistent
signal handler after performing a thorough risk analysis.

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>

volatile sig_atomic_t e_flag = 0;

void sig_handler(int signum)
{
 int s0 = signum;
 e_flag = 1;
 /* No call to signal() */
}

int main(void)
{

 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

 }
}

Check Information
Decidability: Undecidable

 ISO/IEC TS 17961 [sigcall]

26-115

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

26 ISO/IEC TS 17961

26-116

ISO/IEC TS 17961 [signconv]
Conversion of signed characters to wider integer types before a check for EOF

Description
Rule Definition

Conversion of signed characters to wider integer types before a check for EOF.

Polyspace Implementation

This checker checks for Misuse of sign-extended character value.

Examples
Misuse of sign-extended character value
Issue

Misuse of sign-extended character value occurs when you convert a signed or plain char data
type to a wider integer data type with sign extension. You then use the resulting sign-extended value
as array index, for comparison with EOF or as argument to a character-handling function.

Risk

Comparison with EOF: Suppose, your compiler implements the plain char type as signed. In this
implementation, the character with the decimal form of 255 (–1 in two’s complement form) is stored
as a signed value. When you convert a char variable to the wider data type int for instance, the sign
bit is preserved (sign extension). This sign extension results in the character with the decimal form
255 being converted to the integer –1, which cannot be distinguished from EOF.

Use as array index: By similar reasoning, you cannot use sign-extended plain char variables as array
index. If the sign bit is preserved, the conversion from char to int can result in negative integers.
You must use positive integer values for array index.

Argument to character-handling function: By similar reasoning, you cannot use sign-extended plain
char variables as arguments to character-handling functions declared in ctype.h, for instance,
isalpha() or isdigit(). According to the C11 standard (Section 7.4), if you supply an integer
argument that cannot be represented as unsigned char or EOF, the resulting behavior is
undefined.

Fix

Before conversion to a wider integer data type, cast the signed or plain char value explicitly to
unsigned char.

Example - Sign-Extended Character Value Compared with EOF

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

extern char parsed_token_buffer[20];

 ISO/IEC TS 17961 [signconv]

26-117

static int parser(char *buf)
{
 int c = EOF;
 if (buf && *buf) {
 c = *buf++;
 }
 return c;
}

void func()
{
 if (parser(parsed_token_buffer) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

In this example, the function parser can traverse a string input buf. If a character in the string has
the decimal form 255, when converted to the int variable c, its value becomes –1, which is
indistinguishable from EOF. The later comparison with EOF can lead to a false positive.

Correction — Cast to unsigned char Before Conversion

One possible correction is to cast the plain char value to unsigned char before conversion to the
wider int type.

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

extern char parsed_token_buffer[20];

static int parser(char *buf)
{
 int c = EOF;
 if (buf && *buf) {
 c = (unsigned char)*buf++;
 }
 return c;
}

void func()
{
 if (parser(parsed_token_buffer) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

26 ISO/IEC TS 17961

26-118

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [signconv]

26-119

ISO/IEC TS 17961 [sizeofptr]
Taking the size of a pointer to determine the size of the pointed-to type

Description
Rule Definition

Taking the size of a pointer to determine the size of the pointed-to type.

Polyspace Implementation

This checker checks for Possible misuse of sizeof.

Examples
Possible misuse of sizeof
Issue

Possible misuse of sizeof occurs when Polyspace Bug Finder detects possibly unintended results
from the use of sizeof operator. For instance:

• You use the sizeof operator on an array parameter name, expecting the array size. However, the
array parameter name by itself is a pointer. The sizeof operator returns the size of that pointer.

• You use the sizeof operator on an array element, expecting the array size. However, the operator
returns the size of the array element.

• The size argument of certain functions such as strncmp or wcsncpy is incorrect because you
used the sizeof operator earlier with possibly incorrect expectations. For instance:

• In a function call strncmp(string1, string2, num), num is obtained from an incorrect
use of the sizeof operator on a pointer.

• In a function call wcsncpy(destination, source, num), num is the not the number of
wide characters but a size in bytes obtained by using the sizeof operator. For instance, you
use wcsncpy(destination, source, sizeof(destination) - 1) instead of
wcsncpy(destination, source, (sizeof(desintation)/sizeof(wchar_t)) - 1).

Risk

Incorrect use of the sizeof operator can cause the following issues:

• If you expect the sizeof operator to return array size and use the return value to constrain a
loop, the number of loop runs are smaller than what you expect.

• If you use the return value of sizeof operator to allocate a buffer, the buffer size is smaller than
what you require. Insufficient buffer can lead to resultant weaknesses such as buffer overflows.

• If you use the return value of sizeof operator incorrectly in a function call, the function does not
behave as you expect.

Fix

Possible fixes are:

26 ISO/IEC TS 17961

26-120

• Do not use the sizeof operator on an array parameter name or array element to determine array
size.

The best practice is to pass the array size as a separate function parameter and use that
parameter in the function body.

• Use the sizeof operator carefully to determine the number argument of functions such as
strncmp or wcsncpy. For instance, for wide string functions such as wcsncpy, use the number of
wide characters as argument instead of the number of bytes.

Example - sizeof Used Incorrectly to Determine Array Size

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < sizeof(a)/sizeof(int); i++) {
 a[i] = i + 1;
 }
}

In this example, sizeof(a) returns the size of the pointer a and not the array size.

Correction — Determine Array Size in Another Way

One possible correction is to use another means to determine the array size.

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < MAX_SIZE; i++) {
 a[i] = i + 1;
 }
}

Check Information
Decidability: Decidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [sizeofptr]

26-121

ISO/IEC TS 17961 [strmod]
Modifying string literals

Description
Rule Definition

Modifying string literals.

Polyspace Implementation

This checker checks for Writing to const qualified object.

Examples
Writing to const qualified object

Issue

Writing to const qualified object occurs when you do one of the following:

• Use a const-qualified object as the destination of an assignment.
• Pass a const-qualified object to a function that modifies the argument.

For instance, the defect can occur in the following situations:

• You pass a const-qualified object as first argument of one of the following functions:

• mkstemp
• mkostemp
• mkostemps
• mkdtemp

• You pass a const-qualified object as the destination argument of one of the following functions:

• strcpy
• strncpy
• strcat
• memset

• You perform a write operation on a const-qualified object.

Risk

The risk depends upon the modifications made to the const-qualified object.

26 ISO/IEC TS 17961

26-122

Situation Risk
Passing to mkstemp, mkostemp, mkostemps,
mkdtemp, and so on.

These functions replace the last six characters of
their first argument with a string. Therefore, they
expect a modifiable char array as their first
argument.

Passing to strcpy, strncpy, strcat, memset
and so on.

These functions modify their destination
argument. Therefore, they expect a modifiable
char array as their destination argument.

Writing to the object The const qualifier implies an agreement that
the value of the object will not be modified. By
writing to a const-qualified object, you break the
agreement. The result of the operation is
undefined.

Fix

The fix depends on the modification made to the const-qualified object.

Situation Fix
Passing to mkstemp, mkostemp, mkostemps,
mkdtemp, and so on.

Pass a non-const object as first argument of the
function.

Passing to strcpy, strncpy, strcat, memset
and so on.

Pass a non-const object as destination argument
of the function.

Writing to the object Perform the write operation on a non-const
object.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Writing to const-Qualified Object

#include <string.h>

const char* buffer = "abcdeXXXXXXX";

void func(char* string) {
 char *ptr = (char*)strchr(buffer,'X');
 if(ptr)
 strcpy(ptr,string);
}

In this example, because buffer is const-qualified, strchr(buffer,'X') returns a const-
qualified char* pointer. When this char* pointer is used as the destination argument of strcpy, a
Writing to const qualified object error appears.

 ISO/IEC TS 17961 [strmod]

26-123

Correction — Copy const-Qualified Object to Non-const Object

One possible correction is to assign the constant string to a non-const object and use the non-const
object as destination argument of strchr.

#include <string.h>

char buffer[] = "abcdeXXXXXXX";

void func(char* string) {
 char *ptr = (char*)strchr(buffer,'X');
 if(ptr)
 strcpy(ptr,string);
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

26 ISO/IEC TS 17961

26-124

ISO/IEC TS 17961 [swtchdflt]
Use of an implied default in a switch statement

Description
Rule Definition

Use of an implied default in a switch statement.

Polyspace Implementation

This checker checks for Missing case for switch condition.

Examples
Missing case for switch condition
Issue

Missing case for switch condition occurs when the switch variable can take values that are not
covered by a case statement.

Note Bug Finder only raises a defect if the switch variable is not full range.

Risk

If the switch variable takes a value that is not covered by a case statement, your program can have
unintended behavior.

A switch-statement that makes a security decision is particularly vulnerable when all possible values
are not explicitly handled. An attacker can use this situation to deviate the normal execution flow.

Fix

It is good practice to use a default statement as a catch-all for values that are not covered by a
case statement. Even if the switch variable takes an unintended value, the resulting behavior can
be anticipated.

Example - Missing Default Condition

#include <stdio.h>
#include <string.h>

typedef enum E
{
 ADMIN=1,
 GUEST,
 UNKNOWN = 0
} LOGIN;

static LOGIN system_access(const char *username) {

 ISO/IEC TS 17961 [swtchdflt]

26-125

 LOGIN user = UNKNOWN;

 if (strcmp(username, "root") == 0)
 user = ADMIN;

 if (strcmp(username, "friend") == 0)
 user = GUEST;

 return user;
}

int identify_bad_user(const char * username)
{
 int r=0;

 switch(system_access(username))
 {
 case ADMIN:
 r = 1;
 break;
 case GUEST:
 r = 2;
 }

 printf("Welcome!\n");
 return r;
}

In this example, the enum parameter User can take a value UNKNOWN that is not covered by a case
statement.

Correction — Add a Default Condition

One possible correction is to add a default condition for possible values that are not covered by a
case statement.

#include <stdio.h>
#include <string.h>

typedef enum E
{
 ADMIN=1,
 GUEST,
 UNKNOWN = 0
} LOGIN;

static LOGIN system_access(const char *username) {
 LOGIN user = UNKNOWN;

 if (strcmp(username, "root") == 0)
 user = ADMIN;

 if (strcmp(username, "friend") == 0)
 user = GUEST;

 return user;
}

26 ISO/IEC TS 17961

26-126

int identify_bad_user(const char * username)
{
 int r=0;

 switch(system_access(username))
 {
 case ADMIN:
 r = 1;
 break;
 case GUEST:
 r = 2;
 break;
 default:
 printf("Invalid login credentials!\n");
 }

 printf("Welcome!\n");
 return r;
}

Check Information
Decidability: Decidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [swtchdflt]

26-127

ISO/IEC TS 17961 [syscall]
Calling system

Description
Rule Definition

Calling system.

Polyspace Implementation

This checker checks for Unsafe call to a system function.

Examples
Unsafe call to a system function
Issue

Unsafe call to a system function occurs when you use a function that invokes an implementation-
defined command processor. These functions include:

• The C standard system() function.
• The POSIX popen() function.
• The Windows _popen() and _wpopen() functions.

Risk

If the argument of a function that invokes a command processor is not sanitized, it can cause
exploitable vulnerabilities. An attacker can execute arbitrary commands or read and modify data
anywhere on the system.
Fix

Do not use a system-family function to invoke a command processor. Instead, use safer functions
such as POSIX execve() and WinAPI CreateProcess().
Example - system() Called

include <string.h>
include <stdlib.h>
include <stdio.h>
include <unistd.h>

enum {
SIZE512=512,
SIZE3=3};

void func(char *arg)
{
 char buf[SIZE512];
 int retval=sprintf(buf, "/usr/bin/any_cmd %s", arg);

26 ISO/IEC TS 17961

26-128

 if (retval<=0 || retval>SIZE512){
 /* Handle error */
 abort();
 }
 /* Use of system() to pass any_cmd with
 unsanitized argument to command processor */

 if (system(buf) == -1) {
 /* Handle error */
 }
}

In this example, system() passes its argument to the host environment for the command processor
to execute. This code is vulnerable to an attack by command-injection.

Correction — Sanitize Argument and Use execve()

In the following code, the argument of any_cmd is sanitized, and then passed to execve() for
execution. exec-family functions are not vulnerable to command-injection attacks.

include <string.h>
include <stdlib.h>
include <stdio.h>
include <unistd.h>

enum {
SIZE512=512,
SIZE3=3};

void func(char *arg)
{
 char *const args[SIZE3] = {"any_cmd", arg, NULL};
 char *const env[] = {NULL};

 /* Sanitize argument */

 /* Use execve() to execute any_cmd. */

 if (execve("/usr/bin/time", args, env) == -1) {
 /* Handle error */
 }
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [syscall]

26-129

ISO/IEC TS 17961 [taintformatio]
Using a tainted value to write to an object using a formatted input or output function

Description
Rule Definition

Using a tainted value to write to an object using a formatted input or output function.

Polyspace Implementation

This checker checks for these issues:

• Buffer overflow from incorrect string format specifier.
• Destination buffer overflow in string manipulation.
• Invalid use of standard library routine.
• Invalid use of standard library string routine.
• Tainted NULL or non-null-terminated string.
• Tainted string format specifier.
• Invalid use of standard library string routine.
• Use of dangerous standard function.

Examples
Buffer overflow from incorrect string format specifier
Issue

Buffer overflow from incorrect string format specifier occurs when the format specifier
argument for functions such as sscanf leads to an overflow or underflow in the memory buffer
argument.

Risk

If the format specifier specifies a precision that is greater than the memory buffer size, an overflow
occurs. Overflows can cause unexpected behavior such as memory corruption.

Fix

Use a format specifier that is compatible with the memory buffer size.

Example - Memory Buffer Overflow

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%33c", buf);
}

26 ISO/IEC TS 17961

26-130

In this example, buf can contain 32 char elements. Therefore, the format specifier %33c causes a
buffer overflow.

Correction — Use Smaller Precision in Format Specifier

One possible correction is to use a smaller precision in the format specifier.

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%32c", buf);
}

Destination buffer overflow in string manipulation
Issue

Destination buffer overflow in string manipulation occurs when certain string manipulation
functions write to their destination buffer argument at an offset greater than the buffer size.

For instance, when calling the function sprintf(char* buffer, const char* format), you
use a constant string format of greater size than buffer.

Risk

Buffer overflow can cause unexpected behavior such as memory corruption or stopping your system.
Buffer overflow also introduces the risk of code injection.

Fix

One possible solution is to use alternative functions to constrain the number of characters written.
For instance:

• If you use sprintf to write formatted data to a string, use snprintf, _snprintf or sprintf_s
instead to enforce length control. Alternatively, use asprintf to automatically allocate the
memory required for the destination buffer.

• If you use vsprintf to write formatted data from a variable argument list to a string, use
vsnprintf or vsprintf_s instead to enforce length control.

• If you use wcscpy to copy a wide string, use wcsncpy, wcslcpy, or wcscpy_s instead to enforce
length control.

Another possible solution is to increase the buffer size.

Example - Buffer Overflow in sprintf Use

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 sprintf(buffer, fmt_string);
}

In this example, buffer can contain 20 char elements but fmt_string has a greater size.

 ISO/IEC TS 17961 [taintformatio]

26-131

Correction — Use snprintf Instead of sprintf

One possible correction is to use the snprintf function to enforce length control.

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 snprintf(buffer, 20, fmt_string);
}

Invalid use of standard library routine
Issue

This issue occurs when you use invalid arguments with a function from the standard library. This
defect picks up errors related to other functions not covered by float, integer, memory, or string
standard library routines.
Risk

Invalid arguments to a standard library function result in undefined behavior.
Fix

The fix depends on the root cause of the defect. For instance, the argument to a printf function can
be NULL because a pointer was initialized with NULL and the initialization value was not overwritten
along a specific execution path.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example – Calling printf Without a String

#include <stdio.h>
#include <stdlib.h>

void print_null(void) {

 printf(NULL);
}

The function printf takes only string input arguments or format specifiers. In this function, the
input value is NULL, which is not a valid string.
Correction — Use Compatible Input Arguments

One possible correction is to change the input arguments to fit the requirements of the standard
library routine. In this example, the input argument was changed to a character.

26 ISO/IEC TS 17961

26-132

#include <stdio.h>

void print_null(void) {
 char zero_val = '0';
 printf((const char*)zero_val);
}

Invalid use of standard library string routine
Issue

Invalid use of standard library string routine occurs when a string library function is called with
invalid arguments.

Risk

The risk depends on the type of invalid arguments. For instance, using the strcpy function with a
source argument larger than the destination argument can result in buffer overflows.

Fix

The fix depends on the standard library function involved in the defect. In some cases, you can
constrain the function arguments before the function call. For instance, if the strcpy function:

char * strcpy(char * destination, const char* source);

tries to copy too many bytes into the destination argument compared to the available buffer, constrain
the source argument before the call to strcpy. In some cases, you can use an alternative function to
avoid the error. For instance, instead of strcpy, you can use strncpy to control the number of bytes
copied. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Invalid Use of Standard Library String Routine Error

 #include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);
 /* Error: Size of text is less than gbuffer */

 return(res);
 }

 ISO/IEC TS 17961 [taintformatio]

26-133

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot copy text
into gbuffer.
Correction — Use Valid Arguments

One possible correction is to declare the destination string gbuffer with equal or larger size than
the source string text.

#include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 /*Fix: gbuffer has equal or larger size than text */
 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);
 }

Tainted NULL or non-null-terminated string
Issue

This issue occurs when strings from nonsecure sources are used in string manipulation routines that
implicitly dereference the string buffer, for instance, strcpy or sprintf.

The checker raises no defect for a string returned from a call to scanf-family variadic functions.
Similarly, no defect is raised when you pass the string with a %s specifier to printf-family variadic
functions.
Risk

If a string is from an unsecure source, it is possible that an attacker manipulated the string or pointed
the string pointer to a different memory location.

If the string is NULL, the string routine cannot dereference the string, causing the program to crash.
If the string is not null-terminated, the string routine might not know when the string ends. This error
can cause you to write out of bounds, causing a buffer overflow.
Fix

Validate the string before you use it. Check that:

• The string is not NULL.
• The string is null-terminated
• The size of the string matches the expected size.

Example – Getting String from Input Argument

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define SIZE128 128
#define MAX 40

26 ISO/IEC TS 17961

26-134

extern void print_str(const char*);
void warningMsg(void)
{
 char userstr[MAX];
 read(0,userstr,MAX);
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(void)
{
 char userstr[MAX];
 read(0,userstr,MAX);
 char str[SIZE128] = "Error: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

In this example, the string str is concatenated with the argument userstr. The value of userstr is
unknown. If the size of userstr is greater than the space available, the concatenation overflows.

Correction 1 — Validate the Data

One possible correction is to check the size of userstr and make sure that the string is null-
terminated before using it in strncat. This example uses a helper function, sansitize_str, to
validate the string. The defects are concentrated in this function.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define SIZE128 128
#define MAX 40
extern void print_str(const char*);
int sanitize_str(char* s) {
 int res = 0;
 if (s && (strlen(s) > 0)) { // Defect only raised here
 // - string is not null
 // - string has a positive and limited size
 // - TAINTED_STRING on strlen used as a firewall
 res = 1;
 }
 return res;
}
void warningMsg(void)
{
 char userstr[MAX];
 read(0,userstr,MAX);
 char str[SIZE128] = "Warning: ";
 if (sanitize_str(userstr))
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

 ISO/IEC TS 17961 [taintformatio]

26-135

Correction 2 — Validate the Data

Another possible correction is to call function errorMsg and warningMsg with specific strings.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

int manageSensorValue(int sensorValue) {
 int ret = sensorValue;
 if (sensorValue < 0) {
 errorMsg("sensor value should be positive");
 exit(1);
 } else if (sensorValue > 50) {
 warningMsg("sensor value greater than 50 (applying threshold)...");
 sensorValue = 50;
 }

 return sensorValue;
}

Tainted string format specifier
Issue

This issue occurs when printf-style functions use a format specifier constructed from nonsecure
sources.
Risk

If you use externally controlled elements to format a string, you can cause buffer overflow or data-
representation problems. An attacker can use these string formatting elements to view the contents
of a stack using %x or write to a stack using %n.
Fix

Pass a static string to format string functions. This fix ensures that an external actor cannot control
the string.

Another possible fix is to allow only the expected number of arguments. If possible, use functions that
do not support the vulnerable %n operator in format strings.

26 ISO/IEC TS 17961

26-136

Example – Get Elements from User Input

#include <stdio.h>
#include <unistd.h>
#define MAX 40
void taintedstringformat(void) {
 char userstr[MAX];
 read(0,userstr,MAX);
 printf(userstr);
}

This example prints the input argument userstr. The string is unknown. If it contains elements such
as %, printf can interpret userstr as a string format instead of a string, causing your program to
crash.

Correction — Print as String

One possible correction is to print userstr explicitly as a string so that there is no ambiguity.

#include <stdio.h>
#include <unistd.h>
#define MAX 40
void taintedstringformat(void) {
 char userstr[MAX];
 read(0,userstr,MAX);
 printf("%.20s", userstr);;
}

Use of dangerous standard function
Issue

The Use of dangerous standard function check highlights uses of functions that are inherently
dangerous or potentially dangerous given certain circumstances. The following table lists possibly
dangerous functions, the risks of using each function, and what function to use instead.

Dangerous
Function

Risk Level Safer Function

gets Inherently dangerous — You cannot
control the length of input from the
console.

fgets

cin Inherently dangerous — You cannot
control the length of input from the
console.

Avoid or prefaces calls to cin with
cin.width.

strcpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

strncpy

stpcpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

stpncpy

lstrcpy or StrCpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

StringCbCopy, StringCchCopy,
strncpy, strcpy_s, or strlcpy

 ISO/IEC TS 17961 [taintformatio]

26-137

Dangerous
Function

Risk Level Safer Function

strcat Possibly dangerous — If the
concatenated result is greater than the
destination, buffer overflow can occur.

strncat, strlcat, or strcat_s

lstrcat or StrCat Possibly dangerous — If the
concatenated result is greater than the
destination, buffer overflow can occur.

StringCbCat, StringCchCat,
strncay, strcat_s, or strlcat

wcpcpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

wcpncpy

wcscat Possibly dangerous — If the
concatenated result is greater than the
destination, buffer overflow can occur.

wcsncat, wcslcat, or wcncat_s

wcscpy Possibly dangerous — If the source
length is greater than the destination,
buffer overflow can occur.

wcsncpy

sprintf Possibly dangerous — If the output
length depends on unknown lengths or
values, buffer overflow can occur.

snprintf

vsprintf Possibly dangerous — If the output
length depends on unknown lengths or
values, buffer overflow can occur.

vsnprintf

Risk

These functions can cause buffer overflow, which attackers can use to infiltrate your program.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events
that led to the defect. You can implement the fix on any event in the sequence. If the result details do
not show the event history, you can trace back using right-click options in the source code and see
previous related events. See also “Interpret Bug Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Using sprintf

#include <stdio.h>
#include <string.h>
#include <iostream>

26 ISO/IEC TS 17961

26-138

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

 if (sprintf(dst, "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

This example function uses sprintf to copy the string str to dst. However, if str is larger than the
buffer, sprintf can cause buffer overflow.

Correction — Use snprintf with Buffer Size

One possible correction is to use snprintf instead and specify a buffer size.

#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

 if (snprintf(dst, sizeof(dst), "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [taintformatio]

26-139

ISO/IEC TS 17961 [taintnoproto]
Using a tainted value as an argument to an unprototyped function pointer

Description
Rule Definition

Using a tainted value as an argument to an unprototyped function pointer.

Polyspace Implementation

This checker checks for Call through non-prototyped function pointer.

Examples
Call through non-prototyped function pointer
Issue

Call through non-prototyped function pointer detects a call to a function through a pointer
without a prototype. A function prototype specifies the type and number of parameters.

Risk

Arguments passed to a function without a prototype might not match the number and type of
parameters of the function definition, which can cause undefined behavior. If the parameters are
restricted to a subset of their type domain, arguments from untrusted sources can trigger
vulnerabilities in the called function.

Fix

Before calling the function through a pointer, provide a function prototype.

Example - Argument Does Not Match Parameter Restriction

#include <stdio.h>
#include <limits.h>
#define SIZE2 2

typedef void (*func_ptr)();
extern int getchar_wrapper(void);
extern void restricted_int_sink(int i);
/* Integer value restricted to
range [-1, 255] */
extern void restricted_float_sink(double i);
/* Double value restricted to > 0.0 */

func_ptr generic_callback[SIZE2] =
{
 (func_ptr)restricted_int_sink,
 (func_ptr)restricted_float_sink
};

26 ISO/IEC TS 17961

26-140

void func(void)
{
 int ic;
 ic = getchar_wrapper();
 /* Wrong index used for generic_callback.
 Negative 'int' passed to restricted_float_sink. */
 (*generic_callback[1])(ic);
}

In this example, a call through func_ptr passes ic as an argument to function
generic_callback[1]. The type of ic can have negative values, while the parameter of
generic_callback[1] is restricted to float values greater than 0.0. Typically, compilers and static
analysis tools cannot perform type checking when you do not provide a pointer prototype.

Correction — Provide Prototype of Pointer to Function

Pass the argument ic to a function with a parameter of type int, by using a properly prototyped
pointer.

#include <stdio.h>
#include <limits.h>
#define SIZE2 2

typedef void (*func_ptr_proto)(int);
extern int getchar_wrapper(void);
extern void restricted_int_sink(int i);
/* Integer value restricted to
range [-1, 255] */
extern void restricted_float_sink(double i);
/* Double value restricted to > 0.0 */

func_ptr_proto generic_callback[SIZE2] =
{
 (func_ptr_proto)restricted_int_sink,
 (func_ptr_proto)restricted_float_sink
};

void func(void)
{
 int ic;
 ic = getchar_wrapper();
 /* ic passed to function through
properly prototyped pointer. */
 (*generic_callback[0])(ic);
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

 ISO/IEC TS 17961 [taintnoproto]

26-141

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

26 ISO/IEC TS 17961

26-142

ISO/IEC TS 17961 [taintsink]
Tainted, potentially mutilated, or out-of-domain integer values are used in a restricted sink

Description
Rule Definition

Tainted, potentially mutilated, or out-of-domain integer values are used in a restricted sink.

Polyspace Implementation

This checker checks for these issues:

• Tainted size of variable length array.
• Pointer dereference with tainted offset.
• Array access with tainted index.

Examples
Tainted size of variable length array
Issue

Tainted size of variable length array detects variable length arrays (VLA) whose size is from an
unsecure source.

Risk

If an attacker changed the size of your VLA to an unexpected value, it can cause your program to
crash or behave unexpectedly.

If the size is non-positive, the behavior of the VLA is undefined. Your program does not perform as
expected.

If the size is unbounded, the VLA can cause memory exhaustion or stack overflow.

Fix

Validate your VLA size to make sure that it is positive and less than a maximum value.

Example - Input Argument Used as Size of VLA

#include<stdio.h>
#inclule<stdlib.h>
#define LIM 40

long squaredSum(int size) {

 int tabvla[size];
 long res = 0;
 for (int i=0 ; i<LIM-1 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];

 ISO/IEC TS 17961 [taintsink]

26-143

 }
 return res;
}
int main(){
 int size;
 scanf("%d",&size);
 //...
 long result = squaredSum(size);
 //...
 return 0;
}

In this example, a variable length array size is based on an input argument. Because this input
argument value is not checked, the size may be negative or too large.

Correction — Check VLA Size

One possible correction is to check the size variable before creating the variable length array. This
example checks if the size is larger than 0 and less than 40, before creating the VLA

#include <stdio.h>
#include <stdlib.h>
#define LIM 40

long squaredSum(int size) {
 long res = 0;
 if (size>0 && size<LIM){
 int tabvla[size];
 for (int i=0 ; i<size || i<LIM-1 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 }else{
 res = -1;
 }
 return res;
}
int main(){
 int size;
 scanf("%d",&size);
 //...
 long result = squaredSum(size);
 //...
 return 0;
}

Pointer dereference with tainted offset
Issue

Pointer dereference with tainted offset detects pointer dereferencing, either reading or writing,
using an offset variable from an unknown or unsecure source.

This check focuses on dynamically allocated buffers. For static buffer offsets, see Array access
with tainted index.

26 ISO/IEC TS 17961

26-144

Risk

The index might be outside the valid array range. If the tainted index is outside the array range, it
can cause:

• Buffer underflow/underwrite, or writing to memory before the beginning of the buffer.
• Buffer overflow, or writing to memory after the end of a buffer.
• Over reading a buffer, or accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted buffer.

An attacker can use an invalid read or write to compromise your program.

Fix

Validate the index before you use the variable to access the pointer. Check to make sure that the
variable is inside the valid range and does not overflow.

Example - Dereference Pointer Array

#include <stdio.h>
#include <stdlib.h>
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(void) {
 int offset;
 scanf("%d",&offset);
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if(pint) {
 /* Filling array */
 read_pint(pint);
 c = pint[offset];
 free(pint);
 }
 return c;
}

In this example, the function initializes an integer pointer pint. The pointer is dereferenced using
the input index offset. The value of offset could be outside the pointer range, causing an out-of-
range error.

Correction — Check Index Before Dereference

One possible correction is to validate the value of the index. If the index is inside the valid range,
continue with the pointer dereferencing.

#include <stdlib.h>
#include <stdio.h>
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128

 ISO/IEC TS 17961 [taintsink]

26-145

};
extern void read_pint(int*);

int taintedptroffset(void) {
 int offset;
 scanf("%d",&offset);
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if (pint) {
 /* Filling array */
 read_pint(pint);
 if (offset>0 && offset<SIZE10) {
 c = pint[offset];
 }
 free(pint);
 }
 return c;
}

Array access with tainted index
Issue

Array access with tainted index detects reading or writing to an array by using a tainted index that
has not been validated.

Risk

The index might be outside the valid array range. If the tainted index is outside the array range, it
can cause:

• Buffer underflow/underwrite — writing to memory before the beginning of the buffer.
• Buffer overflow — writing to memory after the end of a buffer.
• Over-reading a buffer — accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted buffer.

An attacker can use an invalid read or write operation create to problems in your program.

Fix

Before using the index to access the array, validate the index value to make sure that it is inside the
array range.

Example - Use Index to Return Buffer Value

#include <stdlib.h>
#include <stdio.h>
#define SIZE100 100
extern int tab[SIZE100];
static int tainted_int_source(void) {
 return strtol(getenv("INDEX"),NULL,10);
}
int taintedarrayindex(void) {
 int num = tainted_int_source();
 return tab[num];
}

26 ISO/IEC TS 17961

26-146

In this example, the index num accesses the array tab. The function does not check to see if num is
inside the range of tab.

Correction — Check Range Before Use

One possible correction is to check that num is in range before using it.

#include <stdlib.h>
#include <stdio.h>
#define SIZE100 100
extern int tab[SIZE100];
static int tainted_int_source(void) {
 return strtol(getenv("INDEX"),NULL,10);
}
int taintedarrayindex(void) {
 int num = tainted_int_source();
 if (num >= 0 && num < SIZE100) {
 return tab[num];
 } else {
 return -1;
 }
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [taintsink]

26-147

ISO/IEC TS 17961 [taintstrcpy]
Tainted strings are passed to a string copying function

Description
Rule Definition

Tainted strings are passed to a string copying function.

Polyspace Implementation

This checker checks for Tainted NULL or non-null-terminated string.

Examples
Tainted NULL or non-null-terminated string
Issue

Tainted NULL or non-null-terminated string looks for strings from unsecure sources that are
being used in string manipulation routines that implicitly dereference the string buffer. For example,
strcpy or sprintf.

Tainted NULL or non-null-terminated string raises no defect for a string returned from a call to
scanf-family variadic functions. Similarly, no defect is raised when you pass the string with a %s
specifier to printf-family variadic functions.

Note If you reference a string using the form ptr[i], *ptr, or pointer arithmetic, Bug Finder raises
a Use of tainted pointer defect instead. The Tainted NULL or non-null-terminated string defect
is raised only when the pointer is used as a string.

Risk

If a string is from an unsecure source, it is possible that an attacker manipulated the string or pointed
the string pointer to a different memory location.

If the string is NULL, the string routine cannot dereference the string, causing the program to crash.
If the string is not null-terminated, the string routine might not know when the string ends. This error
can cause you to write out of bounds, causing a buffer overflow.

Fix

Validate the string before you use it. Check that:

• The string is not NULL.
• The string is null-terminated
• The size of the string matches the expected size.

26 ISO/IEC TS 17961

26-148

Example - Getting String from Input Argument

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define SIZE128 128
#define MAX 40
extern void print_str(const char*);
void warningMsg(void)
{
 char userstr[MAX];
 read(0,userstr,MAX);
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

In this example, the string str is concatenated with the argument userstr. The value of userstr is
unknown. If the size of userstr is greater than the space available, the concatenation overflows.
Correction — Validate the Data

One possible correction is to check the size of userstr and make sure that the string is null-
terminated before using it in strncat. This example uses a helper function, sansitize_str, to
validate the string. The defects are concentrated in this function.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define SIZE128 128
#define MAX 40
extern void print_str(const char*);
int sanitize_str(char* s) {
 int res = 0;
 if (s && (strlen(s) > 0)) { // Defect only flagged here
 // - string is not null
 // - string has a positive and limited size
 res = 1;
 }
 return res;
}
void warningMsg(void)
{
 char userstr[MAX];
 read(0,userstr,MAX);
 char str[SIZE128] = "Warning: ";
 if (sanitize_str(userstr))
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

Correction — Validate the Data

Another possible correction is to call function errorMsg and warningMsg with specific strings.

#include <stdio.h>
#include <string.h>

 ISO/IEC TS 17961 [taintstrcpy]

26-149

#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

int manageSensorValue(int sensorValue) {
 int ret = sensorValue;
 if (sensorValue < 0) {
 errorMsg("sensor value should be positive");
 exit(1);
 } else if (sensorValue > 50) {
 warningMsg("sensor value greater than 50 (applying threshold)...");
 sensorValue = 50;
 }

 return sensorValue;
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

26 ISO/IEC TS 17961

26-150

ISO/IEC TS 17961 [uninitref]
Referencing uninitialized memory

Description
Rule Definition

Referencing uninitialized memory.

Polyspace Implementation

This checker checks for these issues:

• Non-initialized pointer.
• Pointer to non-initialized value converted to const pointer.
• Non-initialized variable.

Examples
Non-initialized pointer
Issue

Non-initialized pointer occurs when a pointer is not assigned an address before dereference.

Risk

Unless a pointer is explicitly assigned an address, it points to an unpredictable location.

Fix

The fix depends on the root cause of the defect. For instance, you assigned an address to the pointer
but the assignment is unreachable.

Often the result details show a sequence of events that led to the defect. You can implement the fix on
any event in the sequence. If the result details do not show the event history, you can trace back
using right-click options in the source code and see previous related events. See also “Interpret Bug
Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below. It is a good practice to initialize a pointer to NULL when declaring the
pointer.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

 ISO/IEC TS 17961 [uninitref]

26-151

Example - Non-initialized pointer error

#include <stdlib.h>

int* assign_pointer(int* prev)
{
 int j = 42;
 int* pi;

 if (prev == NULL)
 {
 pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return NULL;
 }

 *pi = j;
 /* Defect: Writing to uninitialized pointer */

 return pi;
}

If prev is not NULL, the pointer pi is not assigned an address. However, pi is dereferenced on every
execution paths, irrespective of whether prev is NULL or not.

Correction — Initialize Pointer on Every Execution Path

One possible correction is to assign an address to pi when prev is not NULL.

#include <stdlib.h>

int* assign_pointer(int* prev)
{
 int j = 42;
 int* pi;

 if (prev == NULL)
 {
 pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return NULL;
 }
 /* Fix: Initialize pi in branches of if statement */
 else
 pi = prev;

 *pi = j;

 return pi;
}

Pointer to non-initialized value converted to const pointer

Issue

Pointer to non initialized value converted to const pointer occurs when a pointer to a constant
(const int*, const char*, etc.) is assigned an address that does not yet contain a value.

26 ISO/IEC TS 17961

26-152

Risk

A pointer to a constant stores a value that must not be changed later in the program. If you assign the
address of a non-initialized variable to the pointer, it now points to an address with garbage values
for the remainder of the program.
Fix

Initialize a variable before assigning its address to a pointer to a constant.
Example - Pointer to non initialized value converted to const pointer error

#include<stdio.h>

void Display_Parity()
 {
 int num,parity;
 const int* num_ptr = #
 /* Defect: Address &num does not store a value */

 printf("Enter a number\n:");
 scanf("%d",&num);

 parity=((*num_ptr)%2);
 if(parity==0)
 printf("The number is even.");
 else
 printf("The number is odd.");

 }

num_ptr is declared as a pointer to a constant. However the variable num does not contain a value
when num_ptr is assigned the address &num.
Correction — Store Value in Address Before Assignment to Pointer

One possible correction is to obtain the value of num from the user before &num is assigned to
num_ptr.

#include<stdio.h>

void Display_Parity()
 {
 int num,parity;
 const int* num_ptr;

 printf("Enter a number\n:");
 scanf("%d",&num);

 /* Fix: Assign &num to pointer after it receives a value */
 num_ptr=#
 parity=((*num_ptr)%2);
 if(parity==0)
 printf("The number is even.");
 else
 printf("The number is odd.");
 }

 ISO/IEC TS 17961 [uninitref]

26-153

The scanf statement stores a value in &num. Once the value is stored, it is legitimate to assign &num
to num_ptr.

Non-initialized variable
Issue

Non-initialized variable occurs when a variable is not initialized before its value is read.

Risk

Unless a variable is explicitly initialized, the variable value is unpredictable. You cannot rely on the
variable having a specific value.

Fix

The fix depends on the root cause of the defect. For instance, you assigned a value to the variable but
the assignment is unreachable or you assigned a value to the variable in one of two branches of a
conditional statement. Fix the unreachable code or missing assignment.

Often the result details show a sequence of events that led to the defect. You can implement the fix on
any event in the sequence. If the result details do not show the event history, you can trace back
using right-click options in the source code and see previous related events. See also “Interpret Bug
Finder Results in Polyspace Desktop User Interface”.

See examples of fixes below. It is a good practice to initialize a variable at declaration.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Non-initialized variable error

int get_sensor_value(void)
{
 extern int getsensor(void);
 int command;
 int val;

 command = getsensor();
 if (command == 2)
 {
 val = getsensor();
 }

 return val;
 /* Defect: val does not have a value if command is not 2 */
}

If command is not 2, the variable val is unassigned. In this case, the return value of function
get_sensor_value is undetermined.

26 ISO/IEC TS 17961

26-154

Correction — Initialize During Declaration

One possible correction is to initialize val during declaration so that the initialization is not bypassed
on some execution paths.

int get_sensor_value(void)
{
 extern int getsensor(void);
 int command;
 /* Fix: Initialize val */
 int val=0;

 command = getsensor();
 if (command == 2)
 {
 val = getsensor();
 }

 return val;
 }

val is assigned an initial value of 0. When command is not equal to 2, the function
get_sensor_value returns this value.

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [uninitref]

26-155

ISO/IEC TS 17961 [usrfmt]
Including tainted or out-of-domain input in a format string

Description
Rule Definition

Including tainted or out-of-domain input in a format string.

Polyspace Implementation

This checker checks for Format string specifiers and arguments mismatch.

Examples
Format string specifiers and arguments mismatch
Issue

Format string specifiers and arguments mismatch occurs when the format specifiers in the
formatted output functions such as printf do not match their corresponding arguments. For
example, an argument of type unsigned long must have a format specification of %lu.
Risk

Mismatch between format specifiers and the corresponding arguments result in undefined behavior.
Fix

Make sure that the format specifiers match the corresponding arguments. For instance, in this
example, the %d specifier does not match the string argument message and the %s specifier does not
match the integer argument err_number.

 const char *message = "License not available";
 int err_number = ;-4
 printf("Error: %d (error type %s)\n", message, err_number);

Switching the two format specifiers fixes the issue. See the specifications for the printf function for
more information about format specifiers.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

• “Address Polyspace Results Through Bug Fixes or Justifications” if you review results in the
Polyspace user interface.

• “Address Results in Polyspace Access Through Bug Fixes or Justifications” if you review results in
a web browser.

• “Annotate Code and Hide Known or Acceptable Results” if you review results in an IDE.

Example - Printing a Float

#include <stdio.h>

void string_format(void) {

26 ISO/IEC TS 17961

26-156

https://en.cppreference.com/w/cpp/io/c/fprintf

 unsigned long fst = 1;

 printf("%d\n", fst);
}

In the printf statement, the format specifier, %d, does not match the data type of fst.

Correction — Use an Unsigned Long Format Specifier

One possible correction is to use the %lu format specifier. This specifier matches the unsigned
integer type and long size of fst.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%lu\n", fst);
}

Correction — Use an Integer Argument

One possible correction is to change the argument to match the format specifier. Convert fst to an
integer to match the format specifier and print the value 1.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", (int)fst);
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [usrfmt]

26-157

ISO/IEC TS 17961 [xfilepos]
Using a value for fsetpos other than a value returned from fgetpos

Description
Rule Definition

Using a value for fsetpos other than a value returned from fgetpos.

Polyspace Implementation

This checker checks for Invalid file position.

Examples
Invalid file position
Issue

Invalid file position occurs when the file position argument of fsetpos() uses a value that is not
obtained from fgetpos().

Risk

The function fgetpos(FILE *stream, fpos_t *pos) gets the current file position of the stream.
When you use any other value as the file position argument of fsetpos(FILE *stream, const
fpos_t *pos), you might access an unintended location in the stream.

Fix

Use the value returned from a successful call to fgetpos() as the file position argument of
fsetpos().

Example - memset() Sets File Position Argument

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

FILE *func(FILE *file)
{
 fpos_t offset;
 if (file == NULL)
 {
 /* Handle error */
 }
 /* Store initial position in variable 'offset' */
 (void)memset(&offset, 0, sizeof(offset));

 /* Read data from file */

 /* Return to the initial position. offset was not
 returned from a call to fgetpos() */

26 ISO/IEC TS 17961

26-158

 if (fsetpos(file, &offset) != 0)
 {
 /* Handle error */
 }
 return file;
}

In this example, fsetpos() uses offset as its file position argument. However, the value of offset
is set by memset(). The preceding code might access the wrong location in the stream.

Correction — Use a File Position Returned From fgetpos()

Call fgetpos(), and if it returns successfully, use the position argument in your call to fsetpos().

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

FILE *func(FILE *file)
{
 fpos_t offset;
 if (file == NULL)
 {
 /* Handle error */
 }
 /* Store initial position in variable 'offset'
 using fgetpos() */
 if (fgetpos(file, &offset) != 0)
 {
 /* Handle error */
 }

 /* Read data from file */

 /* Back to the initial position */
 if (fsetpos(file, &offset) != 0)
 {
 /* Handle error */
 }
 return file;
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [xfilepos]

26-159

ISO/IEC TS 17961 [xfree]
Reallocating or freeing memory that was not dynamically allocated

Description
Rule Definition

Reallocating or freeing memory that was not dynamically allocated.

Polyspace Implementation

This checker checks for Invalid free of pointer.

Examples
Invalid free of pointer
Issue

Invalid free of pointer occurs when a block of memory released using the free function was not
previously allocated using malloc, calloc, or realloc.

Risk

The free function releases a block of memory allocated on the heap. If you try to access a location on
the heap that you did not allocate previously, a segmentation fault can occur.

The issue can highlight coding errors. For instance, you perhaps wanted to use the free function or a
previous malloc function on a different pointer.

Fix

In most cases, you can fix the issue by removing the free statement. If the pointer is not allocated
memory from the heap with malloc or calloc, you do not need to free the pointer. You can simply
reuse the pointer as required.

If the issue highlights a coding error such as use of free or malloc on the wrong pointer, correct the
error.

If the issue occurs because you use the free function to free memory allocated with the new
operator, replace the free function with the delete operator.

Example - Invalid Free of Pointer Error

#include <stdlib.h>

void Assign_Ones(void)
{
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;

 free(p);

26 ISO/IEC TS 17961

26-160

 /* Defect: p does not point to dynamically allocated memory */
}

The pointer p is deallocated using the free function. However, p points to a memory location that
was not dynamically allocated.

Correction — Remove Pointer Deallocation

If the number of elements of the array p is known at compile time, one possible correction is to
remove the deallocation of the pointer p.

#include <stdlib.h>

void Assign_Ones(void)
 {
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;
 /* Fix: Remove deallocation of p */
 }

Correction — Introduce Pointer Allocation

If the number of elements of the array p is not known at compile time, one possible correction is to
dynamically allocate memory to the array p.

#include <stdlib.h>

void Assign_Ones(int num)
{
 int *p;
 /* Fix: Allocate memory dynamically to p */
 p=(int*) calloc(10,sizeof(int));
 for(int i=0;i<10;i++)
 *(p+i)=1;
 free(p);
}

Check Information
Decidability: Undecidable

See Also
Check ISO/IEC TS 17961 (-iso-17961)

Topics
“Check for Coding Standard Violations”

Introduced in R2019a

 ISO/IEC TS 17961 [xfree]

26-161

Guidelines

27

Software Complexity

27 Guidelines

27-2

Number of calling functions exceeds threshold
The number of distinct callers of a function is greater than the defined threshold

Description
This defect is raised on a function when the number of distinct callers of the function is greater than
the defined checker threshold. For details about how Polyspace calculates the number of calling
functions, see Number of Calling Functions.

Polyspace uses the default threshold 5 unless you specify a threshold. To specify a selection file where
you can set the threshold, use Set checkers by file (-checkers-selection-file). Also see
“Reduce Software Complexity by Using Polyspace Checkers”.

When you import comments from previous analyses by using polyspace-comments-import,
Polyspace copies any review information on the code metric Number of Calling Functions in
the previous result to this checker in the current result. If the current result contains the same code
metric, the review information is copied to the code metric as well.

Risk

Violation of this checker might indicate that:

• Issues arising in the flagged function might propagate to have unexpected impact in many places.
• The data flow in the file is convoluted and finding the root cause of an issue might be difficult.
• The flagged function might be performing multiple tasks.

These factors make the module difficult to maintain and debug.

Fix

To fix this check, either refactor your code or change the checker threshold. When refactoring the
code, design the functions in your code so that:

• Each function performs one specific task.
• The functions have minimal side effects on other functions.

A best practice is to check the complexity of a module early in development to avoid costly post-
development refactoring.

Examples
Avoid Functions That are Called by Many Different Functions

void utilityFunc(){//Noncompliant
 //...
}

void task1(){
 utilityFunc();
 //...
}

 Number of calling functions exceeds threshold

27-3

void task2(){
 utilityFunc();
 //...
}
void task3(){
 utilityFunc();
 //...
}
void task4(){
 utilityFunc();
 //...
}
void task5(){
 utilityFunc();
 //...
}
void task6(){
 utilityFunc();
 //...
}
void task7(){
 utilityFunc();
 //...
}

In this example, the function utilityFunc is called by seven different functions. It might indicate
that utilityFunc performs multiple tasks. An issue arising in utilityFunc might have unexpected
impact in any of the seven function that calls utilityFunc. Such interdependency make the code
difficult to maintain and debug. Polyspace flags the function utilityFunc as noncompliant.

Correction — Refactor the Function

One possible correction is to refactor the function. For instance, delegate the different tasks required
by different tasks into two utility functions instead of one.

void utilityFuncA(){//Compliant
 //...
}
void utilityFuncB(){//Compliant
 //...
}

void task1(){
 utilityFuncA();
 //...
}
void task2(){
 utilityFuncA();
 //...
}
void task3(){
 utilityFuncA();
 //...
}
void task4(){
 utilityFuncB();
 //...
}

27 Guidelines

27-4

void task5(){
 utilityFuncB();
 //...
}
void task6(){
 utilityFuncB();
 //...
}
void task7(){
 utilityFuncB();
 //...
}

Check Information
Group: Software Complexity
Language: C | C++
Acronym: SC04
Default Threshold: 5

See Also
Check Guidelines (-guidelines)

Topics
“Reduce Software Complexity by Using Polyspace Checkers”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2021a

 Number of calling functions exceeds threshold

27-5

Number of called functions exceeds threshold
The number of distinct function calls within the body of a function is greater than the defined
threshold

Description
This defect is raised on a function when the number of calls to distinct functions within its body is
greater than the defined checker threshold. For details about how Polyspace calculates the number of
called functions, see Number of Called Functions.

Polyspace uses the default threshold 7 unless you specify a threshold. To specify a selection file where
you can set the threshold, use Set checkers by file (-checkers-selection-file). Also see
“Reduce Software Complexity by Using Polyspace Checkers”.

When you import comments from previous analyses by using polyspace-comments-import,
Polyspace copies any review information on the code metric Number of Called Functions in the
previous result to this checker in the current result. If the current result contains the same code
metric, the review information is copied to the code metric as well.

Risk

Violation of this checker might indicate that:

• The function depends on many functions and changes to any one of these functions might result in
an unexpected behavior.

• The function performs too many tasks.
• The module might contain unexpected or unplanned development.

These factors make the module difficult to maintain and debug.

Fix

To fix this check, either refactor your code or change the checker threshold. When refactoring the
code, design the functions in your code so that:

• Each function performs one specific task.
• The functions have minimal side effects on other functions.

A best practice is to check the complexity of a module early in development to avoid costly post-
development refactoring.

Examples
Avoid Functions That Call Too Many Functions
class A{
 //..
};
class B{
 //...
};

27 Guidelines

27-6

void transform1(A &a, B &b){
 //...
}
void transform2(A &a, B &b){
 //...
}
void transform3(A &a, B &b){
 //...
}
void transform4(A &a, B &b){
 //...
}
void transform5(A &a, B &b){
 //...
}
void transform6(A &a, B &b){
 //...
}
void transform7(A &a, B &b){
 //...
}
void transform8(A &a, B &b){
 //...
}
void main(){//Noncompliant
 A a;
 B b;
 transform1(a,b);
 transform2(a,b);
 transform3(a,b);
 transform4(a,b);
 transform5(a,b);
 transform6(a,b);
 transform7(a,b);
 transform8(a,b);
}

In this example, the function main calls eight different functions which is greater than the defined
threshold of function calls. Debugging main is difficult because the issue might be caused by any of
these eight functions. Polyspace
Correction — Design Functions to Perform Specific Tasks

One possible correction is design functions that perform specific tasks. In this case, the individual
tasks are already delegated to different functions, but main performs too may of these tasks. Dividing
the task load of main between multiple functions might make the functions easier to debug, maintain,
and test.

class A{
 //..
};
class B{
 //...
};
void transform1(A &a, B &b){
 //...
}
void transform2(A &a, B &b){

 Number of called functions exceeds threshold

27-7

 //...
}
void transform3(A &a, B &b){
 //...
}
void transform4(A &a, B &b){
 //...
}
void transform5(A &a, B &b){
 //...
}
void transform6(A &a, B &b){
 //...
}
void transform7(A &a, B &b){
 //...
}
void transform8(A &a, B &b){
 //...
}
void FirstStep(A &a, B &b){
 transform1(a,b);
 transform2(a,b);
 transform3(a,b);
}
void SecondStep(A &a, B &b){
 transform4(a,b);
 transform5(a,b);
 transform6(a,b);
}
void ThirdStep(A &a, B &b){
 transform7(a,b);
 transform8(a,b);
}
void main(){//Compliant
 A a;
 B b;
 FirstStep(a,b);
 SecondStep(a,b);
 ThirdStep(a,b);
}

Check Information
Group: Software Complexity
Language: C | C++
Acronym: SC05
Default Threshold: 7

See Also
Check Guidelines (-guidelines)

Topics
“Reduce Software Complexity by Using Polyspace Checkers”
“Modify Default Behavior of Bug Finder Checkers”

27 Guidelines

27-8

Introduced in R2021a

 Number of called functions exceeds threshold

27-9

Comment density below threshold
The comment density of the module falls below the specified threshold

Description
Polyspace calculates the comment density percentage of a file by taking the ratio of comments to
number of executable lines in the file and then multiplying the ratio by 100. For instance, a comment
density 20 indicates that the file contains 20% comments and 80% code statements. This defect is
raised when the comment density falls below the specified threshold. For details about how Polyspace
calculates comment density, see Comment Density

Polyspace uses the default threshold 80 unless you specify a threshold. Use Set checkers by
file (-checkers-selection-file) to specify a selection file where you can set the threshold.
See “Reduce Software Complexity by Using Polyspace Checkers”.

When you import comments from previous analyses by using polyspace-comments-import,
Polyspace copies any review information on the code metric Comment Density in the previous result
to this checker in the current result. If the current result contains the same code metric, the review
information is copied to the code metric as well.

Risk

Violation of this checker might indicate that:

• The module is not properly documented.
• The module is overly long and dense.
• The module might contain unexpected or unplanned development.

These factors make the module difficult to maintain and debug.

Fix

To fix this defect:

• Put more comments between your statements that conveys the developer intent.
• Alternatively, reduce the number of statements in the module. If the module contains multiple

functions, consider splitting the module and documenting them separately.

To fix this check, either refactor your code or change the checker threshold. A best practice is to
check the complexity of a module early in development to avoid costly post-development refactoring.

Examples
Avoid Poorly Documented Code

//File1.cpp //Noncompliant
 long long power(double x, int n){
 long long BN = 1;
 for(int i = 0; i<n;++i){
 BN*=x;

27 Guidelines

27-10

 }
 return BN;
 }

 double AppxIndex(double m, double f){
 double U = (power(m,2) - 1)/(power(m,2)+2);
 double V = (power(m,4) + 27*power(m,2)+38)/(2*power(m,2)+3);
 return (1+2*f*power(U,2)*(1+power(m,2)*U*V +
 power(m,3)/power(m,3)*(U-V)))/((1-2*f*power(U,2)
 *(1+power(m,2)*U*V + power(m,3)/power(m,3)*(U-V))));
 }

In this example, the code in File1.cpp does not contain sufficient comments to document the
developer intent. lack of sufficient documentation makes the code difficult to understand. Subsequent
debugging and maintenance of the code might be difficult. Polyspace flags the file as noncompliant to
this rule.
Correction — Document the Developer intent with Comments

One possible correction is to document the developer intent by putting sufficient comments. This
code contains comment that clearly document developers intent and conveys information that eases
understanding, debugging, and maintaining the code.

//File1.c //Compliant
// r = power(x,n) returns the nth power of x into y
// r is long long
// x is double
// n must be integer
 long long power(double x, int n){
 long long BN = 1;
 for(int i = 0; i<n;++i){
 BN*=x;
 }
 return BN;
 }
 // n = AppxIndex(m,f) calculates the approximate
// effective index of a material
// n is a double, represent the effective index of a mixture
// m is a double, represents the relative index of the
// inclusion compared to the background material
// f is a double, represents the filling factor of the inclusion
// The function implements the formula in the doi 10.XXYY
 double AppxIndex(double m, double f){
 // This function implements the formula for approximate index
 // The first term is U:
 double U = (power(m,2) - 1)/(power(m,2)+2);
 //The second term is V:
 double V = (power(m,4) + 27*power(m,2)+38)/(2*power(m,2)+3);
 // Calculate the denominator
 double den = ((1-2*f*power(U,2)*
 (1+power(m,2)*U*V + power(m,3)/power(m,3)*(U-V))));
 // Calculate the numerator
 double num = (1+2*f*power(U,2)
 *(1+power(m,2)*U*V + power(m,3)/power(m,3)*(U-V)));
 // Calculate the aproximate index
 // Return by value
 return num/den;
 }

 Comment density below threshold

27-11

Check Information
Group: Software Complexity
Language: C | C++
Acronym: SC02
Default Threshold: 20

See Also
Check Guidelines (-guidelines)

Topics
“Reduce Software Complexity by Using Polyspace Checkers”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2021a

27 Guidelines

27-12

Call tree complexity exceeds threshold
The call tree complexity of a file is greater than the defined threshold

Description
The call tree complexity of a file represents the complexity between different levels of its function call
tree. Polyspace calculates the call tree complexity of a file as:

Call tree Complexity = number of call occurrences – number of function definitions + 1 (27-1)

This defect is raised when the calculated call tree complexity of a file exceeds the defined call tree
complexity threshold of the file. For details about how Polyspace calculates call tree complexity, see
Estimated Function Coupling

Polyspace uses the default threshold 20 unless you specify a threshold. To specify a selection file
where you can set the threshold, use Set checkers by file (-checkers-selection-file).
Also see “Reduce Software Complexity by Using Polyspace Checkers”.

When you import comments from previous analyses by using polyspace-comments-import,
Polyspace copies any review information on the code metric Estimated Function Coupling in
the previous result to this checker in the current result. If the current result contains the same code
metric, the review information is copied to the code metric as well.

Risk

Violation of this checker might indicate that:

• The interdependency of the functions in the file is unacceptably high.
• Changes in one function in the file might introduce bugs or unexpected behavior in other

functions in the file.
• Reusing a single function of the file might be difficult because of interdependencies with other

functions.

These factors make the file difficult to maintain, test, and debug.

Fix

To fix this check, either refactor your code or change the checker threshold. When refactoring the
code, design the functions in your code so that:

• Each function performs one specific task.
• The functions have minimal side effects on other functions.

A best practice is to check the complexity of a module early in development to avoid costly post-
development refactoring.

Examples
Avoid Overly Complex Function Call Tree

//Noncompliant

 Call tree complexity exceeds threshold

27-13

 long long power(double x, int n){
 long long BN = 1;
 for(int i = 0; i<n;++i){
 BN*=x;
 }
 return BN;
 }

 double AppxIndex(double m, double f){
 double U = (power(m,2) - 1)/(power(m,2)+2);
 double V = (power(m,4) + 27*power(m,2)+38)/(2*power(m,2)+3);
 return (1+2*f*power(U,2)*(1+power(m,2)*U*V + power(m,3)/
 power(m,3)*(U-V)))/((1-2*f*power(U,2)*(1+power(m,2)*U*V
 + power(m,3)/power(m,3)*(U-V))));
 }

In this example, the function power is called many times in the function AppIndex. The high
interdependency between these two functions results in a call tree complexity of 12, which is greater
than the threshold 10. This high value implies that changes in power might require rewriting or
revising AppIndex. Polyspace flags the file as noncompliant.

Correction — Design Functions to Perform One Specific Task

One possible correction is to refactor the code so that a function performs one specific task. In this
code, the functions have a lower interdependency. For instance, CalculateU and CalculateV are
completely independent of each other. By designing the functions to perform one specific task,
isolating any unexpected behavior is easier. This code is easier to debug, test, and maintain.

//Compliant
 long long power(double x, int n){
 long long BN = 1;
 for(int i = 0; i<n;++i){
 BN*=x;
 }
 return BN;
 }
 double CalculateU(double m){
 return (power(m,2) - 1)/(power(m,2)+2);
 }
 double CalculateV(double m){//Compliant
 return (power(m,4) + 27*power(m,2)+38)/(2*power(m,2)+3);
 }
 double CalculateMid(double m, double f){//Compliant
 double U = CalculateU(m);
 double V = CalculateU(m);
 return 2*f*power(U,2)*(1+power(m,2)*U*V
 + power(m,3)/power(m,3)*(U-V));
 }
 double AppxIndex(double m, double f){//Compliant
 return (1+CalculateMid(m,f))/((1-CalculateMid(m,f)));
 }

Check Information
Group: Software Complexity
Language: C | C++

27 Guidelines

27-14

Acronym: SC03
Default Threshold: 20

See Also
Check Guidelines (-guidelines)

Topics
“Reduce Software Complexity by Using Polyspace Checkers”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2021a

 Call tree complexity exceeds threshold

27-15

Number of lines within body exceeds threshold
The number of lines in the body of a function is greater than the defined threshold

Description
This defect is raised on a function when the number of lines within the body of the function is greater
than the defined checker threshold. For details about how Polyspace calculates the number of lines in
the body of a function, see Number of Lines Within Body

Polyspace uses the default threshold 1200 unless you specify a threshold. To specify a selection file
where you can set the threshold, use Set checkers by file (-checkers-selection-file).
Also see “Reduce Software Complexity by Using Polyspace Checkers”.

When you import comments from previous analyses by using polyspace-comments-import,
Polyspace copies any review information on the code metric Number of Lines Within Body in
the previous result to this checker in the current result. If the current result contains the same code
metric, the review information is copied to the code metric as well.

Risk

Violation of this checker might indicate that the function is too long. Lengthy function are difficult to
read and understand. Maintaining, testing and debugging lengthy functions might be costly in terms
of resource and time.

Fix

To fix this check, either refactor your code or change the checker threshold. When refactoring the
code, make the functions modular. That is, design your code so that each function performs one
specific task with as little side effect as possible. Modular design of function make them easy to test,
debug, and maintain. Modular functions also enables efficient code reuse and might reduce code
duplication.

A best practice is to check the complexity of a module early in development to avoid costly post-
development refactoring.

Examples
Avoid Lengthy Functions

#include <cmath>
#include <math.h>
#include <stddef.h>
#include <stdlib.h>
#define CREAL_T
typedef float real32_T;
typedef double real64_T;
typedef struct {
 real32_T re;
 real32_T im;
} creal32_T;

27 Guidelines

27-16

typedef struct {
 real64_T re;
 real64_T im;
} creal_T;
// Function Declarations
static double rt_powd_snf(double u0, double u1);

void CalculateAppxIndex(double r, double epsilon_s, double epsilon_h, double//Noncompliant
 lambda, double f, creal_T *eps_eff, creal_T *mu_eff)
{
 double n_h;
 double m;
 double a;
 double alpha_e_re;
 double alpha_e_im;
 double alpha_m_re;
 double alpha_m_im;
 int l;
 double br;

 // sphere radius is 1 micron;
 // the refractive index of inclusion
 n_h = std::sqrt(epsilon_h);

 // the refractive index of host
 m = std::sqrt(epsilon_s) / n_h;
 n_h = 6.2831853071795862 * n_h * r / lambda;

 // size parameter;
 a = (n_h + m) + 2.0;
 m = n_h - m;

 // polarizability
 n_h = 6.2831853071795862 * rt_powd_snf(r, 3.0) / rt_powd_snf(n_h, 3.0);
 alpha_e_re = 0.0;
 alpha_e_im = 0.0;
 alpha_m_re = 0.0;
 alpha_m_im = 0.0;
 for (l = 0; l < 5; l++) {
 alpha_e_re += 0.0 * ((2.0 * (1.0 + (double)l) + 1.0) * a);
 alpha_e_im += (2.0 * (1.0 + (double)l) + 1.0) * a;
 alpha_m_re += 0.0 * ((2.0 * (1.0 + (double)l) + 1.0) * (m + 2.0));
 alpha_m_im += (2.0 * (1.0 + (double)l) + 1.0) * (m + 2.0);

 // alpha = alpha + 1i* [(2*l+1)*(an(l) + bn(l))];
 }

 alpha_e_re *= n_h;
 alpha_e_im *= n_h;
 alpha_m_re *= n_h;
 alpha_m_im *= n_h;

 // alpha = aa*alpha;
 n_h = f / (4.1887902047863905 * rt_powd_snf(r, 3.0));
 alpha_e_re *= n_h;
 alpha_e_im *= n_h;
 alpha_m_re *= n_h;

 Number of lines within body exceeds threshold

27-17

 alpha_m_im *= n_h;
 if (alpha_e_im == 0.0) {
 m = alpha_e_re / 3.0;
 n_h = 0.0;
 } else if (alpha_e_re == 0.0) {
 m = 0.0;
 n_h = alpha_e_im / 3.0;
 } else {
 m = alpha_e_re / 3.0;
 n_h = alpha_e_im / 3.0;
 }

 br = 1.0 - m;
 m = 0.0 - n_h;
 if (m == 0.0) {
 if (alpha_e_im == 0.0) {
 m = alpha_e_re / br;
 alpha_e_im = 0.0;
 } else if (alpha_e_re == 0.0) {
 m = 0.0;
 alpha_e_im /= br;
 } else {
 m = alpha_e_re / br;
 alpha_e_im /= br;
 }
 } else {
 n_h = std::abs(m);
 if (br > n_h) {
 a = m / br;
 n_h = br + a * m;
 m = (alpha_e_re + a * alpha_e_im) / n_h;
 alpha_e_im = (alpha_e_im - a * alpha_e_re) / n_h;
 } else if (n_h == br) {
 if (br > 0.0) {
 a = 0.5;
 } else {
 a = -0.5;
 }

 if (m > 0.0) {
 n_h = 0.5;
 } else {
 n_h = -0.5;
 }

 m = alpha_e_re * a + alpha_e_im * n_h;
 alpha_e_im = alpha_e_im * a - alpha_e_re * n_h;
 } else {
 a = br / m;
 n_h = m + a * br;
 m = (a * alpha_e_re + alpha_e_im) / n_h;
 alpha_e_im = (a * alpha_e_im - alpha_e_re) / n_h;
 }
 }

 eps_eff->re = epsilon_h * (1.0 + m);
 eps_eff->im = epsilon_h * alpha_e_im;
 if (alpha_m_im == 0.0) {

27 Guidelines

27-18

 m = alpha_m_re / 3.0;
 n_h = 0.0;
 } else if (alpha_m_re == 0.0) {
 m = 0.0;
 n_h = alpha_m_im / 3.0;
 } else {
 m = alpha_m_re / 3.0;
 n_h = alpha_m_im / 3.0;
 }

 br = 1.0 - m;
 m = 0.0 - n_h;
 if (m == 0.0) {
 if (alpha_m_im == 0.0) {
 m = alpha_m_re / br;
 alpha_m_im = 0.0;
 } else if (alpha_m_re == 0.0) {
 m = 0.0;
 alpha_m_im /= br;
 } else {
 m = alpha_m_re / br;
 alpha_m_im /= br;
 }
 } else {
 n_h = std::abs(m);
 if (br > n_h) {
 a = m / br;
 n_h = br + a * m;
 m = (alpha_m_re + a * alpha_m_im) / n_h;
 alpha_m_im = (alpha_m_im - a * alpha_m_re) / n_h;
 } else if (n_h == br) {
 if (br > 0.0) {
 a = 0.5;
 } else {
 a = -0.5;
 }

 if (m > 0.0) {
 n_h = 0.5;
 } else {
 n_h = -0.5;
 }

 m = alpha_m_re * a + alpha_m_im * n_h;
 alpha_m_im = alpha_m_im * a - alpha_m_re * n_h;
 } else {
 a = br / m;
 n_h = m + a * br;
 m = (a * alpha_m_re + alpha_m_im) / n_h;
 alpha_m_im = (a * alpha_m_im - alpha_m_re) / n_h;
 }
 }

 mu_eff->re = 1.0 + m;
 mu_eff->im = alpha_m_im;
}

 Number of lines within body exceeds threshold

27-19

In this example, the length of the function CalculateAppxIndex exceeds the defined threshold of
100.

Correction — Refactor the Code

One possible correction is to refactor the code so that a function perform one specific task. In this
case, different tasks in the CalculateAppxIndex are delegated to other functions modular
functions so that each functions performs one specific tasks.

#include <cmath>
#include <math.h>
#include <stddef.h>
#include <stdlib.h>
#define CREAL_T
typedef float real32_T;
typedef double real64_T;
typedef struct {
 real32_T re;
 real32_T im;
} creal32_T;

typedef struct {
 real64_T re;
 real64_T im;
} creal_T;
// Function Declarations
static double rt_powd_snf(double u0, double u1);
void PolarizabilityE(double&, double&, double&,double&);
void PolarizabilityM(double&, double&, double&,double&);
void Eps_eff(double&,double&,creal_T*);
void Mu_eff(double&,double&,creal_T*);
void CalculateAppxIndex(double r, double epsilon_s, double epsilon_h, double //Compliant
 lambda, double f, creal_T *eps_eff, creal_T *mu_eff)
{
 double n_h;
 double m;
 double a;
 double alpha_e_re;
 double alpha_e_im;
 double alpha_m_re;
 double alpha_m_im;
 int l;
 double br;

 // sphere radius is 1 micron;
 // the refractive index of inclusion
 n_h = std::sqrt(epsilon_h);

 // the refractive index of host
 m = std::sqrt(epsilon_s) / n_h;
 n_h = 6.2831853071795862 * n_h * r / lambda;

 // size parameter;
 a = (n_h + m) + 2.0;
 m = n_h - m;

 PolarizabilityE(a,m,alpha_e_re,alpha_e_im);

27 Guidelines

27-20

 PolarizabilityM(a,m,alpha_e_re,alpha_e_im);
 Eps_eff(alpha_e_re,alpha_e_im, eps_eff);
 Mu_eff(alpha_e_re,alpha_e_im, mu_eff);
}

Check Information
Group: Software Complexity
Language: C | C++
Acronym: SC10
Default Threshold: 1200

See Also
Check Guidelines (-guidelines)

Topics
“Reduce Software Complexity by Using Polyspace Checkers”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2021a

 Number of lines within body exceeds threshold

27-21

Number of executable lines exceeds threshold
The number of executable lines in the body of a function is greater than the defined threshold

Description
This defect is raised on a function when the number of executable lines within the body of the
function is greater than the defined checker threshold. For details about how Polyspace calculates the
number of executable lines in a function, see Number of Executable Lines

Polyspace uses the default threshold 1000 unless you specify a threshold. To specify a selection file
where you can set the threshold, use Set checkers by file (-checkers-selection-file).
Also see “Reduce Software Complexity by Using Polyspace Checkers”.

When you import comments from previous analyses by using polyspace-comments-import,
Polyspace copies any review information on the code metric Number of Executable Lines in the
previous result to this checker in the current result. If the current result contains the same code
metric, the review information is copied to the code metric as well.

Risk

Violation of this checker might indicate that:

• The function is overly long and performs multiple tasks.
• The function is likely to develop unexpected issues. The chance of an unexpected error increases

with more lines of executable code.
• The function might contain unexpected or unplanned development.

These factors make the function difficult to maintain and debug.

Fix

To fix this check, either refactor your code or change the checker threshold. When refactoring the
code, design the functions in your code so that:

• Each function is reasonably concise.
• Each function performs one specific task.
• The functions have minimal side effects on other functions.

A best practice is to check the complexity of a module early in development to avoid costly post-
development refactoring.

Examples
Avoid Overly Long Functions

This example shows how Polyspace flags functions that have more executable lines that the defines
threshold of executable lines. For this example, the threshold is defined at 50. The function
CalculateAppxIndex has 116 executable line. The large number of executable lines indicate that
the function is overly long. While length of a function is not a big problem by itself, overly long

27 Guidelines

27-22

functions might be poorly designed, with complex data flow, many local variables, and performing
many tasks. Polyspace flags the function.

#include <cmath>
#include <math.h>
#include <stddef.h>
#include <stdlib.h>
#define CREAL_T
typedef float real32_T;
typedef double real64_T;
typedef struct {
 real32_T re;
 real32_T im;
} creal32_T;

typedef struct {
 real64_T re;
 real64_T im;
} creal_T;
// Function Declarations
static double rt_powd_snf(double u0, double u1);

void CalculateAppxIndex(double r, double epsilon_s, double epsilon_h, double//Noncompliant
 lambda, double f, creal_T *eps_eff, creal_T *mu_eff)
{
 double n_h;
 double m;
 double a;
 double alpha_e_re;
 double alpha_e_im;
 double alpha_m_re;
 double alpha_m_im;
 int l;
 double br;

 // sphere radius is 1 micron;
 // the refractive index of inclusion
 n_h = std::sqrt(epsilon_h);

 // the refractive index of host
 m = std::sqrt(epsilon_s) / n_h;
 n_h = 6.2831853071795862 * n_h * r / lambda;

 // size parameter;
 a = (n_h + m) + 2.0;
 m = n_h - m;

 // polarizability
 n_h = 6.2831853071795862 * rt_powd_snf(r, 3.0) / rt_powd_snf(n_h, 3.0);
 alpha_e_re = 0.0;
 alpha_e_im = 0.0;
 alpha_m_re = 0.0;
 alpha_m_im = 0.0;
 for (l = 0; l < 5; l++) {
 alpha_e_re += 0.0 * ((2.0 * (1.0 + (double)l) + 1.0) * a);
 alpha_e_im += (2.0 * (1.0 + (double)l) + 1.0) * a;
 alpha_m_re += 0.0 * ((2.0 * (1.0 + (double)l) + 1.0) * (m + 2.0));

 Number of executable lines exceeds threshold

27-23

 alpha_m_im += (2.0 * (1.0 + (double)l) + 1.0) * (m + 2.0);

 // alpha = alpha + 1i* [(2*l+1)*(an(l) + bn(l))];
 }

 alpha_e_re *= n_h;
 alpha_e_im *= n_h;
 alpha_m_re *= n_h;
 alpha_m_im *= n_h;

 // alpha = aa*alpha;
 n_h = f / (4.1887902047863905 * rt_powd_snf(r, 3.0));
 alpha_e_re *= n_h;
 alpha_e_im *= n_h;
 alpha_m_re *= n_h;
 alpha_m_im *= n_h;
 if (alpha_e_im == 0.0) {
 m = alpha_e_re / 3.0;
 n_h = 0.0;
 } else if (alpha_e_re == 0.0) {
 m = 0.0;
 n_h = alpha_e_im / 3.0;
 } else {
 m = alpha_e_re / 3.0;
 n_h = alpha_e_im / 3.0;
 }

 br = 1.0 - m;
 m = 0.0 - n_h;
 if (m == 0.0) {
 if (alpha_e_im == 0.0) {
 m = alpha_e_re / br;
 alpha_e_im = 0.0;
 } else if (alpha_e_re == 0.0) {
 m = 0.0;
 alpha_e_im /= br;
 } else {
 m = alpha_e_re / br;
 alpha_e_im /= br;
 }
 } else {
 n_h = std::abs(m);
 if (br > n_h) {
 a = m / br;
 n_h = br + a * m;
 m = (alpha_e_re + a * alpha_e_im) / n_h;
 alpha_e_im = (alpha_e_im - a * alpha_e_re) / n_h;
 } else if (n_h == br) {
 if (br > 0.0) {
 a = 0.5;
 } else {
 a = -0.5;
 }

 if (m > 0.0) {
 n_h = 0.5;
 } else {
 n_h = -0.5;

27 Guidelines

27-24

 }

 m = alpha_e_re * a + alpha_e_im * n_h;
 alpha_e_im = alpha_e_im * a - alpha_e_re * n_h;
 } else {
 a = br / m;
 n_h = m + a * br;
 m = (a * alpha_e_re + alpha_e_im) / n_h;
 alpha_e_im = (a * alpha_e_im - alpha_e_re) / n_h;
 }
 }

 eps_eff->re = epsilon_h * (1.0 + m);
 eps_eff->im = epsilon_h * alpha_e_im;
 if (alpha_m_im == 0.0) {
 m = alpha_m_re / 3.0;
 n_h = 0.0;
 } else if (alpha_m_re == 0.0) {
 m = 0.0;
 n_h = alpha_m_im / 3.0;
 } else {
 m = alpha_m_re / 3.0;
 n_h = alpha_m_im / 3.0;
 }

 br = 1.0 - m;
 m = 0.0 - n_h;
 if (m == 0.0) {
 if (alpha_m_im == 0.0) {
 m = alpha_m_re / br;
 alpha_m_im = 0.0;
 } else if (alpha_m_re == 0.0) {
 m = 0.0;
 alpha_m_im /= br;
 } else {
 m = alpha_m_re / br;
 alpha_m_im /= br;
 }
 } else {
 n_h = std::abs(m);
 if (br > n_h) {
 a = m / br;
 n_h = br + a * m;
 m = (alpha_m_re + a * alpha_m_im) / n_h;
 alpha_m_im = (alpha_m_im - a * alpha_m_re) / n_h;
 } else if (n_h == br) {
 if (br > 0.0) {
 a = 0.5;
 } else {
 a = -0.5;
 }

 if (m > 0.0) {
 n_h = 0.5;
 } else {
 n_h = -0.5;
 }

 Number of executable lines exceeds threshold

27-25

 m = alpha_m_re * a + alpha_m_im * n_h;
 alpha_m_im = alpha_m_im * a - alpha_m_re * n_h;
 } else {
 a = br / m;
 n_h = m + a * br;
 m = (a * alpha_m_re + alpha_m_im) / n_h;
 alpha_m_im = (a * alpha_m_im - alpha_m_re) / n_h;
 }
 }

 mu_eff->re = 1.0 + m;
 mu_eff->im = alpha_m_im;
}

Correction — Refactor Functions

One possible correction is to refactor the function so that separate tasks are delegated to separate
functions.

Check Information
Group: Software Complexity
Language: C | C++
Acronym: SC11
Default Threshold: 1000

See Also
Check Guidelines (-guidelines)

Topics
“Reduce Software Complexity by Using Polyspace Checkers”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2021a

27 Guidelines

27-26

Number of goto statements exceeds threshold
The number of goto statements in a function is greater than the defined threshold

Description
This defect is raised on a function when the number of goto statements in the function is greater
than the define threshold. For details about how Polyspace calculates the number of goto statements,
see Number of Goto Statements

Polyspace uses the default threshold zero unless you specify a threshold. To specify a selection file
where you can set the threshold, use Set checkers by file (-checkers-selection-file).
Also see “Reduce Software Complexity by Using Polyspace Checkers”.

When you import comments from previous analyses by using polyspace-comments-import,
Polyspace copies any review information on the code metric Number of Goto Statements in the
previous result to this checker in the current result. If the current result contains the same code
metric, the review information is copied to the code metric as well.

Risk

Violation of this checker might indicate that:

• The module has an overly complicated flow of execution.
• The module might contain unexpected or unplanned development.

With multiple goto statements, it is difficult to determine the exact order of code execution that
might lead to a bug or a correct result. These factors make the module difficult to maintain and
debug.

Fix

To fix this check, either change the checker threshold or refactor your code. You can replace most
uses of the goto statement by more straightforward control structures. In instances where a goto
statement is necessary, document it and justify the checker by using an annotation in the code. You
might want to change the threshold to avoid triggering this check when checking legacy codebases.

A best practice is to check the complexity of a module early in development to avoid costly post-
development refactoring.

Examples
Avoid Using goto Statements

#include<stdbool.h>
bool* getCondition();
void foo(){//Noncompliant
 bool* cond;
 cond = getCondition();
 while(*(cond+0)){
 //...
 while(*(cond+1)){

 Number of goto statements exceeds threshold

27-27

 //...
 while(*(cond+2)){
 //...
 if(*(cond+3)){
 goto HARDBREAK;
 }
 }
 }
 }
HARDBREAK:
 ;
 //....
 return;
}

In this example, a goto statement is used for conditionally breaking the flow of execution out of a
deeply nested control structure. Polyspace flags the function because the number of goto statements
in the function greater than the defined threshold, which is zero by default.

Correction — Refactor the Code or Change the Threshold

One possible correction is to refactor the code so that there are no goto statements in the code. For
instance, you might want to use a return statement to get out of a deeply nested structure.

#include<stdbool.h>
bool* getCondition();
void foo(){//Compliant
 bool* cond;
 cond = getCondition();
 while(*(cond+0)){
 //...
 while(*(cond+1)){
 //...
 while(*(cond+2)){
 //...
 if(*(cond+3)){
 return;
 }
 }
 }
 }

}

Alternatively, you might consider this instance of goto as acceptable. In that case, change the
threshold by modifying the checkers selection XML file to resolve the check.

Check Information
Group: Software Complexity
Language: C | C++
Acronym: SC13
Default Threshold: 0

See Also
Check Guidelines (-guidelines)

27 Guidelines

27-28

Topics
“Reduce Software Complexity by Using Polyspace Checkers”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2021a

 Number of goto statements exceeds threshold

27-29

Depth of call nesting exceeds threshold
The nesting depth of control structures in a function is greater than the defined nesting depth
threshold of a function

Description
This defect is raised when the nesting depth of control structures in a function, such as for, if-
else, switch, or while, exceeds the defined nesting depth threshold. For details about how
Polyspace calculates the nesting depth, see Number of Call Levels.

Polyspace uses the default threshold 4 unless you specify a threshold. To specify a selection file where
you can set the threshold, use Set checkers by file (-checkers-selection-file). Also see
“Reduce Software Complexity by Using Polyspace Checkers”.

When you import comments from previous analyses by using polyspace-comments-import,
Polyspace copies any review information on the code metric Number of Call Levels in the
previous result to this checker in the current result. If the current result contains the same code
metric, the review information is copied to the code metric as well.

Risk

Violation of this checker might indicate that:

• The function is difficult to read and understand.
• The function performs too many tasks at once.
• The function contains unexpected or unplanned development.

These factors make the module difficult to maintain and debug.

Fix

To fix this check, either refactor your code or change the checker threshold. When refactoring your
code:

• Design the function to perform a single task.
• Delegate unrelated tasks to other functions.

A best practice is to check the complexity of a module early in development to avoid costly post-
development refactoring.

Examples
Avoid Functions That Have Excessive Call Nesting
int foo(int i, int j, int k) //Noncompliant
{
 int m=0;
 for (i=0; i<10; i++)
 {
 for (j=0; j<10; j++)
 {

27 Guidelines

27-30

 for (k=0; k<10; k++)
 {
 if (i < 2 && j>5 && k<7)
 m += 1;
 else
 {
 if (i > 5 && j<8 && k >8){
 m +=-1 ;
 }

 else{
 m += 2;
 }
 }
 }
 }
 }
 return m;
}

In this example, the depth of call nesting is 5, which is above the default threshold of 4. The function
iterates over three integers and modifies the integer m conditionally. The high depth of nesting makes
reading and understanding the function difficult.

Correction — Refactor the Function

One possible correction is to delegate different tasks to different functions. For instance, delegate the
conditional actions in foo to another function bar.

int bar(int i, int j, int k){//Compliant
int m = 0;
 if (i < 2 && j>5 && k<7){
 m = 1;
 }
 else
 {
 if (i > 5 && j<8 && k >8){
 m =-1 ;
 }

 else{
 m = 2;
 }
 }
return m;
}

int foo(int i, int j, int k) //Compliant
{
 int m=0;
 for (i=0; i<10; i++)
 {
 for (j=0; j<10; j++)
 {
 for (k=0; k<10; k++)
 {
 m += bar(i,j,k);
 }

 Depth of call nesting exceeds threshold

27-31

 }
 }
 return m;
}

Check Information
Group: Software Complexity
Language: C | C++
Acronym: SC14
Default Threshold: 4

See Also
Check Guidelines (-guidelines)

Topics
“Reduce Software Complexity by Using Polyspace Checkers”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2021a

27 Guidelines

27-32

Number of local static variables exceeds threshold
The number of local static variables in a function is greater than the defined threshold

Description
This defect is raised on a function when the number of local static variables in the function is greater
than the defined checker threshold. For details about how Polyspace calculates the number of local
static variables in a function, see Number of Local Static Variables.

Polyspace uses the default threshold 20 unless you specify a threshold. To specify a selection file
where you can set the threshold, use Set checkers by file (-checkers-selection-file).
Also see “Reduce Software Complexity by Using Polyspace Checkers”.

When you import comments from previous analyses by using polyspace-comments-import,
Polyspace copies any review information on the code metric Number of Local Static
Variables in the previous result to this checker in the current result. If the current result contains
the same code metric, the review information is copied to the code metric as well.

Risk

The content of a static variable might be influenced by many different ways. When your function has
too many static variables, it indicates that the data in your code is not properly encapsulated and
your functions might have unexpected interdependencies. These factor make your code difficult to
test and maintain, and might introduce bugs that are difficult to diagnose.

Fix

To fix this check, either refactor your code or change the checker threshold. When refactoring your
code:

• Encapsulate and modularize independent data or code.
• Communicate between functions by using local variables instead of global or static variables.

A best practice is to check the complexity of a module early in development to avoid costly post-
development refactoring.

Examples
Avoid Functions That Have Too Many Static Variables

void foo(void){//Noncompliant

 static int a;
 static int b;
 static int c;
 static int d;
 static int e;
 static int f;
 static int g;
 //...
}

 Number of local static variables exceeds threshold

27-33

In this example, the function foo has seven local static variables, which is more than the specified
threshold of five. Polyspace flags the function.

Correction — Encapsulate Related Data

One possible correction is to encapsulate related data in structures or classes. In this code, the
related integer variables are encapsulated into a structure. The function foo now contains only one
static copy of the structure..

typedef struct {
 int a;
 int b;
 int c;
 int d;
 int e;
 int f;
 int g;
} data_vars;
void foo(void){//Compliant

 static data_vars A;
 //...
}

Check Information
Group: Software Complexity
Language: C | C++
Acronym: SC09
Default Threshold: 20

See Also
Check Guidelines (-guidelines)

Topics
“Reduce Software Complexity by Using Polyspace Checkers”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2021a

27 Guidelines

27-34

Number of local nonstatic variables exceeds
threshold
The number of local nonstatic variables in a function is greater than the defined threshold

Description
This defect is raised on a function when the number of local nonstatic variables in the function is
greater than the defined checker threshold. For details about how Polyspace calculates the number of
local nonstatic variables in a function, see Number of Local Non-Static Variables.

Polyspace uses the default threshold 20 unless you specify a threshold. To specify a selection file
where you can set the threshold, use Set checkers by file (-checkers-selection-file).
Also see “Reduce Software Complexity by Using Polyspace Checkers”.

When you import comments from previous analyses by using polyspace-comments-import,
Polyspace copies any review information on the code metric Number of Local Non-Static
Variables in the previous result to this checker in the current result. If the current result contains
the same code metric, the review information is copied to the code metric as well.

Risk

Violation of this checker might indicate that:

• The function is overly long.
• The function performs many tasks rather than one specific task.

These factors make the module difficult to maintain and debug.

Fix

To fix this check, either refactor your code, or change the checker threshold. When refactoring your
code:

• Consider splitting a function into smaller modules that performs a specific task.
• Consider bundling variables that have a similar role into containers such as classes, structures,

vectors, or maps.

A best practice is to check the complexity of a module early in development to avoid costly post-
development refactoring.

Examples
Avoid Functions with Excessive Number of Local Nonstatic variables

#include <string>
void foo(void){//Noncompliant

 int Value1,Value2,Value3,Value4,Value5,Value6,Value7,Value8,Value9,Value10,Value11;
 std::string Name1,Name2,Name3,Name4,Name5,Name6,Name7,Name8,Name9,Name10,Name11;
 //....

 Number of local nonstatic variables exceeds threshold

27-35

}

In this example, The names and associated value of eleven separate entities are declared as separate
variables. it is difficult to keep track of such a high number of variables. If you need to include more
entities in the code, you need to declare more variables. This kind of code is difficult to test, maintain,
and debug. Polyspace flags the function.

Correction — Bundle Related Data into Containers

One possible correction is to bundle the related data into containers. For instance, in this code the
data is bundled into a std::map container, which is then wrapped in a class. Then in the code, you
need to declare only one local variable and use the variable to store, manage, and access the data.
This code is easier to maintain, test, and debug.

#include <string>
#include <map>
class Instance{
 public:
 Instance();
 Instance(int, std::string);
 protected:
 addData(int,std::string);
 getValue(std::string);
 //...
 private:
 std::map<std::string, int> DataMap;

};
void foo(void){//Compliant

 Instance A;
 //....
 A.addData(5,"Name");

}

Check Information
Group: Software Complexity
Language: C | C++
Acronym: SC08
Default Threshold: 20

See Also
Check Guidelines (-guidelines)

Topics
“Reduce Software Complexity by Using Polyspace Checkers”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2021a

27 Guidelines

27-36

Number of call occurrences exceeds threshold
The number of function calls in a function is greater than the defined call occurrence threshold of a
function

Description
This defect is raised when the body of a function contains more calls to functions than the specified
call occurrence threshold of a function. For details about how Polyspace calculates the number of
function call occurrences, see Number of Call Occurrences

Polyspace uses the default threshold 50 unless you specify a threshold. To specify a selection file
where you can set the threshold, use Set checkers by file (-checkers-selection-file).
Also see “Reduce Software Complexity by Using Polyspace Checkers”.

When you import comments from previous analyses by using polyspace-comments-import,
Polyspace copies any review information on the code metric Number of Call Occurrences in the
previous result to this checker in the current result. If the current result contains the same code
metric, the review information is copied to the code metric as well.

Risk

Violation of this checker might indicate that:

• The function performs too many tasks.
• The function might have high interdependency with multiple other functions.
• Changes in some other function might have unexpected impact on the flagged function.

These factors make the function difficult to maintain and debug.

Fix

To fix this check, either refactor your code or change the checker threshold. When refactoring the
code, design the functions in your code so that:

• Each function performs one specific task.
• The functions have minimal side effects on other functions.

A best practice is to check the complexity of a module early in development to avoid costly post-
development refactoring.

Examples
Avoid Functions That Have Too Many Function Calls

 long long power(double x, int n){
 long long BN = 1;
 for(int i = 0; i<n;++i){
 BN*=x;
 }
 return BN;

 Number of call occurrences exceeds threshold

27-37

 }
long long factorial(int n){
 long long BN = 1;
 for(int i = 1; i<=n;++i){
 BN*=i;
 }
 return BN;
 }

 double AppxIndex(double m, double f){//Noncompliant
 double U = (power(m,2) - 1)/(power(m,2)*factorial(2));
 double V = (power(m,4) + 27*power(m,2)+38)/factorial(3)*(2*power(m,2)+3);
 return (1+2*f*power(U,2)*(1+power(m,2)*factorial(static_cast<int>(U/V))
 + power(m,3)/power(m,3)*(U-V)))/((1-2*f*power(U,2)*(1+power(m,2)*
 factorial(static_cast<int>(U/V)) + power(m,3)/power(m,3)*(U-V)))); }

The function AppxIndex contains 17 different function calls, which is greater than the specified call
occurrence threshold of 10. Such high call occurrence indicate that this function is doing too many
tasks. It also indicates that the function has high interdependencies with other functions. These
factor make AppIndex difficult to maintain, test, or debug.

Correction — Refactor Code

One possible correction is to refactor the function. Here, the function is split into smaller functions
that performs specific tasks.

 long long power(double x, int n){//Compliant
 long long BN = 1;
 for(int i = 0; i<n;++i){
 BN*=x;
 }
 return BN;
}
long long factorial(int n){//Compliant
 long long BN = 1;
 for(int i = 1; i<=n;++i){
 BN*=i;
 }
 return BN;
}

double CalculateU(double m){//Compliant
 return (power(m,2) - 1)/(power(m,2)*factorial(2));
}

double CalculateV(double m){//Compliant
 return (power(m,4) + 27*power(m,2)+38)/factorial(3)*(2*power(m,2)+3);
}

double CalculateMid(double m, double f){//Compliant
 double U = CalculateU(m);
 double V = CalculateU(m);
 return (2*f*power(U,2)*(1+power(m,2)*factorial(static_cast<int>(U/V))
 + power(m,3)/power(m,3)*(U-V)));
}

double AppxIndex(double m, double f){//Compliant

27 Guidelines

27-38

 return (1+CalculateMid(m,f))/((1-CalculateMid(m,f)));
}

Check Information
Group: Software Complexity
Language: C | C++
Acronym: SC06
Default Threshold: 50

See Also
Check Guidelines (-guidelines)

Topics
“Reduce Software Complexity by Using Polyspace Checkers”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2021a

 Number of call occurrences exceeds threshold

27-39

Number of function parameters exceeds threshold
The number of arguments of a function is greater than the defined threshold

Description
This defect is raised on a function when the number of its arguments is greater than the defined
checker threshold. For details about how Polyspace calculates the number of parameters, see Number
of Function Parameters

Polyspace uses the default threshold 5 unless you specify a threshold. To specify a selection file where
you can set the threshold, use Set checkers by file (-checkers-selection-file). Also see
“Reduce Software Complexity by Using Polyspace Checkers”.

When you import comments from previous analyses by using polyspace-comments-import,
Polyspace copies any review information on the code metric Number of Function Parameters in
the previous result to this checker in the current result. If the current result contains the same code
metric, the review information is copied to the code metric as well.

Risk

Violation of this checker indicates that:

• The function might have unacceptably high degree of dependence on other functions.
• The function might be performing more than one specific task. A best practice is to delegate one
specific task to one function.

• The function might contain unexpected or unplanned development.
• The function might hinder performance because registers cannot hold all parameters.

These factors make the function difficult to maintain and debug.

Fix

To fix this check, either refactor your code or change the threshold in the checker selection XML. You
might want to split the function into smaller chunks that performs a specific task and does not take
more than the number of parameters specified as threshold. If the parameters of a functions are
related, you might consider bundling them into structures.

A best practice is to check the complexity of a module early in development to avoid costly post-
development refactoring.

Examples
Avoid Functions With Excessive Numbers of Parameters

#include<vector>
#include<complex>
#define PI 3.1416
std::vector<std::complex<double> >CalculateCoefficient(double, double, int);
double CalculateMfactor(double, double);

27 Guidelines

27-40

std::complex<double> CalculateEffectiveIndex(//Noncompliant
 double Radius, double Index1, double Index2,
 double Wavelength, double FillFactor,
 int Cutoff){
 double RelativeIndex = Index1/Index2;
 double SizeParameter = 2*PI*Radius*Index1/Wavelength;
 std::complex<double> Polarization = 0;
 std::vector<std::complex<double>> Coefficient=
 CalculateCoefficient(RelativeIndex,SizeParameter,Cutoff);
 //...
 for (const auto& z : Coefficient){
 Polarization += z;
 }
 double Multiplier = CalculateMfactor(FillFactor,Radius);
 std::complex<double> Neff = (1.0 + Multiplier*Polarization)/
 (1.0 - Multiplier*Polarization);
 return Neff;
}

In this example, the function CalculateEffectiveIndex takes six parameters, which is greater
than the defined threshold five. The high number of parameter indicate that the function might be
performing more than one specific task, and it might have high degree of dependencies with other
functions. Polyspace flags the function as noncompliant.
Correction — Refactor The Code so that Functions Perform One Specific Task

One possible correction is to refactor the function so that it performs one specific task. In this code,
the function CalculateEffectiveIndex is refactored into two smaller functions, each of which
performs one specific task. The functions are easier to debug and maintain because they take less
parameters than the defined threshold. Polyspace does not flag these functions.

#include<vector>
#include<complex>
#define PI 3.1416
std::vector<std::complex<double>>CalculateCoefficient(double, double, int);
double CalculateMfactor(double, double);

std::complex<double> CalculatePolarization(//Compliant
 double Radius, double Index1, double Index2,
 double Wavelength, int Cutoff){
 double RelativeIndex = Index1/Index2;
 double SizeParameter = 2*PI*Radius*Index1/Wavelength;
 std::complex<double> Polarization = 0;
 std::vector<std::complex<double> > Coefficient=
 CalculateCoefficient(RelativeIndex,SizeParameter,Cutoff);
 //...
 for (const auto& z : Coefficient){
 Polarization += z;
 }

 return Polarization;
}

std::complex<double> CalculateEffectiveIndex
 (std::complex<double> Polarization, double Multiplier){//Compliant

 std::complex<double> Neff = (1.0 + Multiplier*Polarization)/

 Number of function parameters exceeds threshold

27-41

 (1.0 - Multiplier*Polarization);
 return Neff;
}

Check Information
Group: Software Complexity
Language: C | C++
Acronym: SC07
Default Threshold: 5

See Also
Check Guidelines (-guidelines)

Topics
“Reduce Software Complexity by Using Polyspace Checkers”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2021a

27 Guidelines

27-42

Number of paths exceeds threshold
The number of static paths in a function is greater than the defined threshold

Description
This defect is raised on a function when the number of static paths in the function is greater than the
defined checker threshold. For details about how Polyspace calculates the number of static paths in a
function, see Number of Paths

Polyspace uses the default threshold 80 unless you specify a threshold. To specify a selection file
where you can set the threshold, use Set checkers by file (-checkers-selection-file).
Also see “Reduce Software Complexity by Using Polyspace Checkers”.

When you import comments from previous analyses by using polyspace-comments-import,
Polyspace copies any review information on the code metric Number of Paths in the previous result
to this checker in the current result. If the current result contains the same code metric, the review
information is copied to the code metric as well.

Risk

Violation of this checker might indicate that the function has too many possible execution paths.
When there are too many execution paths, it might be difficult to test all paths exhaustively. Such
functions are difficult to debug, test and maintain.

Fix

To fix this check, either refactor your code or change the checker threshold. When refactoring your
code:

• Avoid nested control structures.
• Split a complex function into multiple functions that are simpler and easy to test.

A best practice is to check the complexity of a module early in development to avoid costly post-
development refactoring.

Examples
Avoid Functions That Have High Number of Paths

int afunc (int x);
int foo(int x,int y) //Noncompliant
{
 int flag;
 if (x <= 0){
 if (x > 10) { return 0; }
 }
 if (x<-240) {
 if (x < -2565) {
 return (x < -253 ? 0: afunc (x <22566 ? 1: afunc(x < -25103 ? 0: 6)));
 }

 Number of paths exceeds threshold

27-43

 }
 for (int i = 0; i< 10; i++)
 {
 while (x < y) flag = 1;
 do {++x;} while (i<7);
 flag = 0;
 }
 return flag;
}

In this example, the function foo has many branching statements points, resulting in a path number
of 45, which is greater than the specified threshold of 40. Because the function has many execution
paths, testing the function is difficult and testing might fail to cover all execution paths. Polyspace
flags the function as noncompliant.
Correction — Refactor Your Code

One possible correction is to split the function into two functions.

int afunc (int x);
int foo2(int x,int y)//Compliant
{

 if (x <= 0){
 if (x > 10) { return 0; }
 }
 if (x<-240) {
 if (x < -2565) {
 return (x < -253 ? 0: afunc (x <22566 ? 1: afunc(x < -25103 ? 0: 6)));
 }
 }
}

int bar(int x,int y){//Complaint
 int flag;
 for (int i = 0; i< 10; i++)
 {
 while (x < y) flag = 1;
 do {++x;} while (i<7);
 flag = 0;
 }
 return flag;
}

The functions foo2 and bar have acceptable number of paths and are easier to test compared to
foo.

Check Information
Group: Software Complexity
Language: C | C++
Acronym: SC15
Default Threshold: 80

See Also
Check Guidelines (-guidelines)

27 Guidelines

27-44

Topics
“Reduce Software Complexity by Using Polyspace Checkers”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2021a

 Number of paths exceeds threshold

27-45

Number of return statements exceeds threshold
The number of return statements in a function is greater than the defined threshold

Description
This defect is raised on a function when the number of return statement in the function is greater
than the defined checker threshold. For details about how Polyspace calculates the number of return
statements in a function, see Number of Return Statements

Polyspace uses the default threshold 1 unless you specify a threshold. To specify a selection file where
you can set the threshold, use Set checkers by file (-checkers-selection-file). Also see
“Reduce Software Complexity by Using Polyspace Checkers”.

When you import comments from previous analyses by using polyspace-comments-import,
Polyspace copies any review information on the code metric Number of Return Statements in
the previous result to this checker in the current result. If the current result contains the same code
metric, the review information is copied to the code metric as well.

Risk

Having multiple return statements makes it difficult to determine what object a function might
return. Such confusion might lead to bugs and maintenance issues that are difficult to debug.

Fix

To fix this check, use a single return statement. For instance, store the return value in an object and
define it conditionally instead of returning different objects in different conditionalized return
statement.

Examples
Avoid Multiple return Statements

int afunc (int x);
int foo2(int x,int y)//Noncompliant
{

 if (x <= 0){
 if (x > 10) { return 0; }
 }
 if (x<-240) {
 if (x < -2565) {
 return (x < -253 ? 0: afunc (x <22566 ? 1: afunc(x < -25103 ? 0: 6)));
 }
 }
}

In this example, the return statement of foo is conditionalized, leading to two return statements,
which exceeds the default return statement threshold of one. Polyspace flags the function foo as
noncompliant.

27 Guidelines

27-46

Correction — Declare Object to Store Return value

One possible correction is to declare an object which is then conditionally defined to have the
appropriate return value. This object is then returned by the function by using a single return
statement.

int afunc (int x);
int foo2(int x,int y)//Compliant
{
 int returnData;
 if (x <= 0){
 if (x > 10) { returnData = 0; }
 }
 if (x<-240) {
 if (x < -2565) {
 returnData = (x < -253 ? 0: afunc (x <22566 ? 1: afunc(x < -25103 ? 0: 6)));
 }
 }
 return returnData;
}

Check Information
Group: Software Complexity
Language: C | C++
Acronym: SC16
Default Threshold: 1

See Also
Check Guidelines (-guidelines)

Topics
“Reduce Software Complexity by Using Polyspace Checkers”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2021a

 Number of return statements exceeds threshold

27-47

Number of instructions exceeds threshold
The number of instructions in a function is greater than the defined threshold

Description
This defect is raised on a function when the number of instructions in the function is greater than the
defined threshold of the checker. For details about how Polyspace calculates the number of
instructions in a function, see Number of Instructions.

Polyspace uses the default threshold 50 unless you specify a threshold for the checker. To specify a
selection file where you can set the threshold, use Set checkers by file (-checkers-
selection-file). Also see “Reduce Software Complexity by Using Polyspace Checkers”.

When you import comments from previous analyses by using polyspace-comments-import,
Polyspace copies any review information on the code metric Number of Instructions in the
previous result to this checker in the current result. If the current result contains the same code
metric, the review information is copied to the code metric as well.

Risk

Violation of this checker might indicate that:

• The purpose of the function is unclear.
• The function performs multiple tasks.
• The function has high interdependency with other modules.
• The function contains unexpected or unplanned development.

These factors make the module difficult to maintain and debug.

Fix

To fix this check, either refactor your code or change the checker threshold. When refactoring the
code, design the functions in your code so that:

• Each function performs one specific task.
• The functions have minimal side effects on other functions.
• Independent data and code are properly isolated and encapsulated.

A best practice is to check the complexity of a module early in development to avoid costly post-
development refactoring.

Examples
Avoid Overly Long Functions

#include <cmath>
#include <math.h>
#include <stddef.h>
#include <stdlib.h>
#define CREAL_T

27 Guidelines

27-48

typedef float real32_T;
typedef double real64_T;
typedef struct {
 real32_T re;
 real32_T im;
} creal32_T;

typedef struct {
 real64_T re;
 real64_T im;
} creal_T;
// Function Declarations
static double rt_powd_snf(double u0, double u1);

void CalculateAppxIndex(double r, double epsilon_s, double epsilon_h, double
 lambda, double f, creal_T *eps_eff, creal_T *mu_eff) //Noncompliant
{
 double n_h;
 double m;
 double a;
 double alpha_e_re;
 double alpha_e_im;
 double alpha_m_re;
 double alpha_m_im;
 int l;
 double br;

 // sphere radius is 1 micron;
 // the refractive index of inclusion
 n_h = std::sqrt(epsilon_h);

 // the refractive index of host
 m = std::sqrt(epsilon_s) / n_h;
 n_h = 6.2831853071795862 * n_h * r / lambda;

 // size parameter;
 a = (n_h + m) + 2.0;
 m = n_h - m;

 // polarizability
 n_h = 6.2831853071795862 * rt_powd_snf(r, 3.0) / rt_powd_snf(n_h, 3.0);
 alpha_e_re = 0.0;
 alpha_e_im = 0.0;
 alpha_m_re = 0.0;
 alpha_m_im = 0.0;
 for (l = 0; l < 5; l++) {
 alpha_e_re += 0.0 * ((2.0 * (1.0 + (double)l) + 1.0) * a);
 alpha_e_im += (2.0 * (1.0 + (double)l) + 1.0) * a;
 alpha_m_re += 0.0 * ((2.0 * (1.0 + (double)l) + 1.0) * (m + 2.0));
 alpha_m_im += (2.0 * (1.0 + (double)l) + 1.0) * (m + 2.0);

 // alpha = alpha + 1i* [(2*l+1)*(an(l) + bn(l))];
 }

 alpha_e_re *= n_h;
 alpha_e_im *= n_h;
 alpha_m_re *= n_h;
 alpha_m_im *= n_h;

 Number of instructions exceeds threshold

27-49

 // alpha = aa*alpha;
 n_h = f / (4.1887902047863905 * rt_powd_snf(r, 3.0));
 alpha_e_re *= n_h;
 alpha_e_im *= n_h;
 alpha_m_re *= n_h;
 alpha_m_im *= n_h;
 if (alpha_e_im == 0.0) {
 m = alpha_e_re / 3.0;
 n_h = 0.0;
 } else if (alpha_e_re == 0.0) {
 m = 0.0;
 n_h = alpha_e_im / 3.0;
 } else {
 m = alpha_e_re / 3.0;
 n_h = alpha_e_im / 3.0;
 }

 br = 1.0 - m;
 m = 0.0 - n_h;
 if (m == 0.0) {
 if (alpha_e_im == 0.0) {
 m = alpha_e_re / br;
 alpha_e_im = 0.0;
 } else if (alpha_e_re == 0.0) {
 m = 0.0;
 alpha_e_im /= br;
 } else {
 m = alpha_e_re / br;
 alpha_e_im /= br;
 }
 } else {
 n_h = std::abs(m);
 if (br > n_h) {
 a = m / br;
 n_h = br + a * m;
 m = (alpha_e_re + a * alpha_e_im) / n_h;
 alpha_e_im = (alpha_e_im - a * alpha_e_re) / n_h;
 } else if (n_h == br) {
 if (br > 0.0) {
 a = 0.5;
 } else {
 a = -0.5;
 }

 if (m > 0.0) {
 n_h = 0.5;
 } else {
 n_h = -0.5;
 }

 m = alpha_e_re * a + alpha_e_im * n_h;
 alpha_e_im = alpha_e_im * a - alpha_e_re * n_h;
 } else {
 a = br / m;
 n_h = m + a * br;
 m = (a * alpha_e_re + alpha_e_im) / n_h;
 alpha_e_im = (a * alpha_e_im - alpha_e_re) / n_h;

27 Guidelines

27-50

 }
 }

 eps_eff->re = epsilon_h * (1.0 + m);
 eps_eff->im = epsilon_h * alpha_e_im;
 if (alpha_m_im == 0.0) {
 m = alpha_m_re / 3.0;
 n_h = 0.0;
 } else if (alpha_m_re == 0.0) {
 m = 0.0;
 n_h = alpha_m_im / 3.0;
 } else {
 m = alpha_m_re / 3.0;
 n_h = alpha_m_im / 3.0;
 }

 br = 1.0 - m;
 m = 0.0 - n_h;
 if (m == 0.0) {
 if (alpha_m_im == 0.0) {
 m = alpha_m_re / br;
 alpha_m_im = 0.0;
 } else if (alpha_m_re == 0.0) {
 m = 0.0;
 alpha_m_im /= br;
 } else {
 m = alpha_m_re / br;
 alpha_m_im /= br;
 }
 } else {
 n_h = std::abs(m);
 if (br > n_h) {
 a = m / br;
 n_h = br + a * m;
 m = (alpha_m_re + a * alpha_m_im) / n_h;
 alpha_m_im = (alpha_m_im - a * alpha_m_re) / n_h;
 } else if (n_h == br) {
 if (br > 0.0) {
 a = 0.5;
 } else {
 a = -0.5;
 }

 if (m > 0.0) {
 n_h = 0.5;
 } else {
 n_h = -0.5;
 }

 m = alpha_m_re * a + alpha_m_im * n_h;
 alpha_m_im = alpha_m_im * a - alpha_m_re * n_h;
 } else {
 a = br / m;
 n_h = m + a * br;
 m = (a * alpha_m_re + alpha_m_im) / n_h;
 alpha_m_im = (a * alpha_m_im - alpha_m_re) / n_h;
 }
 }

 Number of instructions exceeds threshold

27-51

 mu_eff->re = 1.0 + m;
 mu_eff->im = alpha_m_im;
}

In this example, the function CalculateAppxIndex has more instructions than the default threshold
of 50. Such high number of instructions indicate that the function has an ill-defined purpose and
performs many tasks at once. The function is difficult to debug. Polyspace flags the function.

Correction — Delegate Independent Tasks to Functions

One possible correction is to refactor the function by delegating individual functions to smaller
functions. Such modular design enables easier debugging and efficient code reuse.

#include <cmath>
#include <math.h>
#include <stddef.h>
#include <stdlib.h>
#define CREAL_T
typedef float real32_T;
typedef double real64_T;
typedef struct {
 real32_T re;
 real32_T im;
} creal32_T;

typedef struct {
 real64_T re;
 real64_T im;
} creal_T;
// Function Declarations
static double rt_powd_snf(double u0, double u1);
void PolarizabilityE(double&, double&, double&,double&);
void PolarizabilityM(double&, double&, double&,double&);
void Eps_eff(double&,double&,creal_T*);
void Mu_eff(double&,double&,creal_T*);
void CalculateAppxIndex(double r, double epsilon_s, double epsilon_h, double
 lambda, double f, creal_T *eps_eff, creal_T *mu_eff)//Compliant
{
 double n_h;
 double m;
 double a;
 double alpha_e_re;
 double alpha_e_im;
 double alpha_m_re;
 double alpha_m_im;
 int l;
 double br;

 // sphere radius is 1 micron;
 // the refractive index of inclusion
 n_h = std::sqrt(epsilon_h);

 // the refractive index of host
 m = std::sqrt(epsilon_s) / n_h;
 n_h = 6.2831853071795862 * n_h * r / lambda;

27 Guidelines

27-52

 // size parameter;
 a = (n_h + m) + 2.0;
 m = n_h - m;

 PolarizabilityE(a,m,alpha_e_re,alpha_e_im);
 PolarizabilityM(a,m,alpha_e_re,alpha_e_im);
 Eps_eff(alpha_e_re,alpha_e_im, eps_eff);
 Mu_eff(alpha_e_re,alpha_e_im, mu_eff);
}

Check Information
Group: Software Complexity
Language: C | C++
Acronym: SC12
Default Threshold: 50

See Also
Check Guidelines (-guidelines)

Topics
“Reduce Software Complexity by Using Polyspace Checkers”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2021a

 Number of instructions exceeds threshold

27-53

Number of lines exceeds threshold
The number of total lines in a file is greater than the defined threshold

Description
This defect is raised on a file when the number of total lines in the file is greater than the defined
threshold of the checker. For details about how Polyspace calculates the total number of lines in a file,
see Number of Lines.

Polyspace uses the default threshold 10,000 unless you specify a threshold for the checker. To specify
a selection file where you can set the threshold, use Set checkers by file (-checkers-
selection-file). Also see “Reduce Software Complexity by Using Polyspace Checkers”.

When you import comments from previous analyses by using polyspace-comments-import,
Polyspace copies any review information on the code metric Number of Lines in the previous result
to this checker in the current result. If the current result contains the same code metric, the review
information is copied to the code metric as well.

Risk

Violation of this checker might indicate that:

• The file is too long.
• The file contains too many different functions.
• The file contains too many verbose comments.

These factors make the file difficult to maintain and debug.

Fix

To fix this check, either refactor your code or change the checker threshold. When refactoring the
code, design the modules of your project so that:

• Related and independent code is encapsulated and separated.
• The modules are separated based on tasks of appropriate scope.

A best practice is to check the complexity of a module early in development to avoid costly post-
development refactoring.

Examples
Avoid Overdeveloped Files

//file1.cpp
#include <cmath>//Noncompliant
#include <math.h>
#include <stddef.h>
#include <stdlib.h>
#define CREAL_T
typedef float real32_T;

27 Guidelines

27-54

typedef double real64_T;
typedef struct {
 real32_T re;
 real32_T im;
} creal32_T;

typedef struct {
 real64_T re;
 real64_T im;
} creal_T;
// Function Declarations
static double rt_powd_snf(double u0, double u1);

void CalculateAppxIndex(double r, double epsilon_s, double epsilon_h, double
 lambda, double f, creal_T *eps_eff, creal_T *mu_eff)
{
 double n_h;
 double m;
 double a;
 double alpha_e_re;
 double alpha_e_im;
 double alpha_m_re;
 double alpha_m_im;
 int l;
 double br;

 // sphere radius is 1 micron;
 // the refractive index of inclusion
 n_h = std::sqrt(epsilon_h);

 // the refractive index of host
 m = std::sqrt(epsilon_s) / n_h;
 n_h = 6.2831853071795862 * n_h * r / lambda;

 // size parameter;
 a = (n_h + m) + 2.0;
 m = n_h - m;

 // polarizability
 n_h = 6.2831853071795862 * rt_powd_snf(r, 3.0) / rt_powd_snf(n_h, 3.0);
 alpha_e_re = 0.0;
 alpha_e_im = 0.0;
 alpha_m_re = 0.0;
 alpha_m_im = 0.0;
 for (l = 0; l < 5; l++) {
 alpha_e_re += 0.0 * ((2.0 * (1.0 + (double)l) + 1.0) * a);
 alpha_e_im += (2.0 * (1.0 + (double)l) + 1.0) * a;
 alpha_m_re += 0.0 * ((2.0 * (1.0 + (double)l) + 1.0) * (m + 2.0));
 alpha_m_im += (2.0 * (1.0 + (double)l) + 1.0) * (m + 2.0);

 // alpha = alpha + 1i* [(2*l+1)*(an(l) + bn(l))];
 }

 alpha_e_re *= n_h;
 alpha_e_im *= n_h;
 alpha_m_re *= n_h;
 alpha_m_im *= n_h;

 Number of lines exceeds threshold

27-55

 // alpha = aa*alpha;
 n_h = f / (4.1887902047863905 * rt_powd_snf(r, 3.0));
 alpha_e_re *= n_h;
 alpha_e_im *= n_h;
 alpha_m_re *= n_h;
 alpha_m_im *= n_h;
 if (alpha_e_im == 0.0) {
 m = alpha_e_re / 3.0;
 n_h = 0.0;
 } else if (alpha_e_re == 0.0) {
 m = 0.0;
 n_h = alpha_e_im / 3.0;
 } else {
 m = alpha_e_re / 3.0;
 n_h = alpha_e_im / 3.0;
 }

 br = 1.0 - m;
 m = 0.0 - n_h;
 if (m == 0.0) {
 if (alpha_e_im == 0.0) {
 m = alpha_e_re / br;
 alpha_e_im = 0.0;
 } else if (alpha_e_re == 0.0) {
 m = 0.0;
 alpha_e_im /= br;
 } else {
 m = alpha_e_re / br;
 alpha_e_im /= br;
 }
 } else {
 n_h = std::abs(m);
 if (br > n_h) {
 a = m / br;
 n_h = br + a * m;
 m = (alpha_e_re + a * alpha_e_im) / n_h;
 alpha_e_im = (alpha_e_im - a * alpha_e_re) / n_h;
 } else if (n_h == br) {
 if (br > 0.0) {
 a = 0.5;
 } else {
 a = -0.5;
 }

 if (m > 0.0) {
 n_h = 0.5;
 } else {
 n_h = -0.5;
 }

 m = alpha_e_re * a + alpha_e_im * n_h;
 alpha_e_im = alpha_e_im * a - alpha_e_re * n_h;
 } else {
 a = br / m;
 n_h = m + a * br;
 m = (a * alpha_e_re + alpha_e_im) / n_h;
 alpha_e_im = (a * alpha_e_im - alpha_e_re) / n_h;
 }

27 Guidelines

27-56

 }

 eps_eff->re = epsilon_h * (1.0 + m);
 eps_eff->im = epsilon_h * alpha_e_im;
 if (alpha_m_im == 0.0) {
 m = alpha_m_re / 3.0;
 n_h = 0.0;
 } else if (alpha_m_re == 0.0) {
 m = 0.0;
 n_h = alpha_m_im / 3.0;
 } else {
 m = alpha_m_re / 3.0;
 n_h = alpha_m_im / 3.0;
 }

 br = 1.0 - m;
 m = 0.0 - n_h;
 if (m == 0.0) {
 if (alpha_m_im == 0.0) {
 m = alpha_m_re / br;
 alpha_m_im = 0.0;
 } else if (alpha_m_re == 0.0) {
 m = 0.0;
 alpha_m_im /= br;
 } else {
 m = alpha_m_re / br;
 alpha_m_im /= br;
 }
 } else {
 n_h = std::abs(m);
 if (br > n_h) {
 a = m / br;
 n_h = br + a * m;
 m = (alpha_m_re + a * alpha_m_im) / n_h;
 alpha_m_im = (alpha_m_im - a * alpha_m_re) / n_h;
 } else if (n_h == br) {
 if (br > 0.0) {
 a = 0.5;
 } else {
 a = -0.5;
 }

 if (m > 0.0) {
 n_h = 0.5;
 } else {
 n_h = -0.5;
 }

 m = alpha_m_re * a + alpha_m_im * n_h;
 alpha_m_im = alpha_m_im * a - alpha_m_re * n_h;
 } else {
 a = br / m;
 n_h = m + a * br;
 m = (a * alpha_m_re + alpha_m_im) / n_h;
 alpha_m_im = (a * alpha_m_im - alpha_m_re) / n_h;
 }
 }

 Number of lines exceeds threshold

27-57

 mu_eff->re = 1.0 + m;
 mu_eff->im = alpha_m_im;
}

In this example, the file file1.cpp has 184 lines, which is more than the specified checker threshold
of 100. This file might be overdeveloped. Polyspace raises the defect.

Correction — Refactor Your Code

One possible correction is to distribute the different modules of the code into different files. For
instance, the different tasks in CalculateAppxIndex are delegated to other functions and their
implementations are moved to file2.cpp. The type definitions and header file inclusions are moved
to another header file. The file file1.cpp now has 40 lines, which is below the threshold.

//file2.cpp//Compliant
//Implementations of these functions:
void PolarizabilityE(double&, double&, double&,double&){
//...
}
void PolarizabilityM(double&, double&, double&,double&){
//...
}
void Eps_eff(double&,double&,creal_T*){
//...}

void Mu_eff(double&,double&,creal_T*){
//...
}

//header.h//Compliant
#include <cmath>
#include <math.h>
#include <stddef.h>
#include <stdlib.h>
#define CREAL_T
typedef float real32_T;
typedef double real64_T;
typedef struct {
 real32_T re;
 real32_T im;
} creal32_T;

typedef struct {
 real64_T re;
 real64_T im;
} creal_T;

//file1.cpp//Compliant
#include"header.h"
#include"file2.cpp"
// Function Declarations
static double rt_powd_snf(double u0, double u1);
void PolarizabilityE(double&, double&, double&,double&);
void PolarizabilityM(double&, double&, double&,double&);
void Eps_eff(double&,double&,creal_T*);
void Mu_eff(double&,double&,creal_T*);

27 Guidelines

27-58

void CalculateAppxIndex(double r, double epsilon_s,
 double epsilon_h, double
 lambda, double f, creal_T *eps_eff, creal_T *mu_eff)
{
 double n_h;
 double m;
 double a;
 double alpha_e_re;
 double alpha_e_im;
 double alpha_m_re;
 double alpha_m_im;
 int l;
 double br;

 // sphere radius is 1 micron;
 // the refractive index of inclusion
 n_h = std::sqrt(epsilon_h);

 // the refractive index of host
 m = std::sqrt(epsilon_s) / n_h;
 n_h = 6.2831853071795862 * n_h * r / lambda;

 // size parameter;
 a = (n_h + m) + 2.0;
 m = n_h - m;

 PolarizabilityE(a,m,alpha_e_re,alpha_e_im);
 PolarizabilityM(a,m,alpha_e_re,alpha_e_im);
 Eps_eff(alpha_e_re,alpha_e_im, eps_eff);
 Mu_eff(alpha_e_re,alpha_e_im, mu_eff);
}

Check Information
Group: Software Complexity
Language: C | C++
Acronym: SC01
Default Threshold: 10000

See Also
Check Guidelines (-guidelines)

Topics
“Reduce Software Complexity by Using Polyspace Checkers”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2021a

 Number of lines exceeds threshold

27-59

Cyclomatic complexity exceeds threshold
The cyclomatic complexity of a function is greater than the defined cyclomatic complexity threshold
of a function

Description
Polyspace calculates the cyclomatic complexity of a function by adding one to the number of decision
points. A decision point is a statement that causes your program to branch into two paths. This defect
is raised when the cyclomatic complexity of a function is greater than the defined cyclomatic
complexity threshold. For details about how Polyspace calculates cyclomatic complexity, see
Cyclomatic Complexity.

Polyspace uses the default threshold 10 unless you specify a threshold. To specify a selection file
where you can set the threshold, use Set checkers by file (-checkers-selection-file).
Also see “Reduce Software Complexity by Using Polyspace Checkers”.

When you import comments from previous analyses by using polyspace-comments-import,
Polyspace copies any review information on the code metric Cyclomatic Complexity in the
previous result to this checker in the current result. If the current result contains the same code
metric, the review information is copied to the code metric as well.

Risk

Violation of this checker might indicate that the function contains too many branches. Such functions
are difficult to test and might contain unknown defects or bugs that are difficult to debug.

Fix

To fix this check:

• Refactor your code to avoid nested control structures.
• Refactor your code to split a complex function into multiple functions that are simpler and easy to

test.
• Modify the checker selection XML file to raise the cyclomatic complexity threshold.

A best practice is to check the complexity of a module early in development to avoid costly post-
development refactoring.

Examples
Avoid Functions That Have High Cyclomatic Complexity
int afunc (int x);
int foo(int x,int y) //Noncompliant
{
 int flag;
 if (x <= 0){
 if (x > 10) { return 0; }
 }
 if (x<-240) {
 if (x < -2565) {

27 Guidelines

27-60

 return (x < -253 ? 0: afunc (x <22566 ? 1: afunc(x < -25103 ? 0: 6)));
 }
 }
 for (int i = 0; i< 10; i++)
 {
 while (x < y) flag = 1;
 do {++x;} while (i<7);
 flag = 0;
 }
 return flag;
}

In this example, the function foo has too many decision points, resulting in a cyclomatic complexity
of 11, which is greater than the default threshold of 10. Because the function has many decision
points, testing the function is difficult and testing might fail to cover all execution paths. Polyspace
flags the function as noncompliant.

Correction — Refactor the Function

One possible correction is to split the function into two functions.

int afunc (int x);
int foo2(int x,int y)//Compliant
{

 if (x <= 0){
 if (x > 10) { return 0; }
 }
 if (x<-240) {
 if (x < -2565) {
 return (x < -253 ? 0: afunc (x <22566 ? 1: afunc(x < -25103 ? 0: 6)));
 }
 }
}

int bar(int x,int y){//Complaint
 int flag;
 for (int i = 0; i< 10; i++)
 {
 while (x < y) flag = 1;
 do {++x;} while (i<7);
 flag = 0;
 }
 return flag;
}

The functions foo2 and bar have acceptable cyclomatic complexity and are easier to test compared
to foo.

Check Information
Group: Software Complexity
Language: C | C++
Acronym: SC17
Default Threshold: 10

 Cyclomatic complexity exceeds threshold

27-61

See Also
Check Guidelines (-guidelines)

Topics
“Reduce Software Complexity by Using Polyspace Checkers”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2021a

27 Guidelines

27-62

Language scope exceeds threshold
The language scope of a function is greater than the defined threshold

Description
Language scope represents the cost of maintaining or updating a function. For instance, if an operand
occurs many times in a function, then changing the operand name is costly. The language scope of
such a function would be high. This defect is raised when the language scope of a function exceeds
the defined threshold. For details about how Polyspace calculates language scope, see Language
Scope.

Note The language scope calculated by Polyspace is a floating point number. In this checker, the
floating point language scope is converted to an integer by rounding it to the second decimal place
and then multiplying it by 100.

Polyspace uses the default threshold 400 unless you specify a threshold. To specify a selection file
where you can set the threshold, use Set checkers by file (-checkers-selection-file).
Also see “Reduce Software Complexity by Using Polyspace Checkers”.

When you import comments from previous analyses by using polyspace-comments-import,
Polyspace copies any review information on the code metric Language Scope in the previous result
to this checker in the current result. If the current result contains the same code metric, the review
information is copied to the code metric as well.

Risk

Violation of this checker might indicate that:

• Change to an operand might require many change in the function.
• The function might be performing multiple tasks at once.
• The function might have high degree of interdependency with other functions.

These factors make the module difficult to maintain and debug.

Fix

To fix this check, either refactor your code or change the checker threshold. When refactoring the
code, design the functions in your code so that:

• Each function performs one specific task.
• The functions have minimal side effects on other functions.

A best practice is to check the complexity of a module early in development to avoid costly post-
development refactoring.

 Language scope exceeds threshold

27-63

Examples
Avoid Functions That Have Many Recurrence of Operands
 long long power(double x, int n){
 long long BN = 1;
 for(int i = 0; i<n;++i){
 BN*=x;
 }
 return BN;
 }

 double AppxIndex(double m, double f){//Noncompliant
 double U = (power(m,2) - 1)/(power(m,2)+2);
 double V = (power(m,4) + 27*power(m,2)+38)/(2*power(m,2)+3);
 return (1+2*f*power(U,2)*(1+power(m,2)*U*V + power(m,3)/
 power(m,3)*(U-V)))/((1-2*f*power(U,2)*(1+power(m,2)*U*V +
 power(m,3)/power(m,3)*(U-V))));
 }

In this example, In this function, the operand power is repeated many times. Any change to power
requires careful examination of the function to make sure unexpected behaviors are not introduced.
The language scope of the function AppxIndex is700, which is above the default language scope of
400. Polyspace flags the function as noncompliant
Correction — Refactor the Code

One possible correction is to refactor the code so that operands are not repeated many times. In this
example, the function AppxIndex is refactored so that unrelated tasks are performed by independent
functions. These functions are compliant.

// This code calculates effective index of materials as decribed in
// the formula in 10.1364...
// power(x,n) returns the nth power of x (x^n)
// n is an integer
// x is a double
// return type is long long
long long power(double x, int n){//Compliant
 long long BN = 1;
 for(int i = 0; i<n;++i){
 BN*=x;
 }
 return BN;
}
// CalculateU(m) calculates the first intermediate variable
// required to calculate polarization
// m is the relative refractive index
// return type is double;
double CalculateU(double m){//Compliant
 return (power(m,2) - 1)/(power(m,2)+2);
}
// CalculateV(m) calculates the second intermediate variable
// required to calculate polarization
// m is the relative refractive index
// return type is double;
double CalculateV(double m){//Compliant
 return (power(m,4) + 27*power(m,2)+38)/(2*power(m,2)+3);
}

27 Guidelines

27-64

// CalculateMid(m,f) calculates the large term present in both numerator and denominator
// of the effective index calculation
// m is the relative refractive index
// f is the fillfactor
// return type is double;
double CalculateMid(double m, double f){//Compliant
 double U = CalculateU(m);
 double V = CalculateU(m);
 return 2*f*power(U,2)*(1+power(m,2)*U*V + power(m,3)/power(m,3)*(U-V));
}
//AppxIndex(m,f) calculates the approximate effective index
// m is the relative refractive index
// f is the fillfactor
//return type is double
double AppxIndex(double m, double f){//Compliant
 return (1+CalculateMid(m,f))/((1-CalculateMid(m,f)));
}

Check Information
Group: Software Complexity
Language: C | C++
Acronym: SC18
Default Threshold: 400

See Also
Check Guidelines (-guidelines)

Topics
“Reduce Software Complexity by Using Polyspace Checkers”
“Modify Default Behavior of Bug Finder Checkers”

Introduced in R2021a

 Language scope exceeds threshold

27-65

Custom Coding Rules

28

Group 1: Files
The custom rules 1.x in Polyspace enforce naming conventions for files and folders. For information
on how to enable these rules, see Check custom rules (-custom-rules).

Number Rule Details
1.1 All source file names must follow the

specified pattern.
Only the base name is checked. A source
file is a file that is not included.

1.2 All source folder names must follow the
specified pattern.

Only the folder name is checked. A
source file is a file that is not included.

1.3 All include file names must follow the
specified pattern.

Only the base name is checked. An
include file is a file that is included.

1.4 All include folder names must follow the
specified pattern.

Only the folder name is checked. An
include file is a file that is included.

28 Custom Coding Rules

28-2

Group 2: Preprocessing
The custom rules 2.x in Polyspace enforce naming conventions for macros. For information on how to
enable these rules, see Check custom rules (-custom-rules).

Number Rule Details
2.1 All macros must follow the specified

pattern.
Macro names are checked before
preprocessing.

2.2 All macro parameters must follow the
specified pattern.

Macro parameters are checked before
preprocessing.

 Group 2: Preprocessing

28-3

Group 3: Type definitions
The custom rules 3.x in Polyspace enforce naming conventions for typedef aliases.

For information on how to enable these rules, see Check custom rules (-custom-rules).

Number Rule Details
3.1 All integer types must follow the

specified pattern.
Applies to integer and Boolean types
specified by typedef statements. For
example:

• typedef signed long int64_t;
• typedef int64_t sLong_t;

Does not apply to enumeration types.
3.2 All float types must follow the specified

pattern.
Applies to double and float types
specified by typedef statements. For
example:

• typedef double float64_t;
• typedef float64_t Lfloat;

3.3 All pointer types must follow the
specified pattern.

Applies to pointer types specified by
typedef statements. For example:

• typedef int* p_int;
• typedef p_int int_;

3.4 All array types must follow the specified
pattern.

Applies to array types specified by
typedef statements. For example:

• typedef int a_int_3[3];
• typedef int3_arr in3af[3];

3.5 All function pointer types must follow
the specified pattern.

Applies to function pointer types
specified by typedef statements. For
example:

• typedef void (*func_fp)
(int);

• typedef func_fp funcc;

28 Custom Coding Rules

28-4

Group 4: Structures
The custom rules 4.x in Polyspace enforce naming conventions for structured data types. For
information on how to enable these rules, see Check custom rules (-custom-rules).

Number Rule Details
4.1 All struct tags must follow the

specified pattern.

4.2 All struct types must follow the
specified pattern.

struct types are aliases for previously
defined structures (defined with the
typedef or using keyword).

4.3 All struct fields must follow the
specified pattern.

4.4 All struct bit fields must follow the
specified pattern.

 Group 4: Structures

28-5

Group 5: Classes (C++)
The custom rules 5.x in Polyspace enforce naming conventions for classes and class members. For
information on how to enable these rules, see Check custom rules (-custom-rules).

Number Rule Details
5.1 All class names must follow the specified

pattern.

5.2 All class types must follow the specified
pattern.

Class types are aliases for previously
defined classes (defined with the
typedef or using keyword).

5.3 All data members must follow the
specified pattern.

5.4 All function members must follow the
specified pattern.

5.5 All static data members must follow the
specified pattern.

5.6 All static function members must follow
the specified pattern.

5.7 All bitfield members must follow the
specified pattern.

28 Custom Coding Rules

28-6

Group 6: Enumerations
The custom rules 6.x in Polyspace enforce naming conventions for enumerations. For information on
how to enable these rules, see Check custom rules (-custom-rules).

Number Rule Details
6.1 All enumeration tags must follow the

specified pattern.

6.2 All enumeration types must follow the
specified pattern.

Enumeration types are aliases for
previously defined enumerations
(defined with the typedef or using
keyword).

6.3 All enumeration constants must follow
the specified pattern.

 Group 6: Enumerations

28-7

Group 7: Functions
The custom rules 7.x in Polyspace enforce naming conventions for functions and function parameters.
For information on how to enable these rules, see Check custom rules (-custom-rules).

Number Rule Details
7.1 All global functions must follow the

specified pattern.
A global function is a function with
external linkage.

7.2 All static functions must follow the
specified pattern.

A static function is a function with
internal linkage. This rule does not
apply to class member functions.

7.3 All function parameters must follow the
specified pattern.

In C++, applies to non-member
functions.

28 Custom Coding Rules

28-8

Group 8: Constants
The custom rules 8.x in Polyspace enforce naming conventions for constants. For information on how
to enable these rules, see Check custom rules (-custom-rules). These rules do not apply to
constants that are defined within a class or to constants that are function parameters.

Number Rule Details
8.1 All global nonstatic constants must

follow the specified pattern.
A global nonstatic constant is a constant
with external linkage.

8.2 All global static constants must follow
the specified pattern.

A global static constant is a constant
with internal linkage.

8.3 All local nonstatic constants must follow
the specified pattern.

A local nonstatic constant is a constant
without linkage.

8.4 All local static constants must follow the
specified pattern.

A local static constant is a constant
declared static in a function.

 Group 8: Constants

28-9

Group 9: Variables
The custom rules 9.x in Polyspace enforce naming conventions for variables. For information on how
to enable these rules, see Check custom rules (-custom-rules). These rules do not apply to
variables that are defined within a class or to variables that are function parameters.

Number Rule Details
9.1 All global nonstatic variables must

follow the specified pattern.
A global nonstatic variable is a variable
with external linkage.

9.2 All global static variables must follow
the specified pattern.

A global static variable is a variable with
internal linkage.

9.3 All local nonstatic variables must follow
the specified pattern.

A local nonstatic variable is a variable
without linkage.

9.4 All local static variables must follow the
specified pattern.

A local static variable is a variable
declared static in a function.

28 Custom Coding Rules

28-10

Group 10: Name spaces (C++)
The custom rules 10.x in Polyspace enforce naming conventions for namespaces. For information on
how to enable these rules, see Check custom rules (-custom-rules).

Number Rule
10.1 All names spaces must follow the specified pattern.

 Group 10: Name spaces (C++)

28-11

Group 11: Class templates (C++)
The custom rules 11.x in Polyspace enforce naming conventions for class templates. For information
on how to enable these rules, see Check custom rules (-custom-rules).

Number Rule Details
11.1 All class templates must follow the

specified pattern.

11.2 All class template parameters must
follow the specified pattern.

28 Custom Coding Rules

28-12

Group 12: Function templates (C++)
The custom rules 12.x in Polyspace enforce naming conventions for function templates. For
information on how to enable these rules, see Check custom rules (-custom-rules).

Number Rule Details
12.1 All function templates must follow the

specified pattern.
Applies to nonmember function
templates.

12.2 All function template parameters must
follow the specified pattern.

Applies to member and nonmember
function templates.

12.3 All function template members must
follow the specified pattern.

 Group 12: Function templates (C++)

28-13

Group 20: Style
The custom rules 20.x in Polyspace enforce coding style conventions such as number of characters
per line. For information on how to enable these rules, see Check custom rules (-custom-
rules).

Number Rule Details
20.1 Source line

length must not
exceed specified
number of
characters.

When configuring the checker, specify:

• A number for the character limit. Use the Pattern column on the
configuration or the pattern= line in the custom rules text file.

• A violation message such as:

Line exceeds n characters.

Use the Convention column on the configuration or the
convention= line in the custom rules xml file.

28 Custom Coding Rules

28-14

Polyspace Results: Code Metrics

15

Code Metrics

29

Comment Density
Ratio of number of comments to number of statements

Description
This metric specifies the ratio of comments to statements expressed as a percentage.

Based on Hersteller Initiative Software (HIS) code complexity standard:

• Polyspace ignores these comments:

• Comments that are included before the first statement. For instance, in this code, the first
comment is ignored:

// This function implements a hashtble
extern void hashdef();

• Comments that start with the source code line. For instance, this comment does not count as a
comment for the metric but counts as a statement instead:

 remove(i); // Remove employee record

• Comments that appear after the first line of a multiline comment. That is, multiline comments
count as one comment. For instance, this is considered a single comment:

// This function implements
// regular maintenance on an internal database

• Polyspace calculates this metric after preprocessing the code. If your code contains macros, they
are expanded before calculating the comment density.

• Polyspace does not count these statements:

• Structure field and class member declarations
• Template declarations
• Class member function definition within the class

• A statement typically ends with a semicolon, but with some exceptions. Exceptions include
semicolons in for loops or structure field declarations. For instance, the initialization, condition,
and increment within parentheses in a for loop is counted as one statement. This statement
counts as a single statement:

for(i=0; i <100; i++)

If you also declare the loop counter at initialization, that statement counts as two statements.

Polyspace does not calculate this metric for the included header files.

The recommended lower limit for this metric is 20. For better readability of your code, place at least
one comment for every five statements. The value of this metric is clamped to 100. Such a value
indicates that your code might contain more comment than statements.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

29 Code Metrics

29-2

Examples
Comment Density Calculation

 struct record {
 char name[40];
 long double salary;
 int isEmployed;
};

struct record dataBase[100];

struct record fetch(void);
void remove(int);

void maintenanceRoutines() {
// This function implements
// regular maintenance on an internal database
 int i;
 struct record tempRecord;

 for(i=0; i <100; i++) {
 tempRecord = fetch(); // This function fetches a record
 // from the database
 if(tempRecord.isEmployed == 0)
 remove(i); // Remove employee record
 //from the database
 }
}

In this example, the comment density is 38. The calculation is done as shown in the table:

Code Running Total
of Comments

Running Total
of
Statements

struct record {
 char name[40];
 long double salary;
 int isEmployed;
};

0 1

struct record dataBase[100];
struct record fetch(void);
void remove(int);

0 4

void maintenanceRoutines() { 0 4
// This function implements
// regular maintenance on an internal database

1 4

int i;
struct record tempRecord;

1 6

for(i=0; i <100; i++) { 1 6

 Comment Density

29-3

Code Running Total
of Comments

Running Total
of
Statements

 tempRecord = fetch(); // This
 function fetches a record
 // from the database

2 7

if(tempRecord.isEmployed == 0)
 remove(i);
 // Remove employee record
 //from the database
 }
}

3 8

There are three comments and eight statements. The comment density is 3/8*100 = 38.

Metric Information
Group: File
Acronym: COMF
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

29 Code Metrics

29-4

Cyclomatic Complexity
Number of linearly independent paths in function body

Description
This metric calculates the number of decision points in a function and adds one to the total. A
decision point is a statement that causes your program to branch into two paths.

The recommended upper limit for this metric is 10. If the cyclomatic complexity is high, the code is
both difficult to read and can cause more orange checks. Therefore, try to limit the value of this
metric.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Computation Details

The metric calculation uses the following rules to identify decision points:

• An if statement is one decision point.
• The statements for and while count as one decision point, even when no condition is evaluated,

for example, in infinite loops.
• Boolean combinations (&&, ||) do not count as decision points.
• case statements do not count as decision points unless they are followed by a break statement.

For instance, this code has a cyclomatic complexity of two:

switch(num) {
 case 0:
 case 1:
 case 2:
 break;
 case 3:
 case 4:
 }

• The calculation is done after preprocessing:

• Macros are expanded.
• Conditional compilation is applied. The blocks hidden by preprocessing directives are ignored.

Examples
Function with Nested if Statements

int foo(int x,int y)
{
 int flag;
 if (x <= 0)
 /* Decision point 1*/
 flag = 1;

 Cyclomatic Complexity

29-5

 else
 {
 if (x < y)
 /* Decision point 2*/
 flag = 1;
 else if (x==y)
 /* Decision point 3*/
 flag = 0;
 else
 flag = -1;
 }
 return flag;
}

In this example, the cyclomatic complexity of foo is 4.

Function with ? Operator

int foo (int x, int y) {
 if((x <0) ||(y < 0))
 /* Decision point 1*/
 return 0;
 else
 return (x > y ? x: y);
 /* Decision point 2*/
}

In this example, the cyclomatic complexity of foo is 3. The ? operator is the second decision point.

Function with switch Statement
#include <stdio.h>

int foo(int x,int y, int ch)
{
 int val = 0;
 switch(ch) {
 case 1:
 /* Decision point 1*/
 val = x + y;
 break;
 case 2:
 /* Decision point 2*/
 val = x - y;
 break;
 default:
 printf("Invalid choice.");
 }
 return val;
}

In this example, the cyclomatic complexity of foo is 3.

Function with Nesting of Different Control-Flow Statements

int foo(int x,int y, int bound)

29 Code Metrics

29-6

{
 int count = 0;
 if (x <= y)
 /* Decision point 1*/
 count = 1;
 else
 while(x>y) {
 /* Decision point 2*/
 x--;
 if(count< bound) {
 /* Decision point 3*/
 count++;
 }
 }
 return count;
}

In this example, the cyclomatic complexity of foo is 4.

Metric Information
Group: Function
Acronym: VG
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

Topics
“Compute Code Complexity Metrics”

 Cyclomatic Complexity

29-7

Estimated Function Coupling
Measure of complexity between levels of call tree

Description
This metric provides an approximate measure of complexity between different levels of the call tree.
The metric is defined as:

number of call occurrences – number of function definitions + 1

If there are more function definitions than function calls, the estimated function coupling result is
negative.

This metric:

• Counts function calls and function definitions in the current file only.

It does not count function definitions in a header file included in the current file.
• Treats static and inline functions like any other function.

Examples
Same Function Called Multiple Times

void checkBounds(int *);
int getUnboundedValue();

int getBoundedValue(void) {
 int num = getUnboundedValue();
 checkBounds(&num);
 return num;
}

void main() {
 int input1=getBoundedValue(), input2= getBoundedValue(), prod;
 prod = input1 * input2;
 checkBounds(&prod);
}

In this example, there are:

• 5 call occurrences. Both getBoundedValue and checkBounds are called twice and
getUnboundedValue is called once.

• 2 function definitions. main and getBoundedValue are defined.

Therefore, the Estimated function coupling is 5 - 2 + 1 = 4.

Negative Estimated Function Coupling

int foobar(int a, int b){

29 Code Metrics

29-8

 return a+b;
}

int bar(int b){
 return b+2;
}

int foo(int a){
 return a<<2;
}

int main(int x){
 foobar(x,x+2);
 return 0;
}

This example shows how you can get a negative estimated function coupling result. In this example,
you see:

• 1 function call in main.
• 4 defined functions: foobar, bar, foo, and main.

Therefore, the estimated function coupling is 1 - 4 + 1 = -2.

Metric Information
Group: File
Acronym: FCO
HIS Metric: No

See Also
Number of Call Occurrences | Calculate code metrics (-code-metrics)

 Estimated Function Coupling

29-9

Higher Estimate of Size of Local Variables
Total size of all local variables in function

Description
This metric provides a conservative estimate of the total size of local variables in a function. The
metric is the sum of the following sizes in bytes:

• Size of function return value
• Sizes of function parameters
• Sizes of local variables
• Additional padding introduced for memory alignment

Your actual stack usage due to local variables can be different from the metric value.

• Some of the variables are stored in registers instead of on the stack.
• Your compiler performs variable liveness analysis to enable certain memory optimizations. For

instance, compilers store the address to which the execution returns following the function call.
When computing this metric, Polyspace does not consider these optimizations.

• Your compiler uses additional memory during a function call. When computing this metric,
Polyspace does not consider this hidden memory usage.

• Compilers optimize temporary variables in different ways. This metric excludes temporary
variables. Only the variables that are explicitly declared by the user are considered.

However, the metric provides a reasonable estimate of the stack usage due to local variables.

To determine the sizes of basic types, the software uses your specifications for Target processor
type (-target). The metric also takes into account #pragma pack directives in your code.

Examples
All Variables of Same Type

int flag();

int func(int param) {
 int var_1;
 int var_2;
 if (flag()) {
 int var_3;
 int var_4;
 } else {
 int var_5;
 }
}

In this example, assuming 4 bytes for int, the higher estimate of local variable size for funcis 28.
The breakup of the size is shown in this table.

29 Code Metrics

29-10

Variable Size (in Bytes) Running Total
Return value 4 4
Parameter param 4 8
Local variables var_1 and
var_2

4+4=8 16

Local variables defined in the if
condition

(4+4)+4=12

The size of variables in the first
branch is eight bytes. The size
in the second branch is four
bytes. The sum of the two
branches is 12 bytes.

28

No padding is introduced for memory alignment because all the variables involved have the same
type.

Variables of Different Types

char func(char param) {
 int var_1;
 char var_2;
 double var_3;
}

In this example, assuming one byte for char, four bytes for int and eight bytes for double and four
bytes for alignment, the higher estimate of local variable size for func is 20. The alignment is usually
the word size on your platform. In your Polyspace project, you specify the alignment through your
target processor. For more information, see the Alignment column in Target processor type (-
target).

The breakup of the size is shown in this table.

Variable Size (in Bytes) Running Total
Return value 1 1
Additional padding introduced
before param is stored

0

No memory alignment is
required because the next
variable param has the same
size.

1

Parameter param 1 2
Additional padding introduced
before var_1 is stored

2

Memory must be aligned using
padding because the next
variable var_1 requires four
bytes. The storage must start
from a memory address at a
multiple of four.

4

 Higher Estimate of Size of Local Variables

29-11

Variable Size (in Bytes) Running Total
var_1 4 8
Additional padding introduced
before var_2 is stored

0

No memory alignment is
required because the next
variable var_2 has smaller size.

8

var_2 1 9
Additional padding introduced
before var_3 is stored

3

Memory must be aligned using
padding because the next
variable var_3 has eight bytes.
The storage must start from a
memory address at a multiple of
the alignment, four bytes.

12

var_3 8 20

The rules for the amount of padding are:

• If the next variable stored has the same or smaller size, no padding is required.
• If the next variable has a greater size:

• If the variable size is the same as or less than the alignment on the platform, the amount of
padding must be sufficient so that the storage address is a multiple of its size.

• If the variable size is greater than the alignment on the platform, the amount of padding must
be sufficient so that the storage address is a multiple of the alignment.

C++ Methods and Objects

class MySimpleClass {
 public:

 MySimpleClass() {};

 MySimpleClass(int) {};

 ~MySimpleClass() {};
};

int main() {
 MySimpleClass c;
 return 0;
}

In this example, the estimated local variable sizes are:

• Constructor MySimpleClass::MySimpleClass(): Four bytes.

The size comes from the this pointer, which is an implicit argument to the constructor. You
specify the pointer size using the option Target processor type (-target).

29 Code Metrics

29-12

• Constructor MySimpleClass::MySimpleClass(int): Eight bytes.

The size comes from the this pointer and the int argument.
• Destructor MySimpleClass::~MySimpleClass(): Four bytes.

The size comes from the this pointer.
• main(): Five bytes.

The size comes from the int return value and the size of object c. The minimum size of an object
is the alignment that you specify using the option Target processor type (-target).

C++ Functions with Object Arguments

class MyClass {
 public:
 MyClass() {};
 MyClass(int) {};
 ~MyClass() {};
 private:
 int i[10];
};
void func1(const MyClass& c) {
}

void func2() {
 func1(4);
}

In this example, the estimated local variable size for func2() is 0. When func2() calls func1(), a
temporary object of the class MyClass is created. The temporary variable is excluded from the
calculation. Because there are no explicitly declared variables in the body of func2, the reported
metric value is 0.

Metric Information
Group: Function
Acronym: LOCAL_VARS_MAX
HIS Metric: No

See Also
Lower Estimate of Size of Local Variables | Calculate code metrics (-code-
metrics)

Introduced in R2016b

 Higher Estimate of Size of Local Variables

29-13

Language Scope
Language scope

Description
This metric measures the cost of maintaining or changing a function. It is calculated as:

(N1 + N2)/(n1 + n2)

Where:

• N1 is the number of occurrences of operators.

Other than identifiers (variable or function names) and literal constants, everything else counts as
operators.

• N2 is the number of occurrences of operands.
• n1 is the number of distinct operators.
• n2 is the number of distinct operands.

The metric considers a literal constant with a suffix as different from the constant without the
suffix. For instance, 0 and 0U are considered different.

When reporting this metric, Polyspace rounds the calculated language scope to the first decimal
place. Because the intent of this metric is to indicate the maintainability of a function, language scope
of functions defined within local classes are not computed.

Tip To find N1 + N2, count the total number of tokens. To find n1 + n2, count the number of unique
tokens.

The recommended upper limit for this metric is 4. For lower maintenance cost for a function, try to
enforce an upper limit on this metric. For instance, if the same operand occurs many times, to change
the operand name, you have to make many substitutions.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Examples
Language Scope Calculation

int g(int);
int f(int i)
{
 if (i == 1)
 return i;
 else
 return i * g(i-1);
}

In this example:

29 Code Metrics

29-14

• N1 = 19.
• N2 = 9.
• n1 = 12.

The distinct operators are int, (,), {, if, ==, return, else, *, -, ;, }.
• n2 = 4.

The distinct operands are f, i, 1 and g.

The language scope of f is (19 + 9) / (12 + 4) = 1.8.

C++ Namespaces in Language Scope Calculation

namespace std {
 int func2() {
 return 123;
 }
};

namespace my_namespace {
 using namespace std;

 int func1(int a, int b) {
 return func2();
 }
};

In this example, the namespace std is implicitly associated with func2. The language scope
computation treats func2() as std::func2(). Likewise, the computation treats func1() as
my_namespace::func1().

For instance, the language scope value for func1 is 1.3. To break down this calculation:

• N1 + N2 = 20.
• n1 + n2 = 15.

The distinct operators are int, ::, (, comma,), {, return, ;, and }.

The distinct operands are my_namespace, func1, a, b, std, and func2.

Metric Information
Group: Function
Acronym: VOCF
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

Topics
“Compute Code Complexity Metrics”

 Language Scope

29-15

Lower Estimate of Size of Local Variables
Total size of local variables in function taking nested scopes into account

Description
This metric provides an optimistic estimate of the total size of local variables in a function. The metric
is the sum of the following sizes in bytes:

• Size of function return value
• Sizes of function parameters
• Sizes of local variables

Suppose that the function has variable definitions in nested scopes as follows:

type func (type param_1, ...) {

 {
 /* Scope 1 */
 type var_1, ...;
 }
 {
 /* Scope 2 */
 type var_2, ...;
 }
}

The software computes the total variable size in each scope and uses whichever total is greatest.
For instance, if a conditional statement has variable definitions, the software computes the total
variable size in each branch, and then uses whichever total is greatest. If a nested scope itself has
further nested scopes, the same process is repeated for the inner scopes.

A variable defined in a nested scope is not visible outside the scope. Therefore, some compilers
reuse stack space for variables defined in separate scopes. This metric provides a more accurate
estimate of stack usage for such compilers. Otherwise, use the metric Higher Estimate of
Size of Local Variables. This metric adds the size of all local variables, whether or not they
are defined in nested scopes.

• Additional padding introduced for memory alignment

Your actual stack usage due to local variables can be different from the metric value.

• Some of the variables are stored in registers instead of on the stack.
• Your compiler performs variable liveness analysis to enable certain memory optimizations. When

computing this metric, Polyspace does not consider these optimizations.
• Your compiler uses additional memory during a function call. For instance, compilers store the

address to which the execution returns following the function call. When computing this metric,
Polyspace does not consider this hidden memory usage.

• Compilers optimize temporary variables in different ways. This metric excludes temporary
variables. Only the variables that are explicitly declared by the user are considered.

However, the metric provides a reasonable estimate of the stack usage due to local variables.

29 Code Metrics

29-16

When a function returns a class, struct, or union that has a copy constructor, the compiler might
perform a return value optimization. Instead of returning a class object, the function might use a
pointer to pass the value. This optimization might change the value of this metric.

To determine the sizes of basic types, the software uses your specifications for Target processor
type (-target). The metric also takes into account #pragma pack directives in your code.

Examples
All Variables of Same Type

int flag();

int func(int param) {
 int var_1;
 int var_2;
 if (flag()) {
 int var_3;
 int var_4;
 } else {
 int var_5;
 }
}

In this example, assuming four bytes for int, the lower estimate of local variable size is 24. The
breakup of the metric is shown in this table.

Variable Size (in Bytes) Running Total
Return value 4 4
Parameter param 4 8
Local variables var_1 and
var_2

4+4=8 16

Local variables defined in the if
condition

max(4+4,4)= 8

The size of variables in the first
branch is eight bytes. The size
in the second branch is four
bytes. The maximum of the two
branches is eight bytes.

24

No padding is introduced for memory alignment because all the variables involved have the same
type.

Variables of Different Types

char func(char param) {
 int var_1;
 char var_2;
 double var_3;
}

In this example, assuming one byte for char, four bytes for int, eight bytes for double and four
bytes for alignment, the lower estimate of local variable size is 20. The alignment is usually the word

 Lower Estimate of Size of Local Variables

29-17

size on your platform. In your Polyspace project, you specify the alignment through your target
processor. For more information, see the Alignment column in Target processor type (-
target).

The breakup of the size is shown in this table.

Variable Size (in Bytes) Running Total
Return value 1 1
Additional padding introduced
before param is stored

0

No memory alignment is
required because the next
variable param has the same
size.

1

Parameter param 1 2
Additional padding introduced
before var_1 is stored

2

Memory must be aligned using
padding because the next
variable var_1 requires four
bytes. The storage must start
from a memory address at a
multiple of four.

4

var_1 4 8
Additional padding introduced
before var_2 is stored

0

No memory alignment is
required because the next
variable var_2 has smaller size.

8

var_2 1 9
Additional padding introduced
before var_3 is stored

3

Memory must be aligned using
padding because the next
variable var_3 requires eight
bytes. The storage must start
from a memory address at a
multiple of the alignment, four
bytes.

12

var_3 8 20

The rules for the amount of padding are:

• If the next variable stored has the same or smaller size, no padding is required.
• If the next variable has a greater size:

• If the variable size is the same as or less than the alignment on the platform, the amount of
padding must be sufficient so that the storage address is a multiple of its size.

• If the variable size is greater than the alignment on the platform, the amount of padding must
be sufficient so that the storage address is a multiple of the alignment.

29 Code Metrics

29-18

C++ Methods and Objects

class MySimpleClass {
 public:

 MySimpleClass() {};

 MySimpleClass(int) {};

 ~MySimpleClass() {};
};

int main() {
 MySimpleClass c;
 return 0;
}

In this example, the estimated local variable sizes are:

• Constructor MySimpleClass::MySimpleClass(): Four bytes.

The size comes from the this pointer, which is an implicit argument to the constructor. You
specify the pointer size using the option Target processor type (-target).

• Constructor MySimpleClass::MySimpleClass(int): Eight bytes.

The size comes from the this pointer and the int argument.
• Destructor MySimpleClass::~MySimpleClass(): Four bytes.

The size comes from the this pointer.
• main(): Five bytes.

The size comes from the int return value and the size of object c. The minimum size of an object
is the alignment that you specify using the option Target processor type (-target).

C++ Functions with Object Arguments

class MyClass {
 public:
 MyClass() {};
 MyClass(int) {};
 ~MyClass() {};
 private:
 int i[10];
};
void func1(const MyClass& c) {
}

void func2() {
 func1(4);
}

In this example, the estimated local variable size for func2() is 0. When func2() calls func1(), a
temporary object of the class MyClass is created. The temporary variable is excluded from the

 Lower Estimate of Size of Local Variables

29-19

calculation. Because there are no explicitly declared variables in the body of func2, the reported
metric value is 0.

Functions that Return Classes

class WrapperA {
private:
 int start;
 int end;
public:

 virtual int get_start() {
 return start;
 }
};

WrapperA aG;

WrapperA get_WrapperA_1() {
 //...
 return aG;
}

WrapperA get_WrapperA_2() {
 //...
 WrapperA bL;
 return bL;
}

int main(){
 return 1;
}

In this example, the functions get_WrapperA_1 and get_WrapperA_2 return objects of the class
WrapperA. You might expect the estimate for get_WrapperA_1 to be equal to the size of aG. After
return type optimization, get_wrapperA_1() contains a WrapperA* type pointer which points to a
copy of aG. The lower estimate of the local variable size for get_wrapperA_1() is four bytes.

Similarly, after the return type optimization, get_WrapperA_2 contains a WrapperA object and a
WrapperA* pointer. The lower estimate of the local variable size for get_wrapperA_2() is 16 bytes.

Metric Information
Group: Function
Acronym: LOCAL_VARS_MIN
HIS Metric: No

See Also
Higher Estimate of Size of Local Variables | Calculate code metrics (-code-
metrics)

Introduced in R2016b

29 Code Metrics

29-20

Maximum Stack Usage
Total size of local variables in function plus maximum stack usage from callees

Description
This metric is reported in a Code Prover analysis only.

This metric provides a conservative estimate of the stack usage by a function. The metric is the sum
of these sizes in bytes:

• Higher Estimate of Size of Local Variables (Polyspace Code Prover)
• Maximum value from the stack usages of the function callees. The computation uses the maximum

stack usage of each callee.

For instance, in this example, the maximum stack usage of func is the same as the maximum
stack usage of func1 or func2, whichever is greater.

void func(void) {
 func1();
 func2();
}

If the function calls are in different branches of a conditional statement, this metric considers the
branch with the greatest stack usage.

The analysis does the stack size estimation later on when it has resolved which function calls
actually occur. For instance, if a function call occurs in unreachable code, the stack size does not
take the call into account. The analysis can also take into account calls through function pointers.

Your actual stack usage can be different from the metric value.

• Some of the variables are stored in registers instead of on the stack.
• Your compiler performs variable liveness analysis to enable certain memory optimizations. When

estimating this metric, Polyspace does not consider these optimizations.
• Your compiler uses additional memory during a function call. For instance, compilers store the

address to which the execution returns following the function call. When estimating this metric,
Polyspace does not consider this hidden memory usage.

• Compilers optimize temporary variables in different ways. This metric excludes temporary
variables. Only the variables that are explicitly declared by the user are considered.

However, the metric provides a reasonable estimate of the stack usage.

To determine the sizes of basic types, the software uses your specifications for Target processor
type (-target). The metric takes into account #pragma pack directives in your code.

Examples
Function with One Callee
double func(int);
double func2(int);

 Maximum Stack Usage

29-21

double func(int status) {
 double res = func2(status);
 return res;
}

double func2(int status) {
 double res;
 if(status == 0) {
 int temp;
 res = 0.0;
 }
 else {
 double temp;
 res = 1.0;
 }
 return res;
}

In this example, assuming four bytes for int and eight bytes for double, the maximum stack usages
are:

• func2: 32 bytes

This value includes the sizes of its parameter (4 bytes), local variable res (8 bytes), local variable
temp counted twice (4+8=12 bytes), and return value (8 bytes).

The metric does not take into account that the first temp is no longer live when the second temp
is defined.

• func: 52 bytes

This value includes the sizes of its parameter, local variable res, and return value, a total of 20
bytes. This value includes the 32 bytes of maximum stack usage by its callee, func2.

Function with Multiple Callees

void func1(int);
void func2(void);

void func(int status) {
 func1(status);
 func2();
}

void func1(int status) {
 if(status == 0) {
 int val;
 }
 else {
 double val2;
 }
}

29 Code Metrics

29-22

void func2(void) {
 double val;
}

In this example, assuming four bytes for int and eight bytes for double, the maximum stack usages
are:

• func1: 16 bytes

This value includes the sizes of its parameter (4 bytes) and local variables val and val2 (4+8=12
bytes).

• func2: 8 bytes
• func: 20 bytes

This value includes the sizes of its parameter (4 bytes) and the maximum of stack usages of func1
and func2 (16 bytes).

Function with Multiple Callees in Different Branches

void func1(void);
void func2(void);

void func(int status) {
 if(status==0)
 func1();
 else
 func2();
}

void func1(void) {
 double val;
}

void func2(void) {
 int val;
}

In this example, assuming four bytes for int and eight bytes for double, the maximum stack usages
are:

• func1: 8 bytes
• func2: 4 bytes
• func: 12 bytes

This value includes the sizes of its parameter (4 bytes) and the maximum stack usage from the two
branches (8 bytes).

Functions with Variable Number of Parameters (Variadic Functions)

#include <stdarg.h>

 Maximum Stack Usage

29-23

void fun_vararg(int x, ...) {
 va_list ap;
 va_start(ap, x);
 int i;
 for (i=0; i<x; i++) {
 int j = va_arg(ap, int);
 }
 va_end(ap);
}

void call_fun_vararg1(void) {
 long long int l = 0;
 fun_vararg(3, 4, 5, 6, l);
}

void call_fun_vararg2(void) {
 fun_vararg(1,0);
}

In this function, fun_vararg is a function with variable number of parameters. The maximum stack
usage of fun_vararg takes into account the call to fun_vararg with the maximum number of
arguments. The call with the maximum number of arguments is the call in call_fun_vararg1 with
five arguments (one for the fixed parameter and four for the variable parameters). The maximum
stack usages are:

• fun_vararg: 36 bytes.

This value takes into account:

• The size of the fixed parameter x (4 bytes).
• The sizes of the variable parameters from the call with the maximum number of parameters. In

that call, there are four variable arguments: three int and one long long int variable (3
times 4 + 1 times 8 = 20 bytes).

• The sizes of the local variables i, j and ap (12 bytes). The size of the va_list variable uses
the pointer size defined in the target (in this case, 4 bytes).

• call_fun_vararg1: 44 bytes.

This value takes into account:

• The stack size usage of fun_vararg with five arguments (36 bytes).
• The size of local variable l (8 bytes).

• call_fun_vararg2: 20 bytes.

Since call_fun_vararg2 has no local variables, this value is the same as the stack size usage of
fun_vararg with two arguments (20 bytes, of which 12 bytes are for the local variables and 8
bytes are for the two parameters of fun_vararg).

Metric Information
Group: Function

29 Code Metrics

29-24

Acronym: MAX_STACK
HIS Metric: No

See Also
Minimum Stack Usage (Polyspace Code Prover) | Program Maximum Stack Usage (Polyspace
Code Prover) | Higher Estimate of Size of Local Variables (Polyspace Code Prover) |
Calculate code metrics (-code-metrics)

Topics
“Determination of Program Stack Usage” (Polyspace Code Prover)

Introduced in R2017b

 Maximum Stack Usage

29-25

Minimum Stack Usage
Total size of local variables in function taking nested scopes into account plus maximum stack usage
from callees

Description
This metric is reported in a Code Prover analysis only.

This metric provides an optimistic estimate of the stack usage by a function. Unlike the metric
Maximum Stack Usage (Polyspace Code Prover), this metric takes nested scopes into account. For
instance, if variables are defined in two mutually exclusive branches of a conditional statement, the
metric considers that the stack space allocated to the variables in one branch can be reused in the
other branch.

The metric is the sum of these sizes in bytes:

• Lower Estimate of Size of Local Variables (Polyspace Code Prover).
• Maximum value from the stack usages of the function callees. The computation uses the minimum

stack usage of each callee.

For instance, in this example, the minimum stack usage of func is the same as the minimum stack
usage of func1 or func2, whichever is greater.

void func(void) {
 func1();
 func2();
}

If the function calls are in different branches of a conditional statement, this metric considers the
branch with the least stack usage.

The analysis does the stack size estimation later on when it has resolved which function calls
actually occur. For instance, if a function call occurs in unreachable code, the stack size does not
take the call into account. The analysis can also take into account calls through function pointers.

Your actual stack usage can be different from the metric value.

• Some of the variables are stored in registers instead of on the stack.
• Your compiler performs variable liveness analysis to enable certain memory optimizations. When

estimating this metric, Polyspace does not consider these optimizations.
• Your compiler uses additional memory during a function call. For instance, compilers store the

address to which the execution returns following the function call. When estimating this metric,
Polyspace does not consider this hidden memory usage.

• Compilers optimize temporary variables in different ways. This metric excludes temporary
variables. Only the variables that are explicitly declared by the user are considered.

However, the metric provides a reasonable estimate of the stack usage.

To determine the sizes of basic types, the software uses your specifications for Target processor
type (-target). The metric takes into account #pragma pack directives in your code.

29 Code Metrics

29-26

Examples
Function with One Callee

double func2(int);

double func(int status) {
 double res = func2(status);
 return res;
}

double func2(int status) {
 double res;
 if(status == 0) {
 int temp;
 res = 0.0;
 }
 else {
 double temp;
 res = 1.0;
 }
 return res;
}

In this example, assuming four bytes for int and eight bytes for double, the minimum stack usages
are:

• func2: 28 bytes

This value includes the sizes of its parameter (4 bytes), local variable res (8 bytes), one of the two
local variables temp (8 bytes), and return value (8 bytes).

The metric takes into account that the first temp is no longer live when the second temp is
defined. It uses the variable temp with data type double because its size is greater.

• func: 48 bytes

This value includes the sizes of its parameter, local variable res, and return value, a total of 20
bytes. This value includes the 28 bytes of minimum stack usage by its callee, func2.

Function with Multiple Callees

void func1(int);
void func2(void);

void func(int status) {
 func1(status);
 func2();
}

void func1(int status) {
 if(status == 0) {
 int val;

 Minimum Stack Usage

29-27

 }
 else {
 double val2;
 }
}

void func2(void) {
 double val;
}

In this example, assuming four bytes for int and eight bytes for double, the minimum stack usages
are:

• func1: 12 bytes

This value includes the sizes of its parameter (4 bytes) and the larger of the two local variables, in
this case, val2 (8 bytes).

• func2: 8 bytes
• func: 16 bytes

This value includes the sizes of its parameter (4 bytes) and the maximum of stack usages of func1
and func2 (12 bytes).

Function with Multiple Callees in Different Branches

void func1(void);
void func2(void);

void func(int status) {
 if(status==0)
 func1();
 else
 func2();
}

void func1(void) {
 double val;
}

void func2(void) {
 int val;
}

In this example, assuming four bytes for int and eight bytes for double, the minimum stack usages
are:

• func1: 8 bytes
• func2: 4 bytes
• func: 8 bytes

29 Code Metrics

29-28

This value includes the sizes of its parameter (4 bytes) and the minimum stack usage from the two
branches (4 bytes).

Functions with Variable Number of Parameters (Variadic Functions)

#include <stdarg.h>

void fun_vararg(int x, ...) {
 va_list ap;
 va_start(ap, x);
 int i;
 for (i=0; i<x; i++) {
 int j = va_arg(ap, int);
 }
 va_end(ap);
}

void call_fun_vararg1(void) {
 long long int l = 0;
 fun_vararg(3, 4, 5, 6, l);
}

void call_fun_vararg2(void) {
 fun_vararg(1,0);
}

In this function, fun_vararg is a function with variable number of parameters. The minimum stack
usage of fun_vararg takes into account the call to fun_vararg with the minimum number of
arguments. The call with the minimum number of arguments is the call in call_fun_vararg2 with
two arguments (one for the fixed parameter and one for the variable parameter). The minimum stack
usages are:

• fun_vararg: 20 bytes.

This value takes into account:

• The size of the fixed parameter x (4 bytes).
• The sizes of the variable parameters from the call with the minimum number of parameters. In

that call, there is only one variable argument of type int (4 bytes).
• The sizes of the local variables i, j and ap (12 bytes). The size of the va_list variable uses

the pointer size defined in the target (in this case, 4 bytes).
• call_fun_vararg1: 44 bytes.

This value takes into account:

• The stack size usage of fun_vararg with five arguments (36 bytes, of which 12 bytes are for
the local variable sizes and 20 bytes are for the fixed and variable parameters of fun_vararg).

• The size of local variable l (8 bytes).
• call_fun_vararg2: 20 bytes.

 Minimum Stack Usage

29-29

Since call_fun_vararg2 has no local variables, this value is the same as the stack size usage of
fun_vararg with two arguments (20 bytes).

Metric Information
Group: Function
Acronym: MIN_STACK
HIS Metric: No

See Also
Program Minimum Stack Usage (Polyspace Code Prover) | Lower Estimate of Size of
Local Variables (Polyspace Code Prover) | Maximum Stack Usage (Polyspace Code Prover) |
Calculate code metrics (-code-metrics)

Topics
“Determination of Program Stack Usage” (Polyspace Code Prover)

Introduced in R2017b

29 Code Metrics

29-30

Number of Call Levels
Maximum depth of nesting of control flow structures

Description
This metric specifies the maximum nesting depth of control flow statements such as if, switch, for,
or while in a function. A function without control-flow statements has a call level 1.

The recommended upper limit for this metric is 4. For better readability of your code, try to enforce
an upper limit for this metric.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Examples
Function with Nested if Statements

int foo(int x,int y)
{
 int flag = 0;
 if (x <= 0)
 /* Call level 1*/
 flag = 1;
 else
 {
 if (x <= y)
 /* Call level 2*/
 flag = 1;
 else
 flag = -1;
 }
 return flag;
}

In this example, the number of call levels of foo is 2.

Function with Nesting of Different Control-Flow Statements

int foo(int x,int y, int bound)
{
 int count = 0;
 if (x <= y)
 /* Call level 1*/
 count = 1;
 else
 while(x>y) {
 /* Call level 2*/
 x--;
 if(count< bound) {
 /* Call level 3*/
 count++;

 Number of Call Levels

29-31

 }
 }
 return count;
}

In this example, the number of call levels of foo is 3.

Metric Information
Group: Function
Acronym: LEVEL
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

Topics
“Compute Code Complexity Metrics”

29 Code Metrics

29-32

Number of Call Occurrences
Number of calls in function body

Description
This metric specifies the number of function calls in the body of a function.

This metric includes:

• Calls in unreachable code
• Calls to standard library functions
• Calls to constructors and destructors

The metric excludes:

• Calls through a function pointer
• Calls to assert. Polyspace considers assert as a macro and not a function
• Inlined functions. Compilers might inline certain function calls, such as the default constructors

and destructors.

Examples
Same Function Called Multiple Times

int func1(void);
int func2(void);

int foo() {
 return (func1() + func1()*func1() + 2*func2());
}

In this example, the number of call occurrences in foo is 4.

Function Called in a Loop

#include<stdio.h>
int getVal(void);

void fillArraySize10(int *arr) {
 for(int i=0; i<10; i++)
 arr[i]=getVal();
}

int getVal(void) {
 int val;
 printf("Enter a value:");
 scanf("%d", &val);
 return val;
}

 Number of Call Occurrences

29-33

In this example, the number of call occurrences in fillArraySize10 is 1.

Recursive Function
#include <stdio.h>
int fibonacci(int);

void main() {
 int count;
 printf("How many numbers ?");
 scanf("%d",&count);
 fibonacci(count);
}

int fibonacci(int num)
{
 if (num == 0)
 return 0;
 else if (num == 1)
 return 1;
 else
 return (fibonacci(num-1) + fibonacci(num-2));
}

In this example, the number of call occurrences in fibonacci is 2.

Constructor Function

#include<iostream>
class A{
 public:
 A(){
 std::cout<<"Create A\n";
 }
 ~A() = default;
 A(const A&)=default;
 A(A&&) = default;
 virtual void bar(){ std::cout<<"A";}
};
class B: public A{
 public:
 B() = default;
 void bar() override {std::cout<<"B";}
};

void func(A& a){
 a.bar();
}

int main(){
 A obj;
 A obj2 = obj;
 B objB;
 func(obj);
 return 0;
}

In this example, the number of call occurances in main is three:

29 Code Metrics

29-34

1 The constructor of class A in A obj;. This user defined constructor counts as a function call.
2 The constructor of class B in B objB;. Because the constructor of the base class A is user-

defined, the constructor of B counts as a function call even though B::B() is declared as
=default.

3 The call to function func.

The class A uses the default or implicit copy constructor. The call to the copy constructor in A obj2
= obj; does not count as a function call.

Metric Information
Group: Function
Acronym: NCALLS
HIS Metric: No

See Also
Number of Called Functions | Calculate code metrics (-code-metrics)

 Number of Call Occurrences

29-35

Number of Called Functions
Number of distinct functions called within the body of a function

Description
This metric specifies the number of distinct functions that are called by a function within its body.

Calls through a function pointer are not counted. Calls in unreachable code and calls to standard
library functions are counted. assert is considered as a macro and not a function, so it is not
counted.

When calculating this metric in C++ code, Polyspace ignores the implicit functions that the compiler
generates, such as default constructors and destructors. User-defined constructors and destructors
are counted as function calls. In a class hierarchy, if a base class has user-defined constructors,
Polyspace counts the corresponding constructors of the derived classes as functions.

The recommended upper limit for this metric is 7. For more self-contained code, try to enforce an
upper limit on this metric.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Examples
Same Function Called Multiple Times

int func1(void);
int func2(void);

int foo() {
 return (func1() + func1()*func1() + 2*func2());
}

In this example, the number of called functions in foo is 2. The called functions are func1 and
func2.

Recursive Function

#include <stdio.h>
int fibonacci(int);

void main() {
 int count;
 printf("How many numbers ?");
 scanf("%d",&count);
 fibonacci(count);
}

int fibonacci(int num)
{
 if (num == 0)
 return 0;
 else if (num == 1)

29 Code Metrics

29-36

 return 1;
 else
 return (fibonacci(num-1) + fibonacci(num-2));
}

In this example, the number of called functions in fibonacci is 1. The called function is fibonacci
itself.

Constructor Function

 #include<iostream>
class A{
 public:
 A(){
 std::cout<<"Create A\n";
 }
 ~A() = default;
 A(const A&)=default;
 A(A&&) = default;
 virtual void bar(){ std::cout<<"A";}
};
class B: public A{
 public:
 B() = default;
 void bar() override {std::cout<<"B";}
};

void func(A& a){
 a.bar();
}

int main(){
 A obj;
 A obj2 = obj;
 B objB;
 func(obj);
 return 0;
}

In this example, the number of called function in main is three:

1 The constructor of class A. This user defined constructor counts as a function call.
2 The constructor of class B. Because the constructor of the base class A is user-defined, the

constructor of B counts as a function call even though B::B() is declared as =default.
3 The function func.

The class A uses the default or implicit copy constructor. The call to the copy constructor in A obj2
= obj; does not count as a function call.

Metric Information
Group: Function
Acronym: CALLS
HIS Metric: Yes

 Number of Called Functions

29-37

See Also
Number of Call Occurrences | Number of Calling Functions | Calculate code
metrics (-code-metrics)

Topics
“Compute Code Complexity Metrics”

29 Code Metrics

29-38

Number of Calling Functions
Number of distinct callers of a function

Description
This metric measures the number of distinct callers of a function.

In C++ , Polyspace does not calculate this metric for virtual functions and compiler generated
implicit functions, such as default constructors and destructors. The metric is calculated for user-
defined constructors and destructors. In a class hierarchy, if a base class has user-defined
constructors, Polyspace counts this metric for corresponding constructors of the derived classes.

The recommended upper limit for this metric is 5. For more self-contained code, try to enforce an
upper limit on this metric.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Computation Details

Note that the metric:

• Takes into account direct callers only.
• Does not consider calls through a function pointer.
• Takes into account all function calls, including ones in unreachable code.

However, if a caller calls a function more than once, the caller is counted only once when this
metric is calculated.

Examples
Same Function Calling a Function Multiple Times

#include <stdio.h>

 int getVal() {
 int myVal;
 printf("Enter a value:");
 scanf("%d", &myVal);
 return myVal;
}

int func() {
 int val=getVal();
 if(val<0)
 return 0;
 else
 return val;
}

int func2() {

 Number of Calling Functions

29-39

 int val=getVal();
 while(val<0)
 val=getVal();
 return val;
}

In this example, the number of calling functions for getVal is 2. The calling functions are func and
func2.

Recursive Function

#include <stdio.h>

 int fibonacci(int num)
{
 if (num == 0)
 return 0;
 else if (num == 1)
 return 1;
 else
 return (fibonacci(num-1) + fibonacci(num-2));
}

void main() {
 int count;
 printf("How many numbers ?");
 scanf("%d",&count);
 fibonacci(count);
}

In this example, the number of calling functions for fibonacci is 2. The calling functions are main
and fibonacci itself.

Constructor Function

 #include<iostream>
class A{
 public:

 A(){
 std::cout<<"Create A\n";
 }
 ~A() = default;
 A(const A&)=default;
 A(A&&) = default;
 virtual void bar(){ std::cout<<"A";}
};
class B: public A{
 public:
 B() = default;
 void bar() override {std::cout<<"B";}
};

void func(A& a){

29 Code Metrics

29-40

 a.bar();
}
int main(){
 A obj;
 A obj2 = obj;
 B objB;
 func(obj);
 return 0;
}

In this example:

• The number of calling functions for A::A is two. A::A is called once to create obj and again to
create objB. Similarly, the number of calling function for B:: is one.

• Because both A::bar and B::bar are virtual functions, Polyspace does not calculate their
number of calling functions.

• The number of calling function for func is one.

Metric Information
Group: Function
Acronym: CALLING
HIS Metric: Yes

See Also
Number of Called Functions | Calculate code metrics (-code-metrics)

Topics
“Compute Code Complexity Metrics”

 Number of Calling Functions

29-41

Number of Direct Recursions
Number of instances of a function calling itself directly

Description
This metric specifies the number of direct recursions in your project.

A direct recursion is a recursion where a function calls itself in its own body. If indirect recursions do
not occur, the number of direct recursions is equal to the number of recursive functions.

The recommended upper limit for this metric is 0. To avoid the possibility of exceeding available stack
space, do not use recursions in your code. To detect use of recursions, check for violations of MISRA
C:2012 Rule 17.2.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Examples
Direct Recursion

int getVal(void);
int sum(int val) {
 if(val<0)
 return 0;
 else
 return (val + sum(val-1));
}

void main() {
 int count = getVal(), total;
 assert(count > 0 && count <100);
 total = sum(count);
}

In this example, the number of direct recursions is 1.

Metric Information
Group: Project
Acronym: AP_CG_DIRECT_CYCLE
HIS Metric: Yes

See Also
MISRA C:2012 Rule 17.2 | Calculate code metrics (-code-metrics)

Topics
“Compute Code Complexity Metrics”

29 Code Metrics

29-42

Number of Executable Lines
Number of executable lines in function body

Description
This metric measures the number of executable lines in a function body. When calculating the value
of this metric, Polyspace excludes declarations, comments, blank lines, braces or preprocessing
directives.

If the function body contains a #include directive, the included file source code is also calculated as
part of this metric.

This metric is not calculated for C++ templates.

Examples
Function with Declarations, Braces and Comments

void func(int, double);

 int getSign(int arg) {//Excluded
 int sign; //Excluded
 static int siNumber = 0; //Excluded
 double dNumber = 5;//Excluded
 if(arg<0) {
 sign=-1;
 func(-arg,dNumber);
 ++siNumber;
 /* func takes positive first argument */ //Excluded
 }//Excluded
 else if(arg==0)
 sign=0;
 else {
 sign=1;
 func(arg,dNumber);
 ++siNumber;
 }//Excluded
 return sign;
}//Excluded

In this example, the number of executable lines of getSign is 11. The calculation excludes:

• The definition of the function.
• The variable declarations.
• The comment /* ... */.
• The lines with braces only.

Metric Information
Group: Function
Acronym: FXLN

 Number of Executable Lines

29-43

HIS Metric: No

See Also
Number of Lines Within Body | Number of Instructions | Calculate code metrics (-
code-metrics)

29 Code Metrics

29-44

Number of Files
Number of source files

Description
This metric calculates the number of source files in your project.

Examples
Source File Calling Function in Included File

#include<iostream>
#include"pow.cpp"

double power(double, double);
//Function to calculate approximate index
 double AppxIndex(double m, double f){
 double U = (power(m,2) - 1)/(power(m,2)+2); //First term
 double V = (power(m,4) + 27*power(m,2)+38)/
 (2*power(m,2)+3);// Second term
 return (1+2*f*power(U,2)*(1+power(m,2)*U*V +
 power(m,3)/power(m,3)*(U-V)))
 /((1-2*f*power(U,2)*(1+power(m,2)*U*V
 + power(m,3)/power(m,3)*(U-V))));
 }

 int main(){
 return 0;
 }

In this example, the code calls the function power, which is defined in an included source file
pow.cpp. When analysing the code, Polyspace does not consider the included source file. Because
the included source file is not considered in the analysis, Polyspace evaluates the number of source
file to be one.

Metric Information
Group: Project
Acronym: FILES
HIS Metric: No

See Also
Number of Header Files | Calculate code metrics (-code-metrics)

 Number of Files

29-45

Number of Function Parameters
Number of function arguments

Description
This metric measures the number of function arguments.

If ellipsis is used to denote variable number of arguments, when calculating this metric, the ellipsis is
not counted.

The recommended upper limit for this metric is 5. For less dependency between functions and fewer
side effects, try to enforce an upper limit on this metric.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Examples
Function with Fixed Arguments

int initializeArray(int* arr, int size) {
}

In this example, initializeArray has two parameters.

Function with Type Definition in Arguments

int getValueInLoc(struct {int* arr; int size;}myArray, int loc) {
}

In this example, getValueInLoc has two parameters.

Function with Variable Arguments

double average (int num, ...)
{
 va_list arg;
 double sum = 0;

 va_start (arg, num);

 for (int x = 0; x < num; x++)
 {
 sum += va_arg (arg, double);
 }
 va_end (arg);

 return sum / num;
}

29 Code Metrics

29-46

In this example, average has one parameter. The ellipsis denoting variable number of arguments is
not counted.

Metric Information
Group: Function
Acronym: PARAM
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

Topics
“Compute Code Complexity Metrics”

 Number of Function Parameters

29-47

Number of Goto Statements
Number of goto statements

Description
This metric measures the number of goto statements in a function.

break and continue statements are not counted.

The recommended upper limit on this metric is 0. For better readability of your code, avoid goto
statements in your code. To detect use of goto statements, check for violations of MISRA C:2012
Rule 15.1.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Examples
Function with goto Statements

#define SIZE 10
int initialize(int **arr, int loc);
void printString(int *);
void printErrorMessage(void);
void printExecutionMessage(void);

int main()
{
 int *arrayOfStrings[SIZE],len[SIZE],i;
 for (i = 0; i < SIZE; i++)
 {
 len[i] = initialize(arrayOfStrings,i);
 }

 for (i = 0; i < SIZE; i++)
 {
 if(len[i] == 0)
 goto emptyString;
 else
 goto nonEmptyString;
 loop: printExecutionMessage();
 }

emptyString:
 printErrorMessage();
 goto loop;
nonEmptyString:
 printString(arrayOfStrings[i]);
 goto loop;
}

In this example, the function main has 4 goto statements.

29 Code Metrics

29-48

Metric Information
Group: Function
Acronym: GOTO
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

Topics
“Compute Code Complexity Metrics”

 Number of Goto Statements

29-49

Number of Header Files
Number of included header files

Description
This metric measures the number of header files in the project that is considered in an analysis. Both
directly and indirectly included header files are counted.

The metric gives a slightly different number than the actual number of header files that you use
because Polyspace® internal header files and header files included by those files are also counted.
For the same reason, the metric can vary slightly even if you do not explicitly include new header files
or remove inclusion of header files from your code. For instance, the number of Polyspace® internal
header files can vary if you change your analysis options.

Examples
Header Files Not Considered in Analysis

#include<iostream>
#include<string>
// FUnction to calculate power
 long long power(double x, int n){
 long long BN = 1;// long long
 for(int i = 0; i<n;++i){
 BN*=x;
 }
 return BN;
 }

In this example, the code does not call any of the functions defined in the iostream and string.
These headers are not considered in the analysis. Polyspace calculates this metric to be zero.

Metric Information
Group: Project
Acronym: INCLUDES
HIS Metric: No

See Also
Number of Files | Calculate code metrics (-code-metrics)

29 Code Metrics

29-50

Number of Instructions
Number of instructions per function

Description
This metric measures the number of instructions in a function body.

The recommended upper limit for this metric is 50. For more modular code, try to enforce an upper
limit for this metric.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Computation Details

The metric is calculated using the following rules:

• A simple statement ending with a ; is one instruction.

If the statement is empty, it does not count as an instruction.
• A variable declaration counts as one instruction if both of these conditions are true:

• The variable is not static.
• The variable is initialized.

• Control flow statements such as if, for, break, goto, return, switch, while, do-while count
as one instruction.

• The following do not count as instructions by themselves:

• Beginning of a block of code

For instance, the following counts as one instruction:

{
 var = 1;
}

• Labels

For instance, the following counts as two instructions. The case labels do not count as
instructions.

switch (1) { // Instruction 1: switch
 case 0:
 case 1:
 case 2:
 default:
 break; // Instruction 2: break
 }

 Number of Instructions

29-51

Examples
Calculation of Number of Instructions

int func(int* arr, int size) {
 int i, countPos=0, countNeg=0, countZero = 0;
 for(i=0; i<size; i++) {
 if(arr[i] >0)
 countPos++;
 else if(arr[i] ==0)
 countZero++;
 else
 countNeg++;
 }
}

In this example, the number of instructions in func is 9. The instructions are:

1 countPos=0
2 countNeg=0
3 countZero=0
4 for(i=0;i<size;i++) { ... }
5 if(arr[i] >=0)
6 countPos++
7 else if(arr[i]==0)

The ending else is counted as part of the if-else instruction.
8 countZero++
9 countNeg++

Note This metric is different from the number of executable lines. For instance:

• for(i=0;i<size;i++) has 1 instruction and 1 executable line.
• The following code has 1 instruction but 3 executable lines.

for(i=0;
 i<size;
 i++)

Metric Information
Group: Function
Acronym: STMT
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

29 Code Metrics

29-52

Topics
“Compute Code Complexity Metrics”

 Number of Instructions

29-53

Number of Lines
Total number of lines in a file

Description
This metric calculates the number of lines in a file. When calculating the value of this metric,
Polyspace includes comments and blank lines.

This metric is calculated for source files and header files in the same folders as source files. If you
want:

• The metric reported for other header files, change the default value of the option Generate
results for sources and (-generate-results-for).

• The metric not reported for header files at all, change the value of the option Do not generate
results for (-do-not-generate-results-for) to all-headers.

Examples
Code Containing Comments and Blank Lines

// Function to calculate power
 long long power(double x, int n){
 long long BN = 1;// long long
 for(int i = 0; i<n;++i){
 BN*=x;
 }
 return BN;
 }
//Function to calculate approximate index
 double AppxIndex(double m, double f){
 double U = (power(m,2) - 1)/(power(m,2)+2); //First term
 double V = (power(m,4) + 27*power(m,2)+38)/
 (2*power(m,2)+3);// Second term
 return (1+2*f*power(U,2)*(1+power(m,2)*U*V +
 power(m,3)/power(m,3)*(U-V)))
 /((1-2*f*power(U,2)*(1+power(m,2)*U*V
 + power(m,3)/power(m,3)*(U-V))));
 }

Because Polyspace includes comments and blank lines when calculating this metric, the total number
of line in this file is 18.

Metric Information
Group: File
Acronym: TOTAL_LINES
HIS Metric: No

29 Code Metrics

29-54

See Also
Number of Lines Without Comment | Calculate code metrics (-code-metrics)

 Number of Lines

29-55

Number of Lines Within Body
Number of lines in function body

Description
This metric calculates the number of lines in function body. When calculating the value of this metric,
Polyspace includes declarations, comments, blank lines, braces and preprocessing directives.

If the function body contains a #include directive, the included file source code is also calculated as
part of this metric.

This metric is not calculated for C++ templates.

Examples
Function with Declarations, Braces and Comments

void func(int);

int getSign(int arg) {
 int sign;
 if(arg<0) {
 sign=-1;
 func(-arg);
 /* func takes positive arguments */
 }
 else if(arg==0)
 sign=0;
 else {
 sign=1;
 func(arg);
 }
 return sign;
}

In this example, the number of executable lines of getSign is 13. The calculation includes:

• The declaration int sign;.
• The comment /* ... */.
• The two lines with braces only.

Metric Information
Group: Function
Acronym: FLIN
HIS Metric: No

See Also
Number of Executable Lines | Calculate code metrics (-code-metrics)

29 Code Metrics

29-56

Number of Lines Without Comment
Number of lines of code excluding lines that are comments or blank

Description
This metric calculates the number of executable lines in a file. When calculating the value of this
metric, Polyspace excludes lines that are comments or blank.

This metric is calculated for source files and header files in the same folders as source files. If you
want:

• The metric reported for other header files, change the default value of the option Generate
results for sources and (-generate-results-for).

• The metric not reported for header files at all, change the value of the option Do not generate
results for (-do-not-generate-results-for) to all-headers.

Examples
Inline Comments

// Function to calculate power
 long long power(double x, int n){
 long long BN = 1;// long long
 for(int i = 0; i<n;++i){
 BN*=x;
 }
 return BN;
 }
//Function to calculate approximate index
 double AppxIndex(double m, double f){
 double U = (power(m,2) - 1)/(power(m,2)+2); //First term
 double V = (power(m,4) + 27*power(m,2)+38)/
 (2*power(m,2)+3);// Second term
 return (1+2*f*power(U,2)*(1+power(m,2)*U*V +
 power(m,3)/power(m,3)*(U-V)))
 /((1-2*f*power(U,2)*(1+power(m,2)*U*V
 + power(m,3)/power(m,3)*(U-V))));
 }

In this example, Polyspace calculates the number of lines in the file that are neither comment nor
blank lines. Ignoring lines that are comments, such as the line // FUnction to calculate
power, and blank lines, Polyspace evaluates the metric as 16. When evaluating this metric, the lines
of code that contain inline comments are counted as lines of code.

Metric Information
Group: File
Acronym: LINES_WITHOUT_CMT
HIS Metric: No

 Number of Lines Without Comment

29-57

See Also
Number of Lines | Calculate code metrics (-code-metrics)

29 Code Metrics

29-58

Number of Local Non-Static Variables
Total number of local variables in function

Description
This metric provides the number of declared local variables in a function.

The metric excludes static variables and temporary variables. To find number of static variables, use
the metric Number of Local Static Variables.

Examples
Non-Structured Variables

int flag();

int func(int param) {
 int var_1;
 int var_2;
 if (flag()) {
 int var_3;
 int var_4;
 } else {
 int var_5;
 }
}

In this example, the number of local non-static variables in func is 5. The number does not include
the function arguments and return value.

Arrays and Structured Variables

typedef struct myStruct{
 char arr1[50];
 char arr2[50];
 int val;
} myStruct;

void func(void) {
 myStruct var;
 char localArr[50];
}

In this example, the number of local non-static variables in func is 2: the structured variable var and
the array localArr.

Variables in Class Methods

class Rectangle {
 int width, height;

 Number of Local Non-Static Variables

29-59

 public:
 void set (int,int);
 int area (void);
} rect;

int Rectangle::area (void) {
 int temp;
 temp = width * height;
 return(temp);
}

In this example, the number of local non-static variables in Rectangle::area is 1: the variable
temp.

Metric Information
Group: Function
Acronym: LOCAL_VARS
HIS Metric: No

See Also
Number of Local Static Variables | Higher Estimate of Size of Local Variables |
Lower Estimate of Size of Local Variables | Calculate code metrics (-code-
metrics)

Introduced in R2017a

29 Code Metrics

29-60

Number of Local Static Variables
Total number of local static variables in function

Description
This metric provides the number of local static variables in a function.

Examples
Number of Static Variables

void func(void) {
 static int var_1 = 0;
 int var_2;
}

In this example, the number of static variables in func is 1. For examples of different types of
variables, see Number of Local Non-Static Variables.

Metric Information
Group: Function
Acronym: LOCAL_STATIC_VARS
HIS Metric: No

See Also
Higher Estimate of Size of Local Variables | Number of Local Non-Static
Variables | Calculate code metrics (-code-metrics)

Introduced in R2017a

 Number of Local Static Variables

29-61

Number of Paths
Estimated static path count

Description
This metric measures the number of paths in a function.

The recommended upper limit for this metric is 80. If the number of paths is high, the code is difficult
to read and can cause more orange checks. Try to limit the value of this metric.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Computation Details

The number of paths is calculated according to these rules:

• If the statements in a function do not break the control flow, the number of paths is one.

Even an empty statement such as ; or empty block such as {} counts as one path.
• A control flow statement introduces branches and adds to the original one path.

• if-else if-else: Each if keyword introduces a new branch. The contribution from an if-
else if-else block is the number of branches plus one (the original path). If a catch-all
else is present, all paths go through the block; otherwise, one path bypasses the block.

For instance, a function with an if(..) {} else if(..) {} else {} statement has three
paths. A function with one if() {} only has two paths, one that goes through the if block
and one that bypasses the block.

• switch-case: Each case label introduces a new branch. The contribution from a switch
block is the number of case labels plus one (the original path). If a catch-all default is
present, all paths go through the block; otherwise, one path bypasses the block.

For instance, a function with a statement switch (var) { case 1: .. break; case
2: .. break; default: .. } has three paths, all going through the switch block. If you
omit the default, the function still has three paths, two going through the switch block and
one bypassing the block.

• for and while: Each loop statement introduces a new branch. The contribution from a loop is
two - a path that goes through the loop and a path that bypasses the loop.

• do-while: Each do-while statement introduces a new branch except when the condition of
the while statement is explicitly false. Statements written as do{/*..*/}while(0) do not
function as loops. Such statements are often used for enclosing multiple lines of macros within
braces. For instance, this do-while statement serves to encapsulate the multiline macro
rather than create a new path:

#define myfunc(x) do{ ...\\
 ...\\
 ...}while(0);

Polyspace considers such statements to be a single path.

Note that a statement with a ternary operator such as

29 Code Metrics

29-62

result = a > b ? a : b;

is not considered as a statement that breaks the control flow.
• If more than one control flow statement are present in a sequence without any nesting, the

number of paths is the product of the contributions from each control flow statement.

For instance, if a function has three for loops and two if-else blocks, one after another, the
number of paths is 2 × 2 × 2 × 2 × 2 = 32.

If many control flow statements are present in a function, the number of paths can be large.
Nested control flow statements reduce the number of paths at the cost of increasing the depth of
nesting. For an example, see “Function with Nested Control Flow Statements” on page 29-63.

• The software displays specific values in cases where the metric is not calculated:

• If goto statements are present in the body of the function, Polyspace cannot calculate the
number of paths and shows the number of paths as Not Computed instead.

• If the number of paths reaches an upper limit of 1,000,000,000, Polyspace stops the calculation
and displays just the upper limit. The actual value might be higher.

Examples
Function with One Path

int func(int ch) {
 return (ch * 2);
}

In this example, func has one path.

Function with Control Flow Statement Causing Multiple Paths

void func(int ch) {
 switch (ch)
 {
 case 1:
 break;
 case 2:
 break;
 case 3:
 break;
 case 4:
 break;
 default:
 }
}

In this example, func has five paths. Apart from the path that goes through the default, each case
label followed by a statement causes the creation of a new path.

Function with Nested Control Flow Statements

void func()

 Number of Paths

29-63

{
 int i = 0, j = 0, k = 0;
 for (i=0; i<10; i++)
 {
 for (j=0; j<10; j++)
 {
 for (k=0; k<10; k++)
 {
 if (i < 2)
 ;
 else
 {
 if (i > 5)
 ;
 else
 ;
 }
 }
 }
 }
}

In this example, func has six paths: three from the for statements, two from the if statements plus
the original path that bypasses all control flow statements.

Metric Information
Group: Function
Acronym: PATH
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

Topics
“Compute Code Complexity Metrics”

29 Code Metrics

29-64

Number of Potentially Unprotected Shared
Variables
Number of unprotected shared variables

Description
This metric measures the number of variables with the following properties:

• The variable is used in more than one task.
• At least one operation on the variable is not protected from interruption by operations in other

tasks.

Examples
Unprotected Shared Variables

#include <limits.h>
int shared_var;

void inc() {
 shared_var+=2;
}

void reset() {
 shared_var = 0;
}

void task() {
 volatile int randomValue = 0;
 while(randomValue) {
 reset();
 inc();
 inc();
 }
}

void interrupt() {
 shared_var = INT_MAX;
}

void interrupt_handler() {
 volatile int randomValue = 0;
 while(randomValue) {
 interrupt();
 }
}

void main() {
}

 Number of Potentially Unprotected Shared Variables

29-65

In this example, Polyspace calculates the number of potentially unprotected shared variable to be
one. The shared variabel shared_var is unprotected if you specify task and interrupt_handler
as entry points and do not specify protection mechanisms.

The operation shared_var = INT_MAX can interrupt the other operations on shared_var and
cause unpredictable behavior.

Metric Information
Group: Project
Acronym: UNPSHV
HIS Metric: No

See Also
Calculate code metrics (-code-metrics)

Introduced in R2018b

29 Code Metrics

29-66

Number of Protected Shared Variables
Number of protected shared variables

Description
This metric measures the number of variables with the following properties:

• The variable is used in more than one task.
• All operations on the variable are protected from interruption through critical sections or

temporal exclusions.

Examples
Shared Variables Protected Through Temporal Exclusion

#include <limits.h>
int shared_var;

void inc() {
 shared_var+=2;
}

void reset() {
 shared_var = 0;
}

void task() {
 volatile int randomValue = 0;
 while(randomValue) {
 reset();
 inc();
 inc();
 }
}

void interrupt() {
 shared_var = INT_MAX;
}

void interrupt_handler() {
 volatile int randomValue = 0;
 while(randomValue) {
 interrupt();
 }
}

void main() {
}

In this example, shared_var is a protected shared variable if you specify the following options:

 Number of Protected Shared Variables

29-67

Option Value
Tasks (-entry-points) task

interrupt_handler
Temporally exclusive
tasks (-temporal-
exclusions-file)

temporal_exclusion.txt

In the command line, specify these options to run the example:

-entry-points task,interrupt_handler -temporal-exclusions-file temporal_exclusion.txt

temporal_exclusion.txt is a text file containing the temporally exclusive tasks separated by a
space in a single line:

task interrupt_handler

The variable is shared between task and interrupt_handler. However, because task and
interrupt_handler are temporally exclusive, operations on the variable cannot interrupt each
other.

Shared Variables Protected Through Critical Sections

#include <limits.h>
int shared_var;

void inc() {
 shared_var+=2;
}

void reset() {
 shared_var = 0;
}

void take_semaphore(void);
void give_semaphore(void);

void task() {
 volatile int randomValue = 0;
 while(randomValue) {
 take_semaphore();
 reset();
 inc();
 inc();
 give_semaphore();
 }
}

void interrupt() {
 shared_var = INT_MAX;
}

void interrupt_handler() {
 volatile int randomValue = 0;

29 Code Metrics

29-68

 while(randomValue) {
 take_semaphore();
 interrupt();
 give_semaphore();
 }
}

void main() {
}

In this example, shared_var is a protected shared variable if you specify the following:

Option Value
Entry points task

interrupt_handler
Critical section details Starting routine Ending routine

take_semaphore give_semaphore

In the command line, specify these options to run the example:

-critical-section-begin take_semaphore:cs1
-critical-section-end give_semaphore:cs1
-entry-points task,interrupt_handle

The variable is shared between task and interrupt_handler. However, because operations on the
variable are between calls to the starting and ending procedure of the same critical section, they
cannot interrupt each other.

Metric Information
Group: Project
Acronym: PSHV
HIS Metric: No

See Also
Tasks (-entry-points) | Critical section details (-critical-section-begin -
critical-section-end) | Temporally exclusive tasks (-temporal-exclusions-file) |
Calculate code metrics (-code-metrics)

Introduced in R2018b

 Number of Protected Shared Variables

29-69

Number of Recursions
Number of call graph cycles over one or more functions

Description
The metric provides a quantitative estimate of the number of recursion cycles in your project. The
metric is the sum of:

• Number of direct recursions (self recursive functions or functions calling themselves).
• Number of strongly connected components formed by the indirect recursion cycles in your project.

If you consider the recursion cycles as a directed graph, the graph is strongly connected if there is
a path between all pairs of vertices.

To compute the number of strongly connected components:

1 Draw the recursion cycles in your code.

For instance, the recursion cycles in this example are shown below.

volatile int checkStatus;
void func1() {
 if(checkStatus) {
 func2();
 }
 else {
 func3();
 }
}

func2() {
 func1();
}

func3() {
 func1();
}

29 Code Metrics

29-70

2 Identify the number of strongly connected components formed by the recursion cycles.

In the preceding example, there is one strongly connected component. You can move from any
vertex to another vertex by following the paths in the graph.

The event list below the metric shows one of the recursion cycles in the strongly connected
component.

Calls through a function pointer are not considered.

The recommended upper limit for this metric is 0. To avoid the possibility of exceeding available stack
space, do not use recursions in your code. Recursions can tend to exhaust stack space easily. See
examples of stack size growth with recursions described for this CERT-C rule that forbids recursions.

To detect use of recursions, check for violations of one of MISRA C:2012 Rule 17.2,MISRA C:
2004 Rule 16.2, MISRA C++:2008 Rule 7-5-4 or JSF Rule 119. Note that:

• The rule checkers report each function that calls itself, directly or indirectly. Even if several
functions are involved in one recursion cycle, each function is individually reported.

• The rule checkers consider explicit function calls only. For instance, in C++ code, the rule
checkers ignore implicit calls to constructors during object creation. However, the metrics
computation considers both implicit and explicit calls.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

 Number of Recursions

29-71

https://wiki.sei.cmu.edu/confluence/x/ztUxBQ

Examples
Direct Recursion

int getVal(void);
int sum(int val) {
 if(val<0)
 return 0;
 else
 return (val + sum(val-1));
}

void main() {
 int count = getVal(), total;
 assert(count > 0 && count <100);
 total = sum(count);
}

In this example, the number of recursions is 1.

A direct recursion is a recursion where a function calls itself in its own body. For direct recursions,
the number of recursions is equal to the number of recursive functions.

Indirect Recursion with One Call Graph Cycle

volatile int signal;
void operation2(void);

void operation1(void) {
 int stop = signal%2;
 if(!stop)
 operation2();
}

void operation2(void) {
 operation1();
}

void main() {
 operation1();
}

In this example, the number of recursions is one. The two functions operation1 and operation2
are involved in the call graph cycle operation1 → operation2 → operation1.

An indirect function is a recursion where a function calls itself through other functions. For indirect
recursions, the number of recursions can be different from the number of recursive functions.

29 Code Metrics

29-72

Multiple Call Graph Cycles Forming One Strongly Connected Component

volatile int checkStatus;
void func1() {
 if(checkStatus) {
 func2();
 }
 else {
 func3();
 }
}

func2() {
 func1();
}

func3() {
 func1();
}

In this example, there are two call graph cycles:

• func1 → func2 → func1
• func1 → func3 → func1

However, the cycles form one strongly connected component. You can move from any vertex to
another vertex by following the paths in the graph. Hence, the number of recursions is one.

Indirect Recursion with Two Call Graph Cycles

volatile int signal;
void operation1_1();
void operation2_1();

 Number of Recursions

29-73

void operation1() {
 int stop = signal%2;
 if(!stop)
 operation1_1();
}

void operation1_1() {
 operation1();
}

void operation2() {
 int stop = signal%2;
 if(!stop)
 operation2_1();
}

void operation2_1() {
 operation2();
}

void main(){
 operation1();
 operation2();
}

In this example, the number of recursions is two.

There are two call graph cycles:

• operation1 → operation1_1 → operation1
• operation2 → operation2_1 → operation2

The call graph cycles form two strongly connected components.

Same Function Called in Direct and Indirect Recursion

volatile int signal;
void operation2();

29 Code Metrics

29-74

void operation1() {
 int stop = signal%3;
 if(stop==1)
 operation1();
 else if(stop==2)
 operation2();
}

void operation2() {
 operation1();
}

void main() {
 operation1();
}

In this example, the number of recursions is two:

• The strongly connected component formed by the cycle operation1 → operation2 →
operation1.

• The self-recursive function operation1.

Metric Information
Group: Project
Acronym: AP_CG_CYCLE
HIS Metric: Yes

See Also
MISRA C:2012 Rule 17.2 | Calculate code metrics (-code-metrics)

Topics
“Compute Code Complexity Metrics”

 Number of Recursions

29-75

Number of Return Statements
Number of return statements in a function

Description
This metric measures the number of return statements in a function.

The recommended upper limit for this metric is 1. If one return statement is present, when reading
the code, you can easily identify what the function returns.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Examples
Function with Return Points

int getSign (int arg) {
 if(arg <0)
 return -1;
 else if(arg > 0)
 return 1;
 return 0;
}

In this example, getSign has 3 return statements.

Metric Information
Group: Function
Acronym: RETURN
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

Topics
“Compute Code Complexity Metrics”

29 Code Metrics

29-76

Program Maximum Stack Usage
Maximum stack usage in the analyzed program

Description
This metric is reported in a Code Prover analysis only.

This metric shows the maximum stack usage from your program.

The metric shows the maximum stack usage for the function with the highest stack usage. If you
provide a complete application, the function with the highest stack usage is typically the main
function because the main function is at the top of the call hierarchy. For a description of maximum
stack usage for a function, see the metric Maximum Stack Usage (Polyspace Code Prover).

Metric Information
Group: Project
Acronym: PROG_MAX_STACK
HIS Metric: No

See Also
Higher Estimate of Size of Local Variables (Polyspace Code Prover) | Maximum Stack
Usage (Polyspace Code Prover) | Program Minimum Stack Usage (Polyspace Code Prover) |
Calculate code metrics (-code-metrics)

Topics
“Determination of Program Stack Usage” (Polyspace Code Prover)

Introduced in R2017b

 Program Maximum Stack Usage

29-77

Program Minimum Stack Usage
Maximum stack usage in the analyzed program taking nested scopes into account

Description
This metric is reported in a Code Prover analysis only.

This metric shows the maximum stack usage from your program, taking nested scopes into account.
The metric provides a lower bound to the stack usage since unlike the Program Maximum Stack
Usage (Polyspace Code Prover), the metric takes into account possible stack space reuse within a
function and does not simply add the sizes of all local variables in a function.

The metric shows the minimum stack usage for the function with the highest stack usage. If you
provide a complete application, the function with the highest stack usage is typically the main
function because the main function is at the top of the call hierarchy. For a description of minimum
stack usage for a function, see the metric Minimum Stack Usage (Polyspace Code Prover).

Considering nested scopes is useful for compilers that reuse stack space for variables defined in
nested scopes. For instance, in this code, the space for var_1 is reused for var_2.

type func (type param_1, ...) {

 {
 /* Scope 1 */
 type var_1, ...;
 }
 {
 /* Scope 2 */
 type var_2, ...;
 }
}

Metric Information
Group: Project
Acronym: PROG_MIN_STACK
HIS Metric: No

See Also
Lower Estimate of Size of Local Variables (Polyspace Code Prover) | Minimum Stack
Usage (Polyspace Code Prover) | Program Maximum Stack Usage (Polyspace Code Prover) |
Calculate code metrics (-code-metrics)

Topics
“Determination of Program Stack Usage” (Polyspace Code Prover)

Introduced in R2017b

29 Code Metrics

29-78

Polyspace Reports Components

79

Report Components

30

Acronym Definitions
Create table of Polyspace acronyms used in report and their full forms

Description
This component creates a table containing the acronyms used in the report and their full forms.
Acronyms are used for Polyspace checks and result status.

See Also
Topics
“Customize Existing Bug Finder Report Template”

30 Report Components

30-2

Call Hierarchy
Create table showing call graph in source code

Description
This component creates a table showing the call hierarchy in your source code. For each function call
in your source code, the table displays the following information:

• Level of call hierarchy, where the function is called.

Each level is denoted by |. If a function call appears in the table as |||->
file_name.function_name, the function call occurs at the third level of the hierarchy.
Beginning from main or an entry point, there are three function calls leading to the current call.

• File containing the function call.

In Code Prover, the line and column is also displayed.
• File containing the function definition.

In Code Prover, the line and column where the function definition begins is also displayed.

In addition, the table also displays uncalled functions.

This table captures the information available on the Call Hierarchy pane in the Polyspace user
interface.

See Also
Topics
“Customize Existing Bug Finder Report Template”

 Call Hierarchy

30-3

Code and Verification Information
Create table of verification times and code characteristics

Description
This component creates tables containing verification times and code characteristics such as number
of lines.

Properties
Include Verification Time Information

If you select this option, the report contains verification times broken down by phase.

• For Polyspace Bug Finder, the phases are compilation, pass0, pass1, etc.
• For Polyspace Code Prover, the phases are compilation, global, function, etc.

Include Code Details

If you select this option, the report contains the following code characteristics:

• Number of files
• Number of lines
• Number of lines without comment

See Also
Topics
“Customize Existing Bug Finder Report Template”

30 Report Components

30-4

Code Metrics Details
Create table of Polyspace metrics broken down by file and function

Description
This component creates a table containing metrics from a Polyspace project. Polyspace calculates
various code metrics about the project, source files, and individual functions. For a list of these code
metrics, see “Code Metrics”.

See Also
Topics
“Customize Existing Bug Finder Report Template”

 Code Metrics Details

30-5

Code Metrics Summary
Create table of Polyspace metrics

Description
This component creates a table containing metrics from a Polyspace project. The metrics are the
same as those displayed under Code Metrics Details. However, the file and function metrics are
not broken down by individual files and functions. Instead, the table provides the minimum and
maximum value of a file metric over all files and a function metric over all functions.

See Also
Topics
“Customize Existing Bug Finder Report Template”

30 Report Components

30-6

Code Verification Summary
Create table of Polyspace analysis results

Description
This component creates tables containing the following results:

• Number of results
• Number of coding rule violations for each coding rule type such as MISRA C
• Number of defects, for Polyspace Bug Finder results
• Number of checks of each color, for Polyspace Code Prover results
• Whether the project passed or failed the software quality objective

Properties
Include Checks from Polyspace Standard Library Stub Functions

Unless you deselect this option, the tables contain Polyspace Code Prover checks that appear in
Polyspace stubs for the standard library functions.

See Also
Topics
“Customize Existing Bug Finder Report Template”

 Code Verification Summary

30-7

Coding Rules Details
Create table of coding rule violations broken down by file

Description
This component creates tables containing coding rule violations broken down by each file in the
Polyspace project. For each rule violation, the table contains the following information:

• Rule number
• Rule description
• Function containing the violation
• (Code Prover only) Line and column number
• Review information such as classification, status and comments

Properties
Select Coding Rules Type

Using this option, you can choose which coding rule violations to display. You can display violations
for the following set of coding rules:

• MISRA C rules
• MISRA AC AGC rules
• MISRA C++ rules
• JSF C++ rules
• Custom coding rules

Display by

Using this option, you can break down the display of coding rule violations by file.

See Also
Topics
“Customize Existing Bug Finder Report Template”

30 Report Components

30-8

Coding Rules Summary
Create table with number of coding rule violations

Description
This component creates a table containing the number of coding rule violations. You can choose
whether to break this information down by rule number or file.

Properties
Select Coding Rules Type

Using this option, you can choose which coding rule violations to display. You can display violations
for the following set of coding rules:

• MISRA C rules
• MISRA AC AGC rules
• MISRA C++ rules
• JSF C++ rules
• Custom coding rules

Include Files/Rules with No Problems Detected

If you select this option, the table displays:

• Files that do not contain coding rule violations
• Rules that your code does not violate

Display by

Using this option, you can break down the display of coding rule violations by:

• Rule number
• File

See Also
Topics
“Customize Existing Bug Finder Report Template”

 Coding Rules Summary

30-9

Configuration Parameters
Create table of analysis options, assumptions and coding rules configuration

Description
This component creates the following tables:

• Polyspace settings: The analysis options that you used to obtain your results. The table lists
command-line version of the options along with their values.

• Analysis assumptions: The assumptions used to obtain your Code Prover results. The table lists
only the modifiable assumptions. For assumptions that you cannot change, see the Polyspace
documentation.

• Coding rules configuration: The coding rules whose violations you checked for. The table lists the
rule number, rule description and other information about the rules.

• Files with compilation errors: If your project has source files with compilation errors, these files
are listed.

See Also
Topics
“Customize Existing Bug Finder Report Template”

30 Report Components

30-10

Defects Summary
Create table of defects (Bug Finder only)

Description
This component creates a table of Polyspace Bug Finder defects. From this table, you can see the
number of defects of each type.

Properties
Include Checkers with No Defects Detected

If you select this option, the table includes all defect types that Polyspace Bug Finder can detect,
including those that do not occur in your code.

See Also
Topics
“Customize Existing Bug Finder Report Template”

 Defects Summary

30-11

Global Variable Checks
Create table of global variables (Code Prover only)

Description
This component creates a table of Polyspace Code Prover global variables. From this table, you can
see the number of global variables of each type.

See Also
Topics
“Customize Existing Bug Finder Report Template”

30 Report Components

30-12

Recursive Functions
Create table of recursive functions

Description
This component creates a table containing the recursive functions in your source code (along with the
files containing the functions).

• For each direct recursion (function calling itself directly), the table lists the recursive function.
• For each indirect recursion cycle (function calling itself through other functions), the table lists

one function in the cycle.

For instance, the following code contains two indirect recursion cycles.

volatile int signal;

void operation1() {
 int stop = signal%2;
 if(!stop)
 operation1_1();
}

void operation1_1() {
 operation1();
}

void operation2() {
 int stop = signal%2;
 if(!stop)
 operation2_1();
}

void operation2_1() {
 operation2();
}

void main(){
 operation1();
 operation2();
}

The two call graph cycles are:

• operation1 → operation1_1 → operation1
• operation2 → operation2_1 → operation2

 Recursive Functions

30-13

This report component shows one function from each of the two cycles: operation1 and
operation2. To see the full cycle, open the results in the Polyspace user interface.

See Also
Topics
“Customize Existing Bug Finder Report Template”

30 Report Components

30-14

Report Customization (Filtering)
Create filters that apply to your Polyspace reports

Description
This component allows you to filter unwanted information from existing Polyspace report templates.
To apply global filters, place this component immediately below the node representing the report
name.

Properties
Code Metrics Filters

The properties in table below apply to the inclusion of code metrics in your report.

Property Purpose User Action
Include Project Metrics Choose whether to include

metrics about your Polyspace
project.

Select the check box to include
project metrics.

Project metrics to include Specify project metrics to
include or exclude from report.

Enter a MATLAB regular
expression.

Include File Metrics Choose whether to include per
file metrics in report.

Select the check box to include
per file metrics.

File Metrics > Files to
include

Specify files to include or
exclude when reporting file
metrics.

Enter a MATLAB regular
expression.

File metrics to include Specify file metrics to include or
exclude from report.

Enter a MATLAB regular
expression.

Include Function Metrics Choose whether to include per
function metrics in report.

Select the check box to include
per function metrics.

Function Metrics > Files to
include

Specify files to include or
exclude when reporting function
metrics.

Enter a MATLAB regular
expression.

Functions to include Specify functions to include or
exclude when reporting function
metrics.

Enter a MATLAB regular
expression.

Function metrics to include Specify function metrics to
include or exclude from report.

Enter a MATLAB regular
expression.

Coding Rules Filters

The properties in table below apply to the inclusion of coding rule violations in your report.

 Report Customization (Filtering)

30-15

Property Purpose User Action
Files to include Specify files to include or

exclude when reporting coding
rule violations.

Enter a MATLAB regular
expression.

Coding rule numbers to
include

Specify coding rules to include
or exclude when reporting
coding rule violations.

Enter a MATLAB regular
expression.

Classifications to include Specify classifications to include
or exclude when reporting
coding rule violations.

Enter a MATLAB regular
expression.

Status types to include Specify statuses to include or
exclude when reporting coding
rule violations.

Enter a MATLAB regular
expression.

Run-time Check Filters

The properties in table below apply to the inclusion of Polyspace Code Prover checks in your report.

Property Purpose
Red Checks Specify whether to include red checks in your

report. Red checks indicate proven run-time
errors.

Gray Checks Specify whether to include gray checks in your
report. Gray checks indicate unreachable code.

Orange Checks Specify whether to include orange checks in your
report. Orange checks indicate possible run-time
errors.

Green Checks Specify whether to include green checks in your
report. Green checks indicate that an operation
does not contain a specific run-time error.

Inspection Point Checks Specify whether to include inspection point
checks in your report. These checks allow an user
to find the values that a variable can take at a
certain point in the code.

Unreachable Functions Specify whether to include unreachable functions
in your report.

Advanced Filters

The properties in table below apply to the inclusion of metrics, coding rule violations and Polyspace
Code Prover checks in your report.

Property Purpose User Action
Justification status Choose whether to report only

justified checks, only unjustified
checks or all checks.

Choose an option from the
dropdown list.

30 Report Components

30-16

Property Purpose User Action
Files to include Specify files to include or

exclude from your report.
Enter a MATLAB regular
expression.

Check types to include Specify Polyspace Code Prover
checks to include in your report.

Enter a MATLAB regular
expression.

Function names to include Specify functions to include or
exclude from your report.

Enter a MATLAB regular
expression.

Classification types to
include

Specify classifications to include
or exclude from your report.

Enter a MATLAB regular
expression.

Status types to include Specify statuses to include or
exclude from your report.

Enter a MATLAB regular
expression.

Comments to include Specify comments to include or
exclude from your report.

Enter a MATLAB regular
expression.

See Also
Topics
“Customize Existing Bug Finder Report Template”
“Regular Expressions”

 Report Customization (Filtering)

30-17

Run-time Checks Details Ordered by Color/File
Create overrides for global filters in Polyspace reports (Code Prover only)

Description
This component adds detailed information about the run-time checks to your report. This component
can also be used to override global filters in specific chapters of your report. Use the following
workflow when using filters in your report:

1 To create filters that apply to all chapters of your report, use the Report Customization
(Filtering) component. For more information, see Report Customization (Filtering).

2 To override some of the filters in individual chapters, use the Run-time Checks Details
Ordered by Color/File component. Select the Override Global Report filter box.

Properties
Categories To Include

The properties in table below apply to the inclusion of Polyspace Code Prover checks in your report.

Property Purpose
Red Checks Specify whether to include red checks in your

report. Red checks indicate proven run-time
errors.

Gray Checks Specify whether to include gray checks in your
report. Gray checks indicate unreachable code.

Orange Checks Specify whether to include orange checks in your
report. Orange checks indicate possible run-time
errors.

Green Checks Specify whether to include green checks in your
report. Green checks indicate that an operation
does not contain a specific run-time error.

Inspection Point Checks Specify whether to include inspection point
checks in your report. These checks allow an user
to find the values that a variable can take at a
certain point in the code.

Unreachable Functions Specify whether to include unreachable functions
in your report.

Advanced Filters

The properties in table below apply to the inclusion of metrics, coding rule violations and Polyspace
Code Prover checks in your report.

30 Report Components

30-18

Property Purpose User Action
Justification status Choose whether to report only

justified checks, only unjustified
checks or all checks.

Choose an option from the
dropdown list.

Files to include Specify files to include or
exclude from your report.

Enter a regular MATLAB
expression.

Check types to include Specify Polyspace Code Prover
checks to include in your report.

Enter a regular MATLAB
expression.

Function names to include Specify functions to include or
exclude from your report.

Enter a regular MATLAB
expression.

Classification types to
include

Specify classifications to include
or exclude from your report.

Enter a regular MATLAB
expression.

Status types to include Specify statuses to include or
exclude from your report.

Enter a regular MATLAB
expression.

Comments to include Specify comments to include or
exclude from your report.

Enter a regular MATLAB
expression.

See Also
Topics
“Customize Existing Bug Finder Report Template”

 Run-time Checks Details Ordered by Color/File

30-19

Run-time Checks Details Ordered by Review
Information
Create table with run-time checks ordered by review information (Code Prover only)

Description
This component creates tables displaying the Polyspace Code Prover checks in your code. All checks
with same combination of Severity and Status appear in the same table.

See Also
Topics
“Customize Existing Bug Finder Report Template”

30 Report Components

30-20

Run-time Checks Summary Ordered by File
Create table with run-time checks ordered by file (Code Prover only)

Description
This component creates a table displaying the number of Polyspace Code Prover checks per file in
your code.

Properties
Sort the data

Use this option to sort the rows in the table alphabetically by filename or by percentage of unproven
code.

Display as

Use this option to display the number of checks in a table or in bar charts.

Display ratio of checks in a file

Select this option to display the number of checks of a certain color as a ratio of total number of
checks in the file.

Include checks from Polyspace standard library stub functions

Select this option to include the checks from Polyspace standard library stub functions in your
display.

See Also
Topics
“Customize Existing Bug Finder Report Template”

 Run-time Checks Summary Ordered by File

30-21

Software Quality Objectives - Coding Rules
Summary
Create table of coding rule violations in results downloaded from Polyspace Metrics

Description
This component creates a table containing coding rule violations in results downloaded from
Polyspace Metrics.

See Also
Topics
“Customize Existing Bug Finder Report Template”

30 Report Components

30-22

Software Quality Objectives - Run-time Checks
Details
Create table of result details for results downloaded from Polyspace Metrics

Description
This component creates tables showing results downloaded from Polyspace Metrics.

The component Software Quality Objectives - Run-time Checks Summary shows the
distribution of results. This component shows individual instances of results. Each file has a dedicated
table showing the findings in the file.

See Also
Topics
“Customize Existing Bug Finder Report Template”

 Software Quality Objectives - Run-time Checks Details

30-23

Software Quality Objectives - Run-time Checks
Summary
Create table of results summary for results downloaded from Polyspace Metrics

Description
This component creates a table showing the distribution of run-time checks in results downloaded
from Polyspace Metrics.

This component shows the distribution of run-time checks. The component Software Quality
Objectives - Run-time Checks Details shows the individual instances of run-time checks.

See Also
Topics
“Customize Existing Bug Finder Report Template”

30 Report Components

30-24

Summary By File
Create table showing summary of Polyspace results by file

Description
This component creates a table showing a breakdown of Polyspace results by file.

See Also
Topics
“Customize Existing Bug Finder Report Template”

 Summary By File

30-25

Variable Access
Create table showing global variable access in source code (Code Prover only)

Description
This component creates a table showing the global variable access in your source code. For each
global variable, the table displays the following information:

• Variable name.

The entry for each variable is denoted by |.
• Type of the variable.
• Number of read and write operations on the variable.
• Details of read and write operations. For each read or write operation, the table displays the

following information:

• File and function containing the operation in the form file_name.function_name.

The entry for each read or write operation is denoted by ||. Write operations are denoted by <
and read operations by >.

• Line and column number of the operation.

This table captures the information available on the Variable Access pane in the Polyspace user
interface.

The table showing variable access contains only the names of files. Below this table, a second table
shows the full paths to files (in two columns, Filename and Full filename). If a variable access
occurs in a Standard library function, the two columns contain this information:

• Filename: __polyspace__stdstubs.c (the file containing Polyspace implementation of
Standard Library functions)

• Full filename: Std library

See Also
Topics
“Customize Existing Bug Finder Report Template”

30 Report Components

30-26

Variable Checks Details Ordered By Review
Information
Create table with global variable results ordered by review information (Code Prover only)

Description
This component creates tables displaying the Polyspace Code Prover global variable results in your
code. All checks with same combination of Severity and Status appear in the same table.

See Also
Topics
“Customize Existing Bug Finder Report Template”

 Variable Checks Details Ordered By Review Information

30-27

Polyspace Bug Finder Assumptions

29

Approximations Used During Bug Finder
Analysis

31

Inputs in Polyspace Bug Finder
A Bug Finder analysis by default does not return a defect caused by a special value of an unknown
input, unless the input is bounded. Polyspace makes no assumption about the value of unbounded
inputs when your source code is incomplete. For example, in the following code Bug Finder detects a
division by zero in foo_1(), but not in foo_2():

int foo_1(int p)
{
 int x = 0;
 if (p > -10 && p < 10) /* p is bounded by if statement */
 x = 100/p; /* Division by zero detected */

 return x;
}

int foo_2(int p) /* p is unbounded */
{
 int x = 0;
 x = 100/p; /* Division by zero not detected */

 return x;
}

To set bounds on your input, add constraints in your code such as assert or if. At the cost of a
possibly longer runtime, you can perform a more exhaustive analysis where all values of function
inputs are considered when showing defects. See “Extend Bug Finder Checkers to Find Defects from
Specific System Input Values”.

See Also
“Global Variables in Polyspace Bug Finder” on page 31-3 | “Bug Finder Analysis Assumptions”

31 Approximations Used During Bug Finder Analysis

31-2

Global Variables in Polyspace Bug Finder
When you run a Bug Finder analysis, Polyspace makes certain assumptions about the initialization of
global variables. These assumptions depend on how you declare and define global variables. For
example, in this code

int foo(void) {
 return 1/gvar;
}

Bug Finder detects a division by zero defect with the variable gvar in these cases:

• You define int gvar; in the source code and provide a main function that calls foo. Bug Finder
follows ANSI standards that state the variable is initialized to zero.

• You define int gvar; or declare extern int gvar; in the source code. Another function calls
foo and sets gvar=0. Otherwise, when your source files are incomplete and do not contain a
main function, Bug Finder makes no assumption about the initialization of gvar.

• You declare const int gvar;. Bug Finder assumes gvar is initialized to zero due to the const
keyword.

At the cost of a possibly longer runtime, you can perform a more exhaustive analysis where all values
are considered for each read of a global variable by foo or of its callees when showing defects. See
“Extend Bug Finder Checkers to Find Defects from Specific System Input Values”.

See Also
“Inputs in Polyspace Bug Finder” on page 31-2 | “Bug Finder Analysis Assumptions”

 Global Variables in Polyspace Bug Finder

31-3

Volatile Variables in Polyspace Bug Finder
You use the volatile keyword to inform the compiler that the value of a variable might change at
any time without an explicit write operation. When you run an analysis, Polyspace Bug Finder makes
these assumptions about volatile variables:

• Global volatile variables

• If you declare a global volatile variable as const, Polyspace uses the initialization value of the
variable or the initialization range if you use the PERMANENT Init Mode to constrain the range
of the variable externally. Polyspace uses the initialization value or range for every read of the
variable. See “External Constraints for Polyspace Analysis”.

For instance, in this code:
const volatile volatile_var; // Global variable initialized to 0
const volatile volatile_var_10=10;
const volatile volatile_var_drs=3; // Variable constrained to range [-5 .. 5]

int func(void){
 int i= 10 % volatile_var; // Defect
 int j= 10 % volatile_var_10; // No defect
 int k= 10 % volatile_var_drs; // Defect
 return i+j+k;
}

Polyspace detects an Integer division by zero defect for volatile_var since it is initialized
to zero. Polyspace detects an Integer division by zero for volatile_var_drs because it is
externally constrained to the range [-5 .. 5]. All reads of volatile_var_10 cause no defect.

• For non-const global volatile variables, Polyspace ignores the initialization value of the
variable, and then considers the input unknown for each read of the variable. If you use the
PERMANENT Init Mode to constrain the range of the variable externally, Polyspace uses this
range for every read of the variable. See “External Constraints for Polyspace Analysis”.

For instance, in this code:
volatile volatile_var; // Global variable initialized to 0
volatile volatile_var_drs=3; // Variable constrained to range [-5 .. 5]

int func(void){
 int i= 10 % volatile_var; // No defect
 int j= 10 % volatile_var_drs; // Defect
 return i+j;
}

Polyspace detects an Integer division by zero defect for volatile_var_drs because it is
externally constrained to the range [-5 .. 5]. All reads of volatile_var cause no defect.

• Local volatile variables

Polyspace ignores the initialization value of local volatile variables, and then considers the input
unknown for each read of the variable. For example, in this code:

int foo(void){
 volatile var=0;
 return 1/var; // No defect
}

Polyspace detects no defect. You cannot use external constraints to constrain the range of local
variables.

At the cost of a possibly longer runtime, you can perform a more exhaustive analysis where Polyspace
considers all values for each read of a volatile variable. See Run stricter checks considering

31 Approximations Used During Bug Finder Analysis

31-4

all values of system inputs (-checks-using-system-input-values). When you use
this option to analyze all the preceding code examples, Polyspace detects additional Integer division
by zero defects on the lines labeled with comment // No defect, including for the local volatile
variable example.

See Also
“Inputs in Polyspace Bug Finder” on page 31-2 | “Bug Finder Analysis Assumptions”

 Volatile Variables in Polyspace Bug Finder

31-5

	Introduction
	About This Reference

	Polyspace Analysis Options
	Analysis Options
	Source code language (-lang)
	C standard version (-c-version)
	C++ standard version (-cpp-version)
	Compiler (-compiler)
	Target processor type (-target)
	ARM v5 Compiler (-compiler armcc)
	ARM v6 Compiler (-compiler armclang)
	NXP CodeWarrior Compiler (-compiler codewarrior)
	Cosmic Compiler (-compiler cosmic)
	Diab Compiler (-compiler diab)
	Green Hills Compiler (-compiler greenhills)
	IAR Embedded Workbench Compiler (-compiler iar-ew)
	MPLAB XC8 C Compiler (-compiler microchip)
	Renesas Compiler (-compiler renesas)
	TASKING Compiler (-compiler tasking)
	Texas Instruments Compiler (-compiler ti)
	Generic target options
	Sfr type support (-sfr-types)
	Division round down (-div-round-down)
	Enum type definition (-enum-type-definition)
	Signed right shift (-logical-signed-right-shift)
	Block char16/32_t types (-no-uliterals)
	Pack alignment value (-pack-alignment-value)
	Ignore pragma pack directives (-ignore-pragma-pack)
	Management of size_t (-size-t-type-is)
	Management of wchar_t (-wchar-t-type-is)
	Ignore link errors (-no-extern-c)
	Preprocessor definitions (-D)
	Disabled preprocessor definitions (-U)
	Source code encoding (-sources-encoding)
	Code from DOS or Windows file system (-dos)
	Stop analysis if a file does not compile (-stop-if-compile-error)
	Command/script to apply to preprocessed files (-post-preprocessing-command)
	Include (-include)
	Include folders (-I)
	Constraint setup (-data-range-specifications)
	Ignore default initialization of global variables (-no-def-init-glob)
	No STL stubs (-no-stl-stubs)
	Functions to stub (-functions-to-stub)
	Libraries used (-library)
	Generate stubs for Embedded Coder lookup tables (-stub-embedded-coder-lookup-table-functions)
	Generate results for sources and (-generate-results-for)
	Do not generate results for (-do-not-generate-results-for)
	External multitasking configuration
	OIL files selection (-osek-multitasking)
	ARXML files selection (-autosar-multitasking)
	Configure multitasking manually
	Enable automatic concurrency detection for Code Prover (-enable-concurrency-detection)
	Tasks (-entry-points)
	Cyclic tasks (-cyclic-tasks)
	Interrupts (-interrupts)
	Disabling all interrupts (-routine-disable-interrupts -routine-enable-interrupts)
	Critical section details (-critical-section-begin -critical-section-end)
	Temporally exclusive tasks (-temporal-exclusions-file)
	Set checkers by file (-checkers-selection-file)
	Check MISRA C:2004 (-misra2)
	Check MISRA AC AGC (-misra-ac-agc)
	Check MISRA C:2012 (-misra3)
	Use generated code requirements (-misra3-agc-mode)
	Effective boolean types (-boolean-types)
	Allowed pragmas (-allowed-pragmas)
	Check custom rules (-custom-rules)
	Check MISRA C++:2008 (-misra-cpp)
	Check JSF AV C++ rules (-jsf-coding-rules)
	Check AUTOSAR C++ 14 (-autosar-cpp14)
	Check SEI CERT-C (-cert-c)
	Check SEI CERT-C++ (-cert-cpp)
	Check ISO/IEC TS 17961 (-iso-17961)
	Check guidelines (-guidelines)
	Calculate code metrics (-code-metrics)
	Find defects (-checkers)
	Run stricter checks considering all values of system inputs (-checks-using-system-input-values)
	Consider inputs to these functions (-system-inputs-from)
	Class (-class-analyzer)
	Functions to call within the specified classes (-class-analyzer-calls)
	Analyze class contents only (-class-only)
	Initialization functions (-functions-called-before-main)
	Verify initialization section of code only (-init-only-mode)
	Verify whole application
	Show global variable sharing and usage only (-shared-variables-mode)
	Main entry point (-main)
	Functions to call (-main-generator-calls)
	Variables to initialize (-main-generator-writes-variables)
	Skip member initialization check (-no-constructors-init-check)
	Verify files independently (-unit-by-unit)
	Common source files (-unit-by-unit-common-source)
	Verify model generated code (-main-generator)
	Initialization functions (-functions-called-before-loop)
	Step functions (-functions-called-in-loop)
	Termination functions (-functions-called-after-loop)
	Parameters (-variables-written-before-loop)
	Inputs (-variables-written-in-loop)
	Verify module or library (-main-generator)
	Consider volatile qualifier on fields (-consider-volatile-qualifier-on-fields)
	Float rounding mode (-float-rounding-mode)
	Respect types in fields (-respect-types-in-fields)
	Respect types in global variables (-respect-types-in-globals)
	Consider environment pointers as unsafe (-stubbed-pointers-are-unsafe)
	Allow negative operand for left shifts (-allow-negative-operand-in-shift)
	Consider non finite floats (-allow-non-finite-floats)
	Infinities (-check-infinite)
	Check that global variables are initialized after warm reboot (-check-globals-init)
	NaNs (-check-nan)
	Enable pointer arithmetic across fields (-allow-ptr-arith-on-struct)
	Detect stack pointer dereference outside scope (-detect-pointer-escape)
	Disable checks for non-initialization (-disable-initialization-checks)
	Permissive function pointer calls (-permissive-function-pointer)
	Overflow mode for signed integer (-signed-integer-overflows)
	Overflow mode for unsigned integer (-unsigned-integer-overflows)
	Allow incomplete or partial allocation of structures (-size-in-bytes)
	Subnormal detection mode (-check-subnormal)
	Detect uncalled functions (-uncalled-function-checks)
	Sensitivity context (-context-sensitivity)
	Improve precision of interprocedural analysis (-path-sensitivity-delta)
	Precision level (-O)
	Specific precision (-modules-precision)
	Verification level (-to)
	Verification time limit (-timeout)
	Inline (-inline)
	Depth of verification inside structures (-k-limiting)
	Generate report
	Bug Finder and Code Prover report (-report-template)
	Output format (-report-output-format)
	Run Bug Finder or Code Prover analysis on a remote cluster (-batch)
	Use fast analysis mode for Bug Finder (-fast-analysis)
	Command/script to apply after the end of the code verification (-post-analysis-command)
	Other

	Analysis Options, Command-Line Only
	-asm-begin -asm-end
	-author
	-checkers-activation-file
	-code-behavior-specifications
	-consider-analysis-perimeter-as-trust-boundary
	-custom-target
	-date
	-doc | -documentation
	-dump-preprocessing-info
	-force-data-races
	-generate-launching-script-for
	-h | -help
	-I
	-import-comments
	-list-all-values
	-max-processes
	-non-preemptable-tasks
	-options-file
	-options-for-sources
	-preemptable-interrupts
	-prog
	-regex-replace-rgx -regex-replace-fmt
	-report-output-name
	-results-dir
	-scheduler
	-sources
	-sources-list-file
	-submit-job-from-previous-compilation-results
	-termination-functions
	-tmp-dir-in-results-dir
	-v | -version
	-xml-annotations-description

	Polyspace DOS/UNIX Commands
	Polyspace DOS/Unix Commands
	admin-docker-agent
	polyspace-access
	polyspace-bug-finder-access
	polyspace-bug-finder
	polyspace-bug-finder-server
	polyspace-configure
	polyspace-report-generator
	polyspace-results-export
	polyspace-comments-import

	MATLAB and Simulink Functions, Classes, and Methods
	Functions, Properties, Classes, and Apps
	pslinkfun
	pslinkoptions
	polyspacesetup
	polyspacePackNGo
	pslinkrunCrossRelease
	pslinkrun
	polyspaceBugFinder
	polyspaceBugFinderServer
	polyspaceConfigure
	polyspaceJobsManager
	polyspaceroot
	polyspace_report
	polyspace.Project
	polyspace.Options
	polyspace.ModelLinkOptions
	polyspace.BugFinderOptions
	polyspace.DefectsOptions
	polyspace.ModelLinkBugFinderOptions
	polyspace.GenericTargetOptions
	polyspace.CodingRulesOptions
	polyspace.BugFinderResults
	pslinkoptions
	polyspace.Project.Configuration
	polyspace.ModelLinkOptions
	polyspace.Options.copyTo
	polyspace.Options.generateProject
	polyspace.Options.toScript
	polyspace.Project.run
	getSummary
	getResults

	Configuration Parameters
	Settings from (C)
	Settings
	Dependency
	Command-Line Information

	Settings from (C++)
	Settings
	Dependency
	Command-Line Information

	Use custom project file
	Settings
	Dependency
	Command-Line Information

	Project configuration
	Settings
	Dependency
	Command-Line Information

	Enable additional file list
	Settings
	Command-Line Information

	Stub lookup tables
	Settings
	Tips
	Command-Line Information

	Input
	Settings
	Command-Line Information

	Tunable parameters
	Settings
	Command-Line Information

	Output
	Settings
	Command-Line Information

	Model reference verification depth
	Settings
	Command-Line Information

	Model by model verification
	Settings
	Command-Line Information

	Output folder
	Settings
	Command-Line Information

	Make output folder name unique by adding a suffix
	Settings
	Command-Line Information

	Add results to current Simulink project
	Settings
	Dependencies
	Command-Line Information

	Open results automatically after verification
	Settings
	Command-Line Information

	Check configuration before verification
	Settings
	Command-Line Information

	Verify all S-function occurrences
	Settings
	Command-Line Information

	Polyspace Results: Defect Checkers
	Numerical Defects
	Absorption of float operand
	Bitwise operation on negative value
	Float conversion overflow
	Float division by zero
	Float overflow
	Integer constant overflow
	Integer conversion overflow
	Integer division by zero
	Integer overflow
	Integer precision exceeded
	Invalid use of standard library floating point routine
	Invalid use of standard library integer routine
	Possible invalid operation on boolean operand
	Precision loss in integer to float conversion
	Shift of a negative value
	Shift operation overflow
	Sign change integer conversion overflow
	Unsigned integer constant overflow
	Unsigned integer conversion overflow
	Unsigned integer overflow
	Use of plain char type for numerical value

	Static Memory Defects
	Arithmetic operation with NULL pointer
	Array access out of bounds
	Buffer overflow from incorrect string format specifier
	Destination buffer overflow in string manipulation
	Destination buffer underflow in string manipulation
	Invalid use of standard library memory routine
	Invalid use of standard library string routine
	Move operation on const object
	Null pointer
	Pointer access out of bounds
	Pointer or reference to stack variable leaving scope
	Subtraction or comparison between pointers to different arrays
	Unreliable cast of function pointer
	Unreliable cast of pointer
	Use of automatic variable as putenv-family function argument
	Use of path manipulation function without maximum sized buffer checking
	Wrong allocated object size for cast

	Dynamic Memory Defects
	Alignment changed after memory reallocation
	Deallocation of previously deallocated pointer
	Invalid deletion of pointer
	Invalid free of pointer
	Memory leak
	Mismatched alloc/dealloc functions on Windows
	Unprotected dynamic memory allocation
	Use of previously freed pointer

	C++ Exception Defects
	Exception caught by value
	Exception handler hidden by previous handler
	Throw argument raises unexpected exception
	Noexcept function exits with exception

	Programming Defects
	Abnormal termination of exit handler
	Accessing object with temporary lifetime
	Alternating input and output from a stream without flush or positioning call
	Assertion
	Bad file access mode or status
	Call through non-prototyped function pointer
	Call to memset with unintended value
	Character value absorbed into EOF
	Copy of overlapping memory
	Declaration mismatch
	Environment pointer invalidated by previous operation
	Errno not reset
	Floating point comparison with equality operators
	Format string specifiers and arguments mismatch
	Function called from signal handler not asynchronous-safe
	Function called from signal handler not asynchronous-safe (strict)
	Improper array initialization
	Incorrect data type passed to va_arg
	Incorrect pointer scaling
	Incorrect type data passed to va_start
	Incorrect use of offsetof in C++
	Incorrect use of va_start
	Incorrect value forwarding
	Inline constraint not respected
	Invalid assumptions about memory organization
	Invalid file position
	Invalid use of = operator
	Invalid use of == operator
	Invalid use of standard library routine
	Invalid va_list argument
	Memory comparison of float-point values
	Memory comparison of padding data
	Memory comparison of strings
	Missing byte reordering when transferring data
	Missing null in string array
	Misuse of a FILE object
	Misuse of errno
	Misuse of errno in a signal handler
	Misuse of narrow or wide character string
	Misuse of return value from nonreentrant standard function
	Misuse of sign-extended character value
	Misuse of structure with flexible array member
	Modification of internal buffer returned from nonreentrant standard function
	Overlapping assignment
	Possible misuse of sizeof
	Possibly unintended evaluation of expression because of operator precedence rules
	Predefined macro used as an object
	Preprocessor directive in macro argument
	Qualifier removed in conversion
	Return from computational exception signal handler
	Shared data access within signal handler
	Side effect in arguments to unsafe macro
	Side effect of expression ignored
	Signal call from within signal handler
	Standard function call with incorrect arguments
	Stream argument with possibly unintended side effects
	Too many va_arg calls for current argument list
	Typedef mismatch
	Universal character name from token concatenation
	Unnamed namespace in header file
	Unsafe conversion between pointer and integer
	Unsafe conversion from string to numerical value
	Use of indeterminate string
	Use of memset with size argument zero
	Variable length array with nonpositive size
	Writing to const qualified object
	Wrong type used in sizeof
	Non-compliance with AUTOSAR specification
	C string from string::c_str() compared to pointer

	Data Flow Defects
	Code deactivated by constant false condition
	Dead code
	Missing return statement
	Non-initialized pointer
	Non-initialized variable
	Partially accessed array
	Pointer to non-initialized value converted to const pointer
	Static uncalled function
	Unreachable code
	Useless if
	Variable shadowing
	Write without a further read

	Security Defects
	Bad order of dropping privileges
	Deterministic random output from constant seed
	Errno not checked
	Execution of a binary from a relative path can be controlled by an external actor
	File access between time of check and use (TOCTOU)
	File descriptor exposure to child process
	File manipulation after chroot() without chdir("/")
	Function pointer assigned with absolute address
	Hard-coded sensitive data
	Inappropriate I/O operation on device files
	Incorrect order of network connection operations
	Information leak via structure padding
	Load of library from a relative path can be controlled by an external actor
	Mismatch between data length and size
	Missing case for switch condition
	Misuse of readlink()
	Predictable random output from predictable seed
	Privilege drop not verified
	Returned value of a sensitive function not checked
	Sensitive data printed out
	Sensitive heap memory not cleared before release
	Umask used with chmod-style arguments
	Uncleared sensitive data in stack
	Unsafe call to a system function
	Unsafe standard encryption function
	Unsafe standard function
	Use of dangerous standard function
	Use of non-secure temporary file
	Use of obsolete standard function
	Vulnerable path manipulation
	Vulnerable permission assignments
	Vulnerable pseudo-random number generator

	Cryptography Defects
	Constant block cipher initialization vector
	Constant cipher key
	Context initialized incorrectly for cryptographic operation
	Context initialized incorrectly for digest operation
	Incompatible padding for RSA algorithm operation
	Inconsistent cipher operations
	Incorrect key for cryptographic algorithm
	Missing blinding for RSA algorithm
	Missing block cipher initialization vector
	Missing certification authority list
	Missing cipher algorithm
	Missing cipher data to process
	Missing cipher final step
	Missing cipher key
	Missing data for encryption, decryption or signing operation
	Missing final step after hashing update operation
	Missing hash algorithm
	Missing padding for RSA algorithm
	Missing parameters for key generation
	Missing peer key
	Missing private key
	Missing private key for X.509 certificate
	Missing public key
	Missing salt for hashing operation
	Missing X.509 certificate
	No data added into context
	Nonsecure hash algorithm
	Nonsecure parameters for key generation
	Nonsecure RSA public exponent
	Nonsecure SSL/TLS protocol
	Predictable block cipher initialization vector
	Predictable cipher key
	Server certificate common name not checked
	TLS/SSL connection method not set
	TLS/SSL connection method set incorrectly
	Weak cipher algorithm
	Weak cipher mode
	Weak padding for RSA algorithm
	X.509 peer certificate not checked

	Tainted Data Defects
	Array access with tainted index
	Command executed from externally controlled path
	Execution of externally controlled command
	Host change using externally controlled elements
	Library loaded from externally controlled path
	Loop bounded with tainted value
	Memory allocation with tainted size
	Pointer dereference with tainted offset
	Tainted division operand
	Tainted modulo operand
	Tainted NULL or non-null-terminated string
	Tainted sign change conversion
	Tainted string format
	Tainted size of variable length array
	Use of externally controlled environment variable
	Use of tainted pointer

	Concurrency Defects
	Asynchronously cancellable thread
	Atomic load and store sequence not atomic
	Atomic variable accessed twice in an expression
	Automatic or thread local variable escaping from a thread
	Blocking operation while holding lock
	Multiple threads waiting on same condition variable
	Data race
	Data race on adjacent bit fields
	Data race including atomic operations
	Data race through standard library function call
	Deadlock
	Destruction of locked mutex
	Double lock
	Double unlock
	Function that can spuriously fail not wrapped in loop
	Function that can spuriously wake up not wrapped in loop
	Join or detach of a joined or detached thread
	Missing lock
	Missing or double initialization of thread attribute
	Missing unlock
	Multiple mutexes used with same condition variable
	Signal call in multithreaded program
	Thread-specific memory leak
	Use of signal to kill thread
	Use of undefined thread ID

	Object Oriented Defects
	*this not returned in copy assignment operator
	Base class assignment operator not called
	Base class destructor not virtual
	Bytewise operations on nontrivial class object
	Conversion or deletion of incomplete class pointer
	Copy constructor not called in initialization list
	Copy operation modifying source operand
	Incompatible types prevent overriding
	Lambda used as typeid operand
	Member not initialized in constructor
	Missing explicit keyword
	Missing virtual inheritance
	Object slicing
	Operator new not overloaded for possibly overaligned class
	Partial override of overloaded virtual functions
	Return of non const handle to encapsulated data member
	Self assignment not tested in operator

	Performance Defects
	A move operation may throw
	Const parameter values may cause unnecessary data copies
	Const return values may cause unnecessary data copies
	Const rvalue reference parameter may cause unnecessary data copies
	Const std::move input may cause a more expensive object copy
	Empty destructors may cause unnecessary data copies
	Expensive constant std::string construction
	Unnecessary use of std::string::c_str() or equivalent string methods
	Expensive local variable copy
	Expensive logical operation
	Expensive pass by value
	Expensive copy in a range-based for loop iteration
	Expensive return by value
	Expensive use of non-member std::string operator+() instead of a simple append
	Expensive use of std::string methods instead of more efficient overload
	Expensive use of std::string with empty string literal
	Inefficient string length computation
	Missing constexpr specifier
	std::endl may cause an unnecessary flush
	std::move called on an unmovable type
	Use of new or make_unique instead of more efficient make_shared
	Expensive use of a standard algorithm when a more efficient method exists
	Expensive use of container's count method
	Unnecessary padding
	Inefficient use of sprintf
	Expensive post-increment operation
	Expensive dynamic cast
	Move operation uses copy

	Resource Management Defects
	Closing a previously closed resource
	Opening previously opened resource
	Resource leak
	Use of previously closed resource
	Writing to read-only resource

	Good Practice Defects
	Ambiguous declaration syntax
	Bitwise and arithmetic operation on the same data
	C++ reference to const-qualified type with subsequent modification
	C++ reference type qualified with const or volatile
	Delete of void pointer
	Hard-coded buffer size
	Hard-coded loop boundary
	Hard-coded object size used to manipulate memory
	Incorrect syntax of flexible array member size
	Incorrectly indented statement
	Macro terminated with a semicolon
	Line with more than one statement
	Missing break of switch case
	Missing overload of allocation or deallocation function
	Missing reset of a freed pointer
	Macro with multiple statements
	Possibly inappropriate data type for switch expression
	Semicolon on same line as if, for or while statement
	Unmodified variable not const-qualified
	Unused parameter
	Use of a forbidden function
	Use of setjmp/longjmp
	Redundant expression in sizeof operand
	File does not compile

	Polyspace Results: Coding Standards
	MISRA C 2012
	MISRA C:2012 Dir 1.1
	MISRA C:2012 Dir 2.1
	MISRA C:2012 Dir 4.1
	MISRA C:2012 Dir 4.3
	MISRA C:2012 Dir 4.4
	MISRA C:2012 Dir 4.5
	MISRA C:2012 Dir 4.6
	MISRA C:2012 Dir 4.7
	MISRA C:2012 Dir 4.8
	MISRA C:2012 Dir 4.9
	MISRA C:2012 Dir 4.12
	MISRA C:2012 Dir 4.10
	MISRA C:2012 Dir 4.11
	MISRA C:2012 Dir 4.13
	MISRA C:2012 Dir 4.14
	MISRA C:2012 Rule 1.1
	MISRA C:2012 Rule 1.2
	MISRA C:2012 Rule 1.3
	MISRA C:2012 Rule 1.4
	MISRA C:2012 Rule 2.1
	MISRA C:2012 Rule 2.2
	MISRA C:2012 Rule 2.3
	MISRA C:2012 Rule 2.4
	MISRA C:2012 Rule 2.5
	MISRA C:2012 Rule 2.6
	MISRA C:2012 Rule 2.7
	MISRA C:2012 Rule 3.1
	MISRA C:2012 Rule 3.2
	MISRA C:2012 Rule 4.1
	MISRA C:2012 Rule 4.2
	MISRA C:2012 Rule 5.1
	MISRA C:2012 Rule 5.2
	MISRA C:2012 Rule 5.3
	MISRA C:2012 Rule 5.4
	MISRA C:2012 Rule 5.5
	MISRA C:2012 Rule 5.6
	MISRA C:2012 Rule 5.7
	MISRA C:2012 Rule 5.8
	MISRA C:2012 Rule 5.9
	MISRA C:2012 Rule 6.1
	MISRA C:2012 Rule 6.2
	MISRA C:2012 Rule 7.1
	MISRA C:2012 Rule 7.2
	MISRA C:2012 Rule 7.3
	MISRA C:2012 Rule 7.4
	MISRA C:2012 Rule 8.1
	MISRA C:2012 Rule 8.2
	MISRA C:2012 Rule 8.3
	MISRA C:2012 Rule 8.4
	MISRA C:2012 Rule 8.5
	MISRA C:2012 Rule 8.6
	MISRA C:2012 Rule 8.7
	MISRA C:2012 Rule 8.8
	MISRA C:2012 Rule 8.9
	MISRA C:2012 Rule 8.10
	MISRA C:2012 Rule 8.11
	MISRA C:2012 Rule 8.12
	MISRA C:2012 Rule 8.13
	MISRA C:2012 Rule 8.14
	MISRA C:2012 Rule 9.1
	MISRA C:2012 Rule 9.2
	MISRA C:2012 Rule 9.3
	MISRA C:2012 Rule 9.4
	MISRA C:2012 Rule 9.5
	MISRA C:2012 Rule 10.1
	MISRA C:2012 Rule 10.2
	MISRA C:2012 Rule 10.3
	MISRA C:2012 Rule 10.4
	MISRA C:2012 Rule 10.5
	MISRA C:2012 Rule 10.6
	MISRA C:2012 Rule 10.7
	MISRA C:2012 Rule 10.8
	MISRA C:2012 Rule 11.1
	MISRA C:2012 Rule 11.2
	MISRA C:2012 Rule 11.3
	MISRA C:2012 Rule 11.4
	MISRA C:2012 Rule 11.5
	MISRA C:2012 Rule 11.6
	MISRA C:2012 Rule 11.7
	MISRA C:2012 Rule 11.8
	MISRA C:2012 Rule 11.9
	MISRA C:2012 Rule 12.1
	MISRA C:2012 Rule 12.2
	MISRA C:2012 Rule 12.3
	MISRA C:2012 Rule 12.4
	MISRA C:2012 Rule 12.5
	MISRA C:2012 Rule 13.1
	MISRA C:2012 Rule 13.2
	MISRA C:2012 Rule 13.3
	MISRA C:2012 Rule 13.4
	MISRA C:2012 Rule 13.5
	MISRA C:2012 Rule 13.6
	MISRA C:2012 Rule 14.1
	MISRA C:2012 Rule 14.2
	MISRA C:2012 Rule 14.3
	MISRA C:2012 Rule 14.4
	MISRA C:2012 Rule 15.1
	MISRA C:2012 Rule 15.2
	MISRA C:2012 Rule 15.3
	MISRA C:2012 Rule 15.4
	MISRA C:2012 Rule 15.5
	MISRA C:2012 Rule 15.6
	MISRA C:2012 Rule 15.7
	MISRA C:2012 Rule 16.1
	MISRA C:2012 Rule 16.2
	MISRA C:2012 Rule 16.3
	MISRA C:2012 Rule 16.4
	MISRA C:2012 Rule 16.5
	MISRA C:2012 Rule 16.6
	MISRA C:2012 Rule 16.7
	MISRA C:2012 Rule 17.1
	MISRA C:2012 Rule 17.2
	MISRA C:2012 Rule 17.3
	MISRA C:2012 Rule 17.4
	MISRA C:2012 Rule 17.5
	MISRA C:2012 Rule 17.6
	MISRA C:2012 Rule 17.7
	MISRA C:2012 Rule 17.8
	MISRA C:2012 Rule 18.1
	MISRA C:2012 Rule 18.2
	MISRA C:2012 Rule 18.3
	MISRA C:2012 Rule 18.4
	MISRA C:2012 Rule 18.5
	MISRA C:2012 Rule 18.6
	MISRA C:2012 Rule 18.7
	MISRA C:2012 Rule 18.8
	MISRA C:2012 Rule 19.1
	MISRA C:2012 Rule 19.2
	MISRA C:2012 Rule 20.1
	MISRA C:2012 Rule 20.2
	MISRA C:2012 Rule 20.3
	MISRA C:2012 Rule 20.4
	MISRA C:2012 Rule 20.5
	MISRA C:2012 Rule 20.6
	MISRA C:2012 Rule 20.7
	MISRA C:2012 Rule 20.8
	MISRA C:2012 Rule 20.9
	MISRA C:2012 Rule 20.10
	MISRA C:2012 Rule 20.11
	MISRA C:2012 Rule 20.12
	MISRA C:2012 Rule 20.13
	MISRA C:2012 Rule 20.14
	MISRA C:2012 Rule 21.1
	MISRA C:2012 Rule 21.2
	MISRA C:2012 Rule 21.20
	MISRA C:2012 Rule 21.3
	MISRA C:2012 Rule 21.4
	MISRA C:2012 Rule 21.5
	MISRA C:2012 Rule 21.6
	MISRA C:2012 Rule 21.7
	MISRA C:2012 Rule 21.8
	MISRA C:2012 Rule 21.9
	MISRA C:2012 Rule 21.10
	MISRA C:2012 Rule 21.11
	MISRA C:2012 Rule 21.12
	MISRA C:2012 Rule 21.13
	MISRA C:2012 Rule 21.14
	MISRA C:2012 Rule 21.15
	MISRA C:2012 Rule 21.16
	MISRA C:2012 Rule 21.17
	MISRA C:2012 Rule 21.18
	MISRA C:2012 Rule 21.19
	MISRA C:2012 Rule 21.21
	MISRA C:2012 Rule 22.1
	MISRA C:2012 Rule 22.10
	MISRA C:2012 Rule 22.2
	MISRA C:2012 Rule 22.3
	MISRA C:2012 Rule 22.4
	MISRA C:2012 Rule 22.5
	MISRA C:2012 Rule 22.6
	MISRA C:2012 Rule 22.7
	MISRA C:2012 Rule 22.8
	MISRA C:2012 Rule 22.9

	MISRA C++: 2008
	MISRA C++:2008 Rule 0-1-1
	MISRA C++:2008 Rule 0-1-2
	MISRA C++:2008 Rule 0-1-3
	MISRA C++:2008 Rule 0-1-4
	MISRA C++:2008 Rule 0-1-5
	MISRA C++:2008 Rule 0-1-7
	MISRA C++:2008 Rule 0-1-9
	MISRA C++:2008 Rule 0-1-10
	MISRA C++:2008 Rule 0-1-11
	MISRA C++:2008 Rule 0-1-12
	MISRA C++:2008 Rule 0-2-1
	MISRA C++:2008 Rule 0-3-2
	MISRA C++:2008 Rule 1-0-1
	MISRA C++:2008 Rule 2-3-1
	MISRA C++:2008 Rule 2-5-1
	MISRA C++:2008 Rule 2-7-1
	MISRA C++:2008 Rule 2-7-2
	MISRA C++:2008 Rule 2-7-3
	MISRA C++:2008 Rule 2-10-1
	MISRA C++:2008 Rule 2-10-2
	MISRA C++:2008 Rule 2-10-3
	MISRA C++:2008 Rule 2-10-4
	MISRA C++:2008 Rule 2-10-5
	MISRA C++:2008 Rule 2-10-6
	MISRA C++:2008 Rule 2-13-1
	MISRA C++:2008 Rule 2-13-2
	MISRA C++:2008 Rule 2-13-3
	MISRA C++:2008 Rule 2-13-4
	MISRA C++:2008 Rule 2-13-5
	MISRA C++:2008 Rule 3-1-1
	MISRA C++:2008 Rule 3-1-2
	MISRA C++:2008 Rule 3-1-3
	MISRA C++:2008 Rule 3-2-1
	MISRA C++:2008 Rule 3-2-2
	MISRA C++:2008 Rule 3-2-3
	MISRA C++:2008 Rule 3-2-4
	MISRA C++:2008 Rule 3-3-1
	MISRA C++:2008 Rule 3-3-2
	MISRA C++:2008 Rule 3-4-1
	MISRA C++:2008 Rule 3-9-1
	MISRA C++:2008 Rule 3-9-2
	MISRA C++:2008 Rule 3-9-3
	MISRA C++:2008 Rule 4-5-1
	MISRA C++:2008 Rule 4-5-2
	MISRA C++:2008 Rule 4-5-3
	MISRA C++:2008 Rule 4-10-1
	MISRA C++:2008 Rule 4-10-2
	MISRA C++:2008 Rule 5-0-1
	MISRA C++:2008 Rule 5-0-2
	MISRA C++:2008 Rule 5-0-3
	MISRA C++:2008 Rule 5-0-4
	MISRA C++:2008 Rule 5-0-5
	MISRA C++:2008 Rule 5-0-6
	MISRA C++:2008 Rule 5-0-7
	MISRA C++:2008 Rule 5-0-8
	MISRA C++:2008 Rule 5-0-9
	MISRA C++:2008 Rule 5-0-10
	MISRA C++:2008 Rule 5-0-11
	MISRA C++:2008 Rule 5-0-12
	MISRA C++:2008 Rule 5-0-13
	MISRA C++:2008 Rule 5-0-14
	MISRA C++:2008 Rule 5-0-15
	MISRA C++:2008 Rule 5-0-16
	MISRA C++:2008 Rule 5-0-17
	MISRA C++:2008 Rule 5-0-18
	MISRA C++:2008 Rule 5-0-19
	MISRA C++:2008 Rule 5-0-20
	MISRA C++:2008 Rule 5-0-21
	MISRA C++:2008 Rule 5-2-1
	MISRA C++:2008 Rule 5-2-2
	MISRA C++:2008 Rule 5-2-3
	MISRA C++:2008 Rule 5-2-4
	MISRA C++:2008 Rule 5-2-5
	MISRA C++:2008 Rule 5-2-6
	MISRA C++:2008 Rule 5-2-7
	MISRA C++:2008 Rule 5-2-8
	MISRA C++:2008 Rule 5-2-9
	MISRA C++:2008 Rule 5-2-10
	MISRA C++:2008 Rule 5-2-11
	MISRA C++:2008 Rule 5-2-12
	MISRA C++:2008 Rule 5-3-1
	MISRA C++:2008 Rule 5-3-2
	MISRA C++:2008 Rule 5-3-3
	MISRA C++:2008 Rule 5-3-4
	MISRA C++:2008 Rule 5-8-1
	MISRA C++:2008 Rule 5-14-1
	MISRA C++:2008 Rule 5-18-1
	MISRA C++:2008 Rule 5-19-1
	MISRA C++:2008 Rule 6-2-1
	MISRA C++:2008 Rule 6-2-2
	MISRA C++:2008 Rule 6-2-3
	MISRA C++:2008 Rule 6-3-1
	MISRA C++:2008 Rule 6-4-1
	MISRA C++:2008 Rule 6-4-2
	MISRA C++:2008 Rule 6-4-3
	MISRA C++:2008 Rule 6-4-4
	MISRA C++:2008 Rule 6-4-5
	MISRA C++:2008 Rule 6-4-6
	MISRA C++:2008 Rule 6-4-7
	MISRA C++:2008 Rule 6-4-8
	MISRA C++:2008 Rule 6-5-1
	MISRA C++:2008 Rule 6-5-2
	MISRA C++:2008 Rule 6-5-3
	MISRA C++:2008 Rule 6-5-4
	MISRA C++:2008 Rule 6-5-5
	MISRA C++:2008 Rule 6-5-6
	MISRA C++:2008 Rule 6-6-1
	MISRA C++:2008 Rule 6-6-2
	MISRA C++:2008 Rule 6-6-3
	MISRA C++:2008 Rule 6-6-4
	MISRA C++:2008 Rule 6-6-5
	MISRA C++:2008 Rule 7-1-1
	MISRA C++:2008 Rule 7-1-2
	MISRA C++:2008 Rule 7-3-1
	MISRA C++:2008 Rule 7-3-2
	MISRA C++:2008 Rule 7-3-3
	MISRA C++:2008 Rule 7-3-4
	MISRA C++:2008 Rule 7-3-5
	MISRA C++:2008 Rule 7-3-6
	MISRA C++:2008 Rule 7-4-2
	MISRA C++:2008 Rule 7-4-3
	MISRA C++:2008 Rule 7-5-1
	MISRA C++:2008 Rule 7-5-2
	MISRA C++:2008 Rule 7-5-3
	MISRA C++:2008 Rule 7-5-4
	MISRA C++:2008 Rule 8-0-1
	MISRA C++:2008 Rule 8-3-1
	MISRA C++:2008 Rule 8-4-1
	MISRA C++:2008 Rule 8-4-2
	MISRA C++:2008 Rule 8-4-3
	MISRA C++:2008 Rule 8-4-4
	MISRA C++:2008 Rule 8-5-1
	MISRA C++:2008 Rule 8-5-2
	MISRA C++:2008 Rule 8-5-3
	MISRA C++:2008 Rule 9-3-1
	MISRA C++:2008 Rule 9-3-2
	MISRA C++:2008 Rule 9-3-3
	MISRA C++:2008 Rule 9-5-1
	MISRA C++:2008 Rule 9-6-2
	MISRA C++:2008 Rule 9-6-3
	MISRA C++:2008 Rule 9-6-4
	MISRA C++:2008 Rule 10-1-1
	MISRA C++:2008 Rule 10-1-2
	MISRA C++:2008 Rule 10-1-3
	MISRA C++:2008 Rule 10-2-1
	MISRA C++:2008 Rule 10-3-1
	MISRA C++:2008 Rule 10-3-2
	MISRA C++:2008 Rule 10-3-3
	MISRA C++:2008 Rule 11-0-1
	MISRA C++:2008 Rule 12-1-1
	MISRA C++:2008 Rule 12-1-2
	MISRA C++:2008 Rule 12-1-3
	MISRA C++:2008 Rule 12-8-1
	MISRA C++:2008 Rule 12-8-2
	MISRA C++:2008 Rule 14-5-1
	MISRA C++:2008 Rule 14-5-2
	MISRA C++:2008 Rule 14-5-3
	MISRA C++:2008 Rule 14-6-1
	MISRA C++:2008 Rule 14-6-2
	MISRA C++:2008 Rule 14-7-3
	MISRA C++:2008 Rule 14-8-1
	MISRA C++:2008 Rule 14-8-2
	MISRA C++:2008 Rule 15-0-2
	MISRA C++:2008 Rule 15-0-3
	MISRA C++:2008 Rule 15-1-1
	MISRA C++:2008 Rule 15-1-2
	MISRA C++:2008 Rule 15-1-3
	MISRA C++:2008 Rule 15-3-1
	MISRA C++:2008 Rule 15-3-2
	MISRA C++:2008 Rule 15-3-3
	MISRA C++:2008 Rule 15-3-4
	MISRA C++:2008 Rule 15-3-5
	MISRA C++:2008 Rule 15-3-6
	MISRA C++:2008 Rule 15-3-7
	MISRA C++:2008 Rule 15-4-1
	MISRA C++:2008 Rule 15-5-1
	MISRA C++:2008 Rule 15-5-2
	MISRA C++:2008 Rule 15-5-3
	MISRA C++:2008 Rule 16-0-1
	MISRA C++:2008 Rule 16-0-2
	MISRA C++:2008 Rule 16-0-3
	MISRA C++:2008 Rule 16-0-4
	MISRA C++:2008 Rule 16-0-5
	MISRA C++:2008 Rule 16-0-6
	MISRA C++:2008 Rule 16-0-7
	MISRA C++:2008 Rule 16-0-8
	MISRA C++:2008 Rule 16-1-1
	MISRA C++:2008 Rule 16-1-2
	MISRA C++:2008 Rule 16-2-1
	MISRA C++:2008 Rule 16-2-2
	MISRA C++:2008 Rule 16-2-3
	MISRA C++:2008 Rule 16-2-4
	MISRA C++:2008 Rule 16-2-5
	MISRA C++:2008 Rule 16-2-6
	MISRA C++:2008 Rule 16-3-1
	MISRA C++:2008 Rule 16-3-2
	MISRA C++:2008 Rule 16-6-1
	MISRA C++:2008 Rule 17-0-1
	MISRA C++:2008 Rule 17-0-2
	MISRA C++:2008 Rule 17-0-3
	MISRA C++:2008 Rule 17-0-5
	MISRA C++:2008 Rule 18-0-1
	MISRA C++:2008 Rule 18-0-2
	MISRA C++:2008 Rule 18-0-3
	MISRA C++:2008 Rule 18-0-4
	MISRA C++:2008 Rule 18-0-5
	MISRA C++:2008 Rule 18-2-1
	MISRA C++:2008 Rule 18-4-1
	MISRA C++:2008 Rule 18-7-1
	MISRA C++:2008 Rule 19-3-1
	MISRA C++:2008 Rule 27-0-1

	CERT C Rules and Recommendations
	Acknowledgement
	CERT C: Rule PRE30-C
	CERT C: Rule PRE31-C
	CERT C: Rule PRE32-C
	CERT C: Rule DCL30-C
	CERT C: Rule DCL31-C
	CERT C: Rule DCL36-C
	CERT C: Rule DCL37-C
	CERT C: Rule DCL38-C
	CERT C: Rule DCL39-C
	CERT C: Rule DCL40-C
	CERT C: Rule DCL41-C
	CERT C: Rule EXP30-C
	CERT C: Rule EXP32-C
	CERT C: Rule EXP33-C
	CERT C: Rule EXP34-C
	CERT C: Rule EXP35-C
	CERT C: Rule EXP36-C
	CERT C: Rule EXP37-C
	CERT C: Rule EXP39-C
	CERT C: Rule EXP40-C
	CERT C: Rule EXP42-C
	CERT C: Rule EXP43-C
	CERT C: Rule EXP44-C
	CERT C: Rule EXP45-C
	CERT C: Rule EXP46-C
	CERT C: Rule EXP47-C
	CERT C: Rule INT30-C
	CERT C: Rule INT31-C
	CERT C: Rule INT32-C
	CERT C: Rule INT33-C
	CERT C: Rule INT34-C
	CERT C: Rule INT35-C
	CERT C: Rule INT36-C
	CERT C: Rule FLP30-C
	CERT C: Rule FLP32-C
	CERT C: Rule FLP34-C
	CERT C: Rule FLP36-C
	CERT C: Rule FLP37-C
	CERT C: Rule ARR30-C
	CERT C: Rule ARR32-C
	CERT C: Rule ARR36-C
	CERT C: Rule ARR37-C
	CERT C: Rule ARR38-C
	CERT C: Rule ARR39-C
	CERT C: Rule STR30-C
	CERT C: Rule STR31-C
	CERT C: Rule STR32-C
	CERT C: Rule STR34-C
	CERT C: Rule STR37-C
	CERT C: Rule STR38-C
	CERT C: Rule MEM30-C
	CERT C: Rule MEM31-C
	CERT C: Rule MEM33-C
	CERT C: Rule MEM34-C
	CERT C: Rule MEM35-C
	CERT C: Rule MEM36-C
	CERT C: Rule FIO30-C
	CERT C: Rule FIO32-C
	CERT C: Rule FIO34-C
	CERT C: Rule FIO37-C
	CERT C: Rule FIO38-C
	CERT C: Rule FIO39-C
	CERT C: Rule FIO40-C
	CERT C: Rule FIO41-C
	CERT C: Rule FIO42-C
	CERT C: Rule FIO44-C
	CERT C: Rule FIO45-C
	CERT C: Rule FIO46-C
	CERT C: Rule FIO47-C
	CERT C: Rule ENV30-C
	CERT C: Rule ENV31-C
	CERT C: Rule ENV32-C
	CERT C: Rule ENV33-C
	CERT C: Rule ENV34-C
	CERT C: Rule SIG30-C
	CERT C: Rule SIG31-C
	CERT C: Rule SIG34-C
	CERT C: Rule SIG35-C
	CERT C: Rule ERR30-C
	CERT C: Rule ERR32-C
	CERT C: Rule ERR33-C
	CERT C: Rule ERR34-C
	CERT C: Rule CON30-C
	CERT C: Rule CON31-C
	CERT C: Rule CON32-C
	CERT C: Rule CON33-C
	CERT C: Rule CON34-C
	CERT C: Rule CON35-C
	CERT C: Rule CON36-C
	CERT C: Rule CON37-C
	CERT C: Rule CON38-C
	CERT C: Rule CON39-C
	CERT C: Rule CON40-C
	CERT C: Rule CON41-C
	CERT C: Rule CON43-C
	CERT C: Rule MSC30-C
	CERT C: Rule MSC32-C
	CERT C: Rule MSC33-C
	CERT C: Rule MSC37-C
	CERT C: Rule MSC38-C
	CERT C: Rule MSC39-C
	CERT C: Rule MSC40-C
	CERT C: Rule MSC41-C
	CERT C: Rule POS30-C
	CERT C: Rule POS34-C
	CERT C: Rule POS35-C
	CERT C: Rule POS36-C
	CERT C: Rule POS37-C
	CERT C: Rule POS38-C
	CERT C: Rule POS39-C
	CERT C: Rule POS44-C
	CERT C: Rule POS47-C
	CERT C: Rule POS48-C
	CERT C: Rule POS49-C
	CERT C: Rule POS50-C
	CERT C: Rule POS51-C
	CERT C: Rule POS52-C
	CERT C: Rule. POS53-C
	CERT C: Rule POS54-C
	CERT C: Rule WIN30-C
	CERT C: Rec. PRE00-C
	CERT C: Rec. PRE01-C
	CERT C: Rec. PRE06-C
	CERT C: Rec. PRE07-C
	CERT C: Rec. PRE09-C
	CERT C: Rec. PRE10-C
	CERT C: Rec. PRE11-C
	CERT C: Rec. DCL00-C
	CERT C: Rec. DCL01-C
	CERT C: Rec. DCL02-C
	CERT C: Rec. DCL06-C
	CERT C: Rec. DCL07-C
	CERT C: Rec. DCL10-C
	CERT C: Rec. DCL11-C
	CERT C: Rec. DCL12-C
	CERT C: Rec. DCL13-C
	CERT C: Rec. DCL15-C
	CERT C: Rec. DCL16-C
	CERT C: Rec. DCL18-C
	CERT C: Rec. DCL19-C
	CERT C: Rec. DCL22-C
	CERT C: Rec. DCL23-C
	CERT C: Rec. EXP00-C
	CERT C: Rec. EXP05-C
	CERT C: Rec. EXP08-C
	CERT C: Rec. EXP09-C
	CERT C: Rec. EXP10-C
	CERT C: Rec. EXP12-C
	CERT C: Rec. EXP13-C
	CERT C: Rec. EXP15-C
	CERT C: Rec. EXP19-C
	CERT C: Rec. INT00-C
	CERT C: Rec. INT02-C
	CERT C: Rec. INT04-C
	CERT C: Rec. INT07-C
	CERT C: Rec. INT08-C
	CERT C: Rec. INT09-C
	CERT C: Rec. INT10-C
	CERT C: Rec. INT12-C
	CERT C: Rec. INT13-C
	CERT C: Rec. INT14-C
	CERT C: Rec. INT18-C
	CERT C: Rec. FLP00-C
	CERT C: Rec. FLP02-C
	CERT C: Rec. FLP03-C
	CERT C: Rec. FLP06-C
	CERT C: Rec. ARR01-C
	CERT C: Rec. ARR02-C
	CERT C: Rec. STR02-C
	CERT C: Rec. STR03-C
	CERT C: Rec. STR07-C
	CERT C: Rec. STR11-C
	CERT C: Rec. MEM00-C
	CERT C: Rec. MEM01-C
	CERT C: Rec. MEM02-C
	CERT C: Rec. MEM03-C
	CERT C: Rec. MEM04-C
	CERT C: Rec. MEM05-C
	CERT C: Rec. MEM06-C
	CERT C: Rec. MEM11-C
	CERT C: Rec. MEM12-C
	CERT C: Rec. FIO02-C
	CERT C: Rec. FIO11-C
	CERT C: Rec. FIO21-C
	CERT C: Rec. FIO24-C
	CERT C: Rec. ENV01-C
	CERT C: Rec. ERR00-C
	CERT C: Rec. API04-C
	CERT C: Rec. CON01-C
	CERT C: Rec. CON05-C
	CERT C: Rec. MSC01-C
	CERT C: Rec. MSC04-C
	CERT C: Rec. MSC12-C
	CERT C: Rec. MSC13-C
	CERT C: Rec. MSC15-C
	CERT C: Rec. MSC17-C
	CERT C: Rec. MSC18-C
	CERT C: Rec. MSC20-C
	CERT C: Rec. MSC21-C
	CERT C: Rec. MSC22-C
	CERT C: Rec. MSC24-C
	CERT C: Rec. POS05-C
	CERT C: Rec. WIN00-C

	CERT C++ Rules
	Acknowledgement
	CERT C++: DCL30-C
	CERT C++: DCL39-C
	CERT C++: DCL40-C
	CERT C++: DCL50-CPP
	CERT C++: DCL51-CPP
	CERT C++: DCL52-CPP
	CERT C++: DCL53-CPP
	CERT C++: DCL54-CPP
	CERT C++: DCL57-CPP
	CERT C++: DCL58-CPP
	CERT C++: DCL59-CPP
	CERT C++: DCL60-CPP
	CERT C++: EXP34-C
	CERT C++: EXP35-C
	CERT C++: EXP36-C
	CERT C++: EXP37-C
	CERT C++: EXP39-C
	CERT C++: EXP42-C
	CERT C++: EXP45-C
	CERT C++: EXP46-C
	CERT C++: EXP47-C
	CERT C++: EXP50-CPP
	CERT C++: EXP52-CPP
	CERT C++: EXP53-CPP
	CERT C++: EXP54-CPP
	CERT C++: EXP55-CPP
	CERT C++: EXP57-CPP
	CERT C++: EXP58-CPP
	CERT C++: EXP59-CPP
	CERT C++: EXP61-CPP
	CERT C++: EXP63-CPP
	CERT C++: INT30-C
	CERT C++: INT31-C
	CERT C++: INT32-C
	CERT C++: INT33-C
	CERT C++: INT34-C
	CERT C++: INT35-C
	CERT C++: INT36-C
	CERT C++: ARR30-C
	CERT C++: ARR37-C
	CERT C++: ARR38-C
	CERT C++: ARR39-C
	CERT C++: CTR50-CPP
	CERT C++: STR30-C
	CERT C++: STR31-C
	CERT C++: STR32-C
	CERT C++: STR34-C
	CERT C++: STR37-C
	CERT C++: STR38-C
	CERT C++: STR50-CPP
	CERT C++: STR53-CPP
	CERT C++: MEM30-C
	CERT C++: MEM31-C
	CERT C++: MEM34-C
	CERT C++: MEM35-C
	CERT C++: MEM36-C
	CERT C++: MEM50-CPP
	CERT C++: MEM51-CPP
	CERT C++: MEM52-CPP
	CERT C++: MEM54-CPP
	CERT C++: MEM55-CPP
	CERT C++: MEM56-CPP
	CERT C++: MEM57-CPP
	CERT C++: FIO30-C
	CERT C++: FIO32-C
	CERT C++: FIO34-C
	CERT C++: FIO37-C
	CERT C++: FIO38-C
	CERT C++: FIO39-C
	CERT C++: FIO40-C
	CERT C++: FIO41-C
	CERT C++: FIO42-C
	CERT C++: FIO44-C
	CERT C++: FIO45-C
	CERT C++: FIO46-C
	CERT C++: FIO47-C
	CERT C++: FIO50-CPP
	CERT C++: FIO51-CPP
	CERT C++: ERR30-C
	CERT C++: ERR32-C
	CERT C++: ERR33-C
	CERT C++: ERR34-C
	CERT C++: ERR50-CPP
	CERT C++: ERR51-CPP
	CERT C++: ERR52-CPP
	CERT C++: ERR53-CPP
	CERT C++: ERR54-CPP
	CERT C++: ERR55-CPP
	CERT C++: ERR57-CPP
	CERT C++: ERR58-CPP
	CERT C++: ERR61-CPP
	CERT C++: OOP50-CPP
	CERT C++: OOP51-CPP
	CERT C++: OOP52-CPP
	CERT C++: OOP53-CPP
	CERT C++: OOP54-CPP
	CERT C++: OOP57-CPP
	CERT C++: OOP58-CPP
	CERT C++: CON33-C
	CERT C++: CON37-C
	CERT C++: CON40-C
	CERT C++: CON41-C
	CERT C++: CON43-C
	CERT C++: CON50-CPP
	CERT C++: CON52-CPP
	CERT C++: CON53-CPP
	CERT C++: CON54-CPP
	CERT C++: ENV30-C
	CERT C++: ENV31-C
	CERT C++: ENV32-C
	CERT C++: ENV33-C
	CERT C++: ENV34-C
	CERT C++: FLP30-C
	CERT C++: FLP32-C
	CERT C++: FLP34-C
	CERT C++: FLP36-C
	CERT C++: FLP37-C
	CERT C++: MSC30-C
	CERT C++: MSC32-C
	CERT C++: MSC33-C
	CERT C++: MSC37-C
	CERT C++: MSC38-C
	CERT C++: MSC39-C
	CERT C++: MSC40-C
	CERT C++: MSC41-C
	CERT C++: MSC50-CPP
	CERT C++: MSC51-CPP
	CERT C++: MSC52-CPP
	CERT C++: MSC53-CPP
	CERT C++: PRE30-C
	CERT C++: PRE31-C
	CERT C++: PRE32-C
	CERT C++: SIG31-C
	CERT C++: SIG34-C
	CERT C++: SIG35-C

	AUTOSAR C++14 Rules
	AUTOSAR C++14 Rule A0-1-1
	AUTOSAR C++14 Rule A0-1-2
	AUTOSAR C++14 Rule A0-1-3
	AUTOSAR C++14 Rule A0-1-4
	AUTOSAR C++14 Rule A0-1-5
	AUTOSAR C++14 Rule A0-1-6
	AUTOSAR C++14 Rule A0-4-2
	AUTOSAR C++14 Rule A1-1-1
	AUTOSAR C++14 Rule A2-3-1
	AUTOSAR C++14 Rule A2-5-1
	AUTOSAR C++14 Rule A2-5-2
	AUTOSAR C++14 Rule A2-7-1
	AUTOSAR C++14 Rule A2-7-2
	AUTOSAR C++14 Rule A2-7-3
	AUTOSAR C++14 Rule A2-8-1
	AUTOSAR C++14 Rule A2-8-2
	AUTOSAR C++14 Rule A2-10-1
	AUTOSAR C++14 Rule A2-10-4
	AUTOSAR C++14 Rule A2-10-5
	AUTOSAR C++14 Rule A2-10-6
	AUTOSAR C++14 Rule A2-11-1
	AUTOSAR C++14 Rule A2-13-1
	AUTOSAR C++14 Rule A2-13-2
	AUTOSAR C++14 Rule A2-13-3
	AUTOSAR C++14 Rule A2-13-4
	AUTOSAR C++14 Rule A2-13-5
	AUTOSAR C++14 Rule A2-13-6
	AUTOSAR C++14 Rule A3-1-1
	AUTOSAR C++14 Rule A3-1-2
	AUTOSAR C++14 Rule A3-1-3
	AUTOSAR C++14 Rule A3-1-4
	AUTOSAR C++14 Rule A3-1-5
	AUTOSAR C++14 Rule A3-1-6
	AUTOSAR C++14 Rule A3-3-1
	AUTOSAR C++14 Rule A3-3-2
	AUTOSAR C++14 Rule A3-8-1
	AUTOSAR C++14 Rule A3-9-1
	AUTOSAR C++14 Rule A4-5-1
	AUTOSAR C++14 Rule A4-7-1
	AUTOSAR C++14 Rule A4-10-1
	AUTOSAR C++14 Rule A5-0-1
	AUTOSAR C++14 Rule A5-0-2
	AUTOSAR C++14 Rule A5-0-3
	AUTOSAR C++14 Rule A5-0-4
	AUTOSAR C++14 Rule A5-1-1
	AUTOSAR C++14 Rule A5-1-2
	AUTOSAR C++14 Rule A5-1-3
	AUTOSAR C++14 Rule A5-1-4
	AUTOSAR C++14 Rule A5-1-6
	AUTOSAR C++14 Rule A5-1-7
	AUTOSAR C++14 Rule A5-1-8
	AUTOSAR C++14 Rule A5-1-9
	AUTOSAR C++14 Rule A5-2-1
	AUTOSAR C++14 Rule A5-2-2
	AUTOSAR C++14 Rule A5-2-3
	AUTOSAR C++14 Rule A5-2-4
	AUTOSAR C++14 Rule A5-2-6
	AUTOSAR C++14 Rule A5-3-1
	AUTOSAR C++14 Rule A5-3-2
	AUTOSAR C++14 Rule A5-3-3
	AUTOSAR C++14 Rule A5-6-1
	AUTOSAR C++14 Rule A5-10-1
	AUTOSAR C++14 Rule A5-16-1
	AUTOSAR C++14 Rule A6-2-1
	AUTOSAR C++14 Rule A6-2-2
	AUTOSAR C++14 Rule A6-4-1
	AUTOSAR C++14 Rule A6-5-2
	AUTOSAR C++14 Rule A6-5-3
	AUTOSAR C++14 Rule A6-5-4
	AUTOSAR C++14 Rule A6-6-1
	AUTOSAR C++14 Rule A7-1-1
	AUTOSAR C++14 Rule A7-1-2
	AUTOSAR C++14 Rule A7-1-3
	AUTOSAR C++14 Rule A7-1-4
	AUTOSAR C++14 Rule A7-1-5
	AUTOSAR C++14 Rule A7-1-6
	AUTOSAR C++14 Rule A7-1-7
	AUTOSAR C++14 Rule A7-1-8
	AUTOSAR C++14 Rule A7-1-9
	AUTOSAR C++14 Rule A7-2-2
	AUTOSAR C++14 Rule A7-2-3
	AUTOSAR C++14 Rule A7-2-4
	AUTOSAR C++14 Rule A7-3-1
	AUTOSAR C++14 Rule A7-4-1
	AUTOSAR C++14 Rule A7-5-1
	AUTOSAR C++14 Rule A7-5-2
	AUTOSAR C++14 Rule A7-6-1
	AUTOSAR C++14 Rule A8-2-1
	AUTOSAR C++14 Rule A8-4-1
	AUTOSAR C++14 Rule A8-4-2
	AUTOSAR C++14 Rule A8-4-3
	AUTOSAR C++14 Rule A8-4-4
	AUTOSAR C++14 Rule A8-4-5
	AUTOSAR C++14 Rule A8-4-6
	AUTOSAR C++14 Rule A8-4-7
	AUTOSAR C++14 Rule A8-4-8
	AUTOSAR C++14 Rule A8-4-9
	AUTOSAR C++14 Rule A8-4-10
	AUTOSAR C++14 Rule A8-4-14
	AUTOSAR C++14 Rule A8-5-0
	AUTOSAR C++14 Rule A8-5-1
	AUTOSAR C++14 Rule A8-5-2
	AUTOSAR C++14 Rule A8-5-3
	AUTOSAR C++14 Rule A8-5-4
	AUTOSAR C++14 Rule A9-3-1
	AUTOSAR C++14 Rule A9-5-1
	AUTOSAR C++14 Rule A9-6-1
	AUTOSAR C++14 Rule A10-1-1
	AUTOSAR C++14 Rule A10-2-1
	AUTOSAR C++14 Rule A10-3-1
	AUTOSAR C++14 Rule A10-3-2
	AUTOSAR C++14 Rule A10-3-3
	AUTOSAR C++14 Rule A10-3-5
	AUTOSAR C++14 Rule A10-4-1
	AUTOSAR C++14 Rule A11-0-1
	AUTOSAR C++14 Rule A11-0-2
	AUTOSAR C++14 Rule A11-3-1
	AUTOSAR C++14 Rule A12-0-1
	AUTOSAR C++14 Rule A12-0-2
	AUTOSAR C++14 Rule A12-1-1
	AUTOSAR C++14 Rule A12-1-2
	AUTOSAR C++14 Rule A12-1-3
	AUTOSAR C++14 Rule A12-1-4
	AUTOSAR C++14 Rule A12-1-5
	AUTOSAR C++14 Rule A12-1-6
	AUTOSAR C++14 Rule A12-4-1
	AUTOSAR C++14 Rule A12-4-2
	AUTOSAR C++14 Rule A12-6-1
	AUTOSAR C++14 Rule A12-7-1
	AUTOSAR C++14 Rule A12-8-1
	AUTOSAR C++14 Rule A12-8-2
	AUTOSAR C++14 Rule A12-8-3
	AUTOSAR C++14 Rule A12-8-4
	AUTOSAR C++14 Rule A12-8-5
	AUTOSAR C++14 Rule A12-8-6
	AUTOSAR C++14 Rule A12-8-7
	AUTOSAR C++14 Rule A13-1-2
	AUTOSAR C++14 Rule A13-2-1
	AUTOSAR C++14 Rule A13-2-2
	AUTOSAR C++14 Rule A13-2-3
	AUTOSAR C++14 Rule A13-3-1
	AUTOSAR C++14 Rule A13-5-1
	AUTOSAR C++14 Rule A13-5-2
	AUTOSAR C++14 Rule A13-5-3
	AUTOSAR C++14 Rule A13-5-5
	AUTOSAR C++14 Rule A13-6-1
	AUTOSAR C++14 Rule A14-1-1
	AUTOSAR C++14 Rule A14-5-2
	AUTOSAR C++14 Rule A14-5-3
	AUTOSAR C++14 Rule A14-7-1
	AUTOSAR C++14 Rule A14-7-2
	AUTOSAR C++14 Rule A14-8-2
	AUTOSAR C++14 Rule A15-1-1
	AUTOSAR C++14 Rule A15-1-2
	AUTOSAR C++14 Rule A15-1-3
	AUTOSAR C++14 Rule A15-1-4
	AUTOSAR C++14 Rule A15-2-1
	AUTOSAR C++14 Rule A15-2-2
	AUTOSAR C++14 Rule A15-3-3
	AUTOSAR C++14 Rule A15-3-4
	AUTOSAR C++14 Rule A15-3-5
	AUTOSAR C++14 Rule A15-4-1
	AUTOSAR C++14 Rule A15-4-2
	AUTOSAR C++14 Rule A15-4-3
	AUTOSAR C++14 Rule A15-4-4
	AUTOSAR C++14 Rule A15-4-5
	AUTOSAR C++14 Rule A15-5-1
	AUTOSAR C++14 Rule A15-5-2
	AUTOSAR C++14 Rule A15-5-3
	AUTOSAR C++14 Rule A16-0-1
	AUTOSAR C++14 Rule A16-2-1
	AUTOSAR C++14 Rule A16-6-1
	AUTOSAR C++14 Rule A16-7-1
	AUTOSAR C++14 Rule A17-0-1
	AUTOSAR C++14 Rule A17-6-1
	AUTOSAR C++14 Rule A18-0-1
	AUTOSAR C++14 Rule A18-0-2
	AUTOSAR C++14 Rule A18-0-3
	AUTOSAR C++14 Rule A18-1-1
	AUTOSAR C++14 Rule A18-1-2
	AUTOSAR C++14 Rule A18-1-3
	AUTOSAR C++14 Rule A18-1-6
	AUTOSAR C++14 Rule A18-5-1
	AUTOSAR C++14 Rule A18-5-2
	AUTOSAR C++14 Rule A18-5-3
	AUTOSAR C++14 Rule A18-5-4
	AUTOSAR C++14 Rule A18-5-5
	AUTOSAR C++14 Rule A18-5-8
	AUTOSAR C++14 Rule A18-5-9
	AUTOSAR C++14 Rule A18-5-10
	AUTOSAR C++14 Rule A18-5-11
	AUTOSAR C++14 Rule A18-9-1
	AUTOSAR C++14 Rule A18-9-2
	AUTOSAR C++14 Rule A18-9-3
	AUTOSAR C++14 Rule A18-9-4
	AUTOSAR C++14 Rule A20-8-1
	AUTOSAR C++14 Rule A20-8-2
	AUTOSAR C++14 Rule A20-8-3
	AUTOSAR C++14 Rule A20-8-5
	AUTOSAR C++14 Rule A20-8-6
	AUTOSAR C++14 Rule A21-8-1
	AUTOSAR C++14 Rule A23-0-1
	AUTOSAR C++14 Rule A26-5-1
	AUTOSAR C++14 Rule A26-5-2
	AUTOSAR C++14 Rule A27-0-1
	AUTOSAR C++14 Rule A27-0-2
	AUTOSAR C++14 Rule A27-0-3
	AUTOSAR C++14 Rule A27-0-4
	AUTOSAR C++14 Rule M0-1-1
	AUTOSAR C++14 Rule M0-1-2
	AUTOSAR C++14 Rule M0-1-3
	AUTOSAR C++14 Rule M0-1-4
	AUTOSAR C++14 Rule M0-1-9
	AUTOSAR C++14 Rule M0-1-10
	AUTOSAR C++14 Rule M0-2-1
	AUTOSAR C++14 Rule M0-3-2
	AUTOSAR C++14 Rule M2-7-1
	AUTOSAR C++14 Rule M2-10-1
	AUTOSAR C++14 Rule M2-13-2
	AUTOSAR C++14 Rule M2-13-3
	AUTOSAR C++14 Rule M2-13-4
	AUTOSAR C++14 Rule M3-1-2
	AUTOSAR C++14 Rule M3-2-1
	AUTOSAR C++14 Rule M3-2-2
	AUTOSAR C++14 Rule M3-2-3
	AUTOSAR C++14 Rule M3-2-4
	AUTOSAR C++14 Rule M3-3-2
	AUTOSAR C++14 Rule M3-4-1
	AUTOSAR C++14 Rule M3-9-1
	AUTOSAR C++14 Rule M3-9-3
	AUTOSAR C++14 Rule M4-5-1
	AUTOSAR C++14 Rule M4-5-3
	AUTOSAR C++14 Rule M4-10-1
	AUTOSAR C++14 Rule M4-10-2
	AUTOSAR C++14 Rule M5-0-2
	AUTOSAR C++14 Rule M5-0-3
	AUTOSAR C++14 Rule M5-0-4
	AUTOSAR C++14 Rule M5-0-5
	AUTOSAR C++14 Rule M5-0-6
	AUTOSAR C++14 Rule M5-0-7
	AUTOSAR C++14 Rule M5-0-8
	AUTOSAR C++14 Rule M5-0-9
	AUTOSAR C++14 Rule M5-0-10
	AUTOSAR C++14 Rule M5-0-11
	AUTOSAR C++14 Rule M5-0-12
	AUTOSAR C++14 Rule M5-0-14
	AUTOSAR C++14 Rule M5-0-15
	AUTOSAR C++14 Rule M5-0-16
	AUTOSAR C++14 Rule M5-0-17
	AUTOSAR C++14 Rule M5-0-18
	AUTOSAR C++14 Rule M5-0-20
	AUTOSAR C++14 Rule M5-0-21
	AUTOSAR C++14 Rule M5-2-2
	AUTOSAR C++14 Rule M5-2-3
	AUTOSAR C++14 Rule M5-2-6
	AUTOSAR C++14 Rule M5-2-8
	AUTOSAR C++14 Rule M5-2-9
	AUTOSAR C++14 Rule M5-2-10
	AUTOSAR C++14 Rule M5-2-11
	AUTOSAR C++14 Rule M5-2-12
	AUTOSAR C++14 Rule M5-3-1
	AUTOSAR C++14 Rule M5-3-2
	AUTOSAR C++14 Rule M5-3-3
	AUTOSAR C++14 Rule M5-3-4
	AUTOSAR C++14 Rule M5-8-1
	AUTOSAR C++14 Rule M5-14-1
	AUTOSAR C++14 Rule M5-18-1
	AUTOSAR C++14 Rule M5-19-1
	AUTOSAR C++14 Rule M6-2-1
	AUTOSAR C++14 Rule M6-2-2
	AUTOSAR C++14 Rule M6-2-3
	AUTOSAR C++14 Rule M6-3-1
	AUTOSAR C++14 Rule M6-4-1
	AUTOSAR C++14 Rule M6-4-2
	AUTOSAR C++14 Rule M6-4-3
	AUTOSAR C++14 Rule M6-4-4
	AUTOSAR C++14 Rule M6-4-5
	AUTOSAR C++14 Rule M6-4-6
	AUTOSAR C++14 Rule M6-4-7
	AUTOSAR C++14 Rule M6-5-2
	AUTOSAR C++14 Rule M6-5-3
	AUTOSAR C++14 Rule M6-5-4
	AUTOSAR C++14 Rule M6-5-5
	AUTOSAR C++14 Rule M6-5-6
	AUTOSAR C++14 Rule M6-6-1
	AUTOSAR C++14 Rule M6-6-2
	AUTOSAR C++14 Rule M6-6-3
	AUTOSAR C++14 Rule M7-1-2
	AUTOSAR C++14 Rule M7-3-1
	AUTOSAR C++14 Rule M7-3-2
	AUTOSAR C++14 Rule M7-3-3
	AUTOSAR C++14 Rule M7-3-4
	AUTOSAR C++14 Rule M7-3-6
	AUTOSAR C++14 Rule M7-4-2
	AUTOSAR C++14 Rule M7-4-3
	AUTOSAR C++14 Rule M7-5-1
	AUTOSAR C++14 Rule M7-5-2
	AUTOSAR C++14 Rule M8-0-1
	AUTOSAR C++14 Rule M8-3-1
	AUTOSAR C++14 Rule M8-4-2
	AUTOSAR C++14 Rule M8-4-4
	AUTOSAR C++14 Rule M8-5-2
	AUTOSAR C++14 Rule M9-3-1
	AUTOSAR C++14 Rule M9-3-3
	AUTOSAR C++14 Rule M9-6-4
	AUTOSAR C++14 Rule M10-1-1
	AUTOSAR C++14 Rule M10-1-2
	AUTOSAR C++14 Rule M10-1-3
	AUTOSAR C++14 Rule M10-2-1
	AUTOSAR C++14 Rule M10-3-3
	AUTOSAR C++14 Rule M11-0-1
	AUTOSAR C++14 Rule M12-1-1
	AUTOSAR C++14 Rule A14-5-1
	AUTOSAR C++14 Rule M14-5-3
	AUTOSAR C++14 Rule M14-6-1
	AUTOSAR C++14 Rule M15-0-3
	AUTOSAR C++14 Rule M15-1-1
	AUTOSAR C++14 Rule M15-1-2
	AUTOSAR C++14 Rule M15-1-3
	AUTOSAR C++14 Rule M15-3-1
	AUTOSAR C++14 Rule M15-3-3
	AUTOSAR C++14 Rule M15-3-4
	AUTOSAR C++14 Rule M15-3-6
	AUTOSAR C++14 Rule M15-3-7
	AUTOSAR C++14 Rule M16-0-1
	AUTOSAR C++14 Rule M16-0-2
	AUTOSAR C++14 Rule M16-0-5
	AUTOSAR C++14 Rule M16-0-6
	AUTOSAR C++14 Rule M16-0-7
	AUTOSAR C++14 Rule M16-0-8
	AUTOSAR C++14 Rule M16-1-1
	AUTOSAR C++14 Rule M16-1-2
	AUTOSAR C++14 Rule M16-2-3
	AUTOSAR C++14 Rule M16-3-1
	AUTOSAR C++14 Rule M16-3-2
	AUTOSAR C++14 Rule M17-0-2
	AUTOSAR C++14 Rule M17-0-3
	AUTOSAR C++14 Rule M17-0-5
	AUTOSAR C++14 Rule M18-0-3
	AUTOSAR C++14 Rule M18-0-4
	AUTOSAR C++14 Rule M18-0-5
	AUTOSAR C++14 Rule M18-2-1
	AUTOSAR C++14 Rule M18-7-1
	AUTOSAR C++14 Rule M19-3-1
	AUTOSAR C++14 Rule M27-0-1

	ISO/IEC TS 17961
	Acknowledgment
	ISO/IEC TS 17961 [accfree]
	ISO/IEC TS 17961 [accsig]
	ISO/IEC TS 17961 [addrescape]
	ISO/IEC TS 17961 [alignconv]
	ISO/IEC TS 17961 [argcomp]
	ISO/IEC TS 17961 [asyncsig]
	ISO/IEC TS 17961 [boolasgn]
	ISO/IEC TS 17961 [chreof]
	ISO/IEC TS 17961 [chrsgnext]
	ISO/IEC TS 17961 [dblfree]
	ISO/IEC TS 17961 [diverr]
	ISO/IEC TS 17961 [fileclose]
	ISO/IEC TS 17961 [filecpy]
	ISO/IEC TS 17961 [funcdecl]
	ISO/IEC TS 17961 [insufmem]
	ISO/IEC TS 17961 [intoflow]
	ISO/IEC TS 17961 [intptrconv]
	ISO/IEC TS 17961 [inverrno]
	ISO/IEC TS 17961 [invfmtstr]
	ISO/IEC TS 17961 [invptr]
	ISO/IEC TS 17961 [ioileave]
	ISO/IEC TS 17961 [liberr]
	ISO/IEC TS 17961 [libmod]
	ISO/IEC TS 17961 [libptr]
	ISO/IEC TS 17961 [libuse]
	ISO/IEC TS 17961 [nonnullcs]
	ISO/IEC TS 17961 [nullref]
	ISO/IEC TS 17961 [padcomp]
	ISO/IEC TS 17961 [ptrcomp]
	ISO/IEC TS 17961 [ptrobj]
	ISO/IEC TS 17961 [resident]
	ISO/IEC TS 17961 [restrict]
	ISO/IEC TS 17961 [sigcall]
	ISO/IEC TS 17961 [signconv]
	ISO/IEC TS 17961 [sizeofptr]
	ISO/IEC TS 17961 [strmod]
	ISO/IEC TS 17961 [swtchdflt]
	ISO/IEC TS 17961 [syscall]
	ISO/IEC TS 17961 [taintformatio]
	ISO/IEC TS 17961 [taintnoproto]
	ISO/IEC TS 17961 [taintsink]
	ISO/IEC TS 17961 [taintstrcpy]
	ISO/IEC TS 17961 [uninitref]
	ISO/IEC TS 17961 [usrfmt]
	ISO/IEC TS 17961 [xfilepos]
	ISO/IEC TS 17961 [xfree]

	Guidelines
	Software Complexity
	Number of calling functions exceeds threshold
	Number of called functions exceeds threshold
	Comment density below threshold
	Call tree complexity exceeds threshold
	Number of lines within body exceeds threshold
	Number of executable lines exceeds threshold
	Number of goto statements exceeds threshold
	Depth of call nesting exceeds threshold
	Number of local static variables exceeds threshold
	Number of local nonstatic variables exceeds threshold
	Number of call occurrences exceeds threshold
	Number of function parameters exceeds threshold
	Number of paths exceeds threshold
	Number of return statements exceeds threshold
	Number of instructions exceeds threshold
	Number of lines exceeds threshold
	Cyclomatic complexity exceeds threshold
	Language scope exceeds threshold

	Custom Coding Rules
	Group 1: Files
	Group 2: Preprocessing
	Group 3: Type definitions
	Group 4: Structures
	Group 5: Classes (C++)
	Group 6: Enumerations
	Group 7: Functions
	Group 8: Constants
	Group 9: Variables
	Group 10: Name spaces (C++)
	Group 11: Class templates (C++)
	Group 12: Function templates (C++)
	Group 20: Style

	Polyspace Results: Code Metrics
	Code Metrics
	Comment Density
	Cyclomatic Complexity
	Estimated Function Coupling
	Higher Estimate of Size of Local Variables
	Language Scope
	Lower Estimate of Size of Local Variables
	Maximum Stack Usage
	Minimum Stack Usage
	Number of Call Levels
	Number of Call Occurrences
	Number of Called Functions
	Number of Calling Functions
	Number of Direct Recursions
	Number of Executable Lines
	Number of Files
	Number of Function Parameters
	Number of Goto Statements
	Number of Header Files
	Number of Instructions
	Number of Lines
	Number of Lines Within Body
	Number of Lines Without Comment
	Number of Local Non-Static Variables
	Number of Local Static Variables
	Number of Paths
	Number of Potentially Unprotected Shared Variables
	Number of Protected Shared Variables
	Number of Recursions
	Number of Return Statements
	Program Maximum Stack Usage
	Program Minimum Stack Usage

	Polyspace Reports Components
	Report Components
	Acronym Definitions
	Call Hierarchy
	Code and Verification Information
	Code Metrics Details
	Code Metrics Summary
	Code Verification Summary
	Coding Rules Details
	Coding Rules Summary
	Configuration Parameters
	Defects Summary
	Global Variable Checks
	Recursive Functions
	Report Customization (Filtering)
	Run-time Checks Details Ordered by Color/File
	Run-time Checks Details Ordered by Review Information
	Run-time Checks Summary Ordered by File
	Software Quality Objectives - Coding Rules Summary
	Software Quality Objectives - Run-time Checks Details
	Software Quality Objectives - Run-time Checks Summary
	Summary By File
	Variable Access
	Variable Checks Details Ordered By Review Information

	Polyspace Bug Finder Assumptions
	Approximations Used During Bug Finder Analysis
	Inputs in Polyspace Bug Finder
	Global Variables in Polyspace Bug Finder
	Volatile Variables in Polyspace Bug Finder

